Skip to main content

Full text of "Mechanics' and engineers' pocket-book of tables, rules, and formulas pertaining to mechanics, mathematics, and physics ..."

See other formats


Google 


This  is  a  digital  copy  of  a  book  that  was  preserved  for  generations  on  Hbrary  shelves  before  it  was  carefully  scanned  by  Google  as  part  of  a  project 

to  make  the  world's  books  discoverable  online. 

It  has  survived  long  enough  for  the  copyright  to  expire  and  the  book  to  enter  the  public  domain.  A  public  domain  book  is  one  that  was  never  subject 

to  copyright  or  whose  legal  copyright  term  has  expired.  Whether  a  book  is  in  the  public  domain  may  vary  country  to  country.  Public  domain  books 

are  our  gateways  to  the  past,  representing  a  wealth  of  history,  culture  and  knowledge  that's  often  difficult  to  discover. 

Marks,  notations  and  other  maiginalia  present  in  the  original  volume  will  appear  in  this  file  -  a  reminder  of  this  book's  long  journey  from  the 

publisher  to  a  library  and  finally  to  you. 

Usage  guidelines 

Google  is  proud  to  partner  with  libraries  to  digitize  public  domain  materials  and  make  them  widely  accessible.  Public  domain  books  belong  to  the 
public  and  we  are  merely  their  custodians.  Nevertheless,  this  work  is  expensive,  so  in  order  to  keep  providing  this  resource,  we  liave  taken  steps  to 
prevent  abuse  by  commercial  parties,  including  placing  technical  restrictions  on  automated  querying. 
We  also  ask  that  you: 

+  Make  non-commercial  use  of  the  files  We  designed  Google  Book  Search  for  use  by  individuals,  and  we  request  that  you  use  these  files  for 
personal,  non-commercial  purposes. 

+  Refrain  fivm  automated  querying  Do  not  send  automated  queries  of  any  sort  to  Google's  system:  If  you  are  conducting  research  on  machine 
translation,  optical  character  recognition  or  other  areas  where  access  to  a  large  amount  of  text  is  helpful,  please  contact  us.  We  encourage  the 
use  of  public  domain  materials  for  these  purposes  and  may  be  able  to  help. 

+  Maintain  attributionTht  GoogXt  "watermark"  you  see  on  each  file  is  essential  for  informing  people  about  this  project  and  helping  them  find 
additional  materials  through  Google  Book  Search.  Please  do  not  remove  it. 

+  Keep  it  legal  Whatever  your  use,  remember  that  you  are  responsible  for  ensuring  that  what  you  are  doing  is  legal.  Do  not  assume  that  just 
because  we  believe  a  book  is  in  the  public  domain  for  users  in  the  United  States,  that  the  work  is  also  in  the  public  domain  for  users  in  other 
countries.  Whether  a  book  is  still  in  copyright  varies  from  country  to  country,  and  we  can't  offer  guidance  on  whether  any  specific  use  of 
any  specific  book  is  allowed.  Please  do  not  assume  that  a  book's  appearance  in  Google  Book  Search  means  it  can  be  used  in  any  manner 
anywhere  in  the  world.  Copyright  infringement  liabili^  can  be  quite  severe. 

About  Google  Book  Search 

Google's  mission  is  to  organize  the  world's  information  and  to  make  it  universally  accessible  and  useful.   Google  Book  Search  helps  readers 
discover  the  world's  books  while  helping  authors  and  publishers  reach  new  audiences.  You  can  search  through  the  full  text  of  this  book  on  the  web 

at|http  :  //books  .  google  .  com/| 


MECHANICS'  AND  ENGINEERS' 
POCKET-BOOK 

OF 

TABLES,  KULES,  AND  FORMULAS 

PERTAINING  TO 

MECHANICS,  MATHEMATICS,  AND  PHYSICS: 

INCLUDING 

AREAS,  SQUARES,  CUBES,  AND  ROOTS,  ETC. ; 

LOGARITHMS,  HYDRAULICS,  HYDRODYNAMICS,  STEAM   AND 

THE  STEAM-ENGINE,  NAVAL  ARCHITECTURE, 

MASONRY,  STEAM  VESSELS, 

MILLS,  ETC. ; 

COMPRESSED  AIR,  GAS.  AND  OIL  ENGINES; 
LIMES,  MORTARS,  CEMENTS,  ETC.; 

ORTHOGRAPHY  OF  TECHNICAL  WORDS  AND  TERMS,  ETC.,  ETC. 


Seventy-eighth  Edition.      152d  Thousand 

BY    CHAS.    H.    HASWELL, 

»» 

SITIL,  MASINB,  AND    MKCHANICAL    BNUI.NBKR;    HO.NOKAKY  MKM8RR   OP  THK  AM.  80C.  OF   NAVAI.    ARCHI 
AND    MaKINK    K.NUINKIItS,    BUSTON    SUCIBTY    OK  CIVIL    ENGIXEKKO,  AND  THK    BNUINKBRS' 
CLUB  OP   PHILADBLPHIA;    LirB   MBHBBK   Or  THB     AM.  80C.  OK  CIVIL    KNUINBKUS    AND 
OP  THB     INHTITUTIONS    OP    CIVIL     BNQINBBBS     AND    OF    NAVAL    ARCHITBCTS   OF 
BNOLAND  ;    UBMBBR    OF    THB     N.    Y.    ACADBMY     OF    SCIBNCK8  ;    FBL- 
LOW   OF  THB    AM.    OBOOHAPHICAL    SOCIETY;    CORRB8POND1NG 
MBUBBB  OF  THB  AM.  IN8TITDTB   OF  ARCHITBCTS,  AND 
^  A880CIATB   MBMBBR  OF  THB   NBW    YORK    Mt« 

CEOSCOPICAL     SOCIETY,   BTC.,   BTC. 


An  examination  of  facts  is  the  foundation  of  science. 

A  resultant  effect,  physical  or  mechanical,  cannot  be  renewed  without  an 
expenditure  of  power  in  addition  to  that  which  originated  it. 


NEW    YORK: 
HARPBR   &   BROTHERS,  PUBLISHERS, 

FBANKLIM     BQUABX. 


Mechanics'  and  Engineers'  Pocket-book 


Copyright,  X884, 1887,  1890,  189J,  1893,  1894,  1895,  1896,  1897,  1898,  1899.  1901, 

1903,  19 1 8,  by  Harper  &  Brothers 

Copyright.  191 2.  1919.  by  Gouverneur  Kemble  HaswelL 

Copyright,  1920,  by  Julian  B.  Haswell 

Printed  in  the  United  States  of  America 

a-u 


357193 

MAY  2  3  1930 

•A- 


IJtfaCRIBEU 
TO    • 

CAPTAIN  JOHN  ERICSSON,  LL.D., 

AS  A  SLIGHT  TRIBUTE  TO  HIS  GENIUS  AND  ATTAINMENTS, 

AND  IN  TESTIMONY  OP  THE  SINCERE  REGARD 

AND  ESTEEM  OF  HIS  FRIEND, 

THE  AUTHOR 


PREFACE 

To    the    Kortsr-fiflh.    Kdition. 


Thb  First  Edition  of  this  work,  consisting  of  284  pagea» 
was  submitted  to  the  Mechanics  and  Engineers  of  the  United 
States  by  one  of  their  number  in  1843,  who  designed  it  for 
a  convenient  reference  to  Rules,  Results,  and  Tables  con- 
nected with  the  discharge  of  their  various  duties. 

The  Twenty-first  Edition  was  published  in  1867,  consisted 
of  664  pages,  and,  in  addition  to  the  original  design  of  the 
work,  it  was  essayed  to  embrace  some  general  information 
npon  Mechanical  and  Physical  subjects. 

The  Tables  of  Areas  and  Circumferences  of  Circles  have 
been  extended,  and  together  with  those  of  Weights  of  Metals, 
Balls,  Tubes,  Pipes,  etc.,  of  this  and  some  preceding  editions 
were  computed  and  verified  by  the  author. 

This  edition  is  a  revision  and  an  entire  reconstruction  of 
all  preceding,  embracing  amended  and  much  new  matter,  as 
Masonry,  Strength  of  Girders,  Floor  Beams,  Logarithms,  etc., 
etcJ 

To  the  young  Mechanic  and  Engineer  it  is  recommended 
to  cultivate  a  knowledge  of  Physical  Laws  and  to  note  re- 
sults of  observations  and  of  practice,  without  which  eminence 
in  his  profession  can  never  be  attained ;  and  if  this  work 
shall  assist  him  in  the  attainment  of  these  objects,  one  great 
purpose  of  the  author  will  be  well  accomplished. 

V<fn  i.—iHechaniccd  and  Phyticai  tuit^eds,  eomnuneing  at  p.  437  and  ending  at 
p.  870.  are  given  in  aiphabetuxU  order. 

3. — Tont  are  given  and  computed  cU  3240  lbs. 

y.— Degree*  qf  temperature  are  given  by  the  Scale  of  Fahrenheit. 


INDEX. 


A.  Ftg* 

Abctmkiits  AMD  AR0HS8  {See  Arches 

and  Abutments) 604-605 

AccsLKRATBD   BoDT,  Distances,  Ve- 
locities, and  Acceleration  of.  .921-922 

Adds 188 

Acreage,  To  CompiUe. 337 

Adulteration  in  Metals,  Proportion 

0/ Two  Ingredients  in  a  Compound.  216 
Aerodynamics 614 

ASROMBTBT 673-676 

{See  also  Pneumatics.) 

"  Course  of  Wind,  etc '.  675 

"  Cyclones,  Direction  of. 675 

"  Degree  of  Rar^action 673 

"  Discharge  Pipes,  Diameter  of.  676 
*'  Distance  of  Audible  Sounds...  674 
♦ '  Force  of  Wind  on  a  /Sur/ace.674-675 
"  Height  of  a  Column  of  Mer- 
cury to  Induce  an  Efflux  of 

Air,  To  Compute 675 

"  Resistance  of  a  Plane  Surface 

to  Air,  To  Compute 675 

"  Resistance  to  a  Steam  Vessel  in 

Air  or  Water 911 

Weight  or  Pressure  of  Air 

under  a  Given  Height  of 

Barometer  and  Temperature 

Discharged  in  One  Second. '.  675 

Wind,  Velocity  and  Pressure 

of. 674,911, 924 

Volume  of  Air  discharged 
Through  an  Opening,  etc., 
into  a  Vaaium 674 

AiROSTATics 427-431, 614 

"  Clouds,  Classijlcation  of. 430 

"  Distances,  by  Velocity  of  Sound  428 
*'  ElewUions,by  a  Barometer.  ^^^-^2() 
"  "  Thermameter..  429 

"  Lightning,  Classi^fication  of . .  430 
Velocity  of  Air  flowing  into 

a  Vacuum,  To  Compute.  428 

"  of  Sound 428 

Weather  Glasses  and  Barom- 
eter Indications 430-431 

Age  of  Horses,  To  Ascertain 186 

Ages  of  Animals 192, 196 

Air,  Atvosphrric 431-43^?  Qi' 

'^    and  Steam,  Mixture  of. 737 

Carbonic  Acid  Exhaled  by  Man.  432 

Compressors 940 

Consumption  of  by  Candle 432 

Decrease  of  Temperature  by  Al- 
titudes.    522 

Discharge  of.  Coefficients  of  Ef- 
flux  674 

Expansion  of 520 

FUxw  of,  in  Pipes,  Loss  of. .  745,  909 
Head  of,  to  Resist  Friction  in 

Long  and  Rectilineal  Pipes. .  925 
Pressure  of,inRear  of  a  Projectile  648 


K 


(t 


(( 


<( 


it 

(I 


(( 
It 


(t 
i( 


(I 


(I 
It 


II 


.     Paffa 

AiB,  Atmobphkrio,  Pressure,Velocity, 
and  Resistance  of  a  Plane  Sur- 

face,To Compute 648 

"  Pressure  of  a  Weight  of,  or  other 
Gas  at  62°  and  14. 7  Lbs.  Press- 
ure, with  Constant  Volume  fvr 

a  Given  Temperature 522 

"  Proportion  of  Oxygen  and  Har- 
bonic  Acid  at  Various  Loca- 
tions  432 

"    Rarefaction  of. 430 

"    Resistance  of  different  Figures 
in,  at  different  Velocities,  and 
to  Falling  Bodies. . .  .646-647,  949 
"    Specif^}    Heat    of,  and    Other 

Oases. 505-506 

<*    Temperature,  for  a  Given  Lati- 

twie  and  Elevation 676 

"    Volume  qfa  Weight  of,  or  Per- 
manent   Gas  for    any 
Pressure,  To  Compute. .  520 
• '        • »    and  Weight  of  Vapor  in .  68-69 
"        •«    of  a  Weight  of,  or  Perma- 
nent Gfasfor  any  Pressure 
and  Temperature. .  .521-522 
«        «    of  and  G<u  in  a  Furnace..  760 
<(        (*    ^ Enclosed,  at  o*  that  may 
be  Heated  by  One  Sq. 
Foot  of  Iron  Surface. . .  925 
"        "    of,  or    Gas'   Discharged 
through  an  Opening  and 
under  a  Pressure  above 
that  of  External  Air. . .  676 
"       "    Pressure,  and  Density  of 
at    Various    Tempera- 
tures.   521-522 

"        *•    Required  per  Hour,  for 
ecuh    Occupant   in   an 

Enclosed  Space 525 

Ajutage,  Cylindrical 549 

Alcohol.  .' 194 

^'        Elastic  Force  and  Tempera- 
ture, of  Vapor  of. 707 

"        Proportionof,inLiquors.igj,904 

A\6  And  Beer  MeoMtres 45 

♦♦    Water  in  201 

ALCffiBRAIO  STXBOLS  AND  FORMULAS,  22-^5 

Alimentary  Principles 200 

Alligation 106 

Alloy,  Expands  in  Cooling 952 

Alloys  and  Compositions 634-637 

♦»  Bronze 637 

*'   Cf*mpounds,Fusible  and  Solders  634 

"  OfSt^el 643 

"  Soldering  Fluid  and  Fluxes. . .  636 

"  Solders 636 

"    Welding  Cast  Steel 634 

Almanac,  Kpacts  and  Dominical  Let- 
ters, i9oo  io  iqpi .....,,..,.    73 


Vlll 


INDEX. 


Almahac,  Altitude  of  Sun  at  New 
York 


Page 

932 
Altitudes,  Decrease  of  Temperature  by  522 

^*"";>°«™ iS5,93S,976 

Amalgam 634 

Ammeters  and  Voltmeters. 961-962 

Analysis  of  Organic  Substances..  190 

"  of  Foods  and  Fruits 201 

*'  ofJlleat,Fish,andVegetables,etc.  2cx> 

Anchors  and  Kbdgks   and  Units, 
2  o  Determine  Weight  and 
Number  of  U.  S.N...  174-175 
"  Number  '  and    Weight  of 

U.S.N. 174 

Cables,   Chains,  etc.,  for    a 
Given  Tonnage,  Am.  Ship 

M.  Ass^n '73~*74 

Experiments  on  and  Compar- 
ative Resistance  to  Dragging  175 

Proof  Strain  of. 175 

\  Ancient  and  Scripture  Lineal  Meas- 
ures and  Weights 53 

Anglss  {See  also  2Vi^ono»i«<ry).  .385-389 
and  Distances  Corresponding 
to  Opening  of  a  Rule  of 

Turn  Feet 160 

Chord  of  to  Plot  and  Compute.  359 

Critical  and  Visual 669 

Stn<M  of  To  Compute 402 

To  Describe,  etc 222 

To  Plot  wit/tout  a  Protractor^  359 

Ahtm AL  and  Human  Sustenance.. . . .  303 

**      Food 200-207 

Power  anil  Work. 432-440 

Birds  and  Insects.  .438,  440 
Camel  and  Crocodile. .  438 
Coursing  and  Chasing.  440 
Day^s  Work 434 

D09 438 

£ror««.  435-437, 439-440,918 
Llama  and  Ox 438 

^^ 433-435,  438-439 

Mule  and  A  ss 437,  918 

on  Street  Rails  ^r  Tram- 
ways  435 

Stage  Coaching 440 

Animals,  Proportion  of  Food  for. . . .  205 

•*        Agesofexxi!. 192,196 

Annealing. 786 

Annuities i  lo-i  1 1 


(( 


ti 


it 


it 


ti 


K 

it 
ti 
it 
ti 


it 
<t 
(t 
14 

tc 

ti 
it 
it 
tt 
C( 

(i 
ft 


it 
it 


tt 
ti 
it 
ti 
it 
it 
tt 
u 
it 
tt 

tt 


Paift 

Arc,  To  Describe 225,  227-228 

Arch,  Radius  of  To  Compute 604 

'  •      Depth  of  To  Compute 605 

Arches  and  Abutments 604-605 

(See  atso  Masonry,  604-605.) 
**  Chords,  etc. ,  Safe  Weight  of  776 
"  Minimum  Thickness  fjf,  for 

Bridges. 605 

"    and  Walls. 602-603 

Area   and   Population  of  Divisions 

and  Countries 188 

Arenes 589 

Areas  of  Circles  by  8ths. 231-236 

"      "  and  Circumferencss  of  Cir- 
cles by  loths 243-252 

**  and  Circumferences  Greater 
than  in  Table,  To  Compute  252 

by  i2tfis 253-257 

by  Birmingham  Wire  Gau^e  236 

by  Logaritlim^ 236,^252 

Greater  than  in  Table.. 225,  252 

*'  In  Feet  and  Inches 235-236 

"  When  Diameter  is  composed 
of  an  Integer  and  a  Frac- 
tion, To  Compute 236 

OF  Segments  op  a  Circle.. 267-269 

OF  Zones  of  a  Circle 269-271 

"        To  Compute 271 

Arithmetical  Progression 101-103 

Artesian  Well ^g  ,q8 

Asbestos 


it 

it 
tt 
tt 
it 
it 
it 


ti 

it 
it 


tt 
tt 
it 
tt 


tt 


Felting,  Cement,  etc. 
Ash,  Proportion  of  in  Woods. 


913 

1032 

482 


it 

it 


it 

it 


Amount  of  To  Compute. ..  no 
"  at    Compound 

Interest m 

Present  Worth  of.....j lo-i 1 1 
Yearly  Amount,  that  will 
Liquidate  a  Debt.. . .  i lo-i 1 1 

Anti-attrition  Metal,  BabbitVs 636 

Antidotes  for  Poisons 185,  935 

Anvils,  Weight  of. 918 

Apartments,  Buildings.  Ventilationof  524 
Apothecaries'  or  Fluid  Measure. ...    46 

Weight 32 

Appold'i  Pump  and  Whed. , . , ,  ,579*580 
APPINDIZ 9i9"-955»  X024-X029 


Asphalt 481,  515, 689-690 

"       and  Pavement 944-945 

"       Composition ^q^ 

"      Mortars  and  Concrete 913 

Astronomical  Day ^q 

Atlantic  and  Pacific  Oceans.  ....*.".*'  007 
"    Tides  of. ',  ,gi 

Atmosphere g^^ 

Avoirdupois  Weight ,2 

Ax]e,Compound,or Chinese  Windlas.^,  627 
{See  also  Wheel  and  Axle,  626-627.) 

B. 

Babbitt's  Anti-attrition  Metal 636 

Bacteria  in  Earth  soil g^g 

Baking  of  Meats, Loss  by ..'.  206 

Balances,  Fraudulent ^c 

Balks  and  Battens,  Dimensions  of. '. .     62 
Balloons.  Capacity  and  Diameter  of.  218 

Balls,  Cast  Iron  and  Lead 153 

Balls,  liCad,  Weight  and  Dimensions  of  501 

Barbed  Wire  Fencing q^- 

Barker's  Mill .'  tyi 

Barley,  Value  of  Compared  to   ioo 
Lbs.  of  Hay 203 

Barometer  {See  also  Aerostatics),  ^^j-^-^i 
"  Elevations  by  Readings .  429 

♦'  Height  of, To  Compute..  429 

' '  Indications 420-4^0 

♦'  Weather  Glasses. .......  Aq 

*'  Weather  Indications..   .  431 

Barrel,  Gimwsiow  of ,,,..,,     30 


IHDBX. 


XI 


BRjkss  Castings,  WeigM  ofy  To  CompuU  155 

"    TuheB,  Weight  of 142 

"     WeigfUof. 136 

"    yv ire.  Weight  of. 120-121 

Braziers'  Sheets  and  Sheathing 155 

"  "  Copper...,,  131 

Bread,  Wheats  Water  Lost  ^  Drying.  207 

Breakwaters 181 

Breast-wheel 568-570 

"       Proportions  and  Ejfe<^.,  569 

Brick  Walls,  ThickMSS  of. 603 

Brickwork. 595,  S97-598>  6oo>  8o» 

"  Masonry 595 

Brick  or  Compressed  Fuel 907 

Bricks 598-600 

"      Stones,  etc 800 

"      Crushing  Resistance  of. 908 

**      Volume  of  and  Number  in  a 

Cube  Foot  of  Masonry. ,  599-600 

Bbidob,  Britannia  Tubular 178 

Highest 907 

Iron  over  Kentucky  River. .  178 
N.  Y. ,  Erie,  and  W.  Railroad  178 
Hew  York  and  Brooklyn . . ,  178 

overOxus 930 

Resistance  offrom  a  Model.  645 
Suspension, Elements  of,.,,  842 
Plates  and  Rivets. 830 


t< 

ii 
u 
«{ 
It 
t* 


BRID0B8 178,  930,  936 

Lengths  and  Spans  of. . .  181-182 


(t 
t( 


Suspension  and  Length  of 

^ans  oj. 178, 199,  842 

Bridles  or  Stirrups, /or  Beams 838 

British  and  Metric  Measures,  Com- 

merciai  Equivalenis  qf. 906 

Broccoli,  Value  of 207 

Bronzb 637 

"     MaUeabU. 907 

"     Manganest 832 

*'     1ofav,Yacht  Shaftmg,Plates, 

and  Pump^  Piston  Rods. , .   929 

Browning  or  Bronzing  Liquid 874 

Builders*  Measure 46 

Building  Department,  Requirements 

of ; -907 

BuiLDuro    Stonbs,  Expansum    and 
Contraction  of 184 

Buildings,  WaUs  of  English 189 

"     Protection  offrom  Lightning  907 
Bums  and  QiXufp,,  Application  for, , .  196 

Bushel,  Poumb  «n 34 

Buttermilk^  Sugar  and  Water  in. ...  201 
Buttress  and  Cotmter/br^ 696^ 

C. 

Cabbage.  Fa2ti«  oy 207 

"  Water  in 201 

Cablkr,  Ropes,  IJ[awsbrs,  Anchors, 

AND  Chains. 163-175 

'•'       Chain 169, 930 

Diameter    of  for    a    Given 

Weight  of  Anchor. 175 

Oalvanued    Steel,   Strength 

and  Weight  of, 163 

Hawsers,  Hemp    and    Wire 
Mope,  Comparison  qf. 169 


Paf« 
Cablbs,  Ropes  and  Hawsers,  Circum- 
ference of,  To  Compute. .  171 
"         "  Weights  of  To  Compute. .  173 

"      Ropes  and  Hawsers 170 

"  *»    Strain  Borne  with  Sc^e- 

ty.  To  Compute. 171 

Calculus 24 

Calendar,  Rcclesiastical 70 

*'        Gregorian  or  N. S 70-71 

Calorie 504)  614 

M     Engine,  Ericsson^  s 903 

Camel,  Load  of  and  Travel 438,  918 

Canal,  Suez,  and  Via 277,  183,  912 

' '  or  Conduit,  To  Discharge  a  Given 
Volume  of  Water,  and  To  Compute 

FcUl  of. 920 

Canals,  Dimensions,  etc z8i 

"     Flow  of  WoUer  in 550 . 

•*     Locks  and  Capacities  of,  To 

Compute 183,  553-555 

•*     Power  of  a  Horse  on 848 

*'     Traction  on 848 

"     Transportation  of. 193 

Candles,  Lamps,  Fluids,  andGas.  Light 

0/,  etc 583-584 

Cane  Sugar  or  Sa^xharose 207 

Cannon  Ball,  Flight  of. 49s 

Capillary  Tube. 358 

Cargoes,  To  Ascertain  Weight  of. .  176-177 
"       Umts  for  Measurement  of. ,  176 

Carrot  Ratio  of  Flesh-formes. 207 

"  Vatue  of.  Compared  to  200  Lbs. 

of  Hay 203 

Cascades  and  Waterfalls 184 

Case  Hardening 644,  786 

Cask  Gauging 377 

Casks,  Buoyancy  of. 193 

»*      Ullage,  To  Compute  Vobim^  of  378 
Cabt  and  Wrought  Iron  of  a  Given  • 
Sectional  Area,  Weight  of,,.,,  136 
"   Weight  of ,  To  ComptUe 155 


*t 


u 


*■ 


Cast  Iron.  131, 637-638^65, 783-786, 798 
andLeadBaJlls,Weifihtof.,,,  153 
BaHs,  Weight  and  Diameter  of,  153 

Bar  or  Rod,  Weight  of. 131 

Bars,  Experiments  on 780 

Characteristics  of 637 

Columns,  Weight  Borne  Safely 

by 768 

Malleable  Castings 639 

of  a  Given  Sectional  Area, 

Weight  of  136, 149 

Pipe,  To  Resist  Oxidation 927 

Pipes  and  Tubes,  Dimensions 

and  Weight  of, 147 

"  Weight  of. 132-133 

Plates,  Weight  of  a  Sq.  Foot .,  146 

Ultimate  Strength  of 781 

Castings,  Shrinkage  of 218 

*'  Holes  in 873 

"   Weight  of,  by  Pattern 317 

Citcnary.  To  Delineate 230 

Cathedra],  St.  Peter's 179 

Cattle  and  Horses,  Transportation  of  193 
Dressed  Weight  of  To  Com- 
puU     35 


(t 


n 
it 


tt 
it 


tt 


tl 
tt 


It 
tt 


It 

t( 


(( 


tl 


INDBX. 


Pagt 
BoiiiKR,  ComumpHon  of  Fud  in  a 

Furnace^  To  Compute. .  .725-726 

*»     Draught 739, 744-74^ 

**  "       and  Blasts,  ('ompar- 

aiive  Effect  of..,.  746 

«  "        Velocity  of 746 

"       lifficiency,  NominaZ  and  IIP 

and  Economy  of. 758, 976 

**     Kvapora/bive  Capacity  of  TiLbes  742 
*•     EvaporaMfie   Effects    of  for 
Differemt  Rates  of  Combus- 
tion and  Surface  BaHos. . .  743 
**     Evaporation,  Power  of....  757-758 

*  *     Eyes,  Stays,  Bods,  etc 754 

**     F^t  thai  may  be  Consumed 

per  Sq.  Foot  of  Orate 74a 

"     Girders  for  Furnaces 754 

**     GrcUe,  Heating  SurJace,Waierf 

Fuel,  etc.,  To  Ctmpute.  .741, 927 
*'     Heating  Surfaces  and  Rela- 
tive Value  of. 740 

"     Mean    Strength    of    Riveted 

Joints  Compared  to  Plate.7 51-7  52 
•'     Minimum   Volumes   of  Fuel 
Consumed  per  Sq.  Foot  of 

Grate. 74o>74x 

"     Plates  and  Bolts 749-750 

"         *'  Thickness  of  for  a  Given 

Pressure  and Pit(^,eUi.  753 

♦*     Power  and  W  of. 526,760 

**     Proportion    and    Capacities 

of,  and  Firing 739-740 

**     Bate  of  Combustion 760 

**     Relation   of  Grate,  Heating 

Surface,  and  Fuel. 741 

••  Besults  of  Operation  of  and 
under  Varying  Proportions 
of  Grate,  Surface,  Draught, 

Combustion,  etc 743, 924 

'••  Besults  of  Operation  of  vor 
rious  Designs  of  Boiler  and 
Varying  Ptoportionsof Area     « 

of  Grate  Surface,  etc. 744 

**     Return  TubtUar,  Elements  of 

a  Test 726 

«•     Biveting, 755-757»907 

**  "     General  Formulas  and 

Illustrations 757 

"     Sitfety  Valves 746-747 

**     Saline  Saturation  in 726 

••  Scale,  Removal  of  Incrusta- 
tion of. 726 

'*     Stay  Bolts,  Diameter  and  Pitch 

of.  To  Compute 754 

"  "  Tensile  Strength  of. 753-734 

**     Steam  Heating. 526, 957-958 

**     Steam  Room 748 

••      Tubes,  Evaporating  Capacity 

of  Various  Lengths. . . .  742 
••         *'  Lap-welded  Charcoal,  Di- 
mensions of. 139 

»•     Volume  of  Water  per  Lb.  of 

Coal,  7b  Compute 725 

"     Weights  ofandwith  Water.  759,929 

BoiLBM,  Area  of  Grate  per  Lb.  of 

CoaL ..o..  7481 


Paffc 
BoiLBBS,  Blowing  off,  To    Compute 

Loss  of  by. 727 

"    Bottoms  of.  To  Preserve. 878 

"    Corrugated  Flues 941 

**    Cylindrical  jS/wM*. ...751-752, 913 

"    Elements  of 958 

•*    Flued,  Arched,  or    Circular 

Furnaces,  U.  8.  Law. .  ..754-75^ 
"    SheU    Plates,  Pressure    and 

Thickness  of,  U.  S.  Zraw. 750751 

•  •*    Horse-Power  of. 914,936 

"    Incnutation  or  Scale,  To  Re- 

move 726 

"    Magnesia  Covering  0/ ....  918, 921 

"    Plates,  Straps,  and  Stays. 753 

♦*  Proportion  of  Grate  and  Heat- 
ing Surfaces,  Result  of  Ex- 
periments  926 

**    SaUne  Saturation  in 726 

**         **     Matter,    Prcportionate 

Volumes  Of. 727 

**  Smoke  Pipes  and  Chim- 
neys  748-749 

•*    Steam  in  Foreign  Countries . .  935 
"    Steam  Water  Tube,  Sufficiency 

and  Results  of ^ 947 

**     Volume  of  Furnace  Gasper  Lb.    • 

of  Coal 760 

«*         "  of  Water  Blowed  off  to 

that  Evaporated 727 

*♦     Water  Tube  and  Efficiency  of, 

926,  947 

BoiUNO  -  Points    of  Various   Siib- 

stance^. 517 

**      "    at  Different  Degrees  of 

Saturation. 815 

Bolts,  Adhesion  of  Drifted 949 

"      and  Plates,  U.  S.  Test . . .  .749-750 
'  "      Rods  of  Copper,  Weight  of,...  148 
**      Bound  and  Square,  Relative 

Driving  Resistance  of  Steel.  970 
*'      Tenacity  and   Resistance   of, 

Round,  Square,  and  Screw. .  970 
"      Wro't  Iron,  Experiments  on. .  783 
*<      AND   Nuts,  Dimensions   and 
We^/hts  of  and  ofTobin 

Bronze 1 56-1 59,  929 

I*       "  English  and  French  Stand- 
ard.   158 

"       "  In  Wood,  Tenacity  of. 198 

**       "  of  WroH  Iron  as  effected  by 

the  Thread..,. 916 

**       ^*  Square  Heads 159 

Boring  and  Turning  Metal 197 

"      Instruments,  Tempering  of. .  197 

«       Well 197 

Boyden  Turbine 574 

Brain,  Relative  Weights  of, 192 

Brakbs,  Locomotive 923 

Brass 636 

*'    qfaGivenSection^Weightof.i26,i4g 

"    Ornaments,  To  Clean 877 

"    Plates,  Weight  of. 118-119, 146 

"        *'       Thickness  of 121 

*■*■    Seamless  Pipes. 14a 

'*  *Sbeet,  Weightof. 143 


INDEX. 


IX 


Pag* 
Babs,  WroH  Iron^  Square  and  RoUed, 

125-128 
• '     Steel,  Plat  and  Rolled 134-135 

BSAMS,  Bars,  OR  Gikdxrs,  Tratuverie 

atrengUi  of. &02-81 1,  813-820 

{See also  Girderg,  Beams,  etc.) 
**    Box,  Plate  and  Bars. .  806, 817,  827 
**    Comparative  Strength  and  De- 
flection of  Cast  Iron 809 

"    Comparative    Value    of  Bars, 

Oirders,  or  Tubes 824 

"    Common  Centre  of  Gravity,  etc.  8ig 
"    Cylinder  and  Cylindrical,  Di- 
ameter and  Weight,  To  Com- 
pute   805 

"    Cylindrical,  or  Tubes,  Trans- 

verse  Strength  of. 810 

• '    Deflection  of. 770-782,  840-8  41 

••     Depths  and  Weight,  etc.,  of  Steel  134 
"    Dimensions  and  Weigh  t  of  Roll- 
ed Steely  and  To  CoMpute.  134, 644 
'*    Rolled  Steel  Beams  and  Bulb 

Angles 807,808 

**    Elliptical  Sided,  To  Determine 

Side  or  Curve  of. 826 

"    Factors  qf  Safety 821,841 

"    Flanged,  Dimensitms  and  Pro- 
portions of  WroH  Iron 809 

"    Floor  Beatns,  Headers,  Trim- 
mers, etc.,  To  Compute. .  .835-^38 
"    Formulas  for  TransverseStress, 

To  Compute 801, 816 

"    General  Deductions 824-825 

"    Inclined,  Formula  for ■.  811 

•'    Lintels,  etc 822-823 

**    Moments  and  Stress  of..., .621-622 

**  "        of  Resistance 818 

-  **    Rectangular,  Girders  or  Tubes.  809 

"    Scarfs,  Resistance  of. 841 

**    Shearing  Stress 623 

"    Solid  Cylinder,  Diameter   of, 

To  Compute 804-805 

**    Symmetrical  Forms  and  Sec- 
tions, Conditions  of. 825-826 

"    Trussed,  Notes  on 823-824 

**     Une(^uaUy  Loaded. 810 

**     Various  Figures  and  Sections, 

Dimensions  of. .  147, 805,  813, 814 
'«     Wrought  Iron  Rolled. 809 

BSAMS,  Inertia  and  Resistance,  Mo- 
ments of  and  Neutral  Avis, 

To  Compute 818-820 

"    Circular  or  Elliptic 815 

**    Hollow  or  Annular. 815 

"    Miscellaneous  lUiutrations. . .  826 
"    of  Unsymmetrieal  Section,  and 

Ultimate  Strength  of.  817, 820-821 

♦'    OR  TuBRS,  Elliptical 810,  815 

Bearings,  for  Propeller  Shaft 473 

Beef,  Lean.,  Water  in. 201 

Beer  and  Ale  Measure 45 

"  ♦*       Water  in aoi 

Beet  Root,  Ratio  of  Flesh  -formers 

and  Sugar,  Analysis  of. 907 

Beevefl  and  Beef,  Weights  of 35 

BeR  Ringing. 433 


Phf* 

Bella,  Weight  of. 180,  936 

Belt,  Equivalent,  and  Wire  Rope 167 

Belting,  and  Destructive  Stress  of,  907,  935 
"  or  Hose,  To  Preserve 877 

Belts  and  Bxltixg,44i-443,877,96o,zoz8 
^'   Adhesive  Compound jor  Rubber.  Sj J 

"   Dressing  for 878 

'*   Dynamo  and  Link  Leather 960 

"   General  Notes  and  Memoranda, 

..    .  ..    «...     442-443.872,877,989 

"  India  Rubber 442 

"    Width  of.  To  Compute 441-443 

Bench  Marks 85, 1035 

Beton  or  Concrete 593 

Bibliotfieque  National 936 

BiTdB,Flying 440 

'■^     Incubation  of 192 

**     and  Insects 196,438 

Bissextile  or  Leap  Year 70 

Blacking. 877 

Blast  Furnace 539 

"  Pipe  of  a  Locomotive . .  907 

Blastiso 443-445,  9»3,  916 

*'  Borxng  Holes  in  Granite. .  444 
"       Charge  of  Gunpowder  for, 

and  EffecU  of. 444 

*'        Weight  of  Explosive  MaU- 

ruUs  in  Holes 444 

"  Gelatine,  Composition  of...  916 
"  Paper,  Composition  of.....  912 
'*        Tunnels  and  Shq^,  Cost  of.  444 

"        Drilling  and  Mining 445 

Blasts   and   Draughts,  CorfiparaUve 

EffecU  of. 746 

Blower  and  Exhausting  Fan 898 

Blowers,  Fan 447-448, 898, 1015 

"    Elements  of.  To  Compute. . . .  448 

"    Memoranda 448-449 

"  Power  of  a  Centrifugal  Fan.  448 
"    Pressure  of  Blast,  To  Compute  ^^j 

Blowing  Evoinb,  Friction  of  Air  in 

Long  Pipes,  etc 925 

Enqines 445-440.  898,  ioz8 

Dimensions  of  a  Driving 

Engine,  To  Compute 446 

Elements  of  To  Compute. . .  447 

Memoranda 448 

Power  of,  and  Power  Re- 
quired to  Dnve 446 

''       RooVs  Rotary 449 

"        Volume  of  Air  transmitted.  447 

Blowing  Off  of  Steam 726-727 

Board  and  Timber  Measure 61 

Boards,  Volume  that  can  be  sawed 

from  a  Round  Log 947 

Boiler,  Steam 526,  739-745 

*'     and  Ship  Plates 828 

"     AbtU  Straps  and  Stays. . .  753-754 
'  ^     A  reas  and  Ratio  of  Grate  and 
•  Healing  Surface,  Volume  of 
WaterandWeightnfFuel.74t^j^a 
^'      Coal,  Utilization  of,  in  a  Ma- 
rine  726 

Comparative  Result  of  Experi- 
ments with  a  Steam  Jet. . . .  746 


it 
ti 

(( 


(I 


Xll 


INDEX. 


u 


«t 


t( 


(» 


1( 


tt 


Cauliflower,  Value  of. 207 

Cave,  Mammoth,  of  Kentucky 936 

Cement  Mortar 595 

"    Cloth,  elc, /or  Covering  Steam 

Pipes. 956 

ClMKNTS-SIS,  589-590,871-873,907,956,958 

(See  Limes,  Cements,  Mortars,  and 
Concretes,  588-597. ) 

CsMTKAL  Forces 449-454 

"  "    Formulas  for  Variotu 

Elements 450 

Cbmtrb  or  Gravity 605-608 

and  Vertical  Distance  be- 
tween  Centre*  of  Crush- 
ing and  TensiUStrength 
of  a  Oirder  or  Beam, . .  819 
Centre  of  amy  Plane  Fig- 
ure, To  Ascertain.  .605-606 
of  Displacement  of  a 
Vessel 653,658 

Ckmtrx  of  Gyration 609-61 1 

"      '^  Elements  and  Centre  of  610,611 
Ckntrss  or  Oscillation  and  Pbr- 

cuB8iON,and  7V)Compute.6i2-€i4 
*'  "    Centre  ofin  Bodies  of 

Various  Figures. . ,  613 
CiNTRiruoAL  FAS,ElementsandPOw- 

erofa  Fan  Blower, e^jo.  448 
(See  Fan  Blowers,  447-448. ) 

Forge  of  any  Body 450 

Forces. 499 

Formulas,  to DetermineVa- 

rious  Elements 450 

Pumps 579.  9".  9*7 

Chain,  To  Set  out  a  Right  Angle  with.    69 
"    Cable,  Diameter  and  Length 
for  a  Given  Weight  of  Anchor, 

**    CABhEa,Breaking Strain, Proof 

and  Strength  of. .  1^,  930 
"  Anchors,  etc. ,  for  a  Given 

Tonnage,  Am.  S.  Ass^n.  173-174 
"  Length  of  for  Anchors. ...  175 
"  Stud  -  Link,    WeiglU    and 

Strength  of. 168,  930 

"      '*  Stowage  of 913 

Cbaining  over  an  Elevation 69-1034 

Chains  and  Ropes/ot  Cran««,  Weight 

of  and  Proof. 457 

*'        "  of  Equal  Strength 165 

*  <    Safe  Working  Load  of. 168 

Characters  and  Symbols.  . . .  .21-22, 973 

Charcoal. 33, 194. 480-481,  485 

"         Produce  of  from  Woods. . .  481 
Cheese,    Composition    of   Different 

Countries 205 

Chemical  Composition  of  some  Com- 
pound Combustibles 461 

"        FormuUis,  To  Convert 190 

Chimney  Draught  and  Chimneys. ^7,  g  18 
"        Velocities  of  Current  of  A  ir 

in  One  of  100  Feet 749 

CHiMNSTp 179-180, 904, 916,  918, 935 

'  *        and  Smoke  Pipes 748-749 

"        Height  of  and  Commercial 
Wfor  a  Given  Diameter  of  Flue. .  935 


it 


ti 


i( 


Chinese  Wall 179,  936 

*»       Windlass,  To  Compute 627 

"       or  Indian  Ink 907 

Chronological  Eras  and  Cycles. ...    26 

Chronolooy 70-74 

"   To  Ascertain  Years  of  Coinci- 
dence of  a  Given  Day  of  the  Week, 

«tc 74 

Churches,  Opera-Houses,  and  Thea- 
tres, Capacity  qf. 180 

Circular  ARC8,^m  i*  to  180'' 262 

"  "    LengUis  of  up  to  a 

Semi-cirde 260-261 

"            "    Length  of,  To  Ascer- 
tain  261 

"      Motion 618 

**      Measure  of  an  Angle 113-114 

Circulating  Pumps. . . : 749 

Circle,  to  Ascertain  Square  that  has 

the  Same  Area  of. 259 

*'    Sides  of  a  Square  Equal  in 
Area  to 258-259 

Circles,  Areas  of,  by  Sths,  ic>ths,  and 

i2ths 231-257 

"  "  by  Logarithms 236 

"  "  by  Wire  Gauge. 236 

CiBCUMrxRKNCE   of  a   Circle  when 
Greater  than  Contained  in 
Tables,To  Compute. 241-^42,  252 
"    of  Birmingham  Wire  Gauge.  24a 
"    When  Diameter  consists  of  an 
Integer  and  a  Fraction. . . .  242 

CiRCUMrSRKNOES  OF  CIRCLES  by  Bths, 

2yi-^42 
"  "  and  Area  ofbyi  oths.  243-252 
"        "    "       "   by  Incites  and 

1 2t/(5....  252-257 

"        "  6y  Logarithms 242, 252 

'(  t(  In  Feet  and  Inches.. 241-^42 
Cisterns  and  Wells,  Excavation,  Lin- 

ing^nd  Capacity  of, 63 

Civil  Day .' 37,  70 

"    Year. 70 

Cloth  Measure 27 

Clouds,  Classification  of. 430 

Clover,  Value  of.  Compared  to  100 

Lbs.  of  Hay 203 

Coal,  Anthracite. . . . ^^3, 480,  483, 485-486 

"     Composition  of  Average 485 

"     Fields  of  U.  S.,  Areas  of 191 

CoAJA^  Average  Composition  of  and 
Fuels,  Heat  of  Combustion 
and  Evaporative  Pouter  of . .  486 
' '    Bituminous ....  33,  479,  483,  485-486 
"      "  and  Natural  Goa,  Relative 

Water  Evaporating  Powers  913 
"      "  Calcing,  Splint    or    Hard. 

Cherry  or  Soft,  and  Cannet  479 
"      "  Classijfication,    Chemical 
Composition  and  Varieties 

of 479 

' '    Consumedper  Hour,  to  Heat  100 

Feet  of  Pipe 527.528 

"    Effective  Value  of 908 

I  Coals,  Elements  of  Various  American  48a 
'      "    Fields,  Areas  of  U.S. 191 


INDEX. 


Xlll 


Page 

Coals,  £feu 4^4 

"    Japan. 909 

"    LigniU 479>  481 

"    Measures 33,  46 

"    Mine 936 

"    Miscellaneous  Experiments 487 

"    Production  and   Consumption 

of  the  World. 955 

Coast  and  Bay  Service  and  Scour. . .  908 
Cocks,   Composition,   and     Copper 

Pipes,  Dimensions  of. 150 

Coffee  and  Tea^  WcUer  in 4.  201 

Cohesion. 614 

"  Modulus  of 763-764 

ColnSj  Br\i\sh  Standards 38 

"     To  Convert   U.  S.  to   Bi-Uish 

Currency,  and  Contrariwise    39 

"      Tolerance  of. 38 

"     U.  S.,  Weight  and  Fineness  of.     38 

**     Value  of  To  Compute 39 

«•     Foreign  Silver  and  Oold,  and 
Weighty  Fineness^  and  Mint 

Value  of 39, 43 

CoKS,  Evaporative  Povoer  of  etc 480 

Cold,  Extremes  of  in  Various  Coun- 
tries and  Snow  Line 191-192 

**    Greatest,  Artificial. 908 

CoDege,  Oxford X79 

CoLUSioN  OB  Impact 580-582 

"  "     Velocities  of.  sSi-sS2 

Color  Blindness. 195 

Clolors  for  Drawings. 913 

'•*      Proportion  of  for  Paints. ....     66 
Oolamns,  Towers^  Domes,  Spires,  etc. , 

180,  936 
"  Crushing  and  Safe  Load  of. . .  766 
**  Lona  Solid,  Comparative  Value 

of. 769 

••  of  Cast  Iron 768-769 

•*       ^*' Weight  Borne  with  Safety, 

768-769 

CJOMBINATION 1 1 2-1 1 3 

tJOMBUBTION 458-466 

**    Chemical  Composition  of  some 

Oompound  Combustibles. . .  461 

"  Composition  and  Equivalen  ts 
of  Oases  Combined  in  Com- 
hustion  of  Fuel 460 

"    Consumption  of  Fuel  to  Ileal 

Air,  To  Compute 466 

*•    Evaporative  Power  of  i  Lb. 

of  a  Given  Combustible. . .  462 

••    Heat  of. 463 

**    Beating  Powers  of  Combus- 

t£bles,and  To  Compute. ^61-^62 

«    Of  Fuel,  Ratio,  etc 463-465 

**    Products  of  Decomposition  in 

Ou  Fumade 458-459 

*•    Bate  of  in  a  Fumade 760 

*•  BelaUve  Evaporation  of  Sev- 
eral Combustibles. ...  465 

««  *•  Volumes  of  Gases  or 
Products  of  per  Lb. 
of  Fuel 465 

*  Temperature  of  To  Ascer- 
tain.  463-463 


Paf« 
CoicBUsnoiv,  Volume  of  Air  Chemical- 
ly Consumed  in  Complete 
Combustion  of  1  Lb.  of  Coal  459 
"     Volumes  of  Air  Required  for 

Combustion 464-465 

"    Weight  and  Specific  Ileal  of 
Products  and  Temperature 

ofCombttstion,etc 462-463 

"     Weight  andVolume  of OoMous 

Products  of  1  Lb.  Fuel 460 

Compass,  Degrees,  d:  Graduation.  54, 1023 
Coif  POSITION  Cocks,  Dim,ensions  of...  150 
Composition /or  Welding  SteeL 634 

Compositions  and  Alloys 634-637 

(See  Alloys  and  Compositions.) 

Composition  Sheathing  Nails 135 

Compound  Axle  or  Chinese  Windlass  627 

»»        Ixtbrest 108-109 

Proportion 95-96 

Weights  of  Ingredients...  218 

Concbetb 588-597 

{See  Limes,  Cements,  Mortars, 
and  Concretes.) 

*>*  CoigneVs 914 

*'   Compositions  of 593 

"  or  Beton. 593 

Concretes,  Cem,ents,  eta 800 

Conks. 353-354 

Condensation,  Surface. 967 

♦'                  "  Experiments  on.  911 
Condenser,  Results  of  an  Operation 
of 967 

Conic  Sections 379-380 

*  ♦     Conoid  and  Ellipse,  Elements  of  2!^ 
'*       "To  Describe,  ami  Area,  Or- 
dinate, Absciss(e,  Diam- 
eters, Circumference,  Seg- 
ment,and  LengUi  of  Curve, 

To  Compute 380-382 

"     General  Definitions 379 

"  Hyperbola,  To  Describe,  and 
Abscissce,  Diameters,  Length 
of  an  Arc,  and  Area,  To  Com- 
pute  379-380 

"     Parabola 379-380, 382-383 

It            **  2V>   Describe    Ordinate, 
Abscissa,  Curve,  Area, 
and  Segment  of...  382-383 
Constructions  and  Satural  Forma- 
tions, Largest 936 

Contractility  and  Elasticity 614 

Cooking  of  Meats 206 

Copper,  Tensile  Strength  nf 750, 788 

"    and  Iron  Riveted  Pipes,  Weight 

of 148 

"    Braziers^  and  Sheathing 131 

•'  ''  Rods  or  Bolts,  Weight  of  .  148 
' '    Given  Sectional  A  rea.  Weight  of  1 36 

' '    Plates,  Thickness  of. 121 

"        "        Weight  of. 1 18-119 

"        "  "      per  Sq.  Feet. .   146 

*'    Seamiest  Drawn  Tubes,  Weight 

of. 140-142,  144-145 

*'  Sheathing  and  liraziers' . . .  131-1 55 
"    Sheet,  Weight  of  a  Sq.  Foot. . .  135 


XIV 


INDEX. 


Page 
GOPPBR,  Weight  o/,  and  To  Compute, 

136, 155 

"     Wire,  C0rd 123 

"        ' '      Weight  of. 120-121 

Copying, Wordn  in  a  Folio. .., 29 

Cord,  CopjM'r  Wire 123 

CoKUAUK,  Friction  andRigidity  0/472-473 

Com  Measure 198 

*'  Value,  of,  Compared  to  100  Lbi. 

of  Hay 203 

Corrotrive  Effect*  of  Salt-water  on 
ateel  and  Iron 916,  971 

CO-BKGANTB  AND  SECANTS 403-4I4 

"  "        To  Compute,  etc.  4^14 

Cosines  and  Siner 390-402 

"  *'        To  Compute,  otc.  401-402 

CO-TANQBNTS  AND  TaNQKNTS 415-426 

"  "        To  Compute,  etc.  426 

Cotton  Factories 899 

Cou])lo,  Comtitution  of. 614 

Couftliiig  or  Sleeves  of  Shafts. 796 

('oijr8ing  and  Chasing 440 

Ckank,  Railroad 962 

"      Steam  Dredgers,  Elements  of 

and  Dredging 890-900 

Cranes 179, 433, 455-45/,  962 

"     Chains  and  Rnj)esfor. 457 

"  l>imensionsofPost,To Compute  456 
"  Machinery  and  Proportion  of.  457 
•*  Post,  Stress  and  Conditions  of.  455 
•'    Stress  on  Jib,  Stay,  or  Strut, 

o       u  m.       .                                    455-457 
Crank,  Turning 433 

Cream,  Percentage  of,  in  Milk 205 

Creosoting,  Effects  o/. 869 

Crwodtle,  Power  of. 438 

Chops, if  inera^  Constituents  A  bsorbed 

or  Removed  from  an  Acre  of  Soil. .  189 
Cross-ties,  Railroad,  Duration  of. . .  970 

Croton  Aqueduct 178, 939 

Cruslier,  Ore  and  Stone  Breaker. . . .  957 
Cki'shinq  Strength 764-769, 1021 

{See  Strength  of  Materials.) 
Cube  Measurea 30-31 

Cube  Root,  To  Extract. 97 

"  AND  Sqcark  Root  of  a  Sum- 
ber  consisting  of  Integers 
and  Decimals,  To  Ascer- 
tain   301-302 

•*  **  of  Decimals  alone,  To  As- 
certain   302 

••        "  of  any  Number  over  1600, 

To  Ascertain 301 

••  **  or  Square  Root  of  Roots. 
Whole  Xumbers  and  of 
Integers  and  Decimals,  To 

Ascertain 97-98 

**        **  ofaHigherSumberthanis 

Contained  in  Table 301 

CuBBS,  Squarks,  and  Roots 272-302 

{See  Squares,  Cubes,  and 
Roots. ) 
"           "  To  Compute  and  to  As- 
certain, etc 300-302 

Cucumber,  Water  in 207 

'Currency,  To  Convert  U.  S.  to  British    39 


Current  Wheel 570 

"       of  Rivers 193 

Curvature  and  Refraction  of  Earth. .     55 

Curves,  Caustic,  or  Lines 669 

Cut  Nails,  Tacks,  Spikes,  etc 154 

Cutters,  Vacfits,  Pilot  Boats,  Launches  895 

Cycle,  Dominical  or  Sunday  Letter. .     70 

''     Lunar  or  Oolden  Kumber. ...     71 

"     of  the  Sun,  To  Compute 70-71 

Ctclss  and  Chronological  Eras. ....    26 

Cycloid,  To  Describe 228 

Cyclones,  Direction  of. 675 

Cylinders,  Flues,  and  Turks,  HoUow  827 
"  Solid  and  Hollow,  of  Various 
Metals. 8or 

D. 

Dams,  Embankmbnts,  and  Walls  {See 

Embankments,  etc.) 700-703 

Day,  A  stronomical,  Marine  or  Sea. .  37, 70 

•'    Sidereal,  Solar,  and  Civil 37,  70 

Day^s  Work 434 

Dead  Sea  and  Valley  of  the  Jordan. .  934 

Deals  and  Local  Standards  of. 62 

Decimals 92-94 

Deer  Park,  Copenhagen 179 

Deflection  [See  Strength  of  Mate- 
rials.)  770-781 

Delta  Metal 384,  913 

Departures,  Table  of. 54 

Deptfis,  Sea 184 

Derrick  Guys 163 

Desert  of  Sahara 936 

Desiccation 513 

Detrusivb  or  Shearing  Strength 

(SeeStrength  of  Materials,  782-783. ) 
"  and  Transverse,  Comparison  of.  782 

"  Strength  of  Woods 782 

♦*  Wood,  Surface  of  Resistance  of.  782 

Dew  Point,  and  To  Ascertain 68 

Diamond  Weight 32 

Diamonds,  Weight  of. 193 

Diet,  Daily,  of  a  Man 202,  207 

'*        "      (fan  Esquimau 914 

Differentiation, Integration,and  Cal- 
culus.  24-25 

Digkstion  of  Food,  Time  Required 

for 206-207 

Discount  or  Rebate 109 

Displacement  of  a  Vessel 653 

Distances,  Steaming 86 

"    and  Angles,  Corresponding  to 

Opening  of  a  Rule  of  2  Feet .  1 60 

"    between  Cities  of  (7.  S. 184 

"  '♦  "  East  and  West. .  187 

"  "  Principal  Ports  of  World    87 

"  "         "  "     of  U.S..    88 

•'  "  Various  Ports  of  Eng- 

land, Canada^  and  U.  S. ,  and 

X  T.  and  London 86 

"     Velocities  and  Acceleration  of 

a  Body.  To  Compute 921-922 

"     Oeogrnphic,  and  Measures 54 

Distemper  (Coloring) 593 

Distillation 514 

"  of  Fresh  Water 955 


INDE2. 


XV 


P»ge 
DittiUers  and  Evaporators,  Capaci- 
ties of. 950 

Dog^  Power  of,  Courting  and  Charing, 

438,  440 
DoMKS  and  Towers^  Diameter  and 

Heights  of. 179-180, 932 

Domestic  Remediais 938 

DominicaJ.  Letters  and  Epacts 73 

"         or  Sunday  Letter 70 

D0VBTAIL8,  Tenacity  of. 948 

"DRAiNAORor  Landm  by  Pipes 691 

Drains,  Diameter  and  Grade  of  to 

Discharge  Rainfall 906 

•'  and  Sewers,  Velocity  and  Orade 
of 692 

Draught,  A  rtificial 745-746 

"  Natural 739-74°,  744 

"         Steam  Jet  and  Blast,  Com- 
parative Effects  of  and  Result 

of  Experiments  ufith 746 

Drawing  and  Tracing  Paper 29, 964 

'*        or  Pushing 433 

Drawings,  Colors  for 196,  913 

"  Dimensions  of  for  U.  S- Patents  198 
Dredger,  Steam    Hopper,  and   Ma- 
chines  899-900 

Drxdgiko,  and  Cost  of 197 

''        Machines  and  Crane 899 

Drilling  in  Rock 445, 940 

*'        in  Metals 477 

Drills,  Mountings,  etc 940 

Drowning  Persons,  TreatvMnt  of. . .  187 

Dry  Mkasurrs 30,  31 

DuAUN 503 

Ddodbcimals 94 

Dtnamitb  aaid  Celltdose 443-444 

Dtmamicb 614, 616-620 

"      Circular  Motion 618 

"      Decomporition  of  Force 620 

*'      Motion  on  an  Inclined  Plane  619 

"      Uniform  Motion 617-618 

*<      Work  A  ccumulated  in  Moving 

Bodies,and  To  Compute  619 
•*         "  By Percusrive Force....  620 

Dynamo  Leather  Belts ^. 960 

E. 

Earth,  Diameters  and  Density. , .  z88, 198 
^     and    Rock    Excavation    and 

Embankment 192 

Area  and  Population  of 188 

Boring  and  Heat  of  Mines. . . .  955 
"  Conductivity  of  Temperature  in  914 
•*     Curvature  and  Refraction  of.     55 

"     Elements  of  Figure  of 6m 

"     Influence  of  the  Rotation  of  on 

Moving  Bodies 942 

"     Mrdion  of 70 

"     Weight  of  per  Cube  Yard. . . .  468 

"      Weights  of 33 

Eabthwork 467-468 

"  Bulk  of  Rock,  etc.,  Original 

Excavation  Assumed  at  t..  468 
'  *  Number  of  Barrow  and  Horse- 
"  cart  Loads   and  Shovelling,  and 
Volume  of  Transported  per  Day. .  908 


4( 


Easter  Day. «,.  71 

Ecclesiastical  Year 70 

Egg,  Fowls',  Composition  of 207 

Egyptian  and  Hebrew  Measures 53 

Elastic  Fluids,  Specific  Gravity  of.  215 

Elasticity  and  Strength.  195, 614, 761-763 

"  Coefficient  of 761 

"  Modulus  of  and  To  Compute  762-763 
'*  Relative,  of  Materials 780 

Elkctric  and  Gas  Light 198 

'*    Dynamo  Engine 954 

"    Elevators, P^mer  Required. . .  959 

"    Launch 900 

"    Light,  Candle  Power  of. 908 

♦'    Fans,  Uotohs,  Power, Pumps.  959 
**    WiRBS    AND     Cables,    Tele- 
graph, Telephone,  and  Light  Wires 

and  Cables 960 

Electrical  Engineeriug,  Units  in.  Re- 
sistance and  Expressions. gbj-^HB,  1033 
Elementary  Bodik^,  with  their  Sym- 
bols and  Equivalents 190 

Elephant,  Power  and  Weight  of.. ...  918 

Elevations  by  a  Barometer 428-429 

"          and  Heights  of  VaHous 
Places  above  the  Sea 183,1035 

Ellipse,  To  Describe  and  Construct, 

etc 226-227,  380 

(See  Conic  Sections,  379-380.) 

Elliptic  Arcs,  Lengths  up  to  a  Semi- 
ellipse  of. 263-266 

To  Ascertain  Length  of  266 

Embankments, Walls,  AND  Daub,  Ele- 
ments of. 700-703 

{See  also  Revetment  Walls,  694- 
699,  and  Stability,  69^-703. ) 
"    "  Equil'U>rium,   StaJ)iUty   and 

Moment,  To  Compute 701 

"     ^^  Form  of  a  Pier,  7^0  Determine  "joo 

'*    "  High  Masonry  Dams 703 

**     *'  Materials,  Weight  of  a  Cube 

Foot  of. 694 

'*    "  Surcharged  Revetments 699 

"    "  Various  Elements,  To   Com- 
pute and  Determine. . . .  702-703 
Endless  Ropes 167 

Enoinxs   and    Machines,  Elements 

and  Cost  of 898-904 

*'       and  Sugar-mills,  Weights  of.  908 

Engravings,  To  Clean  Soiled 875 

Ensigns,  Pennants,  and  Flags,  U.  S  .  199 
Epacts,  and  Dominical  Letters.  ...  73 
Equation  of  Payments 109 

Equilibrium,  iln^2««  of,  at  which  Va- 
rious Substances  will  Repose  694 

"  Of  Forces 616 

Ericsson's  Caloric 903 

Esquimau,  Daily  Food  of 914 

Establishment  of  the  Port  for  Several 

Locations  in  Europe 85 

Ether,  Elastic  Force  of  Vapor 707 

Evaporation 747-748,  1024 

"         of  Water  per  Sq.  Font 514 

"  "per  Month  of  Year  gt6 


It 


XVI 


INDKX. 


t( 


t( 


t( 


u 


u 


u     n 


Evaporative  Power  of  Tubes  per  De- 
gree of  Heat,  etc 513 

Evaporators  and  Distillers,  Capaci- 
ties of. 955 

EVOLDTIOW 96 

"    To  Extract  Square  and  Cube 

Roots. 97 

any  Root 97-98 

Excavation  and  Embankment,  Ele- 
ments of  etc 466-468 

"  Bulk  of  Rock,  Earthwork, 
etc.,  OriffincU  Excavation 

Assumed  as  1 468 

*•  Cost  of  per  Cube  Yard. . . .  467 
**  Earth,  Rocks,  etc.,  Weight  of  468 
**     •*  Eartiiwork  by   Carts    and 
Barrow  Loads  Removed 
by  a  Laborer  per  J>ay.  467^468 
"  Labor  and  Work  upon  and 

Estimate  of  Cost  o/.  466-467 
"  in  Blasting  and  Hauling 
Stone  or  Earthwork,eic.  468 
'•    "  Load.wr  Tripsin  Cube  Yards 

per  Cart  per  Day 466-467 

"     "  of  Earth  and  Rocic 192 

Expansion 614 

'*  and  Contraction  of  Building 

Stones,  etc 184 

Expenditures  in  Englandfor  Various 
Purposes  and  of  Articles,  compared 

with  Spirituous  Liquors 938 

Explosives,    Relative    Strength    of. 

Fired  under  Water.  946 
"  High,  Firing  Point  and  Rela- 
tive Strength 953)966 

F. 
Falling  Bodies,  Resistance  of  Air  to,  949 
Family  of  .Mechanics,  Costof,inPrance,^oS 

Fan  Blowers 447-448 

**    Elements  of,  and  Power  of 448 

"    Exhausting  and  Blower. 898 

"    Memoranda 448 

Farms,  Sustaining  Production  of,.,  207 
Fascines 690 

I'KLLOWBHIP 99 

I'Kr.TiXG.  Covering.  Lagging,  etc.  . . .  1032 
Fence  Wire,  Strength  and  Weight  of 

Single  Thread  and  Cable  Laid. . . .   164 

fKNciNo,  Barbed  Steel  Wire. 947 

y/ff.  Value  of. 207 

Files,  Repair  of 878 

Filter  BeAls. 851 

Filtering  Stone 909 

Filters ^r  Waterworks. 1 84 

Fire  Bricks 515,  600 

"     Clay. 597 

Fire- Engine,  Steam 004,  909 

FIsli,  Mfoi, and  Vegetables, Analysts  oj  200 
Flag.'i,  Ensigns,  and  Pennantu,  U-  S..  199 

Flax  Mill 476 

Floating  Bodies,  Velocities  of 909 

Flexible  Paint/or  Canvas 915 

Flood  Wave  of  Ohio  River 912 

->R  Beams,  of  Wrought  Iron,  and 
^^mces  fi^om  Centres 931 


P«g« 

Floors  and  Loads,  Factor  of  Safety, 

and  Weights  of  and  on. 841 

(See  StrengOi  of  Materials,  795-841.) 
Flour,  Consumption  and  Tests  of.  206-207 

"■       Mills Qoo 

Flues,  Tubes,  and  Cylinders. . .  .747,  §27 
Arclied  or  Circular  FumaA:es.  754 
and  Fuma/x,  Corrugated,  and 

Formulas  for. 909,  941 

Fluid  and  Liquid  Measures 30, 46 

Fluids,  Candles.  Lamps,  and Qas. ...  584 

*♦      Percussion  of 579 

Fluttbr  Wheel 571 

Fluxes /or  Soldering  or  H  elding. . . .  636 
Fly  Wheel,  Weight  and  Dimensions 

of  Rim,  To  Compute. 451 

Flying  of  Birds 440 

Fontaine  Turbine 574 

Food,  Animal 200-207 

*'     Comparative  Values,  for  Sheep.  gj^B 

"    Daibf.  of  an  Esquimau zo6,  914 

"    Digestion    of,  and   Time   Re- 
quired for 200 

"    Milk,  Relative  Richness  of. 207 

"    Nutrient  Value  and  Ratio  of 

100  Parts 203 

"     "  Equivalents  of  from  Ammmt 

of  Nitrogen  in,when  Dried  205 
*  *    Proportion  of.  Appropriated  and 

Expended  by  Animals. . . .  305 
"      "  q/'  Starch  in  Sundry  Veg- 
etables   205 

"    Ratio  of  Flesh  •fbi'mers  from 

Tubers 207 

"    Tliermometric  Power  and  Me- 
chanical Energy  of, when  Ox 
idized  in  the  Animal  Body. .  205 

Foods  and  Fruits,  Analysis  of. 201 

"  "  in  Reference  only  to  Heat 

and  Strength 203 

"    Elements  of  Various 207 

"    MiUe,  Nutritive  Values  and  Con- 
stituents of. 203 

'  *    Nutritious  Properties  of  Differ- 
ent Vegetables  and  Oil-cake 

Compared 204 

Relative  Values  of. 202.  204 

**    **  to    make    an    Equal 
Quantity  of  Flesh  in 

CcUtle  or  She.ep 202 

"    "  Comparedwith  100  Lbs. 

of  Hay. 203 

"    "  as  Productive  of  Force 
when  Oxidized  in  the 

Body. 204 

"    Required  by  a  Man 207 

Volume  of  Oxygen  to  Oxidize 

as  Consumed  in  the  Body. . .  204 
Weight  of,  to  Develop  Power  in 

Human  System 204 

*  *   to  Fum  ish  1 2  20  Gra  ins  of 
Nitrogenous  Matter . . .  202 
Foot-pound 947 

Force,  Decomposition  of. 6fo 

Forces,  Composition  and  Resolution 

</" 615 


C( 


it 


(( 


u 


(( 


INDEX. 


XVll 


Page 

PoRCKS,  DiviHon  of. 614-616 

"        Equilibrium  of 616 

"        Inertia  of  a  Revolving  liody.  616 
*'        Perciutsive,  Work  by 620 

F0RKI6N  Measitkes  and  Weights.  .48-52 
B'ormcUions,  Natural^  and  Construc- 
tions, Largest 936 

Formulas  and  Algebraic  Symbols.. 22-22 

Fortress  Monroe 179 

Foundation  Piles 198, 909 

Fonnd&t'ions,  Pressur'',  a.  Lock/.  781-1040 

FSAOTION'8 89-gi 

Fraudulent  Balances 65 

J^reeboard  of  Vessels 666,  913 

Freezing,  Effects  of  to  the  Resistance 

of  Stones,  etc 184 

Frbsh  Water,  DistUlation'of 955 

Friction,  Elements  of,  etc .  .469-478,  571 

"    and  Delivery  in  Hose 922 

"    and  Rigidity  of  Cordage.  472-473 

*'    Application  of  Results 474 

"    Bearings  for  Propeller  Shafi.  473 

"    Coefficients  of  Axle 471 

•*        **  o/"  Masonry  on  Masonry^ 

Clay,  and  Earths 696 

**        ^^  of  Motion  and  Hepcee^,^,  470 

*•        "  To  Determine 471 

**    Elements  of 469-470 

**    Grain  Conveyers 478 

"    in  Launcli  ing  of  Vessels. 478 

"    Mechanical  Effect  of...,  471-472 
"    of  A  ir  in  Jjong  and  Rectilineal 

Pipes,  Head  of  in  Lbs. 925 

"    of  Bottoms  of  Vessels 909 

•*    of  Engines  and  Propellers .  662-663 
**    of  Journals  or  Oudgeons  of  a 

Water-wheel 571 

"    of  Journals  of  a  Water-WheeL  571 
"    of  Machinery,  Results  of  Ex- 
periments upon. . .475-478,  loto 
"    of  a  Non-condensing  Engine.^7B,gi& 
"    of  Pivots  and  Relative  Value 

of  Angles  of. 472 

»*    of  Planed  Brass  Surfaces. . . .  009 

«•    of  Roads 847 

"    of  Steam- Engines. . , .  475,  478,  918 

"    of  Screw  Steamer. 478 

**    of  Tools. 476 

"    of  Water  in  Pipes 925 

"  of  Winding  Engines,  Shearing, 
FUtx  Mill,  Tools,  Planing, 
Molding,  Slotting^  Turnings, 

Grindstones,  etc 476-478 

»'    of  Wall  and  Earth. 698 

♦'    Relative  Value  of  Unguents. ..  471 
*■     Results  of  Experiments  on  Sev- 
eral Instruments 474 

'•     Rolling , 473 

"     Wood-saunng 477 

Frictional  Resistsince  of  a  Hail  way 

Train 916 

Frigorific  Mixtures. 193,  516 

FsriTS,  Analysis  of. 201 

"      ProportionofAeid  and  Sugar  202 

Fr«L.  Elements  of , 479-487 


Pag* 
FiJJtL,Area  of  Orate  and  Consumption 

of  To  Comjnite 513 

"    A^h,  Peat,  and  Tan ^82 

**     Asphalt 481 

"    Average  Composition  of.  Heat, 

and  Evaporative  Power  ^>/' 48  5-486 

*'     Bituminous  Coal 479-487 

"    Brick  or  Compressed 907 

"     Charcoal  and  Coke 480,  483 

"     Classijication  of  Coal. 479 

'*    Comparative     Value    of,    and 

Weights. 484 

"    Elements  of 486 

"    Lignite  and  Wood. 481-482 

**    Liquid,  Petrol/um,  Coal  Ga.<i. 

and  Oils 484 

"    Miscellaneous *.  .483.  485-487 

"    Produce  of  Charcoal 481 

"    Relative  Values  of. 483 

"     Uni*s  of  Heal  in... 927 

"     Valves,  Weights,  and  Evapora- 
tive Power  of  per  Balk 483 

Furnaces 528-529,  754-755 

Fusible  Compounds. 634 

G. 
Galvanized  Sheet  Iron,  Thiclcness 

and  Weight  of. 124,  129 

"  Charcoal  Iron 163 

**  Iron  Wire  Riggmg  and  Guys 

and  Steel  Cables 162-163 

"  Iron  Wire  and  Diameter  of...  123 
Galvanizing 786 

Gas,  Elements  of  etc 585-587,  676 

and  Electric  Liqht,  etc 198. 969 

A  tniospheric  Engine  and  Engines, 

587,912,990 

CandUts,  Lamps,  Fluids,  etc 584 

Coal,  Composition  of. 484 

Diameter  and  Length  of  Pipe  to 

Transmit  Given  Volume  of....  586 

Flow  of  in  Pipes 586 

Ligfu,,  intensity  of ,  equal  Volumes 

from  Differnii Burners 585 

Mains,  THmensions  of,  etc 587 

Natural-  and  Bituminous  Coal, 

Relative  Evaporating  Powers.  913 
Pipe  Threads 160 

"     Elements  of  and  Weight. ...   123 

Steam  and  Hot-air  Engine.^ 909 

Tubing,  and  Xumber  of  Burners, 

Regulation  and  Length  of. ....  586 
Volume  of  per  Lb.ofCoal  and  Air  760 

"  of  a  Weight  of Air,or  Perma- 
nent Gas  for  any  Pressure.  520 
of  Discharged  through  a  Pipe  587 
of  per  Hour  under  Pressure .   58  7 

"  froinaTonof(^oal,Re.nn,etc.  586 
Weight  of  a  Cube  Foot  of. 215 

Gases.  Expansion  of  and  Volume  ofi 

Lb.  at  32*5  undrr  One  Atmosphere  520 

Permanent,  Volumes  of 103 

•'    Temperature  of. 587 

"  *'    of Soiid.'fcation 5x6 

Gauge,  MfrcuriaX , 910 

Qauget,  Wire.n ««<«««t-<«>*ii8-ia3 


(< 


XVIU 


INDEX. 


Qadoinq  Cfuk  and  Varieties  of,.,,,  377 

*'         0/ Weirs. 922 

Oear,  Spur 911 

Gelatine,  Blasting 916 

Gkographio    Mkasdres    and    Dis- 
tances and  Levellings 54-5^ 

Geographical  and  Nautical  Measures    26 
Gbomktkical  Progression 103-105 

Okometry,  Elements  of,  etc 219-230 

**  Angles 2C2 

*'       "     and  Distances 160 

*'  Arcs 225-227 

**  Catenary. 230 

**   Circles. 224-225 

*'  Cycloid  and  Epicycloid. . . .  228-229 

"  Definitions 219-220 

"  Ellipse 226-227 

*'   Gnomon. 219 

"  Hexagon 223 

*'  Hyperbola  and  Spiral 230 

"  Involute 229 

**  Length  of  Elements  and  Lines, 

221-222 

"  Octagon  and  Polygon 223 

*'  Parabola 229-230 

'^  Rectilineal  Figures. ......  222-224 

*'  Scales 221 

Oeostatics  and  Geodynamics. 614 

Gestation,  Periods  of  and  Number 

of  Voung  of  Animals 192 

Girder,  Dimensions  of  and  Greatest 

Load,  To  Compute 839-840 

"       Bowstring 812 

Girdbrs,  Beams,  etc.,  General  Deduc- 
tions from  Experiments. .  824 
{See  Beams,Bars,or  Girders,8o2-S2o. ) 
•*     *'  and      Beams,    Destructive 
Weight    of,  of    Various 
Figures  and  Sections  .Zo^-ZdS 
•*      »*   CevUre  of  and  Vertical  Dis- 
tance of  Centres  of  Crush- 
ing and  Tensile  StreM. . .  819 
*•     "  Comparatiw  Value  of  Bars, 

Tubes,  etc 824 

«»     "  Deflection  of 840-841 

**      "  Factors  of  Safety 821,  841 

"     "  Lintels,  Beam>s,  etc 822-826 

**      ' '  Moments  of  Stress 62 1-622 

"      "  PlcUe 811-812 

**      "  Shearing  Stress  Deduced  by 

Graphic  Delineation  of. ,  623 

»      "  Trussed 823 

"      "  Tubular 775 

"      "      "  Deflection  and  Weight  qfyj 5 

Glass  Globes  and  Cylinders,  Resist- 
ance to  Internal  Pressure  and  Col- 
lapse   831 

Glass,  Window,  Thickness,  etc 124 

Glazing 197 

Glues,  Mucilage,  etc 874 

Gold  Sheet,  Thickness  of 119 

"     Value  of  from  1501  to  1880. . . .  934 
Golden  Number  or  Lunar  Cycle,  To 

Compute 71 

Oooseberry^ValMt  of. % 907 


607BRN0RS. 452 

"    Revolutions  and  Elements  of ,  452 

Grade,  Reduction  of,  to  Degrees 359 

Grain,  and  Roots,  Weights  of 34 

"      Conveyers,  Operation  of,  etc. .  478 
''      Standard  Weights  per  Btuhd.    32 

Granite  Masonry 595 

Graphic  Operation,  ^Udion  by 905 

Graphite  and  Pencils 978 

Gravel 690 

*'      or  Earth  Roads 688 

Grates  of  Boilers,  To  Compute  Areas,  927 

Gravitation 487-496 

*'    Accelerated  and  Retarded  Mo- 
tion.   49A 

Action  of,  by  a  Body  Pro- 
jected Upward  or  Down- 
ward, To  Compute. .  .490-491 
Average  Velocity  of  a  Moving 
Body,  Uniformly  Acceler- 
ated or  Retarded 495 

Formula  for  Flight  of  a  Can- 
non Ball 495-496 

Formulas  to  Determine   the 

Various  Elements  of  490 
**  to  Determine  Varimu 
Elements  cf  on  an 
Inclined  P^ne.. 49 3-494 
**  of  Retarded  Motion...  492 
General   Formulae  for  Ac- 
celerating and  Retarding 

Forces 495 

Gravity  and  Motion  at  an 

Inclination 492-493 

Miscellaneous  lUustrations . .  496 
Relation  of  Time,  Space,  and 

Velocities 488-492 

"    Retarded  Motion 490 

Space  Fallen  y/irem^A.  .489,  491 
Velocity  of  a  Falling  Stream 

of  Water,  To  Compute  496 
**  due  to  a  Given  Height 
of  Fall  and  Height 
due  to  Given  Velocity  488 

Gravity,  Action  of  To  Cowymte. 488-489 
'*    at  Various  Locations  at  Level 

of  Sea 487 

"    Centre  of. 605-608 

•*    OF  Bodies 208 

*'    Promiscuous  Examples  o/.  489-490 

' '     Various  Formulae  for 488-489 

Grease,  Anti-friction 877 

*♦   from  Stone  or  Marble,  To  Re- 
move   878 

Grecian  Measures  and  Weights 53 

Gregorian  Year  and  Calendar 70-71 

Grindstones  and  Friction  of. 478 

Grouting 593-594»  59^ 

Gudgeons,    Diameter  of,  To    Com- 
pute   795 

Gun  Barrels,  Length  of. 198 

"    Browning 875 

'^    Cotton 443 

•'    Steel,  KruppU 913 

GMn-meiaA,  Weight  of,  and  of  a  Given 
Sectionai  Areci. 136, 149 


It 


(t 


it 


tt 


it 


Ci 

ft 


t( 


tt 
ti 


tt 
tt 


l( 


INDEX. 


XIX 


Page 

QumotRT,  Elements  of,  etc 497-503 

**    Charge,  Ranges  Elevation^  and 

Velociiy,and  To  Compu^gy,  499 

"    Comparison  of  Force   of  a 

Charge  in  Various  Arms. .  502 

'*  Experiments  unth  Ordnance 
and  Penetration  of  Shot 
and  Shells. 498,  500 

"  Initiai  Velocity  and  Ranges 
of  Shot  and  Shells 498-499 

*'  Lead  BaUSj  Weight  and  Di- 
mensions of. 501 

"    Number  of  Percussion  Caps 

corresponding  to  BOauge  502 

"     "  ofPeUeU  in  an  Oz.  of  Lead 

Shot  of  all  Sizes. 50Z 

**    Penetration  of  Lead  Balls  in 

Small  Arms 500 

"    Ranges  for  Small  ,4»-ma 502 

"    Report  of  Board  of  Engineers, 

ir.S.A.,  Fortifcations,  etc.  499 

♦'  Summary  of  Practice  in  Eu- 
rope with  Heavy  Guns. ... .  5cx> 

"    Time  of  Flight,  Rule  fw. 497 

"    Velodtyofa  Shot  or  SheU...  497 

**    Windage  and  WaddingSjZ^ss 

andEffect  of 501 

Gunpowder 443, 502 

"  Charges  of,  and  To  Compute.  444 
*'  HeaJt   and  Explosive  Power 

of 503 

"  Mant^acture  of. 503 

"  Proof  of 503 

"  Properties  and  Results  of,  De- 
termined by  ExperinurUs. .  ■  503 

"  Proportion  of  to  Sliot 502 

"  Relative  Strength  of  Different, 

for  Use  under  Water 503 

Guntbr's  Chain 26 

Ouys,  Derrick,  Strength,  etc 162-163 

Gwynne's  Pump,  Centrifugal 579, 917 

Gyration,  and  Centres  of 609-611 

"  Centre  of,  of  a  Waler-wheel. . .  6n 

"  General  Formulas 611 

"  Moment  of  Inertia  of  aReimlv- 

ing  Body,  To  Compute. . . .    609 
"  RadiuSj  To  Compute 609 

H. 

Hammbrs.  Steam 179 

Hancock  Inspirator 90X 

Hand-cars  and  Portable  Railroad. .  908 
Hawsbbs,  Wire,  and  Hbmp  Ropes 

Am>  Cablks,  Comparison  of.  169 
{See  Cables,  Ropes,  etc ,  163-178. ) 

"   and  Warps,  Length  of. 173 

"    Cables  and  Ropes 170 

"    Circumference  of.  To  Ckrmpute  171 
"    Units  for   Computing    Se^fe 
Strain  Borne  by  and  for 
New  Ropes  and  Hawsers, 

170-171 

"    Weight  qf.  To  Compute. 172 

Hat,  Relative  Value  of  Foods  com- 
pared with  100  Lbs.  of. 912 

**     and  Straw,  Weights^  etc. 298 


Pag* 

Heat,  Elem^ents  of,  etc 504-529 

*'    Absolute  Temperature 504 

"   Absorption  of,  in  Generation  of 

I  Lb.  Steam  at  212° 705 

"   Altitudes,  Decrease  of  by 522 

"   Available  Expended  per  IIP 909 

"  Boiling- Points  of  Pure  Water, 
etc.,  Corresponding  to  Alti- 
tudes of  Barometer 518 

«*    Capacity  for. 505,  507 

"    Communication  and  Transmis- 
sion of,  and  Relative  Power 
of  I  of  Various  Substances. ...  510 
"   Ck)NOENSATioN  and  of  Steam  in 

Cast-iron  Pipes 51S-516 

•*      "  ofSteamper  Sq.  Foot  amdper 

Degree  per  Hour 516 

"  Conducting  Powers,Relative,  of 
Various  Substancea  and  De- 
ductions from  Results 514-515 

"  Conduction  or  Convection  of. .  514 
"  Congelation  and  Liquefaction  516 
"   Degrees  of  Different  Scales,  To 

Reduce,  and  Contrariwise. . . .  523 

"   Densities  of  Some  Vapors 521 

"   Density  of  Water,  To  Compute. .  520 

**   Desiccation 513-514 

•*   Distillation 514 

"  Effect  upon  Various  Bodies  by.  518 
"   Evaporation  or  Vaporization, 

Elements  of,  etc.  .512-513 
"  '•    Area  of  Grate  and  Fuel 

for,  To  Compute 513 

"  "    of  Water  per  Sq.  Foot  of 

Surface  per  Hour. . .  514 
«*  «    To  Evaporate  1  Lb.  of 

Water 512 

"   Evaporative  Power  of  Tubes  per 

Degree  of  Heat,  etc 513 

*'  Expansion  of  Water,  Liquids, 

Gases,  aiM  Air. 519-520 

"   Extremes  of  and  Cold  in  Fo- 

rious  Countries 191-192 

"  Fluids,  Expansion  of,  in  Vol- 
ume, To  Compute 523-524 

"    Frigorijic  Mixtures 193,  516 

* '   Heating  and  Evaporating  Water 

by  Steam  in  Pipes  and  Boilers  511 
"   Height  Corresponding  to  Boil- 

ingPoint  of  Water 519 

"  Latent,  and  To  Compute. .  .508-509 
*'        "  ofFusionofSolids,andqfa 

Non- Metallic  Substance.  509 

"        "  qf  Steam,  To  Compute 707 

"   Length  of  4-Inch  Pipe  to  Heat 

1000  Cube  Feet  of  Air 526 

"   Linear  Expansion  or  Dilatation 

qfa  Bar,  Prism,  or  Substance.  519 
*'    Liquids,  Volume  of  Several  at 

their  Boiling- Point. 518 

"   Mean  Temperatures  of  Various 

Localities. 192 

"  Mechanical  Equivalent  (joules).  504 
"  "  '*  of,  Contained  in  Steam.  705 
"   Melting  and  Boiling  Points  of 

Various  Substances 517 

"   of  Mines. «** 


XX 


INDEX. 


Paee 

Hkat,  ofth£  Sun. Z93 

"  Proper  Temperatures  qf Enclosed 

Spaces 526 

"   Radiation  of. 509-510, 1027 

"    Radiating  or  A bsorbent  and  Re- 
flecting Powers  of  Substances, 

and  in  Units  of. 509-510 

"   Reduction  of,  by  Surfaces 525 

"   Rbflbctiom  of. 510-512 

"   Refrigerator,  Surfase  of. 512 

"   Relative  Capacities  of  Various 

Bodies  for 507 

"   Required  to  EvaporcUe  i  Lb.  Wa- 

Ur Below  212.° fi'om  Air  at  32°.  512 
"   SaturcUed  Vapors,  Pressure  of, 

under  Various  Temperatures  518 

•^      ^'' Steam,  Total  of 705>707 

'*   Sbnsiblk 504,  507 

^  Sensible   and  Latent,  Sum  of, 

and  Latent  of  Vaporization. .  508 
'  *  Snow  Line,  or  Perpetual  Con- 
gelation   192 

*  Sfbgifig,  To  Ascertain,  etc. .  505-507 

*  "  for  Equal  Volumes  ofOas 

and  Air,  To  ComptUe —  507 

'    Temperature  by  AgitcUion 524 

•*      *^'of  a  Mixture  of  Like  and 

Unlike  Substances. 506 

«      "  of  Solidification  of  Several 

Gases 516 

«  "  to  which  a  Substance  q^  a 
Given  Length  must  be  Sub- 
mitted or  Reduced  to  Give  it 
a  Greater  or  Less  Length  or 
Volume  by  Expansion  or 

Contraction 522-523 

**    Transmission  of,  through  Glass 

of  Different  Colors 511 

•*  "  Quantities  Transmittedfrom 
Water  to  Water  through 
Metals  and  other  Solid 
Bodies  i  Inch  Thick,  per 

Sq.  Foot. 511 

"      "  Units  of,  To  Compute....  sii-512 

"    Underground. 519 

"    Unit. 504 

"    Units  of  in  Fuels 927 

"    Vegetation,  Limit  of. 192 

"    Vi^ume  of  Water  Evaporated  in 

a  Given  Time,  To  Compute. .  .513 

HBATiHO,iltr,  Length  of  Pipe  Required 
to  Heat  A  ir  in  an  Enclosed 

Space  by  Water 525 

"  by  Steam,  Illustration  of. 527 

"  6jr  Hot-air  Furnaces,  Stoves,  or 

or  Open  Fires 528-529 

"  by  Hot  Water 524,  1028 

•'  by  Steam 527,  913,  1027 

"  Coal  Consumed  per  Hour  to 

Heat  100  Feet  of  Pipe. . .  .527-528 
"  Length  of  Pipe  Required  to  Heat 
Air  by  Steam  at  5  Lbs.  per 

Sq.  Inch 527 

"  Temperature  of  Enclosed  Spaces  526 

"  Ventilation    of   Buildings, 
Apartments,  etc 5*4-525 


Pafo 
Hkatino,  Volume  of  Air  by  i  Sq.  Foot 

of  Iron  Surface 925 

"        "    of  Air  Heated  by  Ra- 
diators, Fuel,    Grate, 
and  Heating  Surfaces  528 
* '  Warming  Buildings,  etc. . .  524-529 
Hebrew  and  Egyptian  Measures,  etc.    53 
Height   Corresponding   to    Boiling- 

Points  of  Water. 519 

Heights  and  Elevations  of  Various 

Places  Above  the  Sea 183 

"       Measurement  of 60 

Hkkp  and  Wire  ^ov^,Circumference 

of,  for  Rigging,  U.  S.  N....  172 
**     "  Circumfei-ence  and  Breaking 

Weight  of,  U.S.N. 168 

"     "  General  Notes 167 

"    "  Hawsers  and  Cables,  Com- 
parison of. 169 

"     "  Weight  and  Strength  of. ... .  172 

"     "  Weight  of 166 

"   Rope,  Iron  and   Stekl,  Safe 

Load  and  Strength  of.  164-165 
"    "  Iron  and  Steel,  Relative  Di- 

m,ensions  of. 172 

"    "  Safe  Strain  Borne  by.  Units 

for  Computing. 170-171 

"    Shrouds  and  Wire 173 

"    Tarred,  Destructive  and  Break- 
ing Strength  of. 171 

"    RoPRS  {See  Ropes,  Hawsers,  and 

Cables) 166-173 

Hewing  and  Sawing  Timber,  Loss  in.  62 
High  Water,  Time  of.  To  ComptUe.  .74-75 
Hills  or  Plants  in  Area  of  an  Acre. .  193 
Historical  Events  and  Notat}le  Facts.  939 

Hitches,  Knots,  etc ^972 

Hoggin '690 

Hoisting  Engines,  Details  0/,  etc 901 

Honey,  Analysis  of. 207 

Hoop  Iron,  Weight  of. 129,131 

Hopper  Dredgers,  Steam 899-900 

Horizon,  Dip  of. 60 

Horizontal  Wheels 572 

H0R8B 435-437 

"    Cart,  Volume  of  Earth  Trans- 
ported  908 

"    Transportation 918 

"    Power 4^1,  733-734, 1028 

"        "    British  Admiralty  Rule.  734 

"        '  ♦    Cost  of,  by  Steam 950-95 1 

"        "    Notes  on 758 

"        "    of  Boilers 914 

"        "    OnaCanal 848 

"        "    Transmission  of 188 

"    Team,  Tractive  Power  of. 436 

Horses,  Age  of. z86 

"       Labor  of,  etc 435-437 

' '       Performance  of. 439-440 

"      and   Cattle,  TransportcUion 

of 192 

"       Weightof 35 

Horseshoe  Nails,  Length  of. 153 

Horseshoes  and  Spikes 152 

Hose,  Delivery  and  Friction  in 922 

*'  ToPieserve 877 


INDEX. 


XXI    , 


Pag* 

Hot-air  Furnaces  or  Stovei. 538 

**  Gas,  and  Steam  Engines,  Rel- 
ative Cost  of. 909 

Human  and  Animal  Sustenance 203 

Hydraulic  Radius  or  Mean  Depth. .  552 

"       Cement 958 

"  *'     or  Turkish  Plaster.  591 

"       Faint 872 

"       BjM^Elements  andEfficien- 

cyof- 561,9171923 

"         "  per  Cent,  of  Volume  of 

Water  Expended^  To 

Compute. 917 

Htdraulics,  Elements  of  etc. . . .  529-557 
"     CanaX  Locks.,  and  Times  of 
Filling  and  Discharg- 
ing, To  Com.p\Ue..sS3-SSS 
"         "  MisceU.IUustrations.ss(>-SS7 
"    Circular  Bent  or  Angular., 
Circular    or    Cylindrical 
Curved  Pipes,  Valve  €kUe.s 
or  Slide  Valves,  Throttle, 
Clack  or  Trap  Valve  Cock, 
or  Imperfect   Contraction, 
Coefficients  ofResistancc^^ssij 
"    Circular  Openings  or  Sluices^ 

Coefficients  of 536 

"    Circular  Sluices,  etc 537 

"    Circular,  Triangular,  Trape- 
zoidal, Prismaiic    Wedges, 

Sluices,  Slits,  etc 538 

"    Curvatures.  Radii  of 544 

"     Curves  and  Bends 545 

"    Cylindrical  Ajutage 549 

*  *  Deductions  from  Experiments 
on  Discltarge,  from  Reser- 
voirs,Conduits,or  Pipes.  529-531 
**  Depth  of  Flow  over  a  SHI  tiuU 
will  Discharge  a  Given  Vol- 
ume, To  Compute 534 

**    Discharge  from  a  Notch  in 

Side  of  a  Vessel. 541 

"         "from  Conduits  or  Pipes, 

and  Friction  of. . .  530-531 
<•         ^^from  Irregular  -  shaped 
Vessels,  as    a    Pond, 
Lake,  etc. ,  Time,  FlmOy 
Fall,  Velocity, and  VoU 

ume  Discharged. 542 

•*         "from  Vessels  not  Receiv- 
ing any  Supply ...  538-539 
"         "from  Vessels  of  Commu- 
nication   541 

*•  "  ofinPipesfor  any  Length 
and  Head,  etc..  and 
Elements  of,  To  Com- 
pute  547-548 

«*  "  of  under  Variable  Press- 
ures, and  Time,  RisCy 
Fall,  and  Volume. . . .  540 
**  "of  ufhen  Form  and  Di- 
mensions of  Vessel  of 
JBfffiux  are  not  Known  539 
•*  "or  tiffiux  for  Various 
Openings  and  Aper- 
tures, and  Relative  Ve- 
locity under  like  Headt  53a 


(( 


(I 


Pag* 

Hydraulics,  Distance  of  a  Jet  of 
Water,  Projected  from  an 
Opening  in  Side  of  a  Vessel, 

549-550 
Fall  of  a  Canal  or  Conduit 
to  Conduct  and  Discharge 
a  Given  Quantity  of  Water 
per  Second,  To  Compute. . .  920 
Flow  and  Velocity  in  Rivers, 
Canals,   and    Streams, 
and   To  Compute  Ele- 
ments of 55«>-553 

and  Velocities  at  which 

Materials  will  Move 916 

in  Lined  C/iannels. . .  551-552 

of  Water  in  Beds,  Fall 

and  Velocity  of,  as  in 

Rivers,  Canals,  Streams, 

etc.,  and  Coefficients  of 

Friction  of. 542-543 

Flowing  Water,  Head  of.  To 

Compute 552 

Forms  of  Transverse  Sections 

of  Canals,  etc 543 

Friction  in  Pipes  and  Sewers, 
and  Head  Xecessary  to  Over- 
come, To  Compute 543-544 

"  of  Liquids  through  Pipes.  531 
' '  of  Water  in  Beds,  as  Rivers, 

etc.,  Coefficients  of . .  543 

Head  and  Discharge  in  Pipes 

of  Great  Length 920 

"from  Surface  of  Supply  to 
Centre  of  Discharge. . . .  544 
Height  of  a  Jet  in  a  Conduit 

Pipe,  To  Compute 919 

Inspirator,  Hancock 901 

Jets    d^Eau,  and   Formulas 

for 550 

Journals  or  Gudgeons,  Fric- 
tion of. 571 

Miner^s  and  Water  Inch 557 

Obstruction  in  Rivers 551 

Pipe,  Inclination  of,  and  Ele- 
ments of  Long,  To  Com- 
pute   548 

Fi^smalic  Vessels 539-540 

"  Fall  of  in  a  Given  Time, 
To  Compute.. 540 

557 


W  under  Different  Heads. 
Rectangular  Notches  or  Ver- 
tical Apertures  or  Slits.  534 
"  Openings   or    Sluices    or 
Horizontal    Slits,   and 
Discharge,  To  Compute.  535 
"  Weir,  Volume  of  Diverge, 

To  Compute 532-534 

Relative   Velocity  of  Efflux, 

through  Different  Apertures 

and  under  Like  Heads. . . .  532 

Reservoirs  or  Cisterns,  Time 

of  Filling  and  Emptying, 

To  Compute 541 

Short  Tubes,  Mouthpieces,  and 
Cylindrical  Prolongations 
or  Ajutages,and  Coefficients 
for  Discharge  of. 536-537 


XXll 


INDEX. 


Page 

"BrDRAViAca^Sluice  Weirs  or  Sluices.  535 

"  '"  Impeded  or  Unim- 

peded Discharge  of. ... 535-536 

"  Submerged  or  Drovmed  Ori- 
fices and  Weirs. 553 

"    Variable  Motion  of  Water  in 

Beds  of  Rivers  or  Streams.  543 

«*.  Velocity  in  Profile  of  a 
Navigable  River,  To  Com- 
pute   551 

"    Velocity  ofWater  or  of  Fluids, 

Coefficients  ofDisdiarge.sz^S'i^ 

**    Vena  Contra^ta 529 

"  Vertical  Height  of  a  Stream 
Prcfjecied  from  Pipe  of  a 
Fire- Engine,  To  Compute. .  549 

"    Volume  of  Water  Flowing  in 

a  River,  To  Compute. .  543 

**    Weirs,  Oatiging  of. 922 

"        "       or  Kotches. 539 

flVORODTNAMICS  AND  HYDROSTATICS, 

Elements  of  610.558-580,  614 

"        "  Appold's  Wheel 580 

"        "  Barker's  MUl 577 

"        *'  Boyden  Turbine 574 

♦*        "  Breast  Wheel,  Proportion, 

Effect,  and  Power  of.  569-570 
"        "   Centrijugal  I\imps....5j()-$So 

"        "   Current  Wheel 570 

"        "  FltUter  or  Saw-mill  Wheel  571 

"        '*  Fontaine  Turbine 574 

it        i(  Horizontal  Wheels....  572-577 
«*        **  Hydraulic  Ram,  Elements 

of  and  Operation.. . .  561-562 

»*        **  Hydrostatic  Press 561,  901 

«♦        «      '^  Thickness  of  Metal...  s6i 
**         *      ♦<  Motors,  Effective  Pow- 
er of  Water 563 

**        "  Impact  and  Reaction  Wheel.  syS 
"        "  Impulse  and  Resistance  of 

Fluids. 577-578 

**        •*  Inward  -  Flow    Turbines, 

Description  of. 575 

**        "  Jonval  Turbine,  Elements 

and.ResuUs 575 

•'        "  Low-Pre.>sure  Turbines. . .  575 
**        "  Memoranda   on    Water- 

Wheels 571-572 

**        "  Overshot  Wheel,  Elements, 

Power  of,  etc. .  563-566 
•*        "        "  Power  and  Effect  of , 

To  Compute. . .  565-566 

**        "  Percussion  of  Fluids 579 

«        "  IHpes.ElementsandWeight 

of  etc..  To  Compute. 560-561 
•*         "  PonceleVs  Wheel,  Propor- 
tion and  Power  of.  567-568 
**        "       ^^  Turbine,Eleme7Us  of .  574 
"        "  Power  of  a  FaXl  of  Water, 

To  Compute 562 

"  "  Pressure  and  Ce^itre  of  ^l%-e,Co 
u  ii  i^ofa  Fluid  upon  Bottom 
of  Vessel,  Vertical,  In- 
clined, Curved,  or  any 
Surface,  and  also  on 
aSluice 559-5^ 


Pai^ 

Htdrodtnahios  and  Htdrostatios, 
"        "  Pressure  of  a  Column  of 

a  Fluid  per  Sq.  Inch  . . .  560 

"        "  Rankine  Wheel 580 

"        "  Ratio  of  Effect  to  Power 

of  Several'  Turbines. . . .  577 

"        "  Reaction  Wheel 576 

"        "  Swain  Turbine 575-576 

"        "   TangentiaJ,  Wheel 576 

"        •'   Tremoni  Turbine 576 

"        "   Turbineand  Water  Wheels, 

Comparison  Between. . .  579 
{(        ((   Turbines,Elements,Poioer, 

and  Results... 5y2-5yy 
"        "         "  High  Pressure  and 

Downward  Flow.  574 
"        "    Undershot  W heel,  PouKr  of  566 

"        "    Victor  Turbine 576 

"        "    Water  Power 562 

"        «*       "  FaUof...... 563 

"        "    ,  "  Motors,  Ratio  of  Ef- 
fective Power 563 

ti        It       it  Pressure  Engine 579 

"        "       "   Wheels,   Dimensions 

of  Arms,  etc 571 

«*        "       "   Wheels,  Divisions  of, 

etc. 563 

"        "    WhiUlaw's  Wheel. .... 576-^77 

Hydrometers 67 

''  Strength  of  or  Volume  of  a  Spirit, 

To  Compute,  etc. 67 

Hydrostatic  Rail  or  Slip  Railway, 
Power  Required  to  Draw  a  Vessel.  910 

Hydrostatic  Press 561,  901 

Hygrometer 68 

''  Dew-point,  and  to  Ascertain 
Volume  of  Vapor  in  Atmos- 
phere     68 

»*  Existing  Dryness,  To  Ascertain    68 

"   Vapor,  Weight  of,  in  Air 69 

"    Volume  of  Vapor  in  Air.....     68 
Hyperbola.  To  Describe. 230 

Hypkhbolic  LoGARiTiiMa  . .  .331-334,  712 

I. 

ICB,  Strength  of,  etc 195,  012,  939, 943 

"  and  Snow,  Weight  and  Volume. . .  849 

"  Boais  and  Speed  of. 896,  909 

"  Making  and  Refrigeration.  g^2}  9^5-9^^ 
"  Manufacture  of. 943, 967 

Impact  and  Reaction  Wheel 576 

"      OR  Collision 580-582 

•'       Velocities  of  Inelastic  Bodies 

after.  To  Compute 581-582 

Impenetrability 195 

Inclined  Plank,  Motion  on 619 

*'     Elements  of.  To  Coinpute.ti$-6y> 

Incubation  of  Birds,  Periods  of. 192 

India- Rubber,  To  Cut 877 

Indicator,  To  Compute  Pressure  by. .  724 

I X  Kr.Ti  A ,  Moment  of  a  Revolving  Body.  609 

*'  Moment    of  Approximately  to 

A  sextain 659 

"        "    of  a  Solid  Beam 819 

^^  of  a  Revolving  Body,  To  Com- 
pute  6f$ 


INDEX. 


XXlll 


Ii^lector,  Steam 736 

*^  Stu  of,  To  Compute 736 

"   Volume  of  WcUer  required  per 

IIP  per  Hour,  To  Compute  736 
"     "  of  Feed  Water  required  per 

IH*  per  Hour 736 

Ink,  Chinese  or  India. 907 

"    Stains,  To  Remove 035 

Inks,  Indelible,  etc 875 

Insects  and  Birds 196 

Inspirator,  Hancock's 901 

Integration. 24-25 

biTKRBST,  Simple  and  Compound.  107-109 

IirvKNTiONS,  Origin  and  Period  of 

Great 937 

Involute,  To  Describe 329 

Ikyolutiok. 96 

Iron,  Elements  of,  etc. 637-640 

(See  Wrought-iron,  130-136,  6391-640, 
765,  768,  773,  780,  785-786. ) 

"  and  Steel,  Corrosion  of. 908 

"  Bolts  in  Wood,  Tenacity  of. 198 

**  Bridges,  and  Iron  Pipe  Bridge ..  1 78 

"  Mold,  To  Remove. 871 

OR  Stbbl,  Corrosive  Effects  of 

SaU  Water  on 916 

"  Pig,  Ton  of.  Requirement  of  Air.  445 

*•  Preservation  fy. 955 

"  Rust,  To  Remove 935 

Iron  Steamer,  First  BuilJ 915 

Irregular  Body,  Volume  of,  To  Compute  870 
IRRIOATIOM,  Cost  qf^  per  Acre 952 

J. 

Jarrah  Wood 913 

Jets  d^Eau 550 

Jewish  Measures 53 

Jonval  Turbine 575 

Jordan,  Vafley  of,  and  Dead  Sea. . . .  934 

Joules'  Equivalent 504 

Julian  Calendar. 70 

Jumping,  Leaping,  etc,  by  Men 439 

K. 

Kbdoks  and  Anchors,  Weight  and 
Number  of.  Units  to  Determine ....  174 

Kerosene  Lamps,  etc 872 

Khorassar,  or  Turkish  Mortar 592 

Knot 27 

Knotty  Hitches,  etc 9go 


Labor,  Man  and  Horxe. 433-434,  436, 468 

Lacqwsrs. 875 

Laitance 593 

Lake,  Highest  Elevation  of. 968 

Lakes,  Areas  of  in  Europe,  Asia,  and 
African,  and  DeiMis  and  Heights  of 

OreaJt  Northern  of  U.  S. 181-182 

lAinps,  Candles,  Fluids,  and  Ctas. . .  584 

lAnd  Measure 29 

Larrying 598 

Latbs,  Dimensions,  etc.. 603 

LATirrDE,  Length  of  etc 198 

**  and  Longitude   of  Principal 
Looationt  and  Otoerva<ioiu.76-8o 


Pag« 

Latititdb  N.  reached  by  Explorers. . .  931 
Launching  Vessels,  Friction  of 47 

Lb  AD,  Sheet,  Caxt  or  MiUed 640 

''    Balls,  Weight  and  Dimensions 

of' 50X 

"    Encased  Tin  Pipe,  Weight  of. . .  151 
"    Given  Sectional  Area,  Weight 

of. 136 

"    Measure 32 

"  Pipe,  Resistance,  Thickness, 
Weight,  and  Bursting  Press- 
ure of.  To  Compute 831 

"    Pipes  and  Tin-lined,  Weight  of, 

per  Foot  and  Thickness. .  137,  150 
"    Plates,  Weight  of  per  Sq.  Foot.  146 

*•        "  Thickness  of. 121 

"    Sheet,Weight  qf. 151 

"    Shot,  Number  of  Pellets  in  an 

Ounce 501 

"    AND  Cast  iron  Balls,  Weight 

and  Volume  of 153 

*'     Weight  of.  To  Compute 155 

Leap  or  Bissextile  Year 70 

Leaping,  Jumping,  etc 439-440 

Leaves,  Value  of,  etc 207,  481 

Lee-w.'iy  or  Drift  of  a  Vessel 910 

Legal  Tenders 38 

Lknsesand  Mirrors, £r2em«nteo/:67o-67 1 
I^evel,  Apparent,  of  Objects  at  or  upon 

Surface  of  Land  or  Sea 56 

Levelling,  Geographic 55-57.  >o35 

"  by  Boiling  -  Point    of  Water, 

Table  of,  etc '"SS-S? 

**  Height  o/Above  or  Below  Level 
qf  Sea,  To  Compute 55 

Lbvbr,  Elements  of  To  Compute. .  624-626 
Lifting  by  Men 439 

Light,  Elements  o/)  etc 583-587 

"  Sun's  Rays. 195 

"  Candles,Lamps,  Fluids,  and  Gas  584 
^'  Consumption  and  Comparative 

Intensity  of  of  Candles 583 

'*  Decomposition  of. 583 

"  Electric,  Candle  Poxoer  of. 908 

"  Crox  and  Electric 198 

"     *'  Consumption,    Volume,  and 

Flow  of 585-587 

"  Intensity  of  wUh  Equal  Volumes 

of  Gax  from  Different  Burners  585 
"  Ta)SS  of  by  Use  of  Glaxs  Globes.  584 

*'  Penetralion  of,  in  Water 915 

"  Refraetum,  Mean  Indices  of....  584 
"  Relative  Intensity,  Consumption, 
Illumination,  and  Cost  of  Va- 
riotu  Modes  of  Illumination . .  584 

•'  Services  for  Lamps 587 

**  Standard  of. 910 

"  Volume  of  Gas  from  a  Ton  of 

Coal,  Resin,  etc 586 

Lighting  Power  in  Streets,  To  Deter- 
mine Coefficients  of 969 

Lightning,  Classifcation  of 430 

* '      Protection  of  Buildings .  907  -9^,0 

Lignite 479,  481 

Lime,  Hydraulic  ofTeil 589 


XIV 


IKDKX 


Paffo 

GoppBR,  Weight  of^  and  To  Compute, 

136, 155 

"     Wire,  0»rd 123 

tt        » I      \yeight  of. 120-121 

Copying, Words  in  a  Folio. .., 29 

Cord,  Ctjtpper  Wire 123 

CoKDAGK,  Friction  andRigidity  0/472-473 

Corn  Measure 198 

"  Value  of,  Compared  to  100  Lbs. 

o/Hay 203 

Corrosive  Effects  of  Salt-water  on 
Steel  and  Iron 916,  971 

CO-SKGANTS  AND  SECANTS 403-4I4 

"  **        To  Compute,  etc.  414 

Cosines  and  Sines 390-402 

"  "        To  Compute,  otc.401-402 

Co-tangents  and  Tangents 415-426 

"■  "        To  Compute,  etc.  426 

Cotton  Factories 899 

Couple,  Constitution  of. 614 

Coupling  or  Sleeves  of  Shafts. 796 

Coursing  and  Chasing 440 

Ckang,  Railroad. 962 

*'      Steam  Dredgers,  Elements  of 

and  Dredging 890-900 

Cranes 179, 433, 455-457»  962 

"     Chains  and  Ropes  for. 457 

"  DimensionsofPost,To Compute  456 
**  Machinery  and  Proportion  of.  457 
"  Post,  Stress  and  Conditions  of.  455 
"    Stress  on  Jib,  Stay,  or  Strut, 

455-457 
Crank,  Turning 433 

Cream,  Perceida^e  of,  in  Milk 205 

Creosoting,  Effects  of. 8' 

Crocodile,  Power  of. 

CR0PS,ifinera2  Constituents  A  bsorbed 

or  Removed  from  an  Acre  of  Soil. .  189 
Cross-ties,  Railroad,  Duration  of. . .  970 

Croton  Aqueduct 178, 939 

Crusher,  Ore  and  Stone  Breaker.. . .  957 
Crushing  Strength 764-769, 1021 

(iSVe  Strength  of  Materials.) 
Cube  Measurea 30-31 

Cube  Root,  To  Extract 97 

♦♦  AND  Square  Root  of  a  Sum- 
ber  consisting  of  Integers 
and  Decimals,  To  Ascer- 
tain   301-302 

•*  **  of  Decimals  alone,  To  As- 
certain   302 

••        **  of  any  Number  over  1600, 

To  Ascertain 301 

•*  **  or  Square  Root  of  Roots, 
Whole  Xumbers  and  of 
Integers  and  Decimals,  To 

Ascertain 97-98 

**        **  of  a  Higher  Number  than  is 

Contained  in  Table 301 

"GuBBfi,  Squares,  and  Roots 272-302 

(iS'e«  Squares,  Cubes,  arid 
Roots. ) 
(i            ««  To  Compute  and  to  As- 
certain, etc 300-302 

Cucumber,  Water  in 207 

Currency,  To  Convert  U.  S.  to  British    39 


»^j 

^ 


Current  Wheel 570 

"      of  Rivers 193 

Curvature  and  Refraction  of  Earth. .     55 

Curves,  Caustic,  or  Lines 669 

Cut  Nails,  Tacks,  Spikes,  etc 154 

Cutters,  Yaclits, Pilot  Boats,  Launches  895 

Cycle,  Dominical  or  Sunday  Letter. .     70 

''     Lunar  or  Golden  Number. ...     71 

"     of  the  Sun,  To  Compute 70-71 

Cycles  and  Chronological  Eras 26 

Cycloid,  To  Describe 228 

Cyclones,  Directum  of. 675 

Cyunders,  Flues,  and  Tubes,  Hollow  827 
"  Solid  and /Hollow,  of  Various 
Metals. 8oy 

D. 
Dams,  Embankments,  and  Walls  {See 

EmlHznkments,  etc.) 700-703 

Day,  Astronomical,  Marine  or  Sea.  .37,  70 

''    Sutereal,  Solar,  and  Civil 37,  70 

Day^s  Work 434 

Dead  Sea  and  Valley  of  the  Jordan. .  934 

Deals  and  Local  Standards  of. 62 

Decimals 92-94 

Deer  Park,  Copenhagen 179 

Deflection  {^e  Strength  of  Mate- 
rials.)  770-781 

Delta  Metal 384,  913 

Departures,  Table  of. 54 

Depths,  Sea 184 

Derrick  Guys 163 

Desert  of  Sahara 936 

Desiccation 513 

Detrusive  or  Shearing  Strength 

{SeeStrengtfi  of  Materials,  782-783. ) 
"  and  Transverse,  Comparison  of.  782 

"  Strength  of  Woods 782 

"  Wood,  Surface  of  Resistance  of.  782 

Dew  Point,  and  To  Ascertain 68 

Diamond  Weight 32 

Diamonds,  Weight  of. 193 

Diet,  Daily,  of  a  Man 202,  207 

"        "      (^an  Esquimau 914 

Differentiation, Integration,and  Cal- 
culus  .24-25 

Digestion  of  Food,  Time  Required 

for 206-207 

Discount  or  Rebate 109 

Displacement  of  a  Vessel 653 

Distances,  Steaming 86 

"    and  Angles,  Corresponding  to 

Opening  of  a  Rule  of  2  Feet .  1 60 

"    between  Cities  of  U.  8. 184 

"  "  "  East  and  West..  187 

"  "  Principal  Ports  of  World    87 

"  "         "  "     of  U.S..    88 

"  "  Various  Ports  of  Eng- 

land, Canada,  and  U.  S. ,  and 

N.  Y.  and  Ijondon 86 

"     Velocities  and  Acceleration  of 

a  Body.  To  Compute 921-922 

"     Geographic,  and  Measures 54 

Distemper  (Coloring) 593 

Distillation 514 

"  of  Fresti  Water 955 


INDE^t. 


XV 


P»ge 

DisHHers  and  EvaporalorSf  Capaci- 
ties of. 950 

Dog,  Power  of,  Coursing  and  Charing, 

438,  440 
Domes  and  Towers^  Diameter  and 

Heights  of. 179-180, 932 

Domestic  RemediaLs 938 

Dominical  Letters  and  Epacts 73 

*'         or  Sunday  Letter 70 

Dovetails,  Tenacity  of 948 

^DrainaOe  or  Lands  by  Pipes 691 

Drains,  Diameter  and  Grade  of  to 

Discharge  JiainfaU 906 

»*  and  Sewers,  Velocity  and  Grade 

of 692 

Draught,  A  rtifidal 745-746 

"         Natural 739-74o>  744 

"         Steam  Jet  and  Blast,  Com- 
parative Effects  of  and  Result 

of  Experiments  roith 746 

Drawing  and  Tracing  Paper 29,  964 

'*       ■  or  Pushing: 433 

Drawings,  Colors  for 196,  913 

"  Dimenrions  offer  U.S.  Patents  198 
Dredger,  Steam   Uopper,  and   Ma- 
chines  899-<)oo 

Dredging,  and  Cost  of 197 

' '         Machines  and  Crane 899 

Drilling  in  Rock 445»  94° 

"        inMetals 477 

Drills,  Mountings,  etc 940 

Drowning  Persons,  Treatment  of. . .  187 

Dry  Measures 3o>  3^ 

DuAUN 503 

Duodecimals 94 

Dynamite  and  Celluhse 443-444 

Dynamics 614, 616-620 

"      drcidar  Motion 618 

Decomposition  of  Force 620 

Motion  on  an  Inclined  Plane  619 

Uniform  Motion 617-618 

Work  A  ccumulated  in  Moving 

Bodies,andTo Compute  619 

"  By  Pereusrive  Force. .. .  620 

Dynamo  LeaJther  Belts 960 

E. 


(( 
it 
it 
it 


i( 
t< 


Earth,  Diameters  and  Density. , .  188, 198 
and    Rock    Excavation    and 

Embankment , 192 

Area  and  Population  of. 188 

Boring  and  Heai  of  Mines. . . .  955 
Cmductivity  ofTemperature  in  914 
Curvature  and  Refraction  of.     55 

Elements  of  Figure  of 6* 

Influence  of  the  Rotation  of  on 

Moving  Bodies 94* 

Motion  of 70 

Weight  of  per  Cube  Yard 468 

Weightsof 33 


IC 

if 
u 
tt 
if 


ti 

t( 
l( 


Easter  Day. , ...<..    71 

Eccleriastical  Tear 70 

Egg,  Fowls\  Composition  of. 207 

Egyptian  and  Hebrew  Measures 53 

Elastic  Fluids,  Specific  Gravity  of.  215 
Elasticity  and  Strength.  195, 614, 761-763 

"  Coefficient  of 761 

"  Modulus  of  and  To  Compute  762-763 
"  Relative,  of  Materials 780  , 

Electric  and  Gas  Light 198 

"    Dynamo  Engine 954 

Elevators,  Powei-  Required ...  959 

Launch 900 

Light,  Candle  Power  of. 908 

Fans,  Motors,  Power,  Pumps.  959 
Wires    and     Cables,    Tele- 
graph, Telephone,  and  Light  Wires 

and  Cables ; 9^0 

Electrical  Engineering,  Units  in,  Re- 
sistance and  Expressions. gfij-g&S,  1033 
Elementary  Bodies,  with  their  Sym- 
bols and  Equivalents 190 

Elephant,  Power  and  Weight  of. 918 

Elevations  by  a  Barometer 428-429 

"  and  Heights  of  Various 

Places  above  the  Sea 183,103s 

Ellipse,  To  Deserve  and  Construct, 

etc 226-227,  380 

{See  Conic  Sections,  379-380.) 
Elliptic  Arcs,  Lengths  up  to  a  Semi- 

»»         *'  ellipse  of. 263-266 

«         ' »      To  Ascertain  Length  of  266 

Embankments,  Walls,  and  D/MB,Ele- 

menis  of. 700-703 

[See  also  Revetment  Walls,  694- 

699,  and  Stability,  693-703.) 
*'  Equilibrium,   Stability   and 

Moment,  To  Compute 701 

"  Form  of  a  Pier,  To  Determine  700 

'*  High  Masonry  Dams 703 

"  Materials,  Weight  of  a  Cube 

Foot  of. •  694 

"  Surcharged  Revetments 699 

"  Various  Elements,  To   Com- 
pute and  Determine. . .  .702-703 
Endless  Ropes 167 

Engines   and    Machines,  Elements 

and  Cost  of. 898-904 

*'       and  Sugar-mills,  Weights  of.  908 

Engravings,  To  Clean  Soiled 875 

Ensigns,  Pennants,  and  Flags,  U.S  .  199 

Epacts,  and  Dominical  Letters 73 

Equation  op  Payments 109 

Equilibrium,  ilngrk*  of  at  which  Va- 

Hous  Substances  will  Repose  694 

"  Of  Forces 616 

Ericsson's  Caloric 9^3 

Esquimau,  Daily  Food  of 914 


tt 
ti 

tt 
tt 


Rarthwork                ■ .'  *  .'.'!.'*.!"  ^467-468   Establishment  of  the  Port  for  Several 
^Bulk  'of  'hock,  etc. ,  Original  Locations  in  Europe.. ._._ 85 


tt 


Excavation  Assuvied  at  t..  468 
yumber  of  Barrow  and  Horse- 
cart  Loads  and  Shovelling,  and 
Volume  of,  Transported  per  Day. .  908 


707 


Ether,  Elastic  Force  of  Vapor 

Evaporation 747-748,  1024 

"         of  Water  per  Sq.  Foot 514 

tt  t»   per  Month  of  Year  916 


XXVI 


INDEX. 


Page 
MiNSURATioN  OF  ARIA8,  eta,  Any 

Figure  of,ReiH)lution. . .  .358, 376 
"  Arc  and  Chord,  etc.  ,ofa  Circle, 

343-345 
"  Area  Bounded  by  a  Curve. . . .  342 
"      "     of  any  Plane  Figure...  359 

"  Capillary  Tube 358 

"  C<uk  Gfauging  and  UUaging, 

377-378 
"  Chord  of  an  Angle,  To  Compute  359 

"  Circle 342 

* '      "  Sector  and  Segment  of.  346-347 

"  Circular  Zone 349 

"  Cones 353-354i  363,  365 

"  Cubes  and  Parallelopipedon. .  360 

*'  Cycloid. 352 

"  Cylinder. 350,  363 

"        "      Sections 357 

"  Ellipsoid,  Paraboloid,  or  Hy- 
perboloid  of  Revolution, 

,  _  357.375-376 

"  Onomon * 335 

*'  Helix  [Screw) 354-355 

*'  Irregular  Bodies 377 

"        "         Figures 341.358 

"  ^wfc 353,  370 

"  Lune 352 

"  Parallelograms 335 

"  Plot  Angles  without   a  Pro- 
tractor   359 

"  Polygons. 338-341 

"  Polyhedrons. 362 

"  Prismoids 351,  361 

"  Prisma 350,  360 

"  Pyramids 354,  365-366 

"  Reduction  of  Ascending  or  De- 
scending Line  to  Horizontal 

Measurement. 359 

**  Regular  Bodies. .  .3^^.0-341,  362-364 
"  Rings,  Circular    and   Cylin- 
drical  353,  368 

*'  Side  of  Greatest  Square  in  a 

Circle 343 

"  Sj^iere 347-348,  367-368 

"       "     Segment  of 347 

*'  Spherical  Sector. 370 

♦«         "         Triangle 387 

"         "         Zone 368 

"  Spheroids  or  Ellipsoids, 

348-349.  368-369 

"  Spindles 355,  370-374 

••  Spirals 355 

"  To  Plot  Angles  without  a  Pro- 
traction   359 

"  Trapezium 337-33° 

"  Trapezoid / 338 

"  Triangles 335-337 

(see  Trigonometry y  385-389. ) 

"  Ungulas 35 » -352.  366-367 

*'  Usefid  Factors 343 

"  Volume  of  an  Irregular  Body .  870 

**  Wedge 350,  361-362 

"  Zone,  Spherical  and  Circular, 

348-349 
Mercurial  Gauge. 910 

Meta-Centre  of  Hull  of  a  Vessel.  .659,  919 

Metal  Products  of  U.S 910 


Tufet 

Metals,  AUoys  and  Compositions .  634-637 
"  Adulteraiion  in^  To  Discover. ..  210 

"  and  Elements  of. 637-644 

"  Comparative  Quality  of  Various  821 

"  Lustre,  Degrees  of. 194 

"  Values  of  some  Precious 938 

"  Various  Weight  of. 155 

"  Weight  of.  To  Compute 131 

"        "      by  Pattern,  To  Compute  217 
'■^  of  a    Given    Sectional   Area, 

Weight  of. 149 

MKTKR,and  Ko/ue  of. 27,  934 

Meters,  Water. 942 

Metric  Measures 27-33»  1013 

"       Fa/Hors 923 

Milk,  Nutritive  Values  and  Constit- 

uejits  of. 202 

"    Percentage  of  Cream 205 

"    and  Relative  Richness  of,  of  Sev- 
eral Animals 207 

"    To  Detect  Starch  in 196 

Mineral  Constituents  Absorbed  from 

an  Acre  of  Soil 189 

"      Waters,  Analysis  of,  etc. .  850-851 

Minerals,  Relative  Hardness  of. 193 

Miner's  Inch 557 

Mines,  Temperature  of 918,  955 

Mining,  for  Blasting 445 

' '       Engines  and  Boilers 901 

"       Flat  Ropes 165 

Mirage 195,  669 

Mirrors  and  Lenses 670 

Miscellaneous  Elements. 188-198 

"    Mixtures,  Cemints,  Glue,  Inks, 
Lacquers,  Soldering,  Varnish^ 

Staining,  etc 871-879 

"    Operations   and   Illustrations, 

879-885,  935 

Mississippi  River,  Silt  in 910 

Models,  Strength  of. 644-645 

"  Bridge,  Resistance  of,  from.. . .  645 
"  Dimensions  of  a  Beam,  etc,which 
a  Structure  can  Bear. ....  644-645 

Molasses,  Analysis  of. 207 

"  Sugar  and  Water  in 201 

Molding  and  Planing 476 

Molecules,  Velocity,  Weight,  and  Vol- 
ume of. 194 

Moment,  Quantity  of,  etc 614 

Momentum 195 

Monoliths 179 

Month,  Mean  Lunar 70 

Months,  Numbers  of. 74 

Moon's  Agk,  To  Compute 74-75 

Mortar 590-592.  95i,  97' 

"    Sugar  in 951 

Mortars,  Limes,  Cements,  and  Con- 
cretes   588-597 

Motion,  Accelerated,  Retarded^  and 

Uniform  Variable. .  .494-495,  6x7 

"  of  Bodies  in  Fluids 645-648 

"  Pressure,  Velocity,  Time,  etc.. . .  648 
"  Resi. stances  of  Areas  and  Dif 
ferent  Figures  in-  Wafer  or  Air.. .  646 

Motive  Power 910 

»'  of  the  World 935 


INDEX. 


XXVll 


Hoton,  Experiments  on,  for  Street 
Bailtoays. 915 

MountaiDS,  Volcanoes,  and  Passes, 
Heig'its  of. 182-183 

Mowing 433 

'^     Machine 910 

Mule,  Load  and  Work  of. 437,  918 

Mural  Efflorescence 593 

N. 

Nails,  Length  and  Number  of. .  .153-154 
*'  cmd  Spikes,  Retentiveness  of....  159 

"  Composition  Sheathing. '135 

"  Tacks,  Spikes,  etc 154 

National  Roaid, 178 

Natural  Formations  and  Construc- 
tions, Largest 936 

'*      Powers 198 

Nautical  Mkasurr 3° 

Natal  Architecturi! 649-667 

*'  Angles  of  Course  and  Sails. . .  665 
"  BfMom,  Side,  and   Immersed 

Surface  of  Hull 653 

•*  Centre  of  Gravity  of  Bottom 

Plating  of  a  Vessel  638 
««      "      "  Common  of  Hull,  Ar- 
mament,    Engines, 
etc,  To  Compute. .  656 
**      "      *^  Depth  of  or  Buoyancy 
below  Meia- Centre, 
andApproximately.6s6-^57 
"      "  ofEffoH,  and  Lateral  Re- 
sistance, Relative  Posi- 
tions of. 659 

"  Centres  of  Lateral  Resistance 
and  Effort,  To  Compute. 658-659 

"  Dead  Flat 2a 

**  Displacement,  and  its  Centre 
of  Gravity,  To  Compute, 

65^-655 
**    "  Approxim>cUely,  and  Coeffi- 
cients of.  To  Compute. . .  655 

"    *' Coefficients  of 655,657 

**    "  Curve  of.  To  Delineate,  and 

Coefficients  of. 657 

"  Elements  of  a  Vessel,  To  Com- 
pute  653-660 

**  "  of  Capacity  and  Speed  of 
Several  Types  of  Steam- 
ers of  R.N  660 

"      "  ofaSteamFrigcUe,Weight, 

Moments  of,  etc 656 

**  Eameriments  upon  Forms  of 

Vessels,  Results  of. 649 

"  Freeboard 666, 913 

'*  Heel  and  Steady  Heel,  An- 
gles of.  To  Compute.  . .  .664-665 
*'  Lee-way,  Angle,  Ardency  and 

Slaaeness 666 

"  Length  of  Vessel 909 

"  Masts  and  Spars 667 

"     *'  Location  of. 664 

**  Memoranda  of  Weights  and 

Elements 667 

•«  Meta-Centre  of  Hull  of  a  Ves- 
idjTo  Compute. 6591919 


Pug* 

Naval     Arohitbcturb,    MetaUing, 
Loss  of  Weight  per  Sq.  Foot 
of  on  a  Vessel's  Bottom. . . .  667 
'*  Moment   of  Inertia  Approx- 
imately, To  Ascertain. . .  659-660 
<*  Pitch  of  Screw  Propeller  and 

Slip  of  Side  Wheels 662 

"  Plating  Iron  HuUs 667 

"  Proportion  of  Power  Utilized 
in  a  Steam  Vessel  and  Fric- 
tion of  Engines 663 

'*  Resistance  of  Bottoms  of  Hulls.  662 

• '  "  of  Air  to  a  Vessel 666 

"  "  to  Wet  Surface  of  IIulL  653 

"  Rudder  Head 667 

"  Sailing  Power  and  Careening 

Power  of  a  Vessel 665 

"      "  Ratio  of  Effective  Area 
of  Sails,  etc.,  and  of 
VesseVs  Speed  to  Wind.  663 
"  Sails,  Propulsion  and  Area  of  663 
"     "  Area  and  Trimming  of.  664-665 
"  Screw  Propeller,  Experiments 
upon  Resistance  of  at  High 

Velocities,  etc 666 

"  Slip  of  Propeller  and  Side- 
wheels 666 

*'  Speeds,  Relative  of  Forms  of 

Vessels 649 

"  Stability,  Elements  of  etc. 649-653 
"       "  and  SpeM  of  Models  of 

different  Sections,  etc. .  650 
*•       ♦*  Elements  of  Power  Re- 
quired to  Careen  a  Body 
or  Vessel,  To  Compute, 

652-653 
"       "  Power    Required   in    a 
Steam -vessel,  Capacity 
of  another  being  given.  66z 
"       **  Resutts   of  E^qperiments 

upon  Bodies 649-650 

"  "  Statical,  Statical  Surf a/ic 
and  Dynamical  Surface 
Stability,  To  Compute, 

651-652 
"       "  Measure  of,  of  HuU  of  a 

Vessel,  ToDetermine.6so-^52 
**  Steam    Vessels,   Approximate 
Rule  for  Speed  and  H*  of 

To  Compute 662-663 

"  Trim,  Change  of. 655-656 

"  Weight,  Curve  of 657 

"  TTtnd,  EJfective  Impulse  of. . .  665 
"       *'     Course    and  Apparent 

Course  of. 666 

Needle,  Magnetic,  Variation  of. 1035 

"    Decennial  Variation  of. 58 

"     Variation  of  it  in  U.  S  and 

Canada 59 

Needles,  First  Introduced 72 

Neutral  Axis  of  a  Beam,  To  Compute  820 

New  and  Old  Style 37»  70 

Niagara,  FaMs,  Height  of,  etc.  198,  930, 952 
"    Volume  of  Water  and  Power. .   952 

Nitro-Glycerine 443 

Non-conductibility  of  Materials.  .911, 914 
"  -condensing  Ef^ne,  Friction  qf.  9x8 


r 


XXVlll 


INDEX. 


Page 
Non-conductors  o/TfempcrcrfMr*,  and 
Comparative  Efficiency  of. 933 

NOTATIOX 25 

Number  of  Direction 71 

Numbers,  Properties  and  Powers  of.    98 

"  4th  and  sth  Powers  of. 303,  304 

*'  4<A,  5</i,  and  6th  Power ^  and  4<A 
and  5</i  Root  of,  To  Compute.  304 
Nutritive  Equivalents,  Compu^ed/rom 
am/)unt  of  Nitrogen  in  Human  Milk 
at  I..... 205 

O. 
Oats  and  Oat  Straw,  Value  of  com- 
pared to  icx>  Lbs.  of  Hay 203 

Obelisks,  Egypt  and  Nexo  York 179 

Objective    Glasses,  Diameter  of  the 

Principal 942 

Observatories,  LcUitude  and  Longi- 
tude     80 

Ocean,  Depth  of 912 

Oceans  and  Seas,  Depths  and  Areas.  182 

"    Atlantic  and  Pacific. 937 

Oflfal,  Weight  of,  in  a  Beef  and  Sheep.    35 

Oil,  Yield  of  from  Seeds 189,  939 

"   Cake  and  Vegetables,  Nutritious 

Properties  of  Compared 204 

"  -Engine  Launch 893 

"  Proportions  of,  in  Air-dry  Seeds.  203 

"  To  Remove  from  Leather 878 

»'    Watchmakers^ 878 

Oils,  Petroleum,  Schist,  and   Pine- 
wood 484 

Old  and  New  Style 37>  70 

Omnibus,  Weight,  etc , 844 

Onion,  Proportion  of  Gluten,  and  Ra- 
tio of  Flesh-formers 207 

Opera-Glasses,  Telescopes,  etc. 671 

'*    -Houses 180,  936,  954 

Operations,  Miscellaneous 879-885 

Optics,  Elements,  etc 668-671 

"   Critical  and  Visual  Angles,  Mi- 
racle and  Caustic  Curves  or 

Lines. 4 669 

"  Elements  of  Mirrors  and  Lenses, 

To  Compute 670 

**  Focus  and  Focal  Distance,  etc..  668 
"  Refraction,  Index  of  and  Indices 

of.  To  Compute 668-669 

"  Dimensions  or   Volume  of  an 

Image,  To  Compute 668 

Ordnance,  Energy  of. 910 

Ore  and  Stone  Breaker .003,  951 

Organic  Substances,  Analysis  of  by 
Weight 190 

Orthography  op  Technical  Words 
AND  Terms 1042-1052 

OSOILLATION  AND  PERCUSSION,  Centres 

of 612-614 

"      *'  Centre  of  in  Bodies  of  Va- 
rious Figures 613 

"      "  Centres  of  To  Compute.(n2-6i4 
*♦      "        "      of  Experimentally, 

To  Ascertain. 613 

OvxBaHOT  Whskl. 563 


Oxford  College. 179 

Oxidation  of  Cast-iron  Pipe^  To  Retiit  927 

P. 

Poci/Ec  and  Atlantic  Oceans. ... .  937 

Paint,  Flexible  for  Canvas. 915 

"    for  Window-Glass. 879 

"    Hydraulic 872 

"    To  Clean  and  Remove 878 

F8L\nt\ng,  and  Proportion  of  Colors  for    66 

"       Iron  Rods 956 

Paper^  Blasting. 912 

'^      Drawing,    Tracing,    Profile, 

Photo-printing,  Cloths,  etc 29,  964 

Parabola,  To  Describe 229 

Park,  Deer 179 

Parsnips,  RaMo  of  Flesh-formers 207 

Paste,  Durable. 878 

"     Preservation  of. 878 

Passages  of  Steamboats 896 

"    Ice-boals 896 

"  Steamer  and  Sailing  Vessels.  897 
Passes,  Mountains,  and  Volcanoes. . .  182 
Pastils  for  Fumigaling 879 

Pavement,  AsphaU. 690,  944-945 

* '    Block  Stone. . . .  .689-690,  944-945 

"    Comparative  Merits  of 945 

"    Granite 690 

''    Macadam  and  Brick 944 

"   Miscellaneous  Notes 690 

*'   Neufchatel. '. ...  945 

"   Rubble  Stone 689 

"    Telfn-d. 688 

"    Voids  in  a  Cube  Yara  of  Stone  690 

"    Wood 689,690,944 

Pavements,  Roads,  and  Streets. .  .686-690 

Payments,  Equation  of. 109 

Peat 482 

Pendulum  Measure 27 

Pendulums,  Elements  of,  etc 452-454 

"  Centre  of  Gravity  of. 453-454 

"  Conical,  Number   of  Revolu- 
tions of  To  Compute 454 

"  Lengths  and  Number  of  Vi^a- 

tions  of  To  Compute. . .  .453,  454 
"  Vibrations,  Number  and  Time 

cf  To  Compute 454 

Pennants,  Ensigns,  and  Flags,  U.  S. .  199 

Percussion  and  Oscillation,  Centres 
of  {see  Oscillation  and  Per- 
cussion)   612-614 

' '    Caps,  Number  of,  Correspond- 
ing to  Birmingham  Gattge.  502 

Performances  o/'ilf«n,£r(M»e5,etc.438-44o 

Perimeter  of  a  Figure. 912 

Permutations. 100 

Perpetuities 112 

Petroleum,  Elastic  Force  of  Vapor. .  707 
"    Evaporative  Effects  of. 910 

Physical  and  Mechanical  Elements, 
Construction  and  Results. 907 

Pile  Driving 433,  671-673.  902,  97a 

"    Coefficient  of  Resistance  of  Earth  972 

"    Pneumatic 673,  972 

"   Resistance  of  Formations. .....  673 


INDEX. 


XXIX 


FtLi  DRimro,  Ringing  J^ngine 972 

"  8afs  Load,  To  Compute 672 

"  Sheet  Piling 672 

"  Sinking. 673 

"  Weight  of  Ram 972 

PiLSS,  Foundation 198,  781, 909 

"  Extreme  Load  a  Pile  wiU  Bear  912 

"   Retaining  WalU  of  Iron 196 

PiuHo  OF  Shot  and  Shklls 65 

PiUar  at  Delphi 179 

Pillart  or  Columtu 936 

PiDit,  First  in  Use 915 

Pipes,  Dimensions,  etc 747 

"  and  Tubes,  Weight  of. 147-148 

"  Copper,  Dimensions  of. 150 

**  Gas,  Thickness  of 123 

«    "    Threads 160 

"  Lead,  and  Tin-lined^  Weight  of. .  137 

"      "     Encased 151 

»*     «'     Weight  of. 150 

"  Metal,  and  Weight  of. 147 

**  of  Cast-iron  to  Resist  Oxidation.  927 
"  or  Cylinders  of  Cast-iron. . .  .132-133 
"  Riveted  Iron  and  Copper,  Weight 

of  One  Foot  in  Length 148 

"  Steam,  Gas,  and  Water. 138 

"  Tin,Weightof. 151 

"  Thickness  of.  To  Compute 560 

»'  Water,  Standard  of  Cast-iron. . .  147 

Pisfi. 593 

Pivots,  Friction  of. 472 

Planing,  Cast-iron  and  Molding.  .476-477 

Plask  Road& 688 

Plants  or  Hills,  in  an  Acre. 193 

"     Weather  Foretelling. 185 

Plaster,  Turkish 591 

Plastirino,  MeoMiring  of 197 

**    Volumes  Required,  Materials 
and  Labor  for  100  Sq.  Yards  of. . .  604 

Platb  Binding,  Iron 476 

Platks  and  Bolts,  U.  S.  Test  of, etc  749-753 

**  of  Metals,  by  Gauge. 121 

"  Thickness  of.  To  Compute. 751 

"  Wrought-iron  Shell 750 

Platino  Iron  Hulls 667 

Ploughing. 433 

PnUMATICa.— AXROMBTBT 673-676 

{See  also  Aerometry.) 

PoiNTiNO  in  Masonry. 598 

^o\uovB,Antidotes  and  Tr€atment.iZs,  935 

PoLBS  AND  Spars 62 

Poncblst's  Whkbl 567-568 

**     Turbine 574 

PoruuknON,  and  Area  of  Divisions 

and  Countries. x88 

*'  Comparative  Density  of,  and 
Number  of  Persons  in  a 
House  in  jHfferent  Cities. .  910 

"    of  Principal  Cities. 187 

Position. 98-99 

JPbtxuoUoML,  Elements  of 589 

Potato,  Anii  •  Scorbutic  Power  and 
Ratio  of  Flesh-formers 206-207 

PowDBB,  Smokeless. 952 

"    Forcite 966 

**    GtmfPropartionMqftoShot,,  50a 


(I 


(( 


Pafc 

Power  and  Work,  Metric 36 

'*  Motive. 910 

"       "     of  the  World 935 

'*  Movers  and  Transmitters  of....  797 

^^  of  a  Quantity,  Value  of. 359 

"   Ordinary  Distribution  of,  in  a 

Propeller  Steamer. 911 

' '  Required  to  Draw  a  Vessel  up  an 

Inclined  Plane. 910 

'*  Thermometric  and  Mechanical 
Energy  of  10  Grains  of  Va- 
rious Substances  when  Oxi- 
dised in  Human  Body 205 

"  To  Stutain  a  Vehicle  on  an  In- 
clined Road,  To  Compute.. 845-846 
"  Transmission, Elements  of.....  176 

Powkrs,  Natural 19S 

4th,  sth,  and  6th  of  a  Number.  304 

of  first  9  Numbers 98 

of^th  and  $th  Numbers. . .  .303-304 

"    of  6th  Number 304 

Precious  Metals,  Values  of  some...  938 

Pressures  and  Weights,  Metric 36, 923 

Probability  and  Illustrations. . .  11 4-1 17 
'^    Odds   between   Results   and 

Chances,  etc 117 

Progression 101-105 

Proof  of  Spirituous  Liquors. 218 

Propeller  Steamers,  Ordinary  Distri- 
bution of  Power  in on 

PROPELLBR& 730-731,  886-891 

Properties  of  Numbers 98 

Proportion 94-96 

Pullet 433 

"  Compound,  etc 633-634. 

"  Power,  Weight  it  will  Raise,  and 
No.of  Cords  to  Sustain  Lower  Block  632 

Pump,  Working.ofa 433 

"  Appold^s  and  Gwynne^s 570 

"  Steam,Elements  and  Capacities  of  738 

"  Water,  First  in  Use 932 

Pumping 433 

"      Engines.  . .  738, 902-903, 954, 963 

Pumps,  Direct  Acting. 738 

"    Centrifugal. .  sjg-sSo,  911,  917, 1031 

"    Circulating 749 

'*     Water  and  Vacuum. 932, 963 

'*     Worthington 738 

Pushing  or  Drawing 433 

Pyramids,  Statues,  etc. 178, 936 


Quartermasters,  Service  Train  of. , .  198 

R. 

Race-Courses,  English,  Length  of...  930 

Rack  and  Pinion,  Power  of, 628 

Radius  Vector 449 

Rail,  Weight  of.  To  Compute. 679 

Railroad  Crane 962 

"  Horse,  First  in  Use 915 

"  Portable,  and  Hand-Cars... . .  908 

Signals  and  Significations....  954 


tt 


**  Speed 969 

"       ^''  in  England 93O}  951 


II 


Tleit,  Duration  of. 968 


INDBX. 


XXXI 


PfefpB 

BoAM,ete.f  Difeftef 686 

'    Bnglith 689 

"  Gf iters,  Fillers j  and  Wheelers^ 
Proportion   of,  in   Different 

Soils 688 

'♦   Grade  of. 686 

"  GranUe  and  Hoggin, 690 

"  Gravel  or  Earth 688 

**  Macadamited 687-690 

**  Metalling  and  Metalled. 690 

"  MisceUane&us  Note* 6 

"  Plank. 6 

"  Besistance  to  Traction  of  a  Stage 

Coach 848 

**  .RuJbbU  Stone 689 

^  Ruts  and  Stone-breaJcing. 687 

**  Sweeping,  Sprinkling,  Watering^ 
Rolling,  Washing,  aaid  Fas- 
cines  690 

"   Telford. 688 

"   Voids  in  a  Cube  Yard  of  Stone.  690 
Roadway,  Central  Width  of,  in  CiU.  917 

"    Constmction  of. 687 

Roadways,  Relative   Resistance   to 

Traction 945 

Rock,  Weight  and  Volume  of. 467 

"  AND  EARTu,&BcavalionandEm' 

bankment  cf 192 

8 


it 
ii 


ti 


....  101 

. ...  46I 


**  and  Bulk  of,  and  Earthvoork 

**  Drilling. ,...*  940 

"  Weight  of  per  Cube  Yard 468 

VUoVitkVi  Calendar 71 

"    Indiction 71 

"    Long  Measures 53 

Roof  Plates,  Corrugated,  Weight  of. . .  131 

Roops  of  RuHdings 179, 952 

"  Stress  on.  To  Compute 952 

'*  Weights  and  Pressure  on. .  .952,  loao 
"  Wooden 189 

Root,  of  an  Even  Power  Greater  than 

Contained  in  Table 98 

*•  To  Extract  any  whatever 97 

Roots  and  Grains,  Weights  of. 34 

**    Sqdarbs,  axd  Curbs 272-302 

"    4<A,  5M,  and  6thy  To  Compute.  302-304 

Ropbb,  Working  Load 782 

"  akd  Cablis,  Measure  of. 26 

*'  and  Chains  of  Equal  Strength, .  165 
*^  aian  Inclination, Stresi  of...,,  166 

*'  Cablbs,  Ghaivs,  etc 161-175 

"  Circumference  of  Wire,  etc.,  To 

Compute. 169 

"      "  of,  and  of  Hawser  or  Cable 

for  a  Given  Strain  of.,,,  171 

**  Endless. 167 

**  Hawsers  and  Cables 170-172 

"    *'  Circumference  of,  To  CompiUe  171 

"    *'  Weight  of  To  Compute 172 

"  Hemp  and  Wire,  General  Notes.  167 
"   ''and  Wire, WeightamdStrengthofiyz 

»»   ''Iron,  and  Steel 164 

**  Iron,  Wire,  and  U.  S.  Hemp  ....  168 

"  Mining,  Flat 165, 1029 

**  Qf  Corresponding  Strength  to 
ffemp^and  of  Hemp  to  Circum- 
StTtmot  qf  Wire  Regfs 169 


Pagf 
ROPBS,  Stren,  Ttmtion,  and  D^eHon 

of.  To  Compute 166 

"  Tarred  Hemp  and  Wire,Circum- 

ftrence  of 169 

'*       •'        "  and  Destructive  and 

Breakii  g  Strength  of. 171 

"  Transmission  of  Poioer 167 

"  Units  for  Computing  Safu  Strain 
for  New,  Hawsers,  and  Cables, 

U.  o.  N. I7^'i7' 

VViRK,  Elements  of  etc 161-173 

''  and  Equivalent  Belt 167 

*'  Experiments  on,  U.  S.  N. . .  166 
"  and  Hemp,  Circun\ference 

of  for  Standing  Rigging  172 
"  Iron,Steel,andHemp.Rel- 

ative    Dim£nsions    of,  * 

^^  €/»  o.  iV •..••..«•.•   172 

"  White,  DurabUity  of 17c 

Rotation  of  the  Earth,  Influence  of. .  942 

Rowing 433 

Rubble-Stone  Pavement 689 

RCLB  OF  TURBB 95 

Running,  Men  and  Horses 438-440 

Rye  Straw,  Relative  Value  of  com- 
partd  with  zoo  Lbs.  of  Hay 203 


Saccharose,  or  Cane  Sugar 207 

Safbty  Valve,  Adjustable  Pop 986 

«  "  ,.T^^^^ 746,931,933 

Sago,  Value  of 207 

Saiuno,  Area  of  Sails  and  Vessel's 

■  Speed 663 

"     Vessels,  Iron 894-895 

Sails,  Propulsion  and  Area  of 663 

"      To  Preserve 870 

**      Trimming  of 665 

Saline  Saturation. 726 

' '    Proportional  Volumes  of  Matter 

in  Sea-water 727 

Salt  Water,  Corrosive  Effects  of  on 

Steel  or  Iron 916 

Sand,  Composition,  etc 599 

Sandstones 193 

Saw- Mill,  Elements  of. 904,  913 

Sawing  and  Hewing  Timber,  Loss  in,    62 
"•     Stone  and  Wood 196,904 

Saws,  Circular 197,  477, 911-912 

"      Vertical  and  Band 477 

Scale  or  Sediment,  Removal  of  Incrus- 
tation in  Boilers 726 

Scalbs,  To  Divide  a  Line,  etc. 221 

'*        Weighing  without 66 

Scarfii  Resistance  of 841 

Screw,  Length,  Power,  Weighty  Pitch, 

etc. ,  To  Compute. 630-631 

*•  Bolts, /\7W«r  0/ 968 

*'  Cutting. '. 477 

"   Compound .631 

"  Differential 63a 

•♦  Propeller,  Pitch  and  Speed  of  . .  669 

"         "     Friction  of  Enginet ....  663 

"         *'     Elements  of,  To  Compute  gij 

Scripture  and  Ancient  Measures. ...    53 

Sea  Depths. • »•»»..     •   sJU 


xxxu 


INDEX. 


Seas  and  Oeeam,  Vep&it  and  Area 
of. 182 

8£CANTS  AND  COSECANTS 403-414 

"       ^^  Degrees^  Minutes,  etc.  J  of, 

To  ComptUe 414 

Sbeds,  Number  of,  in  a  Bushel,  and 

per  S^.  Foot  per  Acre.. . . .  193,  938 
**  Proporium  of  Oil  in  Air-dry .  203, 939 
"  Yield  of  Oil  in  Several. 189 

Segments  of  a  Cirolk,  Area  of.  .267, 269 

"        '*  Areaof,  To  Compu^«. 268-269 

Sewage,  Volume  o/f  etc 692, 1029 

Sewers,  CUtssification  of. 691, 692 

**  Drains.  Diameter  and  Grade  of 

0  to  Discharge  RainfaU 906 

**  Drainage  of  Lands  by  Pipes. . .  691 
"  Material  per  Lineal  Foot  of  Egg- 
shaped,  Dimensions  of 692 

"  Minimum  Velocity  and  Grade 

of 691 

**  Sewer  Pipes. 692 

**  Surface,  which  will  Discharge 
a  Volume  of  an  Inch  and  also 
of  Two  Inches  per  Hour,  etc. .  692 

Shaft,  Bearings  for  Propeller 473 

Shafting ybr  Lathes  and  Mills.  .948,  loio 

Shafts 778,  793,  794-797.  9*4 

{See  also  Torsion,  790-797.) 

*'  and  Gudgeons. 790 

"  Deflection  of  Shajts 778-779 

"  Diameter  and  Journal  of,  Stress 
Uniformly  along  its  Length, 

To  Compute 571 

••  JoumaZs  or  Bearings  of,  etc . . .  796 
**  Loaded  Transversely  and  Jour- 
nals of 914 

Shbabino  or  Detrusive  Strength. 7S2-JS2 
"  Experiments  in  Cast-iron,Steel, 

Treenails,  and  Wood 783 

•*  Power  to  Punch  Iron,  BrasSf  or 

Copper,  To  Compute 782 

**  JUsuUs  of  Experiments  on,  vrith 

a  Punch 782 

"      •*    "  with  Parallel  Cutters, 
WroH-iron  Bolts,  Riveted  Joints, 

and  Various  Materials 783 

Sheathing  and  Brasiers*  Sheets 155 

**  "  Copper...,  131 

"    Nails,  FWpWo/. 135 

StiMi-lrou,BlackandG€UvaniMed.  124, 129 

**    Weightof. 129 

Sheet  Pilwg « 672 

Shells  and  Shot,  PUing  of. 65 

Shingles 63 

Shoemaker's  Measure. 27 

Shot  and  Shells,  Piling  of. 65 

"  Chilled  and  Drop 906 

**  No.^  Diameter,  and  Numbers  of,  906 

"  Number  ofPdlets  in  anOt. 501 

Shrinkage  of  Castinga ai8 

Shrouds,  Hemp  and  Wire 173 

Side  Lights,  Visibility  of  a  VesseVs,  918 
"  WjiXJtiA,AreaofBladesand8lip  66a 
**   Friction  of  Engines. 66a 

Sidereal  Day  and  TeaT' .••    37 


Pag* 

Sides  of  Squares,  Equal  in  Area  to  a 

Circle 258-259 

Signals,  Night,  U.S. N. 199 

'^  Railroad,  and  Significations..  954 

Silt,  in  Mississippi  River 910 

Silver  Sheet,  Thickness  of. 119 

Simple  Interest 107 

Simpson's  Rule, ^rra,' TV)  Compute..  342 
"      "  Volume  of  an  Irregular  Body  870 

Sines  and  Cosines 390-402 

"    Number  of  Degrees,  Min- 
utes, etc. ,  of,  To  Compute 402 

Siphon,  Steam xoio 

Sixth  Power  of  a  Number 304 

Skating  Performancf^ '  439 

Slackwater,  Canal,  etc.,  Traction  on.  848 

Slaking  of  Lime 594 

Slate,  Surface  of,  and  Number  of 

Squares,  To  Compute 64 

Slati  ng,  Weight  of  One  Sq.  Foot 64 

Slates  and  Slating. 64 

*'  Dimensions  of. 64 

*•  English 64 

"  Weight  per  1000  and  Number 

Required  to  Cover  a  Square 64 

SuDB  Valves,  Elements,  etc 731-733 

Smelting  of  Iron  Ore 445 

Slotting 477 

Smoke  Pipes  and  Chimneys 748-749 

Snow,  Pressure  of,  on  Roofs 952 

*'  and  Ice 849 

"  Flakes. 195 

"  Line  or  of  Perpetual  Congela- 
tion   193 

"  Melted,  Volume  of. 195 

Solar  Day  and  Year. 37,  70 

Solders 634-636 

Soldering 875 

Sound,  Velocity  of 195 

"  Distances  by  Velocity  of.  To  Com- 
pute   428 

'*  Velocity  of  in  Several  Solids. . .  428 
Soundings,  to  Reduce  to  Low  Waler.  60 
Spars  and  Poles 63 

Spbgifio  Gravity  and  Weight.  .  .208-215 
"    Given  Weight  of  a  Body,  To 

Compute. 215 

"   of  a  Body  Soluble  in  Water.  209 
"   ofa  Body  Heavier  or  Lighter 

than  Waler. 209 

"   of  Elastic  Fluids 215 

*-^   of  a  Fluid 209 

"   of  Liquids 214-215 

"   of  Miscellaneous  Substances  314 

"   of  Solids 210-214 

"   or  Density  of  Steam 706 

"   Proportions  of  Ttoo  Ingre- 
dients in  a  Compound,  or 
to  Discover  Adtdteralion.  316 
"    Weight  of  Ingredients,  that 
of  Compound  being  Given, 

To  Compute 2x8 

**   Weights  and  Volumes  of  Va- 
rious Substances  in  Ordi- 


nwryUse, 


,916^17 


INDEX. 


XXXlll 


Pige 

Speed  of  VeueU. ^71,  zoto 

Spikxs,  Ship,  Boat,  and  Railroad.  1 52, 1 54 

'*  and  Horseshoes 152 

"  and NaUs,  JRetentiveness  of...,  159 

**  Chmeral  Remarks 159-160 

"  Ship  and  Railway -970 

"   WroH-iron  Nails  and  Tacks. . .  154 

Spiral,  2b  Describe 230 

Spires,  Towers^  Columns,  etc 180,  932 

Spirits,  Strength  of  To  Compute 67 

Spirituous  Liquors,  Dilution  per  Centj  191 

*'  Dilution.  To  Reduce 191 

"  Proof  of. 2i8 

.   "  Proportion  of  Alcohol ....  191 

Springs,  Deflection  of 779 

Spur  Gear 911 

Squarb  and  Cube  RooT)  Square  or 
Cube,  and  when  Number  is 

an  Odd  Number 300-302 

"  of  Decimals  alone,To  A  scertain^yxi 
**  ^a  Higher  Number  than  con- 
tained in  TaJfle,  To  Compute  301 
•*  of  a  Number  consisting  ^In- 
tegers and  Decimals^  To  As- 
certain  30X-302 

•*  Root,  To  Extract 97 

"  "  or  CuBK  Roots  of  Roots, 
WhoU  Numbers,  and  of 
Integers  and  Decimals, 

To  AKertain. 97-98 

"  To  Ascertain  One  that  has 
Same  Area  <u  a  given  Cirde 259 

Squares,  Cubes,  and  Square  and 

Cube  Roots 272-302 

"  Sides  of  Equal  in  Area  to  a 
Circle. 258-259 

&r ABILITY,  Elements,  etc 693-703 

**  Angles  of  Equilibrium  of..,.,  694 

'*  DynanUccU  and  Statical 651 

"  Earthwork^  Centre  of  Pressure 

of. 696 

"  Equilibrium  and  Stability,  To 

Compute. 701 

**  Mem4>randa 695-696 

**  Moment  of, and  To  Compute.  693, 701 
*^  of  a  Body  on   a  HorizonUU 
PUme  or  on  an  Indination, 

694-695 
**  of  a  Fixed  or  Floating  Body. ,  693 
"  qfHuU  of  a  Vessel  or  Floating 

Body,  To  Determine 650 

**  of  Varying  Models. 649 

**  Statical  and  Dynamical,  To 

Compute. 651 

'*  Weight  of  a  Body,  To  Sustain  a 

Oiven  Thrust 693-694 

Staging,  Coach 440 

Staining.  Wood  and  Ivory. 876 

Stains,  To  Remove. 878 

Starcb,  Proportion  of  in  Vegetables.  205 
Stars,  Velocity  of. 198 

Statics 615-616 

**  Composition  and' Resolution  of 
ForcM t 615 


Pag* 

Statics,  Equilibrium  of  Force 616 

**  Inertia  of  a  Revolving  Body. , .  616 

"  Spherical  TriangUs 387 

"  Specific  Heal 505-507 

"           '*         of  Air  and  Oases..  505 
Statues,  Pyramids,  etc. 178 

Stay  Bolts,  Diameter^  Pitch,  etc. ...  754 

Steam,  Elements  of,  etc.. 640-643,  704-727 

'*  and  Air,  Mixture  of 737 

*'  Blowing  of,  Saluraled  Water,  Loss 

of  Heat  by,  To  Compute. .  726-727 
"    '*  Volume   Blown  off  to   that 

Evaporated,  To  Compute. , .  727 

"  Clearance,  Effect  of 715 

"  Coal,  Utilization  of  in  a  Boiler.  726 
**  Combined  Ratio  of  Expansion 
and  Final  Pressure  in  2cl  Cyl- 
inder, To  Attain 723 

''  Condensation  of,  in  Cast-iron 

Pipes 515-516 

"  Condensed  per  Sq.  Foot  and  per 

Degree  per  Hour 516 

**        "  of  Expanded,  per  W  of  Ef- 
fect per  Hour 716 

"  Consumption  of  Fuel  in  a  Fur- 

,    nace.  To  Compute 725-726 

"  Cutting  Off,  Paint  of,  for  a  Given 

Ratio  of  Expansion. .. .  jtx 
"        "  Point  of,  to  Attain  Limit 

of  Expansion 7x0 

*'  Cylinder,  Net  Volume  of  for 
Given  Weight  of  Steam,  etc., 

To  Compute 715 

*♦  Density  or  Specific  Gravity  of. .  706 
"  Effect  for  One  Stroke  and  a 
Given  Combined  Ratio  of 

Expansion 723-724 

"      **   Relative,of  Equal  Volumes.  7x4 
"      "    Totalof  I  Lb.  of  Expanded, 

714-7x5 
"  Effective  Work  in  One  Stroke  as 
Given  by  an  Indicator  Dia- 
gram, To  Compute : . .  714 

"  Efficiency, Actual,  Conclusions  on  724 
"  Elastic  Force  and  Temperature 
of  Vapors  of  Alcohol,  Ether, 
Sulpkuret  of  Carbon,  Petro- 
leum, and  Turpentine 707 

"  Expanded,  Consumption  of  per 

H»  of  Effect  per  Hour 716 

"  Expansion,  Points  of 712 

"        "  Effectsof. 713 

"  ''  Point  0/ Cutting  off,  Actual 
Ratio  of.  Pressure  at  any  Point 
of.  Mean  or  Average,  and  Final 
Effective  or  Initial,  To  Com^ 

pute 710-7x1 

"  Expansive  Force  of 704 

"  Feed  Water,  Gain  in  at  High 

Temperature,  To  Compute 7x9 

"  "  Gain  in,andIniti€U Pressure, 
when  Acting  Expansively, 
compared  with  Non-mpan- 

sion  or  Full  Stroke 725 

"  Gaseous,  Total  Heat,  and  Veloc- 
ity of  To  Compute 710 


XXXIV 


INBKX. 


Page 

Strax  Hfoting  Co.  of  N.  T. 904 

•'        "  and  5oi7er». 013,957,  1025, 1027 
**  IncruitoHon  qf  Scale  or  Sedi- 
ment, To  Remove 726 

♦*  Indicator,  Mean  Pressure  by,  To 

Compute. 724 

"  -Injector 736 

'*  Mean   Pressure   by  Hyperbolic 

Logarithms,  To  Compute.. 7 12-7 13 
"  Mechanical  Equivalent  of....;.  705 

"  Notes  of. 936, 954 

*'  Pipes  and  Casing. 5x5 

**  Pipes,  Gas^  etc.,  Dim^juions and 

Weights  of. 138 

•*  Plant,  Cost  of  Coal  and  Labor  in 

Operation  of  1000  "EP. 951 

"  Pressure  in  Ins.  of  Mercury., . . .  706 
•«        "  Weight  of  a   Cube   Foot, 
Pressure  and  Temperor 

ture.  To  Compute 705 

^       ••  in  a  Cylinder,  at  any  Point 

of  Expansion,  or  at  End 

of  Stroke,  To  Compute,,  711 

"  Pressures,  Mean,  Final,  Effective, 

Initial,  or  Total  Average,  To 

Compute 7x1 

"  Saline  Matter,  Proportion  of  in 

Sea-toater 727 

*«      **   Saturation  in  Boilers 726 

••  Specific  Gravity  of. 704, 706 

**         "  of  compared  voith  Air,  2b 

Compute 706 

**  Surface  Condensation,  Experi- 
ments on 911 

•*  VelocUyof 704.  913*936 

**       **  of  into  a  Vacuum 704 

'•'  Volume  of  Cylinder  for  a  Given 

Effect,  etc 715 

••  "of  Water  at  any  Given 
Temperature  Mixed  wUh 
it,  to  Raise  or  Reduce 
Mixture  to  any  Required 
Temperature,  To  Compute  707 
••  "  of  Water  Evap&rated  per 
Lb.  of  Coal,  To  Com- 

pwfe 725 

••     ■  **  of  Water  in  a  Given  Volume 
of  and  of  a  Cube  Foot  of 

To  Compute 706 

••       "  of  to  Raise  a  Given  Volume 
of  Water  to  any  Given 

Temperature. 706-707 

•*  Weight  and  Effect  of,  for  other 
IVessures  than  100  Lbs.,  Multi- 
pliers for 719 

•*  Wiredrawing  of 7x8 

■^  Vaehls,  Relative  Velocities  of 
from  Elem,entt  of  their  Con- 
struction, To  Compute 928 

**  GoMrouND  Expansion,  Elements 

of,  etc 7>3,  720-724 

^  "  Combined  Ratio  of  and  Final 
Pressure  in  ad  Cylinder, 
To  Attain 723 

*     '*  ComparativeEfectinReoeiv- 

er  oimI  Woolf  Engine 724 


Stsax,  CoMPOtnm  Expansion,  Wocl 
for  One  Stroke  and  a  Q*ven 
Ratio  of  in  ist  Cylinder, 

To  Compute 721-729 

"     "  Effect  for  One  Stroke  and  a 
Given    Combined   Actual 
Ratio  of,  To  Compute.  .783-724 
**     "  Eafpansian  in  a  Comp^iund 

Engine,  To  Compute. .  721 

a     {(     **  From  Receiver 720-724 

"     "  Final  Pressure 720-72X 

•*     "  Wodf  Engine,  Ratio  of  Ex- 
pansion, etc 722 

*'  Satubatbd,  Total  Heat  and  Ab- 
sorption of. *..  705 

•*        **  Energy  and  Efficiency  of. 

To  Compute. 716-717 

<•        *'-  Latent  and  Total  Heat  of 

To  Compute 707 

**        "  Pressure,  Tentperature,  Vol- 

ume..and  Density..., -/oS-jog 

**        "  Properties  of,  of  Maximum 

Density 717 

"        "  Vapors,  Pressure  of 518 

"  SUPBRHEATBD,  Energy  and  Effi- 
ciency of  To  Compute.  717-718 

"  **  Expansion,  Effects  with 
Equal  Volumes  and  One  Lb.  of 
100  Lbs.  Pressure 718-719 

Stkaxboat,  Iron,  First  buiU. 915 

Steamboats,  Ritbb,  and  Engines.  892-893 

**  Passages  of 896 

"  Wood  and  River  Side-wheels.  892,919 
**     "  Ferry, Passenger, Team,and 

Tow-Boats 890 

"     "  Passenger  and  Deck  Freight.  893 
"     "  Stem-u^ieels 892-893 

Stbam-bnoinb,  Elements  of  etc.  .727-760 
*'  and  Sugar-Mill,  Weights  of...  908 
**  -Boilers  in  Foreign  Countries.  935 
"  and  Boilers,  Cost  of  Operating 

per  Day  of  10  Hours 904 

"  Circulating Pumps,Volumeof 

etc. , 749 

"  Condenser  or  Reservoir,  Tem- 
perature  of  Water   in,  To 

Compute 707 

"  Dimentions  of  Cylinder,  Grate, 
and  Heating  Surfaces,  To 

Compute 927, 1024 

"  Distance  of  Piston  from  End 
of  Stroke,  when  Lead  pro- 
duces its  Effect,  and  when 
Steam  is  AdmiUed  for  Re- 
turn Stroke. 732-733 

*'  Feed  Pump,  Area  tyT,  To  Com- 
pute  736 

"  Fire,  Elejnenis,  etc 9.>4 

"  General  Rules  for 728-730 

"  H»  of  To  Compute 733-734 

"      "  AdmirtUty  and  French. .  734 
"  If^ection  Pipe,  Area  of,  To 

Compute. 735-73^ 

"  Not^qf. 936,954 


Pag* 

9nA]|-BNOiini,  PortdbUj  Standard 
Operation  of,  and  Elements 

of 737 

*'  Propeller  Slip  and  Thrwty  To 

Compute 730-731 

•'  Proportion  of  Partt,  Condens- 
ing and  yon-condensing.  727-729 

"  Beeeiver 721 

"  Resultt    of  BxperimetAs   on 

Operatton  of, 933 

**  Hcreio,  I'*riction  oj 478 

**  Steam- Irtfector  and  Volume  of 

Water  Discharged  per  Hour  736 
'*  "  -Pumps,  EUmefntB  and  Ca- 
pacities of. 738 

"  Vertical  Beam,  Jet  Condens- 
ing, Weight  of,  To  Compute. .  759 
**  Volume  of  Water  Jiequtred  to 

be  Evaporated  in..  .734-735 
"  Volume  of  Circulating  Water 

Required  in 735 

"  Volume  of  Feed  Water  and  In- 
jection Water  Required 

per  IP  per  Hour 736 

"      "  of  Flow  through  an  Ii\jec- 

tionPipe.. 735 

**  Water -wheeUs,  Radial  and 
Feathering,  and  Elements  of.  730 

**  SuDK  Valves,  To  Compute  and 
Ascertain  Lap  and  Breadth 
of  Ports 731 

••  Distance  cf  Piston  from  End 
of  Stroke  given,  To  Compute 
Lead,  eta 732-^33 

*^  Lap  and  Lead  of  Locomotive 
valves 733 

"  Part  qf  Stroke  any  Given  Lap. 
uHll  Cut  off.  To  ComvUle. ...  731 

**  Stroke  at  which  Exhausting 

Port  is  Closed,  etc. ....  732 

"      •'  of,  To  Compute. 732 

ShrsAM-EvoiNBB,  Results  of  Operation 

of' 737i  924.  933»  954 

''  and  Boilers,  Weights  of  with 

Water 929 

**       "  RestUts  of  Performances 

of 9241927 

*'  Duty  of  and  Relative  Cost  of 

for  Equal  Effects 757 

"  Practical  Efficiency  of. 737 

"  8ide-wheds,PropMer  and  Ma- 
rine, Weights  of. 758-759 

"  Weights  of. 758-759. 9" 

SraAMVESBBL,  Pofwer  Utilised  in...  662 
*^    Resistance  to,  in  A  ir  and  Water  911 
"    -Pkopkllbr,  Ordinary  Distri- 
bution of  Power  in 9x1 

"     Vdociiyof. xozo 

Steamer  "Great  Eastern'* 173 

SnuvKRs 478 

"    Iron,  First  Built 915 

"    Rflative  Velocities  of  TachU, 
from   Elements   oj    Cat^rwUion, 

and  Large 928 

RtOTiiitng  Distances : 86 


Steel 640^3^  750^  783, 787-788, 827 

"  and  Iron,  Corrosion  of, 908 

"  and  Iron,  Corrosive  Effects  of 

Salt  Water 916 

"  Ouns 913 

"  Hemp,Iron  and  Steel  Wire  Ropes, 

RekUive  Dimensions  of...  172 
"     *'  and  Iron  Rope,  Round  and 

Flat  and  Safe  Load. . .  164-166 
"  "  Iron  and  Steel  Wire  Rope. . .  164 
"  Hexagonal,  Octagonal,  and  Oval  135 

'*  Locomotive  Tubes 138 

"  Manufacture  of.  Remarks  on....  642 
*^ofa  Oiven  Section,  Weight  of.i^S,  149 

' '  Plates 750,  830 

"       "  Thickness  of. i2x 

**       ''Weight  of ;.ii8-ii9,  146 

*'  and   Iron,    Rolled    Bart^    arid 
Weight  of. . .  125,  ia6j  128, 134,  i3«i 

"  Wire,  Weight  of. 120-iaf 

Sterling,  Pound,  etc 38 

Stings  and  Burns,  Application  for. . .  196 

Stirling's  Mixed  Iron 785 

Stirrups  or  Bridles, /or  Beams 838 

Stone  and  Ore  Breakers  and  Crusher, 

903)  957 
*•  Dressed,  Modes  of. 603 

"  Hauling 468 

"  Load  per  ^.  Foot 915 

"  Masonry,  Elements  of. 595-600 

'*        '^  Ashlar  and  Rubble. . .  .600-601 

''  Resistance  of,  to  Freezing 184 

''  Satoing. 196, 904 

•'       *'   and  Dressing,  Cost  of.....  949 

*'  Voids  in  a  Cube  Yard  of. 690 

Stones,  Cements,  etc.,  Crtuhing  of. .  766 
(See  Crushing  Strength,  764-769.) 
"  Building,  EsqMinsion  and  Con- 
traction of. 184 

Straw  and  Hay,  Weif^  of. 198 

Streams,  Rivers,  and  Canals,  Flow  of 
Water  in 550 

Street  Rails  oliTRAinrATS.435, 915,  918 
*'  Raiiaoabb,  Experiments  on  Mo- 
tors, Result  of 915 

"         "  Cost  of  Maintenance 918 

"  Roads  and  Pavements 686-690 

Strimoth  of  Materials,  Elements 

of. i 761-841 

'*  Elasticity  and  Strength,  Co- 
hesion and  i{M<{ienc«.  761-763 

*'  Coefficient  of. 761-762 

**  Modulus,  Height  of,  Weight 
of.  Various Materials.'jb2-j6-i 

*•    *'  q/1  3\)  Compute 763 

♦»    »*  of  Elasticity,  Height  of  To 

Compute 763-764 

"    **  Resilience,  Comparative,  of 

Woods 763 

♦«  "  Weight  a  Material  will  Bear 
without  Permanent  Alter- 
ation  of  its  Length 763 

''  Ck)HBBioN,    Modulus    of    and 

Weight,  To  Comj^te.  .963-^ 


ti 
it 


XXXVl 


INDEX. 


SlBKNGTB  OV    iffATKUALS,  GRUSHINO, 

Elements  of,  etc 764-769 

'•    **  Bricies 908 

*»    "  Casi  ind  WroH  Iran,  Woods 

and  Various  Metals 765 

"     "  Columns  of  Iron  and  Steely 
Sa(f'e  Load  of  and  Coeffi- 
cients of  To  Compute. . .  769 
<«    <*  Columns,  Arches,   Chords, 
etc ,  of  Cast  Iron,  Safe 
Load  of 766-767 

*  "    '' Weight  of  To  CompuU.   ^(i() 
««    «  Cylinders  and  Rectangular 

Tubes  of  WroH  Iron 767 

**    "  Elastic  Limit  compared  to  764 
**    "  Granite,  Limestone,  Marble, 

and  Sandstone 767, 1039 

**    "  HoUow  Columns  or  TuJbes, 

8afk  Load  of. 768-769 

"    "  lee 912 

**    "  Long  Solid  Columns,  Com- 

parcUive  Value  of 976 

"  "  Notes  and  Effects,  Season- 
ing, etc 764 

"    *^  of  Cements  and  Mortars. . .  596 
**    "  Relative  Value  of  Woods, 
Strength   and    Stiffness 

Combined 976 

**    *^  Sandstones,Stones,Cements, 

Masonry,  etc 765-766 

"    "  Various  Materials 765-769 

"  Dbflbction,  Elements  of,  etc.. 

770-781 
<^     "  and  Weight  Borne  by  a  Bar 

or  Beam  of  WroH  Iron. .  773 
**    "  Bars,  Beams,  Girders,  etc, 

770-771 
"    **  Beams  of  Rectangular  Sec- 
tion, Formulas  far. .  77 1-773 
"    "  ^*and  Comparative  Strength 

of  Flanged 778 

M    **   * »  arid  Girders. 840-841 

"    "   "  Elastic  Strength  of  of 

Unsymmetrical  Section  778 
"    "   ''Flanged,  and  Weight  of 
that  may  be  Borne  by 
One  of  Cast  Iron.  .777-778 
u    ti   ii  qf  Cast  and  WroH-ir<m, 

and  Woods. 772-774 

««    (i    (t  Of,  Qirders,  Continuous.  772 
**    **  Bearings,  Admissible  Dis- 
tances between 778 

**  "  Cast  Iron  Flanged  Beams 
andCgmparcUiveStrength 

of ,809 

*•    •*  General  Deductions —  779-780 
••    *' Girders,  Tulndar,  of  WroH 

Iron 775,  809 

"    "  Rails,  Flanged,  Iron  and 

Steel 775-776 

**  "  Rectangular  Beam  of  Iron 
and  Woods,  Load  that 
may  be  Borne  by 773 

*  •*  "  Bars  and  Beams  of  Cast 

Iron  and  Various  Sec- 
UanStBio. 777 


Pa^r 
Strbngth  op  Materials,  Results  of 
Experiments  on  Subjec- 
tion of  Cast-iron  Bars  to 

Continued  Strains 780 

"    "  Riveted   Beams   of  WroH 

Iron  and  Weight  of. .  774-775 
'*     ''Rolled    Beams    of   WroH 

Iron 774 

"    "  Shaft  from  iU  Weight  alone  778 
"    "Shafts     and    Distributed 

Weight  for  Limit 778 

"    "      "  MiU  and  Factory,  and 

To  Compute. ..:....  779 
♦•     "  Springs,  Carriage  and  In- 
dia-rubber  779 

"  "  WorHng  Strength  or  Fac- 
tors of  Safety. 781-782 

"  Dbtrusivb  OR  Shearing,  ^fe- 

menls  of,  etc 782-783 

"  "  Comparisonbetween Trans- 
verse.  78a 

•'    "Lengthof  Surface  of  Wood 

to  Horizontal  Thrust. . . .  789 
"  •*  of  Metals  with  a  Fundi. . .  782 
"    ••  of  Riveted  Joints,  Cast  Iron, 

Steel,  Treenails,  and  Woods  783 
"    "  of  Rivets  and  Memoranda.  830 
"    "  of  Various  Metals  by  Par- 
allel Cullers 783 

"    "  of  Woods 783 

"    "  of  WroH-iron 783 

♦•    "         "    BoUs,  Experiments 

on  and  by  U.  S.  N. 783 

"    "  Pov)er  to  Fundi  Iron,  Brass, 

or  Copper,  To  Compute. .  782 

"  Tbnsilb,  Elements  of  etc.  .784-790 

"    "  Average  Elasticity  of  Steel 

Bars  and  Plates 788 

"  "  Cast  Iron,  StirUng's  Mal- 
leable, and  Wrought. .  784-785 

"    "  Ductility  and  MaUeabilUy 

of  Metals,  Ratio  of 787 

"    "  Elements    connected   with 

Various  Substances 786 

"     "  Manganese  Brome 832 

"  "  Memoranda  on  Rehealing, 
Temperalure,  Annealing ^ 
Cold  Rolling,  Hammer- 
ing, Welding,  Cutting 
Threads,  Case  Harden- 
ing, and  Galvanizing. . .  786 

"  "of  Various  MetaU,  Woods, 
and  Miscellaneous  Sub- 
stances.   788-790 

"  "of  Wood  in  Various  Posi- 
tions   870 

"    **  Result  of  Experiments  on 

by  Soc.  ofC.E. 787-788 

"     "  Riveted  and  Welded  Joints 

of  WroH-iron  Plates 828 

'*  ♦'  Steel,  Crucible,  Bessemer, 
Fagersta''s  and  Siemen^s 
Experiments  on 787 

<i    ii  WroH  Iron  Tie-rods,Exper- 

imetUs  on..t 787 


INDEX. 


xxxvii 


((    (( 


((    (( 


ct 


Page 
Stbbioth  or   Materials,  Relative 
Besistcmce  of  WroH-iron 
and  Copper  to^  and  Com- 
pression  787 

"  ToRSiONALjBfewiento  0/  etc  790-797 
**  *'  Shafts  and  Gudgeons.  .790-792 
«*    "  Cast  Steel  and  Coefficients 

of. •.-.  795 

"    "  Gvdgeons,  Diameter  of  To 

Compote 79s 

"    * » Hollow,  Round,and  Square 
Shafts  and  Cylinders^  To 

Compute. 792-794 

**    ^^  Shafting,  Coefficients  for 

Ultimate  Resistance  of. .  797 
"    "  Shafts  of  Oak  or  Pine,  To 

Compute. 793-794 

•*    "    "  Couplings  or   Sleeves, 

and  Supports  for. . , .  796 
u    «4    tt  Diameter  of  to  Resist 
Lateral  Stress,  To 

Compute 791-792 

"  ^^  and  Journal,  of  for 

a  Water-wheel. ...  571 
"  ^^ofa  WroH  Iron  Cen- 
tre Shaft 794 

"    "  "  of  to  Resist  Torsion 

and  Weight. ......  792 

u    «(    it  Hollow,  Diameter  of  to 

Sustain  its  Load,  etc.  792 

«*    «*    "  Journals  of,  etc 796 

"    "    "  MM  and  Factory,  For- 

mtUoJsfar 797 

<(    ci    4t  0^  \ifrroH  Iron  for  Ma- 
rine   En{fines,   For- 
midas  for  Diameter.  796 
«i    i«    »*  Round  and  Square,  Ul- 
timate Strength  of  To 

Compute 795 

«*  "  "  toResistLateralStressofjgy 
«    ^*  of  Various  Metals,  Woods, 

andTohin  Bronze,  793-794»  9^9 

"  Transverse,  Elem^ents  of,  etc. , 

798-841 
"    "  Coefficient    or  Factor    of 

Safety  of  Materials 802 

**    "  Bar  or  Beam,Fixed  or  Sup- 
ported,  hears  Weights 
at  Unequal  Distances.  803 
»*    "  Bars  of  Steel,  To  Compute, 

817,  827 
"    ii    u  HoUowGirdersor  Tubes, 

Comparative  Value  of. .  824-825 
«•    "  Beam  or  Girder  of  any  Sec- 
tion or  Material,  For- 
mulas for.  817-818 

u  u  <t  Qf.  Shaft,  Rectangular, 
Diagonal,  etc.,  For- 
mulas for 817 

"    »*  Beams  of  Various  Woods. 
Safe  Statical  Load  of  ana 

Corffidentsfor. 834-835 

••    "  B(^tom  Plate  Area  and  De- 
structive Weight  of 810 

<*    "  BowstringGirder,  Diameter 

cf  Tie-rodj  To  Compute. .  812 


Strength  of  Materials,  Cast  Iron 
Beams  or  Girders  of  Va- 
rious Figures,  To  Com- 
pute  81^-821 

«    <c  Uf,f  yarious  Figures  of 

798,  800,  813-817 
"    "  Centres  of  Gravity  and  of 
Crushing    and     Tensile 
Strength  of  a  Girder  or 

Beam,  To  Compute 819 

••    *'  Concretes,  Cements,  etc. . . .  800 
"    "  Cylinders,  Flues,  and  Tubes, 
Elements  ofwiUUn  Elas- 
ticity, To  Compute... 827-828 
"    "  Cylindrical  and  Elliptical 
Beams  or  Tul)es  of  WroH 

Iron 810 

*'    "  Diameter  of  a  Cylinder  to 
Support  a  Given  Weight, 

804-805 
"    "  Depth  of  Beam  to  Support 

a  Uniform  Load 808 

"    "  Elastic  of  WroH  Iron  Bars.  808 
"    ^^  Elliptical-sided Beams,Side 

or  Curve,  To  Determine. .  826 
"    *♦  Equilateral  Triangle  or  T 

Beam,  To  Compute 804 

"    "  Flanged  Beams  of  Cast  Iron, 
Comparative  Strength 
and  Deflection  of....  809 
"    "    *'  Dimensions   and  Pro- 
portions of. 809 

"  »'  •'  Hollow  or  Annidar 
Beams  of  Symmetri- 
cal Section. 815 

♦'    "  Floor  Beams,  Girders,  etc., 
of  Wood,  Capacity  and- El- 
em,ents  of,  To  Compute.S^S-B^S 
"  FormiUa^andRtdes for  Rec- 
tangular Bars,  Beams, 

or  Cylinders. 801-803 

"  '^for  Destructive  Weight 
of  Solid  Beams  ofUn- 
symmetrical  Section, 

816-819 
"     "  General   Deductions  from 

Experiments 824-825 

*'  "  GirderorCylindricalShaft, 
Lower  Flange  of,  Sec- 
tion to  Sustain  a  Safe 
Load  in  its  Middle,  To 

Compute 817 

"    "    "  Beam,  etc.,  Factors  of 

Safety 821 

*'  Dimensions  of  and  Load 

on,  To  Compute. .  .839-840 
"  Graphic  Delineation  of 

Stress 840 

•*  "  Girders  and  Beams  of  Va- 
rious Figures  and 
Sections,  Symmetrical 
and  Unsymmetrical, 
JromExperiments.Si^-%ij 
««    ««    "Beams,    Lintels,    etc., 

Elements  of 822-823 

"    *«    "  or    Beams  of  Unsym- 
metrical Section.  .8xo-9mi 


t( 


u 


C(       i( 


II     il 


xxxvui 


INDBX. 


u 


t( 


It 


Strhtoth  of  Uatkbjajjl  Girders  of 

WroH-ircn^  PI<Ue 811-812 

'«    "  GUus   QUtU*  and   Cylin- 
ders, Resistance  to  Inter- 
nal I^essurt  and  Collapse  831 
*'    "  Headers  and  Trimmers  or 
Oarriage  Beanu,  EUmenU 

of,  To  Compute 836-838 

**  "  Homogeneous  Beams  of  Un- 
symmetrical  Section,  Ul- 
timate  Strength   <{/*,  To 

Compute 820-821 

"    "  Inertia  of  Beams,  Moment 

of. 818-819 

**    '*  Inclined  Beams,  etc,  of 

Wro  t  Iron, 811 

"  **  Lead  Pipes,  Resistance  to, 
Thickness  qf,  Weight,  and 
Bursting    Pressure,   To 

Compute 831 

**    *^  Manganese  Bronze 832 

"    ' '  Memoranda  on  Joints,  etc .  830 

•'    •'    ''onMetaU. 832 

"    ''Metals 798 

"    "  MisceUaneous  lUustrations  826 
"    '•  Neutral  Axis  of  a  Beam  of 
Unsymm^rical    Section, 

To  Compute ^ 820 

*'  of  a  Beam  in  an  Inclined 
or  (Mique  Position. .  799, 804 

*•     ''of Brickwork 801 

*♦    "of  Woods. 798-799,800 

"  PUUe  Joints,  Double  Rivet- 
ed and  Strapped,  Experi- 

mjerUs  on 829 

"  Pressure  on  Ends  or  Sup- 
ports of  a  Bar,  Beam.etc.  803 
**    "  Rails,  Iron  and  Steel,  To 

Compute 812 

"  "  Bectaimular  and  Cylindri- 
cal Beam^,  Formulas 
and  Coefficients  for. .  805 

"    "    "  Girders  or  7Yibe« 809 

"    *'  Resistance,  Moment    and 

Work  of,  To  Compute. . .  818 
*•    "  Riveted  Joints,  Compara- 
tive Strength  of 828 

"  "  Rivets,  Pitch,  Lap,  and  Di- 
ameter of 829 

"  MoUed  Beams  and  Channel 
Bars,  Safe  Load  and 

Weight  0/. 807-808 

'*  and  Girders  or  Riveted 
Tubes  of  WroH  Iron, 
of  Various  Figures 
and  Sections,  Destruc- 
tive Weight,  To  Com- 
pute  805 

"    "    "  "  and  Channel  Bars  of 
WroH  Iron  of  Various 

Sections. 8o6.A>8 

"     ••     "  iiteH  Beams ■147, 808 

"    "  Scarfs,  RelaHve  Resistance 

of. 841 

•*    **  SeoMning,    7nr.rease      in 

Strength  of  Woods 800 

**    "  SMid  C^Hsmr^  To  Compute  804 


tt 


t<    (I 


Strinotb  of  Uatvri aim.  Solid  Cylin- 
der and  Hollow  Cyl- 
indtrsof  Various  Ma- 
terials.   801 

«    li    tc  Diameter  of  to  Support 

a  Given  Weight. .  .804-805 
'^    "  Statical,  Deador  Live  Load, 

Factors  of  Safety 841 

"    "  Steel  and  Bridge  Plates  and 

Rivets 830 

'*    "     "  Bars,  To  Compute 827 

♦•    **Stifness  of  Materials 798 

*  *    "  Stirrups  or  BrifUes,  Dimen- 
sions of  To  Compute. . . .  838 
"    "  Symmetrical     Girder     or 
Beam,    Conditions    of 
Forms,  etc 825-826 


"    "  Tobin  Bronte 029 

"  Trussed  Beams  or  Girders,  §23 
"    "  UnequaUy  Loaded  Beams, 

etc 810 

'*    "  Various  Materials  and  of 


tl        K 


Various  Ftps.  .708-801, 1029 
"Metals,  Comparative 

(Qualities  of. 8si 

"    "  Woods,  Large  Timber,  To 

Compute. .% 833 

"    «•  WroHii-on  Joints,  Propor- 
tion of  Single  Rivets.  829 

8TBKN0TH  OF  MoDVLfi 644-645 

"■  Dimensions  of  a  Beam  whidi  a 
StrwAure  will  Bear,  To  Com- 

pule 644 

"  Resistance  of  a  Bridge  from  a 

Model,  To  Compute 645 

Stress,  Moment  of,  and  on  Rods. 621-1041 
Street  RalirondB  or  Tramways,  and 
RjuuU  of  Experiments  on 

Motors  for 915 

"    CostqfMainteHaitee. 918 

Stucco 591-593 

Sues  Canal,  Via. 912 

Sugar  Cane,  and  Beet  Root 207 

"    and  Acid  in  Fruits 203 

"    and  Water  in  Various  Products  201 

"    in  Mortar, 951 

"     Mill  Rollers 911 

*'   '}l\lls,  and  Engines,  Weights  of, 

759,  903, 908 

Sulphuret  of  Carbon,  Elastic  Force 
and  Tempera/ture  of  Vapor  of....  707 

Sun,  Heat,  Diameter,  etc 188 

"  Heatof. 193 

Sunday  Cycle  or  Cyele  of  the  Sun. . .    70 
"  or  Dominical  Letter 70 

Sun-dial,  To  Set. 69 

Sunstroke  Remedy 938 

Surveying,  Useful  Number  in. 69 

ScjsPKNSion  Bridoks 178, 199,  842 

**  "  Elements,  Stress,  and 

Pressure,  To  Compute  842 
".           "  Horisontal  Streu  and 
Vertical  Pressure  on 
PierSs  To  Compute . .  84a 
'*  "StulOMstM «63 


INDEX. 


.  XXXIX 


Pftg* 
SuarcMsiOH  Briik»8,  BaHo  ofStreu 
an  Chaim  or  Cabla  at  I\>int  ofSus- 
peruion  Bean  to  whole  Weight  of 
Structure  and  ijoad,  To  Compute. .  842 
SustenaDce,  Human  and  Anim.al. . . .  203 
"  RequiremenU  of  a  Workman  207 

Sweet  Potato 307 

Swimming 439 

Symbols,  a  Ig^n'aiCy  and  FormtiUu.  22-23 

"  and  Characters 21-22 

^'  and  Equivalents 190 

''  for  Elements  and  Formulas. . .  981 
Symbolic  Hatching  and  Designa- 
tions     93a 

T. 
Tttcks,  Nails,  Spikes^  etc.,  fTro'i  Iron  154 

Tan,  Elements  of. 482 

Tangential  Wbeel 57^ 

TAMOKlTTa  AND  CO-TAMOXNTS 41 5-426 

u         ((  Xo  Compute 426 

"         "        ''  Degrees,  Minutes, 

etc.,  0/ fifteen 426 

Tannin,  Quantity  of,  in  Substances. .  190 
TofM  Ltne  or  Chain,  to  Set  out  a  Eight 
Angle  with 1 69 

TscHincAL  TsBMS,  Orthography  of.  1042-51 
"  "     in  if onmry.... 597-599 

Tee  and  Angle  Iron,  Weight  of. 130 

Teeth  of  WheelB 850-862 

"  Dim/emions  of  a  Tooth,  etc..  To 

Compute 860-861 

"  W  and  Stress  of.  To  Compute. . .  861 

"  Involute 859 

Telegraph  Wire,  Span  of. 179,  936 

'■*■  Telephone,Wires  and  Cables..  960 
Telescopes,  Opera-Glasses,  etc. .  .671, 942 
telford  Roads 688,  690 

TucPKRATiTRi  and  Extremes  of.  .914,  952 

*'  Absolute 504 

"  Artifieial  and  of  Earth 195 

*'  by  Agitation 534 

^  Decrease  of,  by  Altitude 522 

**  Extremes  of. 952 

'*  JVon-conductOrs  of. 933 

*'  ofJSnclosed  Spaces 526 

♦*  of  Mines. 918 

<*  q^  SiUurated  Steam,  Latent 
and  Total  Heat  of. 

To  Compute. 707 

**  of  Steam,  To  Commute 705 

**  of  Various  Localities 192 

**  To  Reduce  Degrees  of  Differ- 
ent Scales, 523 

**  Transmission  or  CoTiductiv- 

,     *^of. 9x4 

**  Underground 519 

Temperatures,  Metric 37 

Tempering  Bmn£ /n«irufn«nte 197 

Tenacity  of  Iron  Bolts  in  Woods 198 

TnrBaa  STRKiraTH  {See  Strength  4/ 

Materials) 784-790 

Teme  Platea 124 

Terra  Cotta. 602 

teaHA,  Simple,  of  Water. 928 


Pttm 

Theatres  and  Opera-Housea. 180 

Thermometers,  Reduction  of. 533 

Throwing  Weights  by  Men 439 

Thrust,  Weight  of  a  Body,  to  Sustain  a 

Gityen.  To  Compute 693 

Tidal  Pbouomeuu  una  i  iirreui.  .75-1010 

Tide  Table  fw  Coatt  ofU.S 84-8 c 

T1WS8 84, 198 

''  of  Atlantic  and  Pacific 191,  iq8 

'' of  Pacific  Coast 85 

' '  Rise  and  PaU  of,  Gulf  of  Mexico.    85 

"  Time  of  High  Water 74-75 

Tie- rods.  Experiments  on 787 

Timber  and  Boakd  Mbasurk.  .^. . .    6z 
*'  AND  Woods,   Elements,   iflk«> 

Treatment,  etc .^65-870 

«♦  C<mparative  Weight  of  Green 

and  Seasoned 217 

(See  Wood  and  Timber,  865-870.) 
"  Measure,  and  Volume  of.  To  Com- 
pute   61-62 

*»  Strength  of 870 

*'  Volume  of  Sijtiared,To  ComptUe    6a 
"  Waste  in  Hewing  or  Sawing. .. .    6a 

TncB,  qfter  Apparent   Noon,  before 

Moan  next  passes  Meridian ...    75 

**  Civil  and  Marine 37 

*'  Difference  in 81-83 

"  "of,  betv>een  New  York  and 

Greenwich,  and  any  Location, 

To  Compute.^ 83 

"  Meaxures  of  and  New  Style 37 

^^  Sidereal  and  Solar 37 

"  To  RedMce  to  Longitude 54 

Tin,  Plate  and  Block 644 

"  Lined,  and  Lead  Pipes,  Weights  of 

per  Foot. , 137*  '5" 

'*  Pipes,  Lead  Encased,  Weight  of.,  151 

»*  Plates,  Marks  and  Weights. 137 

ToBiN  Bhonzb,  }  acht  Shafting^  etc. .  920 

Tolerance,  of  Coins 38 

Tonite,  or  Cotton  Powder 443 

Tonnage,  of  Vessels,  To  Compute.  175-177 

"  Approximate  Rule 176 

"  Builder^ s  Measurement. 176 

**  Corinthian,  New  Thames,  and 
Royal  Thames  Yacht  CltUts. .  177 

"  English  Registered. 175-176 

"  Freight  or  Measurement 177 

"  of  Suet  Canal 177 

"  To  Compute 173 

*'  Units  for   Measurement,  and 

Dead-weight  Cargoes 176-177 

"  Weight  of  Cargo,  To  Ascertain.  177 

Tools,  Friction  of. 476 

Tornado,  Pressure  of. 911 

ToRPKDOKS,  St^bmarinie. 946 

Torsional  Strrnoth  (See  Strength 

of  Materials) 790-797 

Towers,  Spires,  and  Donus 180,  933 

Towing,  on  Erie  Canal  arwl  Hudson 

River 193 

Traction,  Elements  of,  etc 843-S49 

"  and  Statical  Resistance  of  Ele- 
vations  846 

"  Co^fflcitnts  of ,  for  Roads 845 


xJ 


INDEX. 


« 


u 


It 


u 


it 


(( 


Paffe 
Traction,  Friction    of  Roads    and 
Coefficients    of   in   Propor- 
tion to  Load 847 

Maximum  Power  of  a  Horse  on 

a  Canal 848 

ofOmnUms  and  Speed 844 

on  Canaly  Slack-water,  Rioer^ 

and  on  Street  Railroads 848 

on  Various  Roads  and  of  Va- 
rious Vehicles 845.  847-848 

Power  Necessary  to  Sustain  a 
Vehicle  on  an  Inclined  Road, 

To  Compute 845-846 

'*  Power  Necessary  to  Move  and 
Mtustain  a  Vehicle  Ascending 
Wr  Descending  an  Elevation, 

To  Compute 846 

"  Resistance  of  a  Car 849 

"  "  of  Gravity  and  Grade.,  847 

on  an  Inclined  Road 846 

on    Paved,  Rough,  and 

Common  Roads 843-844 

to  on  Ormmon  Roads.  843-845 
' '  Results  of  Experiments  of  on 

Roads  and  Pavements 843 

Tramways  or  Street  Railroads, 

435i  848,  915 

Transportation,  Canal. 193 

"  of  Horses  and  CatUe 192 

Travsversb  Strength  {See  Strength 

of  Materials) 798-841 

Trass  or  Terras. 580 

Treadmill 433 

Treenails,  Strength  of  etc 783 

Trees,  Large,  in  California 184 

"  "      in  Australia 971 

Trigonometrical  Equivalents 387 

Trigonometry,  Plane,  AngUs,  Sides, 

etc,  To  Compute 385-389 

Distances  of  Inaccessible  Ob- 
jects, To  Ascertain 388-389 

Height  of  an  Elevated  Point, 

To  Compule 389 

Tripolith,  Composition  of. 198 

Troops, Marine  Transportation  of...  914 

Trotting 430-440 

Troy  Measure 3a 

Truss,  Iron  and  Stress  on. 1 78-1041 

Tubers,  Ratio  of  Flesh-formers 207 

Tubes,  and  Flues 747,  827 

* '  and  Pipes,  Weight  of  To  Compute, 

147-148 
Brass  and  Seamless  Brass,  Weight 

„^f' 142 

Copper,  Seamless  Drawn,  Weight 

o/' 140-142, 144 

English  Wro'tlron,  Weight  of  i^-^,i^^ 
Evaporative  Capacity 'f  Varying 

Length *. 742 

Lap-toelded  Iron  Boiler 139 

or  Girders,  Dimensions  and  Pro- 


(i 


(t 


(I 


<t 


(1 
tt 


li 


Turbines  [See  Hydrodynamics).  .572-5^ 
"  and  Water-  Wheels  Compared.  579 

Turkish  Plaster  and  Mortar soi-soa 

Turning,  FHction  of ^    47, 

•'  and  Boring  Metal .*  jAy 

Turnips,  Ratio  of  Flesh-fDrmers 207 

Turpentine,  Elastic  Fwce  and  Tem- 
perature of  Vapor  of 707 

U. 

Underground  Temperature 519 

Undershot- Wheel  (See  Hydrody- 
namics)  566-571 

Vug\xenV8,  Relative  Value  of. 471 

Units  for  Computing  Safe  Strain  of 
New  Ropes,  Hawsers,  etc 170 

V. 

Value  of  Coins.  To  Compute 39 

' '    and  Weight  of  Foreign  Coins .  40-45 
* '    of  Uie  Metre  in  terras  of  the  Brit- 
ish Imp.  Yard. 934 

Vapor  in  Atmosphere,  Volume  and 

Weight  of  To  Compute. 68-69 

"  Elastic  Force  of  of  Alcohol, 
Ether,  Sutphuret  of  Carbon,  Petro- 
leum, and  Turpentine 707 

Vapors,  Relative  Density  of  Some...  521 
Variation  of  Magnetic  Needle. . .  57-1039 

"  Decennial,  of  Needle 58 

"  of,  in  U.  S.  and  Canada 59 

Varnishes 876 

Vegetable  Marrow,  Composition  of. .  207 
Vegetables,  Analysis   of  Meat   and 

Fish  and  Foods 200-201 

and  Oil-cake,  Nutritious  Prop- 
erties of  Compared 204 

Elements  of  Various. 207 

Proportion  of  Starch  in 205 

"   Tubers,  RcUio  of  Flesh-formers  207 

Vegetation,  Limits  of. 1^2 

Velocities,  Metric. 37,  923 

"  Acceleration  and  Distance  of  a 

Body,  To  Compute 921-922 

"  of  Different  Figures  in  Air, 

Resistance  of 646-648 

Velocity  Lost  by  a  Projectile,  T»  Com- 
pute    648 

"  and  Tim4i,  To  Compute 648 

"  and  Volume  of  Molecules 194 

*'  of  Current  of  a  Bay  or  River. .  97  j 

Ventilation,  Buildings,  Apartments, 


(( 


ti 


etc. 


524 


portions  of. 809 

"  Steel  and  Semi-Steel  Locomotive  138 

"  Thickness  of  B  W  G 748 

Tubular  Bridge.  Britannia. 178 

Tunnels,  Lengths  of. 179,  936 


Length  of  Iron  Pipe  required 
to  Heat  A  ir,  To  ComjMt^e.525-526 

of  Mines 449 

Proper  Temperatures  of  En- 
closed Spojces 526 

Volume   of  Air  Discharged 

through  a  Ventilator.  524 
*'  of  Air  per    Hour  for 
each  Occupant  of  a  House. 
Vernier  Scale 


i( 


(( 


(( 


525 

27 

Vessel,  Elements  of,  To  Compute. . .  653 

"  HuUs   of  Iron,   Thickness   of 

Plates  and  Rivett » , .  i .  830 


(I 


INDEX. 


xli 


P»»ce 

VeueVs  Side  Lights,  Visibility  of.,,,  918 

Vessels,  Mean  Speed  of. 971 

Veterinary,  Treatment  in 186 

Victor  Turbine 57^ 

Volcano,  Power  of. 910 

Volcanoes,  and  Heights  of. 182, 936 

Voltmeters  and  Ammeters. 961-963 

VoLUXB  AND  Wkioht  of  Various  Sub- 
stances in  Ordinary  Vse 216 

"    of  Molecules 194 

VoLUMKS,  Mensuration  of. 360-378 

W. 

Walking 433>  438 

Wall,  Chinese 179 

Walls  and  Arches,  Elements  of.  .602-603 
(See  WaUs,  Dams  and  Embank- 

mentSj  700-703. ) 
and  Earth,  Friction  of  To  Ascer- 
tain and  Compute 698 

»♦  M<mient  of  To  Compute —  701 
»'       "  of  Pressure,  Point  of 

To  Ascertain 698 

of  Buildings,  Thickness  of  .iSg,  1020 
or  Dams,  Centre  of  Gravity  of .  702 

Retaining,  of  Iron  Piles 196 

or  Dam  StabUiCy  of,  To 
Determine 702 


(C 


(t 


(4 


i( 


ii 
ii 


it 
ii 


ii 
ii 


ii 


Revetment,  Elements  of. 694 

Warehoases,  Brick  Wcdls  for 603 

Wabmiko  Buildings 527-528 

by  Hot-air  Furnaces  or  Stoves  528 

by  Hot  Water 524 

by  Steam 527 

Coal  Consumed  per  Hour. ...  527 
Furnaces  and  Open  Fires. ...  528 

Illustrations  of  Heating 527 

Volume  of  Air  Heated  by  Ra- 
diators, Consumption  of  Coal,  Areas 
of  Orate,  and  Heating  Surface  of 

Boiler,  etc., per  100  Sq.  Feet 528 

Warps  and  Hawsers 173 

Washington  Aqueduct 178 

Watches,  First  Constructed 915 

Watbr,  Elements  of 849-852, 916 

Ajpproximale  Bottom  Velocities 
of  Flow  of  in  Channels,  at 
which  Materials  are  Moved. . .  916 
BoiHng- Points  of,  at  Different 

Degrees  of  Saturation 851 

Column,  Height  of 849 

Density  of.  To  Compute 520 

Deposits  of  at  Different  Degrees 
of  Saturation  and  Tempera- 
ture   852 

Evaporation  of. 916 


it 


tf 


14 


it 


ii 
ii 


ii 
ii 


it 


ii 
ii 


ii 
i( 


it 


it 

it 


ii 
ii 


tl 


it 
tl 
it 


ii 
ii 


ii 


ii 
ii 


it 

tl 


it 
ii 


ii 
It 


Expansion  of 5^9 

Freik  and  Sea 849-851 

"  DistiUationof. 955 

Friction  of  in  Pipes 925 

Head  and  Discharge  of  in  Pipes  920 

Inch,  Miner^s 557 

Motors,  Ratio  ofEffectine  Power  563 
Pipe,  Dimensions  and  Weight  of, 

from. 275  to  s Inches i37-'38 


Water  and  Metal  Pipes,  To  Compute 

Weightof. 147 

Power  and  of  a  Fall  0/ 562 

"  Cost  of  on  Driving  Shajt . .  950 

Pressure  Engine 579 

Rainfall  and  Volume  of. 850 

Resistance  of  to  an  Area  of  One 
Sq.  Foot  Moving  through,  or 

Contrariwise 646 

Saline  Contents  of 852 

Salt,  Corrosive  Effects  of,  on  Steel 

or  Iron 916 

Sea,  Composition  of. 851 

Tests,  Simple 926,  974 

Vdocity  of  a  Falling  Stream 

of 496 

Volumes  of  Pure,  and  at  32°. . .  849 
Weights  of,  and  To  Compute.  852, 923 

-Meters,  Worthington^s. 94a 

-Raising,  Cost  of. 949 

•Tube  Boiler,  Elements,  Tests, 

and  Average  Results  of. .  926 

"  Efficiency  of. 947 

-Wheel,  Centre  of  Gyration...  611 
*'  Diav^ter  and  Journal  of  a 

Shaft,  etc 571 

"  Dimensions  of  Arms. 571 

-Wheels,  of  Steamboats. 730 

"  Compared  wiih  Turbines. .  579 
{See  Hydrodynamics  and 
Hydrostatics,  563-579.) 

Waterfalls  and  Cascades 184 

Watermelon,  Water  in 207 

Waterproof  To  Render,  Wood,  Iron, 

Walls,  Paper,  etc 875 

Waters,  Mineral^  Analysis,  etc. .  .850-852 

Waterworks,  Filters  for 184 

Wave,  Flood 912 

Waves  of  the  Sea 852-853 

"  Height  of,  in  Reservoirs,  etc. ,  To 

Compute 853  > 

"  Tidal,  and  Length  of 853 

"  Velocity  of  To  Compute 853 

Weather- Foretelling  Plants 185 

"  Glasses 430 

"  Indications 43' 

Wedge,  and  To  Compute  Power. ....  630 
Weighing  without  Scales 66 

Weight,  Diameter  and  Volume  of,  oj 

Ca^t-iron  and  Lead  BaUs.. ..  153 

Aluminum^ i55 

Anchors,  Cables,  Chains,  etc. . .   173 

and  Diviensions  of  Lead  Balls'.  501 

*'  of  Gas  and  Water  Pipe. .  138 

"  of  Water  Pipe 137 

and  Fineness  of  U.  S.  Coins. . .     38 

and  Mint  Value  of  Coiwt 4<>-43 

and   Mint   Value   of  Foreign 

Coin,  1888 40-43 

and  Specific  Graviti/ 208 

and  Strength  of  Wire,  Iron.  etc.  124 
of  Stiui-iink  Chain  Cable 

per  Fathom 168, 930 

of  Hemp  and  Wire  Ropes  172 
Angle  and  T  Iron  and  Steel, 

125, 126,  130 


ii 
it 


it 
tl 


<i 

(t 


i( 
it 


i( 


it 


it 
tt 


it 


it 


xlii 


INDEX. 


(t 


It 


_  Pme* 

VfEiQETf  Ap<ahecarie9* 47 

"        Brass  and  Various  Metals 
per  Cube  Inch  and  Foot^ 

and  Wire 125 

**  and  Oun- Metal  of  a  Given 

Sectional  Area 136, 149 

u    a  Wro't  and  Cast  Iron  and 
Steely  Lead,  Copper,  and 
Zinc  Plates  per  Sq.  Foot..  146 
«*     «»  Cast  and  WroH  Iron,  Steel 
and€fun-Metal,ofaOiven 

Sectionai  ArecL 149 

"      «'  Castings 155 

««      "  Copper,  Wro't    and    Cast 
Iron,  and  Steel,  of  a  Qiioe/n 

BtdtiofMA  Area 136 

"      "      »*    /ron,  etc,  If  ire...  I30-I3I 

«»      "  ofShteU X4a 

««      ««  Pipes  correspojidin^  to  Iron 

and  Iron I^pe Fittings..  14a 
«      **  Wrought  Iron,  Steel,  and 

Copper  PlaUt 1 18-1 19 

<'  Cables,   Oalvanised  Steel,  for 

Bridges. 163 

"  CaUle,   To    CompuU    Dressed 

WtiahJtof. 35 

**  Centr\fugaJL  Pump. 917 

"  Crane  Chains  and  Ropes. .....  457 

*'  Diamond,  and  qf  Diamonds,  ^a,  193 

*'  Earth 33 

*'  'EkctricaJLRstistanoc ;...    34 

"  Fire-Engine. 904 

"  Oun-Metal.,*, 155 

"  Hay  and  Straw xo8 

**  Hemp  and  Wire  Bf^ x6a,  z66 

**  Lead,and  qf,  To  Compute.  33, 151, 155 

*'  Pipes i37«i50|83i 

«*  PUUes,WeightqfSq.Foot.  146 

"      "  Sheet 151 

**  Length  and  Oauge  of  Iron  Wire  17a 

**  of  Anvils. 918 

"  of  Articles  of  Food  Consumed 
in  Human  Sj(Stem  to  Develop 
Power  of  Reusing  140  Lbs.  to 

a  Height  of  10,000  F^ 304 

*^  of  a  Body  or  Substance  when 
Specific  Gravity  is  given.  To 

Compute ai5 

"  of  Beeves  and  Be^^Comparative    35 

"  of  Bolts  and  Nuts 156-157, 159 

**  qf  Cast  and  Wrought  Iron  Bar 

or  Rod,  To  Compute... .  131 
*f         "  Pipes  or  Cylinders. . .  133-133 
•'  of  Cast  Metal  by  Weight  of  Pat- 
tern   ai7 

**  of  Composition  Sheathing  Nails  135 
*•  of  Copper,  Casland  WroHIron, 

and  Lead,  To  Compute..  155 
**  of  Copper, Braziers^  and  Sheath- 
ing.   131 

**     *^  PipesandComposition  Cocks  150 

M     '' Rods  or  Bolts. 148 

**     **  Seamless  Tt^M. . . .  140-143,  144 
"     "  Sheet  per  Sq.  Foot. 135 


i( 
n 


'*  of  Corrugated  Roof  Plates. ... .  131 
^*  of  a  Cw>e  Foot  qf  Oak  and 
Yellow  Pine. 870 


Paf* 
WuoHT  of  a  Cube  Foot  of  Steam,  To 

Compute 705 

^^ofa  Solid  or  Liquid  Substance 
or  an  Elastic  Fluid,  To  Ascer- 
tain     317 

"  of  Cube  Foot  ofGojtes  at  33°.. .  3x5 
"  of  Embankments,  Walls,   and 

Dams,  per  Cube  Foot 694 

"  of  Fence  Wire 164 

*'  ^ Flat  Mining  Ropes 165 

'*  of  Flat  Rolled  Iron  and  Steel, 

and  Steel  Angles. . .  .X36,  xay,  xaS 

"  of  Food,  Articles  of. 304 

"  of  Foods,  to  Fumi^  Nitroge- 

noy>s  Matter. aoa 

"  of  Galvanized  Iron  Wire. . .  xda,  163 
"  *■'■  Sheet  Iron. . .  124, 139 

"  of  Gaseous  Products  of  Comhw- 

iion.  To  Compute 460 

"  of  Gun-Metal  qf  a  Given  Sec- 

tionoU  Area,  and  per  Cube 

Inch  or  /bo< 149, 155 

"  qfHemp,  Iron,  and  Steel  Rope.  164 
"  of  Hoop  and  Sheet  Iron. . . .  139, 131 

'*  of  Horses 35 

**  ^Ingredients,thatof  Compound 

being  given.  To  Compute 318 

**  qf  Iron  and  Steel,  Bound  RoUed  126 
"        "  •'        Square  Rolled  135 

*'  '*  Wire  and  Strength  of.  134 
**  of  Lead  and  Tin4ined  Pipe.. .  X37 

**  of  Men  and  Women 35 

**  qf  Metals  of  a  Given  SeUional 

Area, per  Lineal  Foal.. .  136,  X49 
"  of  Molecules^  Volume  and  Ve- 
locity   194 

"  of  Oak  and  Yellow  Pine 870 

"  ^  Offal  in  a  Beef  and  Sheep. .  35 
**  of  Products  of  Combustion. .. .  463 
"  <ir  Riveted  Iron  and  Copper 

Pipes. X48 

"  qf  Ropes,  Hawsers,  oMd  Cables, 

To  Compute 172 

**  cf  Silver  and  Tin 155 

"  of  Steam- Engine,  Vertical  Beam, 

Condensing,  To  Compute. . . .  759 
"  qf  Steel,  Round,  Hexagonal, 

Octagonal,  and  Oval 135 

«  "  qf  Stud-link  Chain  Cables 168 

"  of  Timber,  Green  and  Seasoned  217 

"  ^  Tin  Pipes 151 

'*      "      Plates  and  Marks 137 

"  qf  Tube4  of  Copper,  Brass,  and 

Iron 140-147 

"      ^  of  Brass,  To  Compute 1^2 

**  qf  Various  Materials 763 

"  of  Various  Substances  per  Cube 

Foot  in  Bulk. 3x7 

"  of  Volume  of  Air  Consumed  per 

Lb.  of  Combustible 46X 

"  of  Water-Pipes,  To  Compute. . .  561 

'«  qf  Wire  and  Wire  Rope. 163 

'*      **  Length  and  €fauge 163 

"      "   Iron,  and  Steel 164, 173 

"  of  Wro't  and  Cast  Iron  per  Sq. 

Foot Z46 

**  qfZinc,  RoUed ••-••uSxSS 


INDEX. 


xliii 


WnoKt  ^Wrwght  and  CMt  It^n 

Tubei. 143-145 

»»  "  "  Steely  Copper^  and 
Bran  PUUei,  per 
Sq.  Ft.  per  Qaugt^ 

1x8-119 
**  on  Floort  and  of  Strwsturti.. . .  8iz 

♦•  iioclbs,  Earth,  eto :  467-468 

»*  Silver. 155 

"  Special,  Locomotive 138 

'*  Steel,  Copper,  Iron,  and  Brau.  136 
<*      *'  CV»pp«r,  BroM,   Afui  Wro't 

Iron  Hates 118-119, 155 

u      "  Copper,  BraUf  and    Iron 

Wire zao-z3i 

"  Teme  Plates,  and  Thickness. . .  124 

"  Tin  Cast 155 

**  U.  S.  and  Standard  Measures. .  934 

•♦    Water  Pipe 137 

'*  Wrought  and  Cast  Iron,  Steel, 
Copper,  Lead,  Brass,  and 
Zinc  Plates,  per  Sq.  Fool.  146 
**      *^  Steel,   Copper,  and    Brass 

Wire, X20-I3Z 

"     ^^  Wire,  and  Strength Z24 

"  Zinc  Sheets 123,  Z51-Z52 

"    *^  Plates  and  Dimensions  of.  1^6,151 
•*    ''Boiled 146,155 

WliOHTB,  Various  Materials zz8-z75 

*'  ANP  MSASUBM,  U.  S.  stand- 
ard  26-36,  934 

"  Ancient  and  Scripture 53 

♦*  and  Pressures,  Meti-ic 923 

**  and  Volumes  of  Various  Sub- 
stances  in  Ordinary  Use,. . .  316 

"  Apothecaries* 32 

**  Avoirdsmois 32 

"  Bushel^  Pintnds  in 34 

"  Coal,  Earth,  and  Wood 33 

*'  Engine  and  Sugar  Mill 908 

**  Enf^sh  and  French 44*  47 

•*  Foreign  Countries. 48-53 

**  Grain,  Lead,  and  Tn/g. 32, 47 

"  Orecian. 53 

**  Hebrew,  Jewish,  and  Egyptian.  53 

"  Measures  of.. 33-47 

"         **  and  Pressures,  Metric. .    36 

"  Metric. . .  .37-33.  36-37»  46-47.  9*3 
**  Miscellaneous    Articles    and 

SiAstanees. 33. 46, 2Z4-3Z7 

"  ofBdU. z8o 

**  of  Boilers. 759 

**  of  Brain,  Bidative z93 

**  of  Chains  and  Anchors Z74 

**  ifFuds,  Coalt  and  Woods, 

483-484,  486 

**  of  Ouns  {Ordnance) 498 

**  of  Lead  Balls,  and  Shot...  $oo-yyi 

»•        "     Pipe,  To  Compute. 83Z 

**  of   Rope,  Hempy  Iron    and 

Steel 164-166, 173 

**  •/  Slating  per  Sq.  Foot. .....    64 

**  of  StMoan-Enginu, 

758-759.  9".^29. 954 
**  of  Steam- Engina  and  Batters  939 

^       **  tfStoamers*  Engines ^ii»  954 


WBiasTC  ^  steamers.  Steamboats, 
Engines,  Boilers,  Launches, 
Tachts,  Cutter,  Pilot -Boat, 
Sailing  Vessels,and  Dredgers, 

888-895,  900 

"  ^f  Substances  in  BtUk. 317 

"  ofSugar-MiUs 903,90s 

''  of  U.S.  Coins 38 

♦'  ^Wire,  Iron Z63-Z64 

**  onBoi^ 053 

"  on  Structures  per  Sq.  Foot. . .  84X 
"  Pipes,  Steam,  Gfas,and  Water, 

Standard  Dimensions.  Z38 

"       "  Ca^-iron Z32-Z33 

<(      t(  Iron  and  Copper  ^Riveted  Z48 
u       tt  Lap-welded,  Steam,  Oas, 

and  Water Z38 

"       '*  Lead  and  Tin... 1^7^  150-X5Z 
"       *«  Metal, To  Compute...  i47~i^S 
"       "  Seamless  Brass,  to  Corre- 
spond vrith  Iron Z42 

*'  Roman. 53 

"  Tubes,Lap-u>elded,Steel,Semi- 
Steel,  Special  Locomotive, 

and  Boiler 138-139 

*'     "  Charcoal  Iron,  Boiler Z39 

"   U.  S.  Old  i£  New,  Approximate, 
EquivcUents,  dt  To  Compute.  33, 36 

"   Water. 853 

"  Fiat,  Square,  and  Hound  Boil- 
ed Iron  and  Steel Z85-138 

Weirs,  Ouaging  of 922 

WeldiDg. 786 

'*  Cast  Steel,  Composition  for . . .  634 

**  or  Soldering,  Fluxes  for 636 

Well,  Artesian. Z79,  Z98 

"     Boring. Z97 

Wells  or  Cisterns,  ExcavaJtwn  of  eto.    63 
Whales,  Length  and  Weight  of 918 

Whkat,  Yearly  Consumption  of.....  206 
'*  Straw  and  Bran,  Relative  V'^alue 
of,  Compared urith  zoo  Lbs.Hay  303 

Whkkl  and  Axlk 626-627 

^'    and   Pinio^  Combinations  or 

Complex  wheel-work 627-628 

*<  Okarino,  Elements  of. 854-862 

'^  General  Illustrations  of. 858 

''"B^ofa  Tooth,  To  Compute 86z 

"  PUch,Diameter,Number  of  Teeth, 
Velocity,  Circumference  of.  Rev- 
olutions, eic.  To  Computo.. 855-858 
'*  Spur  Gear. 9zz 

Whsils,  TtnOhexl,  Proportions  of...  863 
"  Depth,  Pitch,  Breadth,  Propor- 
tions,and  Resistance  to  Stress, 

To  Compute 859-863 

"  Teeth,  Elements  of,  To  Compute, 

859-863 

Wbitelaw's  Wheel 576 

Whitewash  or  Grouting 594 

Wind,  Coum  qf. 675 

"   ^ective  Impulse  of 665 

"   Force  of.  To  Compute. 674 

"   Pressure  of 9iz,zo35 

*'    Velocity  and  Pressure  of, .  .674, 934 


xliv 


INDBX. 


Page 

Winding  Engines 476,  862-863 

"  Diameter  of  a  Drum  and  RoU^ 
and  Number  of  Revolutions, 

To  Compute 862-863 

Windlass. 433 

"  Chinese,  Elements  of  To  Com- 
pute  627 

"  Power  of. 433 

Windmills, Elements of^... .863^865,  924 
*'  Deductions   arid  Results   of 
from  Experim^ents  on  Effect 
and  of  Operation. .  .864-865, 924 

"  Elements  of  To  Compute 864 

Wmdovf-G\asSfThickness  and  Weight  124 

Wine  and  Spirit  Measures. 45 

Wire  Gauge,  French 123 

"       "  Area  of  Circles  by. 236 

''       "  Circumference  of  Circles  by  242 

"       ^^for  Galvanized  Iron 123 

'•       '*  Standard  of  Great  Britain  122 

"   Gauges 122-123 

' '    Iron.  Gauge,  Weight  and  Length 
of. 163 

WiRE^Lengths  of  100  Pounds. 124 

^^    Rope,  Hbup,  Iron,  and  Steel, 
Dimensions,  Safe  Load,  and 

Strength  of. 164 

"   Rope 161-162, 948 

"       '*  and  Equivalent  Belt 167 

"       "  Elem,ents  of  Standing  and 

Running 162 

"      "  Rssults  of  an  Eseperiment 

with  Galvanized. . . .  z6i 
tt       t(       u  f^jr  Experiments  on,  at 

U.  S.  Navy-  Yard 169 

"       "  Rolling  Friction  of 473 

* '   and  Hemp  Rope,  Iron  and  Steel, 

Relative  Dimensions  of. 172 

*'   and  Hemp  Ropes,  Weight  and 

Strength  of. 172 

"   and  Tarred  Hemp  Rope,  Haw- 
sers, and  Cables,  Comparison 

of 169 

"   and  Hemp  Ropes,  General  Notes  167 

"         "  '*   Weight  of. 166 

*'   and   TT.  S.  Navy  Hemp  Rope, 

BreaJcing  Weight  of. 168 

"   Brass,Weight  of ^ 155 

"    Cables,  Galvanized  Steel 163 

*'   Diam£ter  and  Weight  of.,.. 1 20-1 21 
"   Fence,  Weight  and  Strength  of.  164 

"    Galvanized  Iron 162-163 

"  Iron  Chmge,  Weight  and  Length  163 
•'  Rope,  Circumference  of  with 
Hemp  Core  ofCorrespond- 
ing  Strength  to  Hemp^ 
and  of  Hemp  to  Circum- 
ference of  Wire,  To  Com- 
pute  169 

"       ^^  for  Standing  Rigging,  Cir- 
cumference of.  To  Compute. . .  172 
'*   Ropes  Endless,  Transmission  of 

Power  of. 167 

*'   Shrouds 173 

"   Steel,Weightof 155 

"    Weight  and  Strength  of 124 


Pac« 

Wises  and  Gables,  Tdegraphic,  Tele- 
phone, Electric,  etc 960 

Wood,  Elements,  etc 48 

^'  Bituminous  or  Lignite. 479 

'  *  EvaporcUive  Power  of. 482 

'*  Floor  Beams. 835 

"  Measure 47 

''  Pavem,ent 689-690 

"  Tensile  Strength  of 870 

"    Working  Strength,  or  Factors 
of  Safety 781 

Wood  and  Timber,  Elements  0/.  .865-870 
(See  also  Timber  and   Wood^ 
865-870.) 

"  and  Stone  Sawing. 196 

*'  Creosoting,  Effect  of. 869 

"  Decrease  by  Seasoning 869 

"  Defects  of. 866 

"  Impregnation  of 868-869 

"  Jarrah 913 

"  Seasoning  and  Preserving, 

866-868 
"  Selection  of  Standing  Trees.,  865 
"  Transverse  Strength  of  Large, 

To  Compute 833 

"   Weight  of  Oak  and  Yellow 
Pine  per  Cube  Foot 870 

Woods 765,  769,  780,  782-783,  986 

"  Absorption  of  Preserving  Solu- 
tion by. 869 

"  Coefficients  for  Safety. 781,  835 

"  Composition  of 485 

"  Detrusive  Strength  of 782 

' '  Durability  of  Various. 934,  969 

*'  Extension  of  by  Water. 952 

"  Proportion  of  Water  in 869 

*'  Relative  Value  of  their  Crush- 
ing Strength   and  Stiffness 

combined 769 

"  Safe  Statical  Loads  for  Beams.  834 

"   Strength  of. 833,  q86 

"   Weightsof. 33 

"         "   and  Comparative  Values 

of  Various 484 

Woolf  Engine 722 

Work,  Animal  Power 432, 440 

"  Accumulated  in  Moving  Bodies.  619 

"  and  Potoer,  Metric 36,  923 

Works  of  Magnitude,  Miscellaneous, 

178-179,  936 

Wrought-Iron,  Elements  of .  ...130-136, 
639-640,  765,  768.  773,  780,  785-786 

*'  and  Cast,  Weight  of. 155 

"  Angle  and  T,  Weif/ht  o/".  125, 130 
'*  Bolts,  as  Affeded  by  the 

Thread 916 

"      "    and  Nuts,  Dimensions 

and  Weights. . . .  156-159 

"  Corrosion  of. 955 

♦ '  Crushing  "Weight  of  Columns  768 
"  Deflection  of  Bars,  Beams, 

Girders,  etc. . .  .773-77S 

"         "  of  Rails 775-776 

"  FUURoUed 126-128 


INDEX. 


xlv 


Pag* 
WHOuaHT-lRON   of  a    Oi-oem  Sec- 
tional Area,  Weight   of, 

136, 149 
"  Plates,   Weight    of   a    Sq. 

Foot 146 

"  Plate*  and  BoUs,  Strength 

and  Test  of. 749 

"       "   Thickness  of. 121 

"       "   Weight  of. 118-110,146 

*'   JBope,    Hemp,    jnd     Steel, 
Strength  and  Safe  Load 

of 164-165 

*^  Round  Rolled. 126 

**  Sheet  and  Hoop,  Thickness 

and  Weight  of 129,  131 

"  Shell  Plates,  Pressure  and 

Thickness  {U.  S.  Law). . . .  750 
*'  Square  Rolled,  and  To  Com- 
pute Weight  of. 125 

*'   Weight  of  To  Compute 155 

»*    Wire,  Weight  of 120-121 


Y.  P«g« 

Yachts,  Steam,  Relative  Velocities^ 
fi'om  EUments  of  their  Constribc- 
tion.  To  Compute 928 

Yam,  Ratio  of  Flesh-formers 207 

Year,  Biiseztile  or  ^Leap,  Civil,  Ec- 

desiastical « .     70 

"     Solar 37i  70 

Years  of  Coincidence,  To  Ascertain.  •     74 


Zenith  aitd  Mkridian  Distances  and 
Altitude  of  Sun  at  New  York 932 

ZiMC,  Elements  of. 644 

"  Malleability  of 644 

"  Plates,  Weight  of  per  Sq.  Foot . .  146 
"  Sheets,  Thickness  and  Weight  of 

123,  151 
"  Foil  in  Steam  Boilers 912 


Zones  of  a  Circle,  Areas  of  — 260-271 
"        "         '*  To  Compute  Area  of .  271 


ADDENDUM. 


P«K* 

Absorptive  Power  of  Charcoal 986 

Acetylene  Formula 1036 

Air.,  Dryness  of.  Dew- pointy  and  Hu- 
midity, To  Ascertain. 10x1-1013 

Air  Puxps.     Of  Condensing  Steam 
Engines 1041 

Almanac,  Perpetual loxs 

Aluminum 976 

Area  of  a  Circle  or  Volume  of  a  Cube, 

Increase  of,  To  Compute 988 

Beams,  Headers  and  Trimmers 1021 

Bearings ufWunU  Luinricants.,.,..    974 

Belt  Driving 1038 

Bi-sulphide  of  Carbon  Engine,  Rela- 
tive Efficiency  of  and  a  Steam-En- 

gine 982 

Bi«AST  AND  Exhaust  Fan  Blowers.  1019 

**    Dimensions  of  Fan 1019 

<*    Loss  of  Pressure  of  Flow 
of  Air  for  Varying  Di- 
ameter of  Pipe,  etc..,,  1020 
Blast  Draught  in  a  Marine  Boiler.,    974 

Boiler  Setting 976 

BoUs  in  Slone,  Anchorage  of 974 

Brass,  Copper,  etc..  To  Color 97s 

Cast  Iron,  Strength  of. loiz 

Cement,  Portland  and  Cement  Mor- 
tar 983 

Cement  and  Mortar,  Rdative  Hard- 
ening in  Fresh  ami  Salt  Water, ,  1035 

Centrifugal  Pump.    Required  Veloc- 
ity of  Edge  of  Blades,  To  Compute    953 

Chimney,  Height  and  Draught  of 
To  Ascertain Z014 

Coke  and  Coal,  Ewyxtrative  Pouter 
of Z035 

Columns,  £to/e  Crushing  Strength  of  10  iz 
**        Computations  of 1022 

Compass,  to  Graduate,  a  Tnmsit' 
Theodilite 1023 


P«g« 

Compression  op  Air.  Flow,  Opera- 
tion, Effect,  Power  of 
Pressure,    Temperature^ 

and  Compression 994 

"  Volume,  Mean  Pressure  and 

Temperature  of. 995-966 

"  To  Compute  J  IP 997 

**  Friction  of,  in  Long  Pipes    997 
"  J^fficiency   qf   Engine    of 

Operation 997 

"  Loss  of  Head,  To  Compute    998 
"  Loss  of  Pressure  per  Mile 

of  Pipe 998 

"  Heating  Compressed  Air. ,    999 

"  Loss  of  Efficiency 999 

"  Efficiency  of  Cooling 999 

'*  Air  Receivers 1000 

**  Efficiency  2f  Engines. 1000 

"  Adiabatic  Expansion zooo 

"  "  Compression,  Z007-Z008 

"  Bardie  Motor.      Operation 

of,  and  Mean  Results.. . .  zooo 
•*  Power    required  to   Com- 
press Air zooa 

"  J^low  of  Compressed  Air 

through  Pipes zooz 

»*  Volume    of  Free  Air  Re- 
auired   in  a  Motor  per 

IIP  per  Minute Z002 

•*  Loss  of  Pressure  by  Fric- 

ton  in  Pipes 1002,  Z005 

**  Dimensions  and  Elements 

of  Air  Compression Z003 

"  H*  Required  to  Compress 
one  (htbe  Foot  of  Air  per 

Minute,  etc Z003 

**  Mean  and  Terminal  Press- 
ures     of      Compressed 

Air Z003 

**  Heat    procured    by    Com- 
pression of  Dry  Air. . . .  Z004 
*^  Efficiency  of  an  Engine, , ,  1004 


xlvi 


INt>fiX. 


JumtltfliQir  OF  Air.     Work  Lett 

byHeatofOompretsion.,  zcx>4 

"  SteoM  Preuure  and  Point 
of  Cutting  offy  To  Com- 
pute   1006 

**  Volumt  ofOnePound  of  Dry 
Air  in  Cube  Feet,  Weight 
of  etc..  To  Compute, ....  xoo6 

"  Sinjgle  and  Compound 
Compreuion^  Compari- 
ton  of. 1006 

"  Mean  Effective  Prenuret 
in  Compreuing  and  De- 
livering of  Air.  etc 1005 

•*  Work  per  Pound  of  Air  in 
Compretting  i<,  To  Com- 
pute.   1007 

••  Stean.  Pressure  required  in 
the  Steam  Cylinder^  To 
Compute X007-1008 

"  Weight  of  Air  per  MinuU 
for  a  Oiven  Amount  of 
Work,  To  Compufe.  1008-X009 

**  Isothermal  Compreasion  .  Z007 

**  Dimenfions  of  Valves, 
Pipes,  and  Clearance  of 
Air  in  Cylinders 1009 

«<  Compound  Air  Cylinder. .  icx>7 

**  Work  vfkich  may  be  At- 
tained in  a  Motor  by  One 
Cube  Foot  of  Stored  Air, 

To  Compute 1009 

CRUSHiNa  andTransvkrsk  Strength 
and  Coefficients  of  St^ety ;.  1022 

Depths  and  Heights,  Qreatest 983 

Draught,  Blast 1036 

Earth, /iepofe  of 982 

Eddy  Valve 975 

Elbotrioal,    Units    in    Klectrlcal 

Engineering 987 

"  British  Association.  988 

Electrical  H*,  Cot<  0/ 983 

Elevation  of  Localities  in  Upper 

Mississippi,  etc 982 

EirsRaT  AND  Motion 989 

Floor Biaks,  ComputcUious of..,,,  zo2z 
Flume,  To  Compute  Elements  of..,,  984 
Food  Substances,  Composition  of,,,      34 

FooTiNOB  of  Buildings • . . .  •  1020 

Foundations,  Computation  of Z022 

''  Safe  SUtic  I^ad  of. .  Z040 

Freestone,  Broumstone,  Tests  of..,  982 
Friction  of  Engines  and  Gearing. . ,    976 

Gas  and  Steam  Engine,  ComparUon 

of 953 

Oas  Enqinbs 990-992 

"  "      Results  of  Trials. .  .991-992 

**  "      Pressures  produced  by 

Explosion  ofOaseous 

Mixtures. 992 

Gate  Valves 975 

Geological  Strata,  Absorption  (^.^7^101$ 


Girders  and  Floor  Beama,  Capacity 

of 984 

**      Computations  of  , zo2z 

Glue 976 

Ground,  Consolidaiion  nf  Loose  •r 
Made ...••...••••• Z037 

Hand  Brakes,  Hffidencv  qf. Z036 

Heat,  Coefficients  of  Radiation  qf. .  Z014 
**     Radiated  per  Sq.  Ft  per  Hour  1014 
"     Relative   Effmency  qf  Non- 
conductor     Z023 

Heights  and  Depths,  Greatest 983 

Hydrants,  Eddy 975 

Hydraulics  of  a  Fire-Engine Z035 

Hydro-Geology 983 

Iron  and  Steel,  Effects  of  a  lAno 
Temperature Z035 

Kiln  Drying,  Effects  of,  on  Pine  and 

Hemlock Z037 

Kinetics,  Force  and  Mass. 989-990 

Lightest  Known  Substance Z036 

Lightning  Conductors 907, 956 

Liquid  Fuel Z040 

Long-leaf  Pine.  Effect  of  Tapping. ,    985 

Magnalium Z037 

Magnesium 976 

Marine  Boiler,  To  Compute  Weight 

of 985 

•*           "       Forced  Draught  in.  zois 
Masonry,  Execution  of,  during  Se- 
vere Frost Z038 

"        Mortar  for,  below  Freez- 
ing-point     982 

Maximlte 1037 

Memoranda  {additional), 

974i  9761  979'  982-985.  xo«4.  »<»5 
Metal  Bearings,  Lubncation  of..,.  Z038 

Metric  Measures,  Reduction  of. Z0Z3 

Mill  Race,  Ratio  between  Surface 

and  Mean  Velocity. Z036 

Mines,  Temperature  in Z038 

Monolith 982 

Mortar,  Portland  and  Cement, 983 

Nails  and  Drift  Bolts,  Tenacity 

of. 1038 

**     Cut  and  Wire,  Tenacity  of, . .    983 

Oil  Engines 1019 

Oil  or  Tallow  in  a  Steam  Boiler, 
Effects  cf. lo-  • 

Paint,  Estimate  of  (Quantity  required    984 

Pier,  Computation  of. 1022 

Piers,  Stress  of  etc 1020 

Piles,  Dimensions  of xosc 

Piling,  Computation  of. zob2 

PtTMPS,  ReUUive  Efficiency  of,  and  a 
Siphon. X038 

Railway,  Highest,  in  Europe 


INDBX. 


xlvii 


Pag* 

Rlile,  JIfiuxfe  r«toe%  </. 1036 

RiTKTfl,  Besitt€Mce  o^to  a  Lap, . . •  1036 
Ropes,  To  Comfmfo  £p  </. 979 

Sand  and  Clay,  SupporHng  Power 

fif 979 

SAW^Effectof  a  Diamond-edged..,,  Z036 

Shaft  3b  Compute  B?  </ 983 

ShAMng,  Nickel  SteeL 986 

Slates,  JSBoq/Sn^. 979 

Soath  Point,  To  Determine^  by  the 

HandofaWatch 983 

Spirally  Riyeted  Iron  Pipes 977 

SUiff. 976 

Steam  Boilers  and  Pipes,  Insulation 

of. ZO40 

Stsam-Enoinks,  Cylinder  RaJtioe for 

Compound  and  Triple. 1037 

Steam-Launcb,  Pirtt. 974 

Steam-Power,  Relative  Cost  of  per 

W xoa3 

Stbam  Vkssels.  Resistance  of.,  ,,,  10x4 

Steel  Springs,  ^/«m«n<«  q/*. 973 

Stonks,  TetUng  of 1036 

Stream  of  Water,  To  ComptUe  EP 

of 984 


TireCement \ 10x3 

To  Determine  the  Eiist  and  Weal 

Meridian. 988 

Train  Rksistahck,  a  New  FomuUa  103^ 
Trees,^^<2^. 983 

Vegetation,  Absorption  by. 34 

Walls,  Width  of. '  loao 

Water,  Friction  and  Flow  of,  in 
Smooth  M^al  Pipes  and 
Loss  of  Heady  To  Com- 
pute    X016 

Friction  and  Flow  of,  in 

Cast-iron  Pipes xox6 

Flow  of,/rom  a  GivenHead, 

To  Compute 1016-ZOX7 

Velocity  of  Flow,  Dis^arge^ 
and  Loss  of  Head  due  to 
Friction  of  Flow  j  etc.^  To 

Compute. X0X7 

•      Tests  for. 983 

Water  Pipes  of  Cast  Iron,  Thickness 

of  To  ComptUe 10x5 

WiEs  RoPB,  Test  of. ; 1037 

Wrought  Iron,  Effect  of  Repeated 
Stresson. ...*.   zo^c 


M 


M 


NoTS. — Tons  are  given  and  computed  ak  «a4o  lbs. 

Degree!  of  (emperatare  are  given  by  the  scale  of  Fahrenheit 


EXPLANATIONS   OF  CHAEACTBES   AND   SYMBOLS 

Used  in  FormulaSj  Computationa,  etc.^  etc. 

^  Equal  to,  signifies  equality ;  a»  12  inches  =  i  foot,  or  8  X  8  =  16  X  4. 

+  PitUy  or  More,  signifies  addition ;  as  4  +  6  +  5  =  15. 

—  Minus,  or  Less,  signifies  subtraction-,  as  15  —  5  =  10. 

X  Multiplied  by,  or  Into,  signifies  multiplication ^  as  8  X  9=  72.  axd^ 
a.d,oT  ad,  also  signify  that  a  is  to  be  multiplied  by  d. 

-^  Divided  by,  signifies  division ;  as  72  -4-  9= 8. 

'.hto,::  80  is, :  To,  signifies  Proportion,  as  a  .  4  ::  8 :  16 ;  that  is,  as  2  is 
to  4,  so  is  S  to  16. 

.*.  signifies  Therefore  or  Hence,  and  v  Because. 

Vinculimi,  or  Bar,  signifies  that  numbers,  etc.,  over  which  it  is 

placed,  are  to  be  taken  together;  as  8  —  2  +  6=  12,  or  3  x  5  +  3  =  24- 

.  Decimal  point,  signifies,  when  prefixed  to  a  number,  that  that  number 
has  some  power  of  10  for  its  denominator  ^  as  .1  is  j^  .15  is  ^,  etc. 

CO  Difference,  signifies,  when  placed  between  two  quantities,  that  their 
diflference  is  to  be  taken,  it  being  miknown  which  is  greater. 

V  Radical  sign,  which,  prefixed  to  any  number  or  symbol,  signifies  that 

square  root  01  that  number,  etc.,  is  required ;  as  V9^  or  Va-\-h.  The  degree 
of  the  root  is  indicated  by  number  placed  over  the  sign,  which  is  termed 
index  of  the  root  or  radical;  as  / ,  v^,  etc. 

>  T »  <  L  signify  Inequality,  or  greater,  or  less  than,  and  are  put  between 
two  quantities ;  as  a  1  ^  reads  a  greater  than  h,  and  a  Ij  6  reads  a  less  than  6. 

( )  [  ]  Parentheses  and  Brackets  signify  that  all  figures,  etc.,  within  them 
are  to  be  operated  upon  as  if  they  were  oa^y  one ;  tiius,  (3  +  2)  x  5  =  25 ; 
[8  — 2]  X5  =  30- 

±  If  signify  that  the  formula  is  to  be  adapted  to  two  distinct  cases,  as 
c  =f  V  ^  a,  either  diminished  or  increased  by  v.  Here  there  are  expressed 
two  values :  first,  the  difference  between  c  and  v ;  second,  the  smn  of  c  and  v. 

In  this  and  like  expressions,  the  upper  symbol  takes  preference  of  the  lower. 

poT  irla  used  to  express  ratio  of  circumference  of  a  circle  to  its  diameter 
=  3.1416;  -i-p=.7854,and^p  =  .s236. 

°  '  "  '"  signify  Degrees,  Minutes,  Seconds,  and  Thirds, 

' "  set  superior  to  a  figure  or  figures,  signify,  in  denoting  dimensions,  F«ef 
and  Inches. 

a'  a"  a'"  signify  &  prime,  a  second,  a  third,  etc. 

z,  9,  added  to  or  set  inferior  to  a  symbol,  reads  sub  j  or  sub  9,  and  is  used 
to  designate  corresponding  values  of  the  same  dement,  as  h,  hi,  Ih,  etc. 

',  3,  \  added  or  set  superior  to  a  number  or  symbol,  signify  that  that  num- 
ber, etc.,  is  to  be  squared,  cubed,  etc. ;  thus,  4'  means  that  4  is  to  be  multi- 
plied by  4 ;  43,  that  it  is  to  be  ctAed,  as  4^  =:  4  x  4  X  4  =  64.  The  pcnoer, 
or  numoer  of  times  a  number  is  to  be  multiplied  by  itself,  is  shown  by  the 
nvmber  iwided,  as  *,  3,  ♦,  s,  etc. 


22  ALGEBBAIC   SYMBOLS   AND   FORMULAS. 

",  ^f  etc.,  set  superior  to  a  number,  signify  square  or  cube  root,  etc.,  of  the 

number ;  as  2*  signifies  square  root  of  2 ;  also  *  *  *,  ',  etc.,  set  superior 
to  a  number,  signify  two  ttiirds  power,  etc.,  or  cube  root  of  square,  or  square 

or  cube  root  of  4th  power,  or  cube  root  of  sixth  power ;  as  8^  ^  "/P  or 

=  (^8)'. 

1-7,  3*6  etc.,  set  superior  to  a  number,  signify  tenth  root  of  17th  power,  etc 

•03,  0:7,  set  superior  to  a  number,  signify  hundredth  root  of  2d  power,  or 
thousandth  root  of  59th  power,  the  numerator  indicating  power  to  which 
quantity  is  to  be  raised,  and  denominator  indicating  root  which  is  to  be  ex- 
tracted. 

GO  signifies  Infinite,  as  -  or  a  quantity  greater  than  any  assignable  quan- 
tity.  Thus,  -  =  oo  signifies  that  o  is  contained  in  any  finite  quantity  an  in- 
finite number  of  times :  -  =  a.  —  =  loa,  etc. 

cc  signifies  Vcaries  as.  Thus,  M  oc  D  x  V  signifies  that  mass  of  a  body  in- 
creases or  diminishes  in  same  ratio  as  product  of  its  density  and  volume,  or 
S  oc  <^,  signifies  S  varies  as  t'. 

^  signifies  Angle,  -l  Perpendicular,  A  Triangle,  D  Square,  as  Q 
inches;  and' GO  cube,  as  cube  inches. 

N0TB8.— Degrees  of  temperature  used  are  those  of  Fahrenheit. 

g  is  common  expression  for  gravity  =  32. 166,  2  j;r  =  64. 33,  V^  i7  =  8.09  feet. 

)S  signifies  Detid  Flat,  denoting  dimensions  or  greatest  amidship  section 
of  hull  of  a  vessel. 


breadth. 

c 

'      u 

chord, 

h 

(( 

h  sub, 

depth. 

a 

u 

area, 

sin. 

i( 

sine^ 

height. 

r 

it 

radius, 

9 

it 

graioiiy 

ALGEBBAIC   SYMBOLS   AND   PORMXTtAS. 
I  representing  length,       h'  representing  h  pritne,     v  representing  versed  sine, 

d 

h         " 

l-\-h 

-J-  =.  sum  of  length  and  breadth  divided  by  depth. 

lb 

-j^  product  of  length  and  breadth  divided  by  depth. 

-^  =  difiTerence  of  length  and  breadth  divided  by  depth. 
^  &3  =  product  of  square  of  length  and  cube  of  breadth. 
-^.-,  =  square  root  of  length  divided  by  cube  root  of  breadth. 

— ^  =:  square  root  of  sum  of  length  and  breadth  divided  by  depth. 
a 

j/-^iJ  =  cube  root  of  difference  of  h  prime  and  h  sub,  divided  by 

square  root  of  ag. 

Va-|-(c— r)'  =  a;.  Add  square  of  difference  between  the  chord  and  ra- 
dius to  the  area,  and  extract  the  square  root ;  the  result  vrill  be  equal  to  x. 

NoTK— It  is  fVeqaenUy  advanta^pegiii  to  begin  interpretation  of  a  formula  at  its 
right  ban4,  as  in  the  above  case. 


ALGJCBSJUC   SYMBOLS  AND   FOJEUtfULAS.  23 


'n/^P^= 


9,    Divide  flqnare  of  sum  of  x  and  y  by  square  of  y ) 

subtract  wUty  from  quotient ;  extract  square  root  of  result ;  multiply  it  by 
length,  and  product  will  be  equal  to  z, 

2  (sin  7K^)' 

\  .'  '^  '.    Divide  twice  square  of  sine  of  the  angle  of  75°  by  square 
i+(sm.75°)' 

of  sine  of  the  angle  of  75°  added  to  uaity, 

~4^^SV^(V&-v^A)+».303c.%  52^^  [==:<.   Multiply 

S  by  the  V  of  9g^  and  this  product  by  difference  between  square  roots  of  k 
and  h prime;  add  this  to  3.303  times  common  logarithm  of  quotient  arising 

from  dividing  product  of  S  into  Vagh  diminished  by  b  by  product  of  S 

into  y/Ugh  prime  diminished  by  d,  and  midtiply  this  sum  by  the  quotient 

of  2a  divided  by  square  of  product  of  S  into  v^2^  which  will  be  equal  to  t. 

2a  +  3  COS.  98°  =  2a  —  3  COS.  82°  ^  twice  a  diminished  by  three  times 
cosine  of  82®. 

Cosine  of  any  angle  greater  than  go^  and  less  than  370*^  Is  always  —  or  negative, 
but  IS  nwnericaHy  eqml  to  cosine  of  its  supplement,  i.  e.,  remainder  after  subtract- 
ing angle  flrom  180°. 

39.127  —  .099  82  COS.  2  L  =  2.  Assuming  L  less  than  45O  as  42^^  this  equation 
becomes  39.137  — .09983  co&  {2  X  430=84°)  =  ^;  and  also,  L  greater  than  450,  as 
50°,  It  becomes  39. 137+099  83  cos.  (180°  —  3  X  50°  =  80°)  =  I. 

L  —  10*^  N  =:  L  -f- 10°  S,  as  a  negative  result  furnished  by  a  formula  in* 
dicates  a  positive  result  in  an  opposite  direction. 

_(B-fe)  p-f  2BV_^     Minus,  the  fraction  B  minus  J,  times  »,  plus 
B  -f-6 
2  times  BV,  divided  by  B  plus  6,  is  equal  to  y. 

Sin.  ~* «,  tan.  ~'  a?,  cos.  ~' «,  signifies  the  arc,  the  sme,  tangent  or  cosine 
of  which  is  «.  Thus,  if  »=.s,  this  is  30^,  as  30<»  is  the  arc,  the  sine  of 
which  is  .5. 

^         '         sin.  a;    o  0   *  c^         r      r 

Raise  r  to  nth  power,  i.  c,  multiply  r  by  itself  and  this  result  by  r,  and  so 
on,  until  r  appears  in  result  as  a  factor,  as  many  times  as  there  are  units 
in  n.  Multiply  this  result  by  /,  diminish  this  by  I;  divide  remamder  by  r 
raised  to  the  nth  power,  diminished  by  r  raised  to  a  power  whose  exponent 
ia  n  dimirdshed  by  i,  and  quotient  =  or  is  value  of  8. 

^/L:^r.  Divide  I  by  a  and  extract  that  roet  of  the  quotient,  index 
of  which  is  n  duninished  by  i,  and  this  root  ia  =;  or  value  of  r. 

Logarithm  of  a  Number  is  exponent  of  the  power  to  which  a  particujal 
constant  quantity  must  be  raised  in  order  to  produce  that  number. 

Corutani  Quaniity  is  termed  the  base  of  the  system. 

Cbmmon  (or  Brigg't)  Log.  is  the  logarithm  the  base  of  which  is  la 

HfipeiMic  Log,  is  the  logarithm  the  base  of  which  is  2.718  2& 

Com,  Log,  =  Hyp.  log.  X  -434  394* 

Mffp, Log,^Cwu\Qg.  X  2.302 585053 994, o'dinwily  a-303 or  2.309^ 


24  DIFFEBBNTIAL  AND  INTSGBAL   CALCULUS. 

Illttstratiox.— When  a  number,  hyp.  log.  of  which  =  a  given  figure  or  numbes 
is  required. 

M  ultiply  figure  or  number  (hyp.  log. )  by .  434  394  (dmkIuIus  of  com.  log. ) = com.  log. 
of  figure. 

Thus,  Required  the  number,  hyp.  log.  of  which = .03.  .03  X .  434  394 = .00  868  588, 
com.  log.,  and  1.020a  =  number. 

Log.  ioo-°»=.o59  X  log.  of  100  =  .059  X  3  =  .118;  the  number  corresponding  to 
log.  .n8,  is  X.3ZS3;  bence,  ioo°S9=  1.3122.  That  is,  if  100  is  raised  to  59th  power, 
and  the  zoooth  root  is  extracted,  the  result  will  be  1.3x33. 

DifTerexxtial  axxd  Integ;ral  Caloulus. — In  Equation,  u= 2^" -" 
2  x,  u  is  termed  a  function  of  x.  If  it  is  desired  to  indicate  the  fact  that  u 
thus  depends  for  its  value  upon  value  of  a;,  without  expressing  exact  value 
of  tt  in  terms  oi  a;,  following  notation  is  used : 

U  =f  (X),  U=.F(x)y  OTU=.<f>  (x). 

Each  of  these  notations  is  read,  k  is  a  function  of  x.  If  in  such  function 
of  X  value  of  x  is  assumed  to  commence  with  o  and  to  increase  uniformly,  the 
notation  indicating  rate  of  increase  is  dx,  and  is  read  *'  the  differential  of  x." 

Differentiation,  d  is  its  symbol,  and  it  is  the  process  of  ascertaining  the 
ratio  existing  between  the  rate  of  increase  or  decrease  of  a  function  of  a 
variable  and  the  rate  of  increase  or  decrease  of  the  variable  itself.  If 
y^3a5*,y  or  its  equal  3a:'  is  the  function  of  x,  and  x  is  the  independent 
variable,  while  the  exponent  of  the  variable  or  the  primitive  exponent  is  2. 

B^  the  operation  01  Calculus,  such  expressions  are  differentiated  by  di- 
minishing toe  exponent  of  the  variable  by  unity,  multiplying  by  the  prim- 
itive exponent,  and  attaching  the  dx. 

Hence,  c{y  =  2  x  3xdx=:^6xdx,  This  indicates  the  relation  between 
the  differential  of  ^,  the  function  of  x,  and  the  differential  of  x  itself. 

Assume  that  x  increasing  at  rate  of  3  per  second  becomes  4 ;  that  is,  a;  =  4, 
and  d  a;  ^  3 ;  hence  dy  =  6  x  4  X  3  =  72.  That  is,  if  x  is  increasing  at 
rate  of  3  per  second,  at  the  time  that  x  :=  4,  the  function  itself  is  increasing 
at  rate  of  72  per  second. 

To  differentiate  an  expression  of  two  or  more  terms,  it  is  necessary  to 
differentiate  them  separately  and  connect  the  results  with  the  signs  with 
which  the  terms  are  connected. 

Thus,  differentiating  u =3 a:^  —  2 X,  we  have  dM  =  d  (3ar*  —  2x)  ^6xdx 

—  2dx:=(6x  — 2)  dx. 

Assuming  x=4  and  dx^^  we  have  <iM=:(6x4  —  2)  x  3=66.  This 
indicates  that  when  x = 4,  and  is  increasing  at  rate  of  3  per  second,  the  func- 
tion u,  or  3  x'  —  2  X,  is  at  same  instant  increasing  at  rate  of  66  per  second. 

Integration,  Its  symbol  /  was  originally  letter  S,  initial  of  mm,  the 
symbol  of  an  operation  the  reverse  of  differentiation ;  and  when  the  oper- 
ation of  integration  is  to  be  performed  twice,  thrice,  or  more  times,  it  is 
written//,  ///,etc 

By  the  operation  of  Calculus,  expressions  are  integrated  by  increasing  the 
exponent  of  the  variable  by  unity,  dividing  by  the  new  exponent,  and  de« 
tacning  thedx. 

Hence, integrating  the  differential  6 x d x,  we  have  f6xdx:=$x'.  This 
result  is  the  ninction,  the  differential  of  which  is  6x  e^x. 

To  integrate  an  expression  of  two  or  more  terms,  it  is  necessarv  to  inte* 
grate  the  terms  separately  and  connect  the  results  with  tiie  signs  with  which 
the  terms  are  connected. 

Thus, integrating  (6x— 2)  <ix,  we  have  /(6x— 2)  dx=:  f(6xdx—2dx) 
=  3a:'  — 2X.    This  result  is  the  function  the  differential  of  which  is  (620 

—  2)  dx  or  (6x  —  2 x°)  dx. 

Non.— A  quantity  with  the  exponent  o,  as  «<>  or  30,  is  equal  to  unity. 


NOTATION.  25 

The  operation  of  summation  may  also  be  illustrated  in  use  of  the  sym- 
bol /.  Assuming  07  =  4,  the  former  of  the  preceding  results  becomes 
/6a;dx  =  3ar'^48,  the  latter  /(6x  — 2)  dxzrjor*  — 2a?:=4a 

Here  x  is  assumed  to  commence  at  o  and  to  continue  to  increase  by  in- 
finitely small  increments  of  dx  until  it  becomes  4.  The  summation  is  the 
addition  of  all  these  values  of  x  from  o  10  4. 

Arithmetically. — The  first  formula  may  be  written 

6  {x  +  x"  -\-  x'"  -H  etc.)  d  X,  If  then  a:  is  to  advance  from  o  to  4  by  in- 
crements of  I,  we  have  6  (0-1-1  +  2  +  3  +  4)  X  1=60,  which  exceeds  48. 
If  dx  is  assumed  to  be  .5,  the  result  is  54.  The  correct  result  is  obtained 
only  when  dxia  taken  infinitely  small.  By  Arithmetic  this  is  approximated, 
but  it  is  reached  by  the  operations  of  Calculus  alone. 

The  second  formula  may  be  written 

(6  [x'  +  x"  +  ic"'  +  etc.]  -  2  lx°'  -j-  a;°"  +  a;°'"  etc.] )  dx.  Assuming  x  = 
4,  and  da?  =  I,  we  have  (6  [i  +  2  +  3  +  4J  —  2  [i  +  i  +  1  +  i] )  x  i  =  52, 
which  exceeds  40.  ltdx=:  .25,  the  result  would  be  43,  and  if  .125  it  would 
be  41.5,  ever  approaching  but  never  reaching  40,  so  long  as  a  finite  value  is 
assigned  to  dx. 

A,  DeUay  when  put  before  a  quantity,  signifies  an  absolute  and  finite  in- 
crement of  that  quantity,  and  not  simply  the  rate  of  increase. 

S,  Sigmct,  signifies  the  summation  of  finite  differences  or  quantities.  Thus, 
Xy^  Ax=  (y'^  +  y "'  +  y"""  +  etc.)  A  x.  Assume  y  =  6,  y"  =  8,  y"  =  4,  and 
A  X  the  common  mcrement  of  a;  =:  5,  then  2y*  A  a;  ^  (36  +  64  +  16)  X  5  = 
580. 


NOTATION. 

1=1. 

20  =  XX. 

1 000  =  M,  or  CIO. 

3  =  11. 

30^  XXX. 

2  000  =  MM. 

3  =  1". 

40  =  XL. 

5  000  =  V,  or  100. 

4=IV. 

50  =  L. 

6ooo  =  VI. 

5  =  V. 

6o  =  LX. 

ioooo  =  X,orCCIOO. 

6  =  VI. 

70  ^^  LXX. 

50  000  =  L,  or  1000. 

7  =  VII. 

8o=LXXX. 

60  000  =  LX. 

8  =  VUI. 

9o=XC. 

100  000  _  C,  or  CCCIOOO. 

9  =  IX. 

100  =  C. 

I  cx)o  000  =  M,  or  CCCCIOOOO. 

10  =  X. 

500  =D,  or  10. 

2  000  000  —  MM. 

As  often  as  a  character  is  repeated,  so  many  times  is  its  value  repeated, 

lis  CC  =  2CO. 

A  less  character  before  a  greater  diminishes  its  value,  as  IV= V  —  I. 
A  less  character  after  ft  greater  increases  its  value,  as  XI  =:  X  + 1. 

For  every  0  annexed  to  10  the  sum  as  500  is  increased  10  times. 

If  C  is  placed  on  left  side  of  I  as  many  times  as  0  is  on  the  right,  the 
number  is  doubled. 

A  bar,  thus     ,  over  any  number,  increases  it  1000  times. 

lUuttration  i.— 1880,  MDCCCLXXX.    18  560,  XVIITDLX. 

2.  — 10  =  500.       CIO  =:  500  X  2  =  1000.       100  =  500  X  10  =  500a 
CCI00  =  5oooX2=ioooo.    1000  =  500x10x10=50000.    CCCIOOO 

^  50000  X  2  =  lOOOOO. 


26     CHBOXOLOGICAIi   SBAS. — ^ICBASUBES   AND   WEIGHTS. 

CHRONOLOGICAL  ERAS  AND   CYCLflS  FOR  1906. 

Vhe  year  1906,  or  the  lyoth  year  of  the  Independence  of  fht  United  States  of  America, 
ccrre$pond»  to 

Tht  year  7414-15  of  the  Byzantine  Era; 

*i       6619  of  the  Julian  Period; 

**       5666-67  of  the  Jewish  Era; 

**  2071  of  the  Olympiads,  or  the  second  year  of  the  67181  Olympiad,  com- 
mencing in  July  (1802),  the  era  of  the  Olympiads  being  placed  at 
775.5  years  before  Christ,  or  near  the  beginning  of  July  of  the 
3938th  year  of  the  Julian  Period ; 

**       2659  since  Uie  foundation  of  Rome,  according  to  Varro; 

**       2218  of  the  Grecian  Era,  or  the  Era  of  the  Seleucidas; 

"       1622  of  the  Era  of  Diocletian. 

The  year  1323-24  of  the  Mohammedan  Era,  or  the  Era  of  the  Hegira,  begins  on 
the  26th  of  July,  1906. 

The  first  day  of  January  of  the  year  1906  is  the  2,412,115th  day  since  the  eom- 
mencement  of  the  Julian  Period. 

Dominical  Letter G  I  Lunar  Cycle  or  Golden  Number 7 

Epact 5  1  Solar  Cycle 11 

Roman  Indiction  3.  was  a  period  of  15  years,  in  use  by  the  Romans.  The  precise 
time  of  its  adoption  is  not  known  beyond  the  flict  that  the  year  313  A.D.  was  a  first 
year  of  a  Cycle  of  Indiction. 

Julian  Period  is  a  cycle  of  7980  years,  product  of  the  Lunar  and  Solar  Cycles  and 
the  Indiction,  and  it  commences  at  4714  years  B.C. 

6513  -|-  (given  year  — 1800)  =  year  of  Julian  Period,  extending  to  3267. 


MEASURES   OP  LENGTH. 

Standard  of  measure  is  a  brass  scale  82  inches  in  length,  and  the 
yard  is  measured  between  the  27th  and  63d  inches  of  it,  which,  at  tem- 
perature of  62°,  is  standard  yard. 


Inches.  Feet.  Tarda.       Rods.    Furl. 

36=        3- 
198=      16.5=        5.5. 

7920=    660    =    220  =  40. 

63360  =  5280    =1760   :=320=.3. 


Xiineal. 

12    inches    ^i  foot. 

3    feet        s=  I  yard. 

5.5  yards     :=  i  rod. 
40    rods        :=  I  furlong. 

8    furlongs^  I  mile. 

Inch  is  sometimes  divided  into  3  harleycomg,  or  12  linet. 
A  hair^s  breadth  is  .02083  (48th  part)  of  an  inch. 

I  yard =.000  568,  and  i  inch  =  .000015  8  of  a  mile. 

Grunter's   Oliaixi. 

7.92  inches  ^  i  link.     |      100  links  :=  i  chain,  4  rods,  or  aa  yards. 

80  chains  =  i  mile. 

I^opes  and  Cables. 

I  fithom  =  6  feet.  |     i  cable's  length  =  lao  fathoms. 

Gtooorapliioal  and  IN'autioal. 

I  degree,  assuming  the  Equatorial  radius  at  6967  459.893  yards  (3958.784 
mUea),  as  given  by  IT.  S.  Coast  Survey,  =:  69.094  Statute  miles. 
X  mile  ^2026.7566  yards  or  6080.27  feet 
X  leai^e  =  3  Nautical  miles. 


HBABUKBS   AND  WBIGBTB. 


2; 


Hiog  Hiixies. 

Estimating  a  mile  at  6080.27  feet,  and  using  a  30"  glass, 

I  knot  ^  50  feet  8.03  inches.        |         i  fathom  =  5  feet  .08  inch. 

If  a  28"  glass  is  used,  and  8  divisions,  then 

I  knot  ^  47  feet  5  inches.  |       i  fathom  ^5  feet  11.25  inches. 

The  line  should  be  about  150  fathoms  long,  having  10  fathoms  between  chip  and 
first  knot  for  stray  line. 

NoTB. — This  estimate  of  a  mile  or  knot  is  that  of  U.  S.  Coast  Sarvey,  assuming 
Equatorial  radius  of  Earth  to  be  6967459.893  yards  and  a  Met-er  to  be  39-370433 
inches  of  the  Troughton  scale  at  62°. 

Clotli. 
I  nail  =  3.25  inches.    |    i  quarter  =  4  nails.    |    5  quarters  :=  i  eU. 

FendoalTiin. 
6  points  ^  I  line*       |        12  lines  =  i  inch. 

Slioeixiakers'. 

No.  1  is  4.125  inches,  and  every  succeeding  number  is  .333  of  an  inch. 
There  are  28  numbers  or  divisions,  in  two  series  or  numbers — viz.,  from  i 
to  13,  and  I  to  15. 

M!isoellaiieous. 


12  lines  or  72  points  :=  i  inch. 
I  palm  =  3  inches. 


I  hand  :=  4  inches. 
I  span  =9  inches. 


I  cubit  =  18  inches. 

"Vernier   Scale. 

Vernier  Scale  is  f^,  divided  into  10  equal  parts ;  so  that  it  divides  a  scale 
of  loths  into  looths  when  two  lines  of  the  two  scales  meet. 


M:etrio,  T^y  ^ct   of  Congress  of  Jiily  S8,  1866. 

Vnit  of  MeasurevMtU  is  the  Meter,  which  by  this  Act  is  declared  to  be  39.37  ins. 


DanomioMioDs. 


Millimeter. . 
Centimeter. 
Decimeter. . 

Meter 

Dekameter . 
Hektameter 
Kilometer.., 
Uyriameter 


Meters. 


.001 
.ox 

.X 
X. 

10. 

xoo. 

looa 

xoooo. 


Inches. 


•0394 
•3937 
3-937 
39-37 
393-7 


Feet. 


.328083 

3-28083 

32.80833 

328.083  33 

328a  833  33 


Yards. 


1.093  61 
xa936xx 

109.361  IX 
1093.6x1  XX 


Miles. 


.62137 
6.2137 


In  Mbtkic  system,  valaes  of  the  base  of  each  measure^viz.,  Meter,  Liter,  Stere, 
Are,  and  Gramme— are  decreased  or  increased  by  following  prefix.    Thas, 


Milli,  xoooth  part  or  .oox. 
Cent!,  xooth      * 


.ox. 


Deci,  lotb  part  or .  i. 

Deka,  10  times  valae. 

Myria,  xoooo  times  value. 


Hekto,  xoo  times  value. 
Kilo,    1000  " 


NoTB.— The  Meter,  as  adopted  by  England,  France,  Belgium,  Prussia,  and  Russia, 
is  that  determined  by  Capt  A.  R  Clarke,  R.E.,  F.R.S.,  x866,  which  at  32^^  in  terms 
of  Imperial  standard  at  62°  F.  is  39*370432  inches  or  X.0Q362311  yards,  its  legal 
equivalent  by  Metric  Act  of  1864  being  39.3708  inches^  the  same  as  adopted  im 
France. 

Captain  Kater^s  comparison,  and  the  one  formerly  adopted  by  the  U.  S.  Ordnance 
Corps,  was  =  39.3707971  inches,  or  3. 280  899  76 /ee^  and  the  one  adopted  by  the 
U  &  coast  Survey,  as  above  noted,  is  =  39-37°  43'  35  inches. 


28 


MEASURES   AND   WEIGHTS. 


E: 0.1x1  valent  Values  in   DVHetrio  Denoxxiinations    of*  XJ.  St 


DenominatioiM. 

Vklue  in  Meters. 

DenominatioBi. 

Valaea  in  Meters. 

Inch 

•'^54      ^ 
.3048006 

.914401  8 

Rod 

5.0202099 
201.168396 
1609.347  168 

Foot 

Furlong 

Yard 

Mile 

I  Furlong  . . .  :=  200      " 

5  Furlongs . . .  =     i  kilometer* 


^Approximate   ISq.xiivalen.ts    of  Old    and.    Aletrio    U.  S* 

.^dCeasures   of*  J-jengtli. 

I  Kilometer . . . .  =  .625  mile.  i  Chain =  20  meters, 

I  Mile =  1.6  kilometers, 

I  Pole  or  Perch .  =  5  meters. 

I  Foot =:  3  decimeters  or  30  centimeters, 

I  Metre :=3.28o833ycc<=:3y*w^  3  ins,  and  3  eighths. 

II  Meters ^12  yards,     \     i  Decimeter ...  =4  inches, 

1  Millimeter  . .  ^  i  thirty-second  of  an  inch. 

To  Convert  Meters  into  Ittches. — Multiply  by  40;  and  to  Convert  Inches 
into  Meters. — Divide  by  40. 

Approximate  rule  for  Converting  Meters  or  partSj  into  Yards, — Add  one 
eleventh  or  .o^b9. 

Inches  Decimally  =  Millimeters, 

Milli- 
meters. 


Milli- 

Milli- 

Milli- 

Milli- 

Inches. 

meters. 

Inches. 

meters. 

Inches. 

meters. 
12.2 

Inches. 

meten. 

Inches. 

.01 

.25 

.2 

5.08 

.48 

•7$ 

19. 3 

2 

.02 

•51 

.22 

5-59 

•5 

12.7 

.78 

19.8 

3 

•03 

.76 

^ 

6.1 

•52 

13.2 

.8 

20.3 

4 

.04 

1.02 

.26 

6.6 

•54 

>3-7 

.82 

20.8 

5 

•05 

1.27 

.28 

7.11 

.56 

14.2 

.84 

21.3 

6 

.06 

1-52 

•3 

7.62 

.58 

14.7 

.86 

21.8 

7 

.07 

1.78 

•32 

8.13 

.6 

15-2 

.88 

22.4 

8 

.08 

2.03 

•31 

8.64 

.62 

15-7 

•9 

22.9 

9 

.09 

2.29 

•3S 

9.14 

.64 

16.3 

.92 

234 

10 

.1 

2.54 

.38 

965 

.66 

16.8 

•94 

239 

IX 

.12 

305 

•4 

10.2 

.68 

>7-3 

.96 

24.4 

12 

^i 

356 

•42 

ia7 

•7 

17.8 

.98 

24.9 

m  I 

.16 

4.06 

•44 

II. 2 

•72 

18.3 

I. 

25-4 

.x8 

4-57 

.46 

11.7 

•74 

18.8 

50.8 

76.2 
XOI.6 
127 

152.4 
177.8 
203.2 
228.6 
254 

2794 
304.8 
foot 


Inches 

in  Fractions  = 

Millimeters. 

4 

■2 

•a 

u 

^l 

I 

sic 

9 

•a 

^1 

as 

• 

"1 

H 

17 

if 

■a 

^1 

•79 

9 

7.14 

135 

I 

3 

1.59 
2.38 

5 

II 

7-94 
8.73 

9 

>9 

'4-3 
15- 1 

13 

I 

■" 

5 

3-17 
3-97 

3 

" 

13 

952 
10.32 

5 

^""* 

21 

iS-9 
16.7 

7 

^^ 

3 

7 

4.76 
5.56 

7 

15 

II. II 
11.91 

II 

23 

I7-5 
18.3 

15 

9 

— 

— 

6.35 

4 

— 

— 

127 

6 

— 

— 

19 

8 

— 

•  J 

. 

h 

25 

19.8 

— 

20.6 

27 

21.4 

— 

22.2 

29 

'^0 

— 

23.8 

3« 

24.6 

— 

25-4 

By  means  of  preceding  tables  equivalent  values  of  inches  and  millimeters, 
equivalent  values  of  inches  in  centimeters,  decimeters,  and  meters,  may  be 
ascertained  by  altering  position  of  decimal  point 

Illustration.*— Take  i  millimeter,  and  remove  decimal  point  successively  by  one 
figure  to  the  right;  the  values  of  a  centimeter,  decimeter,  and  meter  become 

In.  Ins. 

X  millimeter 0394  I  x  decimeter 3-94  i   '32  inch    =  8.13  millimetera 

X  centimeter 394    1 1  meter 39.4   |  3.2   inches  =  81.3 


(i 


MSASUBES   AND  WEIGHTS. 


29 


MEASUBES   OV   SUBFACB. 

144  square  inches  ^  i  square  foot.    |    9  square  feet  =:  i  square  yard. 
Architect's  Measure^  loo  square  feet  ^  i  square. 


Xjaxid. 

30.25  square  yards     =  i  square  rod. 
40      square  rods       =:  i  square  rood. 
4      square  roods  }_jacre 
10      square  chains  j 
640      acres  =  i  square  mile. 


Yards. 
I2IO. 


RodB. 


Roods. 


4840  =  160. 

3097600=102400  =  2560. 
43  560  square  feet,  or  208.7x0326  feet  square,  or  220  x  198  feet  =  i  Acre. 

Faper. 

14  sheets  =  I  quire.  |  20  quires^  i  ream.  |  21,5  quires  =  i  printer's  ream. 
2  reams  =  I  buudle.  |  5  bundles  ^  i  bale. 

Dra-wing. 


Cap 13  X  17  inches. 

Universal 14  X  17 

Demy 15  x  20 

Medium 17  x  22 

Royal 19  X  24 

Super-royal  ....  19  x  27 

Imperial 22  x  30 

Elephant 23  X  28 


(1 
u 
u 
tc 
t( 
(( 
(( 


Columbier 23  x  34  inches. 

Atlas 26  X  34 

Theorem 28  X  34 

Doub.  Elephant.  27  X  40 

Antiquarian  ...  31  X  53 

Emperor 40  X  60 

Uncle  Sam  ....  48  X  120 

Peerless 18  X  52 


Double  Crown 20  x  30  inches. 

Double  D.  Crown  . .  30  X  40      " 
Double  D.  D.  Crown,  40  x  60 


T'racin.g. 

Grand  Royal 18  x  24  inches 

Grand  Aigle 27  x  40      " 

Vellum  Writing,  iB  to  28  ins.  in  width 


Mounted  on  cloth,  38  ins.  in  width. 
Afiscellaneous. 


I  sheet   ^  4  pages. 
I  quarto  =  8 
I  octavo  :=  16 


4( 


I  duodecimo  =  24  pages. 
I  eighteemno  :=  36     " 
I  bundle        =:  2  reams. 


I  piece  wall-paper,  20  ins.  by  12  yards. 
I     "        "        "     French,  4.5  sq.  yards. 
Boll  of  Parchment  =:  60  sheets. 

Copying. 

100  Words  =  I  Folio. 

metric,  by  Act  of*  Congress  of  July  S8,  1866. 
Unit  of  Surface  is  Are  or  Square  Dekameter. 

A  square  meter  (39-37')  = '  549- 99^9  ^'  ^^^^  ^^^  ^y  ^his  Act  is  declared  to  be 

1 550  sq.  ins. 


Denominationt. 


Centimeter  ... 
Decimeter .... 
Centareor 
Square  Meter 

Are. 

Hectare.. f  ... 


g    •  •  •  • 


Sq.  Meters. 


.oooz 
.oz 


z. 

zoa 
lOOOO. 


Sq.  Inches. 


•'55 
15-50 


1550. 


Sq.  Feet. 


.Z07638 
za  763  888 
ZO76.38888 


Sq.  Yards. 


Z.Z96 

ZZ9.6 
ZZ960. 


Acres. 


.02471 
2.471 


30 


MJfiASUBES  AND  WEIGHTS. 


Ejq.iilvalent  Values  in  I^etrio  Denominations  of  TJ.  S. 


DenomiDationi. 


Sq.  luch . 
"  Foot. 
"  Yard. 
"  Rod  . 


Sq.  Meter*. 


.00064516 

.09290323 

.836  12907 

25.292904 


DenomiDationt. 


Sq. 

Chain  . . . 

it 

Rood 

(( 

Acre .... 

(( 

Mile 

Sq.  Maten. 


404.68647 
1011.716175 
4046.864699 


Sq.  Hectares. 


.404686 
258.99934 


Sq.  Ares. 


4.046  865 
10. 1 17  162 
40.468647 

25899-934074 


.A.pproxixnate    Equivalents    of*  Old   and   Aletrio    U.  S. 

iSq.uare   Aleasures. 

6. 5  square  centimeters  =s  i  sq.  inch.     I    i  acre  =  1.16  per  cent  over  4000  tq.  meten. 
I        '•'■      meter  =iio.'jssq.fBet\    x  square  mile  =  259  Atfctor^x. 


MEASURES   OP  VOLUME. 

Standard  gallon  measures  231  cube  ins.,  and  contains  8.3388822 
avoirdupois  pounds,  or  58  373  Troy  grains  of  distilled  water,  at  temper- 
ature of  its  maximum  density  (39.1°),  barometer  at  30  ins. 

Standard  bushel  is  the  Winchester^  which  contains  2150.42  cube  ins., 
or  77.627  413  lbs.  avoirdupois  of  distilled  water  at  its  maximum  density. 

hts  dimensions  are  18.5  ins.  diameter  inside,  19.5  ins.  outside,  and  8 
ins.  deep ;  and  when  heaped,  the  cone  must  not  be  less  than  6  ins.  high, 
equal  2747.715  cube  ins.  for  a  true  cone. 

A  struck  bushel  contains  1.24445  cube  feet. 


Xjiqnid.. 


4  gills    ^  I  pint. 
8  pints   ^  I  quart 
4  quarts  =  i  gallon. 


I>ry. 


a  pints 
4  quarts 

3  gallons 

4  pecks 


quart 
I  gallon. 
I  peck. 
I  DusheL 


Cube  Ins. 
28.875 

57-75 
231. 

Cube  Int. 
67.2006 
268.8025 
537.605 
2150.42 


Ollla.  Plata. 

8. 
32  =  8. 


Pinto.  Qomrte.  G«lk. 
8. 
16=    8. 
64  =  32  =  8. 


Cu"be, 

1728  cube  inches  =  i  foot         I  inches. 

27  cube  feet     ^  i  yard.        J  46656 

KoTX.— A  cube  foot  contains  2200  cylindrical  inches,  or  3300  spherical  inchea 


iriuid. 


60  minims 

8  drams 

16  ounces 


I  dram. 
I  ounce. 
I  pint 
8  pints     ^  I  gallon. 


Minims. 
480. 
7680=128. 
61  240  =  1024 


Dnuna.     Ooiioaai 


=  128. 


IN'autioal. 


X  ton  displacement  in  salt  water =35  cube  feet 


(( 


(i 


«« 


registered  internal  capacity ^40 

Dimensions  of  a  Sarrel. 

Diameter  of  head,  17  las. ;  bung;  19  ina ;  length,  28  ina ;  volume,  7689  cube  Uuk 
:  3.5756  bushela 


MBASUQBS  AND  WBIOETS* 


31 


Misoellaneou*. 

I  cube  foot 74S05  gallons. 

I  bushel Q'JOQ  18  ^alloni, 

I  chaldron  =  316  biuhels,  or 57-244  cube  feet 

I  cord  of  wood 128  cube  feet. 

I  perch  of  stone 24.75  cube  feet. 

I  quarter  =  8  bushels.  |    i  load  hay  or  straw  s=  36  trusses. 


OtlU. 

I  Barrel 38 

I  Tierce ^. 4a 

Butt  of  Sherry. 35X  50. . . .  108 

Pipe  of  Port 34X58....  115 

Pipe  of  Teneriffe 100 

Butt  of  Malaga. 33X53. .  *  •  105 


GalU. 

Puncheon  of  Scotch  Whisky,  .xxo  to  130 
Puncheon  of  Brandy  34X53.. ixo  to  x2o 

Puncheon  of  Rum xoo  to  xio 

Hogshead  of  Brandy  28X40..  55(0  60 

Pipe  of  Madeira 9a 

Hogshead  of  Claret 46 


A  Hogshead  is  one  half,  a  Quarter  ca^  is  one  fourth,  and  an  Octave  is  one  eighth 
of  a  Pipe,  Butt,  or  Puncheon. 

Mietric,  by  -A.ot  of  Congress  of  Jiily  38,  1©66. 
Unit  or  Base  of  Measurement  is  a  cube  Decimeter  or  Liter,  which  is  declared  to  be 

61.033  eulbt  inf. 

Oube   IMeasures. 

DenotninatfoM.  Value*.  Cab«  Inche*.         Cube  Feet.      '  Cube  Yards. 


Cube  Centimeter 
"  Decimeter. 
"*    Meter 


.001  cube  milliliter 

X  cube  liter 

Kiloliteror  stere.. 


.061 022 

6x.022 


•035313657 
35-3«3657 


Dry  MieasTires, 


Donominatione. 


Milliliter 

Centiliter 

"Deciliter 

Liter 

Dekaliter 

Hektoliter.... 
Kiloliter  \ 
or  Stere  j  ••* 


Valnee. 


X  cube  centimeter. 


xo 

X 

xo 


t( 
i( 
tt 

«( 


decimeter. . 

*  . 

meter 

(I 


Cube  Ins. 

Quarts. 

Pecks. 

Bushels. 

.061 

__ 

.^^ 

^.^ 

.6x03 

-. 

.. 

— 

6.I023 

.. 

.. 

— 

61.032 

.908* 

•"35 

— 

— 

9.08 

i'>35 

•28375 

— 

— 

"•35 

2837  5t 

— 

— 

— 

38.375 

X.308 


Cube  Yards. 


.1308 
x.308 


•  Or  .337  ^Jkm,  t  3«53i  3^5  7  ctAefut. 

None.  —In  practice,  terra  cube  Centimeter,  abbreviated  to  cc,  is  used  instead  of 
Milliliter,  and  cube  Meier  instead  of  Kilometer. 

Sqixivaletxt  Values    in.   Afetrio  Denoxninatioxis  of  XJ.  S. 

Dry  nVfeasures. 


Denominations. 

CmUUtsrs. 

DsciUtsrs. 

Liters. 

DsksUtors. 

Inch , 

•3524 

.xxoxa5 

.4405 
.881 

3524 

X.  10x35 

4405 
8.81 
3524 

Pint 

Quart 

IX  0x35 

Gallon 

Peck 

Bariiel 

352-4 

XiiquicL  IVXeasures. 


Dwomlaatloiis. 

MiUiliter 

Centiliter 

Dariliter. 

Lii-   • 

Oekaliter 

Hektotlter 

Kiloliter    ) 
or  Store/  "•••• 


Liters. 

Drams. 

Ounces. 

.oox 

.37 

___ 

.ox 

3.7 

•338 

.1 

"7     ; 

3.3* 

I 

^    I 

33.8 

10 

— 

WiW 

xoo 

— 

— 

xooo 

— 

— 

PlBta. 

Quarts. 

Gallons. 

'  _ 

.. 

__ 

^ 

— 

—m 

.8X134 

a.xx34 
ax.X34 

X.0567 
XO.567 

.864X7 

a.  641  7 
36.4x7 

— 

— 

364.  X7 

32 


MEASUBES   AND   WEIGHTS. 


A.pproxixnate    SquivalentB   of  Old.   and    "NLetrio  TJ.  S. 

!N£ea8U,re8   of*  Voliuxie. 


z  Gallon =4-5  liters- 

I  Liter =  .26  gallon. 

I  cube  foot =28.3  liten. 


I  cube  meter =  x.33  cube  yards 


«c 


yard. 


=  .75 


ii 


meter. 


kiloliter  =  2240  lbs.  nearly  of  water. 


MEASURES   OP  WEIGHT. 

Standard  avoirdupois  pound  is  weight  of  27.7015  cube  inches  of  die 
tilled  water  weighed  in  air,  at  (39.83^)  barometer  at  30  inches. 
A  cube  inch  of  such  water  weighs  252.6937  grains. 


Avoirdupois. 

16  drams  =  i  ounce. 
16  ounces  =  i  pound. 
112  pounds  =  I  cwt. 
20  cwt.   ^  I  ton. 


OonoM.       Poandu 


Drams. 

256. 
28  672  =    I  792. 

573  440  =  35  840  =  2a4a 


I  pound  =  14  oz.  II  dwts.  16  grs,  Troy,  or  7000  grains, 
I  ounce  :=  18  dwts.  5.5  grains  Troy,  or  437.5  grains, 
I  dram  =  i  dwt,  3.343  75  grains  Troy,  or  53.5  grains. 
I  stone  :=  14  pounds. 


Dwt. 


I 
I 


20  grams 
3  scruples 
8  drams 
12  ounces 
45  drops 


Troy. 

Orafna. 
480. 
5760  =  2401 

=     I  lb.  avoirdupois. 
=     I  oz.  " 

=     I  dram      " 
=  144  lbs.         " 
=  192  oz. 
=1480  grs. 
:=       .822  857  lb. 
avoirdupois  pound  =     1.2x5  278  lbs.  Troy, 

Apotlieoaries. 

=:  I  scruple.  Grains.  Scniplst.  Drwn. 

:=  I  dram.  60. 

=  I  ounce.  480  =  24. 

5760  =  288  =  96. 


24  grains  =:  i  dwt. 
ao  dwt.     =:  I  ounce. 
12  ounces  ^  i  pounds 

7009    Troy  grains 

437.S     "        " 
27-343  75  Troy  grains 
175     Troy  pounds 
175        "    ounces 
I        "    ounce 
pound 


u 
ti 


t( 


=  I  pound. 

=  1  teaspoonful  or  a  fluid  dram. 
2  tablespoonfuls  =:  i  ounce. 
The  pound,  ounce,  and  grain  are  the  same  as  in  Troy  weight 


IDiaznoxid. 

I  grain  =  16  parts.  |         4  grains  =  3.2  Troy  gnum. 

16  parts  =    .8  iroygrain.!         i  carat  =4graiQ8. 
1 50  carats  :=  i  Troy  ounce. 

Xjead. 

A  Fodder  of  lead  =  8  pigs. 

Sheet  lead  rolls = 6.5  to  7.5  feet  in  width  and  from  30  to  35  feet  in  lengtfs 


Grrain. 

Standard   "Weiglits  por   Bushel. 
LW.  I  Lbi.         I 

Wheat....  60  I  Com £6  and  58  I  Rye.. 


Ltw. 

56  I  Oats. 


Lbs.  I  Lb» 

32  I  Barley....  48 


HBASUKBS    AND    WEIGHTS. 


33 


^Ciscellaneous. 
3?er    Cu."be    Tf"oot    ii\    Sulk    and. 

For  additional f  see  page  217. 

Mats  RIALS. 


per 


a?o 


11. 


t( 
u 
u 
u 
u 
u 


Coal,  Anthracite , 

Bituminous 

Cannel , 

Cumberland  .... 

Newcastle 

Scotch 

Welsh 

li.  N.  allowance. 
Charcoal,  hardwooil. . , 

"        pine 

Clay,  loose 

Coke,  Newcastle 

Gravel,  coarse 

"      fine 

Marl,  loose 

.Sand,  river. 

Wood,  Virginia  pine. . 
Southern 


u 


PeT  Cube  Foot. 
In  Lbs. 

Cub«  Feet. 
In  Tons. 

50  to  55 

41  to  45 

44  "  50 

45  "  51 

■50-3 

44.5 

42.2 

53.8 

50 

45 

52 

43 

52 
46.6 

18.5 

43 

48 

121.8 

18 
80 

124.4 
28 

23  to  28 

80  to  97.4 

97 

23 

109 
80 

20.5 
28 

107 

21 

21 
26 

107 
86 

NoTB.— ThcM  weights  are  eonuncrcial,  not  cooiputed  from  the  specific  grHvity  of  the  material. 

Mietric,  by  A.ot  of*  Congress  of  July  S8,  1866. 

Unit  of  Weight  is  the  Gram,  which  is  weight  of  one  cube  centimeter  of  pure  water 
weighed  in  vacuo  at  temperature  of  4^  C,  or  39.3O  F.,  which  is  about  its  tem- 
perature of  maximum  density  =  15.432  grains. 

Valoea.  Orains.         Dances.  Lba.  Ton. 


]>eaoiniaationa. 


Milligram 

Centigram 

I>ecigram 

Gram 

Pekagram 

Hektogram 

Kilogram  or  Kilo . . 

Myriagram 

Qu'ntal 

M  iliier  or  Tonneau . 


cube  millimeter 


(I 


I 
10 

.1 

I 
10 

I  deciliter . . . 

I  liter 

10    "  

I  hektoliter. . 

X  cube  meter 


centimeter 


Grains. 

Dances. 

__ 

,    . 

15432 

— 

1-543  2 

— 

15-432 

.03527 

— 

•3527 

— 

3527 

■~. 

35-27 

_- 

_ 

Kilogram  =  2.679 17  lbs.  Troy,  or  2  U>s.  8  oz.  3  dwts. 


.23046 
2.2046 
22.046 
220.46 
2204.6 

3072  grain. 


.098419 
.984 196 


£lQ.uivalen.t  Valuea   in   3V£etrio   l^enomiiiatioiis    of  TJ.  S. 


Denominalions. 


Grain 

Scruple 

Pennyweight 

JDrachm 

"     (Apoth.) 


Grams. 


.0648 
1.296 

1-555  2 
1. 771  87 
3.888 


DckafH'ama. 


17.7187 
38.88 


Denominations. 


Ounce 

'*     Troy 
Pound 


Ton 


Troy 


Grams. 


28.3502 

31.1041 

453.6028 

3732504 


Kllofrrams. 


.02835 
.03x1 

•4536 
•37325 
1016.057  28 


A.pproxitnate    Equivalents    of  Old    and    Ne-v^r    XJ,    S. 

]M[eaeiitr<>s   of  WeiprKt. 

The  ton  and  the  grsLxn  are  at  nearly  equal  distances  above  and  below  the 
kilogram.    Thus, 

I  ton  ....==  1 016057.28  grams.    |    i  kilogram =  1000  grams. 

I  gniin  is  nearly  15.5  grains  (about  .5  per  cent.  less). 

I  kilogram  about  2.2  pounds  avoirdupois  (about  .25  per  cent.  more). 

1000  kilograms,  or  a  metric  ton,  nearly  i  £ngL  ton  (about  1.5  per  cent,  less) 


MBASDKES   AND   W  BIO  UTS. 
Abvorption   by  V«efltatioii. 

tify  VonnanpHm  of  Water  bg    Vigetatim. 


C^. 

iBcWofW.ur. 

''^           Jm^ 

.'™.' 

';! 

■^4 

{M.l 

Si;™.-;::::::  ■ 

Lu<:en,go.Bs 

*Jt:; 

r«. 

VyJl; 

B^SS"!?'::; 

"^5 

FBcnL 
9" 

"^Ts 

Bo  tier. 

Bultermllk. , 

=  ' 

Kunwii::::: 

'V 

no»   Kood 

SHba 

unoes 

tlE:- 1  '-■ 

m',^ 

*!J^"::::: 

■9  5 

,*" 

M* 

Oatmeal 

BirlaymeaL. 

5.>6 

66. 7J 

&S«        do. 

<6 

fJC™w,M,.« 

K  welfe'hla  have  been  fixed  by  alatnle  in  nisiiv  of  tlic  Slatesj  and 
rtiese  wnghts  govern  in  buying  and  BeDing,  luileas  a  specific  ajjrcemcnt  te 
the  contcuy  luia  been  nmde. 

Pounds  111   a  Bushel. 


HKASUBBS  AND  WBIOBTS. 


35 


'Weislit   of  Mieix  and   "Women. 

Average  weight  of  20000  men  and  women,  weighed  in  Boston,  1864,  was 
— men,  141.5  lbs.;  women,  124.5  lbs.  Average  of  men,  women,  and  chil- 
dren, 105.5  1^8.  A  mass  of  people,  densely  packed,  weighs  85  lbs.  per  sq.  foot, 
each  occupying  .8  of  one  sq.  foot  of  area':=  54  450  per  acre. 


Weight   of  Horses.-CXJ.  S.) 
Weight  of  horses  ranges  from  800  to  1200  lbs. 


WEIGHT  OF  CATTLE. 

To   Compute  Dressed  TVeiglit   of  Cattle. 
Rule. — Measure  (is  follows  in  feet: 

1.  Girth  close  behind  shoulderB,  that  is,  over  crop  and  under  plate, 
imroediately  behind  elbow. 

2.  Length  from  point  between  neck  and  body,  or  vertically  above 
junction  of  cervical  and  dorsal  processes  of  spine,  along  back  to  bone  at 
tail,  and  in  a  vertical  line  with  rump. 

Then  multiply  square  of  girth  in  feet  by  length,  and  multiply  product 
by  factors  in  following  table,  and  quotient  will  give  dressed  weight  of 
quarters. 


Condition. 

Haifer,  StMr, 
or  Ballock. 

BuU. 

Condition. 

H«lfer,  St«6r, 
or  Bullock. 

Ball. 

Half  fat 

336 
3  5 

3-36 

3-5 

3.64 

Very  prime  fat . . . 
Extra  fat 

364 
3.78 

3-83 
4.06 

Moderate  fat 

Prime  Ikt 

Illustration.— Girth  of  a  prime  fat  bullock  is  7  feet  2  ins.,  and  length  measured 
as  above  4  feet  5  ina* 

7'.  a"  =  7. 17,  and  7.17'=^  51.4,  which  x  4'  5"  and  by  3- 5  =  794- 5  *«•      Exact 
weight  was  799  lbs. 

NoTS.~i.  Quarters  of  a  beef  exceed  by  a  little,  half  weight  of  living  animal 
3:  Hide  weighs  about  eighteenth  part,  and  tallow  twelfth  part  of  animal. 


Comparative   AVeiglita   of  X-iive   Beeves  and  of  Beef. 


Lb*. 

Per  eant. 

BallockR 

Heifers , 

2800 
3600 
2600 
2400 
2400 
2100 

9IOO 
1800 

72  to  78 
J  70  to  76 

66  to  70 

64  to  68 
63  to  66 

Bullocks 

Heifers 

Bullocks 

Heifers 

Bullocks 

Heifers 

LiM. 

Per  rent. 

Bullocks 

1550 
1550 
1260 
1200 
1050 
X050 
980 
950 

61  to  64 
58  to  61 

}  57  to  58 
50  to  56 

Heifers 

Bullocks 

Heifers 

Bullocks 

Heifers 

Bullocks 

Heifers 

'Weight  of   Ofikl    in  a  Beef  and   Sheep. 


BKVP. 
Lbe. 

Hide  and  Hair....  56  to  98 

Tallow. 42  **  140 

Head  and  Tongoe .  a8  "    49 


Feet 


31 


i( 


35 


8H1KP. 

BBKP. 

simp. 

Lbe. 

Lbs. 

Lb«. 

8  to  16* 

S"  M 

Kidneys,  Heart,) 
Liver,  etc. . . .  f 

31  to  62 

6toxo 

6  "  lit 

Stomach,  Entrails,  etc., 

126  "  196 

9  "18 

a  "    3 

Blood '. 

.   4a  "     56 

4"    6 

f  Ipcludioff  3  to  6  lb*,  for  fleece. 


i  lQcl«4isK  3  (o  5  lb*,  for  homa. 


36  MEASURES,  WEIGHTS,  PRESSURES,  BTG. 

To    Compute    ICq.-uivalen.ts    of  Old.    and    New   U.  S.  and 

of  AXetric   X>exiomiiiatiou8. 

Bi/  Act  of  Congress^  July  28,  1866. 

Rule.  —  Divide  fourth  term  by  second,  multiply  quotient  by  first 
term,  and  divide  product  by  third  term. 

Or,  Ascertain  relative  ratio  of  firat  and  second  terms,  and  multiplj 
result  by  ratio  of  third  and  fourth  terms. 

Note.  — When  resalt  is  required  in  French  or  other  Metric  denomiDations  thav 
those  of  U.S.,  use  exact  aenominations,  as,  61.025  3^7  ^^^  61.022,  39- 370  432  for  39.37 
etc. 

Example  i.— If  one  gallon  (ist),  per  sq.  foot,  yard,  acre,  etc.  (2d) ;  how  many  liter^ 
(3d),  per  sq.  foot,  yard,  acre,  etc.  (4th)  ? 

—  X  231  -i-  61.032 =  3.7851  litei'i  or  3. 7848  liUn. 

m 

Or,  —  =  1.604,  and  —^^^^= 2.3598;  hence,  1.604  x  2.3598  =  3.7851  liters. 
144  01.022 

NoTK.— In  computing  ratios,  first  term  is  to  be  dividcdby  second,  and  fourth  by  third 

Example  2.— If  one  ton  per  cube  foot,  how  many  kilograms  per  cube  decimeter? 

61  022 

— ^— r-X  2240 -r-  2.2046  =  35.881  liters^  or  35.882  litres. 
1728 

MEASURES. 

By  Ad  of  Congress  of  U,  8.  By  Metric  Computation 

I  Liter  per  sq.  foot,  etc.  =     .2642  Gallon  per  sq.foot^       or      .264  2  gallon. 
1  Liter  per  sq.  meter  .  =     .0245  Gallon  per  sq.foot,       or      .024  5  galbm. 
J  (iallon  per  sq.  foot  .  =; 40.746    Liters  jter  sq.  meter^     or  40.745 4  llttes. 
I  Sq.  foot  per  acre  . . .  =     ,22^^  Sq.vieters per  hectare,  or   2.2^ og  metres. 

* 

WEIGHTS   AND   PRESSURES. 

By  Act  of  Congress  of  U.  8.  By  Metric  CompiUation 

Per  sq.  inch.  Per  sq.  inch. 

I  Centimeter =       -3937  ^»».  or        -393  704  32  Ins. 

I  Atmosphere  . . . ,  =     6.6679  Kilo^'amSf  or     6.667  8  kiUtyrainme^, 

I  Inch  mercury  . .  =     2.54     CentimeteiSy  or     2.54  centirnefres. 

I  Pound =  453.6029  Grams,  or  453.592 6 grammes. 

I  Kilogram =  317.4624  Lbs.  per  sq.foot,  or  317.465  lbs. 

Note.— 30  ins.  of  mercury  at  62°  =  14.7  Ws.per  sq.  inch ;  hence,  i  lb.  =  2.0408  ins 
and  a  centimeter  of  mercury  =  30-r-  .3937  for  U.  S.  computation,,  and  30 -i-  .393  704  3 
for  French  or  Metric. 

POWER   AND   WORK. 

I  Horse  -  power  :=  Cheval  or  Cheval-vapeur  =  4500  kx  mz=,  33  000  t 
(4500  X  2.2046  X  39.37  -i-  12)  =  1. 013  88  chevaux. 
I  Cheval  or  Cheval-vapeiir  (75  i  X  >»  per  second)  =;  horse-power. 
(4500  X  2.2046  X  39.37  -r- 12)  -A-  33000  =  .9863  horse-power. 

Bv  A  ct  of  Congress  ofU»8.  By  Metric  Computation. 

Kilograiumeter  k  X  m=^'j.2;i^  foot-lbs. ;  hence, 

1-^(2.2046x3.280833)=:  .13826  Kilogr ammeter,  or  .13825  kilofpammetrc 
I  Cube  foot  per  IP  . . . .  =  .0279  Oibe  meter  per  cheval,  or  .0279  cheval. 
J  Pound        "    "  . .  =  .447  38  Kilogram  per  cheval.  or  .447  38  h'logrummei 
T.  Cube  meter  per  cheval  =  35-80,^8  CvbeJ'eel  per  IP,  or  35.8058  ft'. 


PBESSUEB8,  ETC. — MEASURES   OF  TIME.  37 


TEMPERATURES. 

I  Caloric  or  French  unit  s?  3.968  Heat-wiits^  and  i  heat-unit  =  i  -i-  3.968 
=^  .35a  caloric. 

I  U.  S.  Mechanical  equivalent  (  772  foot -lbs. )  =  772  ~  7.233  =  106.733 
Kilofframmeters  and  106.7;^^  kilogrammefres. 

I  French  Mechanical  equivalent  (423.55  k  x  m)  :=•  3.280  833  X  2.2046  x 
423.55  =  3063.505 /oo^-/&#.,  or  3p63.566foot-lbs.  Metric, 

I  Heat-unit  per  pound  =  .5556  Kilogram^  or  .5556  kilogramme, 

I  Heat-unit  per  sq.  foot  =  .2715  Caloric  per  sq.  meter^  or  .27i3per  sq.  metre 


VELOCITIES. 


I  Foot  per  second =  '3047  Meter  per  secondj  or  .3047  metres. 

I  Mile  per  hour =.  .447        "      "       **       or  447        '* 


MEASURES   OF  TIME. 


60  thirds    =  I  second. 
60  seconds  ^  i  minute. 


60  minutes  =  i  degree. 
30  degrees  =  i  sign. 


360  degrees  =  i  circle. 

True  or  apparent  time  is  that  deduced  from  observations  of  the  Sun^ 
and  is  same  as  that  shown  by  a  properly  adjusted  sun-dial. 

Mean  Solar  time  is  deduced  from  time  in  which  the  Earth  revolves 
c  n  its  axis,  as  compared  with  the  Sun ;  assumed  to  move  at  a  mean 
r:  te  in  its  orbit,  and  to  make  365.242218  revolutions  in  a  mean  Solar 
or  Gregorian  year. 

Sidereal  time  is  period  which  elapses  between  time  of  a  fixed  star 
being  in  meridian  of  a  place  and  time  of  its  return  to  that  place. 

Standard  unit  of  time  is  the  sidereal  day. 

Sidereal  day  :=  23  h.  56  m.  4.092  sec.  in  solar  or  mean  time. 

Sidereal  year,  or  revolution  of  the  earth,  365  d.  5  h.  48  m.  47.6  sec.  in  solar 
or  mean  time  ==  365.242  218  solar  days. 

Solar  day,  mean  =  24  A.  3  m.  56.555  sec.  in  sidereal  time. 

Sol'tr  year  (Equinoctial,  Calendar,  Civil  or  Tropical)  =  365.242  218  solar 
days,  or  365  (2.  5  A.  48  m.  47.6  sec. 

Civil  day  commences  at  midnight.  Astroiumiical  day  commences  at 
noon  of  the  civil  day,  having  same  designation,  that  is,  12  hours  later 
than  the  civil  day. 

Marine  or  sea  day  commences  12  hours  before  civil  time  or  i  day 
before  astronomical  time. 

yew  Style  was  introduced  in  England  \\\  1752. 

NoTS.  — In  Russia  days  are  reclconed  by  Old  Style,  and  are  consequently  12  days 
behind  Gregorian  record. 


38 


MBASUBES   OF  VALUB. 


MEASTTBES   OF  VALUE. 

10  mills  =  I  cent.  I  lo  dimes   =  i  dollar, 

lo  cents  =  I  dime.  |  lo  dollars  =  i  eagle. 

Standard  of  gold  and  silver  is  q/oo  parts  of  pure  metal  and  loo  ol 
alloy  in  looo  parts  of  coiii. 

Fineness  expresses  quantity  of  pure  metal  in  looo  parts. 

Remedy  of  tite  Mint  is  allowance  for  deviation  from  exact  standard 
fineness  and  weight  of  coins. 

Nickel  cent  (old)  contained  88  parts  of  copper  and  12  of  nickel. 
Bronze  cent  contains  95  parts  of  copper  and  5  of  tin  and  zinc. 
Pure  Gold   23.22   grains  =  |i  00.     Hence   value  of  an   ounce   is 
I20.67.183+. 
Standard  Gold,  $1^  60.465+  per  ounce. 


WEIGHT,  FINENESS,  ETC.,  OP  U.  8.  COINS. 

G-old. 


DenomiiMtion. 


Dollar 

Quarter  Eagle. . 
Three  DoUur . . . 


Weigh 
of  Coin. 

t 
of  Pure 
MeUl. 

Os. 
•053  75 
•134375 
.i6i  25 

Gra. 
25.8 

645 
77-4 

Gra. 
23.22 
58.05 
69.66 

Denomination. 

of  Coll 

Weight 
1. 

Half  Eagle 

Eagle 

Oz. 

.26875 

•537  5 
J-075 

Gra. 
129 
258 
5.6 

Double  Eagle... 

Dime 

20  Cent 

Quarter  Dollar . 


.080375 

.16075 

.2009375 


38.58 
77.16 

96.45 


Silver. 

Half  Dollar. . 
Trade  Dollar. 
Silver  Dollar 


34.722 
69.444 
86.805 


.401 875 

•875 

•859375 


192.9 

420 

412.5 


of  Pore 
Metal. 

Gra. 
116.1 
232.2 
464.4 


I73.6f 

378 

37I-2S 


Copper  and   Niclcel. 


One  Cent . . . . 
Two  Cents . . . 


Weight. 


Graina. 
48 
96 


Copper. 


Per  cent. 
95 
95 


Tin  and 
Zinc. 


Per  cent. 
5 
5 


Weight. 

Copper. 

Tin  and 
Zinc. 

Three  Cents. 
Five  Cents. . 

Graina. 

30 
77.16 

Per  cent. 
75 
75 

Per  cent. 
25 
25 

Tolerance. — Crold^  DoUar  to  Half  Eagle,  .25  srrains.  Eagles,  .5  grains. 
— Silver^  1.5  grains  for  all  denominations.  —  Copper^  i  to  3  cents,  2  grains ; 
5  cents,  3  grains. 

Hiegal  Tenders. — Gold,  unlimited.  —  Silver,  Dollars  of  412.5  grains 
unlimited ;  for  subdivisions  of  dollar,  $10.  (Trade  dollars  [420  grains]  are 
not  legal  tender.) — Cofyper  or  cents,  25  cents. 

NoTK.  —Weight  of  dollar  up  to  1837  was  416  grains,  thence  to  1873, 412.5.  Weight 
of  $1000,  ®  4I2-5  gr.  =  859.375  <w. 

British  standards  are :  Gold,  {}  of  a  pound,*  equal  to  11  parts  pure  gold 
and  I  of  alloy  ;  Silver,  ffj  of  a  pound,  or  37  parts  pure  silver  and  3  of  alloy 
:=  .925  fine. 

A  Troy  ounce  of  standard  gold  is  coined  into  £3  i^3.  lod.  2/*.,  and  an 
ounce  of  standard  silver  into  58. 6d,    1  lb.  silver  is  coined  into  66'shilliiigs. 

Copper  is  coined  in  proportion  of  2  shillings  to  pound  avoirdupois. 

£  Sterling  (1880)  $486.65;  hence  7^  of  this  =  value  of  i  penny  = 
2.027  708  33  centa. 

*  A  pound  18  assumed  to  be  divided  into  24  equal  p9.tU*  or  carats,  hence  the  pro 
portion  is  equal  to  22  carats. 


FOBBIGN  MEASUBBS   OP   VALUB.  39 

To   Compute   Value   of  Coins. 

Rule.  —  Divide  product  of  weight  in  grains  and  fineness,  by  480 
(grains  in  an  ounce),  and  multiply  result  by  value  of  pure  metal  per 
ounce. 

Or,  Multiply  weight  in  ounces  by  fineness  and  by  value  of  pure  metal 
per  ounce. 

RxAMPLB  I.— When  fine  gold  is  $20.67.183+  per  oz.,  what  is  value  erf  a  British 
sovereign?  ^ 

By  following  tables,  p.  40,  Sovereign  weighs  .2567  oz.,  and  .2567  x  480  =  123.816 
grains,  and  has  a  fineness  of  .9165. 

_  i23.2i6x  Q165  ,     «    .       A    „^ 

Hence,  — ^ -—2 — ^  x  20.67.183+  =  $4.86.34. 

400 

Example  2.— When  fine  silver  is  $1. 15. 5  per  oz.,  what  is  value  of  U.  S.  Trade  dollar  ? 
By  table,  p.  38,  Dollar  weighs  .875  oz.  and  has  a  fineness  of  .90a 
Hence,  .875  x  900  X  1-15.5  =  90.95625  cents. 

EzAMFLK  3.— A  4-Florin  (Austrian)  weighs  49.92  grains  and  has  a  fineness  of  .900. 
What  is  its  value  ? 

4Q.Q2X.0OO 

^^^g^  X  20.67.183+ =  $i.93-49- 

To    Convert    XJ.  S.  to    BritisH    Currency    and   Contrari- 

"v^^ise. 

Rule  i. — Divide  Cents  by  2.027  71—  (2  027  708  33),  or,  Multiply  by 
.493  12—  (.493  118  26),  and  result  is  Pence. 

2.  Multiply  Pence  by  2.02771— ,  or  divide  by  .49312—,  ^nd  result 
IS  Cents. 

EzAJiPLB.— What  are  100  cents  in  pence? 

100  X  493 12 —  =  49.312—  peiMe  =  4«.  1.312(1. 
3.  What  is  a  Pound  sterling  in  cents? 

36  X  12  =  240  pence,  which  x  2.027  7* —  =  $4  86.65. 


POEEIGN   MEASURES   OF   VALUE. 

"VST'eiglit,  Fineness,   and.    ]Mint    "Values    of  Foreign 

Silver  and.   Grold   Coins, 

By  laws  of  Congress,  Regulations  of  the  Mint,  and  Reports  of  its  Directors. 

Current  Value  of  silver  coins  is  necessarily  omitted,  as  the  value  of 
silver  is  a  variable  element.  Hence,  in  order  to  compute  current  value 
of  a  silver  coin,  the  price  of  fine  or  a  given  standard  of  silver  being 
known, 

Proceed  as  per  above  rule  to  compute  value  of  coins. 

The  price  of  silver  should  be  taken  as  that  of  the  London  market  for 
British  standard  (925  fine),  it  being  recognized  as  the  standard  value, 
and  governing  rates  in  all  countries. 

ExAMPLB.— If  it  is  required  to  determine  value  of  a  Mexican  dollar  in  cents. 

Weight  867.5  oz.  .903>In«.    Value  of  Silver  in  London  52.75  pence  per  ounce  => 
106.9616-4-  eenti. 

nien     7-5Xy>3  _^  g^^  ^^__  ^^  J06.9616  x .  846  867  =  90, 5822  cents. 
925 


40 


FOREIGN    MEASURES    OF    VALUE. 


"W^eiglit    and    IMint    "Values    of   IHoreign    Coin. 

(Value  is  bused  on  their  Value  on  April,  iqoiJ 

Countries  given  in  Italics  Itave  not  a  National  Coinage. 

V  ALOB. 

Gold. 
U.S. 


Coontry  tod  Denomination. 


Arabia. 

Piastre  or  Mocha  Dollar. .... 
Argentine  Republic. 

Dollar  =  loo  Centisimos. . . . 

Peso , , . 

Australasia. 

Same  aa  Britlah. 
*  Australia. 

Sovereign,  1855 

Pound,  1852 

Austria. 

Kreutzer  (copper) 

Florin,  new 

Dollar,    "    

4  Florins. 

Ducat 

Souverain 

Belgium. 

Same  aa  France. 
Bolivia. 

Centena 

lloliviano 

Doubloon,  1827-36 

Brazil. 

Rei 

Milreis 

Double  Milreis 

20  Milreis,  1854-56 

Moidore,  4000  Reis 

Canada. 

Mil,  sterling. 

Cent     "      

2o  Cent,  currency 

25    *' 

Penny 

Shilling 

Dollar,  sterling 

4    "  :^2o killings,  currency 

Pound  '• 

Cape  of  (jood  Hope. 

Same  as  British. 

Central  America. 

4  Reals , 

Colon 

2  Escudos. , 

Doubloon  ante  18^4 
Chili.  ^ 

Centaro 

Dollar,  new 

10  Pesos 

Doubloon 

China. 

Cash,  Le 

jZoCents, I^eang.  ,.. 

Tael  Hankow 

Cochin  China. 

Mas,  60  Sapeks 

xo  Mas,  I  Quan 


u 
n 


Weight. 


Oz. 


•256.5 
.281 


•397 
•596 
.104 
.112 
.363 


.867 


.028.8 
.83 

•575 
.261 


•15 
.1875 


.027 

209 
869 


•492 
867 


.087 


Fine- 
ness. 


Thous's. 


916 
916.5 


900 
900 
900 
986 
900 


870 

916.66 
918.5 
917-5 
914 


925 
925 


875 

853-1 
833 


900 
870 


901 


Pure 
Silver 

or 
Gold. 

Current 

or 
Nominal. 

Grains. 

CenU. 

— 

8314 

•^— 

50.69 

• 

— 

— 

171.47 
257-47 

-456 

— 

"*■* 

362.06 

•75 

12.67 
393-6 

•547 

66.6 
8325 

.1 

1. 014 

I  52 

— 

.^_ 

"~ 

— 

IX.  34 


3798 


14 


-      6.75      - 


%   c. 


•96s 


4-85.7 
5- 32. 37 


345 

I- 93- 49 
2.28.3 

6.75.4 


•451 
15-59-3 

■54-59 

zo.90.6 
4.92 


British. 


iC  a.  d. 


—     I 


3- 97- 43 
3-99-97 


•46s 
3.68.8 
14.96.39 


•365 

9.15.4 
X5-59-3 


19  11.5 
X  I  10.5 


711 
9  4.6 

7  9'i 


37 


3  4  I 


4 
o 


26.92 

9.84 
2.63 

•05 
•5 


4 
z6 

z6 


•75 

2 

4 
S.25 


.682 


15 

X 


»  «7 
3  4 


-  I  67.5s  I 


X.88 
5-97 


7-45 

I 

■07 


3-33 
9-33 


40 


FOREIGN    MEASURES    OF   VALUE. 


Weigh-t    and    IVIint    "Values    of   IHoreign.    Coin. 

(Value  is  based  on  their  Value  on  April,  igoij 

Countries  given  in  Italics  iiave  not  a  National  Coinage. 


Country  «i)d  DenomlBation. 


Arabia. 

Piastre  or  Mocha  Dollar. . . . . 
Argentine  Republic. 

Dollar  =  icK>  Centisimos. . . . 

Peso 

Australasia. 

Same  as  British. 

*  Australia. 

Sovereign,  1855 

Pound,  1852 

Austria. 

Kreutzer  (copper) 

Florin,  new 

Dollar,    «    

4  Florins 

Ducat 

Souverain 

Belgium. 

Same  at  France. 
Bolivia. 

Centena 

Boliviano 

Doubloon,  1827-36 

Brazil. 

Rei 

Milreis 

Double  Milreis , 

20  Milreis,  1854-56 

Moidore,  4cnx>  Reis 

Canada. 

Mil,  sterling. , 

Cent     "     , 

20  Cent,  currency 

25    " 
Penny- 
Shilling 
Dollar,  sterling 


Welgbt. 


(( 


—20  killings,  currency 


Pound 
Cape  of  Good  Hope. 

Same  as  British. 

Central  America. 

4  Reals 

Colon 

2  Escudos 

Doubloon  ante  1834 
Chili. 

Centaro  

Dollar,  new 

10  Pesos 

Doubloon 

China. 

Cash,  Le 

jioCents, Leang.  ... 

Tael  Hankow 

Cochin  China. 

Mas,  60  Sapelcs 

xoMas,  I  Quan 


Oz. 


.256.5 
.281 


•397 

•596 
.104 

.112 
.363 


.867 


.028.8 
.83 

.575 
.261 


15 
.1875 


.027 

209 
869 


.492 
867 


.087 


Flne- 
uesa. 


Thous's. 


Pure 
Silver 

or 
Gold. 

Graint. 


Current 

or 
Nominal. 


916 
916.5 


900 
900 
900 
986 
900 


870 

916.66 
918.5 
917-5 
914 


925 
925 


171.47 
257-47 


362.06 


12.67 
393-6 


66.6 
8325 


875 

853.1 
833 


900 
870 


901 


"•34 


3798 


CenU. 

8314 
50.69 


■456 


•75 


■547 


.1 

1. 014 


I  52 


14 


6-75 
67.52 


V  A  L  U  B. 

Gold. 


U.S. 


>    c. 


British. 


•965 


4-85-7 
5-32-37 


34-5 

1.93-49 
a.  28. 3 

6.75.4 


•451 
15-59-3 

•54-59 

ia9o.6 
4.92 


£  ■.  d. 


397- 43 
3-99-97 


•465 
3.68.8 

14-96-39 


.365 

9.15-4 
15.59-3 


.682 


1911.S 
I  10.5 


9   4-6 
7   9-> 


37 


341 


4 
o 


26.92 

9.84 
2.63 

•05 
•5 


4 
16 

z6 


•75 

2 

4 
5. 25 


15 

I 


I  X7 
3   4 


X.88 

5-97 

.45 

7-45 

z 

.07 


3-33 
9-33 


FOREIGN   MEAStJEES   OP  VALUE. 


41 


"Weiglit   and  IMint   Values. 


Coantry  and  Denomination. 


Cuba. 

Same  B8  Spain.     Peso 

Ck)lombia. 

Centaro '. 

Peso,  new 

4  Escudos 

Doubloon,  old 

Gofita  Rica. 

Sanaa  aa  Mexico. 

Denmark. 

Mark,  16  Skilling 

Crown 

2  Rigsdalcr 

10  Thaler 

East  Indies. 

See  Hindostan  and  Japan. 
Ecuador. 

Centaro 

Sucre 

England. 

Penny 

Groat 

Shilling,  new 

*'       average 

Half  Crown 

Florin 

Sovereign  or  Pound,  new  . . . 
"  "    average. 

Egypt 

Piastre,  40  Paras % . . 

Guinea,  Bedidlik 

Pound 

Purse,  5  Guineas 

France. 

Centime 

Sou,  5  Centimes 

Franc,  100  Centimes 

5  Francs 

20  Francs,  Napoleon,  new . . . 

35  Francs  20  centimes =£1  Stg. 
Germany. 

Groschen,  10  Pfenning 

Mark,  zo  Groschen 

10  Marks 

Thaler 

Ducat 

Greece  and  Ionian  Islands. 

Same  a«  France. 

Drachma,  100  Lepta 

5  Drachmaa , 

20  Drachmas. 

Pound 

Guatemala. 

Sam*  as  Mexico. 

Chiiana,  British,  French,  and 
Dutch. 

Same  ac  that  of  tbeir  Countries. 

Hanso  Towns. 

Mark 

Holland. 

Cent 


Weight. 


Oz. 


•433 
.867 


.025 
.927 
.427 


.304 
.060.4 
.182.5 
.178 

•454-5 
.363-6 
.256.7 
.256.2 

.04 

.275 

.275 

1375 

.032 
.161 
.i6x 
.804 
.207.5 


.012.8 
.128 

•595 
.112 


.010. 4 
.719 
185 


.012.8 


Fine- 
ness. 


Thous's. 


844 
870 


900 
877 

895 


92s 

26.82 

924.5 

80.99 

925 

79-03 

925 

2or.8 

925 

161.44 

916.5 

— 

916.5 

— 

755 
875 
875 
875 


900 


900 
900 
900 
986 


900 
900 
900 


900 


Pure 
Silver 

or 
Gold. 


Grains. 


390-23 


14-5 


6955 
347-76 


25704 


310.61 


Current 

or 
Nominal. 


Cents. 


I. ox 


8-94 


1. 01 


2.024-" 


.2 
1. 01 


2.38 


Value. 

Gold. 


U.  S. 


$    c. 
.926 

.451 

7-55-5 
15- 59- 3 


26.8 
7.90 

.451 


4.86.6s 
4.85.1 

4-9 
5.  0.52 

4-94-3 
25.  2.6 


»9-3 
9645 
3.85-8 


23.8 
2.38.24 

2.28.38 


iy-3 

.344.2 
5.  6.11 


British. 


£  B.   d. 


I  II    0.58 
3    4    I 


439 
13.22 

I  12    5.6 


100 
100 


I    o    6.84 
I    o    5.3 
5    2  ia2 


.1 
•5 


15  10.26 


1.175 
IX.  74 

9    9-5 
9    4-63 


14    1-75 
X    o    9.6 


■405 


23.8 


1 1. 7, 
.3 


•  a.027  71  cents. 


42 


FOREIGN  M£ASUA£8  OF  VALUB. 


"Weiglit  -and   Miint  Valiies. 


CooBtry  Mid  DenominaUoo. 


Holland. 
Florin  or  Guilder,  loo  cents. 

lo  Guilders 

Hindostao. 

Rupee 

Honduras. 

Siim«  as  Mazico. 
Italy. 

Saroa  as  France. 

Lira,  loo  Centimes 

Scudo 

Indian  Empire. 

Pic,  nominal 

Anna     '•      

Rupee,*  i6  Annas 

lo  Rupeesj  and  4  Annas  .... 

Mohur,  15  Rupees 

Japan. 

Yen 

Itzebu,  new 

Yen,  100  Sen 

it        tt 

Cobang,  old 

*'      new 

20  Yen 

Java. 

Same  aa  Holland. 
Liberia. 

U.  S.  Cnrrency. 
Malta. 

X2  Scndi  =  I  Sovereign 

Mexico. 

Peso,  new 

*'    Maximilian 

Doubloon,  new 

30  Pesos,  Republic 

Morocco. 

Ounce,  4  Blankeels 

xo  Ounces,  Mitkeel 

Naples. 

Scudo 

6Ducati 

Netherlands. 

Same  aa  Holland. 

New  Brunswick. 

Same  aa  Canada. 

Newfoundland. 

Same  aa  Canada. 

New  Granada. 

Dollar,  1857. 

Doubloon,  Popayan 

Norway. 

Alike  to  Denmark. 

Mark,  24  Skillingen 

Nova  Scotia. 

Same  aa  Canada. 

Persia. 

Keran,  20  Shahis 

10  Keran,  Toman 

Paraguay.   Foreign  coins. 

*  .093  76  of  a  £ 


Weight. 

Fine- 
neaa. 

Pure 

Silver 

or 
Gold. 

Current 

or 
Nominal. 

V  ALOS 
G( 

U.S. 

Oz. 

Thoa8»». 

Grains. 

Cents. 

♦    c. 

.021.6 
•215 

899 

— 

— 

40.2 
3- 99- 7 

•374 

916.5 

164.53 

— 

-^ 

.16 
.864 

835 
900 

65.12 
37324 

^ 

19.3 

•375 
•375 

916.5 
916.5 

i67 

.25 
3-03 

32.9 
4.86.65 
6.84.36 

.279% 
.866.7 
.053.6 
.289 
.362 
1.072 

890 
900 
900 

572 
568 
900 

119. 19 

374-4 

I 

75-3 

99.72 

3- 57- 6 
4.44 

19.94.4 

_ 

__ 

^.^ 

■ 

4-8665 

.861 

.867.5 
1.081 

902.5 

870.5 
873 

37298 

— 

49.0 

15.  6.x 
19- 51- 5 

.844 
•245 

830 
996 

336.25 

— 

5-  4^4 

.803 
.867 

896 
858 

-_ 

. 

15378 

— 

— 

— 

a  1. 63 

— 

^     ^ 

^_^ 

. 

.083 

"" 

"" 

~ 

•83 

dritiah. 


JC  8.   d. 

X    8 
x6    5.ti 

X  xa5 


.125 

15 

o   o 
8    X.5 

.498 


4    1.18 
14    8.35 
18    2.96 
4    X  XX.6 


X    o   o 


3  4    J-88 

4  o   a.4 


X    o   8.75 


3    3   3-39 


xa66 


Stg.,  nominal  raJoe  =  3  shillings  sterling. 


FOEEIGN  MKASUBBa   OF   VALDE. 


43 


Weigh.!    and   TVIint  "Values. 


Country  and  Denomination. 


Peru. 

Dollar,  1858 

Sol 

Doublooo,  old 

P0rtug.1L 

Corda,  1838,  loooo  Reis  . . . . , 

xoo  Reis 

Roamania. 

2  liei •. . . . 

Russia. 

Ck>pek 

xoo  Ck>pek,  Rouble 

5  Roubles 

Sandwich  Islands. 

U.  S.  Currency. 

Sardinia. 

Lira 

Spain. 

Centimo 

xc»  Centimo,  Peseta 

Dollar,  5  Peseta 

100  Reals 

10  Escudos 

3oRealsvellon8=i  U.S.  Dollar. 
Sweden. 

Riksdaler,  100  Ore 

Rlxdollar 

Carolin,  10  Francs 

Switzerland. 

Sam«  aa  Franca. 
St  Domingo. 

Gomdes,  100  Cents. 

Tunis. 

Piastre,  16  Kanibs , 

5  Piastre 

25  Piastre. 

Turkey. 

Piastre,  40  Paras 

20  Piastre 

xoo  Piastre,  Me<Uidie 

Tuscany. 

Zecchino,  Seqain 

Tripoli. 

20  Piastres,  Mahbnb 

Uruguay. 

Dollar,  100  Centimea 

West  Indies,  British. 
SaaM  aa  England. 

Venezuela. 

Cenlbro. 

BoliTar,  i  Franc. '...., 


Weight. 


Oz. 

.766 

.867 

.308 
•095 

•322 


.667 

.21 


.16 


.16 

.8 

.268 

.270.8 


•273 
1.092 

.104 


•5" 
.161 


•77 
.231 

.112 


Fine- 
new. 


Thous's. 

900 

868 

912 
912 

835 

500 

875 
916.6 

835 

83! 
900 
896 
896 


750 

750 
900 


898.5 
900 

830 
915 

900 


Pure 

Silver 

or 
Gold. 


Grains. 
341.01 


129.06 


277-73 


65.12 


6413 
345-6 


98.28 
393- 12 


220.38 


306.77 


!MCetn  oreind.a« 


Current 
or 

Nominal. 


CenU. 


77 


.193 


6-33 
11.83 


74.8 


V  AI.  VI 

G 
U.S. 


old. 
Britlah. 


%    c. 


.487 
15- 55-7 

xo.81.78 
Z0.8 


51-5 
2.90 


19-3 

99.6 

4.96.4 

5-  >-5 


I- 93- 5 


2.99.5 

.044 
.88 

4-36.9 

2-3»-3 

-76 

»-03-4 


19.3 


£  s.    d. 

3     3  11.29 

2    4    5S 


38 


10.14 


.09s 

I    o    4.8 
I    o    7.32 


7  "42 

3-125 
_5-83 
12    3.7 

18    o 
9    6.1 
3    0-89 


9-5 


Frahck. — Bronze  coins  9.5  copper,  4  tin,  and  x  zinc. 

Hansi  Towns.  —Monetary  system  same  as  that  of  German  Empire. 

SwiTZERLAVD. — The  Centime  is  termed  a  Rappe. 

Spain. — 25  Peseta  piece  is  i9».  9.5^.  Stg. ;  Real  vellon  was  2.5(1  Stg. 

Italy. — All  coins  same  weight  and  fineness  as  those  of  France. 

Malta. — 7  Tari  and  4  Grani  =  i  Shilling  Sterling. 

BoYPT.— A  Para  =  .061  sd.  Sterling,  and  97. 22  Piastres  =  i  Sovereign. 

tsfj>wx  Empiimj.— X  Lac  Rupee8=£xo 000  Sterling.    In  Ceylon,  Rupw=:  109  ^^w 


44 


ENGLISH  AND  FRENCH  MEASUBES  AND  WEIGHTS. 


ENGLISH  AND  FRENCH  MEASURES  AND  WEIGHTS. 

MEASURES   OF   LENGTH. 

English. — ^Imperial  standard  yard  is  referred  to  a  natural  standard, 

which  is  a  pendulum  39.1393  ins.  in  length  vibrating  seconds  in  vacuo 

in  London,  at  level  of  sea ;  measured  between  two  marks  on  a  brass 

rod,  at  temperature  of  629, 

NoTc  -  In  consequence  of  destroctlon  of  standard  by  fire  in  1834,  and  difflcuiUy 
of  repIacAg  it  by  measarement  of  a  pendulum,  the  present  standard  is  held  to  be 
about  I  part  in  17  230  less  than  that  of  U.  13^.  equal  to  3.67  ina  in  a  mile 

Miiscellajieous. 

Land. — ^Woodland  pole  or  perch  or  Fen ^  iS/eet. 

Forest  pole =  21    ''* 

^rish  mile =  2240  yards.    \    Scotch  mile =  1984  yards. 

Sea. — ID  cables,  or  1000  fathoms,  or  6080.27  feet,  or  x.1516  Statute  miles. 
I  A  dmiralty  or  Nautical  mile  or  knot  ^  (>d8ofeet. 

3  mil&t^=  I  league.  60  Nautical  or  69.094  Statute  miles  or  20  Leagues 
=  I  degree. 

Mean  length  of  a  minute  of  Latitude  nt  mean  level  of  the  sea=:  1.1451 
Hatule  miles. 

Nautical  mile  is  taken  ap  length  of  a  minute  z±  the  Equator. 

Nautical  fathom  is  loooth  part  of  a  nautical  mile,  and  averages  about 
x>i25  l(Miger  than  the  common  fathom. 

French. — Standard  Metre  or  unit  of  measurement  is  defined  as  the 
ten  millionth  part  of  the  terrestrial  meridian,  or  the  distance  from  the 
Equator  to  the  Pole,  passing  through  Paris.  Actual  standard  is  a  plat- 
inum metre,  deposited  in  the  Palais  des  Archives,  Paris. 

I^etrio   XjengtU   ixx   InoUes,  ITeet,  etc. 


Denominntioo. 

Hetrw. 

Inebw. 

Feet. 

Yards. 

Mile*. 

I  Millimetre 

.cox 

.039  37 

— 

__ 

_^ 

I  Centimetre 

.ox 

•393  7 

— 

__ 

_„ 

I  Decimetre 

.X 

3-93704 

— 

— 

— _ 

X  Mbtrb  

f 

39-37043 

3.28087 
32.80869 

1.09362 
xa93623 

X  Dekametre 

xo 

_„ 

X  Hektometre 

ICX3 

— 

328.0869 

109.36231 

— _ 

I  KlLOMSTRB 

xooo 

— 

328a  869 

X  093.623 1 

.62x38 

X  Myriametre 

10  000 

— 

— 

xo  936. 231 

6.2x377 

Non.— For  length  of  metre  see  p.  27. 

Old  ACeasure. 

I  Toise =  1.949  metres. 

I  Mille =  1.949  kilometres. 

I  Noeud  (knot).  ^  1.855 


u 


1  Terrestrial  league = 4.444  kilometres. 
I  Nautical  league  .  =  5.555         " 
I  Arpent ^900  sq.  loists. 


MEASURES   OP  SURFACE. 
English. — Same  as  that  of  United  States  of  America. 

JVIisoellaixeoiis. 

Builders,      1  superficial  part =  1  square  inch, 

12  parts =  1  inch. 

12  mches =  square  foot, 

^oarei^.— Boards  7  inches  io  width  are  termed  battens,  9  mches  deals,  and 
13  inches  planks. 


AKGLISH  AND  FBENOH  MEASURES  AND  WEIGHTS.      45 


French. 

IMetrio  Sixrfkoea  izx   Sq^uare   Inolxes,  Feet,  etc. 


Daaomination. 


I  Square  millimetre 

I 
z 

X 

z 

X 
X 

z 


tt 
(( 
(t 
tl 
(( 

H 


centimetrd 

decimetre 

Metre  or  Centiare  .... 
dekaroetre  or  are. .... 
hektometre  or  hectare 

kilometre 

myriametre* i 

*  Equal  98.6x0  908  *g.  m*I«$. 


Sq.  InchM. 


.00155 
.155003 
15.500309 
1 550030  916 


Sq.  Feet. 


.  107  641 

10.764104 

1076.410358 


Sq.  Yards. 


1.196  01 

119.60115 

1x960.11509 


Sq.  Aeraa. 


.094711 
2.471 098 
247. 109  8x6 
24710.98x6 


I  square  inch 
I  toise 

I  arpent  (Paris) 
I  arpent  (woodland) 


Old  SyBtexxx. 

■  i'i35  87  inches, 
•  6-394  6/ec<. 


=  900  square  toises  ^  4089  s^are  yards. 
=  100  square  royal  perches  =  6108.34  ^^ 


6108.34  square  yardi. 


MEASURES   OP  VOLUME. 

Imperial  galhn  measures  277.123  cube  ins.,  but  by  Act  of  Parliament 
1825  its  volume  is  277.274  cube  ins.,  equal  to  10  lbs.  avoirdupois  of 
distilled  water,  weighed  in  air,  at  temperature  of  62^,  barometer  at  30 
inches.    6.2355  gallons  in  a  cube  foot. 

Imperial  bushel^  18.5  his.  internal  diameter,  19.5  external,  and  8.25 
in  depth,  contains  2218.192  cube  ins.j  and  when  heaped  in  form  of  a 
right  cone,  at  least  .75  depth  of  the  measure,  must  contain  2815.4872 
cube  ins.  or  1.6293  ciAefeet. 

Grain. — i  quarter  =  8  bushels  or  10.2694  cube  feet. 

Vessels.  —  I  ton  displacement  =  35  cube  feet;  1  ton  freight  by  measure- 
ment =  40  cube  feet. 

I  ton  internal  capacity  :=  100  cubefeet^  and  i  ton  ship -builders  =  94 
cube  feci. 

English  standard  No.  5  is  .008  grain  heavier  than  the  pound,  and  U.  S.  pound  U 
<x>x  grain  lighter  than  English. 

Wixie   aiicl    Spirit   IMeasures.  * 

4  quarts  (231  cube  ins.) =  .8333  Imperial  gallon, 

10  gallons =1  anchor. 

18      **        (15    imperial) =1  runlet, 

31.5   "         26.25      "         , . .  =  1  barrel. 

43      "  35  **         t . .  =  I  tierce. 

63      "  52.5        **        =1  hogshead. 

84      "         70  *•        =1  puncheon. . 

Z26      ^        105  *^        ^  I  pipe  or  butt, 

apipesor    1 

3  puncheons/ 

A.le   and.   Seer  Aleasures. 


Imp'l  gall's. 

4  -quarts  (38a  cube  ins.)  . .  =    1.017 

9  gallons  =  I  firkin =  9.153 

3  firkins^  I  kilderkin  . . .  =  18.306 


Imp']  call'* 

3  kilderkins  =  I  barrel  =r  36.613 

54  gallons  =  I  hogshead  =:  54.9x8 

108      "      =1  butt . . . .  =  109.836 


46      ENGLISH  AKD  FBENCH  MEASURES  AKD  WEIGHTS. 


J^potlieoaries*   or  Fluid   Mieasixres. 


I  drop =  1  grain. 

60  drops ^  I  drachm. 


4  drachms =:  i  tablespoon, 

3  ounces  (875  grains)  =  i  wineglass. 


Coal   Afeas-urea. 


50  pomids  .... 

00  . . . . ' 

9  bushels  . . . . : 

80  or  84  pounds : 

90  or  94      " 
93  pounds  .  I . . : 
3  neaped  bush. : 
10  sacks : 


;  I  cube  foot, 
:  I  bushel. 
I  vat, 

f     I  London  or 
(  Newcastle  bushel, 
1  ConUsh         " 
I  {Velsh  bushel, 
I  sack. 
I  ton. 


12  sacks : 

J  chaldron : 

5.25  chaldrons  . . : 
I  London  chaldron : 
I  Newcastle  " 

I  ton : 

I  room : 

21  chaldrons : 

I  barge  or  keel . . : 


;    I  chaldron. 
58.6548  cube  ft. 
:    I  room, 
:  26.5  cwts. 

S3       " 

44.5  cube  feet, 

;   7  tons. 

I  score, 

\  21.2  tons. 


M!iscellaTieou.s. 


X  last  com 

I  ton  water 

I  dicker  hides  . . . 

I  last  hides 

I  barrel  tar 

6  bushels  wheat  . 
I  clove .*. 


X  score  .... 
I  sack  flour . 
X  truss  straw 


-.^Inuhds, 
.  ^5.g  cube  feet. 
:  10  skins. 
:  20  dickers. 
;  26^5  gcUlons. 

I  sack  flour. 
;  T  pounds, 
:20 
28.3 
=  36 

35.9  cube  feet 


11 


1  truss  old  hay 
X  "  new  "  , 
X  bushel  oats  . , 
X  "  barley 
X  "  wheat , 
X  cube  yard  new  hay 
X    "       "     old 

X  quintal 

I  boU 

I  sack  wool  . . . 

I  ton  water. 


t( 


:    50  ponn  /j?. 
;   60 
40 

47 
60 

84 
126 
100 
X40 
364 


4. 

t( 

(I 
(• 
4i 
(i 
U 

(* 


Liquid. 


I  wine  gallon 
X  beer      " 

X  litre 

I  gallon  .... 
I  cube  foot . . 
I  anker  .... 


23X  cube  ins, 
282    "      " 

.220  og  gallon. 

4.544  litres. 

6.232X  gallons. 

8.333 


(t 


X  hogshead  wine  . . 
X  "  beer . . . 
X  puncheon  wine  . . 
X  pipe  or  butt  wine 
X  "  "  "  beer 
X  tun 


52.5     gallons. 

54.918 

70 

105 
X09.836 

3IO 


n 
u 
u 


I  ton  water  62°  =  224  gallons. 
Builders. 


I  solid  part 

X2    *•''     parts 

X2  "inches" 

X  load  timber,  rough 
X    "       "       hewn 

I    "    lime 

I    "    sand 


X2  cube  ins, 
1  *'  inch." 
1  cube  foot. 

40    "    feet. 

50    "   '  " 

32  bushels. 

36 


14 


X  square 

X  bundle  laths . . . 
X  rod  brickwork  . 
X  rood  masonry  . 
Batten,  in  section 
Deal,  *  " 
Plank,   "       " 


:=  xcx)  itq.feet. 
=  120  laths. 
=  306  cube  feet. 
=  648     "       " 
^   7  X  2.5  ins. 

=  9X3 
=  11  X  3 


IMetrio   Volumes  in   Cube   Iiiclies,  ITeet,  etc. 


D«noRiin«tloiia. 


Centilitre . , 
Decilitre.., 

Litre* 

Dekalitre., 
Hectolitrei , 
Kilolitre.., 


Litres. 

OilU. 

PlDto. 

QaarU. 

Galloni. 

BQshcU. 

01 

.0704 

.0176 

— 

— 

.1 

.7043 

176X 

— 

— 

I 

7.0429 

1.7607 

o'S^l 

.2201 

— 

10 

— 

— 

&8036 

2.3009 

.27511 

100 

— 

— 

— 

22.0091 

2-751  «3 

1000 

— 

— 

r— 

220.0908 

27-5"  35 

Qunrton, 


*  Eoaal  6Z.03S  24  crUn  ina. 


ENGLISH  AND  FRENCH  MEASUBBS  AND   WEIGHTS.       ^J 


"Wood.   M!ea8xire. 


I  Stere  or  cube  metre  :=  35.3150  cube  feet  or  1.308  cube  yards. 
I  Voie  de  bois  (Paris)  :x  70.6312  cube  feet ;  i  voie  de  charbon  (charcoal) 
:  7.063  cube  feet ;  i  corde  =  4  cube  metres  =  141.26  cube  feet. 


MEASURES   OF  WEIGHT. 


British.— I  Troy  grain      =     .003  961  cube  inches  of  distilled  water. 
I  Troy  pound     =22.815  689  cube  inches  of  water. 
I  Avoir,  drachm  =  27.343  75  Troy  grains. 


16  drachms,  or 
437-5  grains 

16  ounces,  or 
7000  grains 


^  I  ounce. 


> =  1  pound. 


A.voix*d.upois. 

8  pounds 

14 
28 

112 


20  hundredweiorhts =  1  ton 


=  I  stone  (for  meat). 
=  I  stone. 
=  I  quarter. 
=  I  cwL 


The  ffraiuy  of  which  there  are  7000  to  the  pound  avoirdupois,  is  same  as 
Troy  grain,  of  which  there  are  by  the  revised  table  7000  to  tne  Troy  pound. 
Hence  Troy  pound  is  equal  with  the  Avoirdupois  pound. 
In  Wales,  the  ir(m  ton  is  20  cwt.  of  120  lbs.  each. 

Troy. 


24  grains =  i  dwt. 

20  pennyweights,  or) 
437.S  gnuns       j 


16  ounces =  1  pound. 

25  pounds =  1  quarter. 

4quarters,  or  100  pounds  :=  i  cwt. 

By  this  are  weighed  gold,  silver,  jewels,  and  such  liquors  as  are  sold  by 
weight.  ■ 

The  old  Troy  ounce  to  the  Avoirdupois  ounce  was  as  480  grains,  the 
weight  of  the  former,  to  437.5  grains,  weight  of  the  latter ;  or,  as  i  to  .9115. 

.A^potlxecar  ies .  * 
437.5  grains  =  i  ounce.         |  16  ounces  =  i  pound. 

French. 

Aletrio   "Weiffhts  in   A-voirdupols. 


Deoomlnatioiia. 


Milligramme .. 
Centigramme. . 
Decigramme  .. 

Oramme. 

Dekagramme.. 
Hektogramme. 
Kilogramme^ . . 
Myriagramme . 

Quintal 

Millier  or  Ton. . 


GramoiM. 


001 
01 

.1 


Graint. 

OuncM. 

01543 

— 

.15432 

— 

I  543  23 

J  5- 432  35 

154-32349 

•3527 

»  543234  87 

35274 

X5  432. 348  74 

352739 

..^ 

— 

Poands. 


X 

10 

100 

1000 

lOOOO 

100  000 
1000  000 
t  Kilogramme  =  3  26*.  3  oc.  4  draekmMf  10.4734  graint. 


.  220  ^6 

2.20462 

22.04621 

220.462  12 

2204.621  25 


Ton. 


.9842 


NoT& — For  the  values  of  the  prefixes,  as  Milli,  Cent),  etc.,  see  p  27. 

Old.   System. 


z  grain  . .  =:   0.8188  grains  Troy. 
1  gross  . .  =  58.9548  " 


I  ounce  ^  1.0780  oz.  Avoirdupois, 
I  livre   =  1.0780  lbs. 


*  As  by  revised  PharmacopoBia. 


48 


FOBEIGN   MEASURES   AND   WEIGHTS. 


A-raloia,   Bassora, 
!N£oolia. 

Foot,  Arabic i. 

Covid,  Mocha. 19 

Guz,        "     as 

Kassaba 12. 

Mile,  6000  feet 2146 

Baryd,  4  farsakh 21 120 

Feddan 57  600 

Noosfla,  Arabic 138 

Gudda 2 

Maund 3 

Tomand 168 

Other  Measures  like  those  of 


FOBEIGN  MEASURES   AND   WEIGHTS. 

It  being  wholly  impracticable  to  give  all  the  denominations  of  measures 
and  weights  of  all  countries,  the  following  cases  are  selected  as  essential  and 
as  exponents. 

With  parent  countries,  as  England,  France,  etc.,  their  denominations  ex^ 
tend  to  their  colonies  and  dependencies.  Thus,  the  denominations  of  England 
extend  to  Canada,  a  large  [M)rtion  of  the  East  ^nd  West  Indies,  and  parts  of 
South  America,  and  those  of  France  to  a  part  of  the  West  Indies,  Algiers,  etCr 

A.'byssinia. 

Pic,  Stambouili 26.8    ins. 

"   geometrical 30.37  " 

Madega 3.466  bush. 

Ardeb 34.66      " 

"     Musuah 83.184    " 

Wakea. 400  grains. 

Mocha X  Troy  oz. 

Rottolo 10    "     ** 

Also^  same  as  in  Egypt  and  Cairo. 

.A.fVioa,  A^lexandria,  Cairo, 
and  Ifigypt. 

Cubit 2a65  in& 

Derah 25.49  " 

Pic,cloth. 26.8     •» 

'^   geometrical ^9- 53   '* 

KaRsaba,4.73PicB 11.65  ft 

Miie 2146  yds. 

Peddan  al-risach 553  48  acre. 

Roobak 1.684  gails. 

Ardeb 4.9  bush. 

Rottol ,     .98211b. 

Distances  are  measured  by  time. 
A  Maragha=  15  D^rcghd  or  i  hour. 

A.leppo   and.   Syria. 

Dra  Mesrour 21-845  >°8. 

Pic 26.63     " 

Boad  Measures  are  computed  by  time. 

iVlgeria. 

Jlob,  Turkish 3. 11  ins. 

Pic,        "        .,...24.92  «* 

"   Arabic 18.89  '* 

Also  DecimaX  System. 

A.lioaute. 

Palmo 8.908  ins. 

Vara.. 35632  " 

A.znsterdaxn. 

Voet 1 1. 144  ins. 

Ei 21.979   '^ 

Faden 5-  57  ft. 

Lieue 6.383  yds. 

Maat 1.6728  acrea 

Morgen 2.0005    ** 

Vat 40  CUD,  fu 

Also  Decimal  System. 


and 

.0503  t^ 
ins. 

3  ft. 
yda 

sq.  ft 
cub.  ina 
galls. 

lbs. 

(( 

Egypt 

A.rg;entine    Con  federation, 
Paraguay,  and  Uruguay. 

Fanega 1.5  bush. 

Arroba. 35-35  1^ 

Quintal 101,4     *' 

Also  Decimal  System  in  Argentine  Con- 
federation and  Para^iuay. 

.A.ustralasia. 

Land  Section 80  acrea 

Other  Measures  same  as  English. 

i\.ustria. 

Zoll 1-0371  iQ& 

Fuss xo37ifL 

Meile. 24000  ft. 

Klafter,  quadrat. 35-854  sq.  yd& 

Jochart 6.884      " 

Cube  Fu8S...« I-II55  cub.  (t 

Achtel 1.692  galls. 

Eimer X2.774    " 

Viertel 3- "43  " 

Metze Z.6918  bush. 

Unze 8642  graina 

PAind  (1853, 500 grammes),  1-2347  lbs. 

Centuer 123.47 

Also  Decimal  System. 


t( 


AntAverp. 

Fuss 11-275  ins. 

EUe,  cloth 26.94     " 

Ck>rde 24.494  cub.  ft. 

Bonnier 3-2507  acres. 

Also  Decimal  System, 


Babylon. 

Pachys  Metrios 18. 205  ins 

Baden. 

Fus& Z1.81  Ins. 

Klafter 5-9055  ft^ 

Kuthe 9-8427  " 

Stunden 4860  yds. 

Moi^eo 8896  acre. 

Stutze 3. 3014  galla 

Malter 4. 1268  bush 

PAind z.  Z023  lb& 

Also  Decimal  System. 


FOBEION  MBASUBES   AND   WEIGHTS. 


49 


(( 


14 

ti 


3agdad,. 
Gas 31.665  in& 

Bafbary   States. 

Pic,  Tunis  linen 18.62  ins. 

"        "     cloth .....26.49  " 

**    Tripoli 8i'75 

Batavia. 

Foot 12.357  ins. 

CoTid.... 27 

El 27.75 

Savaria. 

Fuss 1 1'49  ii^s* 

Klafler 5-74536  ft 

Ruthe 3.i9i8yd8. 

Heile 8060      " 

Ruthe,  quadrat 10. 1876  sq  yds. 

M orgen  or  Tagwerk 8416  acre. 

Klafter,  cube 4.097 cub. yds. 

Eimer 15.05856  galls. 

ScheffeL 6.119         '' 

Metze. 1.0196  bush. 

Fnind 8642  grains. 

Also  Decimal  System, 

Selgiuxu. 

Heile 2.132  yds. 

AUo  Decimal  System. 

Benares. 
Yard,  Tailor's. 33  ins. 

Bengal*  Bom'bay,  and    Cal- 
outta. 

Moot 3  ins. 

Span 9  " 

Ady,  Malabar 10.46  ins. 

Hath 18 

Guz,  Bombay 27        *' 

'*    Bengal ....36        ** 

Corah,  minimum 3>4i7  ^ 

Ck)ss,  Bengal 1.136  miles. 

''    Calcutta Z.2273   '^ 

Kutty. 9. 8x75  sq.  yds. 

Biggab,  Bengal .3306  acre. 

*'      Bombay 8x14    '^ 

Seer,  Factory 68  cub.  ins. 

Covit,  Bombay. 12.704  cub.  ft 

Seer,  Bombay. i.  234  pinta 

Parah 4.4802  galla 

Mooda 112.0045    '^ 

Liquids  and  Cfrain  measured  by  weight. 

Boliexuia. 

Foot,  Prague xz.88  in& 

^     Imperial 12.45 

Aiso  same  as  Austria. 


n 


Bolivia,  Cliili,  and   Fern. 

Vara 33-333  ins. 

Fanegada x.5888 acres. 

Gallon 74KaU- 

Fanega x.572   "'' 

Libra... 1.014  lbs. 

Arroba 25-36     '' 

Originally  as  in  Spatn ;  now  Decimal 
Syitem  in  Chili  and  Peru. 


Brazil. 

Palmo,  Bahia. 8. 5592  ins 

Vara 3. 566  it 

Braca 7' 132  '' 

Geira 1.448  acrea 

Aluo  same  (U  Portugal^  and  sometimes 
as  in  England. 

Buenos  .Ayres. 

Vara 2.84  ft 

Legua 3.226  mUe& 

Suertes  de  Estancia ....  27  000  sq.  varas. 
Also  same  as  Spain. 

Burmali. 

Paulgat X  inch.   . 

Dain 4.277  yd& 

Viss 3.6  Iba 

Taim. 5.5    " 

Saading 22      ** 

Also  same  aS  England. 

Canary   Isles. 

Onza 927  inch. 

Pic,  Castilian xi.128  ina 

Almude 0416  acta 

Fanegada. 5         " 

Libra X.0X48  lb&» 

Also  same  as  Spain. 

Cape   of"  Ghood   Hope. 

Foot X1.616  ina 

Morgen 2. 1 16  54  acrea 

Also  same  as  in  England. 

Ceylon. 

Seer i  quart 

Parrah 5.62  galla 

Also  same  a«  in  England. 

China. 

Li 486  inch. 

Chih,  Engineer's 12.7X    ina 

*'     orCovid '3-125  " 

"  "     legal 14.X      " 

Chang 131-25     " 

*■*■     legal..... X4X  " 

Pu 4.05  ft 

Chang,  fathom 10.9375  ft 

Li 486  yds. 

P6orKuDg 3.32sq.  yda 

King,  xoo  Mail 16.485  acrea 

Tau X.13  galla 

Tael 1.333  oz. 

Catty i.333lba 

Cochin   China. 

Thuoc  or  Cubit 19.2  ina 

Sao 64  sq.  yda 

Mao r 1.32  acrea 

Hao. 6. 222  galla 

Shita 12.444    " 

Nen 8594  lb. 

Coloinhia  and  Venezuela. 

Libra 1. 102  lbs 

Oncha 25         *' 

Also  Decimal  System. 


so 


FOBSIGN   MBA6UBSS    AND    WEIGHTS. 


Denmarlz,*  Ghreenlaiid,  Ice- 
land, and   Norway. 

Tomme 1.0297  ing 

Fod 1.0297  ft 

Favn,  3Alea 6.1783'' 

Mil 4.680  55  miles. 

"  nautical 4.61072    '' 

Anker 8.0700  gall& 

Skeppe '.478  bush. 

Fjerdingkar 9558  '' 

Pand 1. 1023  Iba 

Lispand 17-367     *' 

Centner 110.23       " 

*  Also  Decimal  System. 

Bonador. 
Decimal  System. 

C}-exioa,  Sardinia,  and 
Turin. 

Palmo 9.8076  ins. 

Piede,  Manual,   8  oncie. . .  13.488     '' 
♦'    Liprando,  12     "    ...2a23  .    " 

Trabuco  or  Tesa 10. 1 13  ft. 

Miglio 1-3835  miles. 

Starello 9804  acre. 

Giomaba 9394    '' 

Ghermany. 

The  old  measures  of  tiie  different  Stales 
differ  very  malenaUy  ;  generally^  how- 
ever. 

Foot.  Rhineland ia-357  ins. 

Meile 4603  miles. 

Decimal  System  made  compulsory  in  1872. 

G}-reeoe. 

Stadium 6155  mile. 

Also  Decimal  System. 

Ghuinea. 
Jachtan 12  ft 

JrLamtyvLVfs, 

Fuss II. 2788  ins. 

Klafter 5.6413  ft. 

Morgen 2.386  acres. 

Cube  Fuss 831 1  cub.  (t 

Tehr 99-73  " 

Viertel 1-594  7  galte. 

Pftind  (500  grammes) ...    1. 102  32  lbs. 

Ton 2135.8  lbs. 

Also  Decimal  System. 

Kanover. 

Fuss ii.Slns. 

Morgen 6476  acre. 

Hindostan. 

BojreJ 1.2II  ins. 

Gerah 8.387   " 

Haut 19.08     '♦ 

Kobe 29.065  ♦' 

Cobs 3.65  mile& 

Tuda i.i84cub.  ft. 

Candy 14.909      «' 


Hungary. 

Fass 13.445  Ina 

Elle 30.67     " 

Meile 9-139  y^ 

Also  as  in  Vienna. 

Indian   ISxnpire. 

Guz 27. 125  ins. 

Cowrie x  sq.  yd. 

Sen 61.025  39  cub.  iD& 

"    , 2.204737  Iba 

Uniform,  standard  of  multiples  of  the  Sen 
adopted  in  1871. 

Italy. 
IVHilan    and   Venice. 
Decimal  System. 
The  Metre  is  termed  Metra ;  the  Are,  An; 
the  Stere,  Stero;  the  Litre,  Litro;  the 
Gramme,  Gramma,  and  the  TouueaU; 
Tonnelata  de  Mure. 

Naples   and   T-wo  Sicilies. 

Palmo 10.381  ins. 

Canna 6.921  ft. 

Miglio 1. 1506  miles. 

Migliago. 7467  acre. 

Moggia 86         *' 

Pezza,  Roman 6529     ** 

Homan   States. 
Old  Measure. 

Foot "-592  Ina 

"    Architect's 11.73     •♦ 

Braccio 30-73     " 

Palmo 8.347   '* 

Miglio 1628  yds. 

Quftrta X.1414  acres. 

ILiucoa  and   Tnsoany. 

Pie « 1X.94  ins. 

Palmo X1.49  " 

Braccio aa.98  " 

Passetto 3.829  ft. 

Passo 5.74    '• 

Miglio t.0277  milea 

Quadrato 8413  acre. 

Saccate i.  324      «» 

Japan. 

Sun,        .  303  03  Metre —    1. 193*  Ins. 
Shaku,  3.0303 Metros....  11.9305*  in& 
Jo,       30.303         "    —   9.9421*  ft. 
Ken,      5.5  "    ....    5-9653*  " 

Ri,  11880  '•    ....    2.4403  miles. 

Kai-rl 6080  feet  t 

Hiro 4.971*  feet 

Momme 3-756  521  7  grammes  Fr. 

Hiyaku  me 828  17  lbs. 

Kwam-me 8.28171    " 

Hiyakkin 132-50732    " 

Man's  load 57972        " 

Koku 331-26831    *' 

Hiyak  koku 33126.8308     " 

*  These  are  m  eqnUalent  m  they  are  praett 
cable  of  reduction. 

t  Admiralty  knot. 


FOKEIGN   MBASUBES   AND  WEIGHTS. 


51 


Java. 

Dalm X.3  ins. 

Ell 27.08  '• 

Djong 7-015  acres. 

Kan 328  galls. 

Tael 593.6  grains. 

Sach 61.034  lbs. 

Pecul 122.068  " 

Catty 1.356  " 

Aladrae. 

Ady ia46  ins. 

Covid 18.6     " 

tiuz 33        " 

Culy 20.92  ft. 

League 3472  yds. 

Vnddy 338  galls. 

Marcal 2-704     '' 

Tola 180  grains. 

Seer 625  lbs. 

Viss 3.086  *' 

Maund 24.686  '' 

A£alabar. 
Ady xa46  ins. 

I^alaooa. 

Hasta  or  t'ovid 18. 125  ins. 

Depa 6ft. 

Orlong 80  yd& 

^Calta. 

Pftlmo 10.3125  ins. 

Pie 11.1^7     '* 

Canna 82. 5        *' 

Salma 4.44  acrea 

Also  <u  in  Sicily. 

IMLoldavia. 

Foot Sins. 

Kot,  silk. 24.86  ins. 

Fathom sa 

Aloluooa   Ifllaxids. 
Covid 18.333  ins. 

Alorooco. 

Tomin 2.81025  in& 

Cadee. 20.34  '^^ 

Cubit 21        " 

Muhd. 3.081 35  gall& 

Kula,oll 3.356         " 

Rotal  or  Artal 1. 12  lbs. 

Liquids  other  than  oil  are  sold  by  weight. 

Affysore. 

Angle 3. 12  ins. 

Haut 19. 1     " 

Guz 38.2    " 

Candy 500  lbs. 

^Netherlands. 

Elle 39.370432  ins. 

Decimal  System  since  1817. 

Persia. 

6«reh 2.375  ins. 

Guezm  common 25         '^ 

•'     Ifonkelrer 37.5      " 


Archin,  Schah 31.55  ins. 

"      Arish 38.27   " 

Parasang 6076  yds. 

Chenica 80.26  cub.  ins 

Artaba 1.809  bush. 

Miscal 71  grains. 

RateL 2.ii361ba 

Batman  MauLd 6. 49       '' 

Liquids  are  measured  by  weight. 

Ir'olande 

Trewice 14.03  ins. 

Precikow 17  ins. 

Pretow 47245  yds. 

Mile,  short 6075  yds. 

Morgen 1-3843  acres. 

FortuQal  and  ^lozazn'biq.ue. 

Foot 13  ins. 

Milha X.2788  miles 

Almiide 3.7  galls. 

Fanga 1.488  bush. 

Alguieri ^ 3.6       " 

Libra i. 01 2  lbs. 

Also  Decimal  System. 

Prussia. 

Fuss ; 12.358  ina 

Ruthe ,    4. 1 192  yda 

Meile 24  000  feet 

Quadrat  Fuss 1.0603  sq.  ft. 

Morgen 631 03  acra 

Cube  Fuss 1.092  cub.  fL 

SchefTel i.  5121  bush. 

Anker 7. 559  galls. 

Pound 7217  grains. 

Zollpfund 1. 1023  lbs. 

Centner "3.43  Iba 

liussia. 

Vershok z.75  in& 

Foot 12  ins. 

Arschine 28  ** 

Rhein  Fuss 1.03  ft 

SiO^ne 7  ft. 

Verst 3500  " 

Mila 5-5574  miles 

Dessatina 2.4954  acres. 

Vedro 2.7049  galla 

Tschel-werha 1-4424     " 

P«Oak 1.4426  bush. 

Tschetwert 57704    " 

Pound 6317  grains. 

Funt 902  85  Iba 

Decimai  System  adopted  in  1872. 

K'up 9.75  in& 

Covid. 18  ins. 

Ken 39  " 

Jod 098  48  mile 

Roiineng 2.462  milea 

Silesia. 

Fuss II.  19  ins. 

Ruthe 4-7238  yds. 

Meile 7086  yds. 

Morgen 1-3825  acres 


52 


FOKEIGN   M£ASUB£S   AND    WEIGHTS. 


Singapore. 

Hasta  or  Cabit i8  ina 

Dessa. 6  ft. 

Orlong 80  yUs. 

Sxiiyrxia. 

Pic 26.48 

Iodise 24.648 

Berri 1828  yda 


1D& 

4( 


Spain.,  CulDa,  !M!alaga,  AdCa- 
xiilla,  O-uateznala,  l^ondu- 
raH,  and.   ]V£exioo. 

Pie 11.128  ins. 

Vara 33-384  *' 

Milla 865  mile. 

Legua,  8000  varas 4*  2x51  miles. 

Fanegada x>6374  acres. 

Vara,  cubo 21.531  cub.  ft 

Cuartilla. 888  galL 

Arroba,  Castile 3. 554  galls. 

Fanega 1-5077  bush. 

Libra. 1.0144  lbs. 

Tonelada 2028.2  lbs.. 

Also  Decimal  System. 

Stettin. 

Fuss 1 1. 12   ins. 

Foot,  Rhincland 12-357    '^ 

Kile 25.6  in& 

Morgen i'5729  acres. 

Sumatra. 

Jankal  or  Span o  ins. 

Elle 18  " 

Hailoh 36  " 

Fathom 6  ft. 

Tung 4  yds. 

Sxxrat. 

Tnssoo,  cloth x.  161  ins. 

Guz,         "   27.864   " 

Hath 20.9 

Covid 18.5 

Biggah 51  acre. 


Tunnland 1.2x98  acres 

Anker 8.64X  gaU& 

Spann x.962  bush. 

Centner 1 12.05  ^^^ 

Also  Decimal  System. 

S'witzet'land . 

Fuss,  Berne 11.52  ins. 

'<     11.54  " 

Vaud. ii.8x   " 

Klafter 5-77  ft- 

Meile 4.8568  miles 

Juchart,  Berne 85  acre. 

Maas 2.6412  pints. 

Eimer. 8.918  galls. 

Malter 4.X268  bush. 

rfund X.  X023  lbs. 

Also  Decimal  System. 

Tripoli. 

Pik,  3  palmi 26.42  ins. 

Almud 319-4  cub.  ins. 

Killow 2023       "     " 

Barile X4.267  galla 

Temer 7383  bush. 

Rottol 7680  graina 

Oke 3.8286  lb& 

Turkey. 

Pic,  great 27.9  ins. 

'^    small ..27.06*' 

Berri 1.828  yds. 

Alm^ X.  154  galla 

Also  Decimal  System. 

AViirtena"berg. 

Fuss XX.29  ins. 

Elle.' 2.015  ft. 

Meile 8146.25  yda 

Morgen 7793  acre. 

Cube  Fuss 83045  cub.  ft. 

Eimer 64.721  galla 

ScheflTel 4.878  bush. 

Pound 7217  graina 

Zurioli. 

Fuss XX.812  ins. 

Elle 23.625   " 

Klafter 5.0062  ft. 

Meile 4.8568  miles 

Jachart 808  acre. 

Cube  Klafter X44  cub.  ft. 


S'^vedell.. 

Foi 11.6928  ins. 

Ref 324703  yda 

Faden 5-845  ft. 

\/eague 3-  3564  m ilea 

Meile 6.6417     " 

IXollq,xid. 

Denominations  corresponding  to  the  French  are  as  follows: 

Length.  —  Millimetre,  Streep;  centimetre,  Duim;  decimetre,  Palm;  metre,  El; 
decametre,  Roede;  kilometre,  Mijle. 

Surface. — Square  millimetre,  Vierkante  Streep;  square  centimetre,  Vierkante 
Duim;  and  so  on.    Hectare,  Vierkante  Bunder. 

Cube  Measure. — Millistere,  Kiibicke  Streep,  and  so  on. 

Capacity. — Centilitre,  Vingerhoed;  decilitre,  Maatje;  liquid  litre,  Kan;  dry  litre, 
Kop;  decalitre,  Schepel;  liquid  hectolitre.  Vat  or  Ton;  dry  hectolitre.  Mud  or  Zak; 
30  hectolitres  =  i  Last  =  10. 323  quarters. 

Weiglit. — Decigramme,  Korrel;  gramme,  Wigteje;  decagramme,  Lood;  hecto- 
gramme, Onzc;  kilogramme,  Pond. 

Belgium. 

Metric  system.— The  term  Litore  is  substituted  for  kilogramme,  Litron  for  litrCj 
and  Anne  for  iiiotre.  - 


^ 


SCBIPTUBE   MEASUBBS. — AJfClKNT  WEIGHTS. 


53 


t( 


SCRIPTURE   AND   ANCIENT  LINEAR   MEASURES. 

Scripture. 

Digit......      912  inch.  I  Span,  3  palms 10.944  ins 

Palm,  40  digits..; 3.648  ins.     |  Cubit,  2  spans 2i.§88 

Fathom,  4  cubits 7  feet  3. 552  ina 

Hebrew  awd   Sgjrptian. 

Nabud  cubit 1.475      feet. 

Royal      ♦'    1.7216      " 

Egyptian  finger 06145    '* 

Hebrew  sacred  cubit 


Babylonian  foot 1. 140  feet 

Hebrew         "   

"      cubit '..[ 

• 2.002  feet 


1. 212 

1.817 


^        Q-reoian. 

Digit 7554  inch, 

Pous  (foot) 1.0073  feet 

Cubit 1. 1332    " 

Pythic  or  natural  foot 814  foot 

Attic  or  Olympic     "    1.009  *®6t 


Ancient  Greek  foot    > 

(16  Egyptian  fingers)  J 9841  foot 

Arabian  foot ,.095    feet 

Stadium 604.0375    " 

Olympic  stadium 606.29       " 

Ai        A  ■         *IJu®i  ?  stadium 4835  feet 

Alexandrian  or  Philetenan  stadium  (600  Phil,  feet)  =  708.65  feet 
F(irfu»uj.-Keramion  or  Metretes 8.488  gallona 


Cubit 

Sabbath  day's  journey. 


Jewish, 

. . .  1.824  feet  I  Mile,  4000  cubita 7296  feet 

3648  "    I  Day's  journey 33. 164  milea 


Itoxnan.   Xjong   Pleasures. 

Digit .725 75  ina  |  Cubit 1-4505  feet 

Uncia  (inch) 967        "      Passus 4835      '* 

Pe8(foot) 11.604       "      Mile,  milliarium 4842 


u 


ANCIENT  WEIGHTS. 
Hebre">w   and   S^g^srptian. 


Attic 


Troy  grains. 


obolus I  ^-2* 

1  9- it 


<( 


drachma 


Lesser  mina 3-892 

Greater  mina 5.46 

Egyptian      mina 8.326* 

Ptolemaic         '*    8.985* 

Alexandrian     "    9.992* 

Obolus 4.63 


Troy  graina, 


Denarius,  Roman (  5i-9* 

I   62. 5T 
92.62 


Nero 


Shekel. 
Ounce . 


Drachm 146.  ■ 

Libra 4086.  i 

Pound 12  Roman  ouncea 

Talub 581.71  ouncea 


Talent  (60  minae) 56  lbs.  avoirdupoia 

Grecian. 


Troy  fp-ains. 

Obelus,  ancient 8.33 


(t 


»i'57 

Gramme 23. 15 

Drachma. 50.01 

"       great 69.47 


- ,.  Troy  ounceii 

Mina  — ; 10. 41 

*'   great 14.47a 

Talent 625. 19 

"     Attic 868.33 


Ounce. 


!R.oznan. 

416.82  grains.    I    Pound 


Z0.41  ounces 


•ChristlaiiL 


t  Arbttthnot. 

E* 


tPaacton. 


54 


GEOGBAPUIC   MEAiSUKES  AND   DISTANCES. 


GEOGRAPHIC   MEASURES   AND   DISTANCES. 

To  iReduce  Xiongitude  into  Time. 

Rule. — Multiply  degrees,  minutes,  and  seconds  by  4,  and  product  is 
the  time. 
Example.— Required  time  corresponding  to  50°  31'.    50**  31^  x  4  =  3%-  32m.  4*. 

To  Reduce   Time  into  Xjongitude. 

Rule. — Reduce  hours  to  minutes  and  seconds,  divide  by  4,  and  qucv 
tieut  is  the  longitude.     Or^  Multiply  them  by  15. 
ExAKPLE.— Required  longitude  corresponding  to  $h.  8m.  11. 2t. 

5ft.  8in.  ii.2«.  =  308m.  1 1. 2*.,  which  -^  4  =  77°  2'  8". 
Or,  multiplying  by  15:  5A.  8»i.  11.2*.  x  15  =  770 


2'  8". 


Table   of  IJeparttxros   Tov  a   X>istauoe   run   of  1   Afile. 

Course.  Departure.  Coarse.  Departure.  Course.  Departure. 


3.5  polnta. 

4  " 


.773 
.707 


Coarse. 

Departure. 

Course. 

4.5  poiuls. 
5         " 

•634 
•556 

5.5  points. 
6 

■471 

•383 


Thus,  if  a  vessel  holds  a  course  of  4  points,  tlmt  is  without  leeway,  for  distance 
of  I  mile,  she  will  make  .707  of  a  mile  to  windward. 

Or,  a  vessel  sailing  E.N.E.  upon  a  course  of  6  points  for  100  miles  will  make  38.3 
(icx}  X  -383)  miles  of  longitude. 

IDesrees,   JV^iiiutes,   and    Seooxids    of   eaoli    Point   of  tlie 

Coxxipasfii   -svitli   HMCeridian. 

North.         South.       PolnU.    o  /  n  Siu.  A.»  |  Cos.  A.»   Tan.A.* 


N. 


N.by  K.. 
N.  by  VV. 


N.M.  Bi . 

N.N.W 


N.EbyN.  .. 
N.VV.  byN... 


N.E. 
N.W. 


' i 

S.by  E 

&by  W 


o.  o.  Ci. ....... 

O'O.  W. ...... 


S.  E.  by  S. 
S.W.byS. 


2  48  45 

5  37  30 
8  26  15 

"  15 

14    3  45 
16  52  30 

19  41  IS 

30 

1845 
7  30 


22 

25 

27 


N.  E.  by  E.  . . 
N.W.byW... 


E.N.E 

W.N.W. 


E.byN.. 
W.  by  N. 


S.E. 
S.W. 


S.E.  by  E.. 
S.W.  by  W. 


E.S.E.  . 
W.S.W. 


E.  by  S. 
W.  by  S. 


45 


East  or  West.    East  or  West . . 


30  56  15 

33  45 
36  33 
39  22  30 
42  II  IS 

45 

47  48  45 
50  37  30 
53  26  IS 

56  15 

59  3  45 
61  52  30 

64  41  IS 
67  30 
70  18  45 
73  7  30 
75  56  15 

7845 
81  33  45 

84  22  30 
87  II 


15 


90 


.0489 

.098 

.1467 

•195 
.2429 
.2903 
.3368 

.3827 

•4275 
.4714 

•514I 

•5556 

•5957 
•6344 
•6715 
.7071 

•7404 

•773 

.8032 

•8315 

.8819 
.904 

•9239 
•941S 
•9569 

•97 

.9808 

.9891 

•9952 
.9988 


9988 
9952 
9891 
9808 

97 

9569 
941 5 

9239 
004 

8819 

8577 

831S 
8032 

773 

7409 

7071 

67  IS 

6344 

5957 

5556 
5141 
4714 
4275 
3827 
3368 
2903 

2429 

>95 
J467 
098 
0489 

0000 


.0401 
.0985 
•1484 
.1989 
.2504 

•3034 
.3578 

.4142 
.4729 

•5345 
•5994 
.6682 
.7416 
.8207 
.9063 

z 

1. 103 

Z.218 

1.348 

1.497 

1.668 

X.871 

2.114 

a.  414 
3.795 
3.296 
3941 

5-027 
6.74X 

10153 
20.55s 

00 


*  A|  Tepres«nttng  coane  or  point*  f^om  the  meridian. 


GBO6BAFHI0  LBVELLIKG. 


55 


GEOGBAPHIC  LEVELLING. 

C"arvatiire  and.  Xiefraction. 

Correction  for  Curvature  of  Earth,  to  be  subtracted  from  reading  of 
a  leTelling-Btaff,  is  determined  as  follows : 

Divide  square  of  distance  in  feet  from  level  to  staff,  by  Earth's  Eaua 
torial  diameter — ^viz.,  41  852  124  feet. 

Or,  Two  thirds  of  square  of  distance  in  statute  miles  equal  the  cur- 
vature in  feet. 

Correction  for  Befraction  is  to  be  subtracted  from  reading,  and  as  a  mean 
may  be  taken  at  about  one  sixth  o2  that  for  curvature. 

Correction  for  Curvature  and  Refraction  combined,  is  to  be  iadded  to 
reading  on  staff. 

Formulas  of  Capt,  T.  J.  Lee^  U,  S.  JiM^ineen. 

D*  D^  .  . 

— =r  =  correction  for  cwrvcUure^  -^  r:,  =  correction  for  refraction^  and 
3  R  K 

D" 
(1—3  m)  — =T  =  correction  for  curvature  and  refraction,     D  representing 

distance,  R  radius  of  earth,  and  m  a  coefficient  of  refraction  =  .075,  ufi 
infeet. 

Illustratiox.  —A  distance  is  3  statute  miles,  what  is  correction  for  curvature 

and  refhicUon? 

2 

(1-3  X  .075)^^^  =  .8S  X  5-996  =  5-097.A«t 

Approximately,  -^  D*  =  curvature  infeet 
3 


Xjevellins  T>y  Boiling  Point  of  "Water. 
To  Compute  Kelglit  A-lsove  or  Selow  I^evel  of  Sea. 

517  (212°  -  T)  -f  (212°  -  T)*  =  Height. 
Illustration. — What  isheighiof  an  elevation,  when  boiling  point  of  water  is  i82<'f 


517  X  212°  — 182°  +  212°  — 182°  =  517  X  30  -t-  3o»  =  16  410/frf. 
Corrections  for  Temperature  to  he  made  in  Connection  with  Formula, 

Corr«e< 
tlon. 


CJorwc- 

_ 

Correc- 

Correc- 

Correc- 

Correc- 

Tnnp. 

tion. 

T«mp. 

tion. 

Temp. 

tion. 

Temp. 

tion. 

Temp. 

tion. 

Temp. 

0 

.936. 

• 
18 

.972 

36 

1.008 

e 

54 

1.046 

72 

1.083 

■ 
90 

a 

•94 

90 

.976 

38 

1. 012 

56 

1.05 

74 

1.087 

92 

4 

•944 

32 

.98 

40 

1. 016 

58 

1.054 
1.058 

76 

Z.091 

94 

6 

.948 

24 

.984 

42 

1.02 

60 

78 

1.096 

96 

8 

•952 

26 

.988 

44 

1.024 

62 

J.  062 

80 

l.i 

98 

10 

•956 

28 

.992 

46 

1.028 

64 

1.066 

82 

1.104 

TOO 

X3 

.96 

30 

.906 

48 

1.032 

66 

1.071 

84 

X.108 

102 

X4 

•^A 

32 

I 

50 

1.036 

68 

I  075 

86 

1.112 

104 

x6 

.968 

34 

1.004 

52 

1.04 1 

70 

1.079 

88 

1.I16 

T06 

1. 12 
1. 124 
1. 128 
1.132 
1. 136 
I.I4 
1.144 
1.148 
1.153 


iLLUsntATioif. — AsBume  temperature  in  preceding  illustration  to  have  been  80*, 

Then  16  410  X  1.  x  =  18  051  feet 


56 


GEOGRAPHIC  LEVELLING  AND  DISTANCES. 


9 

u 

b 

9 

ID 
O 
0 

h 


9 

•P 

9 

U 

eS 
P. 
ft 


:^ 


ON  tN  m  tN,oo  »*■  r>.  M 


CO      \o   ■♦00 

moo  ON  f>vo 


.  m  ON     00  m  -^ 
8  00  CO  ov  coco  « 

S  f*«oo  CO  d^  ON  d  M  M  e*  covd  o6  ci>o  ONCi  uSK-onm 
g  HHMHMiiHMetcicnrococo^ 


M  en  ■♦  ON 

ONOO    I/)  CO  C\ 

d^  ci  CO  fo  co\d  dN 
m  r>.co  ov  O  ♦  t>. 


a 

2 

'•S 





aas 

• 

• 

0\  CO  •♦  CO  On  covO 
00   '«•  On -4-00  CO  M 

t>oo  00  dN  dN  o  M 

M     M 

com  CO  COVO 

g^v^ 

5?^ 

M  moo  M 

CO  CO  CO  N  00 

CO 

NO 

includ 
and 

•a 

s 

OvvO 

M    M 

CO  cooo 
covdod 

H    H    M 

oovontH       MvOOcOCt 

ONCi  mr^o  ci  dNcO"*-'"}- 
(«  CO  en  CO  ♦  ♦  m  t».oo  On 

M 

M 
M 

M 
M 

l>i  et  00   On  CO  ■♦vo 

NO 

CO 

00  vo 
n  v5 

NO  Oni^  rx  r>. 

• 

t^  0  c«  looo  o  m 

M  m 

HNO    « 

moo  00  w  00 

m« 

cntnoo 

m 

•o 

S 

« 

6\  '*-od  ci  >d  M  dNOO  \d 

m  r^  d 

m  d 

m  0  m  MOO 

«    CO  ♦NO    r^  M 

^ 

NO 

5 

03 

,• 

«  CO  CO  ■♦  ■♦  lo  io>o  t^oo  «  t^  in  •*• 

M   M   ONOO  vo 

m  o 

♦  o  moo 

♦ 

■  . 

EX4 

M    H 

«    CO 

•♦  m  mNO  ^.oo  fs  m  ♦  « 

M 

com 

2^ 

M 

M  cn^-m  0 

m 

M 

M 

M  ro  m  M  c«  On  CO 

On  m  w 

rovo 

mvo  m  t>.vo 

0  CO 

^« 

io  tN.  o\  «  ♦mo 

moo 

CO  m  tx  o  VO 

r*  coNO  w  H 

00  CO  (O  On 

H 

"O 

dNcot>>ci\d  d  d^txin  ti-vd  od 

CO  tx 

•         •        •         •         • 

HI  vo  o  mvo 

♦00 

MVO    0  NO 

♦  o 

o 

0 

,1 

«  CO  CO  •*■  ■♦  «n  inNO  t^oo  n  vo 

m  CO  w  0  ON  r>.  m  ♦oo 

CO  rx  c« 

CO  1^  CO 

S 

^ 

M    H 

M  CO  ♦  m  mvo  t^oo  vo 

m  CO  « 

M 

M 

•♦ 

M 

«  CO  ♦  m  o 

m 

a 

M 

M 

u 

• 

vo  «  moo  00  n 
t*\5  so  vo  m  ♦  ♦ 

♦  d\ -i-  dN  -i-  d\  dN 
CO  CO  ♦  ♦  m  m\o 

I^COOO 

a 

.,|2 

• 

a 

otf 

• 

1 

CO  c«  M  tx  ♦vo           •««•  m  On  M  m 

didN  dNodoo  t^i^mm-4-cococi  mt^o  « 

o 

M 

ON 

o  *S 

r>.oo 

On^OnOnOnOnOnOnOvOn 

ONOO 

rot^vo 

♦ 

*8 

M 

B- 

Ix 

M    H 

«  CO  ♦  mvo  r«.oo 

Ov  Ov  On  On  On  O 

M 

0  " 

M 

W  CO  ♦vo 

MOO 

M    M 

o 


e 
o 

s 

« 


o 


^mOmomQOOOOOQOQQQOQQ 
«  CO  ♦  ♦  m  mvo  t^w  ONOmOOOOdOQQ 
*  M  M  «  CO  ♦  mNO  t>.oo  ov 


S 

I 


i 


♦  ♦  MVO 


MVOOOOO^mM^OVM         OvlxOvOvCOCOnvONQ    ♦OO    «   ON  ♦ 

t^  «  vo  O  ♦  «  ONNO  en  Ov  CO  «  ♦  CO  ON  COVO  t^rxt*.©  ♦mmo  ♦ 

5  *^  t^oo  00  d\<>6  d  M  ei  ♦K.m  ♦t^dNci  ♦vd  od  ♦  tv  »s.vd  w\h\h 
g  MMMMMMdMCicicocococo  mvo  txoo  Ov  co<o 


M  «  CO  -^s: 


it 

•si 

«  o 

«   B 

.S  0 

«  • 

«8 
^  s 

'Sg 
I" 


Apparent  I^vel 

induaing  Curvature 

and  Refraction. 

1 

•  00  MOO  ONmt^mM  moo  Ot      o«oo no  ♦     no  ci oo  cooo  n vo       cono 
JS  0  cooo  wvo  ovw  mtvONM  ♦mis.ONM  co  ♦vo  tx  Ov  o  «  CO  mvo  « 

g  M  M  M  ci  ci  «  cococncO'4-  +  ^--+'i-mmm»om  mvo  vd  vo  <>  no  r^ 

•6 

3 

8  ON  CO  Ov  M  r«.oo  rx  en  r^      «  m  o  m  ovvo  co     NOMvoMmovcots. 
^S  0  cooo  covo  On  «  m  J«»       m   ♦vO  oo  On  m  to  mvo  00  On  m  «  to  mvo  co 

g  H  M  M  ei  e»  «  cncofo*  +  4-^'i"vi"«ommmm  thsd  no  vd  vd  vd  t^ 

G  HT 

of  Curvature  and 
Refraction. 

1 

00    N 

Uvo^      mMvo      NO       mnvoMmMNO^cn      ^vo  to.  ct  i^  m  t«. 
«  moo  rx  m  ♦  et  M  onoo  no  m  co  m  0  Ov  tN,vo  ♦comooo  r^^mcoci  m 

U«    '    '  M  «  CO  ♦  m  mvo  t^oo  dv  d  m  m  ci  co  ♦  *h\o  t^  t>.o6  dt  d  m  m 

mmmmmmmmmmmmSc«C( 

73 

CO  m 
.*  vo  fo  Ov  fooo  CO  tx  M  ♦oo  cooo  «mMm«      NOQNMCtm      cooo  fs 
J  moo  vo  mcop»  0  Ovt^m^c*  m  ovoo  no  mcoM  ONONtN.m^M0  m 

Vn    '    *  w  ci  en  +  m  *n<'0  is.od  dvddMcico^-m  mvo  tvod  dv  d  m  m 

mmmmmmmmmmmmC«NCI 

H  E  I 

of 

Curvature 

above 

Zjaad. 

4J  vo  cvoo  00  tx  iwo  mcoNMM       ^sO^^HONncoMoocoMH^sOve« 

{NO   OvOvONOvOvON  On  ON  ON  On  Ov  OtOO  OOQOOOOOOOOOOOOOOOOONO    t>.t«> 

Ixt    '    ■  M  ci  CO  ♦  mNO  iNod  d.  d  h  ci  co  ♦  v^\o  ti.od  6\6  m  ei  r?)  ^  dv 

l| 
I? 

•  ,2 


o 


*ivO 
I     • 


cS 


SCci 


H  «  en  ■♦  m>o  »^oo  ON  o  H  «  CO  ♦  mvo  isoo  on  o 


O  M  «  CO  '♦m  o 
N  M  CI  M  «  M  en 


m 


♦vo    !>.  t>iVO    ♦  M  00    ♦         ♦ON  cooo    M    ♦  tvOO    N 
«    ♦NO  000«^m»«»0>OMto  ♦'O   h»09    On  M   t> 

M  hi  c<  e(  c«  coeocococo'i-^-'>i--^'i-'*'mmmmmmm  mvo  vd 


w  en  « 

«     tS.    M 


tl 

(i 

u 

II 

t( 

(t 

(t 

li 

(i 

6E0GBAPHIC  LEVELLING. — MAGNETIC  VARIATION.      57 

Illdstration.  —  Curvature  of  Earth  independent  of  refhiction  is  computed  At 
.667  foot  =8.004  ^^^-  'or  I  geographical  wile,  and  as  refraction  on  land  is  talcen  as 
.104  foot  or  1.248  ins.,  and  on  ocean  at  .099  foot  or  i.z88  ins.,  relative  visible  dis- 
tances of  an  object,  including  curvature  and  refraction,  for  an  elevation  of 

.667  foot  is  1.09  miles  on  land,  and     1.08  miles  at  sea. 

I          "  *'  1.33     "      "      "      *'       1.32 

9        feet  "  4          "      "      »»      "       3.98 

I        mile  "  X04.03     "     "     "  •  **    X03.54 

Difference  between  two  levels  in  feet  is  as  square  of  their  distance  in 
miles. 

iLLcsTSATioir.  —At  what  elevation  can  an  object  be  seen,  at  surface  of  ocean,  when 
It  18  2  miles  distant? 

i''  :  2'  ::  .667^ — .099  :  2.272  feet  :z=  2  feet  3  2S-\-ins. 

DifTcrence  between  two  distances  in  miles  is  as  square  root  of  their  heights 
in  feet. 

Illustration  i.  —At  an  elevation  of  9  feet  above  letel  of  sea,  at  what  distance 
can  an  oLJcct  be  seen  upon  its  surface? 


V-667  —.099  =  .754  :  I  ::  v''9  :  3-98  miles. 

2.— If  a  man  at  the  fore-topgallant  mast-head  of  a  vessel,  100  feet  from  water,  sees 
another  and  a  large  vessel  *'  hall  to,'''  how  far  are  the  vessels  apart? 

A  large  vessers  bulwarks  are  at  least  20  feet  from  water. 

Then,  by  table.  100  feet =13.27!  ,g,^  rniles  distance. 

50         =    S-93)     ' 

When  an  observation  for  distance  is  taken  from  elevation,  as  a  light-house, 
a  vessel's  mast,  etc.,  of  an  object  that  intervenes  between  observer  and  hori- 
zon, or  contrariwise,  observer  being  at  a  horizon  to  elevated  object,  distance 
of  observer  from  intervening  object  is  determined  by  ascertaining  or  esti-> 
mating  its  ele\'ation  from  horizon,  and  subtracting  its  distance  from  whole 
distance  between  observer  and  point  from  which  observation  is  taken,  and 
remainder  is  distance  of  object  from  observer. 

Illustration. — Top  of  smoke  pipe  of  a  steamer,  assumed  to  be  50  feet  above  sur 
face  of  water,  is  in  range  with  borizon  from  an  elevation  of  100  feel;  what  is  dib 
tance  to  steamer  from  elevation  ? 


100  feel, 
so    "   . 


=  'q  ^81  3" ^9  miles  distance. 


MAGNETIC  VARIATION   OP  NEEDLE. 

America. — Needle  reached  a  Westerly  maximum  in  1660,  and  then  varied  to  East 
until  1800,  when  it  reversed  to  West. 

London  (Eng.).— From  1576  to  1815  variation  ranged  from  11°  15'  East  to  24°  27' 
West,  when  It  receded  gradually  to  21°  in  1865. 

Jamaica {W.  I.). — No  variation  from  year  i66a 

Diurnal  Variation.— There  is  a  small  diurnal  variation,  being  greatest  in'sum- 
mer  (15')  &iid  least  in  winter  (7'  30"),  added  to  which  a  change  or  temperatura 
affects  a  needle. 

Variation  in  U.S. — Professor  l/oomis  concludes  that  the  Westerly  variation  is 
increasing  and  Easterly  diminishing  in  every  part  of  United  States  ;  thnt  thiji 
cbaog*  occurred  between  1793  and  1819,  and  that  present  annual  change  is  about 
2'  in  Southern  and  Western  States,  from  3'  to  4'  in  Middle  States,  and  5'  to  7'  ia 
Eastern  Stales. 

NoTK.— Rules  for  computation  of  variation  are  empirical,  except  in  each  par- 
ticular locality,  as  annual  and  diurnal  variations  of  needle,  added  to  local  allniC' 
lion,  render  it  altc^ether  unreliable. 


58 


MAGNETIC    VARIATION   OF   NEEDLE. 


XDeoennial     IVIagxxetic   Variation,   in.  tlie  XJ.   S.  and. 
some  i^oreign  Countries.    From,  January^  1820,  to  January,  190CX 
If.  S.  Coast  and  Geodetic  Survey.     Chaa.  A.  Sdiott. 
Location.  1820.    1830.    1840.    1850.    i860.     1870.    1880.    1890.    1900. 


EAST. 

Acapulco,  Mex 

Austin,  Tex 

Charleston,  S.  C 

Chicago,  111 

Cincinnati  Obs'y,  0 

Cleveland,  O 

Denver,  Col 

Detroit,  Mich 

Duluth  and  Superior,  Minn 

El  Paso,  Tex 

Erie,  Marine  Hos'l,  Peun 

Fernandina,  Fla 

Florence,  Ala 

Galveston,  Tex 

Havana,  ColPe  de  Belen,  Cuba. 

Milwaukee,  N.  P't,  Wis 

Mexico,  Ast'lObs'y,  Mex 

Mobile,^  Ala 

Monterey,  Cal 

Nashville,  near  Van't  U'y,  Tenn. 

Newborn,  N.  C 

New  Orleans,  I^a 

Olympia,  Wash 

Omaha,  Neb 

Pensacola,  Fla 

Portland,  C.  House,  Ore 

Port  Townsend,  Wash 

St.  Louis,  Mo 

Salt  Uke  City,  T'mple  B'k,  Uuh 

San  Antonio,  Tex 

San  Diego,  C'y  Park  Obs,  Cal. . 
Sau  Francisco,  Presidio.  Cal. . . . 
Savannah,  Hutch'n  Is'd,  (ia. . . . 

WEST. 

Albany  Obs'y,  N.  Y 

Baltimore,  F't  McH.,  Md 

Bangor,  Tlio's  Hill,  Me 

Boston,  Mass 

Bullalo,  N.  Y 

Burlington  U'y,  Vt 

Cambridge,  CoIPe  Obs'y,  M.iss. 
Charleston,  St.  M.  Ch  ,S.  C... 

Cleveland,  0 

Detroit,  Mich 

Erie,  Pa 

Halifax,  N.  S 

Harrisburg,  Pa 

Hartford,  C.  Hill,  Conn 

Ithaca,  N.  Y 

Montreal,  Can 

New  Brunswick,  N.  S 

New  Huveu,  Coun 

New  York,  C.  Hall,  N.  Y 

Philadelphia,  Gi'd  Coll'e,  Pa... 

Pittsburg,  Pa 

Portland,  Bram'l  Hill,  Me 

Portsmouth,  N.  H 

Providence,  near  B.  \]"y^  R.  I.. 

Quebec,  Can 

Toronto,  Can 

Washington,  N.  Obs'y,  D.  C... 


o 
8j 

4- OS 

6.12 

5 
1-43 

2.84 


•39 

6.58 

6.2 

8.2 
4.6 

13-4 

6-7 
1.66 

7.96 
18.8 
12.64 

7.42 
18 
19.04 


9.8 
11. 79 
14.6 

4-7 

6.02 

•93 
12. 1 

7.84 

.41 

778 
8.12 


'7 

5 
2. 

8 

3 
5 

4 


4 
8 

58 

7 

43 
04 
61 


2-44 

9,46 

8-3 

6-95 
12.3 


o 

,8.7 
II 

3-59 
6.28 
4.82 
I.I 

2.49 


.09 

6.54 
6!^8 

8~S 

703 

'3-93 
6.9 

1.23 

8.25 

19.4 

12.56 

18.8 

20.06 

8.9 


Id 
12.27 
15- 1 
4-5 

6.49 
1.29 
12.9 
8.42 

•79 
8.29 

8.7 


18.2 

1-4 
6  02 

2.8 
8.7 
4.02 

5-44 
4.98 
2.91 

10. 1 

7.67 
12.9 
.8 
.6«; 


o 

8.9 
10.7 

3-03 
6.25 

4^5i 
.66 

2.04 


•5 

6-37 
8.8 

5-77 

8.6 

7-^ 
H-45 

6^ 
7 

8.16 
20.1 
12.33 

7-4 
19.S 
20.67 

8.6 

10.28 
12.67 

'5-43 
4.2 


7.07 
1.77 

»3-7 
9.6 

1-35 
8.9 

932 


.36 
18.4 
21 
6-59 
3^1 
9  5 
4.66 

5-97 
5.61 

3.46 

.18 

10.82 

955 
8.49 

13.8 
1.32 

1. 17 


O 

8.88 
10.2 

2-39 
6.04 

4.08 
.16 

1-55 
9.8 

12.14 

6. 1 1 

8.9 

5.39 
7-4 
8.62 
6.99 
1^.91 
6.7 

20.65 
11.96 

7- 14 
20.3 

21.22 

82 
15.8 
10.31 
12.99 
15.8 

3.78 


773 

2.35 

24.48 

9  73 
2.05 

958 
9-97 


•94 
19.4 
2.9 
7.24 
3-5 
10.5 
5- 32 

6-59 

6.31 

4.07 

.68 

19.56 

10.28 

9.06 

14.9 

1.6 

1.77 


o 

8.75 
9-74 
1-73 
5-67 
3-57 


15-14 

•93 

10.02 

12.34 

3I 

5-74 
8.8 

4-95 
6.9 

8.55 
6.71 

15.32 
6j 

7.66 
21.17 
11.47 

6.73 
21 
21.71 

7  7 
16.27 
KX17 
13.21 
16.  II 

325 

8.44 
2.99 

15.24 

10.38 
2.84 

10.27 

10.6 


•39 

1.6 
19.9 

3  7 
7-93 
4.1 
1 1.6 

598 
7.28 

6.91 

4-73 
1.26 

12.29 

1103 

9.67 

16 

2.17 

2.43 


o 

8.5 

9.27 

1.07 

5-15 
2.99 


14.88 

•34 
laii 

12.38 

3.2 
5.3 
8-55 

tt 

8.39 
6.27 

»5^65 
5.78 

7.18 
21.63 
10.89 

6.19 
21.5 
22.15 

7-» 
16.54 

9.87 
13-32 
16.36 

2.65 


9.17 

365 
15.92 
10.99 

3-67 
10.96 
11.18 

.96 

2.3 

20.3 
4.46 
8.62 

4 

12 

6 

7 
7 
5 
I 
12.97 

11.75 
10.23 
16.9 
2.66 


c 

8.12 
8.8 

•45 
452 

2.39 


88 
6 

59 
99 

4 

44 

87 


^  » 


1452 

10.06 
12.23 

2.5 

4.81 

8.16 

3-97 
5.4 
8.13 
5.71 
»5-89 
5.13 

6.59 
22.01 
10.23 

5-55 
22 
22.4 

6.4 
16.61 

9  44 
'3-32 

16.57 
2.01 


9.87 

4-3 
16.48 

"•53 

4-51 

11.58 

11.68 

1.52 

•23 

2.99 

20.6 
5.12 
9.24 

5-71 
»3-7 
7.12 
8.69 

7-9 

6.2 

2.49 

'3-58 
12.4 
10.85 
17.4 
3  62 
3.72 


7.64 
8_34 

3.81 
1.8 


14.06 

9.9 
"•93 

1.9 
4.28 
7.62 
346 
4.5 
7.77 
506 
16.04 

4-4 

59' 
22.29 

956 
4.8s 
22.3 
22.58 

5.6 
16.46 

8.9 
132 
16.64 

137 

10.52 

4.89 

16.89 

11.96 

5-3 

12-11 

12.08 

.09 

2.05 

•74 
3- 62 
20.7 

5^64 
9.89 

6.58 

14.6 

7-55 

933 

8.49 

6.97 

3.06 

14.08 

12.94 

11.48 

12.5 

4.12 

4.28 


o 

7-9 

3-1 
13 


9-5 
11.5 

12 

3.8 
6.9 

3 
3 
7 

4  _ 
16.1 

3^6 


2 

5 

9 

M 

5 

7 


5 
22 

8 

4 
22. 

22 

5 
16. 1 

8.3 
»3-7 
16.7 

.8 


II. z 

5-4 
17.1 

12  3 

6 
12.5 
12.4 

.05 
2.5 

12 

4.2 
20.7 

6 
10.4 

7-5 

15-4 

7-9 
9.9 

9.1 

7-7 

35 

14.4 

»3-3 
12 

17.5 
4-8 

6.3 


MAGNETIC    VARIATION    ( 

K^IaKiietiti  Vai-iation  of  Needle  at  Xjooationa  in 
United  states  and  Canatia,  1800. 

U.    S.    CViosI    and    Otodetic    Hunx).        Clias.    A.    SchoO. 


Loc.no.. 

"^^ 

LM.tIO,. 

''.^:- 

Loc.Tmi.. 

iKJ^ 

AHceB,  S.C 

Astoriai,  Ore......  . 

BatcnKouge.La:;!! 

h 

I                    w.W 
)                .,  cJi" 

I           iia,:: 

3-3 

Natcbai,  Mlas....... 

toktan'i'"™'!''!'.!* 

Pansacota.  Fla 

'SacrainBDloG.G.,Cat 

Sa'ltlAkeT.,  UtaV;: 
Sao  Antonio  Ob,,TBi, 

SanBlaa,  Hei 

Sbd  [•iego.C.  Fk.,Cal 
Santa  Barbara,  CI.. 
SanlaFc.F.M'r'y.N.M 
SeatUs,  Wash. 

5S:,;iwi:.:: 

aiL"a'iffiG'Ai^i;; 

.1 

D«rl8ii.(Ja. 

S:a:W~::::: 

FortUowl.,  AMI.... 
Fort  Garland,  CaL... 
Fort  Gil>«D7[Dd.  T 

'e-3 

eilwa,  lU 

iTuscaloou,  Ala 

VickBburgC.H..Mies 

S-6 

Aubum,N.  Y. 

8.5 

S^^ro''.'!^:: 

HBnllngi™,  I...... 

S-b 

JlhiH!a,KY 

UlUs  Kails.  N.  Y. .. 

Iwego,  N,  Y 

M«lKb,nrCap-|,Rc! 

Saginaw,  HIcb 

Sandusky, 0 

"iibrook,  Conn 

ibenecudy,  H.  Y.. 
Sou  lb  B«lUlB)ieni,Fa. 
-      igfleHl.  Mass.... 

i^,  Conn 

Stobtngton,  Conn... 
Tapnanhl"['iles,N.Y. 
Toledo  M'uLiiH.O.. 

't1^™:y:  :'.::::: 


Co   GEOGRAPHIC  LEVELLING. — BASE  LINE. — ^SOUNDINGS. 


Dip    of  IHIorizson. 

Approximate,  57.4  VHzs,dip  in  aecondsy  varying  with  temperature  of 
air.     H  representing  height  ofooterver's  ejfe  injeet. 

.667»'=H:  .498#*=Hr  i.43V'H  =  *;  1.113  v^H  =  f». 

ft  representing  distance  in  geographical  miles  and  s  in  statute. 


INleasuremeiit   of   Heiglxts   -with  a   Bextant. 


Malti- 
plier. 

I 

1-5 

3 


Angle. 

Multi- 
plier. 

Angle. 

MhUI- 
plier. 

Angle. 

Malti- 
plier. 

ABfle 

Multi- 
plier. 

0      » 

45    0 
56  18 
63  36 

2-5 

3 

3-5 

68  IX         4 

71  34         4-5 
74    4   U    5 

•     » 

75  58 

77  29 

78  41 

5-5 
6 

7 

•     • 

79  42 

8c  33 
8x  53 

8 

9 
xo 

Angle. 

•     t 

82  53 

83  40 

84  17 

Operation Set  sextant  to  any  angle  in  table,  and  height  will  equal  distanca 

multiplied  by  number  opposite  to  it 

Illustration.  — When  sextant  is  set  at  80®  32',  and  horizontal  distance  from  ob- 
ject in  a  vertical  line  is  100  feet,  what  is  its  height  ? 

100  X  6  =  600  ^i. 

By  Trigonometry:  x  :  xoo ::  5.997  (ton.  angle) .  s^ 7  feet. 

To   Reduce  a  Soiindins  to   X-iotv  "Water. 

-  [  I  :p  COS.  — - —  j  =  A',     h  representing  rertical  rise  oftide^  and  k  sound-* 
ing  or  depth  at  low  water,  both  in  feet ;  t  time  bettoeen  higJi  and  low  wafer ,  and 
t  timsfrom  time  of  sounding  to  low  water,  in  hows.    —  cos.  when  — —  <90° 
and  +  COS.  when  >9o*^. 

Illustration.  — Low  water  occurring  at  3.45,  and  high  water  at  10.15  p.m.,  a 
soundipg  taken  at  5.30  p.m.  was  18.25  ^^^^\  what  was  depth  at  low  water,  vertical, 
risebemg  10  feet? 

h  r=  xofeet ;  t^  =  $h.  30m.  —  sfe.  45m.  =  ifc.  45m.  =  x.  75  hours, 
t  =  xo^  xsm.  —  3^.  45m.  =  6h.  ym.  =  6. 5  hours. 

Then  —  f  i  qicos.  '^Xi-75\  _j  (,_cor  48©  37'  4x")=5)<(x-.663  i«4)=i.68438,/teft 
2   \  0.5       /  V 

Sounding  i8.25/e«t  — Redirction  i.68407/r<<  =  i6.56593yfe«t 

.rjengtlis  of  a  "Degree  of  Iuonf(ltude  on  paraUAlff>  of  Uatl- 
tvide,  for  each,  of  its  Degrees  fronx  £g.uator  to  £*ole. 


Lat. 

Miles. 

Lat. 

Miles. 

Lat. 

Milet. 

Lat. 

Milee. 

xO 

59-99 

16O 

57-67 

31° 

51-43 

46O 

41.68 

3 

59-96 

17 

57-38 

32 

5a  88 

47 

40.93 

3 

59-92 

18 

57-06 

33 

50.3a 

48 

40.15 

4 

59-85 

19 

sf-^i 

34 

49-74 

49 

3936 
38.57 

5 

59-77 

20 

56.38 

35 

49-15 
48.54 

SO 

6 

59-67 

3X 

56.01 

36 

S« 

37-76 

7 

59-55 

32 

5563 

37 

47.93 

5« 

36.94 

8 

59-42 

23 

55-23 

38 

4728 

53 

36.11 

9 

59.26 

24 

54-81 

39 

46.63 

54 

3527 

10 

59-09 

25 

54.38 

40 

45.96 

55 

34  4« 

XI 

58.89 

26 

53-93 

41 

4528 

56 

33  45 

X2 

58.69 

^l 

53- 46    . 

42 

44-59 
43-88 

57    , 

32.68 

13 

58.46 

28 

5297 

43 

58    ' 

31  79 

14 

58.32 

29 

52-48 

44 

43- 16 

59    . 

309 

15 

57-95 

30 

51-96 

45 

4243 

60 

30 

Lat. 

Milee. 

6jO 

30.09 
38.17 

6a 

63 

3774 

64 

36.3 

6S 

35.36 

66 

24-4 

67 

»3-44 

68 

33.48 

69 

215 

70 

3053 

71 

1953 
18-54 

72 

73 

1754 

74 

>6-54 

75 

1553 

Ut. 

Milee. 

76° 

"4-52 

77 

«3-5 

78 

13.4B 

P 

11.45 

80 

10.43 

81 

038 
8-35 

83 

83 

731 

84 

6.37 

«S 

5-23 

86 

4.18 

87 

3-J4 

88 

3 

89 

1.05 

90 

.00 

NoT«.  —  Degrees  of  longitude  are  to  each  other  in  length  as  Cosines  of  their 
Uitudea 


FIGUBE  OF  EAETH. — BOABD  AND  TIMBER  MEASUEB.     6 1 

Bjlexneiits  of*  F'isure  of  tlie  Kartli. 

CapL  A.  B.  Clarke^  1866. 

Feet.  Mile*. 

MiOor  semi-axis  of  Equator  (longitude  15O  34'  E.) 20926  350         3963.324. 

Minor    "      "     "        '*        (        "      io5°34'E.) 20919972         3962.115. 

Polar     "      "      20853429         3949-513. 

Equatorial  sem  i-axfs 20  926  062         3  963. 269. 

Circumference,  mean 24898.563. 

Diameter,  " 7916. 


BOARD  AND  TIMBER  MEASURE. 

BOARD   MEASURE. 
In  Board  Measure,  all  boards  are  assumed  to  be  i  inch  in  thickness 

To   Compute  Mieasnre   or  Surface. 
Wkefi  all  Dimetisions  are  in  Feet. 

Rule. — Multiply  length  by  breadth,  and  product  will  give  surface  in 
square  feet. 

When  eiiher  of  Dimensions  are  in  Indies. 

EzAMPLR.  — What  are  number  of  square  feet  in  a  board  15  feet  in  length  and  i€ 
inches  in  width?  * 

15  X  16  =  240,  and  240  -r- 12  =  20  sg.  feet 

When  all  Dimensions  are  in  Inches, 
Rule. — ^Multiply  as  before,  and  divide  product  by  144. 


TIMBER   MEASURE. 
To  Compute  Volume   of  Round  Tim'ber. 

When  all  Dimetisions  are  in  Feet, 

Rule. — Add  together  squares  of  diameters  of  greater  and  lesser  ends, 
and  product  of  the  two  diameters ;  multiply  sum  by  .7854,  and  product 
by  one  third  of  length. 

Or,a  +  a'-f  a"  x  -  =  f,and  c'  +  c"  -|-  c  x  c'  x  .07958  X  -  =  V.    a  and 

3  3 

a'  represeniing  areas  of  ends,  d'  area  of  mean  propoi'tiotial,  I  ler^th,  and  c 

and  c'  circumference  of  ends. 
Non.— Mean  proportional  is  square  root  of  product  of  areas  of  both  ends. 
IixcsTRATioN.— Diameters  of  a  log  are  2  and  1.5  feet,  and  length  15  feet 


15 


(a^+i.s^+aX  i.5)  =  9-25>  which  X  .7854  and  ^=-.36.3245  c^befeet 

When  Length  in  Feet,  and  Areas  or  Circumferences  in  Inches. 
Rule. — Proceed  as  above,  and  divide  by  144. 

When  all  Dimensions  are  in  Inches. 

Rule. — Proceed  as  before,  and  divide  by  1728. 
Note.  — Ordinary  rule  of  Button,  Ordnance  Manual  of  U.  S.,  and  Molesworth,  of 

i  X  c-i-  4,  giv.  s  a  result  of  about  .25  less  than  exact  volume,  or  what  it  would  be 
if  the  ioff  was  hewn  or  sawed  to  a  square,    c  reprezcniing  mean  circumferences 

F 


62 


BOABD   ATSTD  TIMBER  MEASUBS. 


To   CoixipTite  Volume   of  Squared.  Tim'ber. 

Wheii  all  Dimeiwions  are  in  Jf'eet. 

Rule. — Multiply  product  of  breadth  by  depth,  by  length,  and  product 
will  give  volume  in  cube  feet. 

When  either  Dimentsion  is  in  Inches. 
Rule. — Multiply  as  above,  and  divide  product  by  12. 

When  any  tioo  Dimensions  are  in  Incha». 
Rule. — Multiply  as  before,  and  divide  by  144. 

ExAMPLK.— A  piece  of  timber  is  15  inches  square,  and  20  feet  in  length;  required 

its  volume  in  cube  feet 

15  X  15  X  30  ^  ^  t 

-^ =  31.25  cube  feet 

144 

Allowance  Is  to  be  made  for  bark,  by  deducting  from  each  girth  from 
.5  inch  in  logs  with  thin  bark,  to  2  inches  in  logs  with  thick  bark. 


100  superficial  feet  > „„„„.« 

of  pUking         (  =  ^  »^"^'^ 
120  deals =  1  hundred. 


!M:ea8vires   of  *I^iTxx\yer. -—{English.) 

50  cube  feet  of  squared  ) 1    j, 

40  feet  of  unhewn  timber  =  i  load. 
600  superficial  .feet  of  inch  planking  =  i  load. 

X)ea,ls. 

Deals.  —  Boards  exceeding  7  ins.  in  width,  a!id  if  less  than  6  feet  in 
length,  are  termed  deal  ends. 
Battens  are  similar  to  deals,  but  only  7  inches  in  width. 
Balk. — Roughly  squared  lo^  or  trunk  of  a  tree. 
Planks  are  boards  12  ins.  in  width. 

LaOOBl   iStaudards. 

Country. 


Country. 

Long. 

Broad. 

Thick. 

Volume 

Russia  and 

Prussia . . 

Sweden . . . 

Ft, 

12 

14 

Ina. 

II 
9 

Ins. 

1-5 
3 

Cub.  ft. 

1.375 
2.625 

Norway . . 
Christiana 
Quebec. . . 

100  Petersburgh  standard  deals  equal  60  Quebec  dcais. 


Long. 

Broad. 

Thick. 

Volam*. 

Ft. 

Ina. 

Ina. 

Cub.  ft. 

12 

9 

3 

2.25 

II 

9 

1.25 

.859 

12 

II 

2.5 

2.293 

SPARS    AND   POLES. 

Pine  and  Spruce  SparSy  from  10  to  4.5  inches  in  diameter  inclusive, 
are  to  be  measured  by  taking  their  diameter,  clear  of  bark,  at  one  third 
of  their  length  from  abut  or  large  end. 

Spars  are  usually  purchased  by  the  inch  diameter ;  all  under  4  inches 
are  termed  Poles. 

Spars  of  7  inches  and  less  should  have  5  feet  in  length  for  every 
inch  of  diameter,  and  those  above  7  inches  should  have  4  feet  in  length 
for  every  inch  of  diameter. 

I^oss   or   '^Vaste   in 


Oak,  English 200  per  cent 

"    AfVican 100   '•      " 

«♦    Dantzic 50  "      " 

"  American ip  " 


iHe-w-ins  or   Sa^wing  of  Xixn"ber. 

(C.  Mackrow.) 

Yellow  Pine  from  planks. .    jo  per  cent 

Tealc 15   "      •' 

Elm,Engli.sh 200  "      ** 

"    Awericaft 15  "      ♦♦ 


ti 


CISTERNS. — SHINGLES. 


63 


CISTERNS. 
Capacity  of*  Cisterns  in   Cnbe  I^eet  and  G-allons. 

For  each  10  Jnclien  in  Depth. 

Diatn.  I  Cnb.  ft.   I  Oallona 


Diam. 


Feet. 

2 

2-5 

3 

35 

4 

4-5 

5 

5.5 
6 

6.5 

7 

7-5 
8 

8.5 
9 


Cub.  ft 


2.618 
4.091 

S.89 
8.018 

10.472 

13-254 
16.362 

19.798 

23.562 

27.652 

32.07 

36.816 

41.888 

47.288 

53014 


Gallona 

Diam. 

Cab.  ft 

Gallons. 

Feet. 

19.58 

9-5 

59.068 

441.8 

30.6 

10 

65.449 

489.6   ' 

44.07 

10.5 

72.158 

53978 

59.97 

II 

79.194 

5924 

78.33 

"5 

86.558 

647.5 

99.14 

12 

94.248 

705 

122.4 

12.5 

102.265 

764.99 

148. 1 

13 

110.61 

827.4 

176.24 

13.5 

1 19.282 

892.29 

206.84 

14 

128.281 

959.6 

23988 

14.5 

137.608 

102938 

275.4 

15 

147.262 

1101.6 

313.33 

15.5 

157.243 

1176.26 

353-72 

16 

167.552 

1253.37 

396.55 

16.5 

178.187 

1332.93 

Feet. 
17 

17.5 
18 

19 
20 

21 

22 

23 

24 

25 
26 

27 
28 

29 
30 


189.15 

200.432 

212.056 

236.274 

261.797 

288.632 

316.776 

346.23 

376.992 

409.062 

442.44 

471-13 
513.126 

550.432 
589.048 


1414.94 

1499.33 
1586.28 

1767.45 

1958.3 

2159.11 
2369.64 

2589.97 

2820.09 

3059.8 

3309.67 

3569.17 

3838.44 

4117.51 

4406.08 


Kxoavation    and   X^iniiig   of*  AVells   or   Cisterns. 
For  each  10  Inches  in  Depth. 


m 

• 

1 

Bricki. 

Masonry. 

J 

8 

Num- 

Uid 

8  inches 

I  foot 

Q 

iS 

ber. 

dry. 

thick. 

thick. 

Feet. 

Cob.  ft. 

Cub.  ft. 

Cub.  ft. 

Cub.  ft. 

3 

12.29 

126 

5.24 

6.4 

10.47 

3-5 

15.29 

147 

6.  II 

7-27 

11.78 

4 

18.62 

168 

6.98 
7.85 

8.14 

13.09 

4-5 

22.27 

z88 

9.02 

14.4 

5 

26.25 

209 

8.73 

9.89 

15.71 

5-5 

39-56 

230 

9.6 

10.76 

17.02 

6 

35-2 

251 

10.47 

11.64 

18.33 

6.5 

40.16 

272 

"•34 

12.51 

19.63 

7 

45-45 

293 

12.22 

«3.3« 

20.94 

l'^ 

51.07 

314 

13.09 

14-25 

22.25 

8 

57.02 

335 

13.96 

15.13 

23.56 

i 

« 

• 

§ 

Bricks. 

Masonry. 

1 

Num- 

Uid 

8  inches 

I  foot 

Q 

rt 

ber. 

dry. 

thick. 

thick. 

Feet. 

Cub.  ft. 

Cub.  ft. 

Cub.  ft. 

Cub.ft. 

8.5 

63.29 

356 

14-83 

16 

24.87 

9 

69.89 

377 

15-71 

16.87 

26.18 

9-5 

76.81 

39« 

16.58 

17-75 

27-49 

10 

84.07 

419 

17-45 

18.62 

28.8 

10.5 

91.65 

440 

18.33 

19.49 

30.  IX 

II 

9956 

461 

19.2 

20.36 

31.42 

12 

116.36 

503 

20.94 

22.11 

3403 

13 

134.46 

545 

22.69 

23.85 

36.65 

14 

153-88 

586 

24-43 

25.6 

39-27 

15 

174.61 

628 

26.18 

27-34 

41.89 

16 

196.64 

670 

27.92 

29.09 

44-51 

Number  of  bricks  and  width  of  curb  are  taken  at  dimensiiHis  of  ordinary 
brick — viz.,  8  by  4  by  2.25  ins.  =  72  cube  ins. 

In  computing  number  of  bricks  required,  an  addition  of  5  per  cent,  should 
be  added  for  waste.  It  is  to  be  considered,  also,  that  diameter  of  excavation 
necessarily  exceeds  that  of  masonry. 


SHINGLES. 

Usually  of  white  Cedar  and  Cypress ;  27  inches  in  length  and  6  to  7 
inches  in  width,  dressed  to  light  .25  inch  at  point  and  .3125  inch  at 
abut. 

Laid  in  three  thicknesses  and  courses  of  about  8  inches,  so  that  less 
iban  .33  of  a  shingle  is  exposed  to  air,  or  about  2.25  shingles  are  re- 
quired per  square  foot  of  roof. 

Shingles,  alike  to  SUtes,  are  laid  upon  boards  or  battens. 


64 


SLATES   AND    SLATING. 


SLATES  AND   SLATING. 

A  Sqtiare  of  Slate  or  Slating  is  loo  superficial  feet. 

Gaitffe  is  distance  between  the  courses  of  the  slates. 

Lap  is  distance  which  each  slate  overlaps  the  slate  lengthwise  next 
but  one  below  it,  and  it  varies  from  2  to  4  inches.  Standard  is  assumed 
to  be  3  inches. 

Margin  is  width  of  course  exposed  or  distance  between  tails  of  the 
slates. 

Pitch  of  a  slate  roof  should  not  be  less  than  i  in  height  to  4  of  length. 

To   Compixte   Surface   of  a.  Slate   -wlien.   laid,  and   Num- 
ber  of  Sq.uares   of  Slating. 

Rule. — Subtract  lap  from  length*  of  slate,  and  half  remainder  will 
give  length  of  surface  exposed,  which,  when  multipUed  by  width  of 
slate,  will  give  surface  required. 

Divide  14  400  (area  of  a  square  in  inches)  by  surface  thus  obtained, 
and  quotient  will  give  number  of  slates  required  for  a  square. 

Example.  —A  slate  is  24  X  12  inches,  and  lap  is  3  inches;  what  will  be  number 
required  for  a  square? 

24  —  3  =  21,  and  21  -i-  2  =  10.5,  which  x  12  =  126  indie*  ;  and  14  4c»  -4-  126  = 
1x4.29  tlaUi. 

IDixxiensions  of  Slates. 

[American.] 


Int. 

Ins. 

Ins. 

Ins. 

Ids. 

Ins. 

Ins. 

14X7 
14  X  8 

14X9 

14  X  10 
16  X    8 
16  X    9 

16  X  10 
18  X   9 
18  X  10 

18  X  II 
18  X  13 

aox  10 

aox  II 
20  X  12 
32  X  II 

22  X  12 
22  X  13 
24  X  12 

24  X  13 
24  X  14 
24  X  16 

English. 


Doubles 

Small  doubles 


Plantations . .  \ 
Viscountess  . . . 


Ins. 


13X10 

13X  7 
iiX  6 
lox  5 
12x10 
13x10 
18x10 


Ladies 


Countess 


Ins 


I2X  8 
14X  8 
14X12 
15X  8 
i6x  8 
16x10 
20X10 


Marchioness 
Duchess  . . . 
Imperial  . . . 

Rags 

Queens  . . . . 

Empress  . . . 

Princess  . . . 


Ins. 


22X22 
24X12 
30X24 
36X24 
36X24 

26X15 
34X14 


Thickness  of  slates  ranges  from  .125  to  .3125  of  an  inch,  and  their  weight 
varies  from  2  to  4.53  lbs.  per  sq.  foot 


"^Veiglit  of  One   S<inare   Koot   of  Slatingr. 

.  25  in.  thick  on  laths 9. 25  lbs- 

"    "      "      "  1  in.  boards..  11.25    " 

.3125  in.  thick  on  laths ix.15    " 

"     «'      "     "  I  in.  boards,  14. 10   " 


125  in.  thick  on  laths 4.75  lbs, 

"    "      "      "  I  in.  boards..  6.75    " 

1875  In.  thick  on  laths 7        " 

"     »'      "      "  I  in.  boards.  9        " 


Slate  weighs  from  167  to  181  lbs.  per  cube  foot,  and  in  consequence  of 
laps,  it  requires  an  average  of  nearly  3.5  square  feet  of  slate  to  make  one  of 
slating. 

Weights  per  1000  and  Number  Required  to  Cover  a  Square. 


Doubles 13  X  6 

Ladies 15  x  8 


J.U. 

No. 

1680 

480 

Countess . . 

.  ao  X  10 

3800 

340   1 

Duchess  . . 

.  24  X  12 

6730 
4480 


No. 
171 

"5 


*  Length  of*  slsts  Is  taken  from  nail-hole  to  tall. 


SBOt  AKD  SHELtS.^— ^SAUI>UL:KKT  BALANCES.       6$ 
PILING  OF  SHOT  AND  SHELLS. 

To    Compute    NumlDer    of  Sh,ot. 

Triangular  Pile,  Rule. — Multiply  continually  together,  number  of  shot 
in  one  side  of  bottom  course,  and  that  number  increased  by  i,  and  again  by 
2,  and  one  sixth  of  ]uroduct  will  give  number. 

EzAMrLB.— What  is  number  of  shot  in  a  triangular  pile,  each  side  of  base  contain- 
ing 30  shot?  

30X30+- X30-h»  =, £9|6o  ^  ^^^^^ 

0  6 

Square  Pile.  RuLE.-^Multiply  continually  together,  number  in  one  side 
of  bottom  course,  and  that  number  increased  by  i,  double  same  number  in- 
creased by  I,  and  one  sixth  of  product  will  ^ve  number. 

ExAMPLK.— How  many  shells  are  there  in  a  square  pile  of  30  courses? 

30  X  30+1  X  30  X  2  + 1  _  56730     ^,„.juwi. 
^ — — g —  =  9455  smUs. 

Oblong  Pile.  Rule. — From  3  times  number  in  length  of  base  course  sub- 
tract one  less  than  number  in  breadth  of  it ;  multiply  remainder  by  number 
in  breadth,  and  again  by  breadth,  increased  by  i,  and  one  sixth  of  product 
will  give  number. 

Example. — Required  number  of  shells  in  an  oblong  pile,  numbers  in  base  course 
being  16  and  7  ?  

'6X3  —  7  —  1X7X7  +  1  _  2352  _  ,^^    ^fc,,;. 

g =  —^  =  392  shelU. 

Ina}mplete  Pile,  Rule. — From  number  in  pile,  considered  as  complete, 
subtract  number  conceived  to  be  in  that  portion  of  pile  which  is  wanting, 
and  remainder  will  give  number. 


FRAUDULENT   BALANCES. 

To  Detect  Them. — After  an  equilibrium  has  been  established  between 
weight  and  article  weighed,  transpose  them,  and  weight  will  preponder- 
ate if  article  weighed  is  lighter  than  weight,  and  contrariwise  if  it  is 
heavier. 

To  Ascertain  True  Weight.  Ru i.e.— Ascertain  weight  which  will  produce 
equilibrium  after  article  to  be  weighed  and  weight  have  been  transposed ; 
reduce  these  weights  to  same  denomination,  multiply  them  together,  and 
square  root  of  their  product  will  give  true  weight 

ExAMPLa.  —If  first  weight  is  3a  lbs.,  and  second,  or  weight  of  equilibrium  after 
transposition,  is  24  lbs.  8  oz.,  what  is  true  weight? 

24  Iba  8  oz.  =  24. 5  lbs. 
Then  3a  X  24. 5  =784,  and  y/jB^  =  28  lbs. 

Or,  when  a  reprewntt  longest  arm,         I         A  greatest  weighty  and 
b        "        shortest  arm,        \        B  least  weight. 


Then  WassAft^and  W6  =  Ba;  multiplying  these  two  equations,  W=afc  =  ABa6, 
or  W»  =  AB,  and  W  =  VAB. 

Illustbatiok.  — a  =  32 ;  B  =  24.  s ;  W  =  28.    Assume  length  of  longest  arm  =  la 

Then  32  :  28  ::  10  :  8.75^ 

Be«oe, a  =  10, 6  =  8.75,  or  28* = 32  X  24. 5,  and  V32X24.5  =  2& 

V* 


66 


WBIGHING   WITHOUT  6CALSS. — ^PAINTING. 


"Weieliiiis  -witlxo-at  Scales. 
To   i^Boertaixi   l^eiglit  or  a  Sar,  Beaxn,  etc.,  bjr  Add.  ot 

Opbration. — Balance  bar,  ete.,  over  a  fulcrum,  and  note  distance  between 
it  and  end  of  its  longest  arm.  Suspend  a  known  weight  from  longest  arm, 
and  move  bar,  etc.,  upon  fulcrum,  so  that  bar  with  attached  wei^t  wiU  be 
in  eqnilibrio;  subtract  distance  between  the  two  positions  of  fulcrum  from 
longest  arm  first  obtained ;  multiply  this  remainder  by  weight  suspended, 
divide  product  by  distance  between  f  ulcrums,  and  quotient  will  give  weight. 

ExAMPUL— A  piece  of  tapered  timber  24  feet  in  length  is  balanced  over  a  ftilcrum 
when  13  feet  from  less  end;  but  when  the  body  of  a  man  weighing  210  lbs.  is  sus- 
pended tram  extreme  of  longest  arm,  the  piece  and  weight  are  balanced  when  ful- 
cmm  is  12  feet  Arom  this  end.    What  is  weight  of  the  timber? 

13 — 12  =  I,  and  13  — 1  =  12  feet    Then  12  X  2xo-r- 1  =  2520261. 


PAINTING. 

I  pound  of  paint  will  cover  about  4  square  yards  for  a  first  coat  and  about 
6  yards  for  each  additional  coat. 

I*roportions  of  Colore  for  ordinary  Paiiit8.--B3r  '^Teiglit. 


COLOKS. 


White 
Black. 
Green 


•2  c' 

Hi 

100 
i»5 

100 

— 

— 

75 

CoLOKS. 


Lead 

Chocolate. . 


5  . 

N 

1-32 

2 

Red 
Lead. 

Red 
Ochre. 

1  . 

>-6 

•Sn 

c  0 
«COQ 

98 

— 

— 

— . 

__ 

— 

— 

50 

50 



— 

4 

— 

_^ 

^ 

96 

These  are  the  colors  alone,  to  which  boiled  linseed  oil,  litharge,  Japan  varnish, 
and  spirits  turpentine  are  to  be  added  according  to  the  application  of  the  paint 

Lamp-black  and  litharge  are  ground  separately  with  oil,  then  stirred  into  the 
lead  and  oil. 

Thus  for  black  paint:  Lamp-black  25  parts,  litharge  i,  Japan  varnish  i,  boiled  lin- 
seed oil  72,  and  spirits  turpentine  i. 

T'ar  Faiut.— €k>al  tar  9  gallons,  slaked  lime  13  Iba,  turpentine  or  naphtha  2 
or  3  quarts. 


A  GaLLOH  or  pAtRT  WILL  COTSB 


On  stone  or  brick,  about . 
On  composite,  etc,  fh>m , 
On  wood,  from 


SnperficiAl 
ftet. 


190  to  225 

300  "  375 
375  "  525 


A  Oalloiv  or  Paimt  will  cotbb 


On  well-painted  surfkee  or  iron 

One  gallon  tar,  fiist  coat 

"       "       '•   second  coat . . . 


Superficial 
tmi. 


600 

90 
160 


Boiled   Oil. — Raw  linseed  oil  91  parts,  copperas  3,  and  litharge  6. 
Pot  litharge  and  copperas  in  a  cloth  bag  and  suspend  in  middle  of  a  kettle.    Boil 
oil  four  hours  and  a  half  over  a  slow  fire,  then  let  it  stand  and  deposit  the  sediment 


"White  Paint. 

Inaida  work.    OnUid«  work. 

White  lead,  in  oil . .    80     80 

Boiled  oil 14.5 9 


Iiwid*  work.    Oateide  work. 

Raw  oil —      9 

Spirits  turpentine.      8     .....      4 


New  wood- work  requires  i  lb.  to  square  yard  for  three  coats. 


Imidb. 


Priming . . . . 

2d  coat 

3d    "   


Coats  for  100  Square  Tarda  New  White  Pine. 

OCTBII>C> 

Priming... 

ad  and  3d  ) 

coats     I 


White 
le«l. 

Raw 

oil. 

Tnrpen- 
tine. 

Drier. 

Lb*. 
16 

«5 

>3 

PU. 
3-5 

2-5 

Pte. 
6 

x-5 
x-S 

Lbe. 
•25 
.25 
•as 

White 
lead. 

Lh». 
18.5 

Raw 

oil. 

Pt«.~ 

2 

Boiled 
oil. 

Pt». 

9 

tS 

2 

9 

Tarpen- 
tine. 

Ptfc 


.  I  lb.  of  drier  with  priming  and  coating  for  outside. 


HTDBOMETEBS.  6/ 

HTDROMETERa 

U.  8.  Hydrometer  (Trailers)  ranges  from  o  (water)  to  loo  (pure  spirit) ; 
it  has  not  any  subdivision  or  standard  termed  "  rroof ,"  but  50,  upon 
stem  of  instrument,  at  a  temperature  of  60°,  is  basis  upon  which  com- 
putations of  duties  are  made. 

In  ooDDection  with  this  instrament,  a  Table  of  Corrections,  for  differences  in  tem- 
perature of  spirits,  becomes  necessary;  and  one  is  Airnished  by  the  Treasury  De- 
partment, from  which  all  computations  of  value  of  a  spirit  are  made. 

Illdstkation.  —  A  cask  contains  100  gallons  of  whiskey  at  70^^,  and  hydrometer 
sinks  in  the  spirit  to  35  upon  its  stem. 

Then,  by  table,  under  70^  and  opposite  to  35,  is  32.99,  showing  that  there  are  33.99 
gallons  of  pure  spirit  in  the  loa 

Commercial  Hydrometer  (Gendar's)  has  a  "Proof"  at  60*^,  which  is 
equal  to  50  upon  U.  S.  Instrument  and  its  gradations,  run  up  to  100 
with  it,  and  down  to  10  below  proof,  at  o  upon  U.  S.  Instrument ;  or  o 
of  the  Commercial  Instrument  is  at  50  upon  U.  S.  Instrument,  from 
which  it  progresses  numerically  each  way,  each  of  its  divisions  being 
equal  to  two  of  latter. 

In  testing  spirits.  Commercial  standard  of  value  is  fixed  at  proof ; 
hence  any  difiFerence,  whether  higher  or  lower,  is  added  or  subtracted, 
as  case  may  be,  to  or  from  value  assigned  to  proof. 

A  scale  of  Corrections  for  temperature  being  necessary,  one  is  fur- 
nished with  a  Thermometer. 

ApfUicatian  of  Thermometer.— EleWiUon  of  the  mercury  indicates  correction  to 
be  added  or  subtracted,  to  or  ftom  indication  upon  stem  of  hydrometer. 
When  elevation  is  above  6o<^,  subtract  correction ;  and  when  below,  add  It 

Illustration. — A  hydrometer  in  a  spirit  indicates  upon  its  stem  50  below  proof, 
and  thermometer  indicates  4  above  60^  in  appropriate  column. 

Then  50 — 4  =  46  =  strength  below  prooj. 

To  Coxxxpute  Strengtli  of  a  Spirit,  or  Volutxie  of*  its  Pure 
Spirit,  by  Coxnxxieroial  Hydrometer,  and  Convert  it  to 
Indication   of  a  TJ.  S.  Hydrometer. 

When  Spirit  is  above  Proof.    Ruut.~Add  xoo  to  indication,  and  divide  sum  by  3. 

When  Spirit  is  below  Proof  Ruu.  —Subtract  indication  flrom  100,  and  divide 
remainder  by  2. 

Example.  —A  spirit  is  11  above  proof  by  a  Commercial  Hydrometer;  what  pro- 
portion of  pore  spirit  does  it  o<Hitain  f 

II -f- loo-T- 3  =  55.5  j>er  oCTit 

To  Ooxnpnte  Strengtli,  etc.,  "by  a  U.  S.  Hydrometer. 

When  Spirit  is  above  Proof.    Rulm.— Multiply  indication  by  3,  and  subtract  xoa 

When  Spirit  is  behw  Proof  Rdli.  —Multiply  Indication  by  s,  and  subtract  it 
firom  loa 

ExAMPLB.— A  spirit  is  55.5 ;  what  is  its  per  centage  above  proof? 

55'5X  2  — 100  =  11  per  cent 
Commercial  practice  of  reducing  indications  of  a  hydrometer  is  as  follows: 
Multiply  nnmber  of  gallons  of  spirit  by  per  centage  or  number  of  degrees  above 

or  below  proof,  divide  by  xoo,  and  quotient  will  give  number  of  ^Ulons  to  be  added 

or  subtracted,  as  case  may  be. 

iLLraTEAnoH.— so  gallons  of  whiskey  are  n  per  cent,  above  proof 

TIWB  50  X  XI  -r  100= 5.5,  which  added  to  50  =  55.5  gaUons. 


68 


HTGBOMETEB. 


HYGROMETER. 

Dew-point. — When  air  is  gradually  lowered  in  its  temperature  at  a 
constant  pressure,  its  density  increases,  and  ratio  of  increase  is  sensibly 
same  for  the  vapor  as  for  the  air  with  which  it  is  combined,  until  a  point  is 
reached  at  whicn  the  density  of  the  vapor  becomes  equal  to  the  maxinmm 
density  corresponding  to  the  temperature. 

This  temperature  is  termed  dew-point  of  given  mass,  and  any  further  re- 
duction of  it  will  induce  the  condensation  of  a  portion  of  the  vapor  in  form 
of  dew,  rain,  snow,  or  frost,  according  as  temperature  of  surface  is  above  or 
below  freezing  point 

nVTason's   or  like   Hygrometer. 
Xo   Ascertain.   De-w-point. 
RoLB. — Subtract  absolute  dryness  from  temperature  of  airland  remainder  is 
dew-point  • 

Example. — ^Temperature  of  air  57°,  and  absolute  dryness  70. 

PIcucc  57°  —  7°  =  50°  dew-point. 

To  Asoertaixx   Absolute   }£xistiu£>   Dryness. 

Rule.— Subtract  temperature  of  wet  bulb  IVom  temperature  of  air,  as  indicated 
by  a  dry  bulb,  add  excess  of  dryness  fVora  following  table,  multiply  sum  by  2,  and 
product  will  give  absolute  dryness  in  degrees. 

Example.— Temperature  of  air  57O,  wet  bulb  540* 

Then  57O  —  54O  =  3°  and  30  4-  -5°  (^oni  table)  X  2  =  7°  absolute  dryness. 


Obaerved  Exc«u  of  | 

Observed 

Dryness. 

Dryness. 

Dryness. 

• 

e 

• 

•5 

.083 

5 

I 

.166 

5-5 

1-5 

.2495 

6 

2 

•333 

6.5 

9-5 

•4*65 

'  7 

3 

•5 

7-5 

3-S 

.583 

8 

4 

.666 

8.5 

45 

•7495 

9 

Dryness. 


•833 
.9165 
I 

1.083 
1. 166 
1.2495 

1-333 
1.4165 

1-5 


Observed 'Excess  of 
Dryness.  |  Dryness. 


:i 


9-5 
10 
10.5 
II 

11.5 

12 

12.5 

13 

135 


1.583 
1.666 

'•7495 

1.833 

1.9165 

2 

2.083 

2.166 

2.2495 


Observed 
Dryness. 


14 

145 

15 

155 

16 

16.5 
17 

17-5 
18 


Excess  of 
Dryness. 


8-333 
2.4165 

2-5 
2.583 

2.666 

2.7495 

2833 

2.9165 

3 


Observed 

Excess  01 

Dryness. 

Dryness. 

18.5 

3-083 

19 

3- 166 

19.5 

3^2495 

20 

3.333 

2a5 

3.4165 

21 

3.5 

21.5 

3.583 

23 

3.666 

22.5 

3.7495 

To   Compu-te  "Volume   of  "Vapor   in   -A^tmospliere. 

By  a  Hygrometer. 

When  temperature  0/ atmosphere  in  shade,  and  of  dew-point  are  given. — If  temper- 
ature of  air  and  dew-point  correspond,  which  is  the  case  when  both  thermometers 
are  alike,  and  air  consequently  saturated  with  moisture,  then  in  table*  opposite  to 
temperature  will  be  found  corresponding  weight  of  a  cuDe  foot  of  vapor  in  grains. 

Illustration.— Assume  temperature  of  air  and  dew-point  joP.  Then  opposite 
temperature  weight  of  a  cube  foot  of  vapor  =  8.392  grains. 

But  if  temperature  of  air  is  different  trom  dew-point,  a  correction  is  necessary  to 
obtain  exact  weight 

Illustration.— Assume  dew-point  70^  as  before,  but  temperature  of  air  in  shad* 
80°,  then  the  vapor  has  suffered  an  expansion  due  to  an  excess  of  lo^,  which  re- 
quires a  correction. 

In  table  of  corrections  for  10°  is  1.0208.  Then  divide  8.392  grains  at  dew- point- 
viz.,  70O  by  correction  corresponding  to  degrees  of  absolute  dryness— viz.,  lo^. 

"^ -  =  8.221  grains  of  existing  vapor,  which,  subtracted  trom  weight  of  vapor 

I.OSOO 

corresponding  to  temperature  of  80°,  will  give  number  of  grains  required  for  satu- 
ration at  that  temperature. 

11.333  grain*  At  temperature  of  80°  —8.221  contained  in  the  air  =  3.Z12  required 
for  saturation. 

*  For  table,  see  Muon's  as  poblished  by  Pi|ce  ^  89n>i  I^^w  York,  and  oompvod  with  Sir  Join 
Leslie's  «pd  Professor  Duiiel's. 


HTGBOMETEB. — ^SUN-DIAL. — CHAINING.  '  6q 

To  ascertain  relations  of  these  conditioDB  on  natural  scale  of  humidity  (complete 
saturation  being  looo),  divide  weight  of  vapor  at  dew-point  by  weight  at  tempera- 
ture of  air,  and  quotient  will  give  degrees  of  saturation. 

Illustration. — Dew-point  =  70°,  weight  =  8.392. 
Then  8.393-7-11.333  (at  So°)  =  .7405  degrees  of  humidity;  saturation  =  looa 

To  Compute  Weight  of  Vapor  in  a  Cube  Foot  of  Air. 
See  Pressures,  Temperatures,  Volumes,  and  Density  of  Steam,  p.  708. 
Thus,  Required  weight  of  vapor  in  a  cube  foot  of  saturated  air  at  212''. 
At  a  temperature  of  213°  density  or  weight  of  i  cube  foot  of  air  =  .038  lb. 
If  density  is  required  for  any  temperatures  not  in  table,  see  rule,  p.  706. 

irt<fns(2t(y.~~Condition  of  air  in  respect  to  its  moisture  involves  amount  of 
vapor  present  in  air  and  ratio  of  it  to  amount  which  would  saturate  it  at  its 
temperature,  and  it  is  this  element  which  is  denoted  by  term  humidity^  and 
it  is  expressed  as  a  per  centage ;  thus,  if  weight  of  vapor  present  is  .7  of  that 
required  for  saturation,  the  humidity  is  70. 

Dt'y  A  ir  is  air,  humidity  of  which  is  below  zero,  bnc  it  is  customary  to 
term  it  dry  when  its  humidity  i^  below  the  average  proportion. 

NoTK.— Air  In  a  highly  heated  space  contains  as  much  vapor  (when  weight  of  it 
is  equal)  as  a  like  volume  of  external  air,  but  it  is  dri^r  as  its  capacity  for  vapor 
is  greater.  

SUN  -  DIAL. 
To   Bet  a   Sun-dial. 

Set  column  on  which  dial  is  to  be  placed  perpendicular  to  horizon.  Ascertain  by 
spirit  level  that  upper  surface  is  perfectly  horizontal ;  screw  on  plate  loosely  by  means 
of  centre  screw,  and  bring  gnomon  as  nearly  as  practicable  to  its  proper  direction. 

On  a  bright  day  set  dial  at  9  a.m.  and  3  p.m.  exactly,  with  a  correctly  regulated 
watch ;  observe  difference  between  them,  and  correct  dial  to  half  difference.     Fro 
oeed  in  same  manner  till  watch  and  dial  are  found  to  agree  perfectly.    Then  fix 
plate  firmly  in  that  situation,  and  dial  will  be  correctly  set. 

This  is  obvious;  for,  if  there  wore  any  defects,  the  Sun's  shadow  would  not  agree 
with  time  indicated  by  watch,  t>oth  before  and  after  he  passed  meridian.  Take 
care,  however,  to  allow  for  equation  of  time,  or  you  may  set  dial  wrong.  Best  day 
in  the  year  to  set  a  dial  is  15th  of  June,  as  there  is  no  equation  to  allow  for,  and  no 
error  can  arise  from  change  of  declination.  A  dial  may  be  set  without  a  watch,  by 
drawing  a  circle  around  centre,  and  marking  spot  where  top  of  shadow  of  an  upright 
pin  or  piece  of  wire,  placed  in  centre,  Just  to  iches  circle  in  a.m.,  and  again  in  p.m. 
A  line  should  be  drawn  (Vom  one  spot  to  the  other,  and  bisected  exactly;  then  a 
line  drawn  fh>m  centre  of  dial  through  that  bisection  will  be  a  true  meridian  line, 
on  which  the  XII  hours'  mark,  should  be  set. 


CHAINING    OVER   AN   ELEVATION. 

/  C  =  L,  and  0 = con,  angle. 
I  representing  length  of  line  chained,  C  cos.  angle  of  elevation  with  horizon, 
and  L  length  ofHne  reduced  to  horizontal. 

iLLUSTBATioK.— Length  of  an  elevation  at  an  angle  of  30^^  xf  Is  100  feet;  what  is 
horizontal  distance  ? 
By  liable  of  Cosines,  30©  17'  =  . 863  54.    Hence,  100  X .  863  54  =  86. 354  feet 

To  set  out  a  RisKt  A^nele  xvitli  a  Chain,  Tape-line»  eto. 

Take  40  links  on  chain  or  feet  of  line  for  base,  30  links  or  feet  for  perpendicular, 
aiiU  50  for  hypothenuse,  or  in  this  ratio  for  any  length  or  distance. 

USKFUL  NUMBKRS  IN  SURVEYING. 


For  ConT«rtln(r        Mnltiplter.  ConverM.I  For  Convertiog 


Mnltiplter. 

CoDverM. 

1-515 
4-545 

.66 
.33 

Feet    into  links..      1.5x5         .66       Square  feet    into  acres. 
Yardb    ''     *'    ..     4.545        .33       Square  yards  ''       '*  .. 


Multiplier. 


.0000339 
.0003066 


Coovcntk 


43560 
4840 


/^ 


70 


CHBONOLOOT. 


CHRONOLOGY. 


Solar  day  is  measiired  by  rotation  of  the  Earth  upon  its  axis  with  respect 
to  the  Sun. 

^  Motion  of  the  Earth,  on  account  of  ellipticity  of  its  orbit,  and  of  perturba- 
tions produced  by  the  planets,  is  subject  to  an  acceleration  and  retardation. 
To  correct  this  fluctuation,  timepieces  are  adjusted  to  an  average  or  mean 
solar  day  {jnean  time)^  which  is  divided  into  hours,  minutes,  and  seconds. 

In  Civil  computations  day  commences  at  midnight,  or  A.M.,  and  is  divided  into 
two  porticos  of  12  hours  each. 

In  Aitronomical  computations  and  in  Nautical  time  day  commences  at  M.,  or 
la  hours  later  than  the  civil  duy,  and  it  is  counted  throughout  the  24  hours. 

Solar  Tear,  termed  also  Equinoctial^  Tropical,  Civil,  or  Calendar  Tear,  is  the 
time  in  which  the  Sun  returns  from  one  Vernal  Equinox  to  another;  and  its  average 
time,  termed  a  Mean  Solar  Tear,  is  365.342218  solar  days,  or  365  dayt,  5  hourt,  4S 
minuta,  and  47.6  tecondt. 

Tear  is  divided  into  12  Calendar  months,  varying  from  38  to  31  daya 

Mean  Lunar  Month,  or  lunation  of  the  Moon,  is  29  days,  xa  hours,  44  minutes, 
s  seconds,  und  5.24  thirds.* 

BiMMcxlile  or  Leap  Tear  consists  of  366  days;  correction  of  one  year  in  four  is 
termed  Julian  ;  hence  a  mean  Julian  year  is  365.25  days. 

In  year  1582  error  of  Julian  computation  of  a  year  had  amounted  to  a  period  of 
10  days,  which,  by  order  of  Pope  Gregory  VIIL,  was  suppressed  in  the  Calendar,  and 
5th  of  October  reckoned  as  15th. 

Error  of  Julian  computation,  .00776  days,  is  about  i  day  in  128.79  y^r^t  *^^  adop- 
tion of  this  period  as  a  basis  of  intercalation  is  termed  Gregorian  Calendar^  or  New 
Style^i  Julian  Calendar  being  termed  Old  Style. 

Error  of  Gregorian  year  (365.2425  days)  amounts  to  i  day  in  3571.4386  years. 

New  Style  was  adopted  in  England  in  1752  by  reckoning  3d  of  September  as  14th. 

By  an  English  law,  the  years  1900, 2100, 3200,  etc,  and  any  other  looth  year,  ex- 
cepting only  every  400th  year,  commencing  at  aooo,  are  not  to  be  reckoned  bissex* 
tile  years. 

Dominical  or  Sunday  Letter  is  one  of  the  first  seven  letters  of  alphabet,  and  is 
UMd  for  purpose  of  determining  day  of  week  corresponding  to  any  given  date.  In 
Rxletiattical  Calendar  letter  A  is  placed  opposite  to  ^8t  day  of  year,  January  ist; 
li  to  second:  and  so  on  through  the  seven  letters;  then  the  letter  which  falls  oppo- 
site to  first  Sunday  In  year  will  also  foil  opposite  to  every  following  Sunday  in  that 
year.    See  table,  p.  73. 

Nora.— In  bissextile  years  two  Dominical  letters  are  used,  one  before  and  the  other 
after  the  intercalary  day. 

In  Ecdftiattical  Tear  the  intercalary  day  is  reckoned  upon  24th  of  February; 
hence  24th  and  35th  days  are  denoted  by  same  letter,  the  dominical  letter  being  set 
back  one  place. 

In  Civil  Tear  the  intercalary  day  is  added  at  end  of  February,  the  change  of  letter 
tak I ng  place  at  ist  of  March. 

Dominical  Cycle  is  a  period  of  400  years,  when  the  same  order  of  dominical  letters 
and  days  of  the  week  will  return. 

Cydf  of  the  Sun,  or  Sunday  Cycle,  is  the  28  years  before  same  order  of  Dominical 
loiters  return  to  same  days  of  month,  and  it  is  considered  as  having  oommenoed  o 
years  before  the  era  of  Julian  Calendar. 

To   Compute   Cycle  of  tlie   Sun. 

RrLR.— Add  9  to  given  year;  divide  sum  by  28;  quotient  Is  number  of  cycles  that 
Dave  elapsed,  and  remainder  Is  number  or  years  of  cycle. 

NoTj.— rso  of  this  computation  Is  determination  of  dominical  letter  for  any  given 
year  of  J ulian  Calendar  for  each  of  the  38  years  of  a  cycle. 


*  f crivMa.  t  Now  adopM  in  •▼«7  Chrlitiaa  cooBlry  «n:«pt  RoMla  and  Gnwe. 


CHBONOXiOGY.  7 1 

Bj  adoption  of  Gregorian  Calendar^  order  of  the  letters  is  necessarily  interrupted 
by  suppression  of  Uie  century  bissextile  years  in  1900. 2100,  eto.^  and  a  table  of  Do- 
minical letters  must  necessarily  be  reconstructed  for  following  Ciantury. 

Lunar  Cycle,  or  Golden  Number,  is  a  period  of  19  years,  after  which  the  new 
moons  fall  on  same  days  of  the  month  of  Julian  year,  within  1.5  hours. 

Year  of  birth  of  Jesus  Christ  is  reckoned  first  of  the  Lunar  Cycle. 

To   Compi:ite   Lunar   Cycle,  or  Q-olden   Nxiijatoer. 

RuLB.— Add  I  to  given  year;  divide  sum  by  19,  and  remainder  is  Golden  Number 

NoTB.— If  o  remain,  it  is  19. 

ExAUPLK.  —What  is  Golden  Number  for  1879  ? 

1879-)- 1  -^  19=98,  and  remainder  =  18  =  Golden  Numben 
Epaet  fbr  any  year  is  a  number  designed  to  represent  age  of  the  moon  on  ist  day 
of  J  anuary  of  that  year.    See  table,  p.  73. 

fI?o   Compute   tlie   Roman   Indiotion. 

RuLS.— Add  3  to  given  year;  divide  sum  by  15,  and  remainder  is  Indlction. 
NoTK.-^If  o  remain,  Indiction  is  15. 

Number  of  Direction  is  the  number  of  days  that  Easter-day  occurs  After  9tst  of 
11  arch. 

Easter-day  ia  first  Sunday  after  first  ftill  moon  which  occurs  iipon  or  next  after 
2i8t  of  March;  and  if  full  moon  occurs  upon  a  Sunday,  then  Caster-day  is  Sunday 
after,  and  it  is  ascertained  by  adding  number  of  direction  to  sist  of  March.  It  is 
therefore  March  N-j-  21,  or  April  N  —  la 

Illustration. —  If  Number  of  Direction  is  19,  then  for  March,  19-f  ai  1=40,  and 
40  —  31  =  9  =  9*  0/ -^pra  ; 
again  for  April,  19  — 10  =  9  =  9^  of  April. 

NoTB.— Moon  upon  which  Easter  immediately  depends  is  termed  Paschal  Moon. 

FuU  Moan  is  14th  day  of  moon,  that  is,  13  days  after  preceding  day  of  new  moon. 

X>a9r0  of  tbie   Roman.   Calendar. 

Calends  were  the  first  6  days  of  a  month,  Nones  following  9  days,  and  Ides  remain- 
ing days. 

In  Maroh,  May,  July,  and  October,  Ides  fbll  upon  15th  and  Nones  began  upon  7th. 
In  other  months  Ide*  commenced  upon  13th  and  Nones  upon  5th. 

For  Roman  Indiction  and  Julian  Period  see  p.  96. 

Clironology. 

4004.  Creation  of  World  (according  to  Julius  Africanus,  Sept  i,  5508 ;  SamarlUn 
Pentateuch,  4700;  Septuagfnt,  5B72 ;  Josephus,  4658 ;  Talmudists,  5344 ;  Sca- 
liger,  3950;  PetaviuB,3984;  Hales,  541 1). 

2348  Deluge  (according  to  Hales,  3154)-     1  576.  Money  coined  at  Rome. 


3247.  Bricks  made  and  Cement  first  used 
Tower  of  Babel  finished, 

9903.  Chinese  Monarchy. 

aoQo.  First  Egyptian  Pyramid  and  CaAal. 

1920.  Gold  and  Silver  Money  first  intro- 
duced. 

1891.  Letters  first  used  in  E@rpt 

1832.  Memnon  invents  the  Egyptian  Al- 
phabet 

1 400.  Crockery  introduced. 

4340.  Axe,  Wedge,  Wimble,  Lever,  Masts 
and  Sails  invented  by  Daedalus 
of  Athena. 

1180.  Troy  destroyed.  ^      ^  ^ 

ix3(x  Mariner's  Compass  discovered  in 

China. 
753.  Foundation  of  Roma 
640.  Tbales  asserU  Earth  to  be  spherical 
605.  Geometry,  Maps,  etc.,  first  intro 


569.  First  Comedy  performed  at  Athena 

480.  First  recorded  Map  by  Aristagoras. 

420.  First  Theatre  built  at  Athens. 

336.  Calippus  calculates  the  revolution  of 
Eclipses. 

32a  Aristotle  writes  first  work  on  Me- 
chanics. 

310.  Aqueducts  and  Baths  introduced  in 
Rome. 

306.  First  Light-house  in  Alexandria. 

289.  First  Sundial 

367.  Ptolemy  constracts  a  Canal  from  tha 
Nile  to  the  Red  Sea. 

334.  Archimedes  demonstrates  the  Prop- 
erties of  Mechanical  Powers  and 
the  Art  of  measuring  Surface^  Sol- 
ids, and  Sections. 

219.  Hannibal  crossed  the  Alp& 

219.  Surveying  first  introduced. 


duced.  '  I  203*  PriQting  introduced  in  China. 


72 


CHBONOLOGT. 


B.G. 
198. 

170. 

168. 

162. 


Books  with   leaves  of  vellum  first 

iDtruduced  by  Attalus. 
Paper  invented  in  China. 
An  eclipse  of  the  Moon  which  was 

predicted  by  Q.  S.  G alius. 
Hipparcbus  locates  the  first  degree 

of  Longitude  and  the  Latitude  at 

Ferro. 


A.D. 

69. 
79- 

214. 
622. 


Destruction  of  Jorusalera. 

Destruction  of  Ucrculaneum  and 
Pompeii. 

Grist-mills  introduced. 

Year  of  Hegira,  commencing  i6th 
July;  Glazed  windows  first  intro- 
duced into  England  in  thiscent'y. 

Glass  discovered. 

Stone  buildings  introduced  into  Eng- 
land. 

I^nda  first  enclosed  in  England- 
Printing  said  to  have  been  invented 
by  the  Chinese. 

Arabic  Numerals  introduced. 

Battle  of  Hastings. 

Mariner's  Compass  discovered. 

Mariner's  Compass  introduced  in 
Europe. 

Chimneys  first  introduced  Into 
Rome  fk'om  Padua. 

Cannon  introduced. 

Woollens  first  made. 

Printing  invented  at  Mayence. 

Wood-engraving  invented  and  First 
Almanac. 

Printing  in  England  by  Caxton. 

Watches  first  introduced  at  Nurem- 
berg. 

America  discovered. 

Vasco  de  Gama  discovers  passage 
to  India. 

Variation  of  Mariner's  Compass  ob- 
served. 

F.  de  Magellan  circumnavigates  the 
Globe. 

Incas  conquered  by  Pizarro. 

Needles  first  introduced. 

Potato  introduced  into  Ireland  from 
America. 

Telescopes  invented  by  Jansen  and 
used  in  Ix)ndon  in  1608. 

Tobacco  first  introduced  into  Vir- 


B.O. 

159. 

146. 

70. 

51- 

45- 

& 


Clepsydra,  or  Water  -  clock.  Invent 

ed. 
Carthage  destroyed. 
First  Water-mill  described. 
C»sar  invaded  Britain. 
First  Julian  Year  by  Csesar. 
Augustus  corrects  the  Calendar. 


667. 
670. 

842. 
933- 

X066. 

IIIX. 

X180. 
1368. 

1383. 

1390- 

1434- 
X460. 

1471. 
M77- 

1492. 
1497- 

1500- 

1522. 

'530- 
X545- 
7*586. 

X59a 

x6x6. 

ginia. 
1620.  Thermometer  invented  by  Drebcl 
X627.  Barometer  invented. 
X629.  First  Printing  press  in  America. 
1639.  First  Printing  office  in  America  at 

Cambridge. 
1647.  Otto  Van  Gueriche  constructed  first 

electric  mnchino. 
x65a  Railroads  with  wooden  rails  intro- 

dticed  near  Newcastle. 
1652.  First  Newspaper  Advertisement 

1704.  First  Newspaper  in  America. 

1705.  Blankets  first  made  at  Bristol,  Eng- 

land. 

*WltaeM«l 


A.D. 

X752.  Beujamin  Franklin  demonstrated 
identity  of  the  electric  spark  and 
lightning,  by  aid  of  a  kite. 

1752.  New  Style,  introduced  into  Britain: 

Sept.  3  reckoned  Sept  14. 

1753.  First  Steam-engine  in  America. 

1769.  James  Watt — First  design  and  pat- 
ent of  a  Steam-engine  with  sepa- 
rate vessel  of  condensation. 

1772.  Oliver  Evans— Designed  the  Non- 
condensing  Engine.  X792.  Ap- 
plied for  a  patent  for  it  x8oi. 
Constructed  and  operated  it 

1774.  Spinning  Jenny  invented  by  Robert 
Arkwright 

1776.  Iron  Railway  at  Sheffield,  England. 

1783.  First  Balloon  ascension,and  Vessel's 
bottoms  coppered. 

179a  Water-lines  first  introduced  in  mod- 
els of  Vessels  in  the  U.  S. 

1797.  John  Fitch — Propelled  a  yawl-boat 
by  application  of  Steum  to  side- 
wheels,  and  also  to  a  screw-propel- 
ler, upon  Collect  Pond,  New  York. 

1807.  Robert  Fulton  —  First  Passenger 
Steamboat 

1824.  Compound  marine  steam-engines 

first  introduced  by  James  P.  Al- 
lan, New  York. 

1825.  Introduction  of  steam  towing  by 

Mowatt,  Bros.  &  Co.,of  New  York, 
by  steam- boat "  Henry  Eckford," 
New  York  to  Albany.* 

1826.  Voltaic  Battery  discovered  by  Alex. 

Volta,  and  First  Horse-railroad. 

1827.  First  Railroad  in  U.  S.,  from  Quim  y 

to  Neponset 

X829.  First  Lucifer  Match  and  first  Loco- 
motive in  America. 

1830.  Liverpool  and  Manchester  Railroad 
opened.  Firat  Steel  Pen  and  first 
Iron  Steamer. 

X832.  S.  F.  B.  Morse  invents  the  Magnetic 
Telegraph. 

1836.  Robert  L  Stevens  first  burned  An- 
thracite Coal  in  flimace  of  boiler 
of  steamboat  *'  PassaJe." 

X840.  First  steam-boiler  constructed  for 
burning  Anthracite  Coal  in  steam- 
boat "North  America,"  N.  Y. 

X844.  Telegraph  line  ft-om  Washington  to 
Baltimore,  Md. 

1846.  First  complete  Sewing-machine. 
Elias  Howe,  inventor. 

x866.  Submarine  Telegraph  Inid  {torn 
Valencia  to  Newfoundland,  N.S. 

by  Aothor. 


SHd*  AKI>  SHELLS. — ^I*BAtrr«JLENl?  BALANCES.       6$' 
PILING  OF  SHOT  AND  SHELLS: 

To    Corapute    Nnixxber    of*  Sliot. 

Triangtdar  Pile,  Eut.B.--Multiply  continually  togetho*,  number  of  shot 
in  one  side  of  bottom  coarse,  and  that  number-  increased  by  i,  and  again  by 
2,  and  one  sixth  of  product  will  give  number. 

ExAMPLK-— What  is  number  of  shot  in  a  triangular  pile,  each  side  of  base  contain- 
ing 30  shot?  

30X30+1X30+^  ^,29760  ^  ^^  ^^^ 
6  6 

Square  Pile,  Rule. — Multiply  continually  together,  number  in  one  sid« 
of  bottom  course,  and  that  numl)er  increased  by  i,  double  same  number  in- 
creased by  I,  and  one  sixth  of  product  will  give  number. 

ExAMPLK.— How  many  shells  are  there  in  a  square  pile  of  30  courses? 

6  o 

Oblong  Pile.  Rulb. — From  3  times  number  in  length  of  base  course  sub- 
tract one  less  than  number  in  breadth  of  it ;  multiply  remainder  by  number 
in  breadth,  and  again  by  breadth,  increased  by  i,  and  one  sixth  of  product 
will  give  number. 

Example.— Required  number  of  shells  in  an  oblong  pile,  numbers  in  base  course 
being  16  and  7  ?  

.6X3-7-.  X7X7  +  .^»a;=3y,rtrit.. 
6  0 

Incomplete  Pile,  Rule.— From  number  in  pile,  considered  as  complete, 
subtract  number  conceived  to  be  in  that  portion  of  pik  which  is  wanting, 
and  remainder  will  give  number. 


FRAUDULENT   BALANCES. 

To  Detect  Them. After  an  equilibrium  has  been  established  between 

weight  and  article  weighed,  transpose  them,  and  weight  will  preponder- 
ate if  article  weighed  is  lighter  than  weight,  and  contrariwise  if  it  is 
heavier. 

To  Ascertain  True  Weight  RiTLK.—Ascertain  weight  which  will  produce 
equUibrium  after  article  to  bei  weighed  and  weight  have  been  transposed ; 
reduce  these  weights  to  same  denomination,  multiply  them  together,  and 
square  root  of  their  product  will  give  true  weight. 

EXAMPLB.  -If  first  weight  is  3a  lbs. .  and  second,  or  weight  of  equilibrium  after 
transposition,  is  24  lbs.  8  oa.,  what  is  true  weight? 

24  lbs.  8  oz.  =r  24. 5  Iba 
Then  32  X  24. 5 = 784,  and  V784  =  28  lbs. 

Or  when  a  represents  Umgest  arm,         I         A  greai^t  joeight,  and 

b        "        shortest  arm,        \         B  least  wetght 
Then  Wa  =  A&,  and  W6  =  Ba;  multiplying  these  two  equations,  W^afc  =  ABa6, 
or  W»  =  AB,  and  W  =  VAB. 
Illustration. -A  =  32 ;  B  =  24. 5 ;  W  =  26.    Assume  length  of  longest  arm  =  la 

Then -^2:  28  ::  10:  8.75. 
Heftce, a  =  10, 6  =  8.7s.  or  28*  =  32  X  24. 5,  and  1^32X24-5  =  28- 

V* 


go  PBACTIONS. 

To  K.6d.rioe  a  A^ixed  Fraction  to  its  HSquivalezit,  an.  Izxx* 

proper   fraction. 

Rule.  —  Multiply  wbole  number  by  denominator  of  fraction  and  to  product  add 
numerator;  then  set  that  sum  above  denominator. 

ExAHPLK  I.— Reduce  21I  to  a  fraction.    — — ,  '  °  =  i4?  =  Z?. 

*'*  663 

3.— Reduce  ^|^  inches  to  its  value  in  feet     133  -h  6  =  2o|  =  i  JM  8^  int. 

To   K.educe   a   Complex  ITraotion   to   a  Simple  one. 

Rule.— Reduce  the  two  parts  both  to  a  simple  fhtction,  multiply  numerator  of  re- 
duced Auction  by  denominator  of  reduced  denominator,  and  denominator  of  numer- 
ator fVactiou  by  numerator  of  denominator  firaction. 

2I  2|=  4  8X   5=40       s 

Example.— Simplify  complex  firaction  -f.  A^£l         .,n/«       ~~  == — 

4  J  4f  =  T^         3X24  =  73      y 

To  Rednce  a  "^Vliole  NunxToer  to  an  Equivalent  B'raction 

liaving   a  given   IDenominator. 

Rule.— Multiply  whole  number  by  given  denominator,  and  set  producit  over  said 
denominator. 

Example.— Reduce  8  to  a  fraction,  denominator  of  which  shall  be  9. 

8  X  9  =  72 ;  then  ^^  resuU  required. 

To    Reduce    a    Compound    ITraotioxx.    to    an    Ifiq,uivalent 

Simple   oii(*. 

Rule.— Multiply  all  numerators  together  for  a  numerator,  and  all  denominators 
together  for  a  denominator. 

Note.— When  there  are  terms  that  are  common,  they  may  be  cancelled. 
Example.- Reduce  ^  of  }  of  {  to  a  simple  fraction. 

|^x|x|  =  T^  =  ^.     Or,  Jxf  xf  =  J,  6ycanc««in^2'B»nd3'8. 

To    Reduce   Fractions   of*  diiTerent   Denominations   to 
Eq.uivaleuts   h.avinis   a  Common   X>enominator. 

Rule.— Multiply  each  numerator  by  all  denominators  except  its  own  for  new  nu- 
merators; and  multiply  all  denominators  together  for  a  common  denominator. 

NoTK.  — In  this,  as  in  all  other  operations,  whole  numbers,  mixed  or  compound 
fractions,  must  first  be  reduced  to  form  of  simple  fkactiona 

2.  When  many  of  denominators  are  same,  or  are  multiples  of  each  other,  ascertaii# 
their  least  common  multiple,  and  then  multiply  the  terms  of  each  fk-action  by  quo- 
tient of  least  cuiumou  multiple  divided  by  its  denominator. 

Example.  —  Reduce  \^  |,  and  Jtoa         '^3^*~"/_i8      le 
common  deuomiuaior.  2X2X4—  '6/  —1^1=;^^  =  |^, 

3  XO<3=i8 )       ^^   «      8   and  A. 
2X3X4  =  »4 


i\.dd.ition.. 

Rule.- If  fractions  have  a  common  denominator,  add  all  numerators  together, 
and  place  sum  over  denominator. 

Note. — If  fractions  have  not  a  common  denominator,  they  must  be  reduced  to 
one.     Also,  compound  and  complex  must  be  reduced  to  simple  fractions. 

Example  i.— Add  J  and  J  together.    J  +  i  =  }  =  I- 

2.— Add  J  of  }  of  ^jf  to  2J  of  }. 

Th«°»  i*  + 14  =  ttiX  +  AW  =  ItIJ'  '•«*"«^  ^  equivaknt  fractions  hamn^ 
cf  common  denamincUar  qnd  thence  to  its  lotvest  termt. 


FBACTIOKGU  9 1 

Snlitraotioii. 

RuuL ^Prepare  flractions  same  as  for  other  operations,  when  necessary;  then 
sabtract  one  numerator  from  the  other,  and  set  remainder  over  common  denom- 
inator. 

ExAMPLK.— What  is  difference  6X9  =  54)         . 

between  I  and  4?  3X8  =  24}  =  ^f  — ff  =  f|:i=f|  =  ^. 

•         •  8X9  =  72* 


!Multiplicatiozi. 

RuLB. — Prepare  fractions  as  previously  required;  multiply  all  numerators  to- 
gether for  a  new  numerator,  and  all  denominators  together  for  a  new  denominator. 

EzAMPLB  I.— What  is  product  of  |  and  {?      |xf  =  |^  =  }. 

2.— What  is  product  of  6  and  fofs?       ^xfof5  =  *x^  =  y  =  20. 


Division. 

RcLK.— Prepare  fractions  as  before;  then  divide  numerator  by  the  numerator, 
and  denominator  by  the  denominator,  if  they  will  exactly  divide;  but  if  not,  invert 
the  terms  of  divisor,  and  multiply  dividend  by  it,  as  in  multiplication. 

ExAMFLB  I — Divide  V  by  J.       y  -r-  f  =  |  =  1}. 

2.-Divide  f  by  ^.       {-A  =  fxV^  =  Vx4  =  ff  =  V  =  4i- 


-A.pplioatioii   or  Reclu-ction   of  Fraotions- 

Xo  Compute  "Value   of  a   ITrewstion.   iu   I*arts  of  a  Whole 

Numtoer. 

RuLB. — Multiply  whole  number  by  oumerator,  and  divide  by  denominator;  then, 
if  anything  remains,  multiply  it  by  the  parts  in  next  inferior  denomination,  aud 
divide  by  denominator,  as  before,  and  so  on  as  far  as  necessary;  so  shall  the  quo- 
tients placed  in  order  be  value  of  firaction  required.  ' 

ExAJCPLK  I. — What  is  value  of  i^  of  |  of  9  ? 

lof{  =  i,andfx^  =  V  =  3. 

a. — Reduce  4  of  a  pound  to  an  avoirdupois  ounce.         4)  3  (o  ^^'^ 

16  ounces  in  a  lb. 

4)  48  (i3  ounces. 

To    Recluoe    a    Fraction.    fVotici    one    IDenoiiiinatipn    to 

anotlxer. 

RuLB.— Multiply  number  of  required  denomination  contained  in  given  denomina- 
tion by  numerator  if  reduction  u  to  be  to  a  leu  name,  but  by  denominator  ^to  a 
greaier. 

EzAXPLB  I.— Reduce  ^  of  a  dollar  to  fk^ction  of  a  cent 

Jxioo=JL^  =  ^. 
3.— RedBCe  1^  of  an  avoirdupois  pound  to  fraction  of  an  ounce. 

3.— B«dace  }  of  }  of  a  mile  to  the  fraction  of  a  foot 

fof}  =  AX5a8o  =  *JjV^=:14^. 
tot  RaU  of  ThTM  la  Valpur  FrMtiona,  mo  Decimalt,  pax*  94. 


92  DECIMALS. 


DECIMALS. 

A  Decimal  is  a  fraction,  having  for  its  denominator  a  tTNiT  with 
as  many  ciphers  annexed  as  the  numerator  has  places ;  it  is  usually  ex- 
pressed by  writing  the  numerator  only,  with  a  point  at  the  left  of  it.  Thus, 
Y%  is  .4;  ^\  is  .85;  iViy^r  Js  .0075 ;  and  tVwtt  ^^  -^^25.  When  there  is 
a  deficiency  of  figures  in  the  numerator,  prefix  ciphers  to  make  up  as  many 
places  as  there  are  ciphers  in  denominator. 

Mixed  numbers  consist  of  a  whole  number  and  a  flraction;  as,  3.25,  which  is  the 
same  as  3  y^q,  or  *^^ 


Ciphers  on  right  nund  make  no  alteration  tn  their  value;  for  .4,  .40,  .400  are  deci- 
mals of  same  value,  each  being  j^,  or  |.  * 


A-dd-ition. 

Rule.  —Set  numbers  under  each  other  according  to  value  of  their  places,  as  in 
whole  numbers,  m  which  position  the  decimal  points  will  stand  directly  under  each 
other:  then  begin  at  right  hand,  add  up  all  the  columns  of  numbers  as  in  integers, 
and  place  the  point  directly  below  all  the  other  points. 

ExAXPLB.— Add  together  25.125  and  293.7325.         25.125 

2937335 
318.8575  sum. 


Subtraction. 

RxTLK. — Set  numbers  under  each  other  as  in  addition;  then  subtract  as  In  whole 
numbers,  and  point  off  decimals  as  in  last  rule. 

Example. — ^Subtract  15. 15  trom  89. 1759.        89. 1759 

15- 15 


74.0359  remainder. 


]VI\iltiplicatioii. 

Rule.— Set  the  foctors,  and  multiply  them  together  same  as  If  they  were  whole 
numbers;  then  point  olTin  product  just  as  many  places  of  decimals  as  there  are 
decimals  in  both  factors.    But  if  there  are  not  so  many  figures  in  product,  supply 
deficiency  by  prefixing  ciphers. 
Example.— Multiply  156  by  .75.  1.56 

'75 
780 
X092 


i.iyoo  product. 


By   Contraction. 

To  Contract  tlie  Operation   bo  as  to  retain,  only  as  many 
i:>ecimal   plaoes  in   I^rodnct  as  may  be    required. 

Rtlb.  —Set  unit's  place  of  multiplier  under  figure  of  multiplicand,  the  place  of 
which  is  same  as  is  to  be  retained  for  the  last  in  product,  and  dispose  of  the  rest  of 
figures  in  contrary  order  to  which  they  are  usually  placed. 

In  multiplying,  reject  all  figures  that  are  more  to  right  hand  than  each  multiply- 
ing figure,  and  set  down  the  products,  so  that  their  right-hand  figures  may  foil  in  a 
column  directly  below  each  other,  and  increase  first  figure         13.574  01 
in  every  line  with  what  would  have  arisen  (Tom  figures  f  50264 

omitted;  thus,  add  1  for  every  result  flrom  5  to  14.  2  flpora        — ^ — '~ 
15  to  24,  3  from  25  to  34, 4  firom  35  to  44,  etc.,  and  the  sum         H^^l^        j- 
of  all  the  lines  will  be  the  product  as  required.  li  144  gP-- 2  jor  18 

Example.- Multiply  13. 574  93  by  46.2051,  and  retain  only  '^J  ^^^  "^   i>  L 

four  places  of  decimals  in  the  product.  14-  -x   «    5 

627.23  II 

Note.— When  exact  retuU  it  raquired,  increate  Uit  figure  with  what  woald  have  ariaan  from  all  tha 
figures  omitted. 


DECIMALS.  93 

Division. 

RuLB. — Divide  as  in  whole  numbers,  and  point  off  in  qaotient  as  many  places  for 
decimals  as  decimal  places  in  dividend  exceed  those  in  divisor;  but  if  there  are  not 
so  many  places,  supply  deficiency  by  prefixing  ciphers. 

Example.  Divide  53  by  6.75.      6.75)  53.00000  (==7.851-!-. 

Here  5  ciphers  are  annexed  to  dividend  to  extend  division. 

By   Contraotion. 

Role.— Take  only  as  many  figures  of  divisor  as  will  be  equal  to  number  of  figures, 
both  integers  and  decimals,  to  be  in  quotient,  and  ascertain  how  many  tfmes  they 
may  be  contained  in  first  figures  of  dividend,  as  usual 

Let  each  remainder  be  a  new  dividend;  and  for  every  such  dividend  leave  out 
one  figure  more  on  right-hand  side  of  divisor,  carrying  for  figures  cut  off  as  in  Con- 
traction of  Multiplication. 

Non. — When  there  »re  not  wo  many  fiff^res  In  divisor  ••  there  are  required  to  b«  in  qaotient,  con- 
tinae  first  operation  until  namber  of  figures  in  divisor  are  equal  to  those  remaining  to  be  round  in  quo- 
tient, aftar  which  bagin  the  contraction. 

ErAMPLB.~>Di vide  3508.93806    92.410315)2508.928106(27.1498  13.849  012 

by  92.41035,  so  as  to  have  only                     1848  207  -}-  i  9241  832 -|- 4 

four  places  of  decimals  in  quo-                   "660721  ^608  "80 

*'®'*^-                                                              646872 -|- 2  3696  ^.+  2 

13  849  912  6 


Red-uction  of  IDecimals. 
Xo  Redxioe  a  Vulgar  I^raotiou.  to  its  ISqixivaleut  Deoiiual. 

Rule.'— Divide  numerator  by  denominator,  annexing  ciphers  to  numerator  to  ex- 
tent that  may  be  necessary. 

ExiXPLB.— Reduce  {  to  a  decimal.        5)  4.0 

To  Compute  Value  of*  a  Decimal  in  Terms  of*  aii  lufferior 

X>enomiuatioii. 

Rule. — Multiply  decimal  by  number  of  parts  in  next  lower  denomination,  and 
cut  off  as  many  places  fof  a  remainder,  to  right  hand,  as  there  are  places  in  given, 
decimal. 

Multiply  that  remainder  by  the  parts  in  next  lower  denomination,  again  cutting 
off  for  a  remainder,  and  so  on  through  all  the  parts  of  integer. 

Example  l— What  is  value  of  .875  dollars?  .875 

100 

CenH^  87.500 
10 


Jf t7te,     5.000 = 87  ctnXM  5  miXLi. 
a.— What  is  volame  of .  140  cube  feet  in  inches? 

X  .140 

1728  cube  inches  in  a  cube  foot 


24i.92ocu5etn«. 
3.— What  is  value  of  .00129  ^^  ^  ^'^^  ^  •01548  ins. 

To   Reduce  a  Deoixnal   to    an   Equivalent  IDeoixnal   or  a 

Kiglier  X)enomination. 

Rota. — Divide  by  number  of  parts  in  next  higher  denomination,  continuing  op^ 
eration  as  fiir  as  required. 
Example  l — Reduce  i  inch  to  decimal  of  a  foot       i2|i. 00000 

I  -08333-1-/001 

s.~B«dace  14''  la''^  to  decimal  of  a  minuta  14"  12"' 

60 


60 
60 


852. 


Hf 


X4.2" 


.23666'+ mifittfe. 


94 


DECIMALS. — ^DUODECIMALS. — MEAN    PROPORTION. 


When  there  are  several  numbers^  to  be  reduced  all  to  decimal  of  highest, 
RuLB.->  Reduce  them  all  to  lowest  denominatioii,  and  proceed  as  for  one  denomi- 
nation. 

Example.— Reduce  5  feet 
barleycorns  to  decimal  of  a  yard. 


ncbes  and  3 

Feet.     Ine.       Be. 
5          10         3 
12 

70 

3 

3 
12 

3 

213. 
71- 

5.9166 

1.9722-H  yatris. 

TlvilG   of  Three. 

Rule.  —  Prepare  the  terms  by  reducing  vulgar  fractions  to  decimals,  compound 
numbers  to  decimals  of  the  highest  denomination,  first  and  third  t«rms  to  same 
denomination,  then  proceed  as  in  whole  numbers. 

Example.— If .  5  of  a  ton  of  iron  cost  .75  of  a  dollar,  .  5  :  .75  : :  .625 

wha(  will  .625  of  a  ton  cost?  .625 

-S)  46875 

.9375,  dollar. 


DUODECIMALS. 

In  Daodecimals,  or  Cross  Multiplication,  the  dimensions  are  taken  in  feet, 
inches,  and  twelfths  of  an  inch. 

Rule. — Set  dimensions  to  be  multiplied  together  one  under  the  other,  feet  under 
feet,  inches  under  inches,  etc. 

Multiply  each  term  of  multiplicand,  beginning  at  lowest,  by  feet  in  multiplier,  and 
set  result  of  each  immediately  under  its  corresponding  term,  carrying  i  for  every 
12  fh)m  one  term  to  the  other  In  like  manner,  multiply  all  multiplicand  by  inches 
of  multiplier,  and  then  by  twelfth  parts,  setting  result  of  each  term  one  place  farther 
to  right  hand  for  every  multiplier.     And  sum  of  products  will  give  result. 

Example.  —  How  many  square  inches  are       Feet.      Iiu.   Twelfths, 
there  in  a  board  35  feet  4. 5  inches  long  and  12         35         4         6 
feet  3^  inches  wide?  '"         3         4 


424 
8 


6 
xo 

IX 


o 

X 

9 


6 
6 


434 


II 


Value  or  IDuodeoixnals  in 

Sq.  Ft.      Sq.  Ins. 
X  Foot =     I      or   144. 

I  Inch =  "A"     "      '*• 


Twelfth =  yjj- 


Sq.uare  ITeet  and   tnolies. 

Sq.  Ft.         Sq.  Ins. 

^  of  I  twelfth  =  -p^^  or  .083  333,  etc. 


^of^of"    = 


lijTIT"   006  944,  etc- 


Illustration.  —What  number  of  square  inches  are  there  in  a  floor  xoo  feet 
6  inches  long  and  25  feet  6  inches  and  6  twelfths  broad? 

2566 yee<  IX  ins.  3  twdJVisr=2^fBet  135  tiM. 


MEA.N   PROPORTION. 

Mean  Proportion  is  proportion  to  two  given  numbers  or  terms. 

Rule.— Multiply  two  numbers  or  terms  together,  and  extract  square  root  of  their 
product 

Example.— What  is  mean  proportionate  velocity  to  16  and  81  ? 

x6  X  8x  =  1296,  and  y/12^  =  36  mean  velocity. 


HVhK  OF  THB^US,— COMPOUND  PBOPOBTION.  95 

BXTLE  OF  THBEB. 

Rule  of  Three.  —  It  is  so  termed  because  three  terms  or  numbers  are 
given  to  ascertain  a  fourth. 

It  is  either  Direct  or  Inverse. 

It  is  Direct  when  more  requires  more,  or  less  requires  less ;  thus,  if  3  bar> 
rels  of  flour  cost  $z8,  what  will  10  barrels  cost? 

In  this  case  Proportion  is  Direct,  and  stating  must  be, 

As  3  :  10  : :  18  •-  60. 

It  is  Inverse  when  more  requires  less,  or  less  requires  more;  thus,  if  6  men  build 
a  certain  quantity  of  wall  in  xo  days,  in  how  many  days  will  8  men  build  like  quan- 
tity ?  Or,  if  3  men  dig  100  feet  of  trench  in  7  days,  in  how  many  days  will  2  men 
perform  same  work? 

Here  the  Proportion  is  Inverse,  and  stating  must  be, 

As  8  :  6  ::  10  :  7.5,  and  2  :  3  ::  7  :  10.5. 

The  fourth  term  is  always  ascertained  by  multiplying  3d  and  3d  terms  together, 
and  dividing  their  pruduct  by  ist  term. 

Of  the  three  given  numbers  necessaiy  for  the  stating,  two  of  them  contain  the 
supposition,  and  the  third  a  demand. 

RcLB.— State  question  by  setting  down  in  a  straight  line  tbe  three  necessary 
numbers  in  following  manner : 

Let  third  term  be  that  of  suppatUUmy  of  same  denomination  as  the  result,  or  4th 
term  is  to  be,  making  demanding  number  2d  term,  and  the  other  number  ist  term 
when  question  is  in  Direct  Proportion,  but  contrariwise  if  in  Inverse  Proportion; 
that  is,  let  demanding  number  be  ist  term. 

Multiply  ad  and  3d  terms  together,  and  divide  by  ist,  and  product  will  give  re- 
sult, or  4th  term  sought,  of  same  denomination  as  2d  term. 

.  NoTB.— If  flnt  and  third  tertni  are  of  different  denominatloiu,  reduce  them  to  aame.  If,  after  divis- 
ion, there  ia  any  remidnder,  reduce  it  to  next  lower  denemlnation,  divide  by  diviaor  a*  before,  and 
quotient  wil!  be  of  tiiis  laat  denomination. 

Sometimes  two  or  more  statings  are  necessary,  which  may  always  he  known  by 
nature  of  question. 

EXAMPLB  I.— If  20  tons  of  iron  cost  $225,  what  will  Tons.  Tona.  DoUs. 

500  tons  cost?  20:500::  225 

500 


2|o)  II  250I0 

5  b25  dollars. 

2. — A  wall  that  is  to  be  built  to  height  of  36  feet,  was  raised  9  feet  by  16  men  in 
6  days;  how  many  men  could  finish  it  in  4  days  at  same  rate  of  working? 

Days.  Days.     Men.  Men. 
4   :    6  ::    16  :   24 

Then,  if  9  feet  requires  24  men,  what  will  27  feet  require? 

9  :  27  ::  24  :  72  mm. 


COMPOUND   PROPORTION. 


Compound  Proportion  is  rule  by  means  of  which  such  questions  as 
would  require  two  or  more  statings  m  simple  proportion  (Rule  of  Tlif^e) 
can  be  resolved  in  one. 

As  rule,  however,  is  but  little  used,  and  not  easily  acquired,  it  is  deemed  prefer- 
able to  omit  it  here,  and  to  show  the  operation  by  two  or  more  statings  in  isimple 
Proportion. 

lUtUflnunoH  LxHow  many  men  can  dig  a  trench  135  feet  long  in  8  days,  when 
16  men  can  dig  54  feet  in  6  days? 

Feet.  rbet.    Klen.  Men. 

first As   54  :  135  ::  16  ;  40 

Days.  Days.    Men.  Men. 
Second. ...As   8  :  6  ::  40  ;  39 


102  AHlTHMJSTtCAL  t>BOGB£SSlO^. 

rro   Compute   Common   X>ifierenoe. 

When  Number  of  terms  and  Extremes  are  ffiven.    Rulk.— Divide  diffennca  ct 
extremes  by  i  less  than  number  of  terms. 


aS  —  2an  l4-axl  —  a  _.2nl — aS 

Or,  — ; ;  — 1- — J ;  and  — ; r  =  * 

'  n(n— i)   '  aS  —  l—a  '  n(n  — i) 

Illustration.— Extremes  are  3  and  15,  and  number  of  terms  7;  what  is  commop 
diffei-ence? 

15  — 3-r- (7—1)  =  ^,  and  ^  =  2  am.(iif. 
o  o 

rro   Compute   Suxn   of*  tlie   Series   or  of*  all   rPerms* 

When  Extremes  and  Number  of  terms  art  given.    Bulx. — Multiply  number  of 
terms  by  half  sum  of  extremes. 

.  T-. ^.  l-\-ay,(l  —  a)  ,  1 4- a 

Or,  3  a+d  (n-i)  X  .5  ♦»;  -^ ^ +  -^; 

andaf  — (clxn— z)X.5n  =  S. 

Illustration.— How  many  times  does  hammer  of  a  clock  strike  in  12  hours  t 


12X134-1  =  156,  and  156  -f-  2  =  78  timesl 

7*0  Compute  any   dumber  of*  A.ritIxm«tioal   Cleans  or 
rrerms  Iset^^een   t-wo   Sxtremes. 

RuLS.  —  Subtract  less  extreme  fVom  greater,  and  divide  difference  by  1  more 
than  number  of  means  or  terms  required  to  be  ascertained,  and  then  proceed  as 
in  rule. 

To  Compute  T-wo  A.rith.metical  ACeans  or  Terzns  beti^een 

t-%vo  given   Sxtremes. 

RuLB Subtract  less  extreme  trom  greater,  and  divide  difference  by  3,  quotient 

will  be  common  difference,  which  being  added  to  less  extreme,  or  taken  f^om  great- 
er, will  give  means. 

ExAMFLS  L— Ck>mpute  two  arithmetical  means  between  4  and  x6w 

16 — 4-5-3=  4Com.dif. 
4  -{-  4  =  8  one  mean. 
16 — 4  =  12  sewnd  mean. 

3.— Compute  four  arithmetical  means  between  5  and  3a 

30— 5  =  25,  and  25-T-4-|-x  =  5  =  com.  dif. 
54-5  =  io=i«tmMfk  i5-j-s  =  2o=3dmeaik 

io4-S  =  i5  =  ad      "  2o+5  =  25  =  4«*    " 

IVfisoellaneous  Illustrations. 

X.  A  Steamer  having  been  purchased  upon  following  terms— viz.:  $5000 upon 
transfer  of  bill  of  sale  and  balance  in  monthly  instalments,  commencing  at  $4500 
for  first  month,  and  decreasing  $500  in  each  month,  until  whole  sum  is  paid. 

ist.  How  many  months  must  elapse  before  final  payment? 

2d.  What  was  amount  of  purchase- money,  or  sum  of  series  ? 

Here  are  first  and  last  (emu  — viz.,  500  and  5000,  and  common  difference^  50a 
Hence^  To  compute  number  of  terms  and  amount  of  purchase, 

5000  —  500  -r-  500  =  9,  and  9  -{-  X  =  xo  =  nu'n^>er  of  terms  or  months^  and  10  X 

^^^ —  =  xo  X  2750  =  $27  SCO,  ammmt  of  purchase. 

2 

3-  If  100  Stones  are  placed  in  a  right  line,  one  yard  apart;  how  many  srards  maal 
c.  person  walk,  to  take  them  up  one  at  a  time  and  put  them  into  a  basket,  one  yard 
fbom  first  stone? 

First  term  2,  last  term  200,  and  number  of  terms  loa 

200-^  3 
Hence,  100  x ■ —  =  xo  xoo  yards. 


SIMPLE  INTSBBST.  lO^ 

SIMPLE  INTEREST. 

7o  Compute  Interest  on.  axxy  d-iven   Sum   Tor  a  PeriocI 

of*  One   or  xnore   Years. 
RuLR.— Multiply  given  sum  or  principal  by  rate  per  ceut.  and  uuinber  of  years: 
point  off  two  figures  to  right  of  product,  and  result  will  give  interest  in  dollars  and 
cents  for  the  period. 

'  ExAMPUB.— What  is  interest  upon  $  1050  for  5  years  at  7  per  ceut.  Y 

X050 X  7  X  5  =  36750»  «"»d  367.50=  $ 367.5a 

When  Time  is  leu  than  One  Fear  Rule.— Proceed  as  before,  multiplying  by 
number  of  months  or  days,  and  dividing  by  following  units— viz.,  12  for  mouths, 
and  365  or  366,  as  the  case  may  be,  for  days. 

EzAMi'UL— What  Is  interest  upon  $1050  for  5  months  and  30  days  at  7  per  cent.? 

5  months  anjl  30  days  =  183  days.    ~^^—l — ?_?  =  3685,  and  36. 85  =  $  36. 85. 

The  operation  of  computing  interest  may  be  performed  thus : 
AGBnming  interest  upon  any  sum  at  6  per  cent.  =  i  per  cent  for  3  montlia 
Interest  at  5  per  cent  Is  |th  less  than  at  6  per  cent 
Interest  at  7  per  cent  is  Jth  greater  than  at  6  per  cent 

Taking  preceding  example— a  months  =  i  per  cent  =  10.50 

2      **      =  I       "  10.50 

.      "      =i       "  5.25 

todays      =1  month    =  5.25 

31  50 
Add  (  for  7  per  cenL=  5.25 

N<yR.— DUTertuM  between  tbie  smonnt  and  preceding  «riMs  from  183  days  being  taken  In  one  GaM« 
aod  balf  a  year,  or  182.5  dayt,  In  the  other. 

In  every  computation  of  interest  tbere  are  four  elements— viz.,  Principal,  Time, 
Rate,  and  Interest  or  Amount,  any  three  of  which  being  given,  remaining  one  can 
be  ascertained. 

To  Compute  Principal. 

When  Time,  Rate  per  Cent.,  and  Interest  are  given.  Ruut.— Divide  given  interest 
by  interest  of  $1,  etc.,  for  given  rate  and  time. 

ExAXPLB.— What  sum  of  money  at  6  per  cent  will  m  14  months  produce  $  14? 

14  -7-  .07  =  aoo  dollars. 

To  Compute  Rate  per  Cent. 

When  Principal^  Intere^,  and  Time  are  given.  Ruul— Divide  given  interest  by 
interest  of  given  sum,  for  time,  at  i  per  cent 

ExAMPU.  —  If  $  32.66  was  discounted  flrom  a  note  of  $  400  for  14  months,  whal 
was  that  per  cent  t 

iBterMt  on  400  for  14  months  at  x  per  cent = 4.66. 

Then  32.66 -r- 4.66  =  7  per  cent 

To   Compute   Time. 

When  PHne^xUf  BaU  per  Cent ,  omd  Interest  are  given.  Ritlb. —Divide  given  m 
tereat  by  intereal  of  sum,  at  n^  per  cent  for  one  year. 

ExAMFLa.>-lB  wbai  time  will  $  108  prodace  $  ix.  34,  at  7  per  cent  f 
lolMPeaC  on  108  for  one  year  is  7.56. 

"■  34  -J-  7- 56  =  «•  5  years. 
Illcst&atkui  r.  —If  an  amount  of  $2175  is  returned  for  a  period  of  15  monthk 
ttt0  of  Interest  liaving  been  7  per  cent. ,  what  was  principal  invested  f        $  2000. 

s.— If  $  sooo  tn  18  months  will  produce  $  1090,  what  is  rate  ?  6  p^ >  jcnf 


io8 


COMPOUND   INTEREST. 


COMPODND  INTEREST. 

If  any  Principal  be  multiplied  by  number  (in  following  table)  oppositi 
years,  and  under  rate  per  cent.,  sum  will  be  amount  of  that  principal  at  com* 
poimd  interest  fur^ime  and  rate  taken. 

Example. — What  is  nmount  of  $500  fur  10  yeans  at  6  per  cent  ? 

Tabular  number. . . .  la  790  84,  and  1.790  84  x  500  ==  895a 42  dollars. 


m 

e 

r 

3 

4 

5 

6 

i 

>* 

3 

4 

5 

6 

>* 

Percent.    Per  Cent. 

Per  Cent.    Per  Cent. 

Per  Cent. 

Per  Cent. 

Per  Cent. 

Per  Cent. 

I 

1.03 

1.04 

1.05 

1.06 

»3 

1.46853 

1.66507 

1.88564 

2.13293 

2 

1.0609 

1.081 6 

1. 102  5 

1. 123  6 

14 

1.51529 

1.73167 

1-97993 
2.078  92 

2.2609 

3 

1.09273     1. 124^6 

1.15762 

1. 191 01 

15 

'-557  97 

1.80095 

2.39655 

4 

1. 125  51  ;  1. 169  86 

I-2I5  5 

1.26247 

16 

1.604  71 

1.87298 

2. 182  87 

2.5403s 

5 

1.15927    1.21668 

1.276  28 

1.33822 

"7 

1.65285 

1.94709 
2.02581 

2. 292  01 

2.69277 

t 

1. 194  05    1. 265  32 

134 

1.41851 

18 

1.70244 

2.40661 

2-85433 

.  7 

1.22987    1.31593 

1.407  I 

1.50363 

»9 

1-753  5 

2. 106  84 

2.52695 

302559 

8 

1.26677  '  1.36857 

1-477  45 

1-59384 

20 

1.80611 

2.191  13 

2.65329 

3207  13 

9 

1.30+77    1. 423  31 

^•55»32 

1.68947 

21 

1.86029 

2.27876 

3.78596 

3-39956 

10 

1.34392    1.48024 

1.62889 

1,79084 

22 

1.916  I 

2.36992 

2.92526 

3603  53 

II 

1.38424    1.53945 

1-71033 

1.89829 

23 

19736 

2.46421 

3.071  52 

381974 

12 

1-42576. 

1. 601 03 

1-79585 

2.012  19 

24 

2.03379 

25633 

3.22509 

4.04873 

For  any  other  RiUe  w  Period. — Multiply  logaritbm  of  rate  4- »  ^y  period,  and 
Diiinbor  Tur  logarithm  will  g.ve  tabular  amount  as  above. 

Illustration.— What  is  tubular  number  for  4  per  cent  for  10  years? 

Log.  of  1.04  =  .017033  3,  which  X  10  =  .170333,  and  number  for  log.  =  1.48024. 

Time    in    Years    in    >vliieli    a    Sum    of   !M!oney    ■wrill    "be 
clonbled    at    S«^veral    Ftates   of*  Interest. 

Rate.  Time. 


Per  cent. 

I 
2 

3 


69.68 

35 

2344 


Rate. 

Time.       1 

1     Rate. 

Time. 

Rate, 

Tlm«. 

Per  cent. 

4 
5 
6 

17.67 
14.21 
11.88 

Per  cent. 

I 

9 

10.34 
9.01 

8.04 

I'er  cent. 
10 

20 
30 

7.27 
2.64 

Value  of^la  etc..  Computed  Semi-annup,lly  fbr  a  Period 

of  IS   Years. 

6 
Per  Cenb 


3 

4 

5 

6 

Years. 

Per  Cent. 

Per  Cent. 

Per  Cent. 

Per  Cent. 

•5 

1.015 

1.02 

1.025 

1.03 

I 

1.0302 

1.0404 

Z.0506 

1.0609 

i-S 

10457 

I.o6l2 

1.0769 

1.0927 

2 

1. 0614 

1.0824 

1.1038 

<-i25S 

a-S 

10773 

I.I04I 

I.1314 

I- 1593 

3 

1-0934 

1. 1262 

1. 1597 
1.1887 

1.1941 

3-5 

1. 1098 

1. 1487 

4 

1.Z205 

1. 17 17 

1.2164 

4-5 

I- 1434 

1.1951 

1.2489 

1.3048 

5 

1.1604 

1.219 

1.2801 

1-3439 
1.3842 

5-5 

1.178 

1.2434 

1.3121 

6 

1. 1956 

1.2689 

1-3449 

1.4258 

'|Year». 

3 
Per  Cent 

6-5 

1.2134 

7 

I.2317 

V 

1.2502 
1.269 

8.5 

X.28§ 

9 

9-5 
10 

10.5 

11 

"•5 

1-3073 

1.3269 

1-3469 
1. 367 1 

1.3876 
1.4084 

12 

1.4295 

4 

5 

Per  Cent. 

Per  Cent. 

1.2936 

1.3785 

I-3195 

1-413 

1-3459 
1.3728 

1.4483 

1-4845 

1.4000 

X.5216 

1.4283 

1-5597 
1-5987 

1.4568 

1.486 

1.6386 

1-5157 

I  6796 

I  546 

1.7216 

1-5769 

1.7606 

1.6084 

1.8087 

Illustration.— What  is  amoant  of  $500  at  semi-annaal  interest  of  5 
compounded  for  10  years? 

Tabular  number  1,6386.    Then,  500  x  1.628  89  =  $  814.44.5. 


1.4684 
I  5102 
1558 
1.6047 
i.65a8 

i-7o«4 

1-7535 
X.80OX 
X.8603 
x.9i^i 

1-9736 
2.0356 

per  cent 


For  a  Period  of  t^rs.     P  (i  -f-  r) "  =  A  ; 


To   Coixip^vkte   Interest  on   anjr   G}<iven    Sum. 

A  »/X         __ 

(,-fr)»-     '         V  p       '-*'• 

,   log.'  A  —  log.  P^  _  ,.  ...  .  ,    . 

niKl  — 1    r  /I -u  u'   ~^'        representing  principal,  r  rate  per  cent. -r- 100  per  annum^ 

n  number  of  year 8 ^  and  4  ftROwnf  ofj^rincipa^  g^v-^  interest. 


OKOMETBICAL   PB06BBSSI0N. 


105 


Illustration  i.— First  term  Is  2,  ratio  2,  and  number  of  terms  13;  what  is  sum 
of  senes? 

3'3_|=8i92  — x  =  8i9x,  »nd8i9i-4-(a  — i)  =  8i9i,  and  8191  X  3  =  16382. 

3.  — If  a  man  were  to  buy  12  horses,  giving  2  cents  for  first  horse,  6  cents  for 
second,  and  so  on,  what  woufd  they  cost  him  ?  $ 5314.4a 

Xo   Compute    Ratio. 

When  First  Term,  Lmt  Term,  and  Numbers  0/ Terms  are  given.  RuLS. — Divide 
last  term  by  first,  and  quotient  will  be  equal  to  ratio  raised  to  power  denoted  by  z 
leas  than  number  of  terms;  then  extract  root  of  this  quotients 

^    S-a 

Illustration.— First  term  is  2,  last  term  4374,  and  number  of  terms  8;  what  Is 
ratio? 

^^=2187,  and    ^^2187  =  3,  ratio. 

l^isoellaneous   Illustrations. 

X.  What  is  9th  term  in  geometrical  progression  3,  9,  27,  81,  etc.?  and  what  Is 
sum  of  terms? 

I  St  term  =  3,  number  of  terms  9,  and  ratio  3. 

Hence,  by  rule  to  compute  last  term,  ist  term  and  ratio  being  equal— 

Indices,  1234 
Terms,   3,9,27,81. 

Then,  3->-  3  +  4  =  9 =«»m  of  indices,  and  9  X  27  x  81  =  19683  =  last  term. 

By  rule  to  compute  sum  of  terms— 

^'— I  10683       «  «. 

i X  3  =  — 9841  X  3  =  =9  5a3»  «*»»  of  terms. 

3  —  I  a 

a.  First  term  is  i,  ratio  9,  and  last  term  131 072 ;  what  is  sum  of  series? 

131 073  X  a  —  I  =  262  X43,  and  263 143  -1-2  —  i  =  262 143. 

3.  What  are  the  proportional  terms  between  2  and  2048  ? 


4  -f-  2  =  6,  and  6  —  x  =  5,  and 


■5/2048 

V— =■ 


Hence,  2  :  8  :  32  :  128  :  512  :  2048. 
4.  Sum  of  series  Is  6560,  ratio  3,  and  number  of  terms  8;  what  Is  first  termf 

6560  X  \~'  =  6560  X  2^ = 2,/rrt  term. 
38  —  1       •'        6560 

Oeometrioal  I>rogreBsions. 

Whereby  any  questions  of  Geometrical  Progression  and  of  Double  Ratio  may  6s 
solved  by  Inspection,  number  ^  terms  not  exceeding  56. 


z 

X 

«5 

a 

2 

16 

3 

4 

t 

:i 

5 

x6 

19 

6 

32 

20 

i 

xti 

2X 
23 

9 

256 

23 

to 

51a 

24 

zx 

1024 
2048 

25 

za 

26 

«3 

4096 

1  27 

«4 

8Z93 

1  28 

X6384 

89 

33768 

30 

65536 

3« 

X31072 
202  144 

33 

33 

524  288 

34 

z  048  576 

35 

3097x53 

36 

83I8608 

37 

38 

x6  777  3x6 

39 

33  554  432 

40 

67  108  864 

4« 

X34217738 

42 

268435456 

536870912 

1 073  74»  824 
2147483648 
4  294  967  296 

8589934592 
17x79869184 

34359738368 
68719476736 

»37  438  953  472 

274877006944 

5497558x3888 

X  099  511 627  776 

2199023355552 


43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
S6 


4  398046  5XXX04 

8796093022308 

X7  592 1860444x6 

35 '84  372  088  8m 

70368744177664 

140737488355328 

fe8i  474  976  7x0  656 

562049953431  313 

X  135  899  906  842  634 

3  351  799-813  685  248 

4503599627370496 

9007190254740993 

180x4398509481984 

36  028  797  0x8  963  968 


Illustbatiovs.— i2th  power  of  a  =  4096,  and  7th  root  of  X28  =  a. 


I06  ALLIGATION. 


ALLIGATION. 

Alligation  is  a  method  of  finding  mean  rate  or  quality  of  different  ma- 
terials when  mixed  together. 

To   Compute   2VIean   JPrioe   of*  a   Alixture. 

When  Prices  and  Quantities  are  known.  Rule.  —Multiply  each  quantity  by  its 
Ate,  divide  sam  of  products  by  sum  of  quantities,  and  quotient  will  give  rate  of  the 
composition. 

Example. —  If  lo  lbs.  of  copper  at  20  cents  per  lb.,  i  lb.  of  tin  at  5  cents,  and  i  Ih' 
of  lead  at  4  cents,  be  mixed  together,  what  is  value  of  composition? 

xo  X  20  =  200 

IX   5=     5 
_2X   4=     4 

12  )  209  (17.4x6  cents. 

To  Coxnptite  Quantitsr  or  eaoli   i\.rtioIe. 

Wlwn  Prices  and  Mean  Price  are  given.  Rule.  —Write  prices  of  mgredients,  one 
under  the  other  in  order  of  their  values,  beginning  with  least,  and  set  mean  price 
at  loft.  Connect  with  a  line  each  price  that  is  less  than  mean  rate  with  one  or  more 
that  is  greater. 

Write  difference  between  mixture  rate  and  thai  of  each  of  simples  opposite  price 
with  which  it  is  connected;  then  sum  of  differences  against  any  price  will  express 
quantity  to  be  taken  of  that  price. 

Example.— How  much  gunpowder,  at  72, 54,  and  48  cents  per  pound,  will  compose 
a  mixture  worth  60  cents  a  pound  ? 

12,  at  48  cents. 
1 34\/  X2>  at  54  cents. 

(72/  i2-|-6  =  x8,  at72  cente. 

Here,  73 — 60  =  131^48,    72 — 6o=:x3at54i    60 — 48  =  12,  and  60— 54  =  6  = 

12-^6  =  18  at  72. 

Then  12  X  48  +  12  X  54  +  18X72  =  3520,  and  252o-f-x2  +  i2+i2  +  6=6ocentt. 

NoTB.  —  Shoald  it  be  required  to  mix  a  definite  qnantitj  of  any  one  article,  tbe  qnantitlee  of  each, 
determined  by  above  mle,  must  be  increased  or  decreased  in  proportion  they  bear  to  defined  quantity. 

Thus,  had  it  been  required  to  mix  18  pounds  rt  48  cents,  result  would  be  x8  at  48, 
z8  at  54,  and  27  at  72  cents  per  pound. 

When  the  tohole  Composition  is  limited.  Rctlb  —As  sum  of  relative  qnanlities, 
as  ascertained  by  above  rule,  is  to  whole  quantity  required,  so  is  each  quaD,tity  so 
ascertained  to  required  quantity  of  each. 

Example.— Required  xoo  pounds  of  above  mixture 

Then,  12  +  X2+  x8=42.    Then,  42  :  xoo ::  12  :  28.57X  pounds. 

42  :  xoo  ::  12  :  28.571  pounds. 
42  :  xoo  ::  18  :  42.857  pounds. 

When  Price  of  Several  A  Hides  and  Quantity  of  one  of  them  u  given.  Rdlb.  —  As- 
certain  proportionate  quantities  of  ingredients  by  previous  rule. 

Then,  as  number  opposite  ingredients,  quantity  of  which  is  given,  is  to  given 
quantity;  so  is  number  opposite  to  each  ingredient  to  quantity  required  of  that  In- 
gredient 

Example.  —  Having  35  Iba  of  tobacco,  worth  60  cents  per  pound,  how  much  of 
other  ({ualities,  worth  65, 70,  and  75  cents  per  pOund,  must  be  mixed  with  it,  so  as  to 
sell  mixture  at  68  cents  per  pound? 

By  previous  rule,  it  is  ascertained  there  must  be  7  lbs.  at  60.  2  at  65,  3  at  tq,  and 
8  at  75  cents;  but  as  there  are  35  lbs.  at  60  cents  to  be  taken,  other  quantities  and 
kinds  must  be  increased  in  like  manner. 

Hence,  7  :  35  :  :  2  :  xo  =  xo  at  65  cents. 
7  •  35  :  :  3  :  "5  =  15  "  70  cents. 
7  :  35  :  :  8  :  40  =  40  '*  75  cents. 


6o|54\) 


ANNUITIES. 


ill 


(x  +  .05)*  per  table,  page  xo8,        loox -05  (i  +  -o5)^ _  SX  x.34  _  6. 7  _ ^ 

— ■ — ——  —  —  —  ^10.  JO. 

—  '•3^  (x-f.o5)6— I  1-34  — X        34 

When  AnnwUiet  do  not  commence  till  a  certain  period  of  time,  they  are  mid  to  be 
in  Reversion. 

To  Coxnpute  Present  "Wortli  of*  an  Annnity  in  Reversion* 

Rule.— Take  two  amounts  ander  rate  in  abave  table— viz.,  that  opposite  sum  of 
two  given  times  and  that  of  time  of  reversion ;  multiply  their  difference  by  an* 
unity,  and  product  will  give  present  worth. 

Example. — What  is  present  worth  of  the  reversion  of  a  lease  of  I40  per  anaum, 
to  continue  for  6  years,  but  not  to  commence  until  end  of  2  years,  at  mte  of  6  per 
cent,  f 

6  -f-  2  =  8  years 6.209  79 

3    "     X. 833  39 

4.37640  X  40  =  $i7505- 6. 

'  .A.znoant  of  A-nnuity  of*  Si,  etc..  Compound    Interest, 

f*rozn   1   to   SO   Years. 


X 

2 

3 

4 
5 
6 

7 
8 

9 
10 


4 
Per  Cent. 


X. 

2.04 
3.12x6 
4. 246  46 
5-4>632 
6.63297 
7.89829 
9»3X433 
xo.  582  79 
x2.oo6xx 


5 
Percent. 


X. 

a.  05 

3- 152  5 
4.310x2 

552563 
6.801 91 
8. 142  ox 

9-549" 
IX.  026  56 

12.57789 


6 
Per  Cent. 


X. 

2.06 
3-1836 
4.37462 
5.63709 

6.97532 

8.39384 

9.89747 

1 1. 491  32 

X3. 18079 


7 

• 

Percent. 

><    ' 

X. 

II  . 

2.07 

12    1 

32149 

13 

4-439  94 

14 

5-75074 

15 

7-15329 

16 

8.65402 

17 

xa259  8 

18 

11.97799 
13.8x645 

19 

20 

4 
Per  Cent. 


13-48635 
15.0258 
16.626  84 
18.291  91 
20.023  59 
21.82453 
23.697  51 
25.645  4X 
27.671 23 
29.77808 


S 
Per  Cent. 


14.206.79 

15-917  "3 
X7.71298 

19.59863 

21-57856 

2365749 
25.84037 

28. 132  38 

30-539 
33-06595 


6 
Per  Cent. 


14-971  64 
16.86994 

X  a  882x4 
21.0x507 
23.27597 

25-672  53 
28.2x288 

30.90565 

33-75999 
36.78559 


7 
Per  Cent. 


15.7836 

17.88845 

201 140  64 

22.55049 

25.12902 

27.88805 

3a  840  22 

3399903 
37.37896 
140.99549 


iLLrsTRATioN.— What  is  amount  of  $  1000  for  20  years  at  5  per  cent.? 

5  per  cent,  (br  20  years  =  33*065  95 ;  hence,  1000  x  33-065  95  =  1 3306. 595. 

Xo   Compute    A.mount    of    an    A^nnuit^r  for   an3r    Period 

and.   Rate. 

Rule.— From  table  for  Compound  Interest,  page  xo8.  take  value  for  rate  per  cent, 
for  X  year,  and  raise  it  to  a  power  determined  by  time  in  years.  fh>m  which  subtract 
x,  divide  remainder  by  rate,  and  quotient  multiplied  by  annuity  will  give  amount 
required. 

Example.- What  will  an  annuity  of  $  50^  payable  yearly,  amount  to  in  4  years,  at 
5  per  cent  ? 

By  table,  page  108, 1.054  =  1.2x55. 

1.2x55  — x-r-(x.o5  — x) =4.31,  and  4.31  x  5o  =  $2i5.5a 

P'or   Half-yearly  and   Quarterly   Payments. 
Multiplf  annuity  for  given  time  by  amount  in  following  table: 


Bete  per  cent. 

Helf-Tearly- 

QoArteriy. 

Rate  percent. 

Hftlf-yesrly. 

Quarterly. 

3 

3-5 

4 

45 

5 

>-oo7  445 
X.008675 
1.009903 
X.OXI  X26 
X.OX2348 

i.oxx i8x 
1.01303X 
1.0x4877 
1.016729 
x.ox8  559 

5-5 
6 

6.5 

7 

7-5 

X.013567 
X. 014  781 
X.  01 5  993 
X.  01 7  204 
1.0x84x4 

x.020395 
1.022227 
X.024055 
x.025  88 
X.027  704 

Illustration  i.— Annuity  as  determined  in  previous  case=$2i5.5a 

Hence,  2x5.50  x  1.0x2348  flrom  above  table  =r  $2x8. 16  ybr  ha^ yearly  payments. 

3.  A  person  30  years  of  age  has  an  annuity  for  xo  years,  present  worth  of  it  being 
liooo,  provided  he  may  live  for  xo  years.  What  is  annuity  worth,  assuming  that 
60  persons  out  of  every  3550,  between  the  ages  of  30  and  40,  die  annually  ? 

3550 —  600  (60  X  xo)  =  2950  would  therefore  be  living. 
Andf  3550  :  2950  ::  xooo  =  $83o.98. 


no 


▲imUlTIBS. 


ANNUITIES. 

170   Coixipute   A-xnoniit  of*  A.iixi'ultsr. 

When  Time  and  Ratio  of  Inlereist  are  Given.  Rulk — Raise  the  raiio  to  a  power 
denoted  by  time,  from  which  subtract  i ;  divide  remainder  by  ratio  less  i,  and  quo- 
tient, multiplied  by  annuity,  will  give  amount 

NoTK.— $  X  added  to  given  rate  per  cent,  to  ratio,  and  pracsdlng  table  in  Gk»mpoand  Interest  to  a 
table  of  ratios. 

Example.— What  is  amount  of  an  annual  pension  of  $ioo,  interest  5  per  cent., 
which  has  remained  unpaid  for  four  years? 

1.05  ratio;  then  1.05* — 1  =  1.21550625  —  i  =.21550625,  and  .21550625-7- (1.05 

—  i)  05  =  4.310125,  which  X  100  =  $431.01. 25. 

To   Compute   Present  "Wortb,  of  an   A-nimity. 

When  Time  and  Rate  of  Interest  are  Given.  Rulk.— Ascertain  amount  of  it  for 
whole  time;  divide  by  ratio,  involved  to  time,  and  result  will  give  worth. 

ExAMPLK. — What  is  present  worth  of  a  pension  or  salary  of  $500,  to  continue  xo 
years  at  6  per  cent,  compound  interest  f 

1 5oo>  by  last  rule,  is  worth  $6590.3975,  which,  divided  by  x.o6'*^  (by  table,  page 
108,  is  1.79084)  =  $  3680.05. 

Or,  Multiply  tabular  amount  in  following  table  by  given  annuity,  and  product 
will^ive  present  worth. 

Illustration  l — As  above;  10  years  at  6  per  cent. =7. 360 08,  and  7.36008  x  500 

—  3680.04  dollar g. 

2.  What  is  present  worth  of  $150  due  in  one  year  at  6  per  cent  interest  per  annum  i 

•943  39  X  150  =  $141. 5a  85. 

Present  Wortli  of  an  A.iinnity  of  ^1,  at  4,  6,  and  G 
Per  Cent.  Compound.  Interest  for  Periods  under  S3 
Years. 


Years. 

4  Per  Cent. 

5  Per  Cent. 

2 

.96154 
1.88609 

•95238 
1.859  41 

3 

27751 

2.72325 

4 

3.6299 

3.54595 

5 

f- 452  03 

432948 

6 

5242  >  5 

507569 

7 

6.00203 

5-78637 

8 

6.731  76 

6.46321 

9 

74364 

7. 107  82 

xo 

8. 1 10  85 

7.72173 

XI 

8.76044 

8.30641 

xa 

938505 

8.86325 

6  Per  Cent. 

Years. 

•943  39 
>.83339 

13 

>4 

2.67301 

15 

3465  « 

16 

4.21236 

17 

4.91732 

18 

5-58238 

19 

6.20979 

20 

6.80169 
7.36008 

21 

22 

7.88687 

23 

8.38384 

24 

4  Per  Cent.  I  5  Per  Cent 


9.98562 
10.56307 
11.X1843 
II. 651  28 
12. 166  26 
12.65926 
13-13388 
13.59029 
14.02912 
H-45I 12 
14.85682 
15.24695 


9-393  57 
9.89864 

XO.37966 

X0.83778 

XI. 27407 

11.68958 

12.08532 

12.46221 

12.821 15 

13.163 

13.48807 

13.79864 


6  Per  Cent. 


8.85268 
9.29498 
9.71225 
10. 105  89 
10.47726 
10.8276 
IX. 158 II 
11.46992 
11.76407 
12.041  58 
12.303  38 
12.5503s 


For  a  Rate  of  Interest  and  Term  of  Tears  not  given  in  either  Tal>le. 

—    I : — -    =  A.    Notation  as  preceding. 

r  I       (i  +  r)»J 

Illubtratiox. — ^Take  $  i  at  4  per  cent  for  24  years. 

Log.  1.04  =  .017  033,  which  X  24  =  .408  799.    log.  .408  799  3=  2.5633  =  ratio  raited 
to  power  of  24. 

Then,  —  x(i ^-r—)  =  25  X  i  —  390 122  =s  $  15.24. 695. 

04      \       2.5633/ 

To  Compntv*  Yearly  Amount  tliat  Avill  IL<iq[uidate  a  IDe'bt 
in  a  Oiven  P^^umlser  of  Years  at  Compound  Interest. 

p  ,-  (i  -i-r)* 

— -      '     -  =  A.    Illustration.  —What  is  amount  of  an  annual  payment  that 

(i-f-r)«— I 

will  liquidate  a  debt  of  $  100  in  6  years  at  5  per  cent  compound  interest? 


PBOBABILITT.  1 1 5 

Namb«r  of  cases  which  favor  drawing  of  a  white  ball  fyom  both  bags  is  5  X  7  =  35, 
for  every  one  of  the  5  white  balls  in  one  bag  may  be  drawn  in  combination  with  every 
one  of  the  7  in  the  other  For  a  like  cause,  namber  of  cases  which  favor  drawing  of 
a  white  ball  ttom  ist  bag  and  a  black  one  from  2d  is  5  x  3  =  xs ;  a  black  ball  from  ist 
bag  and  a  white  ball  fh)m  3d  is  7  X  2  =  14;  and  a  black  ball  nnom  both  is  3  x  2  =6. 

Probability,  therefore,  of  drawing  is  as 

^^=  — ==— =  xtoi,att»At<e6ottyrom6o</i6<v».    l^li  ==  !5  ^ _3,  ^    .^^  ^ 
70        70      2  "^  ^         70        70      14      ^         ' 

a  vihite  ball  from  ist,  and  a  black  from  2d.      - — -  =  —  =  —  =  it0  4,  a  black 

70        70      5 

ball  from  i«f,  and  a  white  from  2d     - — -  =  —  =  —  =  3t0  32,  a  black  ball  from 

70        70     35 

both.    - — ^^ =  -^  =  29  to  41,  a  white  ball' from  onCy  and  a  black  from  other. 

70  70 

for  both  2d  and  3d  cases  favor  this  result :  hence,  JL  -f-  A  =  ??.    5X74-5X3+2X7 

5      x4     70  70 

=  —  =  —  =  32  to  3,  a<  Ucut  one  white  balL  for  the  ist,  sd,  and  3d  cases  favor  this 
70     35     "        "^  J     1         J 

result;  hence,  _  4-  -^  4.  -L  —  H. 
a       14       5       35 
Again,  if  number  of  white  and  black  balls  in  each  bag  are  same,  say  5  white  and 

9  black,  5  +  2X5  +  2  =  49,  then  |m>bability  of  drawing  is  as 

5211  —  ?5_.      jQ 24,awhiU baUfrom  both.    ^2Ll^ll—  ,©  to 39, a  whiU baU 
49         49  49         49 

from  ift,  and  a  black  from  2d.    =  —  =  10  to  39,  a  black  baUfrom  i<<,  and  a 

white  from  2d.    - — ^  = -^  =  4  to  45,  a  dZocfc  6aWyro«  fcott. 
49        49 
4.— When  two  dice  are  thrown,  probability  that  sum  of  nambers  on  upper  sides 
is  any  given  number,  say  7,  is  as  follows: 

As  every  one  of  the  six  nambers  on  one  die  may  come  up  alike  to,  or  in  combi- 
nation with  the  other,  number  of  throws  is  6  x  6  =  36. 

1 1  and  6 ) 
Number  7  may  be  a  combination  of  ]  2   **  5 1  ;  and  as  these  numbers  may  be 

^  (3    "   4) 
upon  either  die,  there  are  3  x  2  =:6  throws  in  fkvor  of  the  combination  of  7 ;  hence 

6        I 
probability  of  throwing  7  is  -g  =  -r-,  or  as  i  to  5. 

5. —Probability  of  a  player's  partner  at  Whist  holding  a  given  card  is  as  follows : 
Number  of  cards  held  by  the  other  3  players  is  3  x  13  =  39;  probability,  there-' 

fore,  that  it  is  held  by  partner  is  — ,  but  it  may  be  one  of  the  13  cards  which  he 

holds;  hence  probability  Is  —  x  13  =  ~  =  — ,  or  as  1  to  2. 

39  39      3 

6.— Probability  of  a  player's  partner  at  Whist  holding  two  given  cards  is  as  follows: 

Namber  of  combinations  of  39  things,  taken  2  and  2  together,  is  ^^     ^  =  741 ; 

therefore,  probability  that  these  2  cards  are  in  partner's  hand  is  39  x  38  =  — ^ — 

=  ~  =  z  to  740;  but  they  may  be  any  2  cards  in  partner's  hand;  therefore,  since 
74  X 

namber  of  combinations  of  13  cards,  taken  2  and  2  together,  is  ^ — —  =  —  =  78, 

X  X  2         2 

78        s 
vrobability  reqaired  is  -^—= —,  or  as  2  to  17. 

74X       X9 

Similarly,  probability  that  he  holds  any  3  given  cards  Is  as  — ,  or  as  2a  to  68z. 

703 


Il6  PROBABILITY. 

PrubabilitiBs  at  a  game  of  Whist  upon  following  points  are : 

9  to  7,  tficU  one  hand  has  two  honoi's^  and  two  hands  one  ; 

9  to  55)  ^^'  two  hands  have  each  two  honors  ; 

3  to  29,  that  each  hand  holds  an  honor; 

3  to  13,  that  one  hand  has  three  honors,  and  one  hand  one; 

I  to  63,  tftaijbur  honors  are  held  by  one  hand. 

7.— If  3  half  dollars  are  thrown  into  the  air,  probability  of  any  of  the  possible  com 
binatioos  of  their  falling  is  determined  as  follows : 

Eenco",     f  —  J  =  .125  =  i  to  7  in  favor  of  3  heads. 

~  ( — J  — .  375  =  3  to  5      "      "     2  Jieads  and  i  tail 

^^(^V=. 375  =  3^5      "      "      1  head  and  2  tails. 

\y     ^     [— )  =.125=1  t0  7       "      "      ^taiU. 
1X2X3x2/ 

i\nd  in  like  manner,  if  5  were  thrown  up,  probability  of  any  of  their  possible 
<:ombination8  woald  be  determined  as  follows  : 

/  i  +  i_y=  ^-V+i-  /lV-Li2l4  (L\^4, 5X4X3  /»\5     5X4X3X2  A  \5 
U  ^  2/       \2/^  I  V2y  ^iX2\2/  "^1X2X3  \2/       1X2X3X4  \2/ 

,5X4X3X2X1/1X5 
"^1X2X3X4X5X2/ 

Hence,  f  —  j  =  .031 35  =  1  to  31  in  favor  of  5  heads; 

—  f-j  j  =  .  156 25  =  5  to  27      "      "     4  heads  and  t  tail; 
f^  l^j  =  -3"  5  =  10  to  22    "      "     3  heads  and  2  tails; 

5X4X1/1  \5  ' 

0<Tx"3  \T/  =  -3"  5  =  10  to  22    "      '»     2  heads  and  3  taHs; 

5X4X3X2/1  \5 

rxTxTx"^  W  =  •  ^56 25  =  5  to  27      *'      "      I  head  and  4  taOs; 

'     5X4X3X2X1/1X5 

xX2X3X4X5W=°3''^  =  '*^3'       "        ■       5'«t^. 

All  Wagers  are  founded  upon  the  principle  of  product  of  the  event, 
and  contingent  gain,  being  equal  to  amount  at  stake. 

iLLUSTBATioN  I.— Supposo  3  borscs,  A,  B,  and  C,  are  entered  for  a  race,  and  X 
wagers  12  to  5  against  A,  n  to  6  against  B,  and  10  to  7  against  C. 

If  A  wins,  X  wins  6  +  7  — 12  =  1. 
"B  -  X  "  5l;_x,  =  x. 
'«C     *'     X     »    5-1-6-10=1. 


Hence,  X  wins  i,  whichever  horse  wins,  fh)m  having  taken  field  against  each 
horse  at  odds  named.  .  * 

*°*  ~  +  — +  7^  =  — =  «o6  =  i-o6toi  in  Jitvor  qf  taker  iff  <tdd8. 


COMBINATION. — CIRCULAR  MEASURE.  IIJ 

Cozn'biiiatioiiB  -^vith.   Repetitioxx0. 

In  this  caee  the  repetition  of  a  term  is  considered  a  new  combination.  Thus, 
I,  2,  admits  of  but  one  combination,  if  not  repeated;  if  repeated,  however,  it  admits 
of  three  combinations,  as  i,  z ;  i,  2;  2,  2. 

Rule.— To  number  of  terms  of  series  add  number  of  class  of  combination,  less  i ; 
multiply  sum  by  successive  decreasing  terms  of  series,  down  to  last  term  of  series; 
then  divide  this  pr^uct  by  number  of  permutations  of  the  terms,  denoted  by  class 
of  oomblBElion. 

E^MPLK.— How  many  different  combinations  of  numbers  of  6  figures  can  be 
made  out  of  11  ? 

1x^(6—  x)  =  i6=zium  0/  number  of  tenns^  and  number  of  class,  less  i . 

16  X  15  X  14  X  13  X  12  X  II  =  5  765  76o=productofsumf  and  successive  terms  to 
Uisl  term. 

1X2X3X4X5X6  =  720  ptrmutaiions  of  class  of  combination. 

^5765760^8^  . 
720 

"Variations  -witli   Repetitions. 

Every  different  arrangement  of  individual  number  or  things,  including  repeti- 
tions, is  termed  a  Variation. 
Class  of  Variation  is  denoted  by  number  of  individual  things  taken  at  a  time. 

RuLB.— Raise  number  denoting  the  individual  things  to  a  power,  the  exponent 
of  which  is  number  expressing  class  of  variation. 

ExAMPLK  I. — How  many  variations  with  4  repetitions  can  be  made  out  of  5  fig- 
ures? 54  =  625. 

2. — How  many  different  combinations  of  4  places  of  figures  can  be  made  out  of 
the  9  digits? 

,  ,         ,  .  I2X 11X10X9      "880 

Coxzil>in.ation  w^tliout   Repetitions. 

RuLK.  —From  number  of  terms  of  series  subtract  number  of  class  of  combination 
less  I ;  multiply  this  remainder  by  successive  increasing  terras  of  series,  up  to  last 
term  of  series;  then  divide  this  product  by  number  of  permutations  of  the  terms, 
denoted  by  class  of  combination. 

EzAMPLK  1.— How  many  combinations  can  be  made  of  4  letters  out  of  10,  exclud- 
ing any  repetition  of  them  in  any  second  combination  ? 

10  —  (4  —  i)  =  7  =  number  of  terms  —  number  of  class,  less  i, 

7X8X9X10  =  5040 = prod,  of  remainder  7,  and  successive  terms  up  to  last  term. . 

1X2X3X4=  24  =  permutations  of  class  of  combination. 

Then,  5212  =  «o. 
24 

2.— How  many  combinations  of  the  5th  class,  without  repetitions,  can  be  made 
of  12  different  articles? 

Z2  —  (5  —  i)  =  8,  and  2 = 2_  =  702. 

1X2X3X4X5  120        ^^ 


CIRCULAR   MEASURE. 

Unit  of  Circular  Measure  is  an  angle  which  is  subtended  at  centre  of  a  circle 
by  an  arc  equal  to  radius  of  that  circle,  being  equal  to 

180O 

^  =  57.296°. 

3. 14x6      "'^    ^ 

Circular  measure  of  an  angle  is  equal  to  a  fhiction  which  has  for  its  numerator 
the  arc  subtended  by  that  angle  at  centre  of  any  circle,  and  for  its  denominator  the 
radius  of  that  circle. 


114  CIKCULAB   MEASUBB.-^PKOBABIT>lTT. 

Xo  Cozxipute   Ciroular  Pleasure  of*  an  i\.iigle. 

Rdlb.— Multiply  measure  of  angle  in  degrees  by  3.1416,  and  divide  by  180. 

Example.— What  is  circular  measure  of  24°  10'  8"? 

24O  10^  S"  X  3-1416  _  87008  X  3i4'6  _ 

180  ~  180X60X60        °**     • 

To  Coxxip-ute  I^easure  or  an  .A^iigle,  its  Oiroular  ACeasure 

l>eing  Chiven. 

RuLB.— Multiply  circular  measure  of  angle  by  180,  and  divide  l>y  3.1416. 


PROBABILITY. 


Probability  of  any  event  is  the  ratio  of  the  favorable  cases,  to  all  the 
cases  which  are  similarly  circumstanced  with  regard  to  the  occurrence.  If 
an  event  have  3  chances  for  occurrmg  and  2  for  failing,  sum  of  chances 
being'  5,  the  fraction  |  will  represent  probability  of  its  occurring  and  is  taken 
as  measure  of  it.  Thus,  from  a  receptacle  containing  i  white  and  2  black 
balls,  the  probability  of  drawing  a  white  ball,  by  abstraction  of  i,  is  ^ ;  prob- 
ability of  throwing  ace  with  a  die  is  I :  m  other  words,  the  odds  are  2  to  i 
against  first,  and  5  to  i  against  second. 

If  m  -f-  n  =  whole  number  of  chances,  m  representing  number  which  are  favorable^ 

tn 
and  n  unfavorable.     Therefore  — r —  =  probability  of  event 

m-f-n 

Probabilities  of  two  or  more  single  events  being  known,  probability  of  their  oc- 
curring in  succession  may  be  determined  by  multiplying  together  the  probabilities 
of  their  events,  considered  singly. 

Thus,  probabihty  of  one  event  in  two  is  expressed  by  | ;  of  its  occurring  twice  in 
succession,  i  X  J,  or  J;  of  thrice  m  succession,  ij  X  -J  X  !»  or  J,  etc. 

Illustration  l— If  a  cent  is  thrown  twice  into  the  air,  the  probability  of  its  fall- 
ing with  its  bead  up,  twice  in  succession,  is  as  i  to  4.    Thus,  it  may  fall : 

1.  Head  up  twice  in  succession.  ^ 

2.  Head  up  ist  time  and  wreath  2d  time,  f  „  i     _       _  i  ,.   ^. 

3.  Wreath  up  ist  time  and  head  2d  time,  f  ^ence,  j-—  _  .25  —  —  =  4  times. 

4.  Wreath  up  twice  in  succession.  ) 

These  are  the  only  results  possible,  and  being  all  similarly  circumstanced  as  to 
probability,  the  probability  of  each  case  is  as  i  to  4,  or  odds  are  as  3  to  i. 

Probability  of  either  head  or  wreath  being  up  twice  in  succession  is  as  i  to  i,  or 
chances  are  even,  because  ist  and  4th  cases  favor  such  a  result;  probability  of  head 
once  and  wreath  once  in  any  order  is  as  i  to  2,  because  2d  and  3d  cases  favor  such  a 
result;  and  probability  of  head  or  wreath  once  is  as  3  to  4,  or  odds  are  as  3  to  i,  be- 
cause ist,  2d,  and  3d,  or  2d,  3d,  and  4th  cases  favor  such  a  result 

NoTV.— I  to  2  it  an  equal  chance,  for  i  out  of  2  chances  =  i  to  x,  being  an  equal  chance ;  afcain,  i  to 
S  ia  4  to  I,  for  I  oat  of  5  chances  la  i  to  4. 

2.— If  there  are  4  white  balls  and  6  black  in  a  bag,  what  is  the  chance  of  a  person 
drawing  out  2  black  at  two  successive  trials? 

This  is  a  combination  without  repetition.    Hence,  6  —  (2  —  i)  =  5, 

.  5  X  6      30      15      ,  .  ,  -  .      X  .  1        'S3 

and =  —  =  r-^,  which  x  2  for  successive  trials  =  —  or  — . 

I X  2      2        I  2       15 

3.— Suppose  with  two  bags,  one  containing  5  white  balls  and  2  black,  and  the  other 
7  white  and  3  black. 

Number  of  cases  possible  in  one  drawing  f^om  each  bag  is  (5-)- 2)  x  (7  +  3)  =7 
X  xo  =  70,  because  every  ball  in  one  bag  may  be  drawn  alike  to  one  in  the  other. 


WBIGUI'S  OF  IBON,  STEEI^  COPPXB,  BTC. 


119 


'Wroueb.t  Ix*oii,  Steel,  Copper,  and  Srass  Plates. 

{JBirmingham  Gaitge.) 


No.  of 
Gauge. 


0000 

oco 

00 

o 

I 

2 

3 

4 
5 
6 

7 
8 

9 
10 

II 

12 

13 
14 

15 
16 

17 
18 

19 
20 

21 

22 

23 
24 

35 
26 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 


Thicknesa 


i  light 


Inch. 
•454  or  ^^  f  uU 

.425       . 
.38    or  f  full 

•34    or  J    *' 

•3 
.284 

.259  or  4  full 

.238 

.22 

.203  or  \  full 

.18    or  y\  light 

.165  or  i       " 

.148  or  \  full 

.134 
.12    or 

.109 

•095  or  ^  Ught 

.083 

.072 

.065 

.058 

.049  or  -^  light 

.042 

•035 
.032 

.028 

.025  or  ^ 

.022 

.02 

.018 

.016 

.014 

.013 

.012 

.01    or 

.009 

.008 

.007 

<x>5  or 

.004  or 


Iron. 


or  A 


xiv 


Lbs. 
18.2167 

17.0531 

15-2475 
13.6425 

12.0375 

11.3955 
10.3924 

9.5497 
8.8275 

8.1454 

7.2225 

6.6206 

5.9385 

5.3767 

4.815 

4.3736 

3-8119 

3.3304 
2.889 

2.6081 

2.3272 

I.9661 

1.6852 

1.4044 

1.284 

I.I235 

1. 0031 

.8827 

.8025 

.7222 

.642 

•5617 
.5216 
.4815 
.4012 

.3611 

.321 

.2809 

.2006 

.1605 


Pkr  Squaks  Foot. 
Steel.       I     Copper. 


LIm. 

18.4596 
17.2805 
154508 
13.8244 
12.198 

".5474 
10.5309 
9,6771 
8.9452 
8.254 
7.3188 
6.7089 
6.0177 

5-4484 
4.8792 

44319 
3.8627 

3<J748 

2.9275 
2.6429 

2.3583 
1.9923 

1.7077 

1.4231 
1.3011 

1.1385 
1. 0165 

.8945 
.8132 

.7319 
.     .6506 

.5692 

.5286 

.4879 

.4066 

.3659 

.3253 
.2846 

.2033 

.1626 


Lbs. 

20.5662 

19.2525 

17.214 

15.402 

13-59 
12.8652 

11.7327 

10.7814 

9.966 

9.1959 
8.154 

74745 
6.7044 
6.0702 

5-436 

4-9377 

4.3035 

3.7599 
3.2616 

2.94*5 
2.6274 
2.2197 
1.9026 

1-5855 
1.4496 

1.2684 

1.1325 
.9966 
.906 

.8154 
.7248 

.6342 

.5889 

•5436 

.453 

-4077 
.3624 

•3171 
•2265 

.1812 


Brass. 


No. 

Inch. 

No. 
7 

Inch. 

No. 
13 

Inch. 

I 

.004 

x>is 

.036 

2 

.005 

8 

.016 

14 

.041 

3 

.008 

9 

.019 

15 

.047 

4 

.01 

10 

.024 

16 

.051 

5 

.013 

II 

.029 

n 

•057 

6 

X)i3 

12 

.034 

18 

.061 

No. 

19 
20 

Inch. 

.064 
.067 

21 

.072 

22 

•074 

23 
24 

.077 
.082 

No. 
25 

Inch. 

•095 

26 

.103 

27 

."3 

28 

.12 

29 

.124 

30 

.126 

Tliiclzness    of*  Sheet    Silver,  O-old,  etc. 
By  Birmingham.  Gauge  for  these  Metals. 


Lb«. 

19.4312 

18.19 

16.264 

14.552 

12.84 

12.1552 

11.0852^ 

10.1864 

9.416 

8.6884 

7.704 

7.062 

6.3344 

5.7352 

5-136 

4.6652 

4.066 

3.5524 
3.0816 

2.782 

2.4824 

2.0972 

1.7976 

1.498 
1.3696 

1.1984 

1.07 
.9416 
.856 

.7704 
.6848 

•5992 
.5564 
.5136 
.428 

.3852 

•3424 
.2996 
.214 
.1712 


31 
32 
33 
34 
35 
36 


•133 
.143 
.145 
.148 

.158 
.167 


I20  WEIGHTS  OF   IBOX,  STEEL,  COPPER,  ETC. 


^^ro-uglit  Iron,  Steel,  Copper,  and  Srass  "Wire. 

American  Oauge,     f.  full,  I.  light 


No.  of 
Gauge. 


Diameter. 


oooo 

ooo 

.    oo 

o 

I 

2 

3 

4 

5 
6 

7 
8 

9 

lO 

II 

12 

13 

14 

15 
i6 

I? 
i8 

19 

20 
21 
22 

23 

24 

25 
26 

27 
28 

29 
30 

31 
32 

33 
34 
35 
36 
37 
38 
39 
40 


Inch. 

46  or  j\  f . 

40964 

,364  8  or  f  1. 

.324  86  or  y«y  f  . 

2893 

257  63  or  J  1 

229  42 

20431  or  Jf. 

181  94  or  Y»y  1. 

16202 

14428 

128  49  or  J  £. 

"4  43 

loi  89  or  ^jj  £. 

,090742 

.0S0808 

,071  961 

064084 

057068 

050  82  or  ^  1 

045  257 
.040  303 

03589 
031  961 

028462 

025347 
022  571 

O2oiory\^f. 

0179 

01594 
014  195 
012  641 
^11  257 
oioo25or  1  f. 
.008928  ^°° 
00795 
00708 
006304 
005  614 
005  or  ^1^ 
004453 
003965 
003  531 
.003144 


Iron. 


Per  Linbal  Foot. 
Steel.  Copper. 


Lb«. 

.56074 
.444683 
.352  659 
.279  665 
.221  789 

.175888 

.13948 

.110616 

.08772 

.069565 

.055  165 

.043  751 
.034699 

.027  512 

.02182 

.017  304 

.013  722 

.010886 

.008631 

.006845 

.005  427 

.004304 

.003413 

.002708 

.002  147 

.001  703 

.00135 

.001 071 

.0008491 

.0006734 

.000534 

.0004235 

.0003358 

.0002663 

.000211  3 

.000  167  5 

.000  132  8 

.000  105  3 

.00008366 

.00006625 

.000  052  55 

.000041  66 

.00003305 

.0000262 


Lbi. 
.56603 
.448  879 
.355986 
.282  303 
.223  891 

•177  548 
.140  796 

.III  66 
.088548 
.070  221 

•055  685 
.044  164 
.035026 
.027  772 
.022026 
.017  468 
.013851 
.010989 
.008712 
.006909 
.005  478 
.004344 
•003445 
.002734 
.002  167 
.001  719 
.001  363 
.001  081 
.000  857  I 
.000-679  7 
.0005391 
.0004275 
.000  338  9 
.0002688 
.000  213  2 
.000  169  I 

;  .000 134 1 
'  .000 106  3 
.00008445 
.  .00006687 
.000  053  04 
.000  042  05 
.000  033  36 
.00002644 


Lbt. 
.640  513 

•507  946 
.40283 

.319451 
.253342 
.200911 

.159323 
.126353 

.1002 

.079  462 

.063013 

.049976 

.039636 

.031426 

.024924 

.019766 

.015674 

.012  435 

.009859 

.007  819 

.006  199 

.004916 

.003899 

.003094 

.002  452 

.001945 

.001542 

.001  223 

.ooo'9699 
.0007692 
.0006099 
.0004837 
.000  383  5 
.0003042 
.000241  3 
.000  191  3 
.000 151  7 
.000 1204 
.0000956 
.0000757 
.00006003 
.000  047  58 
.00003775 
.00002992 


Brass. 


Lba. 

605 176 

479908 
380666 

301  816 

239353 
189  818 

150  522 
119376 
094666 

075075 
059545 

047  219 

037437 

029687 

023549 
01S676 

014809 
oil  746 

009  315 
007587 
005857 

004645 
003684 

00292 

002317 
001838 
001457 

001  155 

0009163 

000  726  7 

0005763 

000457 

0003624 

0002874 

000228 

0001808 

0001434 

000  113  7 

00009015 

000  071  5 

00005671 

.000044  96 

00003566 

00002827 


Specific  Gravities 7.774 

Weights  of  a  Cube  Foot . .  485.87 

Inch..       .2812 


(i 


it 


7.847 

8.88 

8.386 

490.45 

554988 

524.16 

.2838 

.3212 

•3033 

Specific  Gravities  to  determine  the  computations  of  these  weights  were  made  b;^ 
author  for  Messrs.  J.  R  Browne  &  Sbarpe,  Providence,  R.  I. 


PBOBABIIJTT. 


117 


3.  —Odds  given  upoD  tiirst  seven  favorite  horses  fbr  Oujcs  Stakes  of  1828  were  so 
great,  that  probability  iu  favor  of  taker  uf  the  odds  wbeu  reduced  was  as  follows  : 

ist,  5  to  2 ;  2d,  5  to  2 ;  3d,  4  to  i ;  4th,  7  to  i ;  5th,  14  to  i ;  6th,  14  to  1 ;  7th,  15  to  i 

i  4  X  3  X  16  =  19a 
iX7Xi6  =  ,ia 
3X7  X    3=   63 

7  X  3  X  i6      336 


8^15^x5^16 


=  367  -J-  336  =  1.092  =  1.092  to  I,  in  favor  of  taker  of  odds,  yet  ueither  of  the  horses 
upon  which  these  odds  were  given  won. 

3.— If  odds  are  3  to  i  against  a  horse  in  a  race,  and  6  to  i  against  another  horse 
in  H  second  race,  probability  of  ist  horse  winning  is  -^,  and  of  other  i^.  '1  hercfore 
probability  of  both  races  being  won  is  -^g,  and  odds  ugaiust  it  27  to  i,or  xooo.to  37-037. 
Odds  tit»ou  sach  an  event  were  given  in  1828  at  1000  to  60,  or  16.67  ^  '- 

4.— Two  persons  play  for  a  certain  stake,  to  be  won  by  winner  of  three  games  or 
results.  One  having  won  one  and  the  other  two,'  they  decide  to  divide  the  sum, 
propurtioaate  to  their  interest.     How  much  of  it  should  each  one  receive? 

OPKKATiozr.— If  winner  of  two  games  should  win  game  to  be  [dayed,  he  would  be 
entitled  to  the  whole  sum;  if  he  lost,  he  w^ould  be  entitled  to  half  of  it.     Now  as 

one  event  is  as  probable  as  the  other, 1 =  — ,  half  of  which  =  — ,  or  ghare 

13  2  4  • 

of  winner  qf  ttoo  games. 

When  events  are  wholly  independent,  so  that  occurrence  of  one  does  not 
affect  that  of  the  other,  probability  that  both  will  occur  is  product  of  proba- 
bilities that  each  will  occur. 

Nora.— It  i*  Indifferent  whether  erenta  are  to  occar  together  or  consecutively. 

iLLrarTRATiON  I Assume  three  boxes,  each  conUiining  white  and  black  balls  as 

follows : 

6  white,  5  black :  7  white,  2  black ;  8  white,  10  black.  What  is  chance  of  drawing 
from  them  a  white,  black,  and  a  white  ball? 

Probabilities  are  — ,  — ,  and  -~t,  product  of  which  =  -^-?-i—  ^  17.621;  to  i. 
11'  9  18  297  '     ^ 

3.— A  gives  an  answer  correctly  3  times  out  of  4,  B  4  times  out  of  5,  and  G  6  out 
of  7.    What  is  probability  of  an  event  which  A  and  B  declare  correct  and  C  denies? 

Operation. — Compound  probability  that  A  and  B  answer  correctly  and  C  denies 

12  _  3 

140      35' 
Ck)m pound  probability  that  A  and  B  deny  and  C  is  correct  .all  3  of  which  are 

3_ 
70 

Then  correct,  divided  by  sum  _3_^/3j^3\_  -8714  ^»    _  3 

of  correct  and  incorrect,  ~    ^  "~ 


(all  3  of  which  are  in  favor  of  event)  I3  —  x  —  X  — 


against  event)  is  —  X  — 

4        5 


6^ 

7  ""140 


_  _3_  ^  /  JL   I  A\  =  . 
35  *    \35      70/       • 


35      70/       .857  14 +  .428  57 


=  .68  or—. 


Odds  bet'weexi  Results  dr  Ch.ai\oes,  and  bet'vp'een  any 
Number  and  Whole  Numlaer,  at  various  Odds  against 
eavh.,  also  Valufe   of  eaolx  Chance  in   parts  of  lOO. 


Odde  aK»inet 
each. 

Valae  of 
Chance. 

Odds  acpilnit 
each. 

Even 

50 

3      to  I 

XI     to  10 

47.63 

3.5  "« 

6     '*    5 

45-45 

3     "I 

5  ;:  ♦ 

44-44 

3.5  "I 

1^ ::  J 

75  "    4 

42.1 

40 
38.1 
36.36 
34.78 

45"* 

5-5"  I 
6     "i 

Value  of 
Chance. 


33-33 

88.57 

85 

22.22 

20 

18.18 

16.66 

1538 
14.28 


Odde 
eac 


Inst 


Viilae  of 
Chance. 


6.5  to 

7      " 

7-5 

8 

8.5 
9 

9-5 
10 

12 


it 

Ci 

li 

(( 
li 


13-33 
12.5 
11.76 
II. IX 

ia52 
xo 

9-52 
9.09 

7-7 


Odde 
eac 


nea 
ich. 


inat   Value  of 
Chance. 


IS  to  I 


18  *♦ 
20  " 


25 
30 


40" 

50" 
60  " 


100 


6.25 
5.26 
4.76 

384 
3.3a 

1.90 
X.64 

•99 


OpvRATioir.  —  Divide  100,  or  anit,  as  case  may  be,  by  sum  of  odds,  and  multiply 
qnottont  by  lesser  chance  or  odda 

bujsnunov.— 6  to  4.    6+4  =  xo,  and  too-r- xo x  4  =  4o,«aitt«  ofehanee. 


Il8    WEIGHTS  OF  IRON,  STBICL,  COPPER,  AND  BRASS. 


WEIGHTS  OP  IRON,  STEEL,  COPPER,  AND  BRASS. 
\v rouglit    Iron,  Steel,  Copper,  and    Brass    Plates. 


C  S.  Law,  March  ^d.  1893. 
Standard  Oauge.     Iron  and  StetL 


No.  of 
Gauge. 


»oooooo 
000000 

00000 

0000 

000 

00 

o 

I 

2 

3 
4 
5 


9 

10 

II 
12 
'3 
14 
15 
16 

17 
18 

»9 
30 

31 
92 

a3 
a4 
9S 

26 

27 
28 
29 
30 
31 
3a 
33 
34 
35 
36 

37 
38 


Thicknbbs. 

Approxi-  I      Approzi- 
mate 
Deciinaii. 


niHte 
Fractions. 


Inch. 
1-2 

15-32 
7-16 

13-32 

3-8 
11-32 

5-16 

9-32 
17-64 

1-4 

15-64 

7-32 

13-64 

3-16 

11-64 

5-32 
9-64 

1-8 

7-64 

3-32 

5-64 
9-128 
i-i6 
9-160 
1-20 
7-160 
3-80 
11-320 
1-32 
9-320 
1-40 
7-320 

3-»6o 
11-640 
1-64 
9-640 
i-8o 
7-640 
13-1280 
3-320 
11-1280 

5-^40 
9-1280 

17-2560 

i-i6o 


Inch. 

5 
46875 

437  5 
40635 

375 
343  75 
3*2  5 
28125 
265  625 
25 

234375 
2187s 

203125 

*87  5 
X71 875 

15625 

140625 

125 

109375 

09375 

078  125 

0703125 

0625 

05625 

05 

04375 

0375 

034  375 

03125 

028  125 

025 

021  875 

01875 

017  187  5 

015625 

0140695 

0125 

0109375 

010 156  25 

009375 

00859375 

0078195 

007  031  25 

006640625 

00625 


WlISRV. 

Wro't  Iron 
Per  Sq.  Ft. 


20. 

18.75 

17-5 
16.25 

15. 

13-75 

12.5 

11.25 

xa625 

10. 

9-375 

8.75 

8.125 

6.875 

6.25 

5625 

5- 
4- 
3- 
3- 
2. 


375 
75 
"5 
8125 

5 

25 

75 

5 

375 

25 

125 

.875 

75 
.6875 

.625 
.5695 
.5 

•437  5 
.40625 

•375 
•34375 
•3"  5 
.381 95 
.965  625 
•«5 


No.  of 
Gauge. 


0000 

000 

00 

O 

I 

2 

3 
4 
5 

6 

7 

8 

9 
10 

II 

12 

>3 
>4 

15 

16 

"7 

18 

'9 

20 

21 
22 

23 

24 
25 
26 

3 

3 

39 

30 

3' 
33 

33 
34 
35 
36 
37 
38 
39 
40 


American  GoMge. 

Wbiout. 


Thickn 
A 


pprozimate 
t^xJuiala. 


Inch. 

46  or  %  t 

40964 

364  8  or  K  I. 

324  86  or  ^1. 

2893 

25763  or  ^f- 

22942 

204  31  or  Vs  f. 

181 94  or  ^  I. 

16202 

14428 

12849  or  >^  ^^ 

"4  43 

loi  89  or  Vio  r 

090742 

080808 

071 961 

064084 

057068 

O5o82or%of. 

045  257 
040303 

03589 
031  901 

028462 

025347 

022571 

0201 

0179 

015  94 

01419s 

012  641 

01 1  357 

010025 

008928 

00795 

00708 

006304 

005614 

005 

004453 

003965 

003531 

003 144 


Pbb  Squakc  Foob 


Copper. 


Lbs. 
20.838 
18.5567 
16.5254 
14.7162 
i3>o5  3 
11.6706 
'0.3927 
9-2552 
8.241  9 

7-3395 

6.5359 
5.8206 

5-1837 
46156 
4.1x06 
3.6606 
3-2598 
903 
5852 
3021 
0501 
8257 
6258 

4478 
1.2893 
1. 140  2 
1.0225 

?io53 
1087 
.72208 
.64303 
•57264 
.50994 
•454  «3 
•40444 
.36014 
.32072 
•28557 

•25431 
.2265 

.20172 

.17961 

•15995 
.14242 


BraM 


2. 
2. 
2. 
2. 
I. 
I. 
I. 


Lbs. 
19.688 
17-5326 
15-6134 
13-904 
12.382 
11.0266 
9.8192 

8.7445 
7.787 

6.934  5 
6.1759 

5-4994 
4-8976 

4- 3609 
3.8838 

3-4586 

3-.0799 
2.7428 

4425 
175  > 
937 
725 
5361 

3679 
2182 

t.0849 
.06604 
.86028 
.76612 
.68223 
»6o7  55 
•54>03 
.4818 

42907 

.382  12 

.34026 

.30302 

.26981 

.24028 

.214 

.19059 

.1697 

.15113 
•»3456 


2. 
2. 
I. 
I. 
I. 
I. 
I. 


In  the  practical  use  and  application  of  the  U.  S.  Gauge,  a  variation  of 
two  and  one-half  per  cent,  either  way  may  be  allowed. 

WrH  Iron. 

Specific  Gravities 7^704 

Weights  of  a  Cube  Foot 481 .75 

"  •*        Inch 2787 


steel. 

Copper. 

Brasa^ 

7.806 

8.698 

8.218 

487.75 

543-6 

513-6 

.2823 

.3146 

.29?  a 

WISS  GAUOBS. — C^AS  Pl^£S  AKD  WIBE  CORD.      12^ 


Frenobi  {Jaugea  de  FUs  de  Fer), 

French  wire-gauges,  alike  to  the  English,  have  been  sabjected  to  vftriaitioii. 
Following  table  contains  diameters  of  the  numbers  of  the  Limoges  gauge. 

"Wire-GI-auge  (Jattffe  de  Limoges), 


Number. 

Millimetra. 

Inch. 

N«mber. 

MUUmetra. 

Inch. 

O 

•39 

.0154 

9 

1-35 

.0532 

I 

•45 

.0177 

10 

1.46 

.0575 

2 

.56 

.032I 

II 

1.68 

.0661 

3 

.67 

.0264 

12 

1.8 

.0706 

4 

•79 

.0311 

13 

1. 91 

.0752 

5 

•9 

•03S4 

14  . 

2.Q2 

.0795 

6 

1. 01 

.0398 

15 

2.14 

.0843 

7 

I.I3 

.0441 

16 

2.25 

.0886 

8 

1.24 

.0488 

17 

2.84 

.112 

18 
19 

20 

21 
22 

23 
24 


Bfillimrtre. 

Inch. 

3.4 

.134 

3-95 

.156 

4-5 

,177 

51 

.201 

5.65 

.222 

6.3 

•244 

6.8 

.268 

For 

Ghalv€iiiized. 

Iron  "Wire. 

Number. 

MiUimetre. 

Incfa, 

Number. 

Millimetre. 

Incb. 

Number. 

I 

.6 

.0236 

9 

1.4 

•0551 

17 

2 

•7 

.0276 

10 

1.5 

.0591 

18 

3 

.8 

•0315 

II 

1.6 

.063 

19 

4 

•9 

•0354 

12 

1.8 

.0709 

20 

5 

I. 

•0394 

13 

2. 

.0787 

21 

6 

I.I 

•0433 

14 

2.2 

.0866 

22 

7 

1.2 

•0473 

IS 

2.4 

•0945 

23 

8 

1.3 

.0512 

16 

2.7 

.106 

Mililmetre. .    Incb. 


3- 

3-4 

39 

44 
4.9 

5-4 
S-9 


118 

134 

154 

173 

193 
213 

232 


F'or  "Wire   and    Sara. 


Mark.)  Millimetre.   Mark.  Millimetre 


P 
I 

2 

3 

4 
5 
6 


5 
6 

7 
8 

9 
10 

II 


7 
8 

9 
10 

II 

12 


12 

13 
14 

15 
16 

18 


Mark. 

Millimetre. 

13 

20 

H 

22 

15 
16 

24 
27 

17 
18 

30 
34 

Mark. 

Millimetre. 

Mark. 

« 
Millimetre. 

19 

39 

25 

70 

20 

44 

26 

76 

21 

49 

27 

82 

22 

54 

28 

88 

23 

59 

29 

94 

24 

64 

30 

100 

Th.iokn.es8  of  G-as  Fipes. 


Diameter. 


i-5to3 
4      "6 


ThickneM. 


.25 

•375 


Di(uneter. 


8  to  10 

"13 


12 


Thickness. 


.5 
.625 


Diameter. 


14*0  15 

16  "48 


Thickness. 

•75 
.875 


Copper  "Wire   Cord. 
Ciroixmrerenoe  and   Safe  Xjoad. 

_,     -  Inch.  Inch.  Inch.  Inch.   Inch.   Inch.  Ins.    Ins 

Circumference., 25    .375     .5    .625     .75        i    1.125    1.25 

Safe  load  m  Lbs 34       50    75     112    168    224       336     448 

Zinc— sheets. 
Thickness  and  "Weight  per  Square  Tfoot. 


Inch. 

.0311  =  10  OZ. 
/>457  =  13  oz. 


loch. 
.0534  =  14  OZ. 
.0611  =:  16  OZ. 


Inrh. 
.0686  =  18  OZ. 

.0761  ^  20  OZ. 


124    WBIG^T  AND  STBBirGTH  OV  WIBB^  IBOH,  BTO. 


WEIGHT  AND   STBENGTH    OP  WIRE,  IRON,  ETC. 

"W^eigUt   and   Strength,    of  "Warrington   Iron    Wire. 

Manufactttred  by  Inlands  Brothers.    (England.) 


Weight  per : 

too  Lineal  Feet 

^\t^amm» 

Breaking  Weight. 

BrMkln«p  Weight 

No. 

DfanM* 
tor. 

Tnch  ' 

Weight 
'    Lbs. 

An- 
nealed. 

Bright. 

No. 
Gauge. 

Diameter. 

Weight. 

An- 
nealed. 

Bright. 

Scuge. 

Lbt. 

LIHI, 

Inch. 

!'Lb.. 

LlM. 

Lbe. 

7/0^ 

^ 

64.46 

3490 

5233 

9 

.146 

55 

298 

447 

6/0 

1 

56.66 

3066 

4603 

10 

•133 

4-43 

247 

370 

5/^ 

4936 

2673 

4000 

10.5. 

.125 

403 

218 

327 

4/0 

42.53 

2303 

3457 

II 

.117 

3-53 

191 

288 

3/0 

% 

36.26 

1963 

2945 

12 

.1 

2.66 

145 

217 

2/0 

/!« 

30.46 

1653 

2473 

13 

.09 

2.1 

"3 

i6q 

0 

.326 

27.36 

I486 

2226 

14 

.079 

i6 

87 

130 

I 

•3 

233 

1257 

1885 

15 

.069 

1.23 

66 

99 

2 

.274 

19.36 

1046 

1572 

16 

.0625 

.96 

53 

77 

3 

•25 

16.13. 

«73 

1309 

17 

.053 

•73 

39 

59 

4 

.229 

13-53 

733 

1098 

18 

.047 

.56 

31 

46 

5 

.209 

11.26 

610 

913 

19 

.041 

.43 

23 

,  35 

6 

.191 

9.4 

509 

763 

20 

.036 

•33 

18 

27 

7 

.174 

7.8 

422 

633 

21 

.031  25 

.26 

14 

21 

8 

.159 

6.53 

353 

519 

22 

.028 

.2 

II 

16 

To  Compute  ILiengtli  of  lOO  Pounds  of  "Wire  of  a  Q-iveu 

I>ianieter. 

Rule. — Divide  following  numbers  by  square  of  diameter,  in  parts  of  an 
inch,  and  quotient  is  length  in  feet. 

37.68.  for  wrought  iron.      I       33.42  for  copper.       I      28    for  silver. 
37.45  for  steeL  |       34.41  for  brass.         |       15.3  for  gold. 

13.64  for  platinum. 


Window  Giass. 


rrhiolzness  and   l^eiglit  per   Square   lEToot. 


No. 


12 
z6 


Thickneas. 


Inch. 

•059 
.063 

.071 

.077 


Weight. 


Ox. 

12 

16 


No. 


17 

21 
24 


Thicknen. 

Inch. 

.083 

.091 

.1 

.III 


Weight. 


Oz. 

»7 

19 
21 

24 


No. 

ThickneM. 

Weight. 

26 

Inch. 
•"S 

Oi. 
a6 

36 
42 

.154 
.167 
.2 

36 
4a 

Teme  Plates. 
Teme  IHcUes — Are  of  iron  covered  with  an  amalgam  of  lead. 

'PHiokness  and.  "Weiglit  of  Gralvaxiized.  Slieet  IroA. 
Sheet  Ti  Feet  in  Width  by  from  6  tog  Feet  in  Length  {M,  Lejjferts). 

Weight 

per 
Sq.  Footi 


4 

Weight 

el 

Welffht 

£& 

Weight 

.& 

Weight 

Weight 

• 
0    M 

per 
Sq.  Foot. 

k 

per 
Sq.  Foot. 

No.' 

per 
8q  Foot. 

No. 

per 
Sq.  Foot. 

ij 

per 
Sq.  Foot. 

Ox. 

^1 
No. 

No. 

No. 

Ot, 

o«. 

Oi. 

No. 

29 

12 

26 

IS 

23 

20 

30 

27 

17 

36 

14 

28 

13 

25          16     1 

22 

22 

19 

30 

16 

42 

13 

27 

'4    1 

24 

18      I 

21 

24 

18 

35 

IS 

46 

12 

Os. 

53 
6x 

70 


WEIGHTS   OF   lEON,  STEEL,  COPPER,  ETC. 


121 


Wroixgh.t  Iron,  Steel,  Copper,,  and  Srass  TVire. 

BiiTninfffiam  Wire  Oav^e.     f.  full,  1.  light. 

Pbr  Lineal  Foot. 
Iron.   I 


No.  of 
Gauge. 


Diameter- 


f. 


Steel. 


Lbs. 

.546207 
.478  656 
.38266 
•30634 

.2385 
.213  738 

.177  765 

.150 107 

.128  26 

.109204 

.08586 

.072  146 

.058  046 

•047  583 
.038  16 

.031  485 

.023  916 

.018  256 

.013  728 

.011  196 

.008915 

.006363 

.004675 

.003246 

.002714 

.002078 

.001  656 

.001  283 

.00106 

.000  858  6 

.000  678  4 

.0005194 

.0004479 

.000  381 6 

.000265 

.000  214  7 

.0001696 

.0001299 

.00006625 

.0Q00424 


Lbs. 

•551  36 

.483 172 
.38627 

.30923 
.24075 

•215  755 
.179442 

.151  523 
.12947 

.110234 

.086667 

.072  827 

•058593 
.048  032 

.038  52 

.031  782 

.024  142 

.018  428 

.013  867 

.011  302 

.008999 

.006423 

.004719 

.003  277 

.002739 

.002097 

.001  672 

.001  295 

.001  070 

.0008667 

.0006848 

.0005243 

xx)0  452  I 

.000  385  2 

.0002675 

.000  216  7 

.000 171  2 

.000 131  I 

.00006688 

.0000428 


Copper. 


LbB. 

.623  913 
.546  752 

•437099 
.349921 

.272  43 

.244  146 

.203  054 

.171  461 

.146507 

.124  74 

.098075 

.08241 

.066303 

.054353 

•043589 
.035964 

.027  319 

.020  853 

.015692 

.012  789 

.010 183  . 

.007268 

.00534 

.003708 

•0031 

•002373 

.001  892 

.001  465 

.001  211 

.0009807 

.0007749 

.000  593  3 

.0005116 

•0004359 

.000302  7 

.000  245  2 

.000  193  7 

.000  148  3 

.000  075  68 

.000  048  43 


brass. 


Lba. 
.589286 
.516407 
.41284 

.3305 

.25731 
.230  596 

.191  785 

.161  945 

.138376 

.117817 

.092  632 

.077  836 

.062624 

.051  336 

.041  17 

.033968 

.025802 

.019696 

.014  821 

.012  079 

.009618 

.006864 

•005043 

.003502 

.002928 

.002241 

.001  787 

X)oi  384 

.001  144 
.000  926  3 
.000  731  9 
.0005604  . 
.000  483  2 
.000411  7 
.000  285  9 

.000  231  6 
.000  183 
.000  140  I 
.000071  48 
.000  045  74 


GDIiiokiiess   of  £*lates. 


No. 

Inch. 

No. 

Inch. 

I 

.3125 

9 

.15625 

3 

.28125 

10 

.140  625 

3 

•25 

II 

.125 

4 

•234375 

12 

.1125 

5 

.218  75 

13 

.1 

6 

.203  125 

14 

•0875 

7 

•1875 

IS 

.075 

8 

.171  87s 

16 

•0625 

No, 

Inch. 

No. 

Inch. 

17 

.05625 

25 

.02344 

18 

.OS 

26 

.021  875 

19 

•04375 

27 

.020  312 

20 

•0375 

28 

.018  75 

21 

.034375 

29 

.017  19 

22 

.031  25 

30 

.015  625 

23 

.028  125 

31 

.01406 

24 

.025 

33 

•0125 

122 


WIBS  GAU6SS; 


WIBE  GAUGES.  (S^nglisli.) 

Warrififfton  (Rylands  Brothers). 


No. 

Inch. 

No. 
0 

Inch. 

No. 

Inch. 

No. 
II 

Inch. 

No. 
17 

7/0 

K 

.326 

6 

.191 

.117 

6/0 

/^ 

I 

•3 

7 

.174 

12 

.1 

18 

5/0 

S 

2 

.274 

8 

.159 

13 

.09 

19 

4/0 

% 

3 

.25 

9 

.146 

14 

.079 

20 

3/0 

% 

4 

.229 

10 

•133 

15 

.069 

21 

2/0 

m 

5 

.209 

10.5 

.125 

16 

.0625 

22 

Sir  Joseph  Whittoorth  d:  Co,% 


Inch. 

No. 

Inch. 

No. 

Inch. 

No. 

Inch. 

No. 

.001 

14 

.014 

34 

.034 

85 

.085 

240 

.002 

15 

.015 

36 

.036 

90 

.09 

260 

.003 

16 

.016 

38 

.038 

95 

.09 

280 

.004 

17 

.017 

40 

.04 

100 

.1 

300 

.005 

18 

.018 

45 

.045 

no 

•II 

325 

.006 

19 

.019 

50 

•05 

120 

.12 

350 

.007 

2Q 

.02 

55 

•055 

135 

.135 

375 

.008 

22 

.022 

60 

.06 

150 

•15 

400 

.009 

24 

.024 

65 

.065 

165 

.165 

425 

.01 

26 

.026 

70 

.07 

180 

.18 

450 

.011 

28 

.028 

75 

.075 

200 

.2 

475 

.01:2 

30 

•03 

80 

.08 

220 

.22 

5CX) 

.013 

32 

.032 

Inch. 

.053 
.047 

.041 

.036 

•0315 
.028 


Inch. 

.24 
.26 
.28 

•3 

•325 

•35 

•375 

•4 

•425 

•45 

•475 

•5 


No. 

I 
2 

3 

4 

5 
6 

7 
8 

9 
10 

II 

12 

13 

Sir  Joseph  Whitworth,  in  1857,  introduced  a  Standard  Wire-Gauge,  rang- 
ing from  half  an  inch  to  a  thousandth,  and  comprising  62  measurements. 
It  commences  with  least  thickness,  and  increases  by  thousandths  of  an  inch 
up  to  half  an  inch.  Smallest  thickness,  y^itu  ^^  ^^  ^"^^^  ^^  ^^*  ^  '  ^^'  2 
is  Yinrff'  ^^^  ^  ^^i  increasing  up  to  No.  20  by  intervals  of  j^j^ ;  from 
No.  20  to  No.  40  by  yuito  '  *"^  from  No.  40  to  No.  100  by  yj^^y.  The 
thicknesses  are  designated  or  marked  by  their  respective  numbers  in  thou* 
sandths  of  an  inch. 

This  gauge  is  entering  into  general  use  in  England. 

Ne^w    Standard   'Wire   Grange   of  Grreat   Sritain, 

No.      Inch. 


No. 

Inch. 

No. 

Inch. 

No. 

loch. 

7/0 

.5 

8 

.160 

22 

.028 

6/0 

.464 

9 

.144 

23 

.024 

5/0 

•432 

10 

.128 

24 

.022 

4/0 

•4 

II 

.116 

25 

.02 

.1/0 

•372 

12 

^  .104 

26 

.018 

2/0 

•348 

13 

.092 

27 

.0164 

0 

•324 

14 

.08 

28 

.0148 

I 

.3 

15 

.072 

29 

.0136 

2 

.276 

16 

.064 

30 

.0124 

3 

.252 

17 

.056 

31 

.0116 

4 

.232 

18 

.048 

32 

.0108 

5 

.212 

19 

.04 

33 

.01 

6 

.192 

20 

.036 

34 

.0092 

7 

.176 

21 

.032 

35 

.0084 

36 

37 
38 

39 
40 

41 
42 

43 

44 

45 
46 

47 
48 

49 


.0076 

.cx)68 

.006 

.0052 

.cx>48 

.0044 

.004 

.0036 

.0032 

.0028 

.0024 

.002 

.0016 

.ooia 


No.  ^Q,  .001  inch. 


WEIGHTS   OF  MBTALS. 


127 


"*10l    N 

VI  (/I    M 

««J  Ol    » 

">J  tn  10 

Ot         (/I 

Ul         »^ 

cn       cn 

cn       ui 

NO  00  OOVJ  0\  Ov(/l  Ul  -^  CO  OJ  19  •-•  H 
W^MLn00(0O\  OJ^^MUiOOtO 
^CnM  *>JOtM  "^WllO  ««JU1 
Ot        Ul         Ul        Ul         Ln         Ul         Ul 


^  ui  u  M  vQ  b\^  io  b  ooo\io  u  0'<^utUJ  mnO'^uioj  ^no  o>4^  m  o  00  o\-^  S* 

J*  *■  Ui   X   O  «0   OOVJ    0\Ui  -^  W   M   g  \0   OO'ol    o»ui  ^  OJ   m   m        >o  »j   OvUi  ^  U)   M  r 
MM         O    00-^    OkUl   OOU)    N    H         \0    OO'vj  \0  Ul    O\0J  ^HM  Vl<sJmcnCUto 

0\  Ok  Ok  0\UI  UIUlUlUl^4k.^.^i^WU>WMI0  AKttOMMHMH  >h 

OOUl  U)   MkO<«4UiU>   M    00  Qv-^   13   C   00  Ok-^   hnO*>4UiU)    MkO«>14k.    M    Q    00  0\<K   Sf 
\0    00  0\UI  ^    M    13        NO  -"^    OkUl  .^k  U)    M         NO    00  OkUl  4^^    M    M         NO    00  OnUI  ••   N   ? 

OOUl 


3 


I 

M 


OO  00^  04  >a  >4    Ok  Ok  ON  OnUI  UlUtUl^'^.^WCOWWIOMMMM    M    M    M 

•    •    ••••••>•    ••••■    »•    ••••••    •••    ■•• 

UNO  Ok-^  M 


^  M  NO  Okio  M  00  OnW  o  qoui  m  o  ^ 

■^MMUINOMON       U)>40-*^00)-<ui 
OO-lk.         On  N   OO-^         Ok  M   00-K         On  M 


00  N    OkNO  CO    Ok  O 


00-». 


OnM  oo-^- 


OkCO    M    OOUl  CO    O  *<1  Ul 
^^    M4k    OOMUiO    to 
Ok  N    OO^K  Ok  »    00 


00  ccsa  ^  V)  VI  On  ON  Ok  ONUI  uiuiui.^4^-^cocowco  m  ha  m  io  m  m  m  m 

..    _  >4  4k    M  VO    ONtO    M    QOCn  CO    O  ^ 


Ul  M  NO  '^  4^  M  «o  ONCO  M   oocn  CO  O^cn   mnO"^-^  mno  Okio  (^ 

•K  >>!         .^    00  M  ^    00  H  Ul    00  M  Ul  NO    M 


_     _    _  OOUl  CO    O    OOCfl  s 

Ul  NO   M  en  NO   to    OnnO  M    Ok       U)  * 


to 


s 


GO 
H 

n 

H 


p  NO  NO  NO  00  00  po's)  "^  VI  Ok  ON  ON  pNUi  yiui-^-f>4»wuJWiO!OMMMH^  ^  ^ 

M  oocn  M  OOUl  io  NO  Ok  io  NO  ONoo  b  "^  OJ  b  *^  ^  ^  oo-^  ^  OOUl  M  Nb  Ul  io  NO  Ok  ST 
^•00  00v«  Ul  CO  M  o  00'>4  en  CO  M  o  op  ONCnAo  m  o  Oo  OkUi  co  10  O  00  ONCn  Co  r 

M^vaM^-^         Ul's]         CO    ONNO    10    ONVO  COUlOOIOUlOOIOUlOOM4kv4         4k 


10     10     M     H     M 


P  NO  NO  O  00  00  OOVI  v)  N4  v4  On  ON  OkUl  UlUl-»>.4>^.»>.COCOCO  10 

*••»•_•••    ■••••■■■•■••■••••    -•■ 

M  NO  Ul 
NO  vo  en  CO    10  VO 


19    OOUl   M  NO   On  to  NO    OkW   0    ONCO    0^1^    h  •^J  ^    w   oOUi   m    OOUi 
"         "  ^  "     CnO  00  on*,  to  " 


oova  -^  CO  M  NO  VI  Ul  .fk 


00>J  ^  CO     H 


to  kO     ONO* 
00  ON.^   P 


90 

o 


«*   r«    ob 

K     ON 


M    mmOOnONONOOOOO  OOvl  vj  vj    Qv  OkCn  UlUl^.^.^COU>    to   »}   to 
OO*   b  >»  CO  NO   Ok  «   open  .*«  "^  W   p  .On  M_nO  Ui  w   504^  O   OnCO  nO  Cn  (0 


CO  Onn: 


M  cn  v« 

NO 


4fc.  VI 


O  CO   OnnO 

M     M  U>    to 


00^   m  "»J 


MCn    00H^N4    OCOUInO    (OUl    OOM^vl    pw> 
»3COCO-»>-*»<^CnCn    0\0\  Onvo  v|    00  00  OONO  nO 


mmmOOOnONOOOOO  OOvi  V]  •^    Ok  ONUI  UlUi-^-K4^COCOtOMlOMMM         t^ 

•  ••••••■••••••••■•a    •••••••■••••    9^ 

O  cn  M  v|  4k   O   OkCO  NO  Ul   M    00.^   Q  v|  eo  NO  Ul   to   004k   o  <^  co  no  On  10    00-^   H  v]  * 
COUlNOM-^>v]         COOkOOM>.>^  lOUlOO       4kV4k5i,)tn00       IO    OkNO   M  Ul 

COCOMUmmPOOnONOOOOO  OOvO  VI    Ok  OkUl  UlUl-^^COCOMtOWMM         t" 

Ul    M    On  M    00.^  NO  Ul    k4  V]    M    00^    O    gkMv|C0NO4^   QOklO    QpCO  NO  Ui    m   Ok  iO    00  ? 
10         VI  Ut  CO  00  ONCO    M  NO  v|  ^    N    p    oocn  W    M  kO    Ok-^'    to    p  vj  cn  u>    HI    00  ON-^  • 

OOUl  00  Ok  00  Ok*   M    00  On-*   mnO"»J*    tONO<^*    10  NO  VI  Ul 

COCOMtOMMMOP^OMOO  0OV4  v4   Ok  OnUi  UiUi**OOOOMIO»Omh         _ 

ONM>4COkO*  O   ONtOvocokOCn  O   Qnio  OOCO  no  Ul  m   On  to   00*  no  Cn  m  v|   m   00  o* 
OOUl  CO         V4  Ul  CO  OQUI  CO  OOUi   tO  OOUI  CO         vj  Cn  CO  OOUl    10  OOUl  S* 

Ok  ONUI  Ul**(OCOtO»OMMOpNOOO  OOVl  VI    Ok  ONCn  Ui**COCOI0»)iiMt-) 

•  •■••••••■•••■■••■•a  aaa*#*aa«*a  *^ 

«0  CO  OOCO  V]  io>j  10  OkH  onOUi  0CnNO*NOU)  ooco  ooiovi  (0  OkM  OkMcnOg 
«4  *  M   oocn  CO        "^J  4k   to  NO  OkOO  p  vl  *   N  nO   0\U)   Q   OOUl  10  NO    On*    m    oocn  • 

*    ONOOM   10*   ONOO        Ok*    ON  00       10  UJ   ON 


X5' 

m 


1^  H5 
1^ 


ONUI  ui**coco  10  to  M  M  o  0<pNO  oovo  V]  Ok  ONUI  cn  *  *  (O  CO  to  t) 


*NO 
v|  * 


OOCO    00  to  VI 
OC*  M   OO'n 


K    Oki-i    OnhUi    OUinO*nOCO    OOUO  v|    ro  vj    h    on  m  Cn 
to  NO    OtCO         V4  CO         VI  *  00*    H    OOUl    (0  NO  Ul    ta  NO 


M     M     t[^ 


^' 


«*  00* 

W       ON 

—  s 

CO  n 
Sri   u 

2   "^ 

o  • 

It 


to 
cn 

o 
to 
X 


0 


to 


CO 

N 


CO 

61  ^ 

I.  0 

p. 
m 

rf- 


^vpO    S>va-3    3nu;u1*uIw    K    M    m    P    p"popOv|    pNpNUlUl*WW    M    m    m 

wen  ocovi  M*  oetoenNOCo  onQ*  ooi-ien  ooto  onno  (ovi  p*  oomc/ino  10  c- 

00  00  M    M  ^         OOCO    wv|*.HV|*.Mva4k        v|4>.p<s|CO          OkCO   p  VI  CO          On  ." 

M         *         VI         NOOnScoUi         VI 

00 

^5vS5>'?-3pN<?uI**w55Mppkopopo-^'^pk<nui*we*»M 

^vj    M*    ODIOUiNOeO    OkQCOvl   M*00t}CnNO    to    OkOCOVi    M^    OOHUikO    10   • 
VI  CO  NO  UI  M  00*        ONCO  NO  Ul  »a  00*       vi  co  o  cn  t)  00*        OkCO  NO  en  H  00  * 

(S    jo    M    M    p  NO  0    povl  VI    ONUI  *-f^4^tOHMpNppo  povl    ON«n  Ul  *  UJ    to    H    H    i_ 

'o\*h  k<*viNb  H*vi  0  toenvi  ocoui  oopeo  Okooi^o*  onno  '*-  *  '<yifh  to  *  s* 
Ok  to  00*       VI  to  NO  *  •-•  ONCO  NOUl  MviuiNOen  MvicokOCn  MvieoNOcn  mvi?* 
*"      "^                                                                       eo  M  *  eo  Ul  *  ON  ON  OOVl  OONO 

CO 

>0  OJ    jo    M    p    $$  NO    pOvJ  VI    OkUl  **OJMMppNppO  povi    OkUl  Ul  *  W    M    M    M    |^ 

Oobwen  OOOUO   ONOOMCO    OnOOhCO    onno    )-<  *    ONkO   M^<o4\o    io*V|Nb    io*   • 
On  M  •S  00  Oo*       cn        OktoviooNOen        Onhvioo  00*       cn       v«  10  oouj  ^ 

• 

73 


M 

M 

r 


Ui 

M 
H 


128 


WEIGHTS   OP   MBTAXS. 


0 

u 

M 


H 
M 
H 
QQ 


0S 


moo       «  «noo       ^  »noo       «  moo 
«  fo  m^o  t^oo       w  «  fo  ir>vo  ts.oo 


«  moo       ^  moo 
w  «  CO  m<o  t^oo 


moo       N 
«  fo  mo 


moo 

tN.00 


«  ^o 00  H  fomb^ON"^  fo moo 
^^•♦i^rmmmm  m\o  o  vo  <o 


m  -^  m>o  t>.  o^  O  H 


t^oo 
mvo 


t^  o^  o  «  « 


m  ts.00  c« 
CO  •♦  mvo  00 


M     fO 

OvO 


mvo  t«» 


•♦vO  00  O  «  •♦vO   Ov  M 

H     M     M    M     M     (4 


ro  m  ts.  o\  M  fT>  moo  o  «  *vo  oo  O  «  •♦r^O^•H  fo^-^ 
«««eimcr)roc*)  ^  •♦  '^  ■^  <^  tn  m  tn  tn  mvo  vo  vo  so 


I 


fo  ■♦  mvo  00 
oo  t>iVO  m  -^ 


CO  « 


CO  •<*-vO  vO  00   ON 
M    O    ONOO    t^VO  VO 


comt^Ovw  Pomts.Ovw 

M  M  H  M  H  N 


^vo  00 

«  «  « 


«  CO  ^VO  VO  00       N 

m  ^  CO  «  M  ^   ONOO 

O  N  -4-vO  00  d  M 
CO  fO  fO  CO  CO  ^  ^ 


CO  ^VO  VO  00  Ov 

Psvo  m  *  CO  «  « 
•'♦•*'  'tf-  m  m  ««  m  mvO 


00  rxvo  m  ^ 
CO  m  i^  6v  »< 


CO  «  H   ovoo 
CO  m  ti.  Ovd  ei 


ts.vo  m  *  fo  M  M   ovoo  txvo  m  •♦  CO  «  M 

■♦vd  oo  d  C4  4-vd  00  Ov 
M«««c««mcnfOfOfOco 


^vp  op  d  C4  '•■vd  ooovM  fO'P*>dv»i«*>m  t^ofi  d 


OvOO 

<^  m  m  m  m  mv 


QQ 


cfi 


M 

H 

m 

is 

n    2 

g  s 

O 
M 


.  •+  M  00  m  «  Ovvo  f»      t>.  -^  M  00  m  «  ovo  ro      ts.  ■<♦•  w  oo  m  «  owo  co      t>.  ■* 

jo  CO  ^h^  00  d  w  CO  m  t«.od  d  «  »*>  "O  t>oo  d  «  •^mti.ONd  w  ^mt^dvHci  •* 
J  MMMMMMSeieic«cic«rocorococom^^'«--vt-'4-<«-mmm 


00  t^vo  m  ■♦  CO  «  M 
jcoo  (^■♦moo  met 


ONOO 

Ov  m  M 


ovS 


m  ^ 

CO  o 


CO  W    M 
t>.  ^  hOO 


Ovoo  t^vo  m  ^  CO  N  M       •<»'CO 
■♦  H  00  m  «  Ovvo  CO  o  r^  CO  o 


(O  mvo  00  O  M  CO  m<o  oo  d  m  co  m  t^oo  O  e«  ro  u^  t>>.oo  o  ci 

HMiiMMMCIMNCICIMfOCOCOCOCOrO'^^ 


CO  m  ts.  ovO  w  * 
^  *  •♦  ■♦  m  m  m 


«    

»^  /TV    M 


ts.VO 

Ov  ■* 


m 

Ov 


«  •«-  m  ts.op 


CO    M 

Ov* 

d 


ov  t^vO   m  ^  CO  N         CNOO  VO 
ov  fooo  rooo  fooo  cooo  «  t^  « 

H  fo  ^vo  r^  ov  d  «  **^  mvo  00 
HMMHMMCTCinnNci 


m  CO  N  M 


Ov  t>.vo  m  'i-  CO  « 

t>HHVO     MVO     MVO     MVO 

Ov  M  «  -4-  m  t««o6  d  M  CO  ■^vd  t»> 
«  cocococoroco-*'*'*'*'*-^ 


r^  m  •♦ 

mcoMOvtxmo     oovo 
o-^  o^  cooo  cooo  CO  tx  « 

c«  <*  m  t«.oo  O  w  ro  "tf-vo 


•♦«  gvt^mcoMoovo 
t>.e«vo  MVO  MVO  ~    ~ 


I*,  dvd 
M  M  n 


.  9 
CO  mvdod 

e<    M   t4    04 


m  o 


«    OVtx««COM00VO    ^« 

m  Ov  ■♦  Ov  •♦  ON  cooo  cooo 


CO 


Ov  M  «  CO  mvo  00  Ov  M  N  •*  m  r«. 
«  cocoforofococo^'*'*-'*'* 


VO  CO     00  m  CO     00 
;  moo  !-•  covo  Ov «  t 


m  CO     00  >o  fo     00 
tNi  O  fo  moo  M  ■♦vo 


m  CO     00  m  CO     oo 
Ov  N  m  ts.  o  Onvo  00 


m  CO     00  m  CO 
M  ^  t>.  Ok «  moo 


«  CO  mvo  t^oo  o  w  «  *  mvo 


t>H  On  O 

M     M    « 


M 


PI 


mvo  00 

N  «   M 


Ov  O  M  ro  ■^  mvo  00  Ov  O 
«  cocococococof*)ro-* 


•*  M  00  m 

CO  O  VO    CO  M  00 

moo  O  covo  00 


m  M  00 
M  •♦vo 


m  M  00 
ov  N 


■*•  !>. 


m  M  ho  m  M  00 
O  C4  moo  o 


M  fo  mvo  tooo  o  «  «  p^  mvo 


to  Ov  o  M 

M    M    01    « 


mwoo  m«oo  mej 
CO  '♦VO  Ov  «  •<■  1^  O 

O    M    N    M    M 


Ovvo   « 
e<  moo 


Ovvo 

O  fn 


O   K   w   ^  «OVO   to  Ov  o 
COCOCOCOfOCOCOCO'^ 


S^    VO     H 
VO 


i 


00   CQ 
sf 


o 


•o 


c«avmM00'4-      t^.coovmMts.'*     vofoovmwoo-*      ts.foovmM(>.-* 
jMM«f*)cO'^m  mvo  VO  tooo  ooov      oHMeicoco'*-m  mvo  vo  tooo  oo  ov 

J  ci  CO  •♦  v\yc  tI.od  dv  d  «  «  «  ■*  "rt  t^oo  dv  d  M  ei  CO  ■♦  mvo  i^od  on  d  jj,  ci  "j 


e««N«Nei««««cocococo 


H 
K 
H 

i 

OS 


.  M  S  n"oo  ^  Ov  ?     VO  «  to.  COOO  •♦      m  M  VO  N  00  COOO  ■♦      m  M  to  «  Ov  m 
_g  MM  ««  fofo^m  mvo  vo  toMoo  ovOvOOm  h  «  ejco-^-^m  mvo  vo  tooo 

J  «  CO  -^  ^"O  «^o6   On  d   w  «  CO  ■<*•  mvo  ti.  dv  d  M  «   CO  •♦  VTi^O   r^oo  on  d  ji  «  ffj 
«  n  »-.  -T    i^*.*  row  '^jj^^^^^^^i^f^tipi^e^fjejjieieifococofo 

.  N  r^  cooo  •♦      mMt«.cioocoo"*-     vowto  cooo  '♦■OvmM  toMOO  f^Ov:*"^ 
^  ONOO  c»  to  to.  r-»vo  vomm-^TfrococoenN  m  mO  o  f>o  onoo  oo  t>.  tov5  vo  vo 

J  M*  «  CO  -^  mvo  t^od  o^  ^  M  ej  CO  ^  mv©  rj  oo  g^  g  5  jj  g  jj>  j  g*^  jj-'g  ^  ^ 

\n      m      m      >n      «n      mvoMjoMvo       m_  >noo  >o      "f*  _  "^  _  IC  _ 
.  Ovoo  00   to  toVO  vo   m  m  ^  ■♦  CO  C»>ai   M   m   m   O         Ov  Ovoo  00   to  tovO  ^   '^  "^  ON  ■♦ 

*  M  ei  fo  -4-  mvo  t^od  on  d  m  ci  co%  \h^  i^  oo  ov  On  d  m  «  co  4-  ^"^  t^oo  pv  d 

J    M    CT    m  -^  «l>fc^    io,«/    "-'J5„„>^„„„MMMM««««««W««NCO 

»r>mm«nmmm'««o»nmm      m__  *o  ^  m 
,  to  m  -♦  «  M  c^oo  vo  m  ro  M  O  Ov  tovo  ■♦com     oot^m-4>e4M  ovoo  vo  m  co  « 

JO  M  ci  fn  -♦  m  mvo  r.od  dv  d  m  m  «  co  <♦  mo  to  ti.oo  ^  2  2  2  2  JT  i"  X^'S  ST 

J  MMMMMMMMMMMMflClvVv^vlvVvlvIC^ 


•<*■  M     ♦ 
ON  COOO    ^  ^»  M 


ON 

m 


00 


CO 

Ov  ♦OO    CO  t*.  W  NO    M    m         ^         cooo  WtoMVQ     .'OOv'f 

^  _  e*  M  ovoo  o  m  CO  «  O  Ov  tsO  ■♦  N  m  ovoo  vo  m  co  m  O 

J  M*  pi  c<j  + 1^  mvo  ti.oo'  o*  2  ^  j;  2  IT  M  M 'S  *H  Ji**S  2" «  «  ei  N  5*  ef  «*"§«■ 


^  vO  m  CO  e*  O  On  toO 


m 


m      m 
w  m  t*. 


m      m 
M  m  io. 


m       m 
«  m  to. 


m      m 
M  m  to 


vt      m 

c«   «A  to 


m      m 
et  m  t> 


m      m 
c*  m  to 


«  (4  fK"  mMtoco     oe»oomMi».co     soetoomMt^co     voe«oomMtoco 
3  2^  «  J?)  P; !?  inmvo  o  i^oooo  Ov     O  «  ►^  «  «?'?"t'?'?'*i^  *^'^"i  ?* 


WEIGHTS   OF   METALS. 


125 


Wrought  Iron  and  Steel. 

'^Veiglits    of    Square    [Rolled.    Iron    and.    Steel, 

From  .125  to  10  Inches,    one  foot  in  length. 


Iron^  485  lbs.      Steely  489.6  lbs,      pkr  cube  foot. 


SiDK. 

Inc. 
.125 

.1875 
.25 

.3125 

.375 

•4375 

.5 

.5625 

.625 

.6875 

.75 
.8125 

.875 

.9375 
[ 

.125 
.25 
•375 

.5 

.5625 

•75 
875 

2 

.125 
•25 

•375 

•5 
.625 


Iron. 

Stksl. 

SiDK. 

Irox. 

Stekl. 

Si  OK. 

Ikox. 

LiM. 

Lbs. 

Ini. 

Lbs. 

Lbs. 

Ins. 

Lbs. 

.053 

.053 

2-75 

25.47 

25.71 

6.25 

131.6 

.118 

•     .119 

.875 

27.84 

28.1 

.375 

137 

.21 

.212 

3 

30-31 

30:6 

.5 

142.3 

•329 

'333 

.125 

32.89 

3.3-2 

.625 

147.9 

•474 

.478 

•25 

35-57 

3592 

.75 

153.5 

.645 

.651 

•375 

38.57 

38.73 

•875 

159.2 

.812 

.85 

•5 

41.26 

41.65 

7 

165 

1.066 

1.076 

.625 

44.26 

44.68 

.125 

171 

1.316 

1.328 

•75 

47-37 

47.82 

.25 

177 

1.592 

1.608 

•875 

50.37 

51.05 

•175 

183.2 

1-895 

1-9^3 

4 

53-89 

54-4 

.5 

189.5 

2.223 

2.245 

.125 

57,31 

57-85 

.625 

195.8 

2-579 

2.608 

•25 

60.84 

61.41 

•75 

202.3 

'    2.96 

2.989 

•375 

64.17 

65.08 

•875 

208.9 

3368 

34 

.5 

68.2 

68.85 

8 

215.6 

4263 

4303 

.625 

72.05 

72.73 

.125 

222.4 

5263 

5-312 

•75 

75-99 

76.71 

•25 

229.3 

6.368 

6.428 

.875 

80.05 

80.81 

•375 

236 

7578 

7-65 

5 

84.20 

85 

•5 

243-4 

8.893 

8.978 

.125 

,88.47 

893 

.625 

250.6 

10.31 

10.41 

.25 

92.83 

93.72 

•75 

257-9 

11.84 

"•95 

•375 

97-31 

98.23 

.875 

265.3 

1337 

13.6 

•5 

101.9 

1028 

9 

272.8 

15.21 

15-35 

.625 

106.6 

107.6 

.25 

288.2 

17.08 

17.22     . 

•75 

111.4 

112.4 

.5 

304 

19 

19.18     1 

.875 

116.3 

117.4 

•75 

320.2 

21.05 

21.25 

6 

121.3 

122.4 

•875 

328.6 

23.21 

2343  i 

.125 

— 

127.6 

10 

336.8 

Stbrl. 


Lbs.    . 
132.8 
138.2 
143.6 
149.2 

154-9 
160.8 

166.6 

172.6 

178.7 

f84.9 

191-3 
197.7 

204.2 

210.8 

217.6 

224.5 

231-4 

238.5 
245.6 

252.9 

260.3 

267.9 

2754 
290.9 

306.8 

323^2 

3316 

340 


Weiglit   or  ^xigle   Iron, 

From  1.25  fo  4.5  Inches,    one  foot  in  length. 

Thickness  meaaui^  in  Middle  of  each  Side, 


L  E<i|-AL  SID8S. 
Tkiek 


Sides 


fns. 
1.25X1.25 

1.5    X15 

>.75Xi  75 

2  X2 

2.25  X  2.25 
2.5  X2.5 

3  X3 
3-5  X3  5 

4  X4 
45  X4-5 
4-5  X4-S 


i. 

Weljcht 

L  UxK 

Side*. 

Lbs. 

Ins. 

1-5 

3    X2.5 

^ 

3^5X3 

3     1 

3.5x3 

35 

4    X3 

4.5  ; 

4    X3^5 

5 

4    X3  5 

7 

45x3 

9 

5    X3 

125 

5    X3 

14 

5.5X3.5 

16 

5-5x5.5 

JAL  Si 

rhick- 

DSS. 

oess. 

Weljfht. 

Inch. 

Lbs. 

375 

6.25 

4375 

7.75 

4375 

9.6 

5 

II 

5 

"-5 

5 

"•75 

5 

"75 

5 

1265 

5625 

137 

5 

14-5 

5625 

156 

Inch. 

1875 

1875 

25 

35 

3125 

3125 

375 

4375 

5 

5 

5625 

*  II1U  columD  ifivei  d«ptb  of  web  added  to  the  tbicko«sa  of  tmae  or  fluigc. 

L* 


L  Unequal  SiDsa 

Thick- 

Sides. 

ness. 

Weight. 

Ins. 

Inch. 

Lbs. 

6    X3.5 

.625 

18 

6    X4.5 

.625 

20 

T 

2    X2  375* 

.375 

5.5 

25x2.875 

•375 

6.5 

35x3.5 

•4375 

10.5 

4    X3.5    { 

•4375 
•75 

13 

4    X3.5 

.75 

13.5 

128 


WBIOHTS   OF   HETAI^. 


« 


1» 


H 
H 

H 
OQ 


O 


moo       M 


moo 
t>.oo 


•♦vo  CO   O  «   -"f 


•*  moo       «  moo       «  moo       ^  moo       ^  moo       «  moo 
M  c)  ro  mo  t^oo       m  m  ro  m>o  tooo       **  n  t*i  mso  t<>oo 

ts.d\w  tnmrvd\M  ^vo  06  <5  ci  ^<o  06  w  mmi^o*'*  «*>  moo 
w  M  w  «  N  «  «  cnroMfo^'^^^i^mmmm  m\o  vo  ^o  o 


■♦  m      M  N       H  « 
ro  ■♦  mo  tN  o^  O  « 


ro  ■♦vO 

MM'* 


•♦vO  00  O  «  ■♦vO 


M    « 


ts.00  o\      «  m  •♦ 
m\o  ts>  o^  O  iH  M 

m\n  t>^0\**  fn  moo  d  « 


m  i>.oo  o» 
fo  ^  m\o  00 


mvo  t>. 


'<f  '<■  ^  m  m  m  m  mo  000 


OQ 


s 


.  ro  '♦^  mo  00 

•  00  tN.o  m  -^ 
•o    •     •     •     •    • 

h3  fo  m  t>H  o\  m 


■<♦•  ro  « 

fO  m  ts.  d\  w 

M     H     M    M    CI 


ro  •<*-o  o  00  g» 
M  o  O\oo  ts.o  o 
*    ■    •    ■    - 

N    ■♦O  00 
M    M    «    « 


«    fO  ^O  O  00 
m  ■♦  CO  «    m    O 

•  •  •  •  •         J  • 

0  w  •♦ooo  0  « 
CO  to  CO  ro  fO  ♦  ^ 


OnOO 


ro  •♦O  O  00   O^ 
t^O  m  ^  CO  «  « 


^mr»o\»<  romt>HOx»< 
■^■^■^■^inviVMn  mo 


.  00  ts.o  m  '*■  ro  «  M       osoo 

•S  romt^OMH  fomi^O\d  ~ 

1^ 


M     M     H     M    ei 


ts.o  m  *  ro  «  M       onoo 

4-0  06  d  C4  •^•o  00  o>  M 
«  «  «  roforOforoco^ 


t>.o  m  ^  ro  «  w       Ovoo 

ro  m  t*.  On  ♦<  ro  m  t>.o6  Q 
♦  ^^■♦mmmto  mo 


0) 
OQ 

0   I 


*9 

g 

H 
OQ 

Q 


8 


M  00  m  c»  o^o 
"    ■    *  d  w    ■ 


ro 


tv  V  M  00  m  «  o\0  ro      tH  •♦  M  00  m  «  ovo  ro      r>.  •♦ 


^  CO  mo  00 


ro  m  t^oo  O 

M    M     H     M    01 


CO  m  rNOO 
«  c«  «  n 


O  cj  "♦mtvoo  « 
rorororororo^^ 


m  !>«.  o^  «  «  ■* 


00  t>NO  m  •♦  ro  «  M 
^•roo  t^^MOO  mw  On 

■^  <o  i/So  00  d  «  ro  mo  06  0 

M  mmmhhmC< 


0«o  r>.o  m  ■♦  ro  «  M       O\oo  t^.o  m  ■*  rp  «  g       ^eg 
m  «  o^o  roO  r«.'*HOO  •*moo  m«  0\0  ro  O  1^  <*>  O 


ro  m  h»oo 
ct  ct  M  « 


O  w  CO  «r>  ts.oo  O 
ro  ro  ro  ro  CO  ro  ^ 


« 


ro  m  tx  OnO  «  ■♦ 
■^  ■^  ■^  ^  in  ifi  tn 


O 


o         « 


n1 

o    Da 

^  OQ 


t^o  >n  *  ro  «       OS  fr»o  m  ^  ro  « 
On  •*  0\  •♦  OS  ■♦  OS  rooo   tooo   rooo   rooo 


C^oo  O 


m  to  «  M 


OS  t^o  u>  ■*  ro  « 
ts.  H  o  ii  o  •-•  o  hO 


d  ■«■  m  r^oo  o  -*  tn  ■^\o 


«^  OS  o 

M    M    « 


ro  mo  00 
c«  c<  N  C( 


On  x    N    •♦  m  t«.00    O 

«  rorororoforo'* 


M   CO  ■♦o 


«>.  m  ■♦ 

mfOMOst>.mro     ooo'*'«    _    - 

OS  '<■  OS  rooo  rooo  ror>.cit«»cio*"0 

M  ■4-  m  ts,o6  d  w  ro  -^o  rs.  On  d  ci  ro  mso'  06 

MMHIHMMrHMMMrtetM 


On  t«.  m  ro  •<  00  o 

-     M  O    O 


m  o 


«  ONtx-mrOMOOO 
m  OS  ■*  On  ■♦  Os  rooo 


rooo 


ro 


OS  *<  «  CO  mo  00  On  M 
CT  rocorocororofo^ 


■^  m  »». 


—  W 


0 


X 

n 

m 

H 

:£  o  K 


o  ro     00  m  ro     00 
;  moo  H  roo  os «  •* 


m  ro     00  m  ro     00 
to  O    <*>  "100    M   ■♦o 


m  ro     00  m  ro 
••  t«s  OS  «  moo 


c«  ro  mo  bnoo  o  *<  «  ■♦  mo  tx  os  o  « 

MMWMMMXMPICI 


m  ro     00  m  ro     00 
On  C4  m  to  0  OnO  00 

CI  ■4'  th^  00  On  d  M  ro  ■*■  mo  00  ds  0 
CI  n  N  «  N  ei  rorororororocoro^ 


■*•  MOO 

ro  00 
mco  o 


CO  M  00  m  ix  00 
roo  00  H  ■♦o 


m  M  00 
OS «  ■♦ 


m  M  (0,  m  M  00 
to  O  N  moo  O 


mwoomwoomei 
ro  -^o  OS  «  •*■  t<»  0 


OnO  «  Q\\o 
«  moo  o  CO 


M   ro  mo   toOO   O   «   «   f>  "^O   to  On 


^5 


M 


mo 


toOO 

M    f« 


O  M  «  *  mo  to  ctn  o 
rofororororororo'* 


—  lO 


•J 
H 

cn 


S5 

o 
0: 


iQ 


N 


osmMoo-^      ^ofooN«'»w^o^ 
M  «  ro  ro  •♦  m  mo  O  tooo  00  os 


O  ro  On  m  «  00 
O  «  ►*  « 


.       tocooNmMto-"*- 

ro  ro  '♦■  m  mo  o  tooo  00  On 


«  ro  •*■  mo  pooo  On  O  **  «  ro  t*-  m  tooo 


OsO    w 
M    N    « 


ro  ■* 
c<   N 


mo 
CI   c< 


toOO 
M    Ci 


On  O   M   «   ■♦ 
N  ro  ro  CO  CO 


.   M  O    cToO  ^  On  5       O    C«    to  rOOO    •♦         m  m  NO    «  00    rOOO    ■><■         m  M    to  «    OS  m 

_§  MM  ««  cofo-*m  mo  otoMooosONOOi-iM»c<co-*--N*-m  m*©  no  tooo 

■    '    *    ■  CO  •«•■  mNO  t^  ds  d  M  «  p  ■^  mNO  1^00  6n  d  «  w  c^ 

HMMMHMeic«c<c«c<c<e«c«e«cirororoco 


•J  e< 


CO  ro  •♦  m  mo  o 
ro  ■*■  tnso  »»-o6  ds  d  M  ei 


H 
K 
H 

m 

i 


.  N  to  rooo  ■♦      mMtoNooroo"*-     o«  to  rooo  :*•  2' VD  2.±*-S!  *  J?  9*.?  « 
i  OS30  00  to  to  toO  o  mm■♦■^^rorofO««  m  m  o  O  OsOs  osoo  oo  to  to\6  no  sO 

J  M  ci  ro  -♦  *ny6  |i»o6  «>  ^  jj  ji  <o  ^  mvo  ij  oo  g^  §  jj  jj  g  jj>  jj"  jj^'g  Jj-*8  g"  ^ 
m      m      m      «n      »n      mOMmMvo       »n_  moo  m      ]£}  ^  "2  ^]Q  _^ 

.  osoo  00    to  too  O   m  m  ^  ■♦  ro  trim   «    m    m    O         On  OnOO  00    to  too  O   m  m  OS  ■♦ 

s^cico'i- mNO  1^.00  ONdMci  jj>2"t^'2  jj*2  S'S' 8  5  ««?«'««?■'«  ^^ 

irt\nm\ntnviinin*nmvyviinvi'>n^^ 
.  to  m  -^  N  M  osoo  o  m  ro  «  O  OS  loO  ■♦com      ootom'^ciM  osoo  o  m  ro  « 

5  m  fi  ro  ^  «o  mNO  i;.od  o^^jjn2Jj>;f;j^jr*J'°2g'^sggsrcf  «"§  « 


■*  M  ^  On     00  ro  _ 

.  On  rooo   -♦  to  M  m        ■♦On  ■♦CO   rO  !>.  «  O   m 
•  NO  m  CO  «  O  OS  too  •*  c«  M  Osoo  o  m  ro  « 


m      ^      rooo  «  to  M  so       m  on  ♦ 

O    0>  toO    •♦Mm    OnOO  O    m  rO  m    Q 

J  M*  ci  c»i  ^  m  rnxd  t^oo"  <>  g  ^  ;f  «  jj*  j  jj^'g  *g  jj-^g  *  «  «  ci  «  5*  «  «  ^  «" 


a 


m 

IT)  to 


m      m 
CI  m  to 


m      m 
«  m  to 


m      m 
«  m  to 


m      m 
«  m  r^ 


m      m 

c«   •A  to 


m      m 
ct  m  to. 


m      m 
«  m  to 


•;  NM  mMtoro     ONOOmMtoro     soNOomMtoro     O«oo  m  m  to  co 
3  2  m  «  ro  P>  '«i-  m  mo  o  tooo  ooon      0««Nf^ro^m  mo  o  t^oo  oo  ov 


WEIGHTS   OF   METALS. 


125 


Wrought  Iron  akd  Steel. 

Weigh. ts    of    Sqnare    Rolled.    Iron.    and.    Steely 

From  .125  to  10  Inches,    one  foot  in  i.ength. 

Irony  485  lbs.      Steely  489.6  lbs.      pkr  cube  foot. 


fliDR. 


lac. 
.125 

.1875 

.25 

.3125 

.375 

.4375 

•s 

.5625 

.625 

.6875 

.75 
.8125 

.87s 

•9375 
[ 
.125 

.25 
•375 
•5 
.5625 

'75 

875 
2 
.125 

•25 

.375 

•5 
•625 


Ibon. 

Stkrl. 

SlDK. 

Iro.v. 

Stskl. 

SlDK. 

Iitox. 

Stkrl. 

Lbs. 

LbB. 

Ins. 

Lba. 

Lb0. 

Ins. 

Lbs. 

Lbs. 

.053 

.053 

2.75 

2547 

25.71 

6.25 

I3I.6 

132.8 

.118 

•     .119 

.875 

27.84 

28.1 

■375 

137 

138.2 

,ii 

.212 

3 

3031 

30:6 

.5 

142.3 

143.6 

.329 

•333 

.125 

32.89 

33-2 

.625 

147.9 

149.2 

.474 

.478 

•25 

35-57 

3592 

•75 

i53'5 

154.9 

.645 

.651 

•375 

38.57 

38.73 

.875 

159.2 

160.8 

.8X2 

.85 

•5 

41.26 

41.65 

7 

165 

166.6 

1.066 

1.076 

.625 

44.26 

44.68 

.125 

171 

172.6 

1.316 

1.328 

•75 

47^37 

47.82 

•25 

177 

178.7 

1.592 

1.608 

•875 

50.37 

51-05 

.175 

183.2 

184.9 

1.895 

1-913 

4 

5389 

54-4 

.5 

189.5 

19T.3 

2.223 

2.245 

.125 

57,31 

57.85 

.625 

195.8 

197.7 

2.579 

2.608 

.25 

60.84 

61.41 

•75 

202.3 

204.2 

•    2.96 

2.989 

•375 

64.17 

65.08 

•875 

208.9 

210.8 

3368 

3-4 

•5 

68.2 

68.85 

8 

215.6 

217.6 

4.263 

4303 

.625 

72.05 

72.73 

.125 

222.4 

224.5 

5.263 

5.312 

•75 

75.99 

76.71 

•25 

229.3 

231.4 

6.368 

6.428 

.875 

80.05 

80.81 

•375 

236 

238.5 

7578 

765 

5 

84.20 

85 

•5 

243.4 

245-6 

8.893 

8.978 

.125 

88.47 

893 

.625 

250.6 

252.9 

10.31 

10.41 

.25 

92.83 

93.72 

•75 

257-9 

260.3 

11-84 

"•95 

•375 

97.31 

98.23 

.875 

265.3 

267.9 

1337 

13.6 

.5 

101.9 

1028 

9 

272.8 

275.4 

15.21 

15-35 

.625 

106.6 

107.6 

•25 

288.2 

290.9 

17.08 

17.2a     . 

.75 

111.4 

1 12.4 

•5 

304 

306.8 

19 

19.18    ! 

.875 

116.3 

1 1 7.4 

.75 

320.2 

323-2 

21.05 

21.25 

6 

121.3 

122.4 

.875 

328.6 

331.6 

23.21 

2343    i 

.125 

— 

127.6 

10 

336.8 

340 

"Weiglit   of  ^ngle   Iron, 

From  1.25  to  4.5  Inches,    one  foot  in  length. 
Thickness  meatU7*ed  in  Middle  of  each  Side, 


L   Gi^lAL  SlDBS. 
Tkiek 


Sides. 


Ins. 
1.25X1.25 

1.5   Xi-5 
'-75 XI  75 

2        X2 
2.25  X  2.25 
2.5   X2.S 

X3 

X35 

X4 

X4-5 

X4S 


3 

3-5 

4 

45 

4-5 


Inch. 
•1875 
-1875 
-25 
-25 

•3«25 
•3125 
•375 
4375 
5 
•5 
.5625 


Weight 


Lba. 

1-5 
2 

3 

3 

4- 

5 

7 

9 

12. 

14 
16 


5 
•5 


L  UXSQUAL  SlDBS. 

Thick- 
neu. 


Sides. 


Ins. 

3  X2.5 
3-5X3 
3-5x3 

4  X3 

X3-5 
X3  5 
5x3 
X3 
X3 
«5X35 


4 

4 

4 

5 

5 

5« 

5-5  X  5^5 


Inch. 

375 

4375 

4375 

5 

5 

5 

5 

5 

5625 

5 

5625 


Weight, 


Lbs. 
6.25 

7^75 
9.6 
II 

"5 

"•75 

"75 
1265 

137 
14-5 
156 


L  Unequal  Sidk& 

Thick- 

Sides. 

ness. 

Weight 

Ins. 

Inch. 

Lbs. 

6    X3.5 

.625 

18 

6    X4.5 

.625 

20 

T 

2      X2375* 

•375 

5.5 

25X2.875 

•375 

6.5 

35X3.5 

•4375 

10.5 

4    X3.5    { 

•4375 
•75 

13 

4    X3-5 

-75 

135 

11ti»  coiump  |;ivfll  depth  of  treb  added  to  the  thickness  of  iMM  Qr  (Uui|[c. 


126 


WEIGHTS   OF   METALS. 


Wrought  Iron  and  Stkel. 

W  eiglits    or  liouxid.    Rolled    Iron    and.    Steel, 

From,  .125  to  10  Inches,    onb  foot  in  lbnoth. 
IroUy  485  Ubs.       Steely  489.6  lbs.       pbr  cubb  foot. 


Diameter. 

Iron. 

Stbkl. 

Diameter. 

Iron. 

Stbbl. 

Diameter. 

Iro.v. 

Strbl. 

Ins. 

Lbs. 

Lb«. 

Ins. 

Lbs. 

Lbs. 

Ins. 

Lbs. 

Lbs. 

.125 

.041 

.042 

2.75 

20.01 

20.2 

6.25 

103.3 

104.3 

•1875 

•093 

.094 

•875 

21.87 

22.07 

•375 

107.7 

108.5 

•25 

.165 

.167 

3 

23,81 

24.03 

.5 

111.8 

II2.8 

•3125 

.258 

.261 

.125 

2583 

26.08 

.625 

116.4 

1 17. 2 

.375 

•372 

•375 

•25 

27.94 

28.2 

•75 

120.5 

121. 7 

•4375 

.506 

•5" 

•375 

30.13 

30.42 

•875 

124.9 

126.2 

•  5 

.66x 

.667 

•5 

32.41 

32.71 

7 

129.6 

130.9 

.5625 

.837 

.845 

.625 

34-76 

35.09 

.125 

134-2 

135-6 

.625 

I-033 

1-043 

•75 

37-2 

3756 

.25 

139  „ 

140.4 

.6875 

1.25 

1.262 

.875 

39.72 

4a  I 

.375 

143-8 

145-3 

•75 

1.488 

1.502 

4 

42.33 

42.73 

•5 

148.8 

150.2 

.8125 

X.746 

'•763 

.125 

45.01 

45-44 

.625 

153-8 

155-2 

.875 

2.025 

2.044 

•25 

47.78 

48.24 

•75 

158.9 

i6a3 

•9375 

2.325 

2-347 

•375 

50.63 

51.11 

•875 

1 64. 1 

165.6 

I 

2645 

2.67 

.5 

53-57 

54.07 

8 

169.3 

171 

•"5 

3348 

3.379 

.625 

56.59 

57-12 

•  125 

174.6 

176-3 

•25 

4.133 

4->73 

'P 

59.69 

60.25 

•25 

180.1 

181.8 

.375 

5 

5.049 

.87s 

62.87 

63.46 

•375 

185.5 

i87.3 

.5 

5-952 

6.008 

5 

66.13 

66.76 

•5 

191. 1 

193 

.625 

6.985 

7.051 

.125 

69.48 

70.14 

.625 

196.6 

198.7 

•75 

8.104 

8.178 

.25 

72.91 

73.6 

•P 

202.5 

204.4 

•875 

9-3 

9.388 

.375 

7643 

77.16 

•875 

208.1 

210.3 

2 

10.58 

I0.68 

•5 

80.02 

80.77 

9 

214-3 

216.3 

.125 

11.95 

12. 06 

.625 

!3^ 

!l*9 

•  25 

226.3 

228.5 

•  25 

13-39 

«3-52 

•75 

87.46 

88.29 

•5 

238.7 

241 

•375 

14.92 

15.07 

•875 

91.31 

92.17 

•75 

251-5 

253-9 

•5 

16.53 

16.69 

6 

95.23 

96.14 

.875 

259^5 

260.4 

•625 

18.23 

18.4 

•125 

103-3 

100. 2 

10 

264.5 

267 

Weiglit    of  Steel    A^ngles. 

From  .75  to  7  X  3.5  Inches,     one  foot  in  lknotr. 
Thickness  measured  in  middle  of  each  side. 


Equal  Sidbs 

1. 

SiDB. 

Thick- 

neas. 

Area. 

Weight. 

Ins. 

Ins. 

Sq.Ins 

Lba. 

'P 
•875 

.125 

-17 

.6 

.125 

.21 

-7 

I 

.125 

•24 

.8 

1-25 

.125 

•30 

I 

1-5 

.25 

.69 

^'i 

'•75 

•25 

.81 

2.8 

2 

•25 

•94 

3-2 

2.25 

-25 

1.06 

3-7 

2.5 

•25 

1. 19 

4-' 

2-75 

-25 

1-3' 

4.5 

3 

-5 

2.75 

9.4 

3.5 

•5 

3.25 

II. I 

A 

•5 

3.75 

13.8 

4 

•75 

5-44 

18.5 

5 

•5 

4.75 

z6.2 

5 

•75 

6-94 

23.6 

5 

I 

9 

30.6 

6 

•5 

5.75 

19.6 

6 

•75 

8.44 

28.7 

$ 

" 

37-4 

Unbqual  Sides. 


SiDKS. 

Ins. 
1.375X1 

2  X  1.37s 

2.25  X1.5 
2.25  Xi 

2.5     X2 
2.5     X2 

3       X2 
3       X2 

3-25  X2 

3-25x2 

3-5  X2. 
X3 
X3 
X3 
X3 
X3 
X3 
X3 
X3 
X3 


•5 
•5 


Thick- 
ness 

Area. 

Weigh  t. 

Sides. 

Thick- 
ness. 

Ann. 

Sq.Ins 

Ins. 

Sq.Ins 

Lbs. 

Ins. 

Ins. 

.25 

-53 

1.8 

5X35 

•5 

4 

.25 

•7S 

2.7 

5X3.5 

.625 

4-92 

.25 

.88 

3 

5X3.5 

•75 

5.81 

-5 

1.63 

5-5 

5X3.5 

•  875 

6.67 

.25 

1.06 

11 

5X4 

•5 

4.25 

-5 

2 

6.8 

5X4 

.625 

5.23 

25 

1. 19 

4 

5X4 

.75 

6.19 

'S 

2.25 

7-7 

5X4 

.875 

7.11 

.25 

1.25 

4-3 

6X3-5 

.5 

4-5 

•5 

2.3« 

8.1 

6X3.5 

.625 

5-55 

-25 

'-44 

4.9 

6X3.5 

■75 

6.56 

•75 

4-3' 

14.7 

6X3.5 

I 

«5 

•5 

3.25 

11 

6X4 

.5 

4-75 

•75 

4.69 

16 

6X4 

.625 

5.86 

•5 

3.5 

11.9 

6X4 

•75 

6.94 

.75 

5.06 

17.2 

6X4 

I 

9 

5 

3-5 

11.9 

7X3.5 

-5 

5 

.75 

5.06 

17.2 

7X3.5 

.625 

6. 17 

•5 

3-75 

12.8 

7X3.5 

•75 

7-3' 

-75 

5.44 

18.5 

7X35 

I 

9-5 

Weight 

Lbs. 

13.6 

16.8 

19.8 

22.7 

'4-5 
17.8 
21. z 
24.2 

'5-3 

18.9 

32.3 

28.9 

16.2 

20 

23.6 

30.6 

'7 
21 

24.9 
323 


WEIGHT  OF  SHEST  AKD  HOOP  IBOK. 


129 


"WeigUt    Qf  Blieet    Iron.     {EngUsh.     D.  K.  Clark.) 

Per  Squakk  Foot  {at  480  ibs.per  Cube  Foot). 

As  by  Wire>gauge  used  in  South  StafTurdshire,  England. 


Tblcknett. 

WeiKbt. 

No. 

Inch. 

LlM. 

32 

.0125 

•5 

31 

.0X41 

.562 

30 

.0156 

.625 

29 

.0172 

.688 

28 

.0188 

•75 

27 

.0203 

.813 

26 

.0219 

•875 

25 

.0234 

•938 

24 

.025 

I 

23 

.0281 

113 

22 

.0313 

125 

Square 

Feet 

Thickness. 

Weight. 

in  I  ton. 

No. 

No. 

Inch. 

Lbs. 

4480. 

21 

•0344 

1.38 

3986 

20 

0375 

1-5 

3584 

19 

0438 

175 

3256 

18 

■05 

2 

2987 

17 

•0563 

225 

2755 

16 

.0625 

25 

2560 

15 

•075^ 

3 

2388 

14 

.0875 

35 

2240 

13 

.1 

4 

1982 

12 

.1125 

45 

1792 

II 

.125 

5 

Squ 
F« 


nare 
eet 
in  I  ton. 


No. 
1623 

1493 

1280 

1 120 

996 

896 

747 
640 
560 

498 
448 


Thickness. 

No. 

Inch. 

10 

.1406 

9 

.1563 

8 

.1719 

7 

.1875 

6 

,2031 

5 

.2188 

4 

•2344 

3 

•25 

2 

.2813 

I 

•3125 

Weight. 

Lbs. 

563 
6.25 

6.88 

7-5 
8.13 
8.75 
9.38 
10 

11.25 
12.5 


Sqn 
Fe 


loare 
Teet 
I  in  I  ton 


No. 

398 

358 

326 

299 

276 

256 

239 
224 

199 

179 


"Weiglit  of  Koop   Iron.    {English.) 
Per  Lineal  Foot. 


Width. 

W.G. 

Weight. 

Width. 

W.G. 

Weight. 

Width. 

W.G. 

Ins. 

No. 

Lbs. 

Ins. 

No. 

Lbs. 

Ins. 

No. 

.625 

21 

.067 

I.125 

17 

.21 

1.75 

14 

75 

20 

.0875 

1.25 

16 

.27 

2 

13 

.875 

19 

.1216 

1.375 

IS 

•33 

2.25 

13 

X 

18 

.1636 

1-5 

15 

.36 

2.5 

12 

Weight. 

Lbs.~ 
.484 

•634 
.714 

.91 


'Weiglit  of  Blaclt  and.  Gralvanized.  Slieet  Iron. 

(Jforton'*  liable,  founded  upon  Sir  Joseph  Whihooi^fh  ^  Co.'s  Standard  Bir- 
mingham Wire^Gauge.)     (D.  K.  Clark.) 

Note.— 'Numbers  on  Holtzapffers  wire  gauge  are  applied  to  thiuknesses  on  Whit- 
wortti  gauge. 


Gan 

fee  and  Weight  of 
Black  SbeeU. 

ApnroxJniate  nuoibc 
of  Sq.  Ft.  in  z  ton. 

Black.   iGalyaoizei 

No. 

Inch. 

Lbe. 

Sq.Ft. 

Sq.Ft. 

I 

•3 

12 

187 

185 

3 

.28 

II.2 

200 

197 

3* 

.26 

10.4 

215 

212 

4 

.24 

96 

233 

229 

5 

.22 

8.8 

254 

250 

6 

.2 

8 

280 

275 

7 

.18 

7.2 

311 

3<H 

8 

.165 

6.6 

339 

331 

9 

•15 

6 

373 

363 

10 

•135 

5-4 

415 

403 

II 

.12 

4.8 

467 

452 

12 

.11 

4-4 

509 

491 

13 

•095 

3.8 

589 

S66 

14 

.085 

3-4 

659 

630 

15 

x>7 

2.8 

800 

757 

16 

^S 

2.6 

862 

813 

Gaujre  and  Weight  of 

Black  fiheeU. 

No. 

Inch. 

Lbs. 

17 

.06 

24 

18 

.05 

2 

19 

.04 

1.6 

20 

.036 

1.4 

21 

.032 

1.28 

22 

.028 

1. 12 

23 

.024 

.96 

24 

.022 

.88 

25 

.02 

.8 

26 

.018 

.72 

27 

.016 

.64 

28 

.014 

.56 

29 

.013 

•52 

30 

.012 

.48 

31 

.01 

•4 

32 

.009 

.36 

Approxin 
ofSq.F 

late  naoiber 

t.  in  I  ton 

Black. 

1  Galvanised. 

Sq.Ft. 

Sq.  Ft. 

933 

876 

1120 

1038 

1400 

1274 

1556 

1403 

1750 

1558 

2000 

1753 

2333 

2004 

2545 

2159 

2800 

2339 

3111 

2553 

3500 

2808 

4000 

3122 

4308 

3306 

4667 

3513 

5606 

4017 

6222 

4327 

130 


WBIGHT   OF   ANGLB   AND  T   IBON. 


'Weigh.t   of  English.   .A^ngle   and  T  Iron.    {D.  K.  CUxrk.) 

ONE  FOOT  IN   LENGTH. 

Note.— When  base  or  web  taiiera  in  section,  mean  thickness  is  to  be  measured. 

Sum  or  Width  ahd  Dkpth  in  Imcbss. 


Thick- 

neac. 

••5 

Inch. 

Lbt. 

•125 

•57 

.1875 

.81 

25 

1.04 

3125 

1.24 

a.875 

125 

1. 14 

.1875 

T.68 

25 

2.19 

•3125 

2.67 

•375 

3-13 

•4375 

3-57 

I  1.625'    '-75      '-875 


LlM. 

.62 
.89 

1-15 
1-37 


LtM. 

.68 
.97 

1^5 

1-5 


Lba. 

•73 
I. OS 
1.36 
1.63 


3125  '  325 

1.25  1-3 

1.84  1. 91 

2.4  2.5 

2.93  3-o6 

3-44  3-59 

3-75 1  3-93  4-" 


1.2   1 

1.76 

2.29 

2.8 
328 


Lbs. 
.78 

113 
1.46 

1.76 

3-375 


1875 
25 

3125 
375 
4375  j 

5625' 


25 
3125 

375 

4375 

5 

5625 

625 


•375 

•4375 

•5 

•5625 

.625 

•75 


4-5_ 

2.7 

3-54 
436 
5-i6 

592 
6.67 

738 


4-75 


2.85 

3-75 
4.62 

547 
6.29 

7.08 
7.85 


.625 

•75 
•875 

I 


7-25  .    7.5 


3-OI, 

396 

4.88: 

578 
6.65 

75 
8.32 

7-75 


5.83 1   6.04     6.25 

7.23;   7-49     7-75 

8.59;   8.91     9.22 

9.93  10.3    1 10.66 

11.25  11.67  ii2.oS 

12.54  13-01, 1348 


3.16 
4.17 

5-14 
6.09 

7.02 

7.92 

8.79 

8 


1-45 
1.99 

2.6 

3-19 

3-75 
4.29 

5-5 


2.125  I   2.25  I  2.375 


Lbs. 

.83 

I.2I 
1.56 
1.89 

3-5 


6.46 
8.01 

9-53 
11.03 

12.5 


1.41 

2.07 

2.71 

332 

3-91 
4.48 

5.75 


332 

4.38 

5-4 
6.41 

7.38 

8.33 
9.26, 

8.25 


138   1 1432 


10.5 


24.74 


13  29.37 


14.84 


13-28 

154 

17.5 

19-57 
21.61 


6.67    6.88 

8.27    8.53 

9.84  10.16 

11.39  11-76 

12.92113-33 

13.94  14.41 ;  14.88 
15.36  15.89  16.41 


3.48 

4.58 
566 
6.72 

7-75 
8.75 
9  73 

8.5 


•I  5 


12 


13.91  14.53 
16.13  16.86 
18.33  19-17 
20.51  21.44 
22.66  23.7 


12.5 


17-59 
20 

22.38 


Lb«. 

.88 
1.29 
1.67 
2.02 

3625 


1.46 
2.15 
2.81 

3-45 
4.06 

4.66 


3-63 
4-79 
592 

7-03 
8.11 

9.17 

10.2 

8.75 


Llw. 

•94 

1-37 
1.77 

2.15 

3-75 


2.5 


Lb*. 

•99 

1-45 
1.88 

2.28 

3.875 


1^51 
2.23 
2.92 

3.58 

.  4.22 

4.84 

6.25 

3-79 

5 

6.18 

7.34 
8.48 

9.58 
10.66 


1.56 

2.3 
3.02 

3-71 
4-38 

5-02 

6.5 


3-95 
5-21 

6.45 
7.66 

8.84 

10 

11.13 

925 


7.08  7.29     7.5 

8.79  9.05     9.31 

10.47  10.78111.09 

12.12  12.49 112.85 

13-75  14' 17  14-58 

15  35  15-82  16.29 

16.93  17.45  17.97 


•3 


18.31 


•3-5 


'4 


19.77 


19.04 
20.84 '21.67  '22.5 
23.31 '24.25 '25.19 


24.74  '25.78 126.83  1 27.87 


25.63  26.88  28.13  29.37  30.63  31.88  33.13 


13 


•  35 


14 


27.87 


15 


29^95 


16 


32.03 


25.78  26.83     .     .      ^ 

^  ,^.  30.63  i 31. 88 1 33. 13  35-63, 38^i3 
32.45  3391  35.36  36-82 138.28  41.19  44.12 
36.6738.3340       41.67 1 43^33  46.67150 

NoTB.— American  rolled  is  slightly  heavier. 


"7 


18 


34.12  36.2 


2.625 


Lbt. 

1.04 

1.53 

1.98 

2.41 


1.62 
2.38 

3^13 
3.84 
4-53 
5-2 

6.75 


4.1 

5-42 
6.71 

7-97 
9.21 

10.42 

12.6 

95 


7.71 

957 
X1.41 

13.22 

15 
16.76 

18.49 

•45 


2.75 


Lb>. 
1.09 

1.6 

2.08 
2.54 

4-25 


1.72 
254 

3-33 
4.1 

4.84 
556 


4.26 

5-63 
6.97 
828 

9-57 
10.83 

12.07 
9-75 


7.92 

9.83 
IX. 72 

1358 

15-42 
17.23 

19.01 

•5 


aO.5      21.23 

23^34  3417 

26.12  27.06 
28.91  '39-95 
34-38   35.63 


'9 


20 


38.28  40.36 


40.63  41.13  43.63  46.13 
47.02  49.95  52.87  55.78 
53-3356.67,60       I63.33 


IBON  BOILER  TUBES. 


Standard  Dimbkbiomb. 
Ka/ionai  7Vi<  Co. 


'A 


KoTB  I. — For  ilUinetara  from  13  up  to  and  including  30  ins.  O.  n,,  detaili 
«re  in  contormanm  with  (be  circumstancea,  as  lliere  is  not  a  slandsrcl,  the 
thicknus  Taiying. 

NoTK  3, — In  Mlimnting  elTective  heating  or  evaporating  surface  of  Cubes' 

perheating  sleam,  or  Iraniifernng  heat  from 

r,  mean  surface  of  tubes  is  to  be  cuaiputed, 


132 


WEIGHT   OP   CAST   IRON   PIPES. 


""Weight   of  Cast  Iron  Fipes  or  Cylinders. 

F^om  I  to  70  Inches  in  Infernal  Diameter,  ' 


ONE   FOOT    IN    LENGTH. 


IMameUr.  1  Tbickn. 


Int. 
I 

1.25 

1.5 
1.75 


2.25 
2.5 

2.75 

3 

325 
35 
3-75 


4-25 


4*5 


Inch. 
.25 

375 

25 

3125 

375 

375 

4375 

5 

375 

4375 

5 

375 

4375 

5 

375 

4375 

5 

375 

4375 

5 

375 

4375 

5 

375 

5 

625 

75 

375 

5 
625 

75 

375 

5 
625 

75 

375 

5 
625 

75 

375 

5 
625 

75 
375 
5 
625 

75 
375 
5 
625 


Weight. 

Diameter. 

Lbs. 

Ins. 

3.06 

4-75 

505 

368 

4  79  . 

5.97  ' 

5 

689 

831 

98 

7.81  ' 

55 

938 

11.03 

873 

10.45 

6 

12.25 

965 

1 

11.52 

1 

13.48 

6.5 

10.57 

1 

12.6 

1 
t 

147 

1 

11.49 

7       ! 

14.67 

1593 

12.4 

1715 

7-5 

22.2 

2757 

13-32 

18.38 

8 

2374 

29.4 

14.24 

19.6 

9 

25.27 

31.24 

1516 

20.83 

9.5 

26.8 

33.08 

16.08 

22.05 

10 

28.33 

34-92 

17 

23-28 

10.5 

29.86 

36.76 

17.92 

23.88 

ji 

314 

38.50 

rhickn.     WefKht.     Diameter.      Thickn 


Inch. 

375 

5 

625 

75 
375 
5 
625 

75 

375 

5 
625 

75 

375 

5 
625 

75 

375 

5 
625 

75 
5 

5625 
625 

75 
5 

5625 
625 

75 
5 

5625 
625 

75 
5 

5625 
625 

75 
5 

5625 
625 

75 

5 
625 

75 

875 

5 
625^ 

75 
875 
5 
62s 

79 


Lbs. 
1884 
25.72 

3293 

4043 
1976 

2695 

3446 
4227 

21  59 

294 

3752 

45  95 

2343 
31.86 

4059 
4962 

25.27 
3431 
4365 

53  3 
36.76 

41.7 

4671 

5697 
39.21 

44-45 

49  77 
60.65 

41.66 
47.21 
52.84 
64.32 
46.56 
52.72 
58.96 
71.67 
49.01 

55.48 
62.06 

75-35 

51-45 
65.09 

7903 
932: 

53.91 
68.15 
82.7 

9756 
56.36 
71.21 
96.18 


Ina. 
II 

"•5 


12 


12.5 


13 


13.5 


14 


14-5 


15 


15-5 


16 


16.5 


17 


I 


17-5 


Inch. 
875 

5 
625 

75 

875 

5 
625 

75 

875 

5 
625 

75 

875 

5 
625 

75 

875 

5 
625 

75 

875 

5 
625 

75 

875 

5 
625 

7*5 

875 

5 
625 

75 

875 

5 
625 

75 

875 
625 

75 
875 

625 

75 

875 

625 

75 
87s 

625 
75 


Weight. 


Lbs. 

101.85 
58.81 
74.28 
90.06 

106.13 
61  26 

77-34 

9373 

1 10.42 

63.71 
80.4 

97-4 
114.71 

66.16 

8347 
101.08 

119 

6861 

8653 
104.76 

12329 

71.06 

89.6 

108.43 

127.58 

7351 

92.66 

112. II 

131.87 

7596 

9572 

115.78 

136.16 

78.47 

98,78 

119.46 

140.44 

101.85 

123.14 

144-73 
166.63 

104.9 

126.75 

149.02 

171-53 
107.97 

130.48 

153-3 

1 76-43 
111.03 

134.16 


WBIGHT  OF  CAST  IBON   PIPES. 


133 


Diftinctor. 


Ins. 

17-5 
18 


19 


20 


21 


22 


23 


24 


25 


26 


27 


28 


39 


Thickn. 

Welfrht. 

Diiim«t«r. 
In. 

Th 

Inch. 

LlM. 

1 

.875 

157.59 

29 

• 

I 

181.33 

.< 

.625 

114. 1 

I 

.75 

137.84 

30 

• 

.875 

161.88 

•  1 

I 

186.23 

.625 

120.23 

x« 

.75 

145.19 

31 

• 

.875 

170.46 

• 

I 

196.03 

.625 

126.35 

A  • 

•75 

152.54 

32 

• 

•875 

179.03 

• 

I 

205.84 

.625 

132.48 

X  • 

•75 

159.89 

33 

• 

.875 

187.61 

• 

I 

215.64 

.625 

138.61 

X  • 

.75 

16724 

34 

• 

.875 

196.19 

• 

I 

22544 

.625  j  144.73 

1 

A  • 

.75       174-59 

1     35 

• 

.875     204.76 

1 

1 

• 

I 

23524 

1 

1 

.625  '  150.86 

1 

x» 

.75     1  181.95 

;   36 

• 

•875  ,  213.34 

1 

.i 

I          ]  245.04 

.625     156.98 

X  9 

.75     1  189.3 

A* 

.875     221.92 

'.  37 

• 

I          i  254  85 

i 

• 

.625     163  II 

.75     '  196.65 

Jl  • 

.875  ,  230.5 

X  • 

1          )  264.65 

38 

• 

.625  ,  169  23 

•4 

.75     1  204 

' 

.875     239.07 

1 

A  • 

"            274  45 

«  • 

.625     175.36 

39 

• 

.75       211.35 

• 

.875     247.65 

I 

284.25 

1 

X  • 

.625 

181.49 

1 

X  ■ 

ins. 

•75 
.875 

125 

75 

.875 

"5 

75 

875 

125 

75 

875 

125 

75 

875 

125 

75 

.875 

125 

75 

875 

125 
25 
75 
.875 

125 
25 
75 
.875 

125 
25 
75 
875 

125 
25 


Weight.      DlAHMter.     Thickn.     Weight 


Lb*. 
218.7 
256.23 
294.05' 
226.05  ' 
264.8     i 
303.86 
343.22  i 

233.41 
273.38 

3*3.66 ; 
354.24 

240.75 
281.95 ! 

32346 
36527 
248 II 

290.53 
33326 
376.29 

25546 
299.11 
343.06 

38733 
262.81 

30768 

352.87 

39835 
270.16 

316-26 

362.67 

409.28 

45637 
277.51 
324.84 

372.47 
420.4 

468.65 

284.86 

33341 
382.27 

431-41 
48089 
292.21 

34197 
39208 
44244 

493.14 


Ins. 
40 


42 


44 


46 


48 


50 


52 


55 


58 


60 


65 


70 


Int. 
.87s 

125 
25 

«75 

125 

25 

875 

125 

25 

875 

125 

25 

875 

125 

25 

875 

125 
25 

875 

125 

25 

875 

125 
25 

125 

25 

375 

125 

25 

375 

125 

25 

375 

35 


Lbs. 
350.56 
401.86 

453^46 

505.41 
367.69 

421.45 
472.52 

529.87 
384.88 
441.1 
497.58 

554.43 
402.01 

460.07 

519.64 
578.88 
419.17 
480.29 

541.69 
603.44 

436.43 
499.89 

563.75 
627.93 

453-49 
519-5 
585-81 
654.42 

47923 

5489 
618.91 

689.21 

578.29 

651.96 

725.93 
800.22 

59792 
674.01 

75045 
827.17 

646.93 

729.18 

811.73 
894.6 

69592 

872.98 

1051.25 


JS^twcdeni  Length  of  Pipe  for  a  Socket. 


7  H =  /.    d  representinff  diameter  of  pipe  and  I  kngth  in  inches. 

AddilionnI  weight  of  two  flanges  for  any  diameter  is  computed  equal  to  a  lineij 
fiMtoftbopipe. 

KoTS.— These  weights  do  not  include  any  allowance  for  spigot  and  socket  ends, 
a.— For  rale  to  compute  thicknesses  of  pipes,  flanges,  etc  ,  see  page  56a 


X34      'W'filGHT  O^   StAlfDAftn    ROLLlJD   STEEL   BEAMS. 


O 


•< 


0 

/SJ    OS 
I])    n3 

58 


St. 

o 

O 


• 

S 

1^ 

*    M     M 

m 

S 

is 

^.vOnOOO  »Om   m   OfOM   urj  rpvO   PJ         m   lo      ^0   '* 

1 00  pi  On  dN  M  rfod  fOCS>opi  dst^iof^M  ood  t^ 

fe  O  On  t^vO  vOiOThTffOrOrOPJMWPlNNwM 

& 

J?      ^ 

^\Ooo  f^*  »9  »^  N  ^9^  «  fooq  vo  t^      "o  M  q^oq  o> 

io    r*)  n  lOOC)    nod    ^Mod   "OrOM   Ood    t^iOri-fO 

(£  00     t^NO     lO'H-'^fOrOCJP^PINNeiMMMMM 

goo 

• 

i 

in 

IT) 

^.  looq  M  q^oq  ^  "^  "^  ^q  '!*■  looq  't  h  on  o\      «  »o 
J  lo  lood  M  NO  pi  d^o  ro  M  d^  t^-vd  lo  <o  ci  pi  m  d 

0 

c 

GO 


a; 


N 
-P 

•d 

c8 
-p 

00 

0 
-p 

•a 

•H 

I.  ^ 

Q 


T 

• 

. 

vO 

t^  ro  PI   PI 

ON  n  ro  t>*  -*  ^nO 

M 

?i 

:§ 

<% 

oo 

t^  t^  O    '!*•  On 

S 

M 

00 

m  ro 

M 

dNod  1    I 

1  1  1 

n 

•4 

ll 

l>.\0   lO  >o  •«*-  o 

fO   PI 

PI 

PI 

PI 

M 

M 

a 

a 

M 

^ 
1 

•4 

^S 

M 

rO  PI 

•          ■ 

»ooo 

od   ro  0 
fO  fO  o 

Pl 

•          •          •          • 

H   On  f^NO 

PI     M     M     M 

^1        1 

>o  ro 
mm'' 

*s 

NO 

PI   i-i 

ON  »0  t^  \|-  -^   t^  PI 

ON  ON 

*"*       .         . 

4 

? 

•       •       • 

ro  t^  P« 

t>.    tJ-    M 

On  t^  m  Tj-  fO 

• 

• 

0 

6 

ij 

fa 

Tj-  fOfO  P»   PI   PI 

H 

M 

M 

M 

M 

M 

M 

M      '        ' 

§ 

4 

^ 

PI     fO    Tj- 

rood   'l- 

rp  t^  looq  PI 

M   od  NO     'f   CO  PI 

1 

1 

1 

-1        1        1        1 

o 

*4 

Be. 

fO  PI  PI 

«     M      M 

M 

M 

M 

M 

i 

-    - 

• 

5^ 

• 

4 

ID 

M 

1 

vO 

<5 

t^NO     M             noq  NO  NO 

PI  dNt^»orOM  d  ON 

1 

1 

1 

1        1        1 

I-) 

ro 

h 

PI 

PI  l-t 

M     M     M 

•H 

M 

M 

T^  ^0^O  CI    . 

^ 

a 

0 

i 

s-, 

od 

>o  PD 

H     d 

1 
1 

1 

1 

1 

1 

1 

INI 

^ 

t-i 

H-l 

fa 

H 

M      H 

M     M 

•«»» 

^ 

V 

PI 

fO  r- 

IOnO    t^OO 

OnO 

M 

PI 

ro  ^  >o\0  t^« 

^  9^  2s 

<3 

fa 

M 

M     M 

M     ►<     M 

»H 

M 

PI 

PI 

PI 

PI 

PI 

PI  PI  PI  p 

1  PI  ro 

a 

a> 

J 

M 

M 

& 

On  w 

•          • 

lO  M 

lO  On  M  vO 

«          •          •          • 

M   rj-  OnD 

Tf 

ON  CO 

•              • 

M     O 

ON 

»>4 

I-] 

fa 

>o  Ti-  n  PI  PI 

)>4 

M 

M 

M 

l>. 

M 

t^  !>.  PI 

IT)  lO 

• 

09 

3 

00 

1 

.8 

pi  w  p^od  >o  PI 
■^  ro  PI  M  M  M 

d 

ON 

.ff 

. 

PI 

t>.  tn  f*)NO  M 

M 

t>. 

s 

»«» 

s 

ID 

M 

1 

^ 
^ 

d  « 

•            •            • 

Ok  t^ 

1 

1, 

1-4 

I-) 

fa 

ro  PI 

M     M     M 

• 

lO 

»ooo 

H  \0  00 

1 

is 

n 

«o 

JS 

« 

z 

M 

M  lo  PI  dk  !>■ 

1 

-< 

■^ 

•-I 

« 

(2, 

fO   P«      •H 

M 

.^ 

1 

• 

Ul 

• 

to 

NO 

d 

n    >0    M 

4dod  1    1 

1 

1 

1 

l-l 

h] 

o 

fa 

PI 

M     H 

t^oo  >o 

1    1 

1 

1 

. 
(1 

•♦ 

5 

in 

• 

1 

pi  odNO 

1 

N4 

I-) 

»^ 

fa 

H 

.1 

fi 

& 

in 
in 

fa 

ON 

1    1    1 

1 

1 

1 


8 


•aaNTxsiG 


t  ionO   t^OO   On  0   •-.   PI   ro  ^  iOnO  t^OO   O  O   m   N 
I  mmmmmmmhmmPICPI 

fa 


■p 

01 

»« 

Q 
"« 

fi 

1 

CD 

!• 

<S 

s 

0 

s 

r* 

M 

•xs 

1.^ 

d 

e 

V 

■p 

e 

s 

a 

^ 

00 

H   <S      ?3> 

0  -^ 

•P  J    .g 
oo  IB 

s  <v 

0 
"  (a   'e 


5 


■♦^       r 
®  0 

9      ^ 

■P 
« 

« 

0 


« 


I  ir 


s  8 


a 


»9 

•Ci 


o 
m 

w 

O 


be 

.a 
o 

s 

00 

w 


8 


o 

OO 

p 

■J 


08 


8 


■p 
S 

0 

0 


e 
V 
k 

O 


WEIGHT  OF  BOLLED  STBBL,  8HBBT  COPPBBy  BTC.       1 35 


'Weiglit   of  Round  Rolled  Steel. 

From  .135  Inch  to  12  Inches  Diameter,    one  foot  in  length. 

DUun. 


Inch. 
125 
1875 
25 

3"5 
375 
4375 
5 

.5625 
.625 

•6875 

•75 
.8135 


Lbs. 
.0417 

•0939 
.167 

.26 

•375 
•5" 
.667 

.845 
1.04 

X.27 

1-5 
1.76 


Diameter. 

Weight. 

Diameter. 

Ins. 

Lba. 

.Ins. 

.875     '    2.04 

1.625 

•9375  ,  2.3s 

1.6875 

I           1  2.67 

1-75 

1.0635  1  3 

1.8125 

1. 125 

3.38 

1.875 

1. 1875 

376 

3 

125 

4.17 

2.125 

1.3125 

4.6 

2.25 

1-375 

5.05 

2.375 

14375 

5.18 

2.5 

I  5 

6.01 

2.635 

1.5635 

6.52 

2.75 

Lbs. 

7-05 
7.61 

8.18 

8.77 
9-38 

10.7 

12 

13.6 

15.1 
16.7 

18.4 

20.3 


Diam. 

Weight 

Ins. 

Lbs. 

2.875 

33 

3 

34.1 

325 

38.3 

3-5 

327 

3.75 

34-2 

4 

43.7 

4.25 

48.3 

4-5 

54-6 

4-75 

60.3 

5 

66.8 

5^25 

73.6 

5-5 

80.8 

Dlam. 

WaiRht. 

Ins. 

Lba. 

5-75 

6 

88.3 
96.1 

6.5 

II3.3 

7 
7.5 

13c. 8 
136.8 
170.8 

8.5 

193.3 

9 

318.4 

9.5 
10 

341.3 
367.3 

II 

323 

13 

384-3 

"^^eielit  of*  Hexagonal,  Octagonal,  and   Oval   Steel. 

ONE  FOOT  IN   LENGTH. 


HEXAGONAL. 

1 

OCTAGONAL. 

Diam. 

Diam. 

Diam. 

Diam. 

ovar 

Sidaa. 

Weight 

«w»r    Weight 
Sides,  t        * 

over 
Sidea. 

Weight 

Qver 
Sides. 

Ins. 

Weight. 

liich. 

Lbs.    ! 

Ins.        Lbs. 

.Inch. 

Lbs. 

Lbs. 

%    \     .414 

I 

2.94 

% 

•396; 

1 

3.82 

K     .736, 

iK    3-73 

% 

.704 

iK 

356 

H     ^-"5  , 

iX  '  4-6 

% 

I.I 

'H 

4.4 

k   >i.66 

iK  :  5.57 

% 

1.58 

I^ 

532. 

% 

2.25    1 

iKl 

6.63 

% 

3.16 

IK 

6-34, 

OVAL. 


Diam. 
over  Sidea. 

Area. 

Ins. 

%xK 
1     xK 
13^  x^ 
iXx% 

Sq. In. 
.251 

•344 
.446 

.697 

.884 

Weight. 

Lbs. 

.853 
1. 17 

152 

2.37 

3 


V^eight  of*  a   Square   IToot  of  Sheet   Copper. 


Wire  Gattge  of  Wm.  Foster 


Tbi^knaas. 

Weight. 

W.G. 

I 
3 

3 

Inrh. 
.306 
.384 
.363 

Lbs. 
14 

13 
13 

4 

•24 

II 

5 

.333 

10.15 

6 

7 
8 

.303 
.186 
.168 

93 
8.5 
7-7 

9 

ID 

.153 

7 
6.3 

Thl«lcneaa. 

W.G. 

Inch. 

II 

.133 

13 

.109 

13 

.098 

14 

.0S8 

15 

.076 

16 

.065 

17 

•057 

18 

.049 

X9 

.644 

SO 

.038 

&Co, 

Weight. 

Lbs. 
565 

5 

4-5 

4 

3-5 

3 

3.6 

2,25 

2 

1.75 


(England.) 


Thickfaesa. 

Weight. 

W.G. 

Inch. 

Lbs. 

31 

.034 

1-55 

22 

.029 

1-35 

23 

.035 

^•i5 

24 

.033 

I 

25 

.019 

.89 

26 

.017 

•79 

27 

.015 

•7 

38 

.013 

.63 

29 

.013 

.56 

1      30 

.611 

•5 

No. 


I 

a 
3 


"WeigHt  of  Composition   Sheatlxins  IQ'ails. 


Langtli. 

Natdbar 
Poaod. 

No. 

Ltagth. 

Ibch. 

Ills. 

•75 
.875 

^ 

4 
5 

1.125 
1.35 

I 

9ia 

6 

I 

Kamber 

Ina 
Pound. 


aoi 

199 
igo 


No. 


7 
8 


LonRth. 


Ins. 
1.125 
1.35 

9  iX-5 


Namber 

Nnmber 

In* 

No.   L«igth. 

iaa 

Pound. 

Pound. 

Ins. 

184 

lo    1,625 

lOI 

168 

"      1.75 

?^ 

no 

13 

9          j 

64 

136 


WEIGHT  OF  IBON,  STBEL,  COPPBB,  ETC. 


VSTeiglit  of  Cast  and.   "WTroTxelxt   Iron,  Steel,  Copper,  and 
Srass,  of  a  given    Seortional    ^rea. 

Per  Lineal  Foot. 


Sectional 
Area. 

Wrougfat 
Iron. 

Cast  Iron. 

steel. 

Copper. 

Lead. 

Brass. 

Oan-metaL 

Sq.  Ins. 

Lb«. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Lbe. 

.1 

•336 

•313 

•339 

.385 

.492 

.357 

.38 

.2 

.671 

.626 

.677 

.771 

.984 

.713 

•759 

.3 

1.007 

.939 

1. 016 

1. 156 

1.476 

1.07 

1.139 

.4 

1.343 

1. 25 1 

1.355 

1.542 

1967 

1.427 

1.519 

.5 

1.678 

1.564 

1.694 

1.927 

2.461 

1.783 

1.894 

.6 

2.014 

1.877 

2.032 

2.312 

2.953 

2.14 

2.279 

•7 

2.35     • 

2.19 

2.371 

2.698 

3445 

2.497 

2.658 

.8 

2.685 

2.503 

2.71 

3.083 

3.937 

2.853 

3.038 

•9 

3.021 

2.816 

3049 

3.469 

4.429 

3.21 

3418 

I 

3-357 

3.129 

3387 

3854 

4.922 

3567 

3.798 

I.I 

3.692 

3442 

3.726 

4.24 

5.414 

3.923 

4.177 

1.2 

4.028 

3754 

4.065 

4.625 

5.906 

4.28 

4-557 

1-3 

4364 

4.067 

4404 

501 

6.398 

4.636 

4-937 

1.4 

4.699 

4.38 

4.742 

S.396 

6.89 

4.993 

5.317 

1.5 

S035 

4693 

5.081 

5-781 

7.383 

5.35 

5696 

1.6 

5-37^ 

5.006 

542 

6.167 

7.875 

5.707 

6.076 

1.7 

5.706 

5-319 

5759 

6.552 

8.367 

6063 

6.456 

1.8 

6.042 

5632 

6.097 

6.937 

8.859 

6.42 

6.836 

1.9 

6.378 

5-945 

6.436 

7.323 

9351 

6.777 

7.21S 

2 

6.714 

6.258 

6.775 

7.708 

9843 

7133 

7.595 

2.1 

7.049 

6.57 

7.114 

8.094 

10.33 

7.49 

7.97 

2.2 

7385 

6883 

7452 

8.474 

10.83 

7.847 

8.35 

2-3 

7.721 
8.056 

7.196 

7.791 

8.864 

11.32 

8.203 

8.73 

2.4 

7509 

8.13 

9.25 

11.81 

8.56 

9.11 

2.5 

8.392 

7.822 

8469 

9.635 

12.3 

8.917 

9.49 

2.6 

8.728 

8:135 

8.807 

10.02 

12.8 

9.273 

9.87 

2.7 

9063 

8.448 

9.146 

10.41 

13.29 

963 

10.25 

2.8 

9-399 

8.76 

9485 

10.79 

1378 

9-98 

10.63 

2.9 

9-734 

9.073 

9.824 

11.18 

1427    . 

10.34 

II.OI 

3 

10.07 

9.386 

10.16 

11.56 

14.76 

10.7 

11.39 

31 

10.41 

9.699 

10.5 

11.95 

15.26 

11.06 

11.77 

3-2 

10.74 

10.01 

10.84 

12.33 

15.75 

II.4I 

12.15 

3-3 

11.08 

10.32  • 

II. 18 

12.72 

16.24 

11.77 

12.53 

3-4 

II. 41 

10.64 

11.52 

I3.I 

16.73 

12.13 

12.91 

3-5 

"■75 

10.95 

11.86 

13.49 

17.22 

12.48 

13.29 

3.6 

12.08 

11.26 

12.19 

13.87 

17.72 

12.84 

13.67 

3-7 

12.42 

".58 

12.53 

14.26 

18.21 

13.2 

14.05 

3.8 

12.76 

11.89 

12.87 

14.64 

18.7 

13.55 

1443 

3-9 

13.09 

12.2 

13.21 

15.03 

19*19 

1391 

14.81 

4 

13^43 

12.51 

13.55 

15.42 

19.69 

14.27 

15.19 

4.1 

13-76 

12.83 

13.89 

15.8 

20.18 

14.62 

15.57 

4.2 

14. 1 

13-14 

1423 

16.19 

20.67 

14.98 

15.95 

4-3 

1443 

13.45 

14.57 

16.57 

21.16 

15.34 

16.33 

4-4 

14.77 

13.77 

14.91 

16.96 

21.65 

15.69 

16.71 

45 

15." 

14.08 

15.24 

17.34 

22.15 

16.05 

17.09 

4.6 

15-44 

14.39 

15.58 

17.73 

22.64 

16.41 

17-47 

4-7 

15.78 

14.7 

15.92 

i8.li 

23.13 

16.76 

17.85 

4.8 

16. 1 1 

15.02 

16.26 

18.5 

23.62 

17.12 

18.23 

4-9 

16.45 

15.33 

16.6 

18.88 

24.12 

17.48 

18.61 

5 

16.78 

1564 

1694 

19.27 

24.61 

17.83 

18.99 

WEIGHT  OF  LEAD  AND  TIK  PIPE  AND  TIN  PLATES. 


137 


"^^eigh-t   of  Xj^ad  and  Tin.   Xjined   r*ipe   per   B^oot, 

From  .375  Inch  to  5  Inches  in  Diameter,    {Tatham  Sf  Bros.) 


Weight. 


WASTE-PIPK, 

BLOCK-TIN   PIPE. 

Diam. 

Weight. 

Diam. 

Weight. 

Diam. 

Weight. 

Diam. 

Weight.   1 

1  Diam. 

IllB. 

Lbs. 

Ini. 

Lbe. 

Inch. 

Lb. 

Inch. 

Lbe. 

Ins. 

i-S 

2 

4 

8 

•375 

•3594 

.625 

•5 

1-25 

d 

3 

4.5 

6 

.375 

•375 

.625 

.625 

1.25 

3 

3-5 

45 

8 

•375 

•5 

•75 

.625 

1-5 

3 

5 

5 

8 

•5 

•375 

•75 

•75 

1-5 

4 

5 

5 

10 

•5 

•5 

I 

'9375 

2 

4 

6 

5 

12 

.5 

.625 

I 

1.125 

2 

Lbs. 
1.25 

1-5 

2 

2.5 
2-5 

3 


WATER-PIPE. 

Fiimi  .yj$  Inch  to  5  Inches  in  Diameter, 


XHaiB. 


Thick- 
Dees. 


Inch. 

•375 

•375 

•375 

•375 

.375 

•5 

•5 

•5 

•5 

•5 

•5 

•5 
.625 

.625 

.625 

.625 

.625 

.625 


Inch. 
.08 
.12 
.16 
.19 

.34 
.07 

.09 

.II 

•13 
.16 

.19 

•25 

.08 

.09 

•13 
.16 

.2 

.22 


Weight. 


Lbe. 
.625 

I 

125 

^•5 

2.5 

.0545 

•75 
I 

1.25 

^•75 

2 

3 
.0727 

I 

15 

2 

2-5 

2.75 


Diam. 


Thick-' 


Ins. 
.625 

•75 
•75 
•75 
•75 
•75 

.75 

I 

I 

I 

I 

I 

I 

I 

1.25 

1.25 

1.25 

1.25 


Inch. 

•25 
.1 

.12 

.16 

.2 

.23 

•3 
.1 

.II 

.14 

•17 
.21 

.24 

•3 
.1 

.12 
.14 
.16 


Thick- 

Thick- 

Weight. 

Dtam. 

ness. 

Weight. 
Lbe. 

IMam. 

ness. 

Lbe. 

Ids. 

Inch. 

Ins. 

Inch. 

3.5 

1. 25 

.19 

4^75 

2.5 

•3125 

1.25 

1.25 

.25 

6 

2^5 

.375 

1^75 

1-5 

.12 

3 

3 

•1875 

2.25 

1-5 

.14 

3-5 

3 

•25 

3 

1-5 

•17 

425 

3 

•3125 

35 

1-5 

.19 

5 

3 

•375 

4^75 

^•5 

•23 

6^5 

3.5 

•1875 

1^5 

^•5 

•27 

8 

3-5 

•25 

2 

^•75 

•13 

4 

3.5 

•3125 

9'S 

^•75 

.17 

5 

3-5 

•375 

3.25 

175 

.21 

6.5 

4 

.1875 

4 

1-75 

.27 

8.5 

4 

•25 

4.75 

2 

•IS 

4^75 

4 

.3125 

6 

2 

.18 

6 

4 

•375 

2 

2 

.22 

7 

4^5 

•1875 

2.5 

2 

.27 

9 

4-5 

.25 

3 

2.5 

•1875 

8 

1 

5 

•25 

3-75 

2.5 

•25 

'11 

5 

•375 

Weight 

Lbs. 

14 

17 

9 
12 

16 

20 

9-5 
15 
18.5 
22 
12.5 
16 
21 

25 

14 
18 

20 
31 


JMai*ks   and  'V/ eight  of*  Tin-plates,    (EngUsh.) 


Mask 
om  Dhawd. 


iCori  Com. 
aC 

k%:::::::. 

HX. 

xX 

aX 

3X 

iXX 

iXXX. 

1   A  A  A  A.  .  .  . 

I  XXXXX..' 
iXXXXXX 

DC 

DX 

DXX 

DXXX  .... 


Plates 
per  Box. 


No. 
aas 
aas 
aas 
225 
225 
225 
225 
225 
225 
225 
225 
225 
225 
100 
100 
100 
100 


Dimenaions. 


Ins. 
375X10 
3.25X  9.75 
2-75X  9.5 
375X10 
3-75X10 
375X10 
3-25X  9-75 
4-75X  9  5 
375X10 
3-7SXIO 
3-75X10 
375X10 
375X10 

[6.75X12 
6.75X12  . 
6.75X12.5 
16.75X12.5 


•5 
•5 


Weight 
per  Box. 


No. 
112 

»05 

98 

119 

>57 
140 

133 
126 

161 
182 
203 
224 

245 

98 

ia6 

M7 
168 


Mask 

Plates  , 

OR  Bband. 

per  Boz.i 

No. 

DXXXX 

100 

snc 

aoo 
aoo 

SDX 

SDXX 

aoo 

snxxx 

aoo 

SDXXXX. . . . 

aoo 

SDXXXXX. 

aoo 

SDXXXXXX. 

aoo 

Leaded  IC... 

iia 

♦'      IX... 

iia 

ICW 

335 

IXW 

335 

csnw 

aoo 

CIIW 

100 

XIIW 

100 

TT 

450 
450 

XTT 

Dimensions. 


Ins. 
16.75X12.5 
IS       Xii 
Xii 
Xii 
Xii 
Xii 
Xii 
Xii 
X14 
X14 
13-75X10 
13-75X10 
15      Xii 
16.75X12.5 
16.75X12.5 
13-75X10 
13-75X10 


15 
15 

>s 
15 
15 
15 

ao 
30 


Weight 
per  Box. 


No. 
189 
168 
188 
209 
330 

251 
272 
293 
112 
140 
112 
140 
168 

105 
126 
112 

ia6 


When  the  plates  are  14  by  so  inches,  there  are  1 12  in  a  boZi 


■38 


STEAM,   QA8,    AND   WATER  PtPBB. 


^ 

c,„ 

imftc 

^°t 

*£. 

I'uL 

i 

i^£, 

"^ST 

^TlS 

-54 

'"» 

■»j 

'°i 

.«s 

:a 

« 

J.6 

1!^ 

if 

a; 

if 

3.07 

■5 

i 

319 

*■! 

trt 

^"1 

^ 

.7.1« 

iit'i 

"m 

1" 

;n 

T.rrf 

J,,o 

" 

'"•■?•; 

«™ 

j; 

iS 

MS6' 

:; 

3"5 

37 

ii 

:;-7^: 

» 

~ 

1' 

SK 

Siii* 

.«.» 

z 

JV 

St.o* 

asi 

n-'i 

m 

■=£ 

■=-:ii 

Mi 

IF 

Hi 

n. 

u.. 

iQl 

■A 

.„■' 

4?»« 

■»* 

,i..n 

..6, 

B 

5  74 
7-54 

^5 

9.01 

.i,,t, 

4-S 

;-iB 

,<!.;« 

6 

«■' 

J 

J's? 

7757 

z 

•»9 

ti'^' 

z 

.1! 

— 

ILap.wel(Ied  Steel,  Semi-Steel,  Special  I^ooi 
and  Eh^anlc Unite  Boilei'  ITubes. 
Standard   Dihessions.     :^atioaul  T<J>e  Co. 


DU 

IdHc- 

a 

^1 

EiHr- 

Ibb^ 

Tr. 

ii 

1 

95" 

"■"■ 

'Sf 

CS. 

liJ^ 

ii>. 

iji 

IS" 

i. 

2 

IDI. 

1 

Hi 

i 

[n>. 
J.  6a 

1 

i 

=.4°5 

9.61, 

s 

i;i 

1 

4.58 

!-3p 

r 

IJS 

Ek  or  tvpiperiiMu  Hirffid*  of  LdIh.  u 


nCON  BOILSB  TUBES. 


139 


X^ap  •  -welded. 


Ch.arooal     Iron. 
TulDes. 


and     Steel     IBoiler 


Standard  Dimensions. 
National  Tube  Co, 


Dkwwlcr. 

1 

\ 

Circumfsr- 

TransTerss  Arsss. 

ijen^iu  per 
Sqaare  Foot 

111 

• 

11 

■S  a 

J 

1^ 

•DCS. 

of  Snrfiiee. 

Extar. 

Inter. 

n»l. 

1 

Ezter. 
nsl. 

Intsr- 
nal. 

Exter-^ 
nal.  * 

Inter- 
nal. 

Mefol. 

Exter- 
nal. 

Inter- 
nal. 

?>l 

&i 

Ins. 

Ina. 

Ins. 

No. 

Ins. 

Ins. 

Sq.  Ins. 

Sq.  In». 

Sq.Ins. 

Ft. 

Pk 

Lba. 

Ina. 

I 

.86 

.072 

IS 

3-14 

2.69 
3.08 

.78 

-57 

.21 

3.82 

4.463 
3.894 

.71 

•  0 

1 

1. 125 

.98 

.072 

15 

3^53 

•99 

.75 

.24 

3.396 

1.125 

1-25 

I. II 

.072 

15 

3.93 

3-17 

1.23 

.96 

.27 

3^056 

3-453 

.89 

1.25 

1«3I2 

1. 15 

.083 

14 

4.12 

3-S 

'•35 

1.03 

.32 

2. 911 

3-333 

1.08 

I- 313 

1-375 

1. 21 

.083 

14 

4 -.32 

3.8 

1.48 

>.i5 

•34 

2.778 

3.16 

«.i3 

1-375 

1-5 

1.33 

.083 

H 

4.71 

4.19 

1.77 

X.4 

•37 

2.547 

2.863 

1.24 

J-5 

1.625 

1.43 

-095 

«3 

5-' 

4-51 

2.07 

1.62 

•46 

2.352 

2.662 

^•11 

1.625 

X.75 

1.56 

095 

13 

5-5 

4.9 

8.4^ 

X.91 

•49 

2.183 

2.448 

1.66 

1-75 

1.875 

1.68 

-095 

13 

5.89 

5.29 

2.76 

2.23 

•53 

2.037 

2.267 

1.78 

1.875 

2 

Z.81 

•095 

13 

6.28 

5-6o 
6.08 

3^i4 

2.57 

•|7 

Z.91 

2. II 

x.91 

2 

3.125 

1.93 

•095 

13 

6.68 

3-55 

2.94 

.6x 

1.797 

1.974 

2.04 

2.125 

3.35 

a. 06 

.095 

13 

7-07 

f-^z 

3.98 

3-33 

.64 

1.698 

1.854 

2.16 

2.25 

2.375 

2.16 

.109 

12 

7.46 

6.78 

4^43 

3-65 

•78 

1.608 

1. 771 

2.61 

2.375 

2.5 

2.28 

.109 

12 

785 

7.17 

4.91 

4.09 

.82 

1.528 

1.674 

2.75 

2.5 

2.75 
3.875 

2-53 

.109 

12 

8.64 

7-95 

5.94 

503 

•9 

1.389 

1.508 

3.04 

2.75 
2.87s 

2.66 

.109 

12 

9-03 

8.35 

6.49 

5.54 

•95 

1.329 

1.438 

3.Z8 

3 

2.78 

.109 

12 

9.42 

8.74 

7.07 

6.08 

,:?! 

1.273 

'•373 

3.33 

3 

3-25 

3.01 

.12 

IX 

X0.21 

9.46 

H 

7.12 

J.I75 

1.269 

3.96 

3.25 

3-5 

3.26 

.12 

IX 

II 

10.24 

9.62 

8.35 

X.27 

1. 091 

1. 172 

4.28 

3.5 

3-75 

3.51 

.12 

>X 

11.78 

11.03 

XX. 04 

9.68 

>.37 

1.019 

X.088 

4.6 

3.75 

4 

3-73 

•134 

10 

12.57 

11.72 

12.57 

X0.94 

X.63 

.955 

1.024 

5.47 

4 

4.25 

3-98 

-134 

10 

13.35 

12.51 

14.19 

12.45 

'•^3 

.899 

•959 

5.82 

4-25 

4.5 

4-23 

•134 

10 

14.14 

13.29 
14.08 

15.9 

14.07 

1.84 

.849 

.903 
.852 

6.17 

4-5 

4-75 

4.48 

.»34 

xo 

14.92 

17.72 

15.78 

1.94 

.804 

6.53 

4.75 

5 

4-7 

.148 

9 

15. 7' 

14.78 

19.63 

17.38 

2.26 

.764 

.812 

7.58 

5 

5- "25 

4.95 

.148 

9 

16.49 
17.28 

15.56 

21. 65 

19.27 

2.37 

.728 

.771 

I'^l 

5.25 

5. 25 

5.2 

.148 

9 

16.35 

23-76 

21.27 

2.49 

.694 

.734 

8.36 

5.5 

6 

5.67 

.165 

8 

18.85 

17.81 

28.27 

25-25 

3.02 

.637 

.674 

10.16 

6 

7 

6.67 

.165 

8 

21.99 

20.95 

38.48 

34^94 
46  2 

3-54 

.546 

.573 

11.9 

7 

8 

7.67 

.165 

8 

25.13 

24.x 

?^:?? 

4.06 

•477 

.498 

13.65 

8 

9 

8.64 

.18 

7 

28.27 

27.14 

58.63 

4.99 

.424 

'442 

16.76 

9 

10 

9-59 

.203 

6 

31.42 

30-14 

78.54 

V,:% 

6.25 

.382 

.398 

20.99 

10 

zx 

10.56 

.22 

5 

34^56 

33-17 

95.03 

7-45 

•3^Z 

.362 

25.03 

11 

12 

11.54 

.229 
.238 

4-5 

37-Z 
40.84 

36.26 

113. X 

104.63 

8.47 

.318 

•33 

28.46 

12 

X3 

12.52 

4 

39-34 

132.73 

123.19 

9-54 

.294 

•305 

32.06 

'3 

X4 

'3  5 

.248 

3.5 

43.98 

42.42 

153-94 

143.22 

Z0.71 

.273 

.383 

36 

14 

15 

14.48 

.259 

3 

47.12 

45-5 

176.71 

164.72 

11.99 

.255 

.2^% 

40.3 

15 

16 

15.46 

.271 

2.5 

50.27 

48.56 

201.06 

187.67 
238.66 

13  •39 

•239 

.247 

45.2 

16 

18 

17-43 

.284 

2 

56-55 

54-76 

254-47 

15.81 

.212 

.219 

52.87 
64.84 

18 

20 

19.38 

.312 

•31 

62.83 

60.87 

314.16 

294.86 
356.8 

19.3 

.191 

.197 

20 

22 

21. 31 

•343 

•03 

69.11 

66.96 

380.13 

23.34 

.174 

.179 

78.5 

22 

24 

83.25 

.375 

•37 

75.4 

73.04 

452.39 

424.56 

27.83 

.159 

.164 

93-37 

24 

26 

»5.BS 

-375 

•37 

81.68 

79-32 

530.93 

500.74 

30.19 

.147 

.151 

1 03 

26 

28         >. 

87.25 

-375 

-37 

87.96 

85.61 

615.75 

583.21 

32.54 

.136 

.14 

no 

28 

30        Ij 

19.25 

•375 

•37 

94-25 

91.89 

706.86 

671.96 

34.9 

.X27 

.131 

u8 

30 

NoTB  I. — For  diameters  from  13  up  to  and  including  30  ins.  0.  D.,  details 
are  in  conformance  with  the  circumstances,  as  there  is  not  a  standard,  the 
tiUckaess  varying. 

Note  2. — In  estimating  effective  heating  or  evaporating  surface  of  tubes* 
as  heating  liquids  by  steam,  superheating  steam,  or  transferring  heat  from 
0D«  HQOid  or  one  gas  to  another,  mean  surface  of  tubes  is  to  be  computed* 


I40 


WEIGHT   OF   COPPER   TUBES. 


"W^eigh-t   of  Seamless   IDraTvn.    Copper  Tubes. 

A.ixiericaii    Tube   "Worlis.     (Boston.) 
BY    EXTEHNAL   DIAMETER.      ONE   FOOT  IN    LENGTH. 

Stubs'  W.  G.     From  .25  Inch  to  12  Ins.—fjvil^  I  light. 
No.         20        19        18    I    17        16    I     15  14     I     13     |     12  11 


Ins. 


Diamet'r. 
.25 

•375 

.5 
.625 

•75 

•875 
I  * 

1. 125 

125 

1-375 

1-5 

1.625 

^•75 

1875 

2 

2.125 

2.25 

2375 

2.5 

2625 

2.75 
2.875 

3 

3-25 

35 

3-75 

4 

4^25 

45 

4-75 

5 

525 

5-5 

5-75 
6 

6.25 

6.5 

6.75 

7 

7-25 

7-5 
8 

8.5 

9 

95 
10 

10.5 

zi 

"5 
la 


V32/  3/64/ 


Lbs. 
.09 
.14 
.2 

•25 

•3 
.36 

•41 
.46 

•52 

•57 
.62 

.68 

•73 
.78 

.84 

•89 

•94 

I 

1.05 
I.I 
1. 16 
1.21 
1.26 

137 
1.48 

1.58 

1.69 

1.8 

1.9 

2.01 

2.12 

2.23 

2.34 

2.44 

2.55 
2.66 

2.76 

2.87 

2.98 

3^o9 
3-19 
3-41 
3.62 

383 
4-05 
4.26 

447 
4.69 

4.9 


Lbs 
.1 
.16 

•23 
.29 

.36 
.42 
.48 

•55 
.61 

.68 

•74 
.8 

•87 
•93 

.06 

•13 

.19 

•25 
•32 
•38 
•45 

•51 
.64 

•77 

•9 
2.02 

2.15 

2.28 

2.41 

2.54 
2.66 

2.79 
2.92 
305 
3-i8 
331 
3-44 
356 

369 
382 

4.08 

433 
4^59 
4.85 
5." 

5-37 
5.62 

5.88 

6.13 


3/64  / 1 1/16  ( 


»/i6/i    5/64/ 


LbB. 
.12 
.19 

•27 

•34 
.42 

•49 

•57 
.64 

•71 

•79 
.86 

•94 
.01 

.09 

.16 

.24 

•31 

•39 
.46 

•54 
.61 

.68 

•76 
.91 
2.06 
2.21 
2.36 
2.51 
2.65 
2.8 

2^95 

3-1 

325 

3-4 

3-55 

3-7 

385 

4 

4-iS 

4-3 

4-45 

4-74 

5-04 

5-34 

5-64 

5-94 
624 

6.54 
6.84 

7^U 


Lbs.    I    Lin. 


•13 
•23 
.31 

•4 

•49 

•58 

.67 

•76 

.84 

•93 
.02 

.11 

.2 

.29 

•37 
.46 

•55 
.64 

•73 
.82 

•9 

•99 
2.08 

2.26 

2.43 
2.61 

2.79 
3.14 
C532 

3-49 
367 
3.85 
3.85 
4.02 

4.2 

4.38 

4.55 

4.73 

4.91 

5.09 

5.26 

5.62 

5^97 
6.33 
6.68 

7^03 
7-39 
7^74 
8.1 

8.45 


.14 
.24 

•34 

•44 

•54 
.64 

•74 
.83 
•93 
•03 
•13 
•23 
•33 
•43 
•53 
.63 

•73 

.82 

.92 
2.02 
2.12 
2.22 
2.32  I 
2.52 
2.72 
2.92 
3-II 
331 
3-51 
371 

3-91 
4.II 

4^3 

4.5 

4-7 
4.9 

5-1 

5-3 

5^49 

569 

5.89 
6.29 

6.68 

7.08 

7.48 

7.87 
8.27 
8.67 
9.06 
9.46 


Lbs. 

•15 
.26 

•37 
.48 

•59 

•7 
.81 

.92 

1.03 

1. 14 

1.25 

1.36 

1.47 

1.58 

1.69 

1.8 

1. 91 

2.02 

2.13 

2.23 

2.34 
2.45 
2.56 

2.78 

3 
3.22 

3-44 
366 

3^88 

4.1 

432 

4^54 
4.76 

498 
5^2 

541 
563 

5^85 
6.07 
6.29 
6.51 
6^95 
7^39 
7^83 
8.26 

8.7 
9.14 

9.58 
10.02 

10.4s 


5/64/^ 

Lbs. 

•17 
.29 

.42 

•55 
.67 
.8 

•93 
.05 
.18 

•31 
•43 
.56 
.69 
.81 

94 
2.07 
2.19 
232 
2.45 

2.57 
2.7 

2.83 

2.95 
3.21 

346 

3^71 

397 
4.22 

447 

4^73 
4.98 

5.23 

5-49 

5^74 

5-99 
6.25 

6.5 

6.75 

7.01 

7.26 

7-51 
8.02 

8.52 
903 

9-54 
10.05 

10.55 
11.06 

11.56 
12.07 


3/32/      7/64 


Lbs. 
.18 

•32 

•47 
.61 

.76 

•9 
1.05 

1. 19 

134  j 
1.48 

1.63 

1.77 

1.92 

2.06 

2.21 

2.35 

2.5 

264 

2.79 

293 
308 

3.22 

3-37 
3-66 

3-95 
4.24 

4-53 
4.82 

5^" 

54 

569 

598 

6.27 

6.56 

6.85 

7.14 

7  43 
7.72 

8.01 

8.30 

8.59 
9.17 

975 

10.33 
10.91 

11.49 

12.07 

12.65 

1323 
13-81 


Lbs. 
.19 

•35 
•52 
.69 

.85 
1.02 
1. 18 

13s 

1^52 

1.68 
1.85 
2.02 
2.18 

2-35 
2.51 

2.68 
2.85 
3.01 
3- 18 
335 
351 
3.68 

384 
4.18 

451 
4.84 

5.17 

5.51 

5.84 
6.17 

6.5 

6.84 

7.17 

7^5 

7.83 

8.17 

8.5 
8.83 

9.16 
9-5 

9^83 
10.49 

11.16 

11.82 

12.49 

1315 
1382 

14.48 

15-15 
1581 


»/8  / 


Lbs. 

,19 

•37 
.56 

74 
.92 

I. II 

1.29 

1.47 

165 
1.84 
2.02 
2.2 

2.39 

2.57 

2.75 

2.93 
3.12 

3-3 
3.48 
3.67 
385 

4^03 
4.22 

4.58 

4.95 

5.31 
5-68 

6.05 

641 

6.78 

714 

7.51 

7.87 
8.24 

8.61 

8.97 

934 

91 
10.07 

10.44 

10.8 

"•53 
12.26 

13 

1373 
14.46 

15-19 

15-93 
16.66 

17.29 


WBIOUT  OF  COP?4»  TUBES. 


141 


No. 

10 

9 

8 

7 

6 

5 

4 

^  3 

2 

1 

lita. 

9/64/ 

9/64/ 

"/64^ 

3/x6/ 

'3/64 

7/32  /  13/64  / 

V4/ 

9/32/ 

'9/64/ 

DUmet'r. 

Lbt. 

Lbs. 

LlM. 

Lbi. 

Lbe. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

.375 

•4 

.41 

.42 

.44       — 

— 

— 

— 

— 

— 

•5 

.61 

.64 

•67 

.71          .73 

.75 

.76 

— 

— 

— 

.625 

.81 

.86 

.92 

.99       1.04 

1.09 

1. 12 

iii3 

1.18 

— 

.75 

1. 01 

1.09 

I.I7 

1.26  j      1.35 

1.42 

1.49 

1.53,    i-6i 

163 

.875 

1.22 

I -31 

1.42 

1.53 !    1.66 

1.76 

1.85 

1.92  1    2.04 

2.09 

I 

1.42 

1-54 

1.67 

1.81 1    1.97 

2.09 

2.21 

2.32  !     2.48 

2.5s 

I.125 

1.63 

1.78 

1.93 

2.08     2.28 

2.43'     2.58 

2.71        2.91 

3 

1.25 

J.83 

2 

2.18 

2.36     2.59 

2.76:     2.94 

3-11 

3-34 

3-46 

1-375 

2.03 

2.22     2.43 

2.63     2.9 

31     1     3.3 

3-5 

3-77 

392 

1.5 

2.24 

2.44     2.68 

2.91      3.21 

3-43;    3-67 

3-9 

4.21 

4-38 

1.625 

2.44 

2.67     2.93 

3.18 

3-52 

3-77'    403 

4.29 

4.64 

4.83 

1-75 

2.65 

2.89     3.18 

3.45 

3.83 

411 1    4-39 

4.69 

507 

5-29 

1.875 

2.85 

3.12 

3-44 

3-73 

4.14 

4-44     476 

5-o8 

5-51 

5-75 

2 

3.06 

3-34 

3-69 

4 

4-45 

4.78 1    5.12 

548 

5  94 

6.21 

2.125 

3.26 

3-57 

3.94 

428 

4-75 

5.11     5.48 

587 

637 

6.66 

2.25 

3-46 

3.8 

4.19 

4-55 

5.06 

5-45     5-84 

6.27 

6.81 

7.13 

2.375 

3.67 

4.02     4.44 

4.82 

5.37 

5.78     6  21 

6.66 

7.24 

7-37 

2.5 

3.87 

4.25!    4.69 

5.1 

568 

6.12 

6.57 

7.06 

767 

804 

2.625 

4.08 

4-47  1    4-95 

5-37 

6 

645 

6.93 

7  45 

8.1 

849 

2.75 

4.28 

4.7       5-2 

5-65 

63 

679 

7.29 

785 

854 

895 

2.875 

4.48 

4-92     5-45 

5-92 

661 

7.12 

766 

8.24 

8.97 

941 

3 

4.69 

5-15     5.7 

6.2 

692 

7-46 

802 

8.64 

94 

987 

3.25 

5.1 

56    [   6.2 

6.74 

7-54 

8.13 

8.75 

9-43 

10.27 

10.78 

3-5 

5.51 

6.05     6.71 

7-29 

8.16 

8.8 

9  47 

10.22 

11.14 

11.7 

3.7s 

5.91 

6.5    1    7.21 

7.84 

8.78 

9  47 ;  10.2 

11.01 

12 

12.61 

4 

6.32 

6.951    7-71 

8.39 

94 

10  14]- 10.92 

11.8 

1287 

1353 

4.25 

6-73 

7-4 

8.22 

8.94 

10.02 

10  81 

11.65 

12.59 1 1373 

14.44 

4-5 

7.14 

7.85 

8.72 

9.49 

1064 

11,48 

12.37 

1338    14-6 

15-36 

4.75 

7-55 

8.3 

9.22 

10.04 

11.26 

12.16  1  131 

14.17    15.46 

1627 

5 

7.96 

8.75 

9-73 

10.58 

11.88 

12.83  1  13  83 

,  14-96 '  16.33 

17.19 

5.25 

8.36 

9.21 

10.23 

11.13 

1249 

135 

14.55 

i  15-75   172 

181 

5.5 

8.77 

9.66 

10.73 

11.68 

13. 1 1 

14.17 

1528 

^  16.54 )  18.06 

1902 

5.75 

918 

10. 1 1 

11.24 

12.23  1  13.73 

14.84 

16 

1  17-33   1893 

1993 

6 

9-59 

10.56 

11.74 

12.78 

;  14  35 

15-51 

16.73 

18.12  1 19.79 

20.85 

6.25 

xo 

1 1. 01 

1 12.24 

13.33 

1 14-97 

16.18 

17.46 

18  91 

20.66 

21.76 

6.5 

10.41 

11.46;  12.75 

^3-88 

:  15.59 

16.85 

18.18 

,19-7 

21.53 

22.68 

6.75 

10.82 

II. 91 

1325 

14.42 '  16.21 

1752 

18.91 

20.49 

22.39 

2359 

7 

11.22 

12.36 

1375 

14.97    16.83 1  18.19 

1963 

21  28  j  23.26 

24.51 

7.25 

11.63 

12.81 

14.26 

15-52 

17.45  18.86 

20.36 

22.07   24.13 

25-42 

7.5 

12.04 

13.26 

14.76 

16.07 

18.07  ;  1954 

21.08 

22.86  25 

26.34 

7.75 

12.45 

13.71 

15.26 

16.62 

18.68  20.21 

1 

21.81 

23.65   25.86 

27-25 

8 

T2.86 

;  14-17  '  15-77 

17.17 

19.3  1 20.88 

22.54 

24.44 

26.72 

28. 1 7 

8.25 

13-27 

14.62    16.27 

17-71 

1992  21.55 

23.26 

25-23 

27-59 

29.08 

8.5 

13-67 

15.07    16.77 

18.26 

20.54  ,  22.22 

2399 

26.02 

28.45 

30 

8.75 

14438 

15.52    17.28 

18.81 

21.16 ,  22.89 

24.71 

;  26.81 

29.32 

30.91 

9 

14.49 

15-97  ,  17-78 

19.36 

21.78  23.56  [  25.44 

27.6 

30.18 

31.83 

9-25 

14.9 

\  16.42    18.28 

19.91 

22.4    24.23 

26.17 

28.39  '31-05 

32.74 

95 

15.31 

'  16.87 

1 18.79 

20.46 

23.02  24.9 

26.89 

29.18131.92 

3366 

9-75 

15.72 

,  17.32 

1929 

21.01 

23.64  25.57  j  27.62 

29.97  32.78 

'34.57 

10 

16.12 

17.77 '  19.79 

21.55 

24.26  26.24 '  28.34 

30.76  33.65 

'  35-49 

10.5 

16.94 

!  18.68  20.8 

22.65 

255    27.59  29.79 

32-34  3538 

37.32 

n 

17.76 

1958  21.81 

23-75 

2673  28.93 '31.25 

3392  37.11 

3915 

"•5 

18.57 

20  48  22.81 1  24.84 

27-97  30.27:32.7 

355    38.84 

40.98 

12 

19.39 

21.38 

23.82 

'25.94 

29.21 

3161 

'34-15 

137.08 

40.58 

42.81 

142      WEIGHT   OF   COPPBB   AND   BBASS   TUBES,  ETC. 

JBy  Internal  X>iameter. 

Add  following  Units  to  Weights  for  External  Diameter  in  preceding  tables. 


No. 


2.21 


No. 


•35 


2 


1.97 


1.66 


JL2^ 
.29 


13 
.22 


4 

5 

6 

7 

8 

9 

10 

1.38 

1. 18 

ix>i 

.78 

.67 

•53 

.43 

14 

15 

16 

17 

18 

19 

20 

•17 

.13 

.11 

.08 

.06 

.05 

•03 

Illustration.— What  is  weight  of  a  copper  tube  6  ins.  in  internal  diameter, 
No.  3  gauge,  and  one  foot  in  length  ? 

By  preceding  table  6  ina  external,  No.  3  gauge  =  18.12,  and  18.12  -f- 1.66  = 
19. 78  lbs. 


WEIGHT    OF   BRASS   TUBES. 

To    Compu.te   "Weiglit   of  Srass   Tnbes. 

jALxrierioaii    Tti"be  "Works.    {Boston.) 

Rule. — Deduct  5  per  cent  from  weight  of  Copper  tubes. 

Example.  —  What  is  weight  of  a  brass  tube  6  ins.  in  external  diameter,  No.  3 
gauge,  and  one  foot  in  length? 

By  preceding  table  6  ins.  =  18.12,  from  which  deduct  5  per  cent  =17.21  Iba 

By    Internal  X>iameter. 

Rule. — Proceed  as  above  for  internal  diameter,  and  deduct  5  per  cent. 

Example. — Weight  of  a  copper  tube  6  ins.  internal  diameter,  No.  3  gauge,  and 
I  foot  in  length  =  19.78  lbs. 

Hence,  19.78  —  5  per  cent.  =  18.79  Ibg. 

Note. — Diameter  of  Tubes,  as  for  Boilers,  is  given  externally,  and  that  for  Pipes 
internally. 

Weights  of  Enylish  are  essentially  alike  to  the  preceding.    {D.  K.  Clark.) 

Seamless    Brass    Pipe. 

A-xiierioaii    Tube    "WorUs.     (Boston.) 
Made  to  correspond  with  Iron  Pipe  ami  to  fit  Ir<,n  Pipe  fillings. 


S  -*i 

Diameters. 

gs.g 

Same 

Exact 

M  Iron 
Pipe. 

Inter- 
nal. 

Exter- 
nal. 

Ills, 

IllK. 

Ins. 

Lbs. 

% 

.281 

•40s 

•25 

K 

■375 

•54 

43 

% 

.484 

•67s 

.62 

X 

.625 

•84 

•9 

K 

808     I.  OS 

1-35 

I 

1.062     1.315 

I  7 

Seui 

nless  C 

opper  F 

Mpe  of 

Same 

as  Iron 

Pipe. 


Diameters. 
Exact 


Ins. 

iX 
2 

2>^ 

3 


Inter- 

Exter- 

nal. 

nal. 

Ins. 

Ins. 

1368 

1.66 

1.6 

1.9 

2.062 

2375 

2-5 

2875 

3.062 

3-5 

3-5 

4 

ll« 
$^ 

Lbs. 
2-5 
3 
4 

5-75 
8.3 
10  9 


Diameters 

Same 

as  Iron 

Pipe. 

Exi 

Inter- 
nal. 

Ins. 

Ins. 

4 

5 
6 

4 

45 

5.062 

6.125 

i    — 

— 

3   k.  «> 


ct 

Exter- 
nal. 

.^3 

Ins. 

Lbs. 

4-5 

12.7 

5- '563 
6.625 

13.9 

«575 
18.31 

ike  diameter  is  5  per  cent,  heavier 
"Weiglit   of  Sheet   Brass. 
ONE  SQUARE  FOOT.     {Holtzapjjfd's  Gaugc.) 


Tbickness. 


No. 

Inch. 

3 

•259 

4 

.23S 

5 

.22 

6 

.203 

7 

.18 

8 

.165 

Weight. 

Thickness. 

Weight. 

Lbs. 

No.       Inch. 

Lbs. 

10.9 

9     .148 

6.23 

10 

10 

•134 

5.64 

9.26 

11 

.12 

505 

8.55 

12 

.109 

4-59 

7.58 

13 

•095 

4 

6.95 

14 

.081 

3-49 

Thickness. 

Weight. 

Thickness.     | 

No.       Ii)cb. 

Lbs. 

No. 

Inch. 

15    ,   .072 

3-03 

21 

•032 

16    1   .065 

2.74 

22 

.028 

17    1   .058 

2.44 

23 

.025 

18       .049 

2  06 

24 

.022 

19 

.042 

1.77 

25 

.02 

20 

'03S 

1.47 

Weight. 


Lbs. 

1-35 
1. 18 

1.05 
.926 
.842 


WEIGHT  OF   WROUGHT  IKON   TUBES. 


143 


"Weight   of  Wrough-t  Iron  Tubes.    {SnglUh.) 

EXTERNAL   DIAMETfiR.      ONE   FOOT   IK   LENGTH. 

HoltzapJeVs  Wire-Gauge.   ffuUy  I  light. 


No. 

— 

— 

4 

5 

Int. 

•3»25 
S/16 

Lbs. 
21  9 

235 

^  281 

9/32 

.238 
«5/64/ 

.aa 

7/32 

Di«in. 
7 
75 

Lbs. 

19.8 

21.3 

Lbs. 

16.9 

18.I 

Lbs. 

15-6 

16.8 

8 
85 

25-2 
268 

22.7 
24.2 

193 
30.6 

17.9 
19. 1 

9 

;  284 

257 

21.8 

202 

9-5 

XO 

1  301 

1    31  7 

27.1 
•28.6 

23,1 

24-3 

21.4 
22.5 

.148 

9/64/ 


Lbs. 

Lbs. 

Lbs. 

Lbs. 

14.5 

129 

II.8 

10.6 

15.5 

138 

\     12.7 

II.4 

16.6 

147 

13.5 

12.3 

17.6 

157 

14.4 

12.9 

18.7 

166 

153 

13-7 

19.8 

17.6 

16.1 

14-5 

20.8 

18.5 

17 

15.3 

No 


Dlam 
X 

X  125 

1-25 

1-375 

X.025 

1-75 
187.5 

2 

2  125 

2  2S 

2^375 

25 

2625 
27s 

2875 

3 
325 

3  5 
3-75 
4 

4-25 
45 

4  75 
5 

5-25 
5-5 
5-75 
6 
6.25 

65 
6.7s 

7 

725 

7-5 

7-73 
% 


7 

8 

«     9 

10 

1 1 

12 

18 

165 

148 

•134 

ta 

.109 

3/16/ 

"/64  / 

9/64/ 
Lbs. 

9/64/ 

«/8/ 
l.bs. 

7/64 

~  Lh*^ 

Lbs. 

Llw. 

Lbs. 

155 

1.44 

1.32 

1.22 

I. II 

1.02 

1.78 

1.66 

i-Si 

1-39 

1.26 

1. 16 

202 

1.88 

I-7I 

^•57 

1.42 

1-3 

225 

2.09 

1.9 

1.74 

1.58 

145 

249 

2.31 

2.1 

1.92 

1-73 

1-59 

2  72 

2  52 

2.29 

2.09 

1.89 

1-73 

2.96 

2.74 
2.96 

248 

2.27 

2.05 

1.87 

319 

2.68 

245 

2.21 

202 

3  43 

317 

2.87 

262 

2.36 

2>l6 

367 

3-39 

3.06 

2.8 

2.52 

2.3 

39 

36 

3.26 

2.97 

2.68 

2.44 

4.14 

3.82 

3-45 

315 

2.83 

2.59 

437 

4.04 

365 

332 

2.99 

273 

461 

425 

384 

3-5 

315 

287 

4.84 

4  47 

403 

3.67 

331 

302 

5*^8 

468 

423 

3.85 

3-46 

316 

532 

4.9 

4.42 

402 

3.62 

3-3 

5-79 

533 

4.81 

4  37 

394 

3  59 

626 

5-76 

5-2 

4.72 

42s 

387 

673 

6.19 

5.58 

507 

4-57 

416 

72 

6.63 

5-97 

5-43 

488 

4.44 

7.67 

706 

6.36 

5.78 

52 

473 

8.14 

7-49 

6.45 

6.13 

5-51 

501 

861 

7.91 

713 

6.48 

5-82 

53 

9.08 

8.35 

7-52 

683 

6.13 

5.58 

9-56 

8.79 

7.91 

7.18 

6.44 

5.8- 

10 

9.22 

8.3 

7-53 

6.76 

615 

10.5 

965 

8.68 

788 

7.07 

6.44 

IX 

10. 1 

9,07 

8-23 

7-39 

6.73 

X1.4. 

10.5 

9.46 

858 

7-7 

7.01 

IX.9 

109 

9-85 

8-93 

8.02 

7-3 

xa.4 

11.4 

10.2 

928 

8.33 

758 

13.9 

IX.8 

lo.b 

963 

1% 

7.87 

13.3 

13.2 

II 

999 

8.  IS 

138 

12.7 

X1.4 

10.3 

9.27  , 

8.44 

14-3 

131 

X1.8 

10.7 

9-59 

872 

14.7 

'^•^ 

13.3 

II 

9-9 

9.0X 

13 


•095 
3/32/ 


083 

5/64/ 


07a 

5/64/ 


Lbs. 

Lbs. 

!     Lb*. 

9 

•797 

.7 

1-3 

.906 

1      .794 

1-15 

1. 01 

\     .888 

1.27 

1. 12 

.983 

1.4 

1.23 

1.08 

1.52  . 

1.34 

1. 17 

165 

1-45 

1.27 

1.77 

1.56 

I..36 

1.9 

1.67 

1.45 

2.02 

1.78 

•  1-55 

2.14 

1.88 

1.64 

2.27 

1.99 

1.74 

2-39 

2.1 

1.83 

252 

2.21 

1.93 

264 

2.32 

2.02 

2.77 

2.43 

2.11 

2.89 

2.54 

i  2.21 

314 

'  27s 

,  2.4 

3-39 

2.97 

2.59 

364 

319 

2.77 

3-89 

3-4 

2.96 

413 

3.62 

315 

438 

3.84 

3-34 

463 

4.06 

3.53 

488 

4.27 

372 

513 

4.49 

3-9 

538 

4.71 

4.09 

5-63 

4.93 

4.28 

5.87 

514 

4.47 

6.13 

5.36 

4.66 

6.37 

S.58 

4-85 

6.63 

5-79 

5-03 

6.87 

6.01 

5^23 

7.13  , 

6.23 

5-4X 

7-37  1 

645 

5.6 

7.63  ' 

6.66 

5.79 

786  i 

6.88    1 

5.98 

144 


WEIGHT   OF   COPPER  TUBES. 


Weiglit  of  Seaxxiless  Dra^vn  Copper  Tn^bes.   (Englith^\ 
For  Diameters  and  Thicknesses  not  given  in  preceding  Tables,  (D.  K,  Clark,) 

INTERNAL  DIAMETER.      ONE   FOOT   IN    LENGTH. 

HoUzapJeTs  Wire-Gauge,    yjuli,  I  light. 
Specific  Weight  =  i.i6.    Wrought  Iron  =  i. 


No. 


Ins. 


Diani. 

•75 

•875 
I 

1. 125 

1.25 

1.375 

1-5 

1.625 

1-75 

1.875 
2 

2.125 

2.25 

2-375 

2.5 

2.625 

2.75 

3 

3.25 

3.5 

3-75 

4 

4.25 

4-5 

475 

5 

5.25 

5-5 


0000 

•454 
29/64 


Lbs. 


000 


— 

— 

8.02 

736 

8.71 

8 

9.4 

8.65 

10. 1 

9-3 

10.8 

994 

11-5 

10.6 

12. 1 

11.2 

12.8 

11.9 

13.5 

12.5 

14.2 

13.3 

14.9 

13.8 

15.6 

14.5 

16.3 

151 

17 

15.8 

17.7 

16.4 

19. 1 

17.7 

20.4 

19 

21.8 

20.3 

23.2 

21.6 

24.6 

22.9 

25.9 

24.2 

273 

25.4 

28.7 

26  7 

30.1 

28 

31-5 

293 

32.8 

30.6 

425 
27/64^ 

Lbs. 


00 


.38 
3/8/ 


Lbs. 

5.79 
6.37 
6.95 
7.52 

8.1 

8.68 

9.26 

983 
10.4 
II 

11.6 
12. 1 
12.7 

13.3 

139 

14.5 
15.6 

16.8 

17.9 

19. 1 

20.2 

21.4 

22.5 

23.7 
24.8 

26 

27.1 


.34 

"/32 


Lbs. 

4-5 
5.02 

5-53 
6.05 

6.57 
7.08 

7.6 

8.12 

8.63 

9-15 
9.66 

10.2 

10.7 

11.2 

11.7 

12.2 

12.8 

13.8 
14.8 

15.9 
16.9 

17.9 

19 
20 

21 

22.1 

23.1 

24.1 


No. 


Ids. 


Diam. 

5.75 
6 

6.5 

7 

7-5 

8 

9 
10 

II 

12 

13 

14 

15 
16 

17 
18 

19 
20 

21 

22 

23 
24 

26 
28 
30 
32 
34 
36 


0000 


•454 
29/64 


Lbs. 

34.2 

35.6 

38.4 
41. 1 

43.9 
46.6' 

52.1 

57-7 
63.2 

68.7 

74.2 

79^7 
85.2 

90.7 

96.3 
101.8 

107.3 

1 12.8 

1 18.3 

123.8 

129.3 

134.8 

146 

157-2 
168.4 
179.6 
190.7 
201.9 


000 
.425 

«7/64/ 


Lbs. 

31.9 
332 

35.8 

38.3 
40.9 

43-5 
48.7 

53.8 

59 
64.2 

693 

74.5 
79.6 

84.8 

90 

95.1 
100.3 

105.5 
110.7 

1 15-8 
120.9 
126. 1 
136.4 
146.7 

157.1 
167.4 

177.7 

188 


00 


38 

3/8/ 


Lbs. 
28.3 

29.5 

31.8 

34.1 
36.4 
38.7 
43-3 
47-9 
52.5 
57-2 
61.8 
66.4 

71 

756 

80.2 

84.9 

895 
94.1 

98.7 

103.3 
107.9 
112.6 
121.8 

131 
140.2 

1495 

1587 
167.9 


•34 
"/3a 


Lbs. 
25.2 
26.2 
28.3 

30.3 
32.4 

34-5 
38.6 
42.7 
46.8 

51 

55-1 

59-2 

63.4 
67.7 

71.8 

76 

80.1 

84.2 

88.3 

92.5 
96.6 

100.6 

108.8 

117. 1 

125.4 

133-6 
141.9 

1 50. 1 


For  Diameter 

sfrom 

13  (0  24  Inches. 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

fna 

•3 

.284 

•259 

.238 

.22 

.203 

.18 

.165 

.148 

•"34 

^9/64/ 

9/32/ 

Lbs. 

V4/ 

^5/64/ 
Lbs. 

7/32/ 

Lbs. 

«3/64 

3/16/ 

"/64/ 

9/64/ 

9/d4  / 

OUin. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

13 

48.5 

45.8 

41.7 

38.3 

35.3 

32.6 

28.8 

26.4 

23.6 

21.4 

H 

52.1 

49-3 

44.9 

41.2 

38 

35.1 

31 

28.4 

25.4 

23 

15 

55-8 

52.7 

48 

44.1 

40.7 

37.6 

33-2 

30.4 

27.2 

24.6 

16 

59.4 

56.2 

51.2 

46.9 

434 

40 

35.4 

32.4 

29 

26.3 

17 

63 

59^6 

54.3 

49.8 

46 

42.5 

37.5 

34-4 

30.8 

27.9 

18 

66.7 

63.1 

57-4 

52.7 

48.7 

45 

39-7 

36.4 

32.6 

295 

19 

70.3 

66.5 

60.6 

55.6 

51.4 

47-4 

41.9 

38.4 

34.4 

31  .a 

20 

74 

70 

63.7 

58.5 

54 

49.9 

44.1 

404 

36.2 

32.8 

21 

77.6 

73.4 

66.9 

61.4 

56.7 

52.4 

46.3 

42.4 

38 

34-4 

22 

81.3 

76.9 

70 

643 

594 

54-9 

48.5 

44.4 

39-8 

36 

^3 

849 

80.1 

73-2 

67.2 

62.1 

57.3 

50.7 

46.4 

41.6 

37-7 

34 

88.6 

83.8 

76.3 

70.1 

64.7 

59-8 

52.9 

48.5 

43.4 

39-3 

WEIGHT  OF  COPPER  AND  WEODGHT  IRON  TUBES. 

For  Diamtttrt/ron  13  to  14  fneiti. 


No, 

11 

H 

IS 

iG 

.7 

IS 

.11 

.IDtl 

,=,5       .»., 

.071 

.06, 

.0,8 

.1.49   1   .04a 

03s 

Vj"/  ]  V6,/ 

Wii,i 

VM/.3/UI 

1,1.. 

14 

14.2 

.S.98 

■^-.i-a 

ai.,t 

'4-1 

ia.7 

II.T 

"7 

as 

22.7 

n.'i 

-4 

■Jf,.K, 

■■■i-t 

i4-.l 

11.7 

10.7         9.3 

IQ 

37-g 

IVl 

14.1 

a7.i( 

■M-^ 

31.1 

I3.S         10.7 

V-T 

HA 

:i^7 

ai-.-t 

351 

3'-9 

a4-3 

"'-' 

19 

10.3 

"Weiitht  of  "WrouBht   In 


I   Tubes.    (fBpiirtl 


ol  givea  in  prectding  Tabia.  {D.  K.  Clark.) 


B<ilUapfftl'>  Wire-Gai^.   f/vU,  I  Hgbl. 


)     93.6     80        66.S  S3  S0.4 

i     98.3I   83.9I    69.7  S5-6  52-9 

i  ica^S.   87.9'   73      58.3  55.4    _ 

76.3  60.9  57.9  .  53.4   ( 


I  144.7,138.31113  I 
1.156-5  138.8  iai-i;i 
I  168-3  149.3 1 130.3, 1 

"  "°"  i59-7l'39'5;i 
5  203.6  180,6   157-81 13s 


146 


WEIGHT   OF   IBON,  ST££L,  COPPER,  ETC. 


Weight    of  a   Square  IF'oot  of  "Wroiaglit   and   Oast 
Iron,  Steel,  Copper,  Lead,  Srass,  and  Zinc  Plates. 

From  .0625  to  1  Inch  in  Thickness, 


Tbickneu 


Ipcb. 

.0625 

.125 

.1875 

•25 

•3x25 

•375 

•4375 

•5 

.5625 
.625 

•6875 

•75 
.8125 

•875 
•937S 


Thick  nesa. 

Iiivli. 

•05 
.1 

.2 
.25 
3 

'35 

•4 

.45 

.5 

.55 
.6 

65 

•7 

•75 
.8 

.85 
•9 
•95 
f 

1.125 

I.2S 
1-3125 

1-375 

1-4375 

1-5 

1.5625 

1.625 

1-75 
1875 


Wrought 
iron. 

Lbs. 

a.517 
5.035 

7552 
1007 
12.588 

i5^io6 
17.623 
30  141 
22.659 
25.176 
27.694 
30-21 1 
32.729 

35-247 
37.764 

40.283 


j  Ca»t  Iron. 

steel. 

Coppor. 

Lba. 

Lba. 

Lb*. 

3.346 

2.541 

2.89 

4693 

5081 

5.781 

7039 

76«2 

8,673 

9.386 

10.163 

11.563 

"•733  i  "703 

14-453 

14  079    '5  244 

17-344 

16.426    17785 

20.334 

18.773  1  20.326 

23-125 

31.119    22.866 

26.016 

23  466  t  25  407 

28.906 

25.812 

27948 

31*797 

28159 

30488 

34.688 

30.505 

33.029 

37-578 

32852    35.57 

40.469 

35-199    38." 

43359 

37-545 

40.651 

46.25 

LnA. 

Brau. 

Gan- 
inet«h 

Zinc. 

Lb». 

L>>a. 

Lba. 

Lha. 

3691 

2.675 

2.848 

234 

7.383 

5.35 

5.696 

468 

IX. 074 

8.025 

8.545 

7.02 

14-765 

10.7 

"-393 

936 

18.456 

13-375 

14.241 

II  7 

32.148 

16.05 

17.089 

1404 

25-839 

18.725 

19.938 

16.34 

2953 

31.4 

32.786 

18.72 

33.222 

34.075 

25-634 

21.06 

36.913 

26.75 

38.483 

23.4 

40.604 

39.425 

31-331 

2574 

44.396 

32.1 

34-179 

2868 

47.987 

34-775 

37.027 

3042 

51.678 

36656 

39.875 

32.76 

55-37 

39-331 

42.723 

35-1 

59»o6i 

42.8 

45-572 

37-44 

F)*om  One  Tiaeniieth  Inch  to  TxDO  Inches  in  T%ickne8s, 


Wroaght 
Iron 


Lba. 

2.014 

4.028 

6.042 

8.056 

10.071 

12.085 

14.099 

16.113 

18.127 

20.141 

22.155 

24.169 

26.183 

28.197 

30211 

32.226 

34-24 
36.254 
38.26S 
40.282 

45317 
50.352 
53.87 

55387 

57905 
60423 

6294 

65458 

70.493 
75528 
80.564 


Caat  Iron. 


Lba. 
1.877 

3-754 
5.632 

7-509 
9.386 

11.264 

13.141 
15.018 

1689s 

18.773 
20.65 

22.527 

24.409 

26.281 

28.154 

30.035 
31.912 

33-79 
35.668 

37-545 
42338 
46.931 
49.378 
51.634 

53.971 

56.317 
58663 

61.011 

65704 

70.397 

75-09 


SteeL 


Lba. 
2033 

4.065 
6.098 
8.13 
10.163 
12.195 
14.228 
16.26 
18.293 
20.325 
22.358 

24-391 
26.423 

28.456 

30.488 

32.521 

34.553 
36.586 

38.628 
40.651 

45-732 
50.814 

53.354 
55.895 
58.436 
60.976 

63.517 
66.058 

71-^39 
76.33 

81.3 


Copper. 


Lba. 
2.312 
4.625 
6.938 

925 
11.562 

13875 
16.187 

18.5 

20.813 

23-125 
25.437 
27.75 
30.063 

32.375 
34.687 

37 

39-312 
41.625 

43.937 
46.25 

52.031 

57-813 
60.703 

63594 
66.484 

69-375 
72.266 

75  136 
80938 
86.719 
93.5 


Lead. 


Braaa. 


Lba. 

2.593 
5.906 

8.859 
II.8I2 

14.765 
17.718 
20.671  j 
23.624 1 

26.577 

2953 

32.484 

35-437 

38-39  I 

41-3431 

44.3961 

47.2491 

50.202 

53-154; 
56.X08 

59061 

66.443 

73.826 

77.517 
81.309 

84.9 

88.591 

93.283 

95-974 
103.356 
110.739 

1X8.123 


Lba. 
3.14 
4.28 
642 
8.56 
10.7 
12.84 
14.98 
17.12 
19.26 
2X.4 

23-54 
25.68 

2782 

29.96 

32  1 

34-24 

36.38 

3852 

40.66 

43.8 
48.15 

53-5 

56.17 

58.85 

61.53 
64.2 
66  88 

6955 

749 
80.35 

85.6 


Gun- 
metal. 


Lba. 
3.379 

4-557 
6.836 

9.114 

11-393 
13.672 

15.95 
18.229 

20.507 

22.786 

25.065 

27-343 
39.622 

31.9 

34179 

36.458 

38.736 

41.015 

43293 
45572 
51.268 

56.965 

59813 
62.661 

65-51 
68.358 

71.206 
74054 
79-751 
85.447 
91.1^ 


Zinc. 


Lba. 
1.872 

3.744 
5616 
7.488 
9.36 

X  1.232 

13-104 

14-976 

16.848 

18.72 

20.592 

22.464 

24336 
26.208 
28.08 

29.95 
31.834 
33696 
35.568 

37-44 
42.13 

46.8 

49.14 

51.48 
53-83 
56.16 

58.5 
60.84 

65.52 
70.3 

74.88 


WEIGHT   OP   ROLLED   STEEL   T.  PIPES   AND   TUBES.     1 47 


"Weigh.ts,    etc,    of  Rolled    Steel 

Safe  Load  for  One  Foot  Uniformly  Distribute. 


Load. 

Dlmen- 
•iotif. 

Area. 

Weight 

per 

foot. 

Tensile  Strength 
per  Sq.  Inch. 

Dimen- 
sions. 

Area. 

Weight 
per 
foot 

12500 

16000 

Ins. 

Sq.  Iiu. 

Lbe. 

Lb». 

Lbs. 

Ins. 

Sq.  Ins. 

Lbs. 

4-5X2.5 

2.79 

V 

5220 

6950 

4X4 

3-21 

10.9 

4-5X2.5 

2.4 

4520 

6030 

4X4 

4.02 

»3-7 

4-5X3 

3 

10 

7540 

10050 

4X4.5 

3.36 

II. 4 

45X3 

2.55 

8.5 

6490 

8650 

4X4.5 

4.29 

14.6 

4-5X3.5 

4<)5 

15-8 

17020 

22690 

4X5 

3-54 

12 

5    X2.S 

3-24 

II 

6goo 

9  200 

4X5 

4.56 

15.6 

5    X3 

3-99 

13-6 

9410 

»2  550 

— 

T. 


Load. 

Tensile  Strens^th 
per  Sq.  Inch. 


12500 


l<bs. 
13100 
16  170 
15840 
20400 
19410 
24800 


x6ooo 


Lbs. 

17470 

2»55o 

21  I20 
27200 
25880 

33070 


To 


Compete    Weigh-t  of  M^etal   !Pipes, 

D*  —  li"  C.    D  and  d  rqjresenting  external  awl  internal  diameters  in  inches^ 
and  C  coefficient. 

Cast  Iron  2.45.   Wrought  Iron  2.64.    Brass  2.82.   Cop[)er  3.03.   I^ai  3.86. 

To   Compu-te  "Weight   of  IMetal  Tubes  aiici   Fipes 

per   Xjineal   IToot- 

fh)m  .5  fnch  to  6  Inches  fntemal  Diameter. 


Diam. 

Area  of  Plat^. 

[    Diam. 
Ins. 

Area  of  Plate. 
Sq.  Foot. 

Diam. 

Area  of  Plate. 

Diam. 

Area  of  Plata, 

Ilia 

1 

Sq.  Foot. 

Ins. 

Sq.  Feet. 

Ins. 

Sq.  Feet. 

•5 

.1309 

1 1-3»25 

•3436 

|2.7S 

.7199 

4.5 

1. 1781 

•5625 

•1473 

1375 

.36 

12875 

.7526 

4625 

I.2108 

^5 

1636 

14375 

•3764 

,3 

.7854 

4  75 

1-2435 

.6875 

.18 

l'-5 

•3927 

3.125 

.8181 

4875 

1-2763 

•75 

1964 

i  1.625 

•4254 

325 

.8508 

5 

1.309 

^125 

2127 

i'Z5 

-4581 

3-375 

.8836 

5.125 

1-3417 

.875 

.2291 

187s 

.4909 

35 

.9163 

5.25 

1-3744 

•9375 

.2454 

I2 

•5236 

3625 

•949 

5375 

1.4072 

I 

.2618 

2.125 

.5543 

|3  75 

.9818 

5-5 

14399 

1.0625 

.2782 

I2.2S 

.587 

4 

1.0473 

5^625 

1.4726 

1  125 

•2945 

i  2.375 

.6198 

14.125 

1.0799 

5-75 

1-5053 

I  1875 

.3105 

2.5 

•6545 

:4.25 

1.1126    1 

5.875 

1  5381 

1-25 

•3272 

,  2.625 

.6872 

4-375 

1-1454    1 

6 

1.5708 

.A.pplicatioi\   of  Taljle. 

Wlieii  Thichnew  of  Metal  is  given  %n  Divisions  of  an  Jnch. 

To  internal  diameter  of  tube  or  pipe  add  thickness  of  metal ;  take 
area  of  the  plate  in  square  feet,  from  table  for  a  diameter  equal  to 
Bum  of  diameter  and  thickness  of  tube  or  pipe,  and  multiply  it  by 
weight  of  a  square  foot  of  metal  for  given  thickness  (see  table,  page 
146),  and  again  by  its  length  in  feet. 

iLLrsTRATioif. — ^Required  weight  of  10  feet  ot  copper  tube  i  inch  ln>  diameter  and 
zas  of  an  inch  in  thickneta 

t  + .  125  =  1. 125  X  3- 1416  -^  It  = .  2Q45  square  feet  for  i  foot  of  length. 

Weight  of  I  square  foot  of  cop)>er  .izsth  of  an  inch  in  thickness,  per  table,  page 
135,  s=  5.781  Iht. ;  then,  .3945  ((Vom  table  above)  x  5-781  X  10  ^  17-025  ^s. 

When  7%ickne$8  of  Metal  is  given  in  lumbers  of  a  IHre-  Gattge. 

To  internal  diameter  of  tube  or  pipe  add  thickness  of  number  from 
table,  pp.  120  or  121 ;  multiply  sum  by  3.1416,  divide  product  by  12,  and 
quotient  will  give  area  of  plate  in  square  feet.    Then  proceed  as  before 


148      WEIGHT  OF  IRON  AND  COPPER  PIPES,  BOLTS,  ETC. 

Illi'stratiox. — Required  weight  of  10  feet  of  copper  pipe  2  inches  in  diametei 
and  No.  2  American  wire-gauge  in  thickness. 

a-f  •25763X3.1416-:- 12  =  2.257  63  X  3. 1416-=- 12  =  .591  square  fui;  then,  .591 
X  XI.  6706  (weight  nroro  table,  iiage  118)  =6.897  lb*. 

'Weigh.t   of  Riveted.   Iron   and.   Copper   r*ipes, 

Fi'om  5  to  30  Inc/ies  in  Diameter, 

ONE  l-XKJT   IS   LENGTH. 


I>i:.Tn«t«r. 

ThicknMt. 
Inch. 

Iron. 

Copper. 

Diameter. 

ThkkneM. 

Iron. 
Lb« 

Copper. 

Int. 

Lbs. 

Lb«. 

Ins. 

Inch. 

Lba. 

5 

.125 

7.12 

8.14 

9 

•25 

2501 

28.58 

.1875 

10.68 

12  21 

.25 

2633 

30.09 

•25 

14.25 

16.28 

10 

•»s 

2775 

31-71 

5-5 

.125 

7.78 

8.89 

10.5 

•25 

29.19 

3322 

.1875 

11.66 

^3-33 

11 

•25 

30.49 

34.85 

•25 

15-56 

17.78 

12 

.25 

3313 

37-86 

6 

.125 

8.44 

9.64 

13 

•25 

3588 

41 

.1875 

12.65 

14.46 

14 

.25 

38^52 

44.0a 

.25 

16.88 

19.29 

15 

•25 

41.26 

47.15 

6.5 

.125 

9.1 

10.4 

•3125 

51^57 

58.94 

•1875 

13-65 

15.6 

16 

•25 

439 

50.17 

•25 

18.2 

20.8 

•3125 

5487 

62.71 

7 

.125 

9.78 

II.I8 

17 

•25 

46.53 

53.18 

•1875 

14.68 

16.78 

•3125 

5817 

66.48 

.25 

1957 

22.37 

18 

•25 

49.17 

56.3 

7-5 

.125 

10.49 

11.99 

•3125 

6147 

70.25 

.1875 

15-73 

17.98 

20 

•3125 

68.07 

77-79 

•25 

20.89 

23-87 

24 

•3125 

81.33 

929s 

8 

•1875 

16.7 

1908 

25 

•3125 

84.57 

96.65 

.25 

22.26 

2544 

28 

•3125 

9456 

107.95 

8.5 

•25 

23-59 

26.96 

30 

-3125 

101.14 

"559 

Above  weights  include  la|)6  of  sheets  for  riveting  and  calking 

Weights  of  the  rivets  are  not  added,  a's  number  per  lineal  foot  of  pipe  depends 
upon  the  distance  they  are  placed  apart,  and  their  diameter  and  length  depend 
upon  thickness  of  metal  of  the  pipe. 


"Weight   of  Copper   Rods   or  Solts, 

From  .125  Inch  to  4  Tnches  in  Diameter. 


ONE   FOOT  IN    LENGTH. 


Diameter. 

Weiffht. 
Lbe. 

Diameter. 

Weiicht. 

DiaineUr. 

WeiRbt 

Dtamater. 

Wdghk 

Inch. 

Int. 

Lbt. 

Ins. 

Lh«. 

IM. 

Lbs. 

.125 

.047 

.8125 

1.998 

1.5 

6.81 1 

2-75 

22.891 

.1875 

.106 

.875 

2.318 

•5625 

7-39 

.875 

25.019 

-25 

.189 

-9375 

2.66 

.625 

7^993 

3 

27^243 

•3125 

.296 

I 

303 

•75 

9.27 

.125 

29.559 

•375 

.426 

1.0625 

3.42 

.875 

10.642 

.25 

31.972 

.4375 

•579 

.125 

3-831 

2 

12.108 

.375 

34.481 

.5 

•757 

.1875 

4.269 

.125 

13^668 

•5 

37.081 

-5625 

•958 

•25 

4.723 

.25 

15.325 

.625 

39  777 

.625 

1.182 

'     -3125 

5-21        ! 

1     .375 

17-075 

.75 

42.568 

.6875 

1431 

-375 

5723 

•5 

18.916 

•875 

45455 

•75 

1-703 

1     .4375 

6.255 

.625 

20.856 

4 

48.433 

WEIQMI'   OF  METALS. 


149 


^Veiglit   of*  Mietals  of  a  Griven   Sectional 

AjC^B.i 

FroTO  .1  Square 

Inch  to  10  SqtMre  Inches. 

PER   LINEAL 

FOOT. 

(D.  K,  Clark.) 

!>«rT. 

Wroagfat 
Iron. 

Cut 

Iron. 

Stoel. 

BraM. 

Gon- 
iD«tat. 

SCCT. 

Wrottfrbt 
Iron. 

Cm! 
Iron. 

Sf.1.  i  Bru..  1  O-L 

A&IA. 

t. 

•937S- 

i.oa. 

Z.052. 

1.092. 

ASEA. 

I. 

•9375- 

1. 03. 
Lb*. 

1.052.  '  1.09a. 

Sq.lDB. 

Lbs. 

Lbs. 

Lbs. 

Lbt. 

Lbt. 

Sq.lM. 

Lb«. 

Lbt. 

Lb*.       Lbs. 

.1 

•33 

•31 

•34 

•35 

.36 

t   S.I 

17 

159 

173 

17.9     18.6 

.2 

.67 

.62 

.68 

•7 

.73 

5-2 

173 

16.3     17.7 

18.2  !  18.9 

3 

I 

.94 

1.02 

1.05 

1.09 

5-3 

17.7 

16.6     18      1  18.6     19.3 

•4 

1.33 

1.35 

1.36 

1-43 

1.46 

5-4 

18 

16.9    18.4  !  18.9  \  19.7 

.5 

1.67 

1.56 

i'7 

1-75 

1.82! 

5-5 

18.3 

17.2     18.7     19.3     20 

.6 

2 

1.88 

2.04 

2.11 

2.18 

5-6 

18.7 

17.5     19         19.6  1  20,4 

•7 

2.33 

2.19 

2.38 

2.46 

2.55 

5.7 

19 

17  8    19.4    20     1  20.8 

.8 

2.67 

2.5 

2.72 

2.81 

2.91 1 

5.8 

193 

18.1    19  7    20.3  '  21. 1 

•9 

3 

281 

3-o6 

3.16 

3.38' 

5-9 

19.7 

18.4    20.1  1  20.7  1  21.5 

I 

333 

315 

34 

351 

3-64 

6 

20 

18.8    20.4  ,21      1  21.8 

I.I 

367 

344 

3  74 

3.86 

4      i 

6.1 

20.3 

19. 1    20.7    21.4  1  22  2 

1.2 

4 

3  75 

408 

4.21 

4-37, 

6.2 

20.7 

19.4  21. 1  21.7 ;  22.6 

1-3 

4-33 

406 

442 

456 

4.73' 

6.3 

21 

19  7  21.4  22.1   22.9 

1.4 

4.67 

438 

4.76 

4.91 

5-1   1 

6.4 

21.3 

20     21.8  22.4  23.3 

1-5 

5 

469 

5.1 

526 

546 

6.5 

21.7 

20.3  22.1  22.8  23  7 

X.6 

5-33 

5 

544 

561 

582 

6.6 

22 

20.6  22.4*'  23 1   24 

1-7 

567 

5.31 

578 

5.96 

6.19 

6.7 

22.3 

20.9  22  8 :  23  5 1 24  4 

1.8 

6 

563 

6.12 

6.31 

6.5s 

6.8 

22.7 

21.3  23.1 

23  9    ;     24.8 

1.9 

6.33 

5.94 

646 

6.66 

6.92: 

6.9 

23 

21.6  23  s 

24.2    1     25.1 

2 

6.67 

625 

6.8 

7.01 

7.28: 

7 

233 

21.9  23.8 

24.6 

255 

2.1 

7 

6.56 

7.14 

7.36 

7.64' 

7-1 

237 

22.2  24.1 

24.9 

258 

2.2 

733 

6.88 

748 

7.72 

8.01; 

7.2 

24 

22.5  24.5 

253 

26.2 

23 

7.67 

719 

7.82 

807 

8.37! 

7-3 

243 

22.8  24.8 

25.6 

26.6 

2.4 

8 

75 

8.16 

8.42 

8.74' 

7-4 

24.7 

23.1  25.2 

26 

26.9 

3-5 

8.33 

7.81 

85 

8.77 

9.1   1 

75 

25 

234  25.5 

26.3 

273 

2.6 

8.67 

5'3 

884 

9.12 

946; 

7.6 

253 

23  8    25.9 

26.7 

277 

2.7 

9 

8.44 

9.18 

947 

983 

7-7 

257 

24.1  '  26.2 

27 

28 

2.8 

9-33 

8.75 

952 

9.82 

10.2 

7.8 

26 

24.4    26.5 

27.4 

28.4 

2.9 

9.67 

906 

9.86 

10.2 

10.6 

79 

263 

24.7    26.9 

27.7 

28.8 

3 

10 

938 

10.2 

10.5 

10.9 

8 

26.7 

25     '  27.2 

28.1 

29.1 

3-1 

10.3 

9.69 

10.5 

10.9 

"3 

8.1 

27 

253    27.5 

28.4 

295 

3-3 

10.7 

xo 

10.9 

11.2 

11.7 

8.2 

273 

25.6 ;  27.9 

288 

29.9 

3-3 

II 

10.3 

II.2 

11.6 

12 

8.3 

27.7 

25.9 

28.2 

29>I 

30.2 

3-4 

"•3 

10.6 

1 1.6 

11.9 

12.4 

84 

28 

26.3 

28.6 

29-5 

30.6 

3-5 

11.7 

ia9 

1 1.9 

12.3 

12.7 

8.5 

28.3 

26.6 

28.9 

29.8 

309 

3-6 

12 

11.3 

12.2 

12.6 

I3-I 

8.6 

28.7 

26.9 

29.2 

30.2 

31.3 

3-7 

12.3 

11.6 

12.6 

13 

135 

8.7 

29 

27.2 

29.6 

30  5 '31.7 

3-8 

12.7 

11.9 

12.9 

13-3 

13-8 

8.8 

293 

275  !  29.9 

30-9    32 

3-9 

13 

12.2 

133 

137 

14.2 

8.9 

29.7 

278   30.3 

31.2    32.4 

4 

13.3 

13.5 

13-6 

14 

14.6 

9 

30 

28.1    30.6 

31.6 ;  32.8 

41 

13-7 

12.8 

139 

14.4 

14.9 

9.1 

303 

28  4  i  30.9 

3191331 

4.2 

14 

13.1 

14.3 

14.7 

153 

9.2 

307 

28  8  i  31.3 

323    33  5 

43 

14-3 

13.4 

14.6 

iS-i 

15.7 

9-3 

31 

29.1    31.6 

326    33  9 

4-4 

14.7 

13*8 

IS 

154 

16 

94 

313 

294   32 

33       34-2 

4-5 

15 

14.X 

iS-3 

15.8 

16.4 

95 

317 

297   323 

33  3  :  34-6 

4.6 

iS-3 

14^ 

15^ 

16.1 

16.7 

9.6 

32 

30      32.6 

33-7  ,  34.9 

4-7 

iS-7 

14.7 

16 

16.S 

I /.I 

97 

323 

303   33 

34 

35-3 

4.8 

16 

15 

16.3 

16.8 

17s 

9.8 

32-7 

30.6   33-3 '344 

35.7 

4^ 

16.3 

15.3 

16.7 

17.2 

17.8 

9.9 

33 

30.9   33-7 

347 

36 

5 

16.7 

15.0  1 

«7 

175 

l8.2 

10     1 

33-3 

31-3   34 

35- »    364 

\* 

» 

I50 


LEAD   PIPES. — COPPER   PIPES   AND   COCKS. 


^Veigh-t   of  Lead  I»ipe.    {EnglUh,) 

ONE   FOOT  IN   LENGTH. 


DUun. 

Thick- 
neat. 

Weight. 

DlAin. 

ThiclK- 

JI«M. 

Weight. 

Diam. 

Thick- 

Weight. 

Diam. 

Thlck- 
nea*. 

Ineh. 

Inch. 

Lb*. 

In*. 

Ineh. 

LU. 

Id*. 

Inch. 

LU. 

In*. 

Inch. 

•5 

.097 

•93 

I 

.136 

2.4 

1.75 

.t66 

5 

3 

.275 

.112 

1.07 

.156 

2.8 

.199 

6 

35 

.225 

.124 

1.2 

.2 

3-73 

.228 

7 

•273 

.146 

1.47 

.225 

4.27 

.256 

8 

4 

•257 

.625 

.089 

I 

1.25 

•139 

3 

2 

.178 

6 

•3125 

.101 

I-I3 

.16 

3-5 

.204 

7 

•327 

.121 

1.4 

.18 

4 

.231 

8 

4.25 

.3125 

.14 

2 

•193 

4.33 

.266 

9-33 

4'5 

.232 

•75 

.112 

1.6 

1-5 

.156 

4 

2.5 

.2 

84 

.295 

.147 

1.87 

.179 

467 

.227 

9.6 

•3125 

.181 

2.13 

.224 

6 

.261  1  II.2 

4-75 

.3125 

.215 

2.4 

•257 

7 

3 

.218 

1 11.2 

5 

•3125 

^-    Weight 


Lta. 

14 

13 
16 

17 
20.5 
22 
22.04 

17 
22 

23.25 

24.45 
25.66 

I>i]xieii8ioiis   of*  Copper   Kpes  and  Composition 

Cooks. 
From  I  Inch  to  23  Inches  in  Diameter, 


%     •'i 

l^ 
|»-| 

Flange  D 

• 
Pipe. 

In*. 

In*. 

I 

3-375 

1.25 

3.625 

1.5 

3.875 

1-75 

4.125 

2 

4.375 

2.25 

4.625 

2.5 

4.875 

2.75 

5.2s 

3 

6 

3.25 

6.125 

35 

6.375 

3.75 

6.625 

4 

6.875 

425 

7.125 

45 

7.375 

4.75 

7.625 

5 

8 

525 

8.25 

5-5 

8.5 

5.75 

9 

6 

9.2s 

6.25 

9-75 

6.5 

10 

6.75 

10 

7 

10.5 

7.25 

10.75 

7.5 

H.125 

7.75 

".375 

8 

11.625 

8.25  1 

12 

»5 

12.25 

«-75  : 

13.5 

uneter. 

Thick- 

BolU. 

nea*. 

Cock. 

No. 

Diam 
Inch. 

In*. 

Inch. 

3-5 

•375 

3 

.5 

3-75 

•375 

3 

•5 

425 

•375 

3 

•5 

4-375 

•4375 

4 

.5 

4.75 

•4375 

4 

.5 

525 

.4375 

5 

.5 

5-5 

.4375 

5 

•5 

575 

•4375 

5 

•5 

6.25 

.5 

5 

.625 

6.625 

•5 

6 

.625 

6.875 

•5 

6 

.625 

725 

•5 

6 

.625 

7^375 

•5 

6 

.625 

7.625 

•5 

6 

.625 

8.25 

•5 

6 

•625 

8.5 

•5 

6  1  .625 

9 

•5 

6  I  .625 

925 

5 

6  i  .625 

9-5 

.5 

6  1  .625 

9875 

.5 

6 

•625 

.625 

8 

.625 

.625 

8 

.625 

.625 

8 

.625 

.625 

8  i  .625 

.625 

8  i  .625 

.625 

8  i  .625 

.625 

8     .625 

.625 

8  ^ 

.625 

.625 

9 

.625 

.625 

9  i   625 

.625 

9     -625 

.635 

9 

•^51 

In*. 

9 

9-25 

9-5 

9.75 
10 

10.5 

11 

11.5 
12 

12.5 

13     • 

13-5 

14 

145 

15 

15.5 
16 

16.5 

17 

17-5 
18 

18.5 

19 

19.5 
20 

20.5 

21 

21.5 

22 

22.5 

33 


Flange 
Diam. 

Pipe. 


Int. 
12.75 
13-125 

13-375 
13.625 

13.875 

14.5 

15 

15.625 

16.125 

16.625 

17.25 

17-875 

18.375 
18.875 

19.5 
20 

20.5 

21.125 

21.625 

22.125 

23.75 

23.25 

23.75 

24375 

24.875 

25375 
26 

26.3 

27 

27.625 

38.125 


Thick- 
oeae. 


Inch. 
625 

625 

6875 

6875 

6875 

687s 

6875 

75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 
75 


Bolts. 

No. 

IHam. 

Inch. 

9 

.625 

10 

.625 

10 

.625 

10 

.625 

10 

.625 

10 

.625 

10 

.625 

10 

.75 

10 

.75 

10 

.75 

10 

.75 

10 

.75 

10 

.75 

10 

75 

10 

75 

10 

.75 

10 

.75 

10 

.75 

II 

•75 

11 

•75 

11 

•75 

11 

.75 

12 

•75 

12 

•75 

12 

.75 

13 

.75 

13 

.75 

13 

.75 

13 

•75 

14 

75 

H 

•75 

W£I6BT  OF  8HBST  LEAD,  LEAD  AKD  Till  PIFXS,  ETO.       1 5  I 


"Weight  of  Slieet  Hiead. 

PER  SQUARE  FOOT. 


ThUkBCM. 

Weight. 

ThicknflM. 

Inch. 
.017 

•034 
.051 

Lba. 
I 
2 

3 

Inch. 
.068 
.08s 
.101 

Weight. 

TbickneM. 

Weight. 

ThicknflM. 

Lbs. 
4 

5 
6 

Inch. 
.118 

•135 
.153 

Lbs. 

7 
8 

9 

Inch. 
.169 
.186 
.203 

Weight. 


I,b«. 
10 
II 
12 


AVeight   of  Tin    Pipe. 


ONE 

FOOT   IN    LKXGTII. 

Dism. 

THtCKNBSS. 

Diam. 

THICKNBSS. 

Diam. 

tHiCKN. 

Diam.  - 

Cxtemnl. 

%  inch. 
Lb. 

^  inch. 

EzternaL 
Ins. 

%  inch.  1  ^  inch. 

External. 

3^  inch. 

Elzternal. 

Inch. 

Lbs. 

Lbs. 

libs. 

Ins. 

Lbs. 

Ins.  '' 

•25 

.148 

— 

1.25 

1.095 

I  417 

2.25 

5.04 

3.25 

.5 

.384 

.472 

I-S 

1.328 

I  732 

2-5 

5.67 

3.5 

•75 

.62 

.787 

1.75 

1,564 

2.047 

^75 

6.3 

3-75 

I 

.856 

1.103 

2 

1.802 

2.362 

3 

6.93 

4 

THICKN. 

3^  inch. 

Lbs. 
7.56 
8.19 
882 

9-45 


"Weigh-t   of  Xjead   Encased.   Tin.   ^Pipes. 


Diameter. 

Light  W«ighta. 

Ina. 

Lbs. 

Lbs. 

Lbs. 

•375 

I 

1-5 

2 

•5 

2 

2.5 

3 

.623 

3 

3-5 

4 

•75 

3-5 

4 

4.5 

I 

4-5 

5 

5-5 

1.25 

6.5 

7 

8 

1-5 

8 

9 

10 

2 

II 

13 

— 

for  Supply  of  Water  HemI 

.• 

50  feet  and  nniier. 

51  to  250  feet. 

251  to 

;oo  feet. 

Lbs. 

Lbs. 

Lba. 

2.5   to   4 

3      to   4-5 

3-5 

to    5 

3.5     ''     5 

4       •'    6 

4-5 

"    7 

45    "     7 

S.25"    8 

6 

'[    9 

5-5    "    8 

6       «    9 

7 

"  10 

7.25  "  10 

8       "11 

9 

"  12 

9       "  I3.S 

10       "  14 

12 

"  16 

II       '*  16 

12  5    "  18 

14 

"   21 

16       "  23 

18.5    "  26     1 

21 

"30 

*  The  extreme  weights  are  for  extra  heavy  pipe  with  lea>  proportion  of  tin. 

X>ixxLen8iozLS  and.  "Weiglit  of  Sheet  Zino.   {VieUe-Montagne.) 

PER  S<2UARlfi  FOOT. 


2X  .5  metres; 

aX .65  metres; 

sX .8  metres; 

area,  i  square  metre. 

area,  1.3  aq.  metres. 

area,  1.6 

sq.  metres. 

* 

No. 

Thickness. 

Weight. 

6.56X1.64  feet;  area, 

6.56X2.13  feet;  area, 

656X2.62(1.;  area, 

Z0.76  square  feet. 

13.99  square  feet. 

17.22  sq 
Kilom. 

uare  feet. 

Millim. 

Inch. 

Kilom. 

Lba. 

Kilom. 

Lbs. 

Lbs. 

Lbs. 

9 

.41 

.0161 

2.9 

6.39 

3.7 

8.16 

4.6 

10.14 

.589 

10 

•51 

.0201 

3.45 

7.61 

4  45 

9.81 

0-5 

12.12 

.704 

XI 

.6 

.0236 

4.05 

8.93 

5-3 
6.1 

11.68 

6.5 

14.33 

.832 

12 

.69 

.0272 

465 

10.25 

1345 

7-5 

16.53 

.96 

13 

.78 

.0307 

5»3 

11.68 

6.9 

15.31 

8.5 

i8«74 

1.088 

14 

.87 

.0343 

5-95 

13.12 

7.7     .  16.94 

9-5 

20.94 

I.216 

IS 

.06 

.0378 

6.55 

14.44 

8.55  '  18.85 

10.5 

23.15 

1.344 

16 

I.I 

^33 

75 

16.53 

9'75  .  31.5 

12 

26.46 

1.536 

\l 

1.23 

.0485 

8.45 

18.63 

10.95  i  24.14 

13-5 

29.97 

1.74 

1.36 

.0536 

9-35 

20.6l 

12.2 

26.9 

IS 

3307 

1.92 

19 

1.48 

.0583 

10.3 

22.71 
24.S 

13-4 

29-54 

16.5 

36.38 

2. 112 

20 

166 

.0654 

11.25 

14.6 

32.19 

18 

39.68 

2.304 

91 

1.85 

.0729 

12.5 

27.56 

16.25 

35-82 

20 

44.09 

2.56 

22 

2.02 

•0795 

13-75 

3031 

17.9 

3946 

22 

48.5 

2.816 

23 

3.19 

.0862 

15 

3307 

19.5       42.99 

24 

52.91 

3073 

24 

2.37 

•0933 

16.25 

35.82 

21.1 

46.52 

26 

57-32 

3-329 

25 

2.52 

.0992 

17.5 

38.58 

22.75 

50.15 

28 

61.73 

3-585 

96 

2.66 

.1047 

18.8 

41.44 

24-4 

53-79 

31 

68..^ 

3.060 

152        SHIP   AND    BAILROAB    SPIKES,  UOBSESHOKS. 


Railroad    Splices. 

(DUworfk,  Porter  <6  Co.,  PiUshurrf^  Pa.) 


Dimentiont. 

a.5X.3'25 
3  X.3125 
2-5X.375 

3  X.375 
3-5X.375 

4  X.375 


Inkevr 

of  200 

Lbs. 

Weifcbt  of 

Rftil  per 

Yard. 

No. 
2230 
1880) 
1650  1 
.380) 
1250 1 
1025 

Lbs. 
8  to  12 

12  to  16 

16  to  20 
16  to  25 

Dimensiona. 


Ilia. 

4-SX.375 
3- 5  X.  4375 
4    X.4375 
4- 5  X.  4375 
3-5X.5 
4    X.5 


In  kflf( 

of  soo 

Lba. 


No. 
780  I 
8gof 
780 
690 
670 
605 


WeiKht 
Rnil  per 
Yard. 


0(11 


Lba. 
16  to  25 

20  to  30 
24  to  35 


i 
Dimensions 

In  kes 

of  200 

Lbt. 

Ins. 

4.5X.5 
5    X.5 
4.5X.5625 
5    X.5625 
5«5X.s625 

No. 

518 

475) 
460} 

405 
360 

Weiftbt  of 

Rail  per 

Yard. 


Lbt. 
28  to  35 

35  to  40 
40  to  56 

45  to  IOC 


street    Railvtray    Spiltes. 

From  .25  to  .625  Inch.    Have  CourUermnk  Heads. 

SqLuare    Solt    i^pikes. 


.25  In. 

Lenjrth. 


Ins. 

3  to  3.5 


.25  In. 

Length. 


Ins. 

4  to  8 


.3125  In. 

Lenprth. 


Ins. 

4to8 


•375  In- 
Ijon^th. 


Ins. 
4  to  12 


•4375  In. 


Ins. 
6  to  12 


.5  In. 

I^englh. 


Ins. 

6  to  16 


.625  l3. 
Lenirtb. 


Ins. 

8  to  16 


.752  In. 

Length. 


Ins. 
12  to  24 


Sh.lp   and.   ^Railroad    Spikes. 

DIMKNSIONS   AND  NUMBKK   PKR   POUND,      (/\  C.  POffCj  MoSS.) 

Sliip    Spilses. 

%  In.  Sq. 


J^  In.  Sq. 

A^Ii 

a.  Sq. 

%  In.  Sq. 

^  In.  Sq. 

a  "2 

• 

fi 

• 

•2 

BT5 

• 

■5 

B-a 

~-  a 

.  s 

0  0 

3 

—  a 

B 

Ins. 

—  a 

J 

Ins. 

"51 

Ins. 

Ins. 

3 

19 

3 

XO 

4 

54 

5 

3-4 

3-5 

15-8 

3-5 

9.6 

4.5 

5 

5-5 

31 

4 

13.2 

4 

8 

5 

4.6 

6 

3 

4-5 

12.2 

4-5 

6 

5-5 

4.2 

6.5 

2.8 

5 

10.2 

5 

5.8 

6 

4 

7 

2.6 

• 

— 

6 

5.2 

6.5 

3-2 

7.5 
8 

2.4 
2.2 

a 


—  a 


Ins. 

6 

6.5 

7 

75 
8 

85 

9 
10 


2.2 
2 

1.9 
1.8 

1-7 
1.6 

1-5 
1.4 


%  In.  Sq. 

%In 

• 
.B 

Ins. 

■El 
eg 

• 

Ins. 

8 

1.4 

10 

9 

1.2 

15 

10 

I.l 

— 

II 

I 

— 

^^^^ 

^BIM 

5  "5 
5«£ 


.8 
.6 


Railroad  Spikes 


.5        inch  square  X  5.5  ins.  2 
.5625     "         "       X  5.5    "    1.6 


per  lb. 


Spikes    and   Horseslioes. 
LENGTH  AND  NUMBKU  PER  POUND.     (//.  Burden,  Troy,  N.  Y.) 


•Boat  Spikes. 

Ship  Spikes. 

• 

B    . 
—  J3 

a    . 

■ 

bo 

•s«- 

• 

B    . 

—  .a 

s 

d-J 

B 

diJ 

g 

oh) 

B 

i^ 

.2 

5r. 

JS 

?5 

»2 

?; 

»s 

y. 

Ins. 

Ins. 

Ins. 

Ins. 

3 

17.5 

6.5 

4.78 

4 

8 

7.5 

3-5 

3-5 

14.68 

7 

3.62 

4.5 

6.5 

8 

1.74 

4 

12.57 

7-5 

3-37  1  5 

4.37 

8.5 

1.63 

45 

9.2 

8 

2.95    5-5 

4-3 

9 

1-55 

5 

7.2 

8-5 

2.9    ,6 

4.2 

lO 

1.15 

5-5 

6.3 

9 

2.1     1  6.5 

3-77 

— 

— 

b 

4-97 

10 

1.98 

i7 

2.75 

— 

— 

Hook  Head. 


Lenfcth. 
Ins. 

4  X.37S 

4-5  X.4375 

5  X.5 
5-5  X.5 
5-5  X. 5625 

6  X  .5625 
6    X  .625 


5-55 
4.14 
2.52 
2.41 
1.87 
1.72 
1.38 


Horseshoes. 


tc 

a 

2_ 

Ins. 

I 
2 

3 
4 
5 


a  . 

d^ 


.84 

•75 
.65. 
.56 
•39 


CAST  IBON   AND  LBAD   BALLS. — ^NAILS. 


153 


WTeiglit  and.  "Vol-axne  of  Cast  Iron  and  Lead  Sails. 

Prom  I  Inch  to  20  Inches  in  Diametei\ 


Diunetor. 

YolanM. 

Cast  Iron. 

Lead. 

Diameter. 

Ins. 

Cube  Ina. 

Lb*. 

Lba. 

Ina. 

I 

.523 

.136 

.215 

9 

1-5 

1.767 

.461 

•725 

9.5 

2 

4.189 

1.092 

\       1-718 

JO 

2.5 

8.181 

2.133 

3.355 

10.5 

3 

14.137 

3.685 

5-798 

II 

3-5 

22.449 

5.852 

9.207 

".5 

4 

3351 

8.736 

13.744 

12 

4.5 

47-7U 

12.439 

19569 

12.S 

5 

6545 

17.063 

26.843 

'3 

55 

87  114 

22.721 

35.729 

14 

6 

"3097 

29.484 

46385 

15 

6.5 

143793    37-453 

58.976 

16 

7 

179594  ,  46.82 

73-659 

1     17 

7-5 

220.893 

57.587 

90.598 

1     ^^ 

8 

268.082 

69.889 

109.952 

,    ^9 

8.5 

321.555 

83.84 

131.883 

1    20 

Cube  Ina. 

381.703 

448.92 

523599 
606.132 

696.91 

796.33 
904.778 

1022.656 

1150.346 

1436.754 
1767.145 

2144.66 

2572.44 

3053.627 

3591.363 
4188.79 

Note. — To  compate  weight  of  balls  of  other  metals,  multiply  weight  given  ia 
table  by  following  multipliers: 


Volume. 


Caat  Iron. 


Lead. 


Lba. 

Lba. 

9951 

156.553 

117.034 

184.I2I 

136.502 

214.749 

158.043 

248.587 

181.765 

285.832 

207.635 

326.591 

235.876 

371.096 

266.647 

419.512 

299.623 

471.806 

374563 

589-275 

460.696 

724.781 

559.114 

879.616 

670.717 

1055.066 

796.082 

1252.422 

936.271 

1472.97 

1092.02 

1717.995 

For  Wrought  Iron 1.067. 

Steel 1.088. 


Brass 1. 12. 

Gun-metal x.  165. 


'Weish.t  and  IDiametex*  of  Cast  Iron  Sails. 


Weigbt. 

DUunater. 

Weight. 

Diameter. 

Weight. 

Diameter. 

Weight. 

Diameter. 

Lba. 

Ina. 

Lba. 

Ina. 

Lbs. 

Ins. 

Lba. 

lua.   ' 

I 

1.94 

12 

4-45 

50 

7.16 

224 

II.8 

2 

a.45 

14 

4.6S 

56 

7.43 

336 

13.51 

3 

2.8 

16 

4.89 

60 

7.6 

448 

14.87 

4 

3.08 

18 

5.09 

70 

8.01 

560 

16.02 

5 

332 

20 

5.27 

80 

8.37 

672 

17.02 

6 

3.53 

25 

5.68 

90 

8.71 

784 

17.91 

7 

3.72 

28 

5-9 

100 

9.02 

896 

18.73 

8 

3.89 

30 

6.04 

112 

9.37 

1008 

.  19.48 

9 

4.04 

40 

6.64 

168 

10.72 

II20 

20.17 

Weight. 


Lba. 

1344 
1568 
1792 
2016 
2240 
2800 
3360 
3920 
4480 


Diameter. 


Ina. 
21.44 

22.57 
23.6 

24-54 
25.42 

27.38 

29.1 

30.64 

32.03 


Xjength.   of-  Horseshoe  !N'ails. 
Btf  Numbers. 


No.  5 1.5  Ins.  I  No.  7 ..... .  1.875  Ins* 


1-75 


8 


No.  9 2;25  Ins. 


10. 


2.5 


Ijen^lis  of  Irop.  ^ails,   and   Nnm"ber  in  a  Xils. 


Sli*. 

L'gih. 

No. 

420 
270 

Slie 

5d. 
16 

L'gth. 

No. 

220 
175 

SiM. 

L'gth. 

No. 

100 
65 

Siie. 

L'gth. 

No. 

52 
28 

Siie. 

L'gth. 

3d. 

4 

iBft. 

1.25 
1-3 

Ina. 

1-75 

2 

8d. 
10 

Ina. 
2.5 

3 

J  2d. 

120 

Ina. 
3.25 

3-5 

40 

Ina. 

4 
4.35 

N©. 

24 
20 


154 


NAILS,  SPIKES,  TACKS,  BTC. 


"Wroiaglxt 


Iron  Cut  IN'ails,  Taoks,  Spikes,  etc. 

(Cumberland  Nail  and  Iron  Co.) 
Lengths  and  Number  per  Lb. 


o 

Ordinary.             f 

Kixxislxi 

mg. 

: 

Shinffle. 

sice. 

Length. 
Ins. 

No.  per  Lb. 

Sixe. 

Length. 

No.  per  Lb. 

Size. 

Lenf^h. 

No.  per  Lb 

Ins. 

Ina. 

2d 

-87s 

716 

4^ 

1-375 

384 

5** 

1-75 

178 

3  fine 

1.0625 

588 

5 

1-75 

256 

r  ^ 

2.5 

74 

3 

1.0625 

448 

6 

2 

204 

9 

2.75 

60 

4 

1-375 

336 

8 

2.5 

102 

10 

3 

52 

5 

1-75 

216 

10 

3 

80 

TaolcB. 

6 

2 

166 

12 

3.625 

65 

I  oz. 

.125 

16000 

7 

2.25 

118 

20 

3.875 

46 

1-5 

•1875 

10666 

8 

2.5 

94 

Core. 

2 

.25 

8000 

lO 

2.75 

72 

6d 

2 

143 

68 

2.5 

•3125 

6400 

12 

3-5 

50 

8 

2-5 

2333 
3-125 

3-75 
4-25 
4-75 
2.5 

3 

.375 

5  333 

20 

3-75 

32 

10 

60 

4 

.4375 

4000 

30 
40 

50 
60 

4-25 

4-75 

5 

5-5 

Light 

20 

17 

14 
10 

12 
20 

30 
40 
WH 

42 

25 
18 

14 
69 

6 

8 

10 

13 
14 

•5625 
.625 

.6875 

•75 

.8125 

2666 
2000 
1600 
1333 
1143 

4'* 

1-375 

373 

WHL 

2  2^ 

72 

16 

.875 

1000 

5 

1-75 

272 

18 

•9375 

888 

6 

2 

196 

Olinc 

U. 

20 

I 

800 

Brade 

}. 

6<i 

2 

152 

Soat. 

6d 

2 
2.5 

163 
96 

7 
8 

2.25 
2.5 

133 
92 

Siic 

1. 

No.  per  Lb. 

8 

Ilia 

10 

12 

2.7s 
3-125 

74 
50 

10 

2.75 

3 
3.25 

72 
60 

43 

3-! 

t 
Spi 

> 

206 
kea. 

19 

6d 

2 

96 

Slat< 

5. 

4 

IS 

7 

2.25 

66 

3'* 

1.625 

288 

4-! 

> 

13 

8 

2.5 

56 

4 

1 4375 

244 

5 

10 

10 

2.75 

SO 

5 

1-75 

187 

5-^ 

m 

> 

9 

— 

3 

40 

6 

2 

146 

6 

7 

Lanfrtb. 


No. 

3  X  .375 

3.5  X  .375 

4  X  .375 


No. 


930 
890 

760 


X^ailroad   Spikes. 
Number  in  a  Keg  q/*  150  &8. 

Length. 


Ina. 

3  5  X  .4375 

4  X  .4375 

4-5  X  .4375 


No. 

Length. 

Ina. 

675 

4X.5 

540 

4-5  X  .5 

510 

5X.5 

No. 

Length. 

N«, 

450 
400 

340 

Ina. 

5  X  .5625 

5.5  X  .5625 

300 
280 

5.5  X  -5625  standard  for  a  gauge  of  4  feet  8.5  ins. 

Ship   and  Soat  Spikes. 

Number  in  a  Keg  of  150  Vbs, 


Length. 


Ina. 

4  X.25 

4.5  X. 35 

5  X.25 

6  x.25 

7  X.2$ 


No. 


Length. 


1650 
1464 
1380 
1292 

ii6i  1, 


tl.S. 

5  X. 3125 
6X.3125 

7  X. 3125 

6X.375 

7X375 


No. 

Length. 

Ina. 

930 

8X.375 

868 

9X.375 

662  ; 

10  X. 375 

570 

8Xu^375 

482 

9  X. 4375 

No. 

Length. 

No. 

laa. 

455 

IOX.4375 

270 

424 

8X.5 

256 

390 

9X.5 

240 

384 

10  X. 5 

223 

300  i 

JIX.5 

303 

TABIOCB  MBTALS. 


155 


"Weiglit  of  "VaxT-ou-s  Mietals. 

Per  Cube  Inch  and  Foot. 


Mbtals. 


Wrought-iron 

plates 

"    wire. 

Cast  iron .... 

Steel  plates. . 

"    wire . . . 


CJopper,   ( . 

rolled  \ . 
Can- metal, 

cast 


} 


Spec. 

W'srht 

Ins. 

Weight   1 

Gravi- 

in  an 

in  a 

.     in  a 

ty- 

Inck. 

Lb. 

Foot. 
Lbs. 

Lb. 

7734 

.2797 

3-57 

48338 

7774 

.2812 

3-55 

485.87 

7209 

.2607 

3-84 

450-54 

7804 

•  2823 

3-54 

487.8 

7847 

.2838 

3.52 

490-45 

•3146 

3- 19 

543-6 

.3212 

3" 

555 

8750 

•3165 

3.16 

546-875 

Mktals. 


Wrought  iron 
Cast  iron .... 

Steel 

Copper  plates 
Gun-metal. . . 


7.698 

.278 

3.6 

480 

7.217 

.26 

.3-84 

450 

7852 

.283 

3-53 

489.6 

8.805 

.318 

3-15 

549 

8.404 

•304 

3.29 

524 

Brass,  rolled. 

''     cast, . . 
I^ead,  rolled . 

Tin,  cast 

Zinc,  rolled.. 
Alumini-     ) 

um,  cast  I 

Silver 

Tobin  Bronze. 

English,     (D,  K.  Clark.) 

Tin 

Zinc 

LieaQ ........ 

Brass,  cast. . . 
wire.. 


Specific 
Gravi- 
ty. 

vV'glit 
in  an 
Inch. 

Lb. 

8217 
8080 

.2972 
.2922 

II  340 
7  292 
7188 

.4101 
.2673 
.26 

2560 

.0936 

10480 
8379 

•379* 
.3031 

(I 


7.409 

7.008 

II. 418 

8.099 

8.548 


.268 
•253 

.412 
.292 

.308 


Ins. 
in  a 
Lb. 

Weight 

in  a 

Foot. 

1 

Lb. 

3-37 

513-6 

342 
2-44 
3-74 
3-85 

505 
708.73 

462 
449.28 

10.8 

160 

2.64 

655 

3.299 

523.69 

3-74 

462 

3-95 

437 

2-43 

712 

342 

505 

3-24 

533 

WROUGHT  AND  OAST  IRON. 
To   Corja.pu.te   "Weight  of  "Wro-ugflit  or  Cast   Iron. 

RuLK.— Ascertain  number  of  cube  inches  in  piece;  multiply  sum  by  .2816*  for 
wrought  iron  and  .2607*  for  cast,  and  product  will  give  weight  in  pounds. 

Or,  for  cast  iron  multiply  weight  of  pattern,  if  of  pine,  by  from  18  to  20,  accord- 
ing to  its  degree  of  dryness. 

Example. — What  is  weight  of  a  cube  of  wrought  iron  10  inches  square  by  ij 
inches  in  length? 

10  X  10  X  15  X  .2816  =  422.4  lbs. 

COPPER. 
To   Compvite   "Weiglit   of  Copper. 

Rule. — Ascertain  number  of  cube  inches  in  piece ;  multiply  sum  by  .321 18,* 
and  product  will  give  weight  in  pounds. 

Slieatliing  and.   Braziers'   Sheets. 
For  dimensions  and  weights  see  Measures  and  Weights,  pages  118-121, 131, 142. 


LEAD. 
To   Conaptite   "Weight  of  I^ead. 
Rule. — Ascertain  number  of  cube  inches  in  piece;  multiply  sum  by  .41015,* 
ftnd  product  will  give  weight  in  pound& 

Example. — What  is  weight  of  a  leaden  pipe  12  feet  long,  3.75  inches  in  diameter, 
and  I  inch  thick  1 

By  Ride  in  MensureUion  of  Surfaces^  to  ascertain  Area  ofOylindTtcal  Rings. 
Area  of  (3. 75  -f  i  -|- 1)  =  25.967 
"     "  3-75  ="044 

Difference,  14.923  (area  of  ring)  x  144  (12  feet)  =  2148.912 
X -410  i5=B8i.376  lbs. 

BRASS. 
To  Compute  Vt^eight  of  Ordinary  Brass   Castings. 

RiTLB. — Ascertain  number  of  cube  inches  in  piece;  multiply  sum  by  .2922,*  and 
iwoduct  will  give  weight  in  pounda 

*  Weights  of  a  cube  inch  as  here  (riven  are  for  the  ordinary  metals;  when,  however,  the  epecific 
wrtLrHkf  Si  the  meUl  tinder  conalderatton  U  accurately  known,  the  weight  of  a  cobe  inch  of  it  uioold 
Se  eiiMtltated  for  the  nits  hare  glran. 


156      DIMENSIONS  AND  WJ5IGHTS  OP   BOLTS  AND  NUTS. 


X>iziieiisioiis  and.  "Weiglits  of  "Wrotaglit  Iron  Solts 

and  N'nts. 

SQUARE  AND   HEXAGONAL,  HEADS   AND  NUTS. 

R,o-ugli,  and  from,  .25  Inch  to  4  Inches  in  Diameter, 
Sc|.xiare   Jlead  and  Nnt. 


Diameter 
of  Bolt. 

Wid 
Head. 

Ith. 
Nut. 

Diagooal. 
Head.        Nut. 

Depth. 
Head.         Nut. 

Weight. 

Head      i     Bolt 

and  Nut.  Iper  Inch. 

Threads 
per  Inch. 

Ins. 

Ins. 

Ins. 

Ins. 

Ins. 

Ins. 

lus. 

Lbs. 

Lbs. 

No. 

.25 

.36 

•49 

•SI 

.69 

.25 

.25 

.024 

.014 

20 

•3125 

.45 

.58 

•64 

.82 

•3 

.3125 

•043 

.022 

18 

.375 

.54 

.67 

•76 

•95 

•34 

•375 

.068 

.031 

16 

.4375 

.63 

.76 

.89 

1.07 

•4  ' 

•4375 

.104 

.042 

14 

.5 

.72 

.84 

1.02 

1. 19 

•44 

•5 

•145 

.055 

13 

.5625 

.82 

.94 

1. 16 

1-33 

.48 

•5625 

.204 

.07 

12 

.625 

.91 

1.03 

1.29 

1.46 

.53 

.625 

.273 

.086 

II 

.6875 

I 

1. 12 

1. 41 

1.58 

.58 

•6875 

•356 

.104 

II 

•75 

1.09 

1.21 

1-54 

1.71 

.63 

•75 

•454 

.124 

10 

.8125 

1. 18 

1-3 

1.67 

1.84 

.67 

.8125 

•565 

.145 

10 

.875 

1.27 

1-39 

1.8 

1.96 

.72 

.875 

.696 

.168 

9 

1 

1.45 

1-57 

2.05 

2.22 

.81 

I 

1. 013 

.22 

8 

1. 125 

1.63 

1.75 

2-3 

2.47 

•9 

1. 125 

1. 416 

.278 

7 

1.25 

I.81 

1.94 

2.56 

2.74 

I 

1.25 

1.923 

.344 

7 

1.375 

1.99 

2.12 

2.81 

3 

I.I 

1-375 

2^543 

.416 

6 

1.5 

2.17 

2-3 

3.07 

3-25 

1. 18 

1-5 

3-234 

•495 

6 

1.625 

2.36 

2.48 

3-34 

3-51 

1.28 

1.625 

4.105 

.581 

5^5 

1.75 

2.54 

2.66 

3-59 

3^76 

1-37 

'•75 

5.087 

•674 

5 

1.87s 

2.72 

2.84 

385 

4.02 

1.46 

^•875 

6.182 

•773 

5 

2 

2.9 

3.02 

4.1 

4.27 

1.56 

2 

7.491 

.88 

4-5 

2.125 

3.08 

3.21 

4-35 

4-54 

1.65 

2.125 

8.936 

•993 

4^5 

2.25 

3.26 

3-39 

4.61 

4-79 

1.75 

2.25 

IO-543 

1.113 

4-5 

2.375 

3-44 

3-57 

4.86 

5^05 

1.84 

2.375 

12335 

1.24 

4.375 

2.5 

362 

3-75 

5-12 

5-3 

1.94 

2.5 

14-359 

^•375 

4^25 

2.625 

3.81 

3-93 

5-49 

5.56 

2.03 

1  2.625 

16.549 

i^5i5 

4 

2.75 

3.99 

4. 1 1 

5-64 

5-8i 

2.12 

'  2.75 

18.897 

1^663 

4 

2.875 

4.17 

4.29 

5-9 

6.07 

2.22 

1  2.875 

21-545 

1. 818 

3^75 

3 

4-35 

4-47 

6.15 

6.32 

2.31 

'3 

24.464 

1.979 

3-5 

325 

4.71 

4.84 

6.66 

6.84 

2.5 

325 

30.922 

2.323 

3-5 

3-5 

507 

5-2 

7.17 

7-35 

2.68 

3-5 

38.391 

2.694 

3-25 

3-75 

5-44 

556 

7.69 

7.86 

2.87 

:3-75 

47.168 

3093 

3 

4 

5.8 

592 

8.2 

8.37 

3.06 

4 

56.882 

3.518 

3 

Finished. — Deduct  .0625  from  diameters  of  bolts  and  depths  of  alL heads 
and  nuts.    For  Steel  BoltSf  add  z.  3  per  cent. 

Screws  with  square  threads  have  but  one  half  number  of  threads  of  those 
wlUi  triangular  threads. 

Note. — The  loss  of  tensile  strength  of  a  bolt  by  cutting  of  thread  is,  for  one  of  j.  25 
ins.  diameter,  8  per  cent.  The  safe  stress  or  capacity  of  a  wrought  iron  boit  and  nut 
may  be  taken  at  5000  lbs.  per  square  inch. 

Preceding  width,  depth,  etc.,  are  for  work  to  exact  dim^isions,  whether 
forged  or  finished. 

To   Compute   TVeiel^t  of  a   Bolt  and   Nu-t. 

Operation. — Ascertain  from  table  weight  of  head  and  nut  for  given  di 

ameter  of  bolt,  and  add  thereto  weight  of  bolt  per  inch  of  its  length,  multi 

plied  by  full  length  of  its  body  from  inside  of  its  head  to  end. 

Note.  —Length  of  a  bolt  and  nut  for  measurementy  as  such,  is  taken  fVom  inside 
of  head  to  inside  of  nut,  or  its  greatest  capacity  when  in  position. 


DIMENSIONS  AND  WEIGHTS  OF  BOLTS   AND  NUTS.      1 5/ 


Illustbatiov. — A  wronght-iron  bolt  and  nut  with  a  square  bead  and  nut  is  z  incb 
in  diameter  and  lo  inciies  in  length ;  what  is  its  weight? 


bolt  per  inch  of  length  .22 

xio=;:r^  J  3.-3/6* 

For  Steel  BoUs^  add  1.3  per  cent 

Sexagoixal    IXead. 

and  Nut. 

Dfaunetor 
of  Bolt. 

wu 

HMid. 

Ub. 

Nut. 

DUgonal. 
Head.      Nut. 

Head. 

epth. 
Nut. 

Weig 
Head 

and  Nut. 

lbs. 

lit 

Bolt 
per  Inch. 

Threads 
per  Inch. 

lot. 

Ins. 

Ins. 

Ins. 

Ina. 

Ii». 

Ins. 

Lbs. 

No. 

•25 

•375 

.5 

.43 

.58 

•25 

•25 

.022 

.014 

20 

•3125 

•4375 

.5625 

.5 

.65 

.3 

•3125 

.037 

.022 

18 

•375 

.5625 

.6875 

.65 

•79 

.34 

•375 

.062 

.031 

16 

•4375 

.625 

•75 

.72 

.87 

.4 

•4375 

.094 

.042 

14 

5* 

•75 

•875 

.87 

I 

•44 

5' 

.134 

-055 

13 

•5625 

.8125 

•9375 

.94 

1.08 

.48 

•5625 

.18 

.07 

12 

.625 

.9375 

1.0625 

1.08 

1.23 

.53 

.625 

.249 

.086 

II 

.6875 

I 

1. 125 

I.16 

1.3 

.58 

.6875 

.318 

.104 

II 

.75 

1. 125 

1.25 

1.3 

1.44 

.63 

•75 

.413 

.124 

10 

.8125 

1.25 

1-375 

1.44 

1-59 

.67 

.8125 

.522 

.145 

10 

.«75 

1.3125 

1-4375 

1.52 

1.66 

.72 

•875 

•639 

.168 

^ 

I 

1.5 

1.625 

1.73 

1.88 

.81 

I 

.931 

.22 

^ 

1.X25 

1.6875 

1.8125 

1.95 

2.09 

.9 

1.125 

1.299 

.278 

7 

1-25 

1.875 

2 

2.17 

2.31 

I 

1.25 

1.759 

.344 

7 

1-375 

2 

2.1875 

2.31 

2.53  i  i-i 

1-375 

2.263 

.416 

6 

1-5 

2.25 

2.375 

2.6 

2.74  1  1.18 

1.5 

2.958 

.495 

6 

1.625 

2.4375 

2.5625 

2.81 

2.96 

1.28 

1.625 

3.741 

.581 

5.5 

1-75 

2.625 

2-75 

3.03 

3.18 

1.37 

1-75 

4.654 

.674 

5 

1.87s 

2.8125 

2-9375 

3-25 

3.39 ;  1.46 

1.875 

5675 

•773 

5 

2 

3 

3.125 

346 

3.61    1.56 

2 

6.854 

.88 

4-5 

«.I25 

3-1875 

3-3"5 

3.68 

383   1-65 

2.125 

8.163 

.993 

4.5 

2.25 

3-375 

35 

3.9 

4.04  i  1.75 

2.25 

9.658 

1. 113 

4.5 

2-375 

35625 

3.6875 

4.11 

4.26  1.84 

2.375 

11.263 

1.24 

4.37s 

2-5 

3-75 

3-875 

4.33 

4-47  ,  1-94 

^•1 

13149 

1.375 

4.25 

2.625 

3-9375 

4.0625 

4-55 

4.69    2.03 

2.625 

15-15 

1.515 

4 

2.75 

4.125 

4^25 

4-77 

4.91  {  2.12 

2.75 

17.285 

1.663 

4 

2.875 

4^3125 

4-4375 

4.99 

5.12    2.22 

2.875 

19.751 

1.818 

3-75 

3 

4.5 

4.625 

5-2 

5-34    2.31 

3 

22.378 

1.979 

3-5 

3.25 

4875 

5 

5.63 

5-77 

2.5 

3.25 

28.258 

2.323 

3-5 

3-5 

5.25 

5.375 

6.06 

6.21 

2.68 

3.5 

35.081 

2.694 

3-25 

3-75 

5.625 

5.75 

6.5 

6.64    2.8/ 

3.75 

43-178 

3-093 

3 

4 

6 

6.125 

6.93 

7.07 

i3-o6 

4 

51.942 

3518 

3 

Finished. — Deduct  .0625  from  diameters  of  bolts  and  depths  of  all  heads 
and  nuts. 

For  Wood  or  Carpentry, 

Head  and  Nut-  {Square)^  1.75  diameter  of  bolt.  Depth  of  Head^  .75,  and 
of  Nut^  .9. 

Washer. — ^Thickness,  .35  to  .4  of  diameter  of  bolt,  on  Pine  3.5  diameter, 
and  Oak  2.5. 

MoUtworth  gives  following  elements  of  Tliread  of  Bolts : 

A  ngle  of  thready  55°.    Depth  of  thread  sz  Pitch  of  screw. 

Number  of  threads  per  Inch.  —  Square^  half  number  of  those  in  angular 
threads. 

Depih  of  thread.— .6^  pitch  for  angular  and  .475  for  square  threads. 

O 


CjS      DIMENSIONS  AND  WJSI6HTB  OF  BOLTS  AND  NUTS. 


BYenoh.   Standard.   Solts  and  N"-ats.    {Armengaud'§i 

HEXAGONAL  HEADS  ANP  NUTS. 


EquUafei^cU  Tnangular  Thread, 


Diameter 


of  Bolt. 


Mm. 
5 

75 
lO 

12.5 

15 
175 

20 

22.5 

25 
30 

35 
40 

45 
50 

55 
60 

65 
70 

75 
80 


Ins. 
2 

3 

39 
49 
59 
69 
79 
89 
98 
18 

8 
8 

77 
97 
17 
36 
56 
76 
95 
*5 


er 

II 

Threads 
per  Inch. 

Ina. 

No. 

.13  18.I 

.22  16 

.31  14.1 

.39  12.7 

.48  1 1.5 

.58  10.6 

66  9.8 

.76  91 

84   8.5 

1.02    7.5 

I  2     6.7 

1.4     6 

1-56   55 

I  74    5.1 

1.92'  4.7 

2.08   4.4 

2.26   4.1 

2.44   3.8 

26     35 

2.78 

3-4 

Thickness. 


Head. 


Ins. 
.24 

3 
•38 

44 
•5-2 

58 
.66 
.72 

8 

94 
1.08 

1.22 

1.36 

1-5 
1.64 

I  74 
1.92 

2.06 

2.2 

2.34 


Nat. 


Ins. 
.2 

•3 

39 
•49 
•59 
.69 

•79 
.89 

•98 
1. 18 

1.38 
158 
1.77 
1.97 
2  17 


u 

e 


lllS. 

.55 

.68 
.88 

1.04 

1.2 

1.4 

1-5 
1.68 

1.84 

2.16 

2.48 

2.8 

3-2 

3-44 
376 


2.36  408 
2.56  4.4 
2.76  4.7 

2-95  5 
3-15  1 5-35 


d. 

Safe 

Tensile 
Streas. 

Diameter 
of  Bolt. 

Lbs. 

Mm. 

ina. 

44 

20 

•79 

99 

25 

.98 

178 

30 

1. 18 

277 

35 

1.38 

400 

40 

1-57 

545 

45 

1.77 

713 

50 

1.97 

902 

55 

2.17 

X  120 

60 

2.36 

1635 

65 

2.56 

2218 

70 

2.76 

2912 

75 

2-95 

3674 

80 

315 

4547 

85 

3-35 

5288 

90 

3-54 

6540, 

95 

3-74 

7660 

ICX) 

394 

8893 

105 

4-13 

10  214 

no 

4-33 

II 468 

"5 

4-531 

Square  Thread, 


OH 


I116. 


n 

•a  *- 

HS. 


No. 


072   6.57 
081  '5.97 


093 

06 

14 

28 

3 

4 

5 

58 

66 

74 

83 
92 

2 

209 

22 

226 

23 


iS-4 

4-93 

4-53 
4.2 

3-91 
3-65 
3  43 
323 
3.06 
2.92 
2.76 
2.63 

2.51 
2.41 

2.31 

2.22 

2.13 

2.06 


2.. 

B  a 

Safe 

•fas 

Tansila 

S's 

Stress. 

hu. 

Lbs. 

1.82 

717 

2.01 

I  142 

2.22 

^(>:iS 

2.41 

2218 

2.63 

2912 

2.85 

3674 

3.07 

4547 

33 

5288 

3-5 

6540 

3-7 

7660 

392 

8893 

4-13 

10214 

4-36 

II 601 

4.58 

13 100 

4.78 

14794 

5 

16352 

5.22 

18 144 

5-43 

20CX)0 

5.66 

21950 

5.87 

23990 

Knglisl:!   IBolts   and  3^^latB.     {Whitwwth's.) 
Hexagonal    Heads   and   .N'uts,  and   Triangular  Tlireads. 
Diameter. 


Bolt. 


las 

187s  I 
2187, 

25      I 

3125  i 

375    I 

4375 

5 

5625 
62  s 
.6875 

•75 
.8125 

^75 

•9375 
I 

1. 135 


Inch. 
•093 
•134 

.t86 
.241 

.295 
.346 

•393 
•456 
.508 

•571 
.622 

.684 
•733 

.795 
.84 

.943 


No. 
40 
24 

24 
20 

18 

16 

14 
12 

12 

II 

II 

10 

10 

9 

9 
8 

7 


Depth. 

Width 

of 

Head 

Head. 

Nat. 

and 

Inch. 

Nat. 

Ins. 

Ins. 

.109 

.125 

.338 

.164 

.1875 

•448 

.219 

•25 

•525 

•273 

•3125 

.601 

.328 

•375 

.709 

•383 

•4375 

.82 

•437 

•5 

.919 

•492 

.5625 

1. 01 1 

•547 

.625 

I.IOI 

.6oi 

•6875 

1. 201 

.656 

•75 

I. 301 

.711 

.8125 

1.39 

.766 

•875 

1.479 

.82 

•9375 

IS74 

•875 

I 

1.67 

.984 

1. 135 

1.86 

Diameter. 

Base 

Bolt. 

of 

Thread. 

Ins. 

Ins. 

125 

1.067 

1-375 

1. 161 

1-5 

1.286 

1.625 

1.369 

1-75 

1.494 

1.875 

1-59 

2 

1-715 

2.125 

1.84 

2.25 

1-93 

2.375 

2.055 

25 

2.18 

2.625 

2.305 

2-75 

2.384 

^•87S 

2.509 

3 

2.634 

3-25 

2.84 

3-5 

3.06 

M 

Dei 

>th. 

Width 
of 

S  0 

Head 

No. 

HMd. 

Nut. 

and 
Nat. 

Ins. 

Ins. 

Ina. 

7 

1.094 

1.25 

2.048 

6 

1.203 

1-375 

2.213 

6 

1.312 

1-5 

2413 

5 

1.422 

1.625 

2.576 

5 

1^531 

1-75 

2.758 

4-5 

1. 641 

1-875 

3.018 

45 

175 

2 

3.149 

4-5 

1.859 

2.125 

3-337 

4 

1.969 

2.25 

3.546 

4 

2.078 

2.375 

3-75 

4 

2.187 

2.5 

3-894 

4 

2.297 

2.625 

4.049 

3-5 

2.406 

2.75 

4.181 

3-5 

2.516 

2.875 

4346 

3-5 

2.625 

3 

4.53* 

325 

— 

— 

— 

3.25 

— 

— 

— 

RETENtlON   OF   SPIKES   AND    NAILS. 


'59 


Square   Keeds   and   Nnts.    {WhUvMrth^i.) 


Diameter. 

Bolt 


Base  of 
Thread. 


Ina. 

3-75 
4 

425 


Int. 

3-5 
3-75 


Tbrwidft 
per  loch. 


No. 

3 

3 
2.875 


Diameter. 


Bolt. 


Bum  of 
Thread. 


ins. 
4-5 

4-75 
5 


Ina. 

3.875 
4.0625 

4.25 


Threads 
per  Inch. 


II 


No. 
2.875 

2.75 
2.75 


Bolt 


Diameter. 

Ba««  of 


Ins. 
525 

5-5 
6 


ThruaJ. 


Il'S. 


4-4375 
4.625 

4-875 


Threada. 
per  Inch. 

No. 
2.625 
2.625 
2.5 


Weiglit   of  Heads   and   Nuts   iix    l^lyn.     {Motes 'cm-th.) 

[LroffOiuU,  1.07  D3,     Square,  1.35  D^     D  repreierUing  diameter  ofboit 
in  inches, 

Retentivenfess  of  Wrought  Iron  Spikes  and.  N"ails« 
Deduced  from  Experiments  of  Johnson  caid  Bevan. 

■  SPIKES. 


SriKB. 


Square 

•  •   •  • 
^                            •  •  •  • 

«     * 

•  •  •  • 

Flat  narrow. . 

ii  t( 

u 

ii 

ti 


broad . . 


ii 


Square)  ^^ 

Round  and) 
grooved. .  j 


Wood. 


ii 
i( 


Ilejnlotkt 

(!hestnut 

Yellow  pine 

White  oak 

Locust 

(Jbestnut 

White  oak 

Locust 

Chestnut 

White  oak 

I..ocust 

Heralockf 

Chestnutf 

L(x:u8tt 

A»h 

»i 


White  oak 

*  Barden'a  patent. 


Inn. 

-39 

-37 

•375 

•375 

•4 

•39 

•39 

•39 

•539 

•539 

•539 

•4 

•4 


Diam. 

i( 
it 


5 

§• 

0 

^8 

Ins. 

Ina. 

•3 
•38 

3-5 
3-5 

•375 

3-375 

•375 

3375 

-4 

3-5 

•25 

3-5 

•25 

3-5 

•25 

.288 
.288 

35 
3-5 
3-5 
3-5 

•39 

3-5 

•39 

3.5 

•39 

3-5 

•5 

3-5 

•5 
.48 

35 

3-5 

•  »  > 

fc.fel 

O  3  u 

Lhii. 
1297 

1873 
2052 

3910 

5967 
2223 

3990 
5673 
2394 
5330 
7040 
1638 
1790 

3990 

2052 

2451 
3876 


o5«i 

9t  u  V 
2^  » 


RlMAIlKS. 


1.58 
2.16 

2.37 

4-52 
6.33 
3-93  i 
7-05 
9-32  I 
2.66  ; 

5-71 

7-84 

1-75 
1.81 

4.17 

2.21 

2.41 
3-2 


Seasoned  in  part 
Unseasoned. 

Seasoned. 

ii 

ii 


Unseasoned. 
Seasoned. 


Ik 


Unseasoned. 

Seasoned. 

ii 

Seasoned  in  part. 
Unseasoned. 
Seasoned  in  part 

Seasoned. 

li 
it 


t  Soaked  io  water  ai'ter  the  spike*  were  driven. 


NAILS. 

Depth  of 
iuMrtion. 

Force  required  to  draw  it. 

Nail. 

Length. 

Pine. 

Hemlock. 
Lbs. 

Elm. 

Oak. 
Lbs. 

BeerJi. 

Ins. 

Ina. 

Lbs. 

Lbs. 

Lbe. 

Sixpenny, 

2 

X 

187 

31^ 

327 

507 

667 

it 

2 

1-5 

327 

539 

571 

675 

889 

ii 

2 

2 

530 

857 

899 

139* 

1834 

Pressure  r«qnired 

to  force  them 

into  Pine. 


Lbs. 

235 
400 

610 


Oeuoral    RexnarUs. 

With  a  given  breadth  t»f  face,  a  decrease  of  depth  will  increase  retention. 

In  Mitt  woods,  a  blunt-pointed  spike  forces  the  fibres  downwardii  an.i 
backwards  so  as  to  leave  the  fibres  longitudinally  in  contact  witli  the  faces 
of  the  spike. 


S60     ANGLES  AND  DISTANCES. — ^DISTANCES  AND  ANGLES. 

To  obtain  greatest  effect,  fibres  of  the  wood  should  press  faces  of  the  spike 
in  direction  of  their  length ;  thus,  a  round  bluut  bolt,  driven  into  a  hole  of 
a  less  diameter,  has  a  retention  equal  to  that  of  any  other  form,  when  wholly 
driven,  as  without  boring.  *  • 

The  retention  of  a  spike,  whether  square  or  flat,  in  unseasoned  chestnut, 
from  two  to  four  inches  in  length  of  insertion,  is  about  800  lbs.  per  square 
inch  of  the  two  surfaces  which  laterally  compress  the  faces  of  the  spike. 

When  wood  was  soaked  in  water,  after  spikes  were  driven,  order  of  their 
retentive  power  was  Locust,  White  oak,  Chestnut,  Hemlock,  and  Yellow  Pine. 


Diameter  in  Inches. . 
Threads  per  Inch . . . 


Gra£ 

.125 
28 

J   I*ipe   Tlireads. 

•25    .375     -5     .75      I 
19       19    14      14    II 

1.25 
II 

1-5 
II 

1.75      2 
11     II 

ANGLES   AND   DISTANCES. 

A.ngleB    and    J^i stances    oorresponding    to    Opening  of  a 

Rvile   of  Two   Feet. 


Angle. 

DitUoce. 

0 

Int. 

I 

.2 

2 
3 

4 

.42 

.63 
.84 

5 
6 

1.05 
1.26 

7 
8 

9 

1.47 
1.67 

1.88 

10 

2.09 

II 

2-3 

12 

2.51 

13 

2.72 

14 

2.92 

15 
16 

3-13 
3-34 

17 
18 

3-55 
3-75 

Angle. 

DIetaBM. 

Angle. 

0 

In*. 

0 

19 

396 

37 

20 

4.17 

38 

21 

4-37 

39 

22 

458 

40 

23 

4.78 

41 

24 

4-99 

42 

25 

5.19 

43 

26 

5-4 

44 

27 

5.6 

45 

28 

5.81 

46 

29 

6.01 

47 

30 

6.21 

48 

31 

6.41    ' 

49 

32 

6.62 

50 

33 

6.82 

51 

34 

7.02 

52 

35 

7.22 

53 

36 

7.42 

54 

DUtwice. 

Angle. 

Distance. 

Angle. 

Dbtanee. 

Ins. 

0 

Ins. 

0 

Ins. 

7.61 

55 

11.08 

73 

14.28 

7.81 

56 

11.27 

74. 

14.44 

8.01 

57 

"•45 

75 

14.61 

8.2 

58 

11.64 

76 

14.78 

8.4 

59 

11.82 

77- 

14.94 

8.6 

60 

12 

78 

15.11 

8.8 

61 

12.18 

79 

1527 

8.99 

62 

12.36 

80 

»5-43 

9.18 

63 

12.54 

81 

1559 

938 

64 

12.72 

82 

1575 

9-57 

65 

12.9 

83 

»5»9 

976 

66 

1307 

84 

16.06 

995 

67 

13-25 

85 

16.21 

10.14 

68 

13.42 

86 

16.37 

»o-33 

69 

1359 

87 

16.52 

1052 

70 

13-77 

88 

16.67 

10.71 

71 

1394 

89 

16.82 

10.9 

72 

14.11 

90 

16.97 

Distances    and    A.ngle8    corresponding;    to    Opening*    or    a 

R,nle   of  Two   Feet. 


[MsUnce. 

Angle. 

DisUnee. 

Int. 

0 

Ins. 

.25 

1. 12 

3 

•375 

1.48 

3-25 

•5 

2.24 

35 

.625 

2-59 

3-75 

.75 

3-35 

4 

.875 

4.12 

4.25 

/ 

4.48 

4-5 

125 

558 

475 

1-5 

71 

5 

1-75 

8.22 

525 

2 

934 

5-5 

2.25 

10.46 

5-75 

a-S 

11.58 

6 

2.75 

I3-* 

6.25 

o 
14.22 

15-34  i 
16.46 

17-58, 

19.11 

20.24 

21.37 

22.5    I 

24-4    j 
25.16  I 

26.3    I 

27.44 
28.58 
30.12 


DUUnce. 

Angle. 

Ins. 

0 

6.5 

31.26 

6.75 

334 

7 

33-54 

7^25 

35-09 

7.5 

36.24 

7-75 

37-4 

8 

38.56 

8.25 

40.12 

8.5 

41.28 

8^75 

42.46 

9 

44.2 

9-25 

45-2 

95 

46.38 

9-75 

47-56 

Distance. 

Angle. 

DIstMice. 

Angle. 

Ins. 

0 

Ins. 

0 

10 

49.14 

13.5 

68.28 

10.25 

50.34 

13-75 

6954 

10.5 

51-54 

14 

71.22 

10.75 

5314 

14.25 

72.5 

It 

54-34 

14-5 

74-2 

11.25 

55-54 

14-75 

75-5 

"•5 

5716 

15 

77.22 

"75 

58.38 

15-25 

78.54 

12 

60 

15-5 

80.28 

12.25 

61.23 

15-75 

82.2 

12.5 

62.46  , 

16 

83.36 

1275  ,64.1 

16.25 

85.14 

13         65.36 1 

16.5 

86.  sa 

13-25 

67.03  1 

16.75 

88.3a 

wots  iu^M.  iOi 


WIRE  ROPE. 


Wire  rom  will  run  oyer  sheaves  of  like  diunflter  to  Hemp  rope  of  same 
stoength ;  but  larger  sheaves  reduce  wear.  Adhesion  is  the  same  as  that  of 
kemp  rope.  Wear  increases  r;ipidly  with  speed.  Short  bends  should  foe 
avoided.  In  substituting  wire  rope  tar  hemp,  allow  same  weight  per  foot. 
Kinking  wire  rope  materially  damage^  and  often  destroys  it. 

For  transmission  of  power,  wire  rope  can  foe  us^  up  to  distances  of  3 
miles.  For  distances  lees  than  100  feet,  it  is  not  advised  for  long  trans- 
mission; sheaves  are  placed  at  intervals,  dividing  it  into  a  number  of 
shorter  ones  of  250  to  300  feet. 

Strength  per  square  inch  of  section  of  rope  is  about  50  p£r  cent  of  an 
equal  section  of  polid  metal  of  same  strength  per  squMre  inch. 

Stationary  wire  fopes  should  be  kept  weU  painted  or  taned  to  prevent 
their  oxidation.  Running  ropes  should  always  be  well  lubricated  and  pro> 
tected  from  grit  with  Unseed-oil,  pine  tar,gniphjlte  grease,  or  any  similar 
non-acid  substances. 

Standard  wire  rope  is  made  of  6  strands  of  7, 12,  or  19  wires  each,  with 
hemp  or  wire  centre.  Wire  centre  adds  10  per  ce^t.  to  streng^  and  wejght 
<tf  rope,  but  reduces  its  flexibility  proportionally. 

tSafe  working  load  for  standing  ropes  is  about  one  fourth  tdtimate  strength, 
and  for  running  ropes  it  is  from  one  fifth  to  one  seventh. 

Ropes  for  hoisting  are  composed  of  6  strands  of  19  wir^  each  around  a 
hemp  centre. 

Ropes  for  transmission  of  power,  for  guys  and  rigging,  are  <x>mposed  of 
6  stranda  of  7  or  12  wires  each. 

The  ultimate  strength  of  wires  of  which  wire  ropes  are  made  are  for: 
Iron  wire.  70000  to  900Q0  lbs.  per  s^.  Inch ;  Bessemer  steel  wir^  100  000  to 
iio<xx)  1m.;  Cwclfolfi  cast  "Steel  wire,  150900  to  180000  lbs.,  itnd  Special 
plough-steel  wire,  210000  to  300000  lbs. 

Special  ropes  can  be  made  ^f  4, 6, 8,  etc.,  strands  of  varied  construction. 
Wire  ropes  are  also  made  flat,  composed  of  sei\'eral  strands  alternately 
twisted  to  right  and  left,  laid  alongside  each  other,  and  sew^  together 
with  floft  iron  wire. 

Wire  hawsers  of  steel  are  made  of  6  strands  of  i;»  wires  each  with  hemp 
centre,~around  a  common  hemp  centre,  and  are  as  ^exibie  as  hemp  liawsers 
of  equal  strength. 

Galvanized  wire  rope  replaces  hemp  for  rigging,  becfuise  /of  its  cheapneea, 
durability,  and  resistance  to  stretch.  It  is  one  fifth  bulk  rfor  equal  strepgth 
of  Jmiii|)  rope,  and  offers  less  surlaoe  to  wind. 

TUler  rqpes  ^or  vessel-steering  gear  are  made  of  0  smaller  ropes  around 
a  hemp  centre,  each  small  rope  composed  pf  6  strands  of  7  wires  each  with 
hemp  oentfe— 253  wires  in  all  in  the  rope,  giving  great  flexibility. 

Tacbt  rigging  oi  galvanized  castisteel  rope  is  one  third  to  one  Wi  weight 
of  Iron  wire  rope  of  eqnal  strength. 


1 62 


WIBB  BOPSS. 


Kleznents  of*  Hoisting  and  Haulage  "^^ire   liope. 

John  A.  Roebling^s  Sons  Co.^  Trenton,  N.  J. 
HOISTING  ROPE.      19  Wii'es  in  a  Strand.    Hemp  Centre. 


Swedish  Iron. 


Diameter. 


Ins. 
2.25 

2 

«-7S 
1.625 

1-5 

1-375 
X.25 
1. 125 

.875 

.75 

.625 

.5625 

.5 

•4375 

.375 

.3125 

•35 


ApproZ' 

miate 
Circum- 
ference. 


lus. 
7-125 

•25 

•5 


Weight 

per 

Foot. 


Tons  of  20cx>  Lbs. 
Breaking  )      Safe 


Strain. 


Strain. 


Lbs.  No. 

8       78 

6.25  6.31     62 

5-5  4'85    48 

5  4- IS    42 

4.75  3-55    36 

4.25  3      3* 

4-  2.45    25 

3-5  2      21 

3  i-S8    17 

2.75  i'2     13 

2.25  .89 

2  .62 

>-75  -5 

1-5  .39 

I. 25  .3 

I.Z25  .22 

I  .15 

•  75  .1 

Transmission 


1:1 

5-5 
4-4 
3-4 
2.5 
1-7 

X.3 


Least 

Diameter 

of  Drum 

or  Sheave. 


7  Wires  in  a  Strand.    Hemp  Centre, 


No.  Feet.  No.  No. 

X5.6  X3  X56  31.2 

X2.4  X2  X24  24.8 

9.6  xo  96  19.2 

8.4  8.5  84  x6.8 

7.2  7.5  72  X4.4 

6.2  7  62  12.4 

S  6.5  50  xo 

4.2  6  42  8.4 

3-4  '  5-25  34  6.8 

2.6  4.5  26  5.2 

r.94  4  19.4  3.88 

*'36  3'5  i3'6  2.72 

x.x  2.75  IX  2.2 

.88  2.25  8.8  X.76 

.68  2  6.8  1.36 

•5  1-5  5  I 

•  34  I  3-4  -68 

.24     -75  2.4  .48 

and    Hanlage    Kope. 


Brealiing 
Strain. 


Gast-Stkel. 

Least 

Diameter 


Tons  of  3000  Lbs. 


Safe 
Strain. 


of  Drum 
or  Sheavie. 

Feet 

85 
8 


7 

6. 


25 
25 

75 
5 


5- 

5- 

5 

4-5 

4 

3-5 

3 

2.25 

1.75 

125 

.667 
•5 


Noi-^.— Add  10  per  cent,  to  weight  for  itibk  cbnt&b. 


SWKDIi 

311  Iron. 

Cast-Stbei.. 

Diameter. 

Approx- 
imate 
Cirenm- 

Weight 
Foot. 

Tons  of  2 
Breaking 

000  Lbs. 
Safe 

Least 
Diameter 
of  Drum 

Tons  of  s 
Breaking 

looo  Lbs. 
Safe 

Least 
Diameter 
of  D)-|im 

ference, 

Strain. 

Strain. 

or  Sheave. 

Strain. 

Strain. 

or  Sheave. 

Ins. 

Ins. 

Lbs. 

No. 

No. 

Feet. 

No. 

No. 

Feet. 

1-5 

4-75 

3-55 

34 

6.8 

13 

68 

13.6 

!'5 

1-375 

4.25 

3 

29 

S-? 

X2 

58 

XI. 6 

8 

1.25 

4 

2.45 

24 

4.8 

10.75 

48 

9.6 

725 

X.125 

3-5 

2 

20 

4 

2-5 

40 

8 

6.25 

X 

3 

1.58 

x6 

3-2 

8.5 

32 

6.4 

5-75 

.875 

2.75 

1.2 

X2 

2.4 

7-5 

*4  . 

4.8 

5 

•75 

2.25 

.89 

9-3 

X.86 

6-75 

t8.6 

3-72 

4-5 

.6875 

2.125 

•75 

Z'2 

X.58 

6 

X5.8 

3.16 

4 

.625 

2 

.62 

6.6 

1.32 

5-25 

13.2 

2.64 

3-5 

.5625 

"•75 

•5 

5^3 

i.o6 

4.5 

X0.6 

2.12 

3 

•5 

1-5 

•39 

4.2 

.84 

4 

8-4 

X.68 

2.5 

•4375 

1^25 

•3 

3-3 

.66 

3-25 

6.6 

1.32 

2.25 

.375 

x.125 

.22 

2.4 

•48 

2.75 

4.8 

't 

2 

•  3125 

X 

.15 

1.7 

•34 

2.5 

3-4 

.68 

«-75 

.28x3 

•875 

.125 

X.4 

.28 

2.25 

2.8 

.56 

1.5 

Approx* 
unate 
Diam- 
eter. 


Gralvanized    Charcoal    Iron    Wire    Rope. 

Vessels*    H,iggiiig    eind     Derriolt    Q-viyn. 

7  or  12  Wires  in  a  Strand.     Hemp  Centre. 

Breaking' 

Strain 

in  Tons 

of  3000 

Lbs. 


lot.  ' 

"•75 
X.6875 

1.625 

'•5 

'•4375 
I.375 


Breaking 

Cirt-um. 

Circum- 
ference. 

Weight 

Strain 

of  Manila 

Foot. 

in  Tons 
of  2000 

Rope  of 

Equal 

Lbs. 

Strength 

Ina. 

Lbs. 

No. 

Ins. 

5.5 

4.85 

44 

XX 

5-25 

4-4 

40 

X0.5 

5 

4  ^ 

36 

xo 

4.75 

3-6 

32 

9-5 

4.5 

3-25 

29 

1.5 

4.25 

2.9 

36 

Approx- 
imate 
Diam- 
eter. 

Circum- 
ference. 

Weigiit 
Foot. 

Ins. 

Ins. 

Lbs. 

1.25 

1.1875 

4 
3.75 

2.55 
2.25 

1.125 
1.0625 

3-5 
3-25 

1^95 
'•7 

X 

•87s 

3 
2^75 

x.44 

X.3X 

No. 

23 
20 

18 
15 
13 
xz 


Circum. 
of  Manila 

Rope  of 

Equal 

Strength. 

Ina. 
8 


5 
5 

75 
as 


WIEB   BO PXS,  HAWSERS,  AND   CABLES. 


163 


Gralvanissed    Clxarooal    Iron    '^Vix*e    Rope* 

Vessels'    Rigging    and    X>erriok    &xiytt. 

John  A,  Roebling^s  Sons  Oo.j  Trenton^  N.  J. 

7  Wires  in  a  Strand. 


Approx- 
imate 

-  Diam- 
eter. 


Ins. 
.8125 

•75 
•  625 
.5625 

•5 
•4375 


Approx- 
imate 
Diam- 
eter. 


Circum- 
ference. 


Ins. 

3-5 

3.25 

2 

'•75 

x.S 

1.25 


Weight 

per 

Foot. 


Breaking 

Circum. 

Strain 

of  Manila 

in  Tons 

Rope  of 

of  XK» 

Equal 

Lba. 

Strenirth. 

No. 

Ins. 

9 

5 

7*1 
5.8 

4-75 

4-5 

4-4 

3.75 

3-2 

3 

2.3 

a. 5 

Lba. 

X 

.81 

.64 

•49 
.36 

.25 

Gralvanissed    Steel    Hawsers. 
S^or    Sea    and    X^alse    To-wiiig. 


Breaking 

Circum. 

Approx- 

Weight 

Strain 

ofManila 

imate 
Diam- 

Circnm- 
ference. 

^t. 

in  Tons 
of  aooo 

Rope  of 
Equal 

eter. 

Lba. 

Strength. 

Ina. 

Ina. 

Lbs. 

No. 

Ins. 

•375 

1.125 

.2 

1.8 

3.25 

•3125 

X 

.x6 

1^4 

3 

.28x2 

.875 

.123 

x.x 

«.75 

•^5  . 

•75 

.09 

1^5 

1-5 

.2188 

.625 

.003 

I56 

1-25 

.1875 

•5 

.04 

•36 

X.X25 

Ins. 

X.75 
1.6875 
1.625 
1.5 


Circum- 
ference. 


Ina. 
5-5 

5^25 

5 

4-75- 


Breaking 

Circnm. 

Breaking 

Circnm. 

Weight 

Strain 

ofManila 

Approx- 

Weight 

Strain 

ofManila 

fQt. 

in  Tons 

Rope  of 

imate 

(Hrcnm- 

foot. 

in  Tons 

Rope  of 

of  aooo 

Equal 

Diam- 

ference. 

of  aooo 

Equal 

Lba. 

Strength. 

eter. 

Lbs. 

Strength. 

Lbs. 

No. 

Ina. 

Ins. 

Ins. 

Lbs. 

No. 

Ins. 

3.25 

6x 

'3-5 

>-4375 

4-5 

3.18 

42 

11-5 

2.95 

57 

«3 

1-375 

4-25 

1.94 

39 

XI 

2.7 

53 

12.5 

X.25 

4 

1.72 

32 

10 

2.43 

45 

X2 

1-1875 

3-75 

1.51 

29 

9-25 

G^alvanized  Steel  Cables  for  Suspension  Sridges. 


Diam- 
eter.. 

Weight 
J^t. 

Ins. 

2.75 
2.625 

2.5 

Lbs. 

XI. 6 
,xo.5 

Breaking 

Strain  in 

Tons  of  aooo 

Lbs. 

No. 
310 
283 
256 


Diam- 
eter. 

Weight 
^ol. 

Ins. 

2.375 

2.25 

2.125 

Lbs. 

7.6 

Breaking 

Strain  in 

Tona  of  aooo 

Lba. 

Diam- 
eter. 

Weight 
^t. 

No. 

232 

.     208 

185 

Ins. 

1.875 
1-75 

Lbs. 
6.73 
5.9 
5-1 

Breaking 

Strain  in 

Tona  of  aooo 

Lbs. 

N^l 

164 

144 
124 


Graujge,  Weiglit,  and    X^engthi    of  Iron    'Wire. 


i 

9 

Diam. 

m 

0 

No. 

Inch. 

6/0 

■46 

5/0 

.43 

4/0 

•393 

3/0 

.362 

2/0 

•331 

1/0 

.307 

1 

.383 

2 

.263 

3 

-244 

4 

.335 

5 

.307 

6 

.193 

7 

.177 

8 

.163 

9 

.148 

xo 

•»3S 

XX 

.12 

12 

.X05 

»3 

14 

T 

«S 

.073 

Weight 

Weight 

per  100 

of  one 

Feet. 

Mile. 

Lbs. 

Lbs. 

56.1 

3963 

49.OX 

3588 

40.94 

2163 

34.73 

1834 

29.04 

1533 

37.66 

1460 

21.23 

1 131 

18.34 

€ 

15.78 

13.39 

707 

11-35 

599 

9-73 
8.03 

514 

439 

6.96 

367 

1.08 

,06 

4.83 

255 

3.82 

203 

3.93 

'5* 

3.34 

118 

1.69 

89 

«-37 

73 

63  lba. 
Bnndle. 

Area. 

0 

Diam. 

Feet 

Sq. Inch. 

No. 

Inch. 

XI3 

.x66 19 

x6 

.063 

129 

•14522 

17 

.054 

'i^ 

.121304 

18 

•047 

x8x 

.102921 

19 

.041 

217 

.086049 

20 

•035 

228 

.074023 

31 

.032 

296 

.062  90X 

23 

.028 

343 

•054325 

23 

.025 

399 

.046759 

24 

.023 

470 

.03976 

25 

.03 

555 

•033653 

36 

.018 

647 

.038952 

27 

..0x7 

759 

.024605 

28 

.016 

90s 

.030612 

29 

.0x5 

1086 

.017203 

30 

.014 

1304 

.0x4313 

31 

.0x35 

1640 
2158 

.ox  I  309 

32 

.0x3 

.008659 

33 

.oxz 

2813 

.006647 

34 

.ox 

3728 

.005026 

35 

-0095 

4598 

.004071 

36 

.009 

Weight 

per  100 

Feet. 


Lbs. 
X.05 

.58 
•45 
•32 
•27 

.31 

•17s 

.1x6 
.003 
.083 

.074 
.o6x 

.054 
.040 

.037 
-03 

.025 

.03X 


Weight 
of  one 
Mile. 


Lba. 
55 
41 
3« 
24 
17 
14 

XI 

9.24 

739 
6.124 

4.91 

4.382 

3907 

3.22 

2.851 

3.64 

3.428 

«-953 
1.584 

1.32 
1. 161 


63  lba. 
Bundle. 


Feet. 
6000 
8182 
10862 
14000 
19687 

23333 
30000 

36000 

45000 

54310 

67742 

75903 

85135 

X03  278 

X 16  666 

126000 

136956 

1 70  370 

2IOOOO 
252000 
286  363 


Area. 


Sq. Inch. 
003x17 
.00229 

001  734 
.oox  32 

•  000962 

.000804 

.0006x5 

000491 

000415 

000314 

000254 

000227 

.000201 

.000  176 

000154 
000x33 
000x33 
000095 
000078 
000071 
1.000064 


I64 


IBON,  STESJjy  AND  HBMP  BOPB. 


'Weight  and  Strenetli  of*  Single  Strand  and  Cable 
laid  :F'enoe  'Wire.    {F.  Mortomi  Co.) 


StraadA. 

No. 

No. 

3 

2A 

4 

2 

7 

I 

7 

O 

flgl 


or«qaal 
Diametar. 


No. 

8 

7 
6 

5 


Inch. 

•159 
.174 

.191 

.2C9 


Lcoftih 

per  xooo  lbs. 

Ofa 

Of 

Strands. 

No. 

Strand. 

Rop«. 

Feet. 

Feet. 

No. 

20090 

15270 

7 

00 

14730 

12790 

7 

3/0 

13  125 

JO  580 

7 

4/0 

10446 

8928 

7 

5/0 

Sinffle  Wire 

of  equal 

Diameter. 


No 

4 

3 
2 

I 


Inch. 
.229 

•25 

.274 

•3 


Length 

per  1000  Ibc. 

Ofa 

Of 

Strand. 

Rope. 

Feet. 

Feet. 

8300 

1:^ 

8036 

6228 

7SOO 

5156 

5090 

4286 

No.  and  diameter  of  wire  is  that  of  Ryland^s  Bros.,  pp.  122-4. 

Hemp,  Iron,  and  Steel.     {B.  S.  NewM  A  Co,) 

ROUND. 


HXMP. 


Clrcainfereaca. 


Fns. 
3.75 

3-75 
4.5 

5.5 

6 

6.5 


7-5 
8 

8.5 

9-5 
xo 

XX 
19 


4  X 

5  X 
5-S  X 
5-75  X 

6  X 

7  X 
8.25  X 

8.5  X 

9  X 

9-5  X 

10  y 


VT     f      1- A 

HON. 

nr   1    \-M. 

8TIBL. 

ATeight 
Foot. 

Circumference. 

Weight 

Circamference. 

Lbi. 

In». 

Lbs. 

Ins. 

•33 

I 

.16 

— 

1-5 

.25 

X 

.66 

1.625 

.33 

— 

i^75 

,42 

1^5 

.83 

1.875 

.5 

— 

3 

.58 

1.625 

1.16 

2.125 

.66 

1-75 

2.25 

-75 

— 

1-5 

2-375 

.83 

1.875 

1 

2-5 

.92 

... 

1.66 

2.625 

I 

2 

2-75 

1.08 

2.125 

2 

2.875 

1. 16 

3.25 

J 

1.25 

— 

^•33 

3-125 

1-33 

2-375 

325 

1. 41 

— 

2.66 

3-375 

1.5 

2^5 

3-5 

1.66 

2.635 

3 

3^625 

1.83 

2.75 

3-75 

a 

— 

3^66 

3.875 

2.l6 

3-25 

4-33 

4 

2-33 

— 

4-25 

2.5 

3-375 

5 

4375 

2.66 

— 

4-5 

3 

3.5 

5^66 

4.625 

3-33 

3-75 

FLAT. 


.5 

3-33 

i-aS 

4 

1-375 

4.33 

1-5 

4-66 

1-5 

5 

1-875 

6 

3.125 

6.66 

a.35 

7.5 

2-5 

8.33 

2-375 

916 
10 

a-S 

DlinensioiM. 
2.35 

2.5 
2.75 
3 
3-35 

3-5 

3.75 

4 

4.2s 

4-5 


X.5 

1.85 

X.5 

2.16 

X.625 

2-5 

X.625 

2.66 

X.625 

3 

X.625 

3-3^ 

X.6875 

1.66 

X.6875 

4.16 

X.75 

4.66 

X.75 

5-33 

X.75 

S.66 

DlmensloiM. 


2  X.5 

a.25X.5 
2.25  x.5 
2.5  X.5 
2-75  X. 375 

3  X.375 

3.25  X. 375 
3.5  X.375 


Weight 

TensiM  2 
Safe 

Boot. 

.  Lowl. 

Lbs. 

Lba. 

— 

672 

.16 

1008 

— 

?344 

.25 

1680 

2016 

•3.1 

235a 

.42 

2688 

— 

3024 

•5 

3360 

— 

3696 

•58 

4032 

.66 

4368 

•75 

4704 

— 

5040 

•83 

5376 

-^— 

5672 

.93 

6048 

I 

6720 

1.08 

739» 

— 

8064 

1-33 

8736 

^^^ 

9408 

1-5 

10080 

— 

10752 

1.66 

12096 

3 

13440 

— 

4928 

— 

5824 

— 

6720 

1.66 

7168 

1.83 

8064 

2 

8960 

2. 16 

9850 

2-5 

II200 

2^ 

13  544 

3 

14336 

3^23 

15  332  1 

UltimaU 
Strength. 

Lh«.~ 
4480 
6720 
8960 

xiaoo 

13440 

15680 

17930 

20160 

22400 

24640 

366S0 

29120 

31360 

33600 

36840 

38080 

40320 

44800 

49280 

53760 

58240 

62720 

67300 

71680 

80640 

89600 


44800 
51530 
60480 
62  720 
71680 
80640 
89600 
100800 

112  OQO 

125440 

134409 


RdPES   AND   CHAINS. 


165 


Ultimate    Strengtlx   and    Safe    ILioade    of*  IXemp,    Iron, 

and    Steel. 


Hemp  . 
Iron . . . 


DIUmaU 

Strongth 

per  Lb.  Weight 

per  Foot. 


Lbg. 
15000 
22000 


Safc  Load 


per  Lb. 

Weight 

per  Fw>t. 


Lbs. 
4550 
5000 


per  Square 
of  Circum.' 
in  Inebea.  I 


Lb*.      •! 

100 

600 


Steel 


Ultimate 
Strength 

per  Lb. Weight 
per  Foot. 


{ 


Lhfl. 
30000 

45SOO 


Safe  Load 
per  Lb. 
Weight 
perFwt, 


Lba. 
C60OO 
(5000 


pe/Square 
ofCircnm. 
in  Inches. 


Lba. 

1000 

1300 


PLOUGH    8TEKL   FLAT   MINING   ROPES. 
John  A .  Hoebling's  Sons  Co.^  New  York, 


width. 

TUekneaa. 

Ids. 

Ina. 

2 

•375 

3.5 

•375 

3 

•375 

3-5 

.5 

4 

•375 

4 

•5 

4.5 

•375 

4-5 

.5 

5 

•375 

5 

•5 

Weight 
per  Foot. 


Ultimate 
Strength. 


Lbs. 
1. 19 
1.86 
2.32 
2.97 

2.86 

3-3 
3.12 

4 

3-4 

4.27 

For  CaBt-Steel  Flat  Ropes 

Hopes  and 


Width. 

Thiclcn'wa. 

Weight 
per  Foot. 

[JItimaU 
Strength. 

Ins. 

Ina. 

Lbs. 

Lba. 

5^5 

•375 

3-9 

156000 

5-5 

•5 

4.8 

193000 

6 

•375 

4-34 

173000 

6 

•4375 

4^5 

160000 

6 

•5 

5.1 

210000 

6.5 

•5 

5^5 

224000 

7 

.5 

5-9 

238000 

1     7.5 

•5 

6.25 

250000 

8 

.5 

6.75 

270000 

Lba. 

63000 

74000 

93000 
118000 
II4OOO 
130000 
125000 
160000 
125000 
170000 

see  page  1029. 

Cliaiiis  or  £j<iu.al   Strength, 


Diameter 

of 

Iroa  Chain. 


Ins. 
.218  75 

•25 
.281  25 

•3125 

•375 

•437  5 

.46875 

•5 
.625 

•6875 

•75 

.875 

•937  5 
1^)625 

1.125 

1.25 

'•375 

1-5 
1.625 

'•75 


CIRCUM  PBRSNCK. 


Heinp 
Rope. 


t 


Ins. 
2.75 

3 

3-5 

4.25 

45 

5 

5.5 

575 

6.75 

7^75 

875 

9-75 
10.5 

"•75 
12.75 
H-75 
15-25 
15.75 
1775 
195 


Crucible 
Steel 
Rope. 


Charcoal 
Iron 
Rope. 


WEIGHT  PER  FOOT. 


Ina. 


I 
1.26 

1^45 
1^57 
1-77 
1.96 

2.36 

2.75 
2.95 
3^i4 
353 
3-93 
432 
4.71 
4.81 

5^1 
5.8 

6.35 


Ilia. 

I 

1.18 

139 
1-57 
1.77 

1.97 
2.19 
2.36 

2.75 
314 
3.53 
3-93 
432 
4.71 

5-1 
5-5 

5.89 
6.28 

7.07 
7.85 


steel 
Rope. 


II 


Lbs. 


.17 
.25 

•3 
•35 
•45 
•59 
.85 
I.I 

1.28 

M5 
1.83 

2.33 
2.98 

3.58 

365 
4.04 

565 
6.S 


Hemp 
Rope. 


Lba. 

•34 
.46 

.67 

•75 

.83 
1.16 

1.2 

1.6 

2 

2.65 

335 
4.6 

4.92 

5.83 
6.2 

8.7 

9 
10. 1 

137 
16.4 


Iron 
Chain. 


Lbe. 

•5 

.65 
.81 
.96 

1.38 

1.76) 

2.2 

2.63 

4.21 

483 

5.75 

7.5 

9.33 
10.6 

1 1.9 

145 
17.6 
20 
22.3 

24.3 


Safe 
Load. 


By  ezperimeDte  of  U.  S.  Navy,  hemp  rope  of  this  circun^ference  ha*  a 
Vftif^  0/71 309  lbt.f  and  a  wire  rope  0/5-^  in§.  ha^s  eqttiwi^t  iirffW^ 


Tons. 

•3 

•4 

•5 
.6 

.8 

I 

1-3 
1.5 
2.3 
3-1 
38 
4.8 

5.9 

7 

8.2 

9-5 
II 

12.5 

15.9 
19.6 

breaking 


i66 


WEIGHT,  STBESS,  AND  TENSION   OF  BOPES. 


"WeigUt  of  Hexup  and  "Wire   Rope.    (Molesioorth,) 

In  Lbs.  per  Fathom, 

Circum-  Hbmp. 

Good. 

Lbs! 
6 

7  26 

864 

10.14 

11.76 

1536 

1734 
1944 
24 

3456 

54 

Xo  Compute  Stress  upon,  a  Ftope  set  at  an  Inclination. 

Rule. — Multiply  sine  of  angle  of  elevation  by  strain  in  lbs.,  add  an  allow- 
ance for  rolling  friction  and  weight  of  rope,  and  multiply  by  factor  of  safety. 

Factor  of  safety.— 'E or  standing  rope  4,  for  running  5,  and  for  inclined 
planes  from  5  to  7. 

Illustration. — Inclination  of  rope  02.5  feci  in  100,  velocity  1500  feet  per  minute, 
and  strain  2000  lbs. ;  what  should  be  diam.  of  iron  rope,  7  wires  to  a  strand  ? 

Angle  of  ^2.5  feet  in  100=430,  and  sine  of  43°  =  . 682.  .682  X2ooo=  1364,  to 
which  is  to  be  added  rolling  friction  and  weight  of  rope,  assumed  to  be  11 ;  hence, 
1364-4-11  =  1375. 

Factor  of  safety  assumed  at  6,  consequently  1375  X  6  =  8250  lbs. ,  capacity  or  break- 
ing weight  or  stress  of  rope. 

By  table,  page  162,  8200  lbs.  is  breaking  weight  of  a  wire  rope  of  7  strands,  .625 
tncA'  in  diatn. 


Clrcnm- 

Hbmp.              | 

WlRB.                        \ 

Circum- 

Hb 

tiar«nc«. 

Conunon. 

Good. 

Iron. 

Steel. 

ference. 

Common. 

IDB. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Ins. 

Lbs. 

I 

.18 

.24 

.87 

.89 

5 

4.5   ' 

1-5 

•41     . 

.54 

.     1.96 

2 

55 

5-45 

I  75 

•55 

.74 

2.66 

2.73 

6 

6.48 

2 

.72 

.96 

348 

3-56 

6.5 

7.61 

2.25 

•91 

1.22 

4.4 

4-51 

7 

8.82 

2-5 

113 

I -5 

5-44 

5-56 

7-5 

10.13 

2-75 

1.36 

1.82 

6.58 

6.73 

8 

11.52 

3 

1.62 

2.16 

7.83 

8.01 

8.5 

130S 

325 

1.9 

2.54 

9.19 

9.4 

9 

14.58 

3-5 

2.21 

2.94 

10.66 

10.9 

10 

18 

3-75 

253 

338 

12.23 

12.52 

12 

26 

4 

2.88 

3.84 

13.92 

14.24 

15 

40.52 

Xo   Compute   Tension   of  a   Hope. 


W 


—  =  ^.    9  representing  velocity  of  rope  in  feet  per  minute^  H*  horses*  power, 

and  t  tension  in  lbs. 

Illustration.— Assume  wheel  7  feet  in  diameter,  revolution  140  per  minute, and 
H*  as  per  preceding  table,  29.6. 

^^   .9.6x33°°°  ^97gjgg^       a^ 

7X3- 1410  X  140         3079 
To  Compute  Operative  Defleotion  of  a  Rope. 

=  rf.    D  representing  distance  between  centres  of  wheds  or  drums  in 

feet,  w  freight  of  rope  in  feet  per  Ib.^  t  tension^  or  poroer  required  to  produce 
required  power  or  tension  of  rope  when  at  rest.,  and  d  deflection  in  feet, 

Illdstration.— Take  elements  of  preceding  case:  diam.  of  wire  rope  of  7  strande 
=7,5625  inch,  and  by  table,  page  162, 10  =  .41  lb. ,  and  D  =  300  fidet 

Then  y^^-^^  =  ,0.87  feeL 

10.7  X  317-3 

Capacity,^-A.t  the  Falls  of  the  river  Shine  there  is  a  wire  rope  in  operation 
that  trangmits  the  power  of  $90  horses  for  a  diijtftnce  exceeding  ope  toUo, 


TRANSMISSION  OP  POWJKE  AND  EQUIVALENT  BELT.      1 6/ 


Sndless  Hopes. 

Wire  Ropes,  when  practicable  and  proper  for  application,  can  be  used  for 
transmission  of  power  at  a  less  cost  than  belting  or  shafting. 


51 


Feet. 

4 

4 

4 

4 

5 

5 

5 

5 
6 

6 

6 

6 


►  S  a 


Transmission,  of*  I'o'wer. 


8o 

lOO 
I20 
140 

80 
100 
120 
140 

80 
100 
120 
140 

80 


1^ 

M 

|1 

0  _  0 

SS.S 

5"S 

x^ 

5*8 

Feet. 

OS -IS 

Ins. 

.375 

3.3 

7 

100 

•375 

4.1 

7 

140 

.375 

5 

8 

80 

•375 

5.» 

8 

100 

•4375 

6.9 

8 

140 

.4375 

8.6 

9 

80 

.4375 

10.3 

9 

100 

•4375 

12.1 

9 

140 

•5 

10.7 

10 

80 

.5 

13.4 

10 

100 

.5 

16. 1 

10 

140 

.5 

18.7 

II 

80 

.5625 

16.9 

1  " 

lOp 

''  Ins. 
.5625 

.5625 

.625 

.625 

.625 

.625 

.625 

.625 

.6875 
•6875 
■6875 

.6875 
.6875 


TVire  Rope  and  Eqnivalent  Selt. 


Horse 
Power. 

Feet. 

Revolu- 
tions per 
Minute. 

Diameter 
of  Rope. 

Ins. 

21. 1 

II 

140 

.6875 

29.6 

12 

80 

•75 

22 

12 

100 

.75 

27.5 

12 

140 

.75 

38.5 

13 

80 

•75 

41.5 

13 

100 

.75 

51.9 

13 

120 

•75 

72.6 

14 

«n 

.875 

58.4 

H 

100 

•875 

73 

14 

120 

.875 

102.2 

15 

80 

.875 

75.5 

15 

100 

.875 

94.4 

15 

120 

.875 

Kta 


132-1 

99-3 
1 24. 1 

173.7 
122.6 

153.2 

183.9 
I4« 

176 

222 


217 

259 

300 


In  substitnting  wire  rope  for  an  ordinary  flat  belt,  the  diameter  is  aeter- 
mined  by  rule  in  practice  for  estimating  power  transmitted  by  a  belt — \iz^ 

One  horse  power  for  every  70' square  feet  of  running  belt  surface  per 
minute.  Thus,  a  belt  15  inches  wide  running  at  rate  of  1400  feet  per  min- 
ute, its  power  would  be  equal  to  (1400 X 15)  -r-  (70 X 12)  =r  25  horses'  power. 

The  same  result  is  obtained  by  the  use  of  a  wire  rope  .5625  inch  in  diam« 
eter,  nmning  over  a  wheel  6  feet  in  diameter,  making  130  revolutions  per 
minute. 

Average  life  of  iron  wire  rope  with  good  care  is  from  3  to  5  years^  and 
that  of  steel  rope  is  greater.    Wear  increases  rapidly  with  velocity/ 

General   Notes. — Henap  and  Wire  Ropes. 

White  Rope,  a  inches  in  circumference,  of  different  manufactures,  parted  at 
a  stress  of  from  4413  to  6160  ibs. 

Specimens  of  Italian,.  Russian,  and  French  manufacture  parted  with  an 
average  stress  of  5128  lbs.  =:  1633  lbs.  per  square  inch  of  rope. 

Bearing  capacity  of  a  hemp  rope  is  proportional  to  its  thickness,  number 
of  its  strands,  slackness  with  which  they  are  twisted,  and  quality  of  tht 
hemp. 

ffemp  and  Wire  Ropes, — Ultimate  Stt^ength  is  2240  lbs.  per  lb.  per  fathom 
for  round  hcmi^,  3300  lbs.  for  iron,  7000  lbs.  for  cast-steel,  and  10  000  lbs.  for 
plough-steel. 

Working  Load  is  336  lbs.  per  lb.  weight  per  fathom  for  round  hemp,  660 
lbs.  for  iron,  1400  lb.9.  for  cast-steel,  and  2000  lbs.  for  plough-steel. 

Or,  .83  times  square  of  circimiference  in  mches  for  round  hemp,  5  times 
square  of -circumference  for  iron,  and  9  times  square  of  circumference  for 
steel.     (Z>.  K.  Oark.) 

Steel  Ropes  may  be  one  half  less  in  wei^t  than  iron  or  hemp  for  lik« 
working  loada. 


i68 


BOPSS  A2n>  CHAINS. 


IBON  WIBB  AND   U»ir«l>  STATBll  HAVT  HEMP  ROPBL 
Wire  6  8trcmd9^  Hemp  Core»    lUpe  4  Sh'trndt, 


CIrcainf«reiic«. 


▲«twd. 

Nominal. 

In|. 

tat. 

7 
6 

I 

4-937 

4.9 

4-375 
3-5 
3-187 
2-75 

4-5 

3-36 

3>98 

2-5 

3.4s 

2-375 

2 

3-^ 
3.06 

WIRE. 

COTK 

WiMft 

Breaking 

Ins. 

No. 

Lto. 

2-35 

108 

187400 

2.25 

106 

104050    ' 

1-57 

114 

65409 

1-57 

114 

55316 

1.27 

114 

34480 

1.17 

114 

38606  1 

.78 

"4 

21846  ' 

.7» 

114 

15692 

.78 

42 

15718 

•39 

114 

10925 

Circnmferene*. 


IlB. 

12 

II 

10.5 
10 

95 

9 

8.5 
8 

7-5 

7 


Ins. 

13-25 
12.25 
11.875 

"•375 

10.5 

10.312 

9-437 

-8^12 

8437 
7.812 


Yanu. 

BraaktDg 

Weight. 

No. 

Lbe. 

1X68 

75966 

1036 

77633 

928 

76933 

876 

70533 

800 

58766 

712 

56466 

640 

42866 

560 

40000 

484 

35500 

436 

,    32166 

Weislkt  and  Streiie;t]:i  of  Stud-link  CliaixL  Cable. 

{BngUsh.) 


DimimoNB. 


INmi. 
ofeMh 

uyb 

Side. 

Link. 

Ine. 

Ins. 

.4375 

2.625 

.5 

3 

.5625 

3*375 

.635 

375 

'6875 

4-125 

.75 

4.5 

.875 

525 

I 

6 

1.125 

6.75 

1.25. 

7-5 

»'375 

8.25 

Widtk 

Weight 

AdminltT 
Preof-atrMs 

of 
Unk. 

FatEom. 

(adopted  by 
Li<^ds'). 

Ins. 

Lbs. 

Toas. 

1.575 

11-3 

3-5 

1.8 

134 

4.5 

2X>35 

17.2 

5-5 

2.25 

21 

7 

2.475 

-25.4 

8.5 

2.7 

30.3 

10.135 

3-15 

41.3 

13-75 

3-6 

53.8 

18 

405 

69 

22.75 

4-5 

84 

28.125 

4-95 

101.6 

34 

DlMBMStOIfa. 


Diaaa. 

of  «»ach 

SMe. 


Length 
Link. 


Ins. 

1-5 
1.625 

1.75 
1.875 

3 

3.135 
3.35 

?-375 

2.5 

2.75 


Ins. 

9 

9-75 
10.5 

11.25 

12 

1275 

135 

1425 

15 
16.5 


Width 

of 
Link. 


Weight 

per 
Fatbom. 


Ins. 

54 

5.85 

6.3 

675 

7-2 

7-6s 
8.1 

8-55 

9 
9.9 


LU. 

121 

142 

164.6 

189 

215 
242.8 
276.2 
3032 

336 
406.6 


Admiralty 
Proof-stress 
(adopted  by 

Uoyds*)L 


Tons. 
40.5 
47.5 
55-125 
6325 
72 
81.25 

91-125 
101.5 

112.5 

136.125 


Note  tSafe  Working-itreu  is  taken  at  bair  Proof-siress,  3.82  tona  per  sq.  inch 
of  section. 

i.—Proaf-tAtti»  and  SafB  WMetng ' ttreu  ft>r  cloeelink  chains  are  respectively 
two-thirds  of  those  of  stud-link  chains. 

■^.—Proof-stress  averages  72  per  cent,  ultimate  Strength,  and  UUiiMie' Strength 
averages  8  tons  per  square  inch  or  section  of  rod  or  one  side  of  a  Itnk. 

Weight  of  close-link  chain  is  about  three  times  weight  of  bar  from  which 
it  is  made,  for  equal  lengths. 

Karl  voM  Ott^  comparing  weight,  cost,  and  strength  of  the  tliree  materials^ 
hemp,  iron  wire,  and  chain  iron,  concludes  tliat  the  proportion  between  cost 
of  hemp  ^rope,  wire  rope,  and  chain  is  as  3  :  1  :  3 ,  and  that,  therefore,  for 
eaual  resistances,  wire  rope  Is  only  half  the  cost  of  hemp  rope,  and  a  tliird 
01  cost  of  chains. 

Safe  'WorkiniT  I^octd  of  Chains.    (Moletworih). 


Diameter 
of  Iron. 

Load. 

Piameter 

of  Iron. 

Load. 

Ins. 
.375 

•5625 
.635 

Lb«. 
2240 
3800 

49OQ 
6270 

Ins. 
.6875 

.8125 
.87? 

Lbs. 

7390 

8960 

10280 

W32O 

Diameter 
of  Iron. 

I.oad. 

Diameter 
of  Iron. 

Load. 

lus. 

.9375 

1 

1.0625 
1.125 

Lbs. 
13700 
15680 
17920 
20160 

int. 
1.1875 
1.25 
I-3125 
1^75 

Lbe. 
22400 
24640 
26680 
30240 

BOPES   AND   CHAINS. 


169 


Sreaking  Strain,  and  Proof*  of  Cliain   Cables. 

Diam. 

Breaking 

Diam. 

Breakinp 

Diam. 

Breaking 

Diam. 

Breaking 

of  Chain. 

Strain. 

of  ChHin. 

Strain. 
Lbs. 

of  Chain. 

Strain. 

of  Cliain. 

Strain. 

Ins. 

Lbs. 

Ins. 

Ins. 

Lbs. 

lUB. 

Lbs. 

I 

67  700 

I.1875 

92940 

1-5 

143  100 

2 

243180 

1.0625 

75640 

1.25 

102  160 

1.625 

165920 

2.125 

272580 

X.I25 

84100 

1-375 

121  840 

1-75 

216  120 

2.25 

303280 

Proof-stress  is  50  per  cent,  of  estimated  strength  of  weakest  link  and  46 
per  cent,  of  strongest. 

Comparison    of  '^Vire   Ropes    ancl    rrarred.   liieznp   Rope, 

Ua'^vsers,  and  Cables. 


Diam- 
eter. 


Ins. 

25 

3"5 

375 

5 

5625 

6875 

75 
875 

25 
375 
5 
625 


COARSE  LAID. 

riNK  LAID. 

Ropes. 

HawB'rs. 

Cables. 

Ropes. 

Haws'rs. 

• 

Safe 
Load. 

if 

CO 

CO 

^1 

Diam- 
eter. 

Safe 
Load. 

si 

CO 

Ins. 

Lbe. 

Ins. 

Ins. 

Ins. 

Ins. 

Ins. 

Lbs. 

Ins. 

Ins. 

•78 
I 

1.25 
'•375 
'■75 

425 
690 

825 
i6cx> 
2800 

1-25 

2-43 
2.68 
2.87 
3.81 

2.25 

2-375 
2.62 

3-5 

332 

387 
5.18 

— 

•5 

.5625 
625 

-75 
'.875 

1875 
2420 
2900 
4320 
5700 

3.12 

3-56 

3-93 
4.81 

5-5 

2.87 

3-25 
3.62 

4-37 
5 

2.125 

3800 

4-75 

4-25 

6.12 

^— 

I 

8200 

7-25 

6.25 

2-375 
2.625 

3 

4400 
6150 
8400 

5-25 
6.12 
6.62 

4.87 
5-75 

6.12 

I 

8.62 

8 
8.62 

1. 125 
1.25 

1-5 

10  100 
13600 
17500 

8.18 
8.81 
10 

7 

8.06 

9-75 

3-75 

13400 

8.81 

8.5 

10.93 

10.93 

1.625 

21800 

11.18 

10.93 

4-25 

16800 

9.87 

956 

12.25 

12.12 

I  75 

27OGO 

12.5 

12.12 

4625 

20160 

IO-75 

10.5 

13 

13.12 

1875 

32500 

— 

— 

5 

24600 

— 

11.87 

II  56 

"•75 

2 

37000 

Gables. 
1-3 


OQ 


Ins. 

4.87 
5-25 
6.37 
7- 25 
8.7% 
9-5 

II 

12.5 


based  upon 
one  fourth, 


In  above  table,  determination  of  circumference  of  rope,  etc.,  is 
Breaking  Weight  or  Tensile  resistance  of  wire  being  reduced  by 
and  ultimate  resistances  of  rope,  etc.,  are  reduced  one  third. 

Result  of*  Experiments  -Upon  Wire  Rope  at  XJ-  S.  Navy 
Yard,  Washinigton.     {J  A  Roebling^s  Sons.) 


Circnmfe 
Actoal. 

rence. 

Nom- 
inal. 

Wire 
^     In  each 
strand. 

Ins. 

Ins. 

4.9375 

4-9 

19 

4.375 

4-5 

19 

3-9375 

3-5 

3.1875 

3-91 
3-36 
2.98 

19 
19 
19 

2-75 
2.6875 

2.68 
2.56 

19 

7 

2.5 

245 

19 

"^-d 

Weight 

Breaking 

Circamference. 

Fw)t. 

Weight. 

'  Actual. 

Nom- 
inal. 

No. 

Lbs. 

Lbs. 

lus. 

Ins. 

II 

3-14 

65409 

2.375 

2.4 

13 

2.15 

55316 

2.1875 

2.12 

14 

2.0875 

44420 

2 

2.06 

14 

I-I525 

34840 

1-9375 

1.9 

15 

1.09 

28606 

1.75 

1.85 

17 

1.0275 

21846 

1-4375 

1.45 

13 

1.0225 

18  810 

1.3125 

1.31 

18 

.14 

15692 

1. 125 

I. II 

e 


•^■9 


No. 

7 
7 

19 
7 
7 

19 
7 
7 


•^ 


No. 
13 
14 
19 
14 

17 

20 

18 
19 


Breaking 
Weight. 

Lbs. 

Lbs. 

.14 
.11 

15718 
14478 

.1 
.1 

10925 
10  118 

.07 
.06 
•05 

7880 

5687 
4428 

.035 

3729 

To  Conapute  Circu.mference  of  Wire  Rope  with.  Xlexnp 
Core,  of*  Corresponding  Strengtli  to  Hemp  Rope,  and 
of*  l^em-p   Rope   to    Circumference   of  Wire    Rope. 

Rule  i. — Multiply  square  of  circumference  of  hemp  rope  by  .223  for  iron 
wire  and  ,1^  for  steel,  and  extract  square  root  of  product 

3.-~Multiply  square  of  circumference  of  hemp-core  wire  rope  by  4.5  for 
iron  wire  and  8.4  for  steel  wire. 

ExAMPLS. — ^What  are  the  circnmferences  of  an  iron  and  steel  wire  rop0  corre- 
sponding to  one  of  hemp-core,  having  a  circumference  of  8  ina  ? 

V82X.233  =  3. 78 im. iron, and  V8*x.i2  =  2. 77  tn#.  Oed. 


170 


BOPES,  HAWBEBS,  AND   CABLES. 


ROPES,  HAWSERS,  AND  CABLES. 

Ropes  of  hemp  fibres  are  laid  with  three  or  four  strands  of  twisted  fibres, 
and  are  made  up  to  a  circumference  of  12  ins.,  and  those  of  four  strands  up 
to  8  ins.  are  fully  16  per  cent,  stronger  thdn  those  of  three  strands. 

Hawsers  are  laid  with  three  or  four  strands  of  rope.  Cables  are  laid  with 
but  three  strands  of  rope.  Hawsers  and  Cables,  from  having  a  less  propor- 
tionate number  of  fibres,  and  from  the  irregularity  of  the  resistance  of  their 
fibres  in  consequence  of  the  twisting  of  them,  have  less  strength  than  ropes, 
difference  var3ring  from  35  to  45  per  cenUy  being  greatest  with  least  circum- 
ference, and  those  of  three  strands  up  to  12  ins.  are  fully  10  per  cent,  strong- 
er than  those  having  four  strands. 

Tarred  ropes,  hawsers,  etc.,  have  25  per  cent,  less  strength  than  white 
ropes ;  this  is  in  consequence  of  the  injury  fibres  receive  from  the  high  tan- 
perature  of  the  tar,  viz.  290°. 

Tarred  hemp  and  Manila  ropes  are  of  about  equal  strength,  and  have  from 
25  to  30  per  cent,  less  strength  than  white  ropes. 

White  ropes  are  more  durable  than  tarred. 

The  greater  degree  of  twisting  given  to  fibres  of  a  rope,  etc.,  less  its 
strength,  as  exterior,  alone  resists  greater  portion  of  strain. 

Ultimate  strength  of  ropes  varies  from  7000  to  12000  lbs.  per  square  inch 
of  section,  according  as  thev  are  wetted,  tarred,  or  dry.  One  sixth  of  ulti- 
mate strength  is  a  safe  working  load  =  1 166  to  2000  lbs.  per  square  inch. 

Units  fbr  coraiyuting:  Safe  Strain.  tUat  may  "be  "borne  "by 
Nexv   fiopes,  Hawsers,  and.   Ca'bles^     {U.  S.  Navy.) 


Tirred. 

3  ttT'dl. 


R0PE8. 

Hawsibs. 

Cai 

Descrip- 

CircomfereDce. 

White. 

Tarred. 

White. 

Tarred. 

White. 

tion. 

3>traDds. 

4  Btranda. 

Sstr'ds. 

4str'da. 

"LbT 

3  strMa. 

3  Btr'da. 

3  str'da 

Ina. 

Lb*. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Lb«. 

White 

2.5  to   6 

1 140 

1330 

— 

— 

600 

— 

— 

t( 

6       "     8 

1090 

1260 

— 

— 

570 

— 

510 

({ 

8       "   12 

1045 

880 

— 

— 

530 

— 

530 

§1 

12       "   18 

wmmmm 

— 

— 

— 

550 

— 

550 

It 

18       "  26 



— 

— 

— 

— 

560 

Tarred 

2.5"    5 



— 

855 

1005 

— 

460 

ti 

5      "    8 

— 

— 

825 

940 

— 

480 

— 

i. 

8     "  12 

— 

— 

780 

820 

— 

505 

— 

i( 

12     "  18 

—— 

— 

— . 

^^ 

__ 

<( 

18     "  26 

— 

_ 

"^^ 

■ 

^^^ 

.^^, 

^^^ 

Manila 

2.5  "    6 

810 

950 

— 

— 

440 

-_ 

— 

ii 

6     "  12 

760 

83s 

— 

— 

465 

_ 

Sio 

(I 

12     "  18 



— 

— 

— > 

535 

(i 

18     "  26 



— 

— 

_ 

— 

— 

560 

Lbs. 


505 
525 
550 


Ii^LUSTBATioir.^What  weight  can  be  borne  with  safety  by  a  Manila  rope  of  1 
strands,  having  a  circumference  of  6  inches  ?    (Set  Rule, page  167. ) 

6^  X  760  =  27  360  Ws. 

Whm  it  is  required  to  asceHain  weight  or  strain  (hat  can  be  borne  by 
ropes,  etc,  in  general  use,  preceding  Units  should  be  reduced  from  one  third 
to  two  thirds,  in  order  to  meet  their  condition  or  reduction  of  their  strength 
by  chafing  and  exposure  to  weather.  Mdesworth's  table  is  based  upon  a 
reduction  of  three  fourths. 

Illustration.— What  weight  can  be  borne  by  a  tarred  hawser  of  3  strands,  lo 
inches  in  circumference,  in  general  use  f 

«o"  X  (50s  —  505-^3)  =  xoo  X  336.57  =  33  667  fe* 


UOPES,  HAWSERS,  AND   CABLES. 


171 


Destructive  Strezi^tlx  of  Xarred   Hemp   Ropes. 

(Z).  K.  Clark.) 

lUgittor. 


Clreiun. 

DUm. 

RflgUtor. 
Common          RomIui 
Cold.              Warm. 

IDI. 

3 

3-5 

Int. 

•95 
I. II 

LiM. 
7390 
II200 

Lb«. 

86ao 
II 760 

4 

45 

5 

1.27 
1-43 
1-59 

13  100 
16330 
19580 

15340 
19440 
23990 

Circam. 


Int. 
5.5 

6 

6.5 

7 
8 


Diun. 


Ini. 

1-75 
1. 91 

2.07 

2.24 

2.54 


Common 
Cold. 


Lbs. 
24800 
28985 

34030 
40320 
52480 


RuuUn 
Warm. 


Ltw. 
29120 

33150 
40550 

47041 
61420 


Specimens  furnished  by  National  AssocicUion  of  Rope  and  Tioine  Spinners^ 
•  As  tested  by  Mr.  Kirkaldy. 


Ron. 


Russian  rope ...  48  thr*ds. 
Machine  yam. . ,  50     ** 
Hand-spun  yam,  51 


(i 


Cirenm- 
ferenee. 


Ins. 
526 

5-37 
5-39 


W«iffht 
per  Lb. 


Lb«. 
.926 
.891 
1.006 


Extreme 
Strength. 


Lb*. 
II088 

"514 
18278 


Breakiae 
Weifcht  < 

?)rlli.per 
athom. 


Lba. 

1933 
2152 
3024 


Extension  in  so  ina.  Length 
at  Streaeper  lb.  Wei^t 
Fathom  of 


per 


1000  Ibe. 


Ins. 
529 

4-53 
4.46 


aooolbe. 


Ins. 

6.56 
5-91 


3000  lba. 


Ina. 


6.63 


Breaking    Strength,   of*  Tarred    Irlexxip    H.opes.    (Mr.  Olynn.) 


• 

i 

0 

• 

Ins. 

Ins. 

3 

•95 

3.5 

i.ii 

4 

1.27 

4-5 

^•43 

5 

1-59 

Old  Method. 

Common  I     Best 
Hemp.    Rnaaian. 

Lbs.     '    'Lbs. 
5056     6248 

74661  8668 

8780  10460 

10300  12432 

13328  15859 


By  Re{(ister. 

Cold. 

Warm. 

Lbs. 

Lbs. 

7392     8624 

II200  II  760 

13  104   17  810 

16330   19443 

20496 

23990 

Ins. 

5.5 
6 

6.5 

7 
8 


Old  Method. 


Common 
Hemp. 


Best 

Russian. 


Ins.        Lbs.  I<bs, 

1-75  15456  18  414 
1.91  18 144  21 610 
2.07  20518  23610 
2.24 '22938 '27462 
2.54 '26680 132  032 


By  Register. 


Cold. 


Lbs. 

24797 
28986 

34630 
40320 

52483 


Warm. 


Lbs. 
29120 
33150 

40544 
47040 
61420 


To  Compute   Strain    tb.at  may  "be  "borne  -w-itlx  safety  lay 
new   Ropes,  Ha-vtraers,  and   Cables. 

Deduced  from  experiments  of  Russian  Government  upon  relative  strength 
of  different  Circumferences  of  Ropes,  Hawsers,  etc. 

U.  8.  Navy  test  is  4200  lbs.  for  a  White  rope  of  three  strands  of  best  Riga 
hemp,  of  1. 7 5  inches  in  circumference  (=  17000  tbs.per  square  invh  ofjibre), 
but  in  preceding  table,  (page  166)  14000  lbs.  is  taken  as  unit  of  strain  that 
may  be  borne  with  safety. 

Rule.— Square  circumference  of  rope,  hawser,  etc.,  and  multiply  it  by 
Units  in  table. 

To  Ooxnpute  Ciroumferenoe  of  a  Rope,  Hawser,  or  Cable 

fbr   a  Gl-iven   Strain. 

RuLS. — Divide  strain  in  pounds  by  appropriate  units  in  preceding  table, 
and  squai«  root  of  product  will  give  circumference  of  rope,  etc.,  in  ins. 

ExAMPLB  L— Stress  to  be  borne  in  safety  is  165  550  lbs. ;  what  should  be  circum- 
ference of  a  tarred  cable  to  withstand  it? 

165  55«  -r  550  =  301,  and  v^3oi  =  17. 35  ins. 

2.— What  should  be  circumference  of  a  Manila  cable  to  withstand  a  strain,  in 
general  use,  of  149  336  lba  ? 

AMumiBg  circumference  to  exceed  18  ius.,  unit  =  56a 

149  336-5-  (5C0  -  560-^3/  5i;  4cx^  and  y 400  =s  ao  tUf. 


172 


ROPES,  HAWSERS,  AND   CABLES. 


To   Compute   '^Veigll.t  of  Ropes,  Ha-wsers,  and   Cables. 

Rule. — Square  circumference,  and  multiply  it  by  appropriate  unit  in 
following  table,  and  product  will  give  weight  per  foot  in  lbs. : 

HAWSBSS. 
BOPE^.  CABLBB 

3-8trand  Hemp 032    .031    .031 

3- strand  tarred  Hemp,  .042    .041    .041 
3-straDd  Manila 032    .031    •031 


HAWSERS. 
BOPSB.  CABLES. 


4-8trand  Hemp 033     —      — 

4-Btrand  tarred  Hemp,  .048     —      — 
4-strand  Manila 035    .034    .034 

Units  for  Thread  Ropes  is  same  as  that  for  Ropes  of  like  materiaL 

ExAUFLE.— What  is  weight  of  a  coil  of  lo-iuch  Manila  hawser  of  4  strands  of  120 
fathoms? 

io2  X  .034  =  3,4,  and  120  X  6  X  3.4  =  2448  lbs. 

Weiglit  and   StrengtU   of  Hemp   and   '^Vi»e   Ropes. 

{Molestuorth.) 

C'y  =  W;         'C=;fc  =  L;  C«a;  =  S;  andy^  =  C. 

C  representing  circumference  in  ins.,  W  weight  of  rope  in  lbs,  per  fatkomy 
L  working  load  in  tons,  and  S  destructive  stress  in  tons, 

VALUES  OF  y,  X,  AND  k* 


BOPKS. 

9 

» 

Hawser,  hemp 

•131 

Cable         "      

.117 

Tarred  hawser,  hemp. 

•235 

.22 

'*     cable,        "    . 

.207 

•15 

Cold  register,      .  "    . 

— 

.6 

■037 
•025 
.1 


BOPSB. 


Warm  register,  hemp ' 
Manila  hawser. ... 

"      cable 

Iron  rope 

Steel    "    


y 

X 

•7 

— 

.177 

.27 

•155 

.J9 

.87 

1.8 

.89 

2.8 

.116 
•045 

•033 
.29 

•45 


To  Compute   Cirouxnfference  of  Hemp  or  ^Wire   Rope 
for   Fore   or   Alain    Standing   Rigging.     {U.  S.  Navy.) 

Rule. — To  length  of  mast  between  partners  and  deck,  add  half  extreme 
breadth  of  beam  of  vessel  and  divide  sum  by  half  extreme  breadth.  Mul- 
tiply quotient  by  half  square  root  of  tonnage  (OM)  and  extract  square  root 
of  product. 

For  Mizzen,  take  .74  of  Fore  and  Main. 

Example.  —  Required  circumference  of  hemp  rope,  for  main  -  mast  of  a  vessel 
having  a  breadth  of  beam  of  45  feet  and  a  burden  of  3213  tons  ? 

Extreme  length  of  mast 94.4  feet 

Depth  of  hold,  or  total  bury  of  mast,  21.4  feet 

Head 15       "     36.4    " 

Breadth  of  beam,  45  feet  58      *' 

58  -f  ^  ^  ~  =  3. 58,  and  V  (3.58  X  ^^^)  =  Vioi.46.=  10.11  ins. 

Then  if  circumference  for  a  wire  rope  is  required,  see  table,  page  164. 

Thus,  a  hemp  rope  xo  ins.  in  circumference  has  equivalent  strength  of  an  inm 
wire  rope  of  4  ins.  and  a  steel  rope  of  3.25-I-  in& 

Oalvaniud  Iron  Wire. — Experiments  at  Navy  Yard,  Washington,  gave  for  flex- 
ibility a  moan  loss  of  30  per  cent,  and  for  tensile  strength  a  like  loss  of  13.5  per 
cent 

Relative  Dimensions  of  Hemp  Rope  and  Iron  and  Steel 

'Wire    Rope.     (U.  S.  Navy.) 

Circumference  in  Inches. 

Hemp.  2.5      3.125  4      4.5       525     6-5      7-75  8.5     9.5     ti      11.75  13.5      16.5 
Iron..  1.25     1.625  a      9.125  a.5       3         3*5     4        4-5      5       5-5      ^  7 

Steel..    .875  Z.I35  z.5  1.635  ^-^79  ^.iss  9.5    9.75  3.35    3.5    4        4.375    5.35 


ANCHORS,  CABLES,  ETC. 


173 


ANCHORS,  CABLES,  ETC. 

^zicliors,  Cliaitis,  etc,  for  a  Griven.  XoxiiiE^se. 

{American  Shipmasters*  Association.) 


.3*. 

Ill 

-"*  c  »• 

•  8* 


75 
100 

125 
150 
175 

2CX> 
250 

400 

600 

700 

800 

900 

1000 

1200 

1400 

1600 

xSoo 
2000 
2500 
3000 


Anchoks 

• 

1 

Bowen. 

loeludlng  Stock. 

With- 

Admi- 

_^» 

out 
Stock. 

ralty 
Twt. 

Stream. 

Kedffe. 

ad 
Kedge. 

LlM. 

Lbt. 

Toms. 

Lbs. 

Lba. 

616 

7 

168 

84 

— 

728 

8 

196 

112 

— 

840 

9 

224 

112 

— 

952 

10 

280 

140 

— 

1036 

II 

336 

168 

— 

II20 

12 

392 

I9t> 

— 

1288 

13 

448 

224 

112 

1456 

14 

504 

252 

126 

1624 

15.5 

560 

280 

140 

1848 

17 

616 

308 

154 

1904 

18.5 

672 

336 

168 

2016 

20 

784 

392 

196 

2352 

22 

896 

448 

224 

2688 

24 

1008 

504 

252 

3024 

26 

1120 

560 

280 

3248 

28 

1232 

616 

308 

3584 

295 

1344 

672 

336 

3808 

31 

1456 

738 

364 

4032 

32.S 

1568 

784 

392 

4256 

34 

1680 

840 

420 

4480 

35-5 

1792 

89b 

448 

4704 

37 

1904 

952 

504 

5040 

39 

2128 

1120 

560 

5376 

41 

2353 

1232 

616 

SAILS. 


Diameter. 


t  Brown, 


Ina. 
.8125 

.875 

•9375 

I 

2.0625 
1. 125 
1. 1875 
1.25 

1-3125 
1.3125 

1-375 

1-4375 

1-5 

1.5625 

1.625 

1.6875 

1-75 

1.875 

1-9375 
2 

2 

2.0625 

2.125 

2.1875 

Lennox, & 


Chain  Cablb.— Stdo. 

Weight  per  Fathom. 


be 

a 

FathB. 
90 

05 

05 
20 
20 
20 

35 
35 
50 

50 
65 
65 
80 

80 
80 
80 
80 
80 
80 
80 
80 
80 
80 
80 


Admi- 
ralty 
Test. 


Tons. 
II 

13 
15 
175 
20 

22.5 

25 
28 

31 

3^ 
37 
40 

44 
47 
51 
55 
59 
63 
67 
72 
72 
81 
86 
96 


stud. 

Lbs. 
40 

44 

51 

59 
66 

75 
82 

91 
100 

100 

"5 
120 

132 

145 
156 
16; 

175 
189 

205 
219 
240 


Short 
Link. 

Eng. 
lUh.f 

Lbs. 

42 

48 
55 
63 

.35 

48 
54 

70 

79 
88 

68 

98 
106 

84 

106 

— 

X18 

102 

— 

122 

143 

— 

166 

._ 

191 

— 

217 

— 

244 

— — 

^— 

Co. 


To   Coxxipute   1'oxinase. 

Take  dimensions  as  follows  *  Length,  —  From  after-side  of  stem  to  for- 
ward-side of  stem-post,  measured  on  spar  or  upper  deck  in  vessels  having 
two  decks  and  under,  and  on  main  deck  in  vessels  having  three  or  more 
decks.  BrecuUh. — Extreme  at  widest  point.  Depth. — At  forward  coaming 
of  main  hatch,  from  top  of  ceiling  at  side  of  keelson  to  under  side  of  deck. 

Then  multiply  these  dimensions  together,  divide  product  by  100,  and 
take  .75  of  quotient 

All  vessels  to  have  2  bowers  and  i  each  stream  and  kedge  anchor,  and  for 
a  tonnage  exceeding  1400  a  third  bower  is  recommended. 

Hawsers  and  Waips  to  be  90  fathoms  in  length. 

SUroricls, 

Square-riooed.  Hemp.—s.TS  ins.  in  diameter  for  a  tonnage  of  75,  in> 
creasing  progressively  up  to  12.75  ^^^'  ^^^  3<3oo  tons. 

Fore-and-aft  rigged.  From  .25  to  i  inch  in  diameter  progressively 
greater  than  for  square-rigged. 

IVire. — One  half  diameter  of  hemp,  increasing  very  slightly  as  tonnage 
increases.    Thus,  for  3000  tons,  12.75  ins.  for  hemp  and  6.875  i"s-  ^°'  ^^'* 


174 


ANCHORS,  CABLES,  ETC. 


{American  Shipmaster i  Associatioti.) 


STEAM. 


lOO 

150 

2CX> 
250 
300 

400 

500 

600 

700 

800 

900 

1000 

1200 

1400 

i6(X) 
i8cx> 
2000 
2300 
2600 
30CX) 
3500 
4000 
4500 
50CX) 


Archorb. 
Bowen.  Inclading  Stock. 


LlM. 

336 
448 
616 

672 

812 
924 

•  II20 
1344 

:  1512 

i;o8 

1 1876 

jao26 

3352 
2632 

'2856 

3108 
3360 

,  3584 
3808 

4088 

4256 

4480 

4592 
4816 

5040 

5264 


Tona. 
4.9 

6.4 
7.6 
8.2 

9-5 
'  10.4 

12 

J39 
15.2 

16.7 

18 

19 
21  6 

25.2 
26.9 
28.6 

301 
01.6 

33-4 

34-5 

35-7 

37 

38 

392 

41 


§ 
s 


Lba. 
112 

196  I 

224  I 

280 

308 

336 

532 

560 

672 

738 

784 
896 

1008 

IZ20 

II76 

1232 

1344 

1456 

1512 

1568 

1624 

1680 

1792 

I96O' 

2128 

2352 


Lbs. 


c 
5  *^ 
•  • 


Lba. 


252 
280 
336 
364 
392 
448 

504 
560 


Diam- 
eter. 


2241 
252. 
280' 


Ins. 

•6875 
.8125 

.875 

•9375 

I 

1.0625 

1. 125 

1.1875 

1.25 

1-3125 

1-375 

1-4375 

1-5 

1.5625 


Chain  Cablc — Stod. 

WeiKbtperFatk 


t 


588  308;  1.625 


616 
672 

738 
766 

784 
812 

840 


308 

3361 

364 

364I 

392; 

392 1 

420, 


896  476 

952  504 
1064  532 
1 120  560 


1.6875 

1-75 
1.8125 

1-875 

1-9375 
2 

2.0625 

2.125 

2.1875 

2.25 

2-3125 


Fatba. 
105 
120 
120 
120 
120 
120 

135 

135 

150 

150 

165 

165 

180 

180 

180 

180 

180 

180 

I  180 

.  180 

I  270 

270 

i  270 

270 

I  270 

270 


28 


Tona. 

8.1 
1 1.9 

13.8 

15-8 

18 

20.3 

22.8 

254 
28.1 

31 
34 
37-2 
40.5 
(44 

'47.5 
I  51.2 

55.1 

591 

633 
676 

72 
76.6 

81.3 
861 
91. 1 
96 


Diam. 
Stream. 


Ins. 

5 

5625 

5625 

625 

625 

687s 

6875 

75 

75 
8125 

8125 

875 
875 
9375 

9375 

1 1 

•  I 

11  0625 
1.0625 
1. 125 
1.125 
1.1875 
1.1875 
1.25 
1-25 
1-3125 


t 


a 


(A 


CAi 


•^a 


Lba. 

40 
44 

51 ! 

59 
661 

75' 
82  < 
911 
■  100 

"5 
1 120 

1132 

145 
156 
162 

175 

189 

1205 

'215 

240 


Lba. 


B-3 
Us 


25 

35 


42 

48,  - 

55  I  48 

63  54 
70  — 

79:  68 
88'  — 

98 
106 
118  104 


84 


—  1 122 

—  143 
~  '166 

—  '  191 
217 
244 


*  Brown,  Leanojc,  A  Co, 


ANCHORS  AND  KEDGES. 
iU,  8.  Nary.-) 
To   Compnte   "^^eiglit  of  a   Bo-virer   A.nolior   fbr 
of*  Bk  given    CUaraoter  axid   Rate. 

Rule. — Multiply  approximate  displacement  in  tons,  by  unit  in  following 
table,  and  product  will  give  weight  in  lbs.,  inclusive  of  stock. 


a  "Vessel 


Units   to  determine 


Diaplncement 

01  Vessel  In 

Tons. 


'Weiglits   and. 
or   liledges. 


Number   of  iViicliors 


Over  3700 
2400 
1900 


.tj 

• 

1 

§ 

1 

B 

& 

.A 
W 

2 

.^ 

& 

1-75 

2 

I 

4 

2 

2 

2 

1 

3 

2.25 

2 

2 

I 

3 

Displacement 

of  Vessel  in 

Tons. 


Over  1500  .  . 

"      900  . . 

900  and  under 


• 

2! 

• 

i 

b 

2 

2 

2.5 

2.75 

2 

I 

3 

2 

I 

btf 


3 

3 

2 


ExAMPLB.— Tonnage  of  a  bark-rigged  steamer  is  1500. 

1500  X  2. 5  =  3750  lbs. ,  weight  of  anchor. 

Bower  and  Sheet  Anchors  should  be  alike  in  weight. 

Stream  Anchors  and  Kedges  are  proportional  to  weip:ht  of  bowers.  Thus, 
Stream  Anchor  .25  weight.  Kedges, — If  i,  .125  weight;  if  2,  .16  and  .i 
weight;  if  3,  .16,  .125,  and  .1  wei'iht. 


ANCHOBS.  CABLBH,   BTC— TONNAGE. 


175 


T'o  Coxnpute  Diameter  of  a  Ch.ain.  Cal^le  oorrespondiug 
to   a  Ghiveix   "Weiglit  of  Anolior. 

{U.  8.  Navy.) 

RuLB. — Cut  off  the  two  right-hand  figures  of  the  anchor's  weight  in  lbs., 
multiply  square  root  of  remainder  by  4,  and  result  will  give  diameter  of 
chain  in  sixteenths  of  an  inch. 

EXAMFLB. — The  weight  of  an  anchor  is  2500  lbs. 

V25'Oo  X  4  =  20  sixteenths  =  1.25  ins. 

NoTK.— Diam.  of  a  messeDger  should  be  .66  that  of  the  cable  to  which  it  is  applied. 

X^engtlis  of  Glxaiix   Cables   for  eaolx   i^iolior.    - 

{U.  8.  Navy.) 


Weight  of  Anchor. 
Llw. 

Under    800 

Over     800 

"       1200 

"       1600 


Bower. 

Sheet 

Stream. 

F«th«uu. 

Fathonu. 

Fathoms. 

60 

60 

60 

90 

90 

60 

•     90 

90 

75 

los 

105 

75 

Weight  of  Aiu^or. 
Lbs. 

Over  2000 

"     3000 
(t 

it 


5000 

7500 


Bower. 

Sheet. 

Stream. 

Fathoms. 

Fathoms. 

Fathoms. 

120 

120 

90 

120 

120 

90    . 

I2Q 

J20 

J05 

135 

135 

105 

ANCHORS. 
From  Experiment  of  a  Joint  Commiiiee  of  Representatives  of  Ship- 
owners and  Admiralty  of  Great  Britain. 

An  anchor  of  ordinary  or  Admiralty  pattern,  Trotinan  or  Porter's  im- 
proved (pivot  fluke),  Honiball,  Porter's,  Aylin's,  Rodgers's,  Mitcheson's,  and 
Lennox's,  each  weighing,  inclusive  of  stock,  27  000  lbs.,  withstood  without 
injury  a  proof  strain  of  45  000  lbs. 

Breaking  weights  between  a  Porter  and  Admiralty  anchor,  as  tested  at 
Woolwich  Dock-yard,  were  as  43  to  14. 

Comparative   Resistance   to   Dragging. 
Trotman's  dragged  Aylin's,  Honiball's  Mitcheson's  and  Lennox's ;  Aylin's 
and  Mitcheson's  dragged  Roidgers's ;  and  Kodgers's  and  Lennox's  dragged 
Admiralty's.  

TON^^AGE   OF  VESSELS. 

To  Compiate  Tonnage  of  "Vessels. 
For  Laws  of  United  States  of  America,  with  amendments  of  1882  relative 
to  Steam-vessels,  see  Mechanics'  Tables,  with  rule  and  illustrated  diagrams, 
by  Chas.  H.  Haswell,  3d  edition.  Harper  &  Bros.,  New  York,  1878. 

Snglisli  Registered  Tonnage.    {New  Measurement.) 

Divide  length  of  upper  deck  between  after-part  of  stem  and  .fore-part  of  stem- 
post  into  6  equal  parts,  and  note  fbremost,  middle,  and  aftermost  points  of  division. 
Measure  depths  at  these  three  points  in  feet  and  tenths  of  a  foot;  also  depths  fVom 
under-side  of  upper  deck  to  ceiling  of  limber-strake;  or  in  case  of  a  break  in  the 
upper  deck,  ftom  a  line  stretched  in  continuation  of  the  deck.  For  tn'eadths,  divide 
each  depth  into  5  equal  parts,  and  measure  the  inside  breadths  at  following  points, 
vix. : — At  .2  and  .8  f^om  upper  deck  of  foremost  and  aftermost  depths;  and  from 
.4  and  .8  from  upper  deck  of  amidship  depth.  Take  length  at  half  amidship  depth 
from  after-part  of  stem  to  fore-part  of  stem-post. 

Then,  to  twice  amidship  depth  add  foremost  and  aftermost  depths  for  sum  of 
depths^  and  add  together  foremost  upper  and  lower  breadths,  3  times  upper  breadth 
with  lower  breadth  at  amidship,  and  upper  and  twice  lower  breadth  at  after  division 
for  sum  ofhrtadths. 

MnUipfy  together  sum  of  depths,  sum  of  breadths,  and  length,  and  divide  product 
by  3500,  which  will  give  number  of  tons. 

If  the  vessel  has  a  poop  or  half-deck,  or  a  break  in  upper  deck,  measure  inside 
mean  length,  breadth,  and  height  of  such  part  thereof  as  may  be  included  within 
the  bulkhead;  multiply  these  three  measurements  together,  divide  product  by  92.4, 
and  quotient  wlU  give  number  of  tons  to  be  added  to  result  as  above  ascertained. 


176 


T0KNA6E   OF  YSSSELS. 


For  Often  VesseU. — Depths  are  to  be  taken  Arom  upper  edge  of  upper  strake. 

For  Steam  VesgeU. — Tonnage  due  to  engine-room  is  deducted  from  total  tonnage 
computed  by  above  rule.  To  determine  this,  measure  inside  of  the  engine-room 
from  foremost  to  aftermost  bulkhead;  then  multiply  this  length  by  amidship  depth 
of  vessel,  and  product  by  inside  amidship  breadth  at  .4  of  depth  from  deck,  and 
divide  final  product  by  92.4. 

The  volume  of  the  poop,  deck-houses,  and  other  permanently  enclosed  spaces, 
available  for  cargo  or  passengers,  is  to  be  measured  and  included  in  the  tonnage, 
but  following  deductions  are  allowed,  the  remainder  being  the  Register  tonnage. 

Deductions. — Houses  for  the  shelter  of  passengers  only;  space  allotted  to  crew 
(12  square  feet  in  surface  and  7a  cube  feet  in  volume  for  each  person);  and  space 
occupied  by  propelling  power. 

A.p proximate   Hiale. 

Orots  Register.— Tonnage  of  a  vessel  expresses  her  entire  cubical  volume  In  tons 
of  100  cube  feet  each,  and  is  ascertained  by  following  formula  : 

*  Li  B  D                                            L  B  D 
=:  Oross  tonnage,  and  ■ c  =.  Register  tonnage.    L  representing  length 

of  keel  betvjeen  perpendicidarSy  B  breadth  of  vessel,  and  D  depth  of  hold,  all  in  feet. 

Builders'   ]Vd[easu.rexxient. 

(L  — .6  B)XBX  .5  B       _ 

i '-^ — ^^—2 —  =  TonncMc. 

94 

Fore-perpendicular  is  taken  at  fore-part  of  stem  at  height  of  upper  deck. 

Aft-perpendicular  is  taken  at  back  of  stern-post  at  height  of  upper  deck. 

In  three-deckers,  middle  deck  is  taken  instead  of  upper  deck. 

Breadth  is  taken  as  extreme  breadth  at  height  of  the  wales,  subtracting  differ- 
ence between  thickness  of  wales  and  bottom  plank.  Deductions  to  be  made  for 
rake  of  stem  and  stern. 


Iron  Vessels. 


x8     /  Girth  -f-  Breadlhy 


/  Girth +BreadthY      ,      ,,       ^        , 

( ■ j  X  length  =  Gross  tonna^ge. 


lOOOO 

Length  measured  on  upper  deck,  between  outside  of  outer  plank  at  stem  and 
the  aflorside  of  stern-post  and  rabbet  of  stem-post,  at  point  where  counter-plank 
crosses  it.  Girth  measured  by  a  chain  passed  under  bottom  from  upper  deck  at 
extreme  breadth,  on  one  side,  to  corresponding  point  on  the  other. 

L  V  B  X  D 
Register  tonnage  = X  C.     C  representing  a  coefficient  for  vessels  a* 


follows : 

Ships  of  usual  form 7 

Clippers  and  Steamers  |^  flecks.. .  .65 


Yachts  above  60  tons 5 

Small  vessels  {  ^^^P:c:il 45 

(very  sharp 4 


Units   for   Measurement  and   Dead-'weigh.t   Cargoes. 

(C.  Mackrow,  M.  S.  N.  A.) 

To  Comjnde  Approximately  fnr  an  Averaqe  Lenfffh  of  Voyage  the  Measure- 
meut  CaryOj  at  40  Jcet  per  JVm,  which  a  Vessel  can  carry. 

RiTLR. — Multiply  number  of  rep^ister  tons  by  unit  1.875,  ^^^^  product  will 
give  approximate  inoasurement  cargo. 

To  Compute  Ajiproximatety  Dead-weight  Cargo  in  Tons  which  a  Vessel  can 

cany  ofi  an  Average  Lew/th  of  Voyage, 

RuLK.— Multiply  number  of  register  tons  by  1.5,  and  product  will  give 
approximate  dead-weight  cargo  required. 

With  regard  to  cargoes  of  coasters  and  colliers,  as  ascertained  above,  about 
10  per  cent  may  be  added  to  said  results,  while  about  10  per  cent,  may  be 
deducted  in  cas^  of  larger  vessels  on  longer  voyages. 


TONNAGE    OF   VESSELS.  1/7 

In  case  of  measurement  cargoes  of  steam-vessels,  spaces  occupied  by  ma- 
chinery, fuel,  and  passenger  cabins  under  the  deck  must  be  deducted  from 
space  or  tonnage  under  deck  before  application  of  measurement  unit  thereto. 

In  case  of  dead-weight  cargoes,  weight  of  machinerj',  water  in  boilers,  and 
fuel  must  be  deducted  from  whole  dead  weight,  as  ascertained  above  by 
application  of  dead-weight  unit. 

The  deductions  necessary  for  provisions,  stores,  etc.,  are  allowed  for  in 
sdection  of  the  two  units. 

To  Ascertain  Weight  of  Cargo  for  an  A  verage  Length  of  Voyage,   (Moorsom.) 

Deduct  tonnage  of  spaces  of  passenger  accommodations  from  net  register 
tonnage,  and  multiply  remainder  by  1.5. 

Average  space  for  each  ton  weight  of  cargo  on  such  a  voyage  67  cube  feet, 

Freight   Tonnage   or    ^Ceasnrement    Cargo. 

Freight  Tonnage  or  Measurement  Cargo  is  40  cube  feet  of  space  for  cargo, 
and  it  is  about  1.875  times  net  register  tonnage  less  that  for  passenger  space. 

Royal   Tliames   Yaolit   Clxxb. 

Measure  length  of  yacht  in  a  straight  line  at  deck  ft-om  forepart  of  stem  to  after- 
part  of  stern-post,  (Vom  which  de<luct  extreme  breadth  (measured  from  outside  of 
oatside  planking),  both  in  Teot;  remainder  is  length  for  tonnage.  Multiply  length 
for  tonnage  by  extreme  breadth,  that  product  by  half  extreme  breadth,  divide  re- 
salt  by  94,  and  quotient  will  give  tonnage. 

If  any  pan  of  stem  or  stern-post  projects  beyond  length  as  taken  above,  such 
projection  or  projections  shall,  for  purpose  of  computing  tonnage,  be  added  to  length 
taken  as  before  mentioned. 

All  fractional  parts  of  a  ton  are  to  be  considered  as  a  ton. 

Measurements  to  be  taken  either  above  or  below  main  walea 

L-BxBxs  B 


94 


=  Tons.    L  representing  length  and  B  hreadUi^  infect. 


Corintlxian   and   New   TlianleB   Yacht   Club. 

Measure  length  and  breadth  as  in  foregoing  rule,  and  depth  to  top  of  covering 
board;  multiply  length,  breadth,  and  depth  togeUicr,  divide  result  by  zoo,  and  quo- 
tient will  give  tonnage. 

LxBxD       _ 

=  Tons. 

300 

Suez    Canal   Tonnage. 

Gross  Tonnage. — Spaces  under  tonnage  deck,  below  tonnage  and  uppermost  deck, 
all  covered  or  closed  -  in  spaces,  such  as  poop,  forecastle,  officers'  cabins,  galley, 
cook,  deck,  and  wheel  bouses,  and  all  inclosed  or  covered- In  spaces  for  working  the 
vessel 

From  which  are  to  be  deducted  berthing  accommodations  for  crew,  not  including 
spaces  for  stewards  and  passengers'  servants;  berthing  accommodations  for  officers, 
except  captain;  galleys,  cook-houses,  etc.,  used  exclusively  for  crew,  and  inclosed 
spaces  above  uppermost  dock,  designed  for  working  the  vessel.  In  none  of  these 
spaces  can  passengers  be  berthed  or  cargo  carried,  and  total  deduction  under  all  of 
these  spaces  roast  not  exceed  5  per  cent  of  gross  tonnage. 

Id  steamers  with  standing  coal-bunkers,  Knglish  rule  may  be  followed,  or  owner 
may  elect  to  have  tonnage  of  his  vessel  computed  by  ''Danube  rule,"  which  is  an 
allowance  of  50  per  cent,  above  space  allowed  to  machinery  in  side- wheel  steamers 
and  75  in  screw  steamera 

In  no  case,  however,  except  with  tow-boats,  must  deduction  for  propelling  power, 
exceed  50  per  cent,  of  gross  tonnage. 


178 


WOBKS  OF  MAGNrrUDB. 


WORKS  OF  MAGNITUDE. 

A.zn.ericaii. 

A.qued.uots,  JEioads,  and   Railroads. 

Orcton  Aqua^i^/tcty  N.  Y.  —  Has  a  section  of  53.34  square  feet  and  capacity  of 
loooooooo  to  118000Q00  gallons  per  day,  and  firoin  bam  to  Receiving  Reservoir  is 
38. 134  miles  in  length. 

AquedMc%  Washington. —Cylinder  of  masonry  9  feet  in  diameter.  Stone  arch 
over  Cabin  John's  Creek,  220  feet  span,  57.25  feet  rise. 

National  Road.— Over  the  Alleghany  Mountains,  Cumberland  to  Illinois  Town 
65a625  miles  in  length,  and  80  feet  in  width.     Macadamized  fur  a  width  of  30  feet 

Illinois  Central  Railroad. — Chicago  to  Cairo,  length  365  miles,  Central ia  to  Dun 
leith  344  miles,  total  709  miles. 


Sridgea. 

Siupmsion  Bridge^  Niagara  River. —Wire,  Span  1042  feet  10  ins. 

Suspension  Bridge,  New  York  and  Brooklyn.  —  lAngih  of  river  span  1595  feet  6 
ins. ;  of  each  land  span  930  feet;  length  of  Brooklyn  approach  971  feet;  of  N.  Y. 
approach  1562  feet  6  ins. ;  total  length  of  bridge  5989  feet;  width  85  feet;  number 
of  cables  4;  diameter  of  each  cable  15.5  ins. ;  each  consisting  of  6300  parallel  steel 
wires  No.  7  gauge,  closely  laid  and  wrapped  to  a  solid  cylinder;  ultimate  strength 
of  each  cable  11 200  tons;  depth  of  tower  foundation  below  high  water,  Brooklyn, 
45  feet— New  York  78  feet;  towers  at  high  water  line  140X59  feet;  towers  at  roof 
course  136x53  feet;  total  height  of  towers  above  high  water  277  feet;  clear  height 
of  bridge  m  centre  of  river  span  above  high  water,  at  50°,  135  feet;  height  of  floor 
at  towers  above  high  water  119  feet  3  ins. ;  grade  of  roadway  3  feet  in  100;  anchor- 
ages, at  base  129X1x9  feet,  at  top  117X104  feet;  weight  of  each  anchor-plate  23  tons. 

Iron  Pipe  Bridge  over  Rock  Creek. — 200  feet  span,  20  feet  rise.  Arch  of  2  lateral 
courses  of  cast-iron  pipe,  4  feet  internal  diameter,  and  i  inch  thick.  These  pipes 
conveying  the  water  not  only  sustain  themselves  over  the  great  span,  but  support 
a  street  road  and  railway. 

Iron  Bridge  over  Kentucky  River  near  Shakers'  Ferry,  Md.— 3  spans,  each  375 
feet,  and  275.5  feet  above  low  water. 

Bridge  on  line  of  New  York,  Erie,  and  Western  Railroad  across  the  KinttuL-^ 
Of  iron;  length  2060  feet;  central  span  301  feet  in  height. 

Iron  TViMf.— Cincinnati  and  Southern  Railway,  over  Ohio  River,  519  feet 

Foreisn. 

Pyramids,  Statues,  etc. 

Pyramid  of  Cheops,  Egypt— Length  of  side  at  base  762  feet;  height  to  present 
summit  453.3  feet;  to  original  summit  485.2  feet;  inclined  length  568.25  feet;  angle 
of  side  5i<'  51'  14";  area  of  each  face  =  square  of  height;  weight  5273600  tons; 
built  2170  years  B.C. 

Peter  the  Great,  St.  Petersburg,  Russia. — Bronze;  height  of  horse  17  feet;  of  man 
II  feet;  base  of  rock  42  feet  at  bottom,  36  at  top,  21  wide,  and  17  high,  weighing 
zioo  tons. 

Liberty,  New  York  Harbor —Bronze;  no  feet  in  height  ft-om  head  to  foot  and 
151. 1  feet  to  flambeau ;  including  base,  305.6  feet     Weight  of  statue  225  tons. 

Daihuisu,  of  stone,  Japan. —Sitting  posture,  height  44  feet,  circumference  87 
feet;  fece  8.5  feet;  circumference  of  thumb  3  5  feet 

Colossus  of  Rhodes.— lSLe\g\ii,  105  feet 

D  ridge. 

Britannia  Tubular  Bridge  — Ot  iron,  with  a  double  line  of  Railway,  964  feet  iD 
length,  with  two  approaches  of  230  feet  each.    Weight  3658  tons. 


WOBKS   OF  MAaNITUDB. 


179 


l^oiiolitlis. 

Obelisk  at  Kamak^  Egypt— Of  granite,  108  feet  xo  ins. ;  pedestal  13  feet. 2  ina; 
weight  400  tons. 

Obelisk  in  Central  ParAr,  N.  T.— Of  granite,  68  feet  11  ins.-,  weight  168  tons. 

U.  S.  Treasury^  Washington. — Some  stones  of,  are  heavier  than  any  in  the  Pyra- 
mids of  Egypt 

Bteazxi    X^ammers. 

At  workshops  of  Herr  Krupp,  at  Essen,  there  is  a  steam  hammer  weighing  50  tons 
having  a  fall  of  3  metres;  and  at  Creusot  there  is  a  hammer  weighing  between  75 
and  80  tons  having  a  fall  of  5  metres. 

Crane. 

.    At  Greasot  there  is  a  steam  crane  having  a  capacity  to  J  i ft  1 50  tons. 

Cliixnnesrs. 

J.  Townsend's  chemical  works,  Glasgow,  diameter  at  foundation  50  feet;  at  top 
12  feet  8  in^ ;  height  from  foundation  488  feet;  from  ground  47*4  feet 

Metropolitan  Traction  Company,  N.  Y.,  diameter  at  base  85  feet;  at  top  25  feet, 
and  height  353  feet 

P»illar. 
At  a  gate  near  Delhi  is  a  wroagbt-iron  pillar  having  diameters  of  16.4  ms.  at  32 
feet  in  its  height  above  ground  and  13  ins.  at  its  top.    It  is  estimated  fh>m  the  re^ 
suit  of  excavations  at  its  base  to  be  60  feet  in  length  or  height  and  to  weigh  17 
tons.    Its  period  of  structure  is  assigned  to  the  3d  or  4th  century  A.O. 

Roofb. 


Midland  Railway  Station,  London.  240  ft. 
Imperial  Kidiog-School,  Moscow.  235  " 


Union  Railway  Station,  Glasgow.  195  ft 
Grand  Central  Station,  N.  Y 300  '' 


DOMSS. 


Capitol,  Wash  ington 
Glasgow  W.  Railway 


JDiaraeters   of  Domes. 

Fe«t.    f  DuaiKfl.  Feet. 


124.75 
198 


St  Paul's,  London . 
St  Peter's,  Rome. . 


X12 
139 


DOMU. 


Midl'ndRaily.liOn. 
Great  North'n,  Eng. 


Feet. 


240 
210 


TOHKIU. 


Blaizy 

Blue  Ridge. 
Hoosac 


Hiengtlis   of  Tunnels. 

Feet.  TuNNRL*.  Feet. 


13455 

4280 

25031 


Gunpowder,  Md.. 

Sutro 

Semmering 


36500 
30028 

5630 


TdrHKLS. 


Nerthe 

Nochistongo.... 
Riquivel 


Feet. 


'5 153 
21659 

18623 


Thames  and  Med  way,  n  880  feet       Weehawken,  4000  feet 


Mont  Cents  7.5  miles  243  yards,  rises  i  in  45,  and  descends  i  in  aooo. 

St  Gothard  Tunnels  and  Roads  a  miles  477  yards  in  length ;  tunnels  1 16 156.5  feet, 
and  rises  i  in  233  in  whole  lengtn;  26.5  feet  in  width;  19  feet  10  ios.  in  height 
Maximum  grade  2.7  feet  per  100.  Schemnitz,  10.27  miles  in  length,  9  feet  10  ins. 
in  height  by  5.25  feet  in  width 

Mliscellaneous. 

Fortress  Monroe,  Old  Point  Comfort,  Va.— Largest  fortress. 

Telegraph  Wire.— Spaa,  over  river  Kistnah  between  Bezorah  and  Sectanagran, 
6000  feet  in  length. 

Deer  Park,  Copenhagen.  — 4200  acres. 

Oxford  College,  England.  —  Largest  University;  said  to  have  been  founded  by 
Ain-ed. 

Cathedral.  SL  Peter^s,  Rome.^Width  of  front  216  feet;  of  the  cross  251  feet;  total 
height  469. 5  feet 

Steamer  Great  Eastern.— OT  iron,  680  feet  in  length ;  83  feet  width  of  beam ;  60 
feet  depth  of  hold;  22927  tons;  built  at  Millwall,  England,  1857. 

Chinese  Wall.— 2$  feet  at  base;  15  at  top;  height,  with  a  parapet  of  5  feet,  30  feet: 
length  1250  milea 

Artenan  WeU^  Perth.— 3050  feet  in  depth;  temperature  of  water  99^);  volume 
of  discharge  18000  gallons  per  day. 


l80        BELLS,  CHUBCHBS,  COLUMNS,  TOWEBS,  BTO. 


TVeiglits    of  Bells. 


Bkixs. 


•  ■  •  •  • 


PekiD.... 

Lewiston,  Me 

Montreal,  Can 

Moscow,  Russia. . . 
ErAirt,  Saxony — 
Notre  Dame,  Paris 


Lba. 


I20  000 
10233 
28560 

443  772 
30800 
28670 


Bells. 


Lbs. 


Kells. 


Oxford,      "Great 

Tora,"Eng 

01m ntz.  Bohemia. 
Sac'd  Heart,  Paris 
St  Paul's,  Eng, . . 
St.  Ivan's,  Moscow 


17024 
40320 

55  o<^ 
42000 

127  830 


St.  Peter's,  Rome 

Vienna.... 

Westm'ster,  "Big 
Ben,'*  England. 
York  " 

State  House, Phila. 


Lb*. 


1800C 
4020c 

35620 
24080 
13000 


Rangoon,  Burmab,  201 600  lbs. 


Capacity   of  Principal   Ch.urcUes   and.   Opera   Houses. 

Estimaiing  a  person  to  occupy  an  Area  of  19.7  Ins.  Square. 

Cliurclies. 


St.  Peter's. 54000 

Milan  Cathedral 37  000 

St  Paul's,  Rome 32000 

St  Paul's,  London 25  600 

St  Petronio,  Bologna 24  400 

Florence  Cathedral. 24  300 

Antwerp  Cathedral 24  000 

St  Sophia's,  Constantinople 23000 

Opera  Houses 

Carlo  Felice,  Genoa 2560 

Opera  House,  Munich 2370 

Alexander,  St.  Petersburg 2332 

San  Carlos,  Naples 2240 

Imperial,  St  Petersburg 2160 

La  Scala,  Milan 2113 

Academy  of  Paris 2092 


St  John,  I^teran 22  900 

Notre  Dame,  Paris 21  ooo 

Pisa  Cathedral i3cxx2 

St  Stephen's,  Vienna. 12  400 

St  Dominic's,  Bologna 12000 

Tabernacle,  London 7  cxxt 

"         Brooklyn ,..    5500 

St  Mark's,  Venice 7  000 

and.  rriieatres. 

Teatro  del  Liceo,  Barcelona 4000 

Covent  Garden,  Ix)ndon 2684 

Opera  House,  Berlin 1636 

Now  York  Academy 2526 

Metropolitan  Opera,  N.  Y 5000 

Philadelphia  Academy 3124 

Chicago  "        3000 


Heights   of  Coliamns,  Towers,  Doraes,  Spires,  eto- 

L0CAT10N8.  Feet.  Locations.  i  Feet. 


CHIMNEYS. 

Townsend's Glasgow  . . 

StRollox 

Musprat's liiverpool . 

Gas  Works Edinburgh 

New  England  Glass  Co.  Boston 

Steam  Heating  Co. . .  .New  York. 
Metropolitan  Tract  Co. 


u 


COLUMNa 

Alexander St  Peters'g 

Bunker  Hill Mass 

City London . . . 

July Paris 

Napoleon "    

Nelson's London . . . 

Place  Vendomo Paris 

Pom|)cy's  Pillar Egypt 

Tnij.'in Rome 

Washington Wash'gton 

York London  . . . 

TOWERS  AXD  DOMES. 

Babel 

Balber 

Capitr»l Wtt.sh'gton 

St  Peters Rome 

Cathedral Cologne . . . 

*•   Cremona.. 

**   .....Escurial. .. 


474 
455- 
406 

34'- 
230 

220 
353 


175 
221 

202 

157 
132 
171 
136 
"4 
145 
555 
138 


680 

500 

287.5 

469.5 

524-9 

392 

200 


TOWERS  AND   DOMES. 

Cathedral Florence . . 

"       Magdeb'rg 

"       Milan 

"       Petersburg 

T^eaning Pisa 

Porcelain China 

St  Mark's Venice 

3t  PaaPs .London . . . 

SPIRES. 

Cathedral New  York . 

"        Strasburg  . 

♦*       Antwerp.. 

Grace  Church New  York. 

Freiburg 

Salisbury 

St  John's New  York. 

St  Paul's " 

St  Mary's Ijftbeck  . . . 

Trinity  Church New  York. 

Balustrade    of    Notre 

Dame. Paris 

Towers  of  ditto " 

H<Hel  des  Invalidos. . .     *' 

St  Nicholas Hamburg. . 

St  Stephen Vienna 

Stmsburg. 

Utrecht 

Votive  Church Vienna. . . . 


390-5 

339  9 

438 

363 

188 

200 

328 

355- « 


325 

465-9 
404.8 

2X6 

410 

450 

9XO 
200 

404 
2S6 

216 
232.9 

344 
473 
443  8 
486 

464 
3'4-9 


BBIDGES,  CANALS,  BEKAK  WATERS,  ETC. 


i8i 


i\.r€tas   of  Liakes   in   Evirope,  A^aia,  and    Africa. 


LAXta. 


beoAva 

Tcbad,  Africa . 


Sq. 
Miles. 

400 
11600 


L.AKK9. 


Sq. 
Miles. 


Dembia,  AbyssiDia. 
Loch  liOmood 


13000 
27 


Lakes. 


Lough  Neagh,Irel'U 
ToutiDg,  China.... 


ILiengths   of  Bridges. 


Bkidom. 


Feet. 


Avignon. . . , 
Bad^oz ..,. 

Belfast 

HIackfriars , 
Koaton .... 
Lioudon 


J710 
1874 
2500 

995 
3483 

950 


Bkiugkb. 


Liou,  China 

Menai 

N.  Y.  and  Brook- ) 
lyn  spans  undS 
approaches.. . . ) 

Pont  St.  Esprit. . . 


Feet. 


6600 
1050 

5989 
3060 


Bbidgrh. 


Potomuc 

Riga 

St  Lawrence  Riv'r 

Strasburg 

Vauxhall 

Westminster 


Sq. 
Miles. 

80 
1200 


Feel. 


Hiengtlis  or  Spans  of  Bridges. 


Bbidobi. 


Britannia, 
Conway. . . 
Menai . . . , 


Feet. 


460 

400 

580 


BSIPGEB. 


Niag'a  at  the  Falls 
*^     at   Queens- 
town 


Feet. 


X26S 

Z040 


Briiigks. 


Schuylkill. 
Southwark. 
Wheeling. . 


5300 

2600 

9M4 

3390 
860 

1223 


Feet. 


340 
240 

XOIO 


Canals. 

Lengths.— lake  Erie  to  Albany  352  miles;  Chesapeake  and  Ohio  307;  Schuylkill 
X08;  Delaware  and  Hudson  109;  Kideau  132;  London  to  Liverpool  265;  Caledonia 
85:  Liverpool  and  Leeds  127.5;  Rhone  to  Rhine  203. 

Capacity  of  Locks  of  Erie  240  tons,  and  of  Welland  1500. 

Welland  26.77  miles.    Lake  Erie  to  Montreal  via  Canal  70.5;  Lake  and  River 
375  miles. 
Montreal  to  Kingston.— Canai  120  miles;  River  126.25.    Suez,  see  page  183. 

Breakwaters. 

Delaware.— Average  depth  of  water  29.4  feet  below  low- water  level ;  range  of  tide 
6.66  feet;  Outer  slope  45°;  Inner  slopes  z.5,  5,  3,  and  1.3  to  i ;  length  of  base  172.12 
feet. 

P/ymou/A.— Outer  slopes  1.75  to  z  fVom  bottom  to  7  feet  6  ins.  below  low- water 
line;  4  to  z  to  low- water  line;  z6  to  z  to  4  feet  6  ins.  above  low- water  line;  5  to  1 
to  high  water;  Inner  slope  z.5  to  z  above  low  water  line;  2  to  z  below  low- water  line. 

Depth  of  water  at  high  tide  46.5  feet;  at  low  tide  30  feet 

Body  of  breakwater  rased  w^ith  I'lrge  squared  stones  cramped  together 

Portland. — Depth  of  high  water  58  feet;  of  low  water  51  loet ,  Outer  slopes  z  to  z 
firom  bottom  to  20  feet 'below  low  water;  2  to  x  to  12  A^t  below  lo>\  water;  6  to  z 
to  low-water  line;  4  to  z  to  high  water  line;  Inner  slope  1.25  to  z. 

Body  of  breakwater,  rubble,  with  crest  wall  of  ashlar. 

Dover. — Depth  of  high-water  line  6z  feet;  of  low-water  line  42  feet. 
Body  of  breakwater,  concrete  blocks  fkced  with  granite;  batter  3  inches  to  the 
<bot,  stepped  up  in  each  course. 

Martedles.  —Depth  of  water  33  feet ;  Outer  casing  of  beton  25. 5  tons  each ;  average 
thickness  of  casing  fk-om  Z4  to  20  feet;  slope  z  to  z  i^om  bottom  to  water  line;  2.5 
to  z  above  water-line;  all  other  slopes  .33  to  z;  Inner  casing  of  first-class  rubble 
(of  stones  2  to  5  tons  weight),  about  z2  feet  thick:  Hearting,  second-class  rubble 
(of  stones  5  to  2  tons  weight),  about  6  feet  thick;  Nucleus,  of  quarry  rubbish. 

Algiert. — Depth  of  water  50  feet;  rubble  base  carried  up  to  33  feet  from  surface  of 
water;  the  remainder  composed  of  large  beton  blocks  25. 5  tons  each ;  slopes  of  rubble 
base  z  to  z ;  Outer  sIoi)e  of  l)eton  blocks  z.25  to  z ;  Inner  slope  of  beton  bbcks  z  to  z. 

Port  Said  (Suez  Canal).— Concrete  blocks,  zo  cubtc  metres  each,  composed  of  z 
of  hydraulic  lime  to  13  of  sand,  mixed  with  sea  water;  4  days  in  the  mold  and  dried 
for  4  months  before  being  put  in  position.  In  some  instances  the  composition  of 
beton  blocks  is  .33  lime  or  cement  to  .66  sand  and  broken  stone,  about  the  size  of 
ballasting. 

Rubble  or  Mock  i^h'ni^.— Proportion  of  interstices  to  volume  of  breakwater  fin- 
ished: First-class  rubble  of  2  to  5  tons,  .25;  second  class  rubble  of  .5  to  a  tons,  .a: 
third-class  rubble,  quarry  chips,  etc.,  .x6;  beton  blocks,  15  to  25  tons,  .33. 

Man.— For  force  of  water,  see  Waves  of  the  Sea,  page  853. 

Q 


1^2 


LAKES,   OCEANS,   SEAS,  MOUNTAINS,   ETC. 


Areas,  IDeptlis,  and    Xleiglxts    of  G}-reat    T^ortliern    ILialses 

of  United    States. 


Lakes. 


Erie 

Huron 

Michigan.. 
Ontario. . . . 
Superior*. 


Length. 


Mile*. 
250 
200 
360 
180 
400 


Breadth. 


Milee. 
80 
z6o 
Z09 

65 
160 


Mean  Depth. 


Feet. 
2CX> 
I20 

900 
500 

288 


Height 
above  Sea. 


Feet. 

564 

574 

587 

234 
635 


Area. 


Sq.  Miles. 

9000 

23800 

22000 

7200 

32000 


*  GreHtest  depth  5400  feet. 

Elevation  Above  Tide-tocUer  at  Albany.  —  Lake  Erie  57a 6  feet;  Hudson  Rivei 
2. 46  feet. 

I^ean   X>eptlx8   an.d    .A^reas   of  tb.e   Oceans   and    Seas. 

{Herr  Krummel.) 


Fathom*. 


Atlantic '    2013 

Archipelago |      487 

Azof 

Baltic  Sea. 

Black  Sea 

BehriDg's  Struits. . . . 

Caspian  Sea. 

China  (East)  Sea. . . . 

Dead  Sea. 

English  Channel,  etc. 


_36 

550 

66 


47 


Area 
Sq.  Miles. 


29514275 

3046600 

8800 

159690 

150000 

864555 
120000 
472  210 

370 
78416 


Gulf  of  Mexico . . 
"    *'  St.  Lawrence 

Indian 

Japan 

Mediterranean . . 

North  Sea 

North  Ice  Sea. . . 
Persian  Gulf.... 

Pacific 

Red  Sea 


Fathom*. 

Arwi 
Sq.  Miles. 

lOOI 

I  765  910 

160 

101 075 

1829 

2836959s 

1200 

383  205 

'4I 

110923c 

210505 

84s 

5264600 

20 

90100 

3887 

60343690 

243 

17082c 

Mean  depth  of  Ocean  surrounding  land  1877  fathoms  =  2. 19  miles. 

In  his  subsequent  computations  he  estimates  ocean  area  at  143  703  000  square 
miles  and  determines  area  of  land  to  water  as  i  to  2.75,  and  that  mean  height  of 
land  =  1377  feet,  or  one  eighth  that  of  Ocean. 

Heiglits    of  IVtountains,  "Volcanoes,  and.    Passes 

above   Level   of  Sea. 


Mountains. 


BITROPE. 

Azores  Pico 

Barth(^lemy,  France 

Ben  Lomond 

Ben  Nevis 

Elbrus,  Caucasus. . . 
Guadarama,  Spain. . 

Hecla 

Ida 

Jungfrau,  Switz'd. . 

Mont  Blanc 

"    Cenis 

Mont  d'  Or,  France. 
Mulahaa8en,Gren'a. 
Nephin,  Ireland.... 

Olympus 

Parnassus 

Plynlimmun,  Wale& 
The  Cylinder,  Pyr. . 
Wetterhom 


ASIA. 


Ararat 

Caucasus 

Dhawalagheri 

Oeta,  Java. 

Mount  LAbanon. . . . 


1  Feet. 

7613 

7365 

3240 

4380 

17776 

8520 

5147 

4960 

13725 

>5797 

6780 

6510 

1x663 

2634 

6510 

6000 

2463 

10930 

12  154 

17  100 

16433 

28077 

8500 

Z3000 

Mountains. 


MountEverest(Him 

alaya,  highest) . . . 

Mount  Libauus. . . . 

Sinai 


AFRICA. 


of 


Atlas 

Compass,  Cape 
Good  Hope 

Dianai  Peak,  St  He- 
lena  

Kilimaojaro 

Ruivo,  Madeira.... 

Teneriffe  Peak 


AUBRIOA. 

Aconcagua  (highest 
in  America) 

Blue  Mount,  Jam'a. 

Catskill ' 

Chimborazo 

Correde,  Potosi .... 

Crows'  Nest,  High- 
lands, N.  Y 

Great  Peak,  New 
Mexico 

Mauo*  Loa,  Hawaii 


Feet. 


29003 

9523 
X5000 

7496 


ZO400 
10  000 

2700 
20000 

5160 
12300 


23910 

8000 

3804 

21  441 

16036 

1370 

19788 
13805 


Mountains. 


Mount  Pitt 

Mount  Washington. 
Nevado  de  Sorata. . 

Orizaba 

Potosi 

Sierra  Nevada 

Tahiti 

White  Mountains . . 

VOLCANOES. 

I  Cotopaxi 

i  Etna 

I  Hecla   

I  Popocatepetl 

Sahama 

St.  Helen's,  Oregon. 
Vesuvius 


Feet. 


PASSES. 

I i Cordilleras  ... 


"Mont  Cenis., 
"    Cervis. 


I  Pont  d'  Or 

St.  Bernard,  Great. . 
"  Little. . 

St.  Gothard 

Simplon. . , 


9549 
6426 

25248 

18879 

18000 

15700 

10895 

623c 


18887 
X0874 
5000 
17784 
22350 
13320 

3930 


13525 

677S 

IZ  xoo 

9843 

817s 
719a 
6808 

6578 


CANAL  LOCKS,  BLBVATION8,  AND  BIVEBS.  1 83 


Dimensions  of  Oanal  XjooIcs.-^CZT.  S.) 


Cahal. 


Albemarle  and 
Chesapeake. . 

Black  River, 
Crook'd  L'ke, 
ChenaDgo, 
Chemung, 
and  Genesee 
Valley 

Chesapeake  and ) 
Delaware ....] 


•3 

M 

a 


Feet. 
220 


90 


330 


s 


Ft. 

No 
=4 


a 


Ft. 
6 


Length  of 
Caual. 


Miles. 
14 

77 
8 

97 

33 

L"3-75 

14 


ClIfAL. 


Champlain 

Cayuga  and        ) 

Seneca ) 

Delaware  and     i 

Raritan. ../..) 
Dismal  Swamp. . . 

Erie 

Falls  of  Ohio,  Ky. 

Oswego 

Welland, Canada. . 


• 

-3 

J 

Feet. 

1 

ft 

0 

Feet. 

Feet. 

1 10 

18 

5 

1 10 

18 

7 

220 

24 

7 

90 

17-5 

•  5-5 

no 

lU 

7 

350 

80 

2-60 

no 

18 

4 

270 

45 

14 

Leocib 
CiwaL 

Miles. 
66.75 

a4-7S 

43 

44 
353 

38" 
28 


Length  of  vessel  that  can  be  transported  is  somewhat  less  than  lengths  of  lock& 


Suez   Canal.' 
Length  99  miles. 


Width  196  to  328  feet  at  surface,  72  at  bottom,  and  26  deep. 


Heiglits  oro'btaineci  IKlevatioiis,  and.  various  I'laoes 
and.   I*oin.ts   above  tlie   Sea. 


Locations. 


Aconcagua,  Chili . . 

Antisana,  highest 
established  eleva- 
tion (Prtrmhouse)  . . 

Balloon  (Gay  Lussac) 

"     (Green,  1837) 

"    (Glaisher  and 

Coxwell) 

Braail,  Qaito,  and  ( 
Mexico  plains. .  ( 

Condor's  flight 

Eagle's        "   

Everest,  Himalaya. 


Feet. 


23910 


13434 

22900 
27000 

37000 
6000 
8000 
29500 
16500 
29003 


Locations. 


Geneva  city .... 
Greneva  Lake... 

Gibraltar 

Humboldt's  highest 

elevation 

Isthmus  of  Darien. 
Jungfrau,  Switz'd. . 
La  Paz,  Bolivia. . . . 
LagunajTenetitlb. . . 

iiOndon,  city 

Madrid. 

Mexico,  city  of 

Mont  Blanc,  Alps. . . 


Feet.    ] 

I  220 

1096 

M39 

19400 

645 

i37»5 

12225 

2000 

64 

2200 

7525 

15797 

LocAtioxs. 


Mont  Rosa,  Alps . . . 

Mount  Adams 

Mount  Katahdin... 

Mount  Pitt 

Mount  Washington. 
Paris,  city......... 

Pont  d'  Oro,  Pyr's. . 
Posthouse,  Ap. ,  Peru 
Potosi,  Bolivia. . . . . 

Quito 

St.  Bernard's  Mon'y 

Vegetation 

White  Mountain . . . 


Feet. 


>5i55 

5930 
5360 

9549 
6426 

"5 

9843 

14377 
13223 

13500 
8040 

17000 
6230 


BtTBBS. 


BUROPS. 

Danube 

Dnieper. ..... 

Douro. 

Dwina 

Elbe 

Garonne 

Loire 

Fo 

Rhine 

Rhone 

Seine 

Shannon 

Tagus 

niamea 

Tiber 

Vistula 

Volga,  Russia 

AAA. 

Amoor 

Euphratfes.... 


Uenstlis  of*  !Rivers« 

Mtlfls.  RxTKRs.  Miles. 


1800 

"43 

400 

1035 
780 

442 

543 
420 

760 

510 

450 
B50 
510 
220 
190 
630 
2400 


2500 
X786 


Ganges 

Hoang  Ho 

Indus 

Jordan 

Ijcna 

Tigris 

Yenesei    and    Se- 

lenga 

Yang-Tse 


AFRICA. 

Gambia. 

Niger 

Kile 


NORTH  AMERICA. 

Arkansas 

Colorado 

Columbia 

Connecticut 

Delaware 

Hudson    and    Mo- 
hawk.   


1514 
3040 
1800 
176 
2762 
1160 

3580 
3314 


700 
2400 
4000 


2070 

1050 

1200 

410 

420 

335 


RiTCBS. 


Kansas 

Ia  Platte 

Mackenzie 

Mississippi ..., 

Missouri 

Ohio  and  Allegheny 

Potomac 

Red 

Rio  Bravo 

Rio  Grande 

St.  Lawrence 

Susquehanna 

Tennessee 


Miles. 


SOUTH  AMKRICA. 


Amazon  . . . . 
Essequibo  . . 
Magdalena. . 

Orinoco 

Platte 

Rio  Madeira. 
Rio  Negro. . . 
Uruguay.... 


1400 

850 

2440 

3160 

3030 

1480 

420 

1520 

2300 

1800 

3173 

630 

790 


4000 
530 
900 
1600 
2300 
2300 
1650 

ZIOO 


l84 


8EA   DEPTHS,  BUILDING   STONES,  ETC. 


Xjarge  Trees  in   Caliibrnia, 

" Keystone  State.'''' — Calavera  Grove,  is  335  feet  in  height 

'^Father  of  the  Forest  ^^—Felledj  is  385  feet  in  length,  and  a  man  on  horseback 
can  ride  erect  90  feet  inside  of  its  trunk. 

*^  Mother  of  the  Forest.  *'— Is  315  feet  in  height,  84  feet  in  circamference  (26.75  feet 
in  diameter)  inside  of  its  bark,  and  is  computed  to  contain  537  000  feet  of  sound  i 
inch  lumber.  t 

Sea  X>eptlis. 

Feet. 


Feet. 


Baltic  Sea. 

Adriatic 

English  Channel... 
Straits  of  Gibraltar. 
Eastward  of    *' 


Z20 

130 
300 

3000 


Coast  of  Spain 

West  of  St.  Helena. 
Tortugas  to  Cuba . . 

Gulf  of  Florida 

Off  Cape  Florida... 

Estimated  depth  of  Atlantic 26cxx>  feet 

"  "       PaciQc 29000    " 

250  miles  off  Gape  Cod,  no  bottom  at  7800  feet 


Off  Cape  Canaveral . 

'*  Charleston 

*'  Cape  Hatteras. . 

"  Cape  Henry 

"  Sandy  Hook. .. . 


Feet 


3400 
4300 
3120 
4200 
2400 


Cascades   and.    W  aterfklls. 


Location. 


Arve,  Savoy. . 
Cascade,  Alps 


Cataracts  of  the  Nile. 


Chachia,  Asia 

Foyers,  Scotland  . . . . 

Garisha,  India 

Gavarny,  Pyrenees . . 


Feet. 


1600 
2400 

130 
34 
40 

362 

197 

1000 

1260 


Location. 


Feet. 


Genesee,  N.  Y '  100 

Lidford,  England  ....  1  100 

Lulea,  Sweden '  600 

Mohawk 68 

Missouri 


(50 
}8o 

Montmoronci I  250 

Nant  d'Apresias |  800 


Location. 


Niagara 

Great  Fall 

Passaic 

Potomac 

Ribbon,  Yosemite) 

Valley J 

Ruican,  Norway  . . . . 
Staubbach,  Switz'd. . 
Tendon,  Franco 


Yosemite  Valley 2600  feet 


Fflel. 

"lei 

15a 
74 
74 

3300 

800 
798 
135 


E^xpansioii  and.  Coxitraotion,  of  Building  Stones  fbr  eaoli 
Degree    of  Temperatvire.    {Lieut.  W.  H.  C  BarUett^  U.  S.  E.) 


For  One  Incb. 

Granite 000004  825 

Marble 000005  668 


For  One  Inch. 

Sandstone 000009  533 

Whitepine 000002  55 


fiesistaixce    of  Stones,  etc.,  to  thie    Bfieots   of  Freezing. 

Various  experiments  show  that  the  power  of  stones,  etc,  to  resist  effects  of  freez- 
ing is  a  fair  exponent  of  that  to  resist  compression. 

Miagnetio   Bearings   of  Ne-w  York. 
The  Avenues  of  the  City  of  New  York  bear  28°  50'  30"  East  of  North. 

Filters  for  'Watev'worls.a. 

I  square  yard  of  filter  for  each  840  U.  S.  and  700  Imp'l  gaflons  in  24 
hours ;  formed  of  a.5  feet  of  fine  sand  or  gravel  and  6  inches  of  common 
sand  or  shells. 

Led  off  by  perforated  pipes  laid  in  lowest  stratum. 

Distaiaces   between   New  York,  Boston,  Fliiladelplila, 
Baltimore,  and    "Western    Cities   of  TJ.  S. 

Assuming  Boston  as  standard,  New  York  averages  12  per  cent  nearer  to  these 
cities,  Philadelphia  18  per  cent,  and  Baltimore  22  per  cent 

Between  New  York  and  Chicago  the  line  of  the  Pennsylvania  Railroad  is  47  miles 
shorter  than  that  by  the  Erie  and  its  connections,  50  miles  shorter  than  that  by  the 
N.  Y.  Central  and  Hudson  River  and  its  connections,  and  114  miles  shorter  than  that 
by  the  BHltimore  and  Ohio  and  its  connections. 

For  Distances  between  these  and  other  cities  of  the  U.  S.,  see  page  88. 


WBATHBB-PLANT8,  ANTIDOTES,  ETC.  iSj 

"Weatlier-fbretelliiiK  Il*laiits.    {Hanneman.) 

If  Rain  is  imminetU. — Chickweed,*  Sfellaria  media ;  its  flowers  droop 
and  do  not  open.  Crowfoot  anemone,  Anemone  ranunculoides ;  its  blossoms 
close.  Bladder  Ketmia,  HUnscus  trionum ;  its  blossoms  do  not  open.  Thistle, 
Carduua  acaulia ;  its  flowers  close.  Clover,  Thifolium  pratensSj  and  its  allied 
kinds,  and  Whitlow  ^rrass,  Draba  vema;  all  droop  their  leaves.  Nipple- 
wort, Lampsana  communii ;  its  blossoms  will  not  close  for  the  night.  Yel- 
low Bedstraw,  Galium  verum ;  it  swells,  and  exhales  strongly ;  and  Birch, 
Betula  cUb€L,  exhales  and  scents  the  air. 

IndicaHfMU  of  Rain. — Marigold,  Calendula  pluvialis ;  when  its  flowers  do 
not  open  by  7  A.  M.  Hog  Thistle,  Sonchua  arvensis  and  oUraceus ;  when  it6 
blossoms  open. 

Rain  of  shoii  duration. — Chickweed,  Stellaria  media ;  if  its  leaves  open 
but  partially. 

If  chudy.  —  Wind-flower,  or  Wood  Anemone,  Anemone  memorasa;  its 
flowers  droop. 

Termination  of  Rain.  —  Clover,  Trifolium  praiense ;  if  it  contracts  its 
leaves.  Birdweed  and  Pimpernel,  CbniWt^zc/tM  and  AnagcUlis  arvensis;  if 
they  spread  their  leaves. 

Unifirm  Weather, — Marigold,  Calendula  pluvialis ;  if  its  flowers  open  early 
in  the  A.  M.  and  remain  open  until  4  P.  M. 

Clear  Weather. — Wind-flower,  or  Wood  Anemone,  A  nemone  memorasa ; 
if  it  bears  its  flowers  erect.  Hog  Thistle,  Sondius  ai^vensis  and  oleraceus ; 
if  the  heads  of  its  blossoms  close  at  and  remain  closed  daring  the  night. 

Treatxnent  and.  A.ntid.oteti  to  Severe  Ordinary  Poisons. 

Antidotes  in  very  smaU  doses. 

Chloroform  and  Eihet.—ColA  afi^usions  on  head  and  neck,  and  ammonia 
to  nostrils.     Antidote. — Camphor,  petroleom,  sulphur. 

Toadstools, — (Inedible  mushroom).    Antidote.— S&me  as  for  chloroform. 

Arsenic  or  F^  Powder, — Emetic;  after  free  vomiting  give  calcined  ma^ 
nesia  freely.    If  poison  has  passed  out  of  stomach,  give  castor  oil. 
Antidote. — Camphor,  nax  vomica,  ipec^caanfaa. 

Acetate  of  Lead  (Sugar  of  lead).  —  Mustard  emetic,  followed  by  salts, 
Large  draughts  of  milk  with  white  of  eggs. 
Antidote. — Alum,  sulphuric  acid  alike  to  lemonade,  belladonna,  strychnine. 

Corrosive  Sublimate  (Bug  poison).  —  White  of  eggs  in  1  quart  of  cold 
water,  give  cupful  every  two  minutes.  Induce  vomiting  without  aid  of 
emetics.    Soapsuds  and  wheat  flour  is  a  substitute  for  white  of  eggs. 

Antidote. — Nitric  acid,  camphor,  opium,  sulphate  of  zinc. 

Phosphorus  Matches. — ftai  Paste, — Two  teaspoonfuls  of  calcined  magne- 
sia, foUowed  by  mucilaginous  drinks.    Antidote. — Camphor,  coffee,  nux  vomica. 

Carbonic  Acid  (Charcoal  fumes).  Chlorine^  Nitrous  Oxide,  or  Ordinary 
Gas. — Fresh  air,  artificial  respiration,  ammonia,  ether,  or  vapor  of  hot  water. 
Antidote. — Otmphor,  coffee,  nux  vomica. 

Belladonna  (Nightshade).  —  Emetic  and  stomach  pump,  morphine  and 
strong  coffee.    Antidote. — Camphor. 

Ojnum, — Stomach  pump  or  emetic  of  sulphate  of  zinc,  20  or  30  grains,  or 
mustard  or  salt.    Keep  patient  in  motion.    Cold  water  to  head  and  chest 
AntidMe.—%irojig  coffee  fireely  and  by  iigection,  camphor,  ether,  and  nux  vomica. 

Strychnine  (Nux  vomica). — Stomach  pump  or  emetic,  chloroform,  cam- 
phor, animal  charcoal,  lard,  or  fat. 
Antidote.— Yl\ne,,  coffee,  camphor,  opium  freely,  and  alcohol  in  small  doeea 

Vef/etable  fbiions.— As  a  rule,  an  emetic  of  mustard  and  drink  freely  of 
warm  water. 

*  Spreads  its  leavat  about  9  A.  M.,  and  they  remain  open  until  noon. 


i88 


MISCELLANBOUd   SLBMENTS. 


MISCELLA^NKOtrS   ELEMENTS. 

Kartli. 

Polar  diameter  7899.3  miles.  Mean  density  or  specific  gravity  of  mass  5.672.  Maai 
5  272  600  000  000  000  000  000  tons.    Apparent  diameter  as  seen  fh)m  Sun  17  seconds 

Sun. 

Heat  of  Sun  equal  to  322  794  thermal  units  per  minute  for  each  sq.  foot  of  ph» 
tosphere  or  solar  surface. 

Diameter  of  Sun  882000  miles,  tangential  velocity  1.25  miles  per  second  or  4.41 
times  greater  than  that  of  the  Earth. 

Distance  fh)m  Garth  91.5  to  92  millions  of  miles. 

^£asoxi   Etild   Dixon's   Uixie. 

39<>  43'  26.3"  N.  mean  latitude.    68.895  miles. 


DlTttiont. 


A.rea  and 

Anm. 


America. 
Europe . . 

Asia 

Africa . . . 


Sq.  MilM. 

14  491  000 

3760000 

16  313000 

10936000 


I'opulation.    {Behm  and  Wagner.) 

Po|Hilation. 


95  495  500 
315929000 
834  707  000 
205  679  000 


DlTitloiu. 

Aim. 

PojpolatioB. 

Oceanica. 

Greenland  ) 
Iceland       J  '•* 

Sq.  Mile*. 
4500000 

4031000 
82000 

Total 

50000000 

1455933500 

Austria   )  ,0 ,««,««« 

Hungary) 38000000 

China. 434  626  000 

France. 37000000 


India.  British  .  .240298009 

Canada 3  839000 

Mexico 9485000 

Brazil n  106000 


Countries. 

Germany 43  900000 

Great  Britain.. 34 000 000 

{Russia 66000000 
Territories . .  .22000000 

(United  States.... 50 000 000  I   (Turkey 8866000 

(Indians 300000  |   (     **    in  Asia.  .16320000 

About  one  thirtieth  of  whole  population  are  bom  every  year,  and  nearly  an  equal 
number  die  in  same  time;  making  about  one  birth  and  one  death  per  second. 
Earlier  authority  estimated  population  at  x  288000000,  divided  as  fbllovre: 


Caucasians 360000000 

Mongolians  . . .  .552000000 
Ethiopians. ...  .190000000 
Asiatics 60000000 


Malaya  and    ) 
IndoAmer's}  '77  000000 

Protestants....  80000000 
Israelites. 5  000  000 


MohammedanB .  190  000  000 
Pagana 300000000 

Catholics        )  ,e««^oo« 
Rom.  &  Greek}  ^Soooo 000 

Descent  of  "Western  'H.ivers. 

Slope  of  rivers  flowing  into  Mississippi  fW)m  East  is  about  3  inches  per  mile; 
and  trom  West  6  inches. 

Mean  descent  of  Ohio  River  Orom  Pittsburgh  to  Mississippi,  975  miles,  is  about  5.2 
inches  per  mile;  and  that  of  Mississippi  ta  Gulf  of  Mexico,  1180  miles,  about  2.8 
inches. ' 

Transmission  of*  Horse  Fo-wer. 

Largest,  and  perhaps  most  successAi],  wire  rope  transmission  is  one  at  SchaflT 
hausen,  at  Falls  of  the  Rhine.  Here,  power  of  a  number  of  turbines,  amounting 
to  over  600  IP,  is  conveyed  across  the  stream,  and  thence  a  mile  to  a  town,  where  it 
is  distributed  and  utilized. 

At  mines  of  Falun,  Sweden,  a  power  of  over  100  horses  is  transmitted  in  like 
manner  for  a  distance  of  three  miles. 

A-oids. 

Acetic  Acid  (Vinegar),  acid  of  MaU  beer,  etc.    Tartaric  Acid,  acid  of  Orape  wint. 
Lactic  Acidy  acid  of  MiUCy  Millet  beer^  and  Cider. 

"NLan-xi-rem, 

Relative  Fertilizing  Properties  of  Various  Manures. 

Peruvian  Guano . . . .  i        I  Horse 048  I  Farm-yard 0298 

Human,  mixed 069  |  Swine 044  |  Cow 0259 

Or,  I  lb.  guano  =  14.5  human,  21  horse,  22.5  swine,  33.5  farm-yard,  and  38.5  cow. 

Relative  Value,  Covered  and  Uncovered,  on  an  Acre  of  Ground, 

Covered 11  tons  1665  lbs.  potatoes,  61    lb&  wheat,  2x5  lbs.  straw 

Uncovered 7    ••    1397  "         "       6j.ft "       "      w6 


({ 


<t 


PerCflnt. 
Poppy. .  56  to  63 


MISCBLLANBOUB  ELEMENTS. 
Vleld  of*  Oil  of*  Several  Seede, 

I  Percent.!  Per  Cent.  I  Per  Cent.  I 

I  Castor . .  25  I  Sunflower.  15  I  Hemp.  14  to  25  I 


189 


Percent 
Lineeed.  xi  to  2a 


T'hiokness  of  'Walls  of*  Buildings.    (Engluk.)    iMole9tvmrt/L) 


Odtkb  Walls. 


ist  class  dwelling. 
2d     "  " 

3d     " 
4tli 


«i 


II 


Pabtt  Walls. 

ist  class  dwelling, 
ad     "  ** 

3d     "  "      ' 

4tb    "  " 

If  walls  are  more 
by  half  a  brick. 

Warehouses      ^Jfimum 
1st  Class.          of  Wall. 
For  a  height  of  36  feet  from   itM. 
topmost  ceiling 17.5 


Maziniam 

Width 

Mi 

Height 
of  Wall. 

of 

Ground 

ut 

Footin|{fc 

Floor. 

Floor. 

Feet. 

Ine. 

Ina. 

Ins. 

8S 

38.5 

21.5 

21.5 

70 

305 

17.5 

17.5 

52 

30.5 

17.5 

13 

38 

21-5 

13 

13 

85 

38.5 

31.5 

31.5 

70 

3P-5 

X7-5 

17.5 

5a 

30.5 

17-5 

13 

38 

31.5 

»3 

8.5 

than  70  U 

set  in  lei 

Qgtb,  those  of 

Minimam  Width  of  Welte. 


9d 
Floor. 

Floor. 

4th 
Floor. 

Ins. 

Ins. 

Ins. 

17-5    175 

17.5 

17.5    13 

13 

13 
8.5 

13 
8.5 

13 

17-5 

17-5 

17.5 

175    13 

13 

13 

8.5 

13 
1    8.5 

8.5 

th    I    6th 
Floor.  I  Floor. 


rj 


Ins.  '    Ins. 

13  ;  13 
13    — 


13 
13 


13 


ITTarehouses       *wi*dth" 
ad   Class.          ofWaU. 
For  a  height  of  22  feet  below   ins. 
topmost  ceiling 13 


For  a  height  of  40  feet  lower. .  21.5    For  a  height  of  36  feet  lower . .  17.5 


24  feet  lower . .  26 
For  footings 43.5 

3<i  Class. 
For  a  height  of  28  feet  below 

topmost  ceiling 13 

For  a  height  of  16  feet  lower . .  17.5 


8  feet  lower..  21.5 
For  footings 34.5 

4tla   Class. 
For  a  height  of  9  feet  below 

topmost  ceiling 8.5 

For  a  height  of  13  feet  below . .  13 


For  footings. 30.5  .  For  footmgs 21.5 

'Wooden   lioora.    (Bngtish.) 


in^S. 

Pfinei|Md 
Beam. 

Tie  Beam. 

Kin^ 
Poeta 

Pwie. 

Scoan 
Qneens. 

Siniiniag 
Beam. 

StraU. 

20 

4X4 

9X4 

4X4 

— 

— 

— 

3     X3 

35 

5X4 

10  X  5 

5X5 

•— 

— 

— 

5     X3 

JO 

6X4 

II  X  6 

6X6 

— 

.— 

— 

6x3 

35 

5X4 

11  X  4 

— 

4X4 

ft 

7X4 

4     X3 

45 

6X5 

13  X  6 

— 

6x6 

7X6 

5     X3 

50 

8x6 

13x8 

— 

8x8 

8X4 

9X6 

5     X3 

55 

8X7 

14x9 

— 

9x8 

9X4 

10  X  6 

5-5X3 

60 

8X8 

15  X  10 

"~~ 

10  X  8 

10  X  4 

II  X  6 

6x3 

M[ineral  Ooxistltnents  al>0orl>«id   or  removed  fVoxxi  an 


A.care  of*  Soil   by  several   Crops.    (Johruon.) 


CKon. 


Lime 

Magnesia . . ; . 
<telde  of  Ironi 
FlMwphorlc  ) 


H 

58 

• 

Lba. 

Lbe. 

Lbfc 

Lbs. 

39.6 

>7S 

^•' 

38.2 

3 

5-a 

8.3 

12 

12.9 

17 

29.9 

44-5 

10.6 

9.2 

19.7 

^I 

2.6 

3.S 

7.1 

,6 

3a6 

25.8 

46.3 

iS.| 

CBon. 


Sttlphuric  I 

Acid. ..]  ' 
Chlorine.... 

Sitica 

Ahimina — 


Tatal. 


a  i 
^  1 

n 

^1 

Lbt. 

Lie, 

Lba. 

10.6 

2.7 

133 

3 

16 

3.6 

118.  t 

1295 

247.8 

— ~ 

3-4 

■^" 

210 

2x3 

423 

Lbf. 

9-a 

4> 

78.9 


190 


MlSCSLLAK£OITS  BLEMBNT6. 


Arverage  Quantity  of*  rTaniiizi  in.  Several  Substances* 

{MorJU.) 

Catechu.  per  Cent. 

Bonibay 55 

Bengal 44 

Kino 75 

NutgaUs. 

Aleppo 65 

Chinese 69 

Oak. 

14.2 
21 


Old,  inner  bark  | 


Oak.                          Per  Cent. 

Sumac.                      Per  Ceat 

Young,  inner  b'k    15.2 

Sicily  and  Malaga 

16 

♦'    entire  b'k.      6 

Virginia 

10 

"    spring-      ) 
cut  bark  J    ^' 

Carolina 

5 

WUlow. 

*'    root  bark.      8.9 

Inner  bark 

16 

Chestnut. 

Weeping 

16 

Ainer.  rose,  bark     8 

Sycamore  bark. . . , 

16 

Horse,    "    2 

Tan  shrub    "   .... 

'3 

Sassafras^  root  bark    58 

Cherry-tret 

24 

Alder  bark 36  per  cent 


To  Convert  Cliemioal   ITormiiloB  into  a  I\£ath.eniatioal 

Bxpressiou. 

KcLE. — Multiply  together  equivalent  and  exponent  of  each  substance,  and  product 
will  give  proportion  in  compound  by  weight.  Divide  1000  by  sum  of  their  products, 
and  multiply  this  quotient  by  each  of  these  products,  and  products  will  give  re- 
spective proportion  of  each  part  by  weight  in  1000. 

ExAMPLK. — Chemical  formula  for  alcohol  is  (74  fT^Os.  Required  their  propor- 
tional parts  by  weight  in  1000? 

C4  Carbon      =  6. 1  X  4  =  24. 4 )  (  525. 82 ) 

fl6  Hydrogen  =    1X6=  6    [  X  21.55  (129.3  >  by  weight 

O2  Oxygen     =    8X2  =  16    )  (344-8  ) 

zooo-i-46.4    =21.55    999-9^ 


Klein eiitary   Bodies,  -with    tlieir   Sym"bols   and. 

!Eq.u.  i  val  en  ts . 


Body. 


Aluminium.. . 

Antimony 

Arsenic 

Barium 

Bismuth 

Boron 

Bromine 

Cadmium. ... 

Calcium 

Cju'bon 

Clilorine 

Chromium... 

Ccibalt 

Coliimbium.. 

Copper 

Fluorine 

(ilucinum 


I  Symb. 

Eqolv. 

1    AI 

137 

1   Sb 

64.6 

As 

37-7 

Ba 

68.6 

Bi 

71-5 

B 

ZI 

Br 

78.4 

Cd 

55-8 

Ca 

20-5 

C 

6.1 

CI 

35-5 

Cr 

26.2 

Co 

29-5 

Ta 

184.8 

Cu 

31-7 

F 

18.7 

a 

6.9 

Body. 


Symb.  Equtv. 


Gold.... Au 

Hydrogen H 

Iodine.! I 

Iridium Ir 

Iron Fe 

Lead Pb 

Lithium L 

Magnesium . .  -  Mg 
Manganese...    Mn 

Mercury j  Hg 

Molybdenum!  Mo 

Nickel ;  Ni 

Nitrogen N 

Osmiam 1  Os 


Oxygen 

Palladium.... 
Phosphorus. . 


O 

Pd 

P 


196.6 

I 
126.5 

98.5 
28 

103-7 

7 
12.7 

26 

200 

47- 
29. 
14. 
99. 
8 

53- 
IS- 


Body. 


Platinum  . . . . 
Potassium . . . 
Rhodium . . . . 
Selenium . , . . 

Silicon 

Silver 

Sodium 

Strontium 

Sulphur 

Tellurium. . . . 

Tin 

Titanium.... 
Tungsten . . . . 
Uranium  .... 

Yttrium 

Zinc 

Zirconium... 


Symb. 


Pt 
K 
R 

Se 

Si 

Ag 

Na 

Sr 

S 

Te 

Sn 

Ti 

W 

U 

Y 

Zn 

Zr 


EqaW. 


98.8 

39-2 
52.2 

40 
22 

108.3 

23-5 
43-8 
z6. 1 
64.2 
58-9 
24-5 

32 

32:3 

34 


A^nalysis  of  oertain  Organic  SuTastanoee  "by  "Weight. 


Body. 


Albumen.... 

Alcohol 

Atmospheric  uir 
Camphor  . . . 
Caoutchouc . 

Casein 

Fibrin 

Gelatine 

Gum 

Hordein 

Lignio 


Car- 

Hydro- 

Oxy- 

Nltro- 

bon. 
52.9 

Kon. 

gen. 
23.9 

gen. 

7-5 

'5-7 

52-7 

12.9 

34-4 

— 

— 

77^ 

23 

73-4 

ia7 

15.6 

•3 

87.2 

Z2.8 

— . 

59-8 

7-4 

11.4 

21.4 

53-4 

7 

19.7 

19.9 

47-9 

7-9 

27.2 

17 

42.7 

6.4 

50.9 

— 

44-2 

6.4 

47.6       1.8  II 

52.5 

5-7 

41.8  1 

-    II 

Boov. 


Morphine 

Narcotino 

Oil,  Castor. 

Linseed. . . . 

Spermaceti. 

Quinine 

Starch 

Strychnine 

Sugar 

Tannin 

Urea 


Car- 

Hydro- 

Oxy- 

bon. 

Ren. 

gen. 

72-3 

6.4 

16.3 

65 

5-5 

27 

74 

10.3 

15-7 

76 

«i-3 

12.7 

78 

II. 8 

10.2 

75.8 

75 

8.6 

44.2 

6.7 

49.1 

76.4 

6.7 

ii.i 

42.2 

6.6 

51-2 

52.6 

3.8 

43-6 

18.9 

9-7 

a6.a 

Nitro- 
gen. 

-   ■     ■   — ^ 

5 

2-5 


45-« 


UtSC£LLANBOtrs  BLBMSKTS. 


191 


X>il\itioxi   Per   Cent.  Necessary  to   Recluoe   Spirituoua 

IL«iquor8. 
Water  to  be  added  to  100  volumes  of  spirit  when  of  following  strength: 


Sirengtb 
Reqairad. 

90 

85 

80 

75 

70 

65 

60 

ss 

50 

Per  cent. 

Per  cent. 

Per  cent. 

Per  cent. 

Per  cent. 

Per  cent. 

Per  cent. 

Per  cent. 

Per  cent. 

Per  cent 

85 

5-9 

— 

— 

— 

— 

— 

— 

— 

— 

80 

12.  s 

6.3 

— 

— 

— 

— 

— 

— 

— 

75 

20 

»3-3 

6.7 

— 

— 

— 

— 

— 

— 

70 

28.6 

21.4 

14.3 

7-1 

— 

— 

— 

— 

65 

38.5 

30.8 

23.1 

154 

7-7 

— 

— 

— 

— 

60 

50 

417 

33-3 

25 

16.7 

8.3 

— 

— 

— 

55 

63.6 

54-5 

45.5 

36.4 

27.4 

18. 2 

9.1 

— 

— 

50 

80 

70 

60 

50 

40. 

30 

20 

10 

— 

40 

125 

112.5 

ICO 

875 

75 

62.5 

50 

37-5 

25 

30 

200 

1833 

166.7 

150 

133-3 

116.7 

100 

83:3 

66.7 

Illustration.— 100  volumes  of  spirituous  liquor  having  90  per  cent,  of  spirit  con 
tains:  alcohol  90,  water  lo,  —  100. 
To  reduce  it  to  30  per  cent,  there  is  required  200  volumes  of  water. 

Hence  200+10  =  210,  and  ^  =  ^-==3°   ^    ^  or  20 per  cent 

210     70     70  water,      ^ 

Proportion   of  A.lcoh.ol    Per   Cent. 
In  100  Parts  of  Spirit^  by  Weight  or  Volume,  at  60°. 


Alcohol. 

Specific 
Gravity. 

Alcohol. 

Specific 
Gravity. 

0 

5 

10 

I 
.984 

20 

30 
40 

•972 
.958 
•94 

Alcohol. 

Specific 
Gravity. 

Alcohol. 

Specific 
Gravity. 

50 
60 
70 

.918 
.896 
.872 

80 
90 

lOO 

.848 
.823 

•794 

In  100  Parts  0/ Alcohol  and  Waier,  by  Weight,  at  60°. 

Specific 
Gravity. 

.987 
•985 
•984 

Tides  of  A.tlantio  and.   Paci£Lo   Oceans   at  Istliznus   of 

Panama.    {Totten.) 

Atlantic,  Navy  Bay.— Highest  tide  i.sfeet;  lowest  .6jfeet. 

Pdcific, Panama  Say.— Highest  tide  17.72  to  21. 2  feet;  lowest  g-jfeet 


Alcohol. 

Specific 
Gravity. 

Alcohol. 

Specific 
Gravity. 

Alcohol. 

Specific 
Gravity. 

0 

•53 
1.02 

I 

1.99 
3.02 
4.02 

.996 

•994 
•993 

501 
6.02 
7.02 

.991 
.'p8 

Alcohol. 

7-99 

905 

10.07 

Statx. 


Illinois 

Virginia 

Pennsylvania* . 
Kentucky , 


A^reas  of  XJ.  S.  Coal    Fields. 

Sq.  Milea.  State.  Sq.Milei.  Statb. 


44000 
21000 

15437  1 
i35<» 


Ohio 

Indiana . . 
Missourit. 
Michigant , 


II  900 
7700 
6000 
5000 


*  BitamtaioQi  »nd  Anihracit*. 


Tennessee  . . 
Alabama. . . . 
Maryland... 

Georgia 

t  Anthracite. 


Sq.  Milea. 


4300 

3400 

550 

150 


XSxtremes   of  Heat  in   "Various   Countries. 


England....  96*' 
France.....  106.5° 
Holland 
Belgium 


}• 


I02'' 


Denmark ) 
Sweden    S  ..   99. 5^ 
Norway    ) 
Russia io2<' 


Greece 105° 

Italy 104O 

S{)ain 102** 


Tunis iz2.s< 


Egypt 116.1° 

Africa. 133-4° 

Asia 120° 

Suez 126. 5° 


Germany 103°  |  Manilla "3.5°  I  N.  America — 102° 

Extremes  of  temperature  upon  the  Earth  240°. 


Eactrexnes   of  Cold   in   Various 


England...-  5° 

Holland 

Belgium 


|— 12« 


Denmark  ) 
Sweden    J  —67° 
Norway   ) 


France — 24° 

Russia —46° 

Germany.. — 32° 


t^ountriee. 

Italy 


.— to*- 


Fort  Reliance,  N.  A. .— 70° 
Semipaiatinsk,  "  ..—76° 


192 


MISCELLANEOUS  ELEMENTS. 


Af  eazi   ^temperatures  of  Various   Ljocalities. 

London 51°  |  Rome 60°  I  Poles —13°  I  Polar  Regiona .  360 

Edinburgh 41^  |  Equator 82°  |  Torrid  Zone.      75°  |  Globe 50° 

ILiiixe   of  nPerpetual   Congelation,  or   Sno-w^   Ljine. 


Latitude. 

Height. 

0 

Feet. 

10 

14764 

15 

14760 

20 

13478 

25 

12557 

Latitude. 


O 

30 

35 
40 

45 


Height. 


Feet. 

II  484 

10287 

9000 

^670 


Latitude. 


O 

50 

55 
60 

65 


Heifcfat. 

Latitude. 

Height. 

Feet. 

0 

Feet. 

6334 

70 

1278 

5020 

75 

1016 

3818 

80 

451 

2230 

8S 

327 

At  the  Equator  it  is  15260  feet;  at  the  Alps  8120  feet;  and  in  Iceland  3084  feeL 
At  Polar  Regions  ice  is  constant  at  surCace  of  the  Earth. 

X^imits   of  "Vegetation   in   Temperate    Zone. 

The  Vine  ceases  to  grow  at  about  2300  feet  above  level  of  the  sea,  Indian  Corn  at 
2800,  Oak  at  3350,  Walnut  at  3600,  Ash  at  4800,  Yellow  Pine  at  6200,  and  Fir  at  6700. 


Periods   of  Oestation    and    Number   of  Young. 


WeelcB. 

Elephant.  100 

Horse ....  M^ 

1 50 

Camel. ...    45 

Ass 43 


No. 
I 


Cow. . . . 
Buflhlo. 
Stag. . . . 
Bear . . . 
Deer . . . 


Weeks. 

•  41 

•  40 
.     36 

•  30 
.     24 


No. 
I 
I 
I 
2 
2 


WeeltB. 

Sheep ...  21 
Coat ....  22 
Beaver..     17 

Pig. >7 

Wolf to 


No. 

2 
2 

3 
12 

5 


Weeks. 

Hog 9 

Fox 9 

Cat 8 

Rat 5 

Squirrel . .    4 


No. 

6 

S 
6 

8 

6 


Rabbit..      4      6     Guinea  Pig.  3 


Periods   of  Incubation  of  Birds. 


Swan,  42  days;  Parrot,  40  days;  Goose  and  Pheasant,  35  days;  Duck,  Turkey,  and 
Peafowl,  28  days;  Hens  of  all  gallinftceoui  birds,  21  days;  figoan  and  Canary,  14 
day&    Temperature  of  incubation  is  104°. 


.A^ges  of  A.nimals,  eto 


Raven, 

Bear,  20;  v^uw,  20 j   uwv,  zu^   rvmuwitJiuB,  zt>,  own 

Dog,  15;  Sheep,  jo;  Hare,  Babbit,  and  Squiirel,  7. 

Relative   "^^eiglit-s  of  I3rain. 
Man,  154-33;  Mammifers,  29.88;  Birds,  26.22;  Reptiles.  4.2;  Fiah,  i. 

Buoyancy  of  Casks. 

Biutyancy  of  a  submerged  ciisk  In  fk*e8h  water  in  lbs.  =62. 425  times  the  volume 
of  it  in  cube  feet,  7.48  times  the  volume  in  U.  S.  gallons,  and  6.2355  tlmtn  in 
Imperial  gallons,  less  the  weight  of  the  cask.     > 

HDransportation   of  Horses   and    Cattle. 

Space  required  on  beard  of  a  Marine  Transpert  is:  for  Horeee,  30  ins.  by  9  feet; 
Beeves,  3^4  ins.  by  9  feet.  Provender  required jw  diem  is:  for  Horses,  Hay,  15  lbs.; 
Oats,  6  quarts;  Water,  4  gallons.     Beeves,  Hay,  18  lbs. ;  Water,  6  gallons. 

lioclc   and   JSartli   ICxcavation   and  Smloanlzment. 
Number  of  Cube  iket  0/  various  Etwika  in  a  Ton. 

Loose  Earth 24     1  Clay 18.6  j  Clay  with  Gravel 14.4 

Coarse  Sand 18.6  |  Earth  with  Gravel. ..  17.8  |  ComniooSoiL 15.6 

The  volume  of  Earth  and  Sand  in  embankment  exceeds  that  in  a  primary  ex< 
cavation  in  following  proportions: 

Rock,  large 1.5    I  Rock,  ballaet 1-2     J  Clay m 

"     mediaro 1.25  |  Sand i43)<xrav«l 09 

Clay  and  Earth  will  subside  about  .12. 


feet  uput. 


I 
i-S 

3 
2-5 

3 
35 

4 
4-5 


MISCELLANEOUS   ELEMENTS. 

Hills  or  Plants  in.   an   A.rea  or  One   A.ore. 

From  I  to  40  feet  apart  from  centres. 
Vo.        ~  " 


193 


43560 

19360 

10890 

6969 

4840 

3556 
2722 
2 151 


Feet  apart. 

No. 

5 

1742 

5-5 

1440 

6 

J2IO 

6.5 

5031 

7 

889 

7  5 

775 

8 

680 

85 

692 

Feet  apart. 

No. 

9 

538 

9-5 

482 

10 

435 

10.5 

361 

12 

302 

13 

=58 

»4 

223 

15 

193 

Feet  apart. 

No. 

16 

171 

17 

151 

18 

X35 

20 

J08 

.     25 
30 

% 

35 

35 

40 

27 

Naj3a"ber  of  several  Seeds  in  a  Bushel,  and  I^nml>er  per 

i5q.uare   IToot   per  A.prem 

No.  Sq.  Foot.  No.  Sq.  Foot. 


Timothy. 
Clover... 


41 823  360 
16400960 


960 
376 


Ryo . . . 
Wheat. 


888390 
556290 


20.4 
12.8 


Volumes. 

PermaneDt  gases,  as  air,  eta,  are  diminished  in  their  volume  in  a  ratio  direct 
with  that  of  pressure  applied  to  them.  With  vapor,  as  steam,  etc.,  this  rule  is 
varied  in  consequence  of  presence  of  the  temperature  of  vaporization. 

Minerals. 
Relative    Hardness   of*  some    IMinerals. 


Talc I 

Gypsum 2 

Mica 2.5 

Carbonate  of  lime.  3 


Barytca 3.5 

Fluor  spar. ...  4 

Feldspar 6 

!  Lapis  {^azuli  .  6 


Opal 6 

Quartz 7 

Tourmalin ....    7 
Garnet 7.5 


Emerald. 8 

Topaz 8 

Ruby 9 

Diamond 10 


"^Veiglit   of*  X>iamonds. 


Carats. 

Bfattam 367 

Grand  Mogul* 279.9 

Orloff. 194.25 

Florentine,  brilliant .  139.5 
Crown  of  Portugal. . .  138.5 
*  Roaghgoo. 


Carats. 

Regent  or  Pitt 136.75 

Star  of  the  Souths . .  125 

Koh-l-NoorJ 106,06 

Piggott.. 82.25 

Napac. 78.625 

t  Rough  254.5. 


Carats. 

Dresden 76.5 

Sancy 53.5 

Eugenie,  brilliant .  51 

Hope  (blue) 48. 5 

Polar  Star 40.25 

t  Originally  793. 


Heat  of  the   Sxin. 

Sir  Isaac  Newton 3138740°  |  Waterston 16000000° 

Capt.  John  Ericsson 4  909  860°  |  Soret. ^0443  323° 

Sundry  others  ranging  from  2520°  to  183600°. 

Moon. — Distance  of  Moon  from  Earth  237  000  milea 

K'rigorifio    IVlixtnre. 

lowest  temperature  yet  procured.  Faraday  obtained  166°  by  evaporation  of  a 
mixture  orsolid  carbonic  acid  and  sulphuric  ether. 

Current  of  Rivers. 
A  fall  of .  I  of  an  inch  In  a  mile  will  produce  a  current  in  rivers. 

Sandstones. 

Structures  of  sandstone  erected  in  England  in  12th  century  ore  yet  in  good 
condition. 

Canal   rTransportation. 

Erie  Canal  and  Hudson  River.— From  Bnflfklo  to  New  York,  495  miles,  cost  of 
transportation  2.46  mills  per  ton  (inclusive  of  tolls)  per  mile.  Transportation  of 
wheat  costs  when  it  reaches  New  York  4.72  cents  per  bushel,  and  .6z  cents  per 
bushel  for  elevating  and  trimming. 

Towing.— Erie  Canal— Four  mules  will  tow  230  tons  of  freight  down  and  100 
tons  back,  involving  a  period  of  30  days,  at  a  cost  of  8  cents  per  mile  for  a  course 
of  690  miles. 


194 


MISCELLANEOUS  ELEMENTS. 


Matter. 

Unit  of  the  Physicist  is  a  molecule,  and  a  mass  of  matter  is  composed  of  them^ 
having  same  physical  properties  as  parent  mass. 

It  exists  in  three  forms,  known  as  solid,  liquid,  and  gaseous.  Solids  have  indi- 
viduality of  form,  and  they  press  downward  alone.  Liquids  have  not  individuality 
of  form,  except  in  spherical  form  of  a  drop,  and  they  press  downward  and  sideward. 
Gases  are  wholly  deficient  in  form,  expanding  in  all  directions,  and  consequently 
they  press  upward,  .downward,  and  sideward. 

Liquids  are  compressible  to  a  very  moderate  degree.  Water  has  been  forced 
through  pores  of  silver,  and  it  may  be  compressed  by  a  pressure  of  one  pound  per 
square  mch  to  the  3  300000th  part  of  its  volume. 

Gases  may  be  liquefied  by  pressure  or  by  reduction  of  their  temperature. 

Combustible  matter  (as  coal)  may  be  burned,  a  structure  (as  a  house)  may  be 
destroyed  as  such,  and  the  fluid  (of  an  ink)  may  be  evaporated,  yet  the  matter  of 
which  coal  and  house  were  composed,  although  dissipated,  exists,  and  the  water 
and  coloring  matter  of  the  ink  are  yet  in  existence. 

Spaces  between  the  particles  of  a  body  are  termed  pores.  ■ 
All  matter  is  porous.    Polished  marble  will  absorb  moisture,  as  evidenced  in  its 
discoloration  by  presence  of  a  colored  fluid,  as  ink,  etc. 

Silica  is  the  base  of  the  mineral  world,  and  Carbon  of  the  organized. 

IM-inutexiess  of*  H^atter. 

A  piece  of  metal,  stone,  or  earth,  divided  to  a  powder,  a  particle  ot  it,  howevet 
minute,  is  yet  a  piece  of  the  original  material  from  which  it 'was  separated,  retain- 
ing Its  identity,  and  is  termed  a  molecule. 

It  is  estimated  there  are  120000000  corpuscles  in  a  drop  of  blood  of  the  musk-deer. 

Thread  of  a  spider's  web  is  of  a  cable  form,  is  but  one  sixth  diameter  of  a  fibre  of 
silk,  and  4  miles  of  it  is  estimated  to  have  a  weight  of  but  i  grain. 

One  imperial  gallon  (277.24  cube  ins.)  of  water  will  be  colored  by  mixture  therein 
of  a  grain  of  carmine  or  indigo. 

A  grain  of  platinum  can  be  drawn  out  the  length  of  a  mile. 

Film  of  a  soap-and- water  bubble  is  estimated  to  be  but  the  300000th  part  of  an 
inch  in  thickness 

It  is  computed  that  it  would  require  12000  of  the  insect  known  as  the  twilight 
monad  to  fill  up  a  line  one  inch  in  length. 

A  drop  of  water,  or  a  minute  volume  of  gas,  however  much  expanded— even  to 
the  volume  of  the  Earth — would  present  distinct  molecules. 

Gold  leaf  is  the  280000th  part  of  an  inch  in  thickness. 

A  thread  of  silk  is  2500th  of  an  inch  in  diameter. 

A  cube  inch  of  chalk  in  some  places  in  vicinity  of  Pftris  contains  100  000  of  shells 
of  the  foraminifera.   ^ 

There  are  animalcules  so  small  that  it  requires  75  000  000  of  them  to  weigh  a  grain. 

• 

Velocity,  Weiglit,  and  Volunae  of  AColeotxles. 

Fetocttj/.— Collisions  among  the  particles  oi  Hydrogen  are  estimated  to  occur  at 
the  rate  of  17  million-million-million  per  second,  and  in  Oxygen  less  than  half  this 
number. 

Weight.— K  million-million-mlUioD-million  molecules  ot  Hydrogen  are  estimated 
to  weigh  but  60  grains. 

Volume. — 19  million-milliOD-mill>o&  molecules  ot  Hydrogen  have  a  volume  of  .061 
cube  in&    DxameUr.—Five  millions  in  a  line  would  meaaure  but .  i  inch. 

Cliarooal,  ^looliol. 
Charcoal  as  yet  has  not  been  liquefied,  nor  has  Alcohol  been  solidified. 

^MCetala* 

Metals  have  five  degrees  of  lustre^-^pZefuJen/,  shining,  glistening,  glirnin^ring,  »nd 
duU. 

All  met^  can  be  vaporized,  or  exist  as  a  gas,  by  application  to  them  of  their  ap- 
propriate temperature  of  conversion. 

Repeated  hammering  of  a  metal  renders  it  brittle ;  reheating  it  restores  its  tenacity. 

Repeated  melting  of  iron  renders  it  harder,  and  up  to  twelfth  time  it  becomes 
stronger. 

Platinum  is  the  most  ductile  of  all  metals. 


MISGSLLANEO US   SLSM JCNTS.  1 95 

laaapenetrabilit^r. 

Impenetrability  expre8sea.the  inability  of  two  or  more  bodies  to  occupy  same 
space  at  same  time. 

A.  mixture  of  two  or  more  fluids  may  compose  a  less  volume  tban  that  due  to  sum 
of  their  original  volume,  in  consequence  of  a  denser  or  closer  occupation  of  their 
molecules.  This  is  evident  in  the  mixture  of  alcohol  and  water  in  the  proportion 
of  16.5  volumes  of  former  to  35  of  latter,  when  there  is  a  loss  of  one  volume. 

Slastioity.  . 

Elasticity  is  the  term  for  the  capacity  of  a  body  to  recover  its  former  volume, 
after  being  subjected  to  compression  by  percussion  or  deflection. 

Glass,  ivory,  and  Steel  are  the  most  elastic  of  all  bodies,  and  clay  and  putty  are 
illustrations  of  bodies  almost  devoid  of  elasticity.  Caoutchouc  (India  rubber)  is  but 
moderately  elastic;  it  possesses  contractility,  however,  in  a  great  degree. 

iMIoxneixtuxxx. 

Momentum  is  quantity  of  motion,  and  is  product  of  mass  and  its  velocity.  Thus, 
the  momentum  of  a  cannon-ball  is  product  of  its  velocity  in  feet  per  second  and  its 
weight,  and  is  denominated  footpounds. 

A  foot-pound  is  the  power  that  will  raise  one  pound  one  foot 

Souxid. 

Telocity  of  sound  is  proportionate  to  its  volume;  thus,  report  of  a  blast  with  2000 
lbs.  of  powder  passed  067  feet  in  one  second,  and  one  of  1200  lbs.  1210  feet.  It  passes 
in  water  with  a  velocity  of  4708  feet  per  second.  Ck>nversation  in  a  low  tone  has 
been  maintained  through  cast-irdn  water  pipes  for  a  distance  of  3120  feet,  and  its 
velocity  is  from  4  to  16  times  greater  in  metals  and  wood  than  air. 

T-iiglit. 

Sun's  rays  have  a  velocity  of  185000  miles  per  second,  equal  to  7.5  times  around 
the  Earth. 

Color   Slindness 

Is  absence  of  elementary  sensation  corresponding  to  red. 

I^vixxiixiovis   Point. 

To  produce  a  visual  circle,  a  luminous  point  must  have  a  velocity  of  10  feet  in  a 
second,  the  diameter  not  exceeding  15  ins. 

All  solid  bodies  become  luminous  at  800  degrees  of  heat. 

ACirage. 

When  air  near  to  snrfiice  of  Earth  becomes  so  highly  heated,  as  upon  a  sandy 
plain,  that  its  density  within  a  defined  distance  ft*om  it  increases  upwards,  a  line 
of  vision  directed  obliquely  downwards  will  be  rendered  by  refVaction,  gradually 
increasing,  more  and  more  nearly  horizontal  as  it  advances,  until  its  direction  is  so 
great  as  to  produce  a  total  reflection,  and  the  reflected  ray  then,  by  sucdessive  re- 
fiactionSy  is  gradually  elevated  until  it  meets  the  eye  of  the  observer. 

looming  is  inverted  mirage,  firequently  seen  over  calm  water,  and  is. effect  of 
lower  or  surlkce  stratum  of  air  being  colder  than  that  above  It 

Siio-w  Flakes. 
96  forms  of  snow  flakes  have  been  observed. 

Alelted.   Sxio-w 
Prodaces  Arom  .35  to .  125  of  its  bulk  in  water. 

8treiis;t>i   of*  led. 

Two  inches  thick  wfll  support  men  in  single  file  on  planks  6  feet  apart;  4  inches 
will  support  cavalry,  light  guns,  and  carts;  and  6  inches  wagons  drawn  by  horses. 

Temperature. 

Sulphuric  acid  and  water  produce  a  much  greater  proportionate  contraction  than 
alcohol  and  water.  Both  of  these  mixtures,  however  low  their  temperature,  pro- 
duce heat  which  it  in  a  direct  proportion  to  their  diminution  va  volume. 

At  the  depth  of  45  feet,  the  temperature  of  the  Earth  is  uniform  throughout  the 
year. 

Temperature  of  Earth'increases  about  z<'  for  every  50  to  60  feet  of  depth,  and  its 
WQBt  is  eMfmated  at  30  miles. 

Abody  at  Equator  weighs  two  hundred  and  eighty-nine  parts  less  than  at  th«  Polea 


196 


MISCELLANEOITS    ELBMSNTS. 


Agea   of*  A.iiixnats,  Fislies,  etc. 

{Additional  to  page  192.) 

Tiger,  Leopard,  Jaguar,  and  Hyena  (in  confinement),  25  years;  Beaver,  50;  Stag, 
under  50;  Ox  and  Ass,  30;  Chamois,  25;  Llama.  Monkey,  and  Baboon,  15  to  18;  Par- 
rot, 200;  Tortoise,  100  to  200;  Crocodile,  100;  Carp,  70  to  150;  Goose,  80;  Pelican, 
45;  Hawk,  30  to  40;  Crane,  24;  Peacock,  Goldfinch,  Cha£Qnch,  f^om  10  to  25;  Do- 
mestic Fowls,  Pigeons,  Blackbird,  Nightingale,  and  Linnet,  10  to  16;  Thrush,  Rubin, 
and  Starling,  8  to  12;  Wren,  2  to  3;  Salmon,  16;  Eel,  lo;  Codfish,  4  to  17;  Pike,  30 
to  40;  Queen  Bee,  4;  Bee,  6  months,  and  Drones,  4  months.    {HoughtoMng.) 

Birds   and    Iii^ects^ — (iV.  De  Lacjf.) 

Elements  of  Flight— Reslslanve  of  air  to  a  body  in  motion  is  in  ratio  of  surface 
of  body  and  as  square  of  its  velocity. 

Wing  Surface.— EKient  or  area  of  winged  surface  is  in  an  inverse  ratio  to  weight 
of  bird  or  insect. 

A  Stag-beetle  weighs  460  times  more  than  a  Gnat,  and  has  but  one  fourteenth  of 
its  wing  surface;  150  times  more  than  a  I^dy  Bird  (bug),  and  has  but  one  fifth. 
An  Australian  Crane  weighs  339  times  mora  than  a  sparrow,  and  has  but  one  sev- 
enth; 3ooocxx>  times  more  than  a  Gnat,  and  has  biu  one  hundred  and  fortieth.  A 
Stork  weighs  eight  times  more  than  a  Pigeon,  and  has  but  one  half.  A  Pigeon 
weighs  ten  times  more  than  a  Sparrow,  and  has  but  one  half;  97  000  times  more  than 
a  Gnat,  and  has  but  one  fortieth. 

A  resisting  surface  of  3o.8q.  yards  will  enable  a  man  of  ori^Inary  weight  to  descend 
safely  ftom  a  great  elevation. 

Strength  of  Insects. — Insects  are  relatively  strongest  of  air  animala  A  Cricket 
can  leap  80  times  its  length,  and  a  F'ea  200  tlmea 

♦ 
A.pplication.  fbr   Stings   and   Siirns. 

Sting  of  Insects. — Ammonia,  or  Soda  moistened  with  water,  and  applied  as  a  paste. 

Bums.— Eoi  alcohol  or  turpentine,  and  afterwards  bathed  with  lime  water  and 
sweet  oil.    Cold  water  not  to  be  applied. 

To  Preserve   Aleat. 

Meat  of  any  kind  may  be  preserved  in  a  temperature  of  from  80°  to  100°,  for  a 
period  of  ten  days,  after  it  has  been  soaked  in  a  solution  of  i  pint  of  salt  dissolved 
in  4  gallons  of  cold  water  and  .5  gallon  of  a  solution  of  bisulphate  of  calcium. 

By  repeating  this  process,  preservation  may  be  extended  by  addition  of  a  solation 
•f  gelatin  or  white  of  an  egg  to  the  salt  and  water. 

To  Detect  Starch,  in   Miillc. 

Add  a  few  drops  of  acetic  acid  to  a  small  quantity  of  milk ;  boil  it,  and 
after  it  has  cooled  filter  the  whey.  If  starch  is  present,  a  drop  of  iodine 
solution  will  produce  a  blue  tint. 

This  process  is  so  delicate  that  it  will  show  the  presence  of  a  milligram  of  starch 
in  a  cube  centimeter  of  whey  (i  grain  of  starch  in  2. 16  fluid-ounces). 

Retaining  "Walla  of  Iron   I*iles. 

Sheet  PHe-s.—j  feet  fh)m  centres,  18  ins.  in  width  and  2  ins.  in  thickness,  strength^ 
ened  with  2  ribs  8  ins.  in  depth. 

Plates.— 7  feet  in  length  by  5  feet  in  width  and  i  inch  in  thickness,  with  on* 
diagonal  feather  i  by  6  ins. 
Tie-rods  2  ins.  in  diameter 

Stone   Sawing, 

Diamond  Stone  Sawing.^(Emerson.)  Alabama  marble  6 fleet  X  a. 5  feet  in  22  mill' 
otes = 41  sq.  feet  per  hour. 

"Wood   Salving. 

7722  feet  of  poplar,  board  measure,  firom  9  round  logs  in  i  hour.  Engine  12  iaa. 
diameter  by  24  ins.  stroke. 


HISCELlANEOirS   EUSMSKTS. 


197 


Coat  of*  IDvedigi-ng. 

AehuU  eottj  if  on  an  extended  win%  incVusive  of  Delivery^  if  dredging  into  or  on  a 

vessel  alongside  of  dredger.  — ( Trautwine, ) 

Labor  al$i  per  day  <md  Repairs  of  Plant  included. 


Depth. 


zo 

15 


Centa. 

Depth. 

Ceota. 

Cube  Yarda. 
6 

7 

Feet. 
20 
22 

Cube  Yarda. 
8 

9 

Depth. 


Feet. 
25 
30 


Cents. 


Cube  Yards. 
10 

13 


Depth. 


Feet. 

35 
40 


Centa. 

Cube  Yarda. 
18 

25 


Discharge  of  Scows  or  Came/*.— TOwing  .25  mile  4  cents  per  cube  yard,  .5  mile  6 
centSj  .75  mile  8  cents,  and  z  mile  10  cents. 

Note.  —A  Scow  is  a  flat  bottomed  vessel  or  boat  A  Camel  is  a  shallow,  flnt< 
bottomed  and  decked  vessel,  designed  for  the  transportation  of  heavy  freight  or  the 
tnisCaining  of  attached  bodies,  as  a  vessel,  by  its  buoyancy. 

X)redgins* 
A  steam  dredge  will  raise  6  cube  yards,  or  8.5  tons,  per  hour  per  £P. 

Aletal   3Boriiis   and.   'Purxiing. 
BoRiva.—Cast  tron.-'Divide  25  by  the  diameter  of  the  cylinder  in  inches  for  the 
revolutions  per  minute. 

tVrought  iron.  —The  speed  is  one  fourth  to  one  fifth  greater  than  for  cast  iron 

Brass.— The  speed  is  about  twice  that  for  cast  iron. 

TuBNiNO  —Cast  iron.  —The  speed  is  twice  that  of  boring. 

Wrought  iron.— The*speed  is  one  fourUi  to  one  fifth  greater  than  that  for  cast  Iron 

BraM.—The  speed  is  twice  that  of  boring. 

Vertical  boring. — ^The  speed  may  be  twice  that  of  horizontal  boring. 

The  feed  depends  upon  the  stability  of  the  machine  and  depth  of  the  cut 

"Well    Boring. 

At  Ck>ventry,  Eng.,  750000  galls,  of  water  per  day  are  obtained  by  two  borings  of 
6  and  8  ins.,  at  depths  of  200  and  300  feet 

At  Liverpool,  Eng.,  3000000  galls,  of  water  per  day  are  obtained  by  a  bore  6  ins. 
in  diameter  and  161  feet  In  depth. 

Tbis  large  yield  is  ascribed  to  the  existence  of  &  fault  near  to  it,  and  extending  to 
a  depth  of  484  feet 

At  Kentish  Town,  Eng..  a  well  is  bored  to  the  depth  of  1302  feet 

At  Passy,  France,  a  well  with  a  bore  of  i  meter  in  d'ameter  is  sunk  to  a  depth  of 
1804  feet,  and  for  a  diameter  of  2  feet  4  ins.  it  is  further  sunk  to  a  depth  of  109  feet 
10  ins.,  or  1903  feet  10  ins.^  tram  which  a  y'eld  of  5  582000  galls,  of  water  are  obtained 
per  day. 

rrempering   Boriixg   Instruxnents. 

Heat  the  tool  to  a  blood-red  heat;  hammer  it  until  it  is  nearly  cold;  reheat  it  to 
a  blood-red  heat,  and  plunge  it  into  a  mixture  of  2  oz.  each  of  vitriol,  soda,  sal-am- 
moniac, and  spirits  of  nitre,  i  oz.  of  oil  of  vitriol,  .5  oz.  of  saltpetre,  and  3  galls,  of 
water,  retaining  it  there  until  it  is  cooL 

Circular   Sa-ws. 
Bevolutions  per  Minute. — 8  ins.  4500, 10  ina  3600,  and  36  ins.  looa 

]\fa8onry. 

Concrete  or  Beton  should  be  thrown,  or  let  fall  from  a  height  of  at  least  10  feet, 
or  well  beaten  down. 
The  average  weight  of  brickwork  in  mortar  is  about  102  lbs.  per  cube  foot 

Plastering. 

In  measuring  Plasterers'  work  all  openings,  as  doors,  windows,  etc.,  are  com- 
puted at  one  half  of  their  areas,  and  cornices  are  measured  upon  their  extreme 
edges;  including  that  cut  oflT  by  mitring. 

O-lazinf?. 
In  Glaziers'  work,  oval  and  round  windows  are  measured  as  squares. 

R* 


tgS  HISCELLANBOUS  ELEMENTS. 

Two  cube  feet  of  corn  in  ear  will  make  a  bushel  of  corn  when  shelled. 

Tenacity   of*  Iron   Bolts   in   "'Woods. 

Diameter  1.125  ins.  and  12  ins.  in  length  required  for  Hemlock  8  tons,  and  foi 
Pine  6  tons  to  withdraw  them. 

X^eugtli  of*  G}-un   Barrels.    (C.  T.  Coaihupe.) 

The  length  of  the  barrel  of  a  gun,  to  shoot  well,  measured  from  vent-hole,  should 
not  be  less  than  44  times  diameter  of  its  bore,  nor  more  than  47. 

Hay    and.    Stra"v*r. 

Hay,  loose.  5  lbs.  per  cube  foot    Ordinarily  pressed,  as  in  a  stack  or  mow,  8  Ibt. 
Close  pressed,  as  in  a  bale,  12  to  14  lbs. 
Ordinarily  pressed,  as  in  a  wagon  load,  450  to  500  cube  feet  will  weigh  a  ton. 
Straw  in  a  bale  10  to  12  lbs.  per  cube  foot. 

r^atixral    I*o"wrers. 

Sun.~-7h.e  power  or  work  performed  by  the  Sun's  evaporation  Is  estimated  at 
90  000  000  000  H*. 

Niagara. — Volume  of  water  discharged  over  the  falls  is  e^iroated  at  33000000 
tons  per  hour,  and  the  entire  fall  from  Lake  Erie  at  BuO'alo  to  Lake  Ontario  is  323.35 
feet. 

Velocity  of  Stars. 

According  to  computation  of  Mr.  Trautwine  a  Star  passes  a  range  in  3'  55.91"  less 
time  each  day, 

S*»rvi<?e   Train   of  a  Quartermaster. 

Quartermaster's  train  of  an  army  averages  z  wagon  to  every  24  men;  and  a  well- 
equipped  army  in  the  field,  with  artillery,  cavalry,  and  trains,  requires  i  horse  of 
mule,  upon  the  average,  to  every  2  men. 

Tides. 
The  difference  in  time  between  high  water  averages  aboilt  49  minutes  each  day. 
Atlantic  and  Pacific  Oeeavu.— Rise  and  fall  of  tide  in  Atlantic  at  Aspinwall  a  feet, 
in  Pacific  at  Panama  17.72  to  31.3  feet 

Diiiieiisioiis  of  r>rawiijg8  and   l-*aper  for   XJ.  S.  I*atents. 

Drawings,  8  X  12  inches,  one  inch  margin.    Paper,  8  X  12.5  inches. 

I^atitvide. 
One  minute  of  latitude,  mean  level  of  Sea,  nearly  6076  f^et  =  1.1508  Statute  milea 

A^rtesian    '>Vell. 
White  Plains,  Nev.,  Depth  2500  feet. 

F*oundation    Files. 

A  pile,  if  driven  to  a  fair  refusal  by  a  rnm  of  i  ton,  falling  30  feet,  will  bear  z  ton 
weight  for  each  sq.  foot  of  its  external  or  frictional  surface,  or  a  safe  load  of  750  lbs. 
per  sq.  foot  of  surface. 

G^artli. 

Density  of  its  mass  5.67. 

TripolitH. 
A  new  building  material,  compounded  of  Coke,  Sulphate  of  liime,  and  Oxide  of 
Iron.    It  has  increased  tensile  strength  after  expoenre  to  the  air,  being  much  in 
excess  of  that  of  lime  and  cement. 

G}-as   and    Electric    I^ight. 
Gas  light  of  x6  candle  power  costs  5  cent  per  hour;  Electric,  4.15  centa 

IN'iagara. 

Discovered,  1678.  Falls  have  receded  76  feet  in  175  yeans.  Height,  American 
Falls,  164  feet;  Horseshoe,  158  feet. 


BRIDGES. — U.  S.  ENSIGNB,  PENNANTS,  AND  FLAGS.    1 99 

U.  S.   ENSIGN,   PENNANTS,  AND   FLAGS, 

{Fi'om  April  20,  1896.) 
ICxisis:!!. — Head  {Depths  or  JTaist), ^-Ten  nineteenths  of  its  length. 

Fidd, — Thirteen  horizontal  stripes  of  equal  breadth,  alteruately  red  and 
ivbite,  beginning  with  red. 

Union, — A  blue  field  in  upper  quarter,  next  the  head,  .4  of  length  of  field, 
and  seven  stripes  in  depth,  with  white  stars  ranged  in  equidistant,  horizontal 
lines  and  set  staggered,  equal  in  number  to  number  of  States  of  the  Union. 

PennantB  (Narrow). — Head.— 6.2^  ins.  to  a  fength  of  70  ffeet;  5.04  ins.  to  a 
length  of  40  feet;  4.2  ins.  to  a  length  of  35  feet  Night,  3.6  ins.  to  a  length  of  20 
fcet^  and  3  ina  to  a  length  of  9  feet— Boat,  3. 52  ins.  to  a  length  of  6  feet. 

Union, — A  blae  field  at  head,  one  fourth  the  length,  with  13  white  stars  in  a  hori- 
zontal lina  Fidd. — A  red  and  white  stripe  uniformly  tapered  to  a  point,  red  up 
peroiost     NigfU  and  Boat  i^nanto.— Union  to  have  but  7  stars. 

Union  Jack.— Alike  to  the  Union  of  an  Ensign  in  dimensions  and  stars. 

JB^Iags.^^lr'resident. — Rectangle,  with  arms  of  the  U.  S.  inj^entre  of 
a  blue  field,  over  which  are  13  stars  in  an  arc 

Secretary  of  Navy. — Rectangle,  with  a  vertical  white  foul  anchor 
in  centre  of  a  blue  fidd,  with  four  white  stars  in  a  rectangle,  set  quadrilateral 
around  a  foul  anchor. 

ivdixiiral. — Rectangle,  with  4  white  stars  in  centre  of  a  blue  field,  set  as 
a  lozenge. 

^Vioe>A.dmiral. — Same  as  Admiral's,  with  3  white  stars  set  as  an 
equilateral  triangle. 

Rear- A.dxniral. — Same  as  AdmiTaI*s,  with  2  white  stars  set  vertically. 

If  two  or  more  Rear- Admirals  m  command  afloat  should  meet,  their  seniority  is 
to  be  indicated  respectively  by  a  Blue  flag,  a  Red  with  White  stars,  and  a  White 
with  Blue  stars,  and  another  or  all  others,  a  White  flag  with  Blue  stars. 

Conaxnodore.  {Broad  Pennant.) — Blue,  Red,  or  White,  according  to 
rank,  with  one  star  m  centre  of  field,  being  white  in  blue  and  red  pennants, 
and  blue  in  white. 

Swallow- tailed,  angle  at  tail,  bisected  by  a  line  drawn  at  a  right  angle  ft*om  centre 
of  depth  or  hoist,  and  at  a  distance  H-om  head  of  three  fifths  of  length  of  pennant; 
the  lower  side  rectangular  with  head  or  hoist;  upper  side  tapered,  running  the  width 
of  pennant  at  the  tails  z  the  hoist     Head. —  6  length.     Fly  1.66  hoist. 

Divisional  Alarlcs.  —  Triangle,  ist  Blue,  2d  Red,  3d  White,  Blue 
vertical.  Reset  ve  Division, — ^Yellow,  Red  vertical.  Division  mark  is  worn 
by  Commander  of  a  division  of  a  squadron  at  niizzen,  when  not  authorized 
to  wear  Broad  Pennant  of  a  Commodore  or  Flag  of  an  Admiral.  Fly  .8  haist. 

Biflrnal  Nxamtoers. — Fltf  1.25  hoist.  Signal  J*enn(mts,  Fly  4,6  hoist. 
Repeaters  1.89  hoist, 

Diatiiictive  Pennants. — Of  a  Senior  Officer  Present,  is  the  Dis- 
tinctive Mark  of  the  First  Division  of  a  fleet. 

JS'isht  fe^iguals. — Very*s  System. 

Intematumal^  Signal  Nttmber,  Square,  and  Signed  Pennants,    Fly.,  3  Imiat. 


Suspension   Bridges.    Length  of  Spam  in  Feet 


Yon-Kau.  China. 330 

Schuylkill  (Pbfla.) 34a 

Hammersmith,  Eng. 422 

Peisth  (Danube) 660 


Niagara 822 

Lewistown  and  Queenstown 1040 

Cincinnati 1057 

Niagara  Falls 1280 


New  York  and  Brooklyn*  9301 1595. 5t  and  930;  clear  height  of  Bridge  above  higti 
irater,  at  90**,  135  feet. 


200 


AmMAL  FOOD. 


AlimerLtary  Principles, 
Primary  division  of  Food  is  into  Organic  and  Inorganic. 
Organic  is  subdivided  into  Nitrogenous  and  Non-Nitrogenous ;  Inorganio 
is  composed  of  water  and  various  saline  principles.  The  former  elements 
are  destined  for  growth  and  maintenance  of  the  body,  and  are  termed  ""  plas- 
tic elements  of  nutrition."  The  latter  are  designed  for  undergoing  oxidation, 
and  thus  become  source  of  heat,  and  are  termed  ^*  elements  of  respiration,"  or 
"Calorifident" 

Although  Fat  is  non-nitrogenous,  it  is  so  mixed  with  nitrogenous  matter  that  it 
becomes  a  nutrient  as  well  us  a  caloriflcient. 

Alimentary  Principles.  —  i.  Water;  2.  Sugar;  3.  Gum;  4.  Starch;  5.  Pectine; 
6.  Acetic  Acid;  7.  Alcohol;  8.  Oil  or  Fat  Vegetable  and  AnimaL—g.  Albumen; 
zo.  Fibriue;  11.  Gaseine;  12.  Gluten;  13.  Gelatine;  14.  Chloride  of  Sodium. 

These  alimentary  principles,  by  their  mixture  or  union,  form  our  ordinary  foods, 
which,  by  way  of  distinction,  may  be  denominated  compound  aliments ;  thus,  meat 
is  composed  of  flbrine,  albumen,  gelatine,  fat,  etc. ;  wheat  consists  of  staritb,  gluten, 
sugar,  gum,  etc. 


i^zialysis   of  IMeats,  ITiali,  Vegetal>leB,  eto. 


Food. 


Arrowroot 

Barley  Meal 

Beans,  White 

Beef,  roast. 

fat 

lean 

salt 

Beer  and  Porter. . . . 

Buckwheat 

Butter  and  Fats.... 

Cabbage 

Carrots 

Che^e 

Corn  Meal 

Cream 

Egg 

yolk 

Fish,  white  flesh... 

Eels. 

Lobster,  flesh. 

Oysters 

Liver.  Calf 'a 

Milk,  Cow's 

Mutton,  tax 

Oatmeal 

Oata 

Parsnips 

Peas 

Pork,  fat 

Bacon,  dry. . . 

Potatoes. 

Poultry 

Rice 

Rye  Meal 

Sugar. 

Tripe 

Turnips. 

Voal 

Wheat  Flour. 

Bread* 

Bran 


Water. 

Nitro- 
(tenous 
M«ttor. 

*  Fat. 

Aaime 
Matt«r. 

18 

« 

•— 

__ 

15 

6.3 

2.4 

2 

9.9 

25-5 

2.8 

— 

54 

27.^ 

1545 

3.95 

51 

14.  & 

29.8 

4  4 

72 

19-3 

3-6 

5'i 

491 

29.6 

.2 

2Z.Z 

9» 

.1 

— 

.2 

13 

131 

„3 

•4 

15 

B3 

2 

91 

2 

•5 

•7 

hr. 

1.3 

.2 

Z 

36.8 

33-5 

243 

5.4 

6l 

ii.i 

8.Z 

*-7 

2.7 

26.7 

Z.8 

74 

^ 

10.5 

1-5 

52 

x6 

307 

1-3 

78 

18. 1 

2.9 

X 

75 

9.9 

13-8 

13 

76.6 

19.17 

X.Z7 

z.8 

80.39 

14.01 

1-52 

2.7 

72-33 

20.55 

5-58 

I.S4 

86 

4.1 

3.9 

.8 

53 

12.4 

31.1 

3-5 

15 

Z2.6 

5.6 

3 

21 

14.4 

5-5 

— 

82 

I.Z 

•5 

z 

15 

23 

2.x 

2.5 

39 

rl 

48.9 

2.3 

15 

73-3 

2.9 

75 

2.Z 

.2 

•7 

74 

2Z 

3-8 

Z.2 

13 

6.3 

•7 

.5 

15 

8 

2 

Z.8 

5 
68 

132 

Z6.4 

2-4 

91 

X.2 

— 

.6 

63 

16.5 

15-8 

4-7 

15 

10.8 

2 

1-7 

37 

8.Z 

Z.6 

2-3 

13 

z8 

6 

— 

Non-Nitn>- 

nnoas 

Matter. 

82 
69.4 

55-7 


64.5 

.5I 
7-4 

57-6 


Z.26 
X.38 


58.4 

48.2 

9.6 

5a  2 


t6.8 

78.  z 
69-5 
95 

4-3 

61. 1 

45-4 
60 


Sugar. 

Cello- 
lo«e. 

Ash,  etc 

4.9 

2.9 

3a 

— 

— 

■""*_ 

— 

3-5 

25 

6.Z 

,  ,^ 

X 

— 

~- 

— 

•4 

2.8 

5-9 

X.3 

— 

— 

^— 

5-2 

.  — 

— 

5-4 

^8 
2 

7^6 
31 

3-3 
3.1 

3-2 

z 

z 

•4 

3-7 

.^^ 

z 

2.Z 

— 

.8 

4.2 
3.6 

3-5 

»-7 

a 

— 

-~ 

3 

*  Water  absorbed  by  floor  variea  from  40  to  60  per  cent,  of  weight  of  floor,  the  beat  qoality 
log  most.    100  lbs.  floor  yield  130  lbs.  bread. 


ANIMAL   F001>. 


201 


A.iial3rsi«  of*  Difierent  irooda* 
In  their  NoluvoL  CondiUon. 


Apples 

Barley 

Beans  

Beef. 

Backwheat . . 

Cabbage  

Chicken 

Coni,North'n 

"    South'n 

Cucumbers. . . 

Lamb 


w. 

Caibon- 

Pboft. 

trat«s. 

■fliOv* 

phatM. 

Wnter. 

5 

10 

z 

84 

«7 

69-5 

3-5 

10 

24 

57-7 

35 

14. 8 

«S 

30 

5 

50 

8.6 

75-4 

Z.8 

14.2 

4 

5 

X 

90 

«9 

3-5 

4-5 

73 

12 

73 

X 

«4 

35 

4« 

3 

14 

IS 

X 

•5 

97 

II 

35-5 

3-5 

50 

Milk  of  cow.. 

Mutton 

Oats 

Parsnips 

Pork 

Potatoes 

">     sweet 

Rice 

Turnips 

Veal 

Wheat 


Ni- 

Carbon- 

Phoa. 

trates. 

atea. 

phatea. 

5 

8 

I 

12.5 

40 

4-5 

'7 

66.4 

3 

9.2 

7 

I 

zo 

50 

1-5 

2.4 

22.5 

•9 

1-5 

28.4 

2.6 

6.5 

79-5 

.5 

5 

4 

•5 

i6 

16.5 

^•5 

15 

69.3 

1.6 

Watar. 

86 

43 
13.6 

82.8 

3«-5 
74.2 

67-5 

135 
90.5 

63 

14.2 


JVt/rafe«— Are 'that  class  which  supplies  waste  of  muscle. 

Carb<mata—\Te  that  class  which  supplies  lungs  with  fliel,  and  thus  ftirnishes  heat 
to  the  system,  and  supplies  fat  or  adipose  substances.  ' 

Pho^phaU$^Are  that  class  which  supplies  bones,  brains,  and  nerves,  and  gives 
vital  power,  both  muscular  and  mental. 

From  above  it  appears,  that  Southern  com  produces  most  muscle  and  least  fat, 
and  contains  enough  of  phosphates  to  give  vital  power  to  brain,  and  make  bones 
strong.    Mutton  is  the  meat  which  should  be  eaten  with  Southern  corn. 

"Hie  nitrates  in  all  the  fine  bread  which  a  man  can  eat  will  not  sustain  life  beyond 
fifty  days;  but  others,  fed  on  unbolted  flour  bread,  would  continue  to  thrive  for  an 
indefinite  period.  It  is  immaterial  whether  the  general  quantity  of  food  he  reduced 
too  low,  or  whether  either  of  the  muscle-making  or  heat-producing  principles  be 
withdrawn  while  the  other  is  fUlly  supplied.  In  either  case  the  effect  wijl  be  the 
same.  A  man  will  liecome  weak,  dwindle  away  and  die,  sooner  or  later,  according  to 
the  deficiency;  and  if  food  is  eaten  which  is  deficient  in  either  principle,  the  appe- 
tite will  demand  it  in  quantity  till  the  deficient  element  is  supplied.  AH  food,  be- 
yond the  amount  necessary  to  supply  the  principle  that  is  not  deficient,  is  not  only 
wasted,  but  burdens  the  system  with  efibrts  to  dispose  of  it. 


Analysis   of  Fruits. 


FaviT. 


Apple,  white 

Apricot,  average. 

Blackberry 

Cherry,  red ..  .^ 

sour 

black 

Currant,  red 

Gooseberry,  red 

yellow . . . . 

Grape,  white 

Peach,  Dutch. 

Pear,  red 

Plum,  yellow  gnge.... 

large       ''    . . . . 

black  blue 

"     red 

Italian,  sweet . . 

Raspberry,  wild 

Stiawberry,  ''   

Banana < . 


Water. 


85 

835 
86.4 

75-4 
80.5 
79-7 
85-4 
85.6 

85.4 
80 

85 

83.5 
8a8 

SJ 

83.3 
81.3 

839 
87 

73-9 


Sugar. 


7.6 
1.8 

4-44 

>3  I 

8.77 

fo.7 

5-6 
8 

7 

13-78 
1.58 

7-5 
2.96 

3-4 

2 

2.25 

6-73 
3.6 

4 
Sugar, 


Acid. 


z 

I.I 

X.X9 

•35 
T.28 

.56 

'•7 

'•35 

1.2 

z 

.61 
.07 
.96 
.87 

X.27 

«-33 
■84 

2 

'•5 
Pectin, 


Albumi- 
nous aub- 
•tancM. 


22 

5« 
51 


36 

44 
46 

83 
46 
25 
48 

4 

4 

43 

83 

55 
6 

Salt,  Acid, 


Insoluble 
matter. 


1.83 

5- 26 

583 
5.91 
6.04 

3-74 
2.92 

3-17 
.2.48 

5-49 
3-54 
3.98 

6.86 

423 
4.0Z 

8.37 
5-5 
etc.,  a6.r. 


Pectona 

•ub- 
•tances. 


3-88 

7-55 
1.72 

3-73 
2.C7 

1-33 

2-4 

1.26 

2.4 
1.44 

6.4 

4.8 

10.48 

"•3 

•23 

5.85 

5-63 

z.28 


Aah. 


47 
84 
48 

64 

67 
8 

43 
37 
47 
46 
34 
34 
42 

54 
6z 

66 

4 


Suffctr  ctnd  TVater  in  Vario-us  Products  xxot  Inoluded  in 


Sojjar. 

Sugar,  crude 95 

Molasses 77 

Buttermilk. 6.4 


tlie   Tat>le.    (Per  Cent.) 

Water. 

Molasses 23 

I^an  beef 72 

Buttermilk 88 


Water. 

Cabbage 91 

Ale  and  Beer 91 

CofTeeandTea zor 


302 


ANIMAL    POOD 


Relative  Values  of*  "Vegetable  Floods  to  proetire  an  H^quai 
'  Volume  of  FlesK  in  Beeves  or  Slieep. 

(Etoart.) 


Abticlk. 

Beeves. 

Peaineal  ... 

I 

Beaumeal. . . 

I -03 

Oatmeal .... 

I  06 

Cornmeal  . . 

1.09 

Barley 

Wheat  bran . 

x-4 

Linseed  cake 

1.50 

Sheep. 


1.87 
3.25 


Abttclk. 


Meadow  hay. 
Oat  Btraw. . . , 
Turnips  ..   .. 

Oats 

Bean  straw.. 

Potatoes 

Ue'dow  grass 


Beeves 

Sheep. 

3- 18 
398 
6.24 

3.12 

12.48 

— 

2.18 

^7 

6.24 
6.24 

125 

— 

Artici.b. 

Beeves. 

Parsnips 

18.72 

BeansorPeas 

_„ 

Buckwheat. . 

— 

Pea  straw. . . 

.^ 

Cabbage 

— 

Beets.  

i&7a 

Carrots 

19.67 

Sheep. 

6.24 

»-7 

2.03 

6.24 

T.8 
936 


NOTR. — When  these  values  express  weight  in 
about  4  to  5  lbs.  beef  or  mutton. 


lbs.,  then  such  {ood  will  produce 


H>elative    N'utritive    Value    of   lOO    parts    of  Human. 

ITood. 

NuirUnt  RnJtU* — Is  determined  by  the  ratio  of  atbumiaokls  to  the  digestible 
carbohydrates  and  oil,  considered  as  starch.  NtUrieM  Value — Is  the  percentage 
of  starch,  albuminoids,  oil,  and  sugar  converted  into  their  equiTalenta  of  sturcli. — 
{A.  H.  Church.) 


Almond,  Sweet 

Apple 

Banana 

Barley 

Beans  

Buckwheat 

Beetroot 

Carrot 

Celery 

Cabbage 

Cocoanut..  .. 
Cheese,  Glos'r 
Date 

Egg- 


R«iio. 

Value 

5-3 

158 

27 

II.  5 

M 

24 

13 

85 

2-5 

80 

5 

86 

29 

12 

14 

7.5 

4.5 

5 

4 

7-5 

16 

90 

2.4 

99 

10 

68 

9 

40 

Pig,  Dried 

Grap« 

Gooseberry 

Ground  nut. .. 
Macaroni.  It^an 
Maise,  Corn. . . 

Oatmeal 

Onion 

Parsnip 

Pea. 

Pistachio -nut. 

Potato 

"     Sweet.. 
Milk,  Cow 


Ratio 

Value 

10 

65 

20 

16 

20 

9 

5-2 

»5» 

6.2 

88.3 

8.5 

87 

5-8 

102 

3-5 

65 

12 

16 

2.5 

79 

5  7 

143 

«7 

22 

13 

22 

4 

— ' 

Milk,  Human.. 

"     Skim... 

Riee 

Rye  l<"^»ir. 

Tomato 

Turn  rp 

Marrow  Veg'e. 
Moss,  leotaiid. 

"     Irsh... 

Walnut 

Wheat,  Indiiin. 

*'       Flour  . 

♦•       Bran.. 
Bread 


Ratio 


9 
1. 

10 

7 
5 
6 

5 
8 

5 
6. 

»5 

7- 
4 
4- 


75 


Value. 


9 

84 
85 

8-5 

4 

3-5 
70 

64 

94 
84.6 

86.5 
67 

53 


The  Nutrient  ratio  generally  adopted  for  Standard  diet  is  x  to  4.75,  and  the 
proportion  of  (kt  or  oil  to  starch  is  x  to  3.5. 

The  FvU  Daily  Diet  of  a  man  is  held  to  be  12  oz.  bread,  8  oz.  potatoes, 
6  oz.  meat,  4  oz.  boiled  rice  with  milk,  .375  pint  of  broth  or  [)ea  sonp,  i  pint 
milk,  and  I  pint  of  beer. 

Nutritive   Values   and   Constituents   of  ^lilte.— </\iy«».) 


Animal. 


(;oal. . . . 

Cow 

Woman. 


Nitrofcenons 

&lott«r  nnd 

Inaotuble 

Sahs. 


4-5 
4- 55 
3-35 


Butter. 

Uctic 

and 
soluble 

SrMs. 

4-» 
3.7 
3-34 

5.8 

5-35 

3-77 

Water. 


85.6 
86.4 

8954 


Animal. 


Ass.. 
Mare 
Ewe. 


Nitrogeriou'* 

Mititer  aiid 

inimiuble 

Salts. 

J-7 
1.62 

4.68 


Batter. 

Irftctk 

and 

•olUble 

Satta. 

Water. 

1-4 

.a 

4a 

«-4 

8.75 

5-5 

fe-^ 

TVeighfc  of  some   UifTei^nt   yoocls    required,   to    Aimi»l& 
ISSO  Orains  of  Nitroeeixoua  ^fatter* 


Cheese 4 

Prase 7 

Neat,  lean 9 

Fish,  White . . .  x 


Lbs. 
Bacon,  fat,....  1.8 

Bread 2. 1 

Rye  Meal 2.3 

Rice 2.8 

Turnips,  15.9  lbs. ;  Beer  or  Porter,  158.6  lbs. 


Lbs. 

Meat,  fot 1.3 

Oatmeal 1.5 

Com  Meal 1.6 

Wheat  Flow..  1.7 


Barley  Meal..  2.9 

Milk 4.2 

Potatoes 8.3 

ParsHifi«.  . . .  15.9 


ANIMAL  FOOD. 


203 


Proportion    o€  Sugar 


Fkuit. 


axxd    A-oid 

{Fi-ejsenius.) 


in  Various  ITrxiita. 


Apple 

ApricoL 

Blackberry , 
Cumuitfl..., 
Gooseberry. 

Grape , 

Mulberry. . , 
Peach , 


Sugar. 

Add. 

PerCwt. 

Per  Cent. 
.8 

Z.I 

t.i 

Z.2 

a 

7.2 
14.9 

1.6 

•7 
1.9 

•7 

Fbcit. 


Plum 

Prune 

Raspberry.... 

Red  Pear 

Sour  Cherry. . 
Strawberry. . . 
Sweet  Cherry. 
Whortleberry. 


Sngar. 


Per  Coat. 

2.Z 

6.3 
4 

I.B 

5-7 
10.8 

5.8 


Add. 


Per  Cant. 

1-3 

•9 

1-5 

.1 

x-3 

1-3 

.6 

1-3 


Proportlcm   of  Oil   in.  Varions   Air-dry   Seeds.    (Beijot) 

Beechnut 24 

Hemp 28 

Watermelon  ...  36 


Mustard 30 

Flax 34 

Peanut 38 


Almond 40 

Colza {^° 

(45 


Orange. 
Poppy. 


4» 
5« 


A-nalysis  of  di^erent  Articles  of*  F'ood,  tvith.    Rererence 
only  to  their  lE'roperties  ibr  giving  Heat  and  Strengtli. 

{Fayen.)    In  100  ParU, 

Nitro-I 


SvaaTAHCi 


Alcohol 

Barley 

Beaos 

Beef,  meat — 
Beer,  strong. . 
Bread,  stalo. . . 
Baclcwbeat. . . 

Butter 

Carrots. 

Caviare 

Cheese.Chestt 

Chocolate 

Cod-fish,  salt'd 


CM^ 

Nitro-ll 

U».      gen.  II 

5* 

— 

40 

»9 

4a 

4-5 

II 

1.07 

sr 

2.2 

.64 

55 

•31 

27.41 

4-49 

41.04    4.13 
58         1.5a 

16 

502  11 

SOBSTANCn. 


Coffee 

Com 

Eels 

Eggs......... 

Figs,  dried 

Herring,  salt- 
ed  

Liver,  Calf's. . 

Lobster 

Mackerel 

Milk,  Cow'& . . 
Nuts 


Car- 
bon. 


9 

I.I 

44 

'•7 

30-05 

2 

13-5 

1.9 

34 

.92 

'3.« 

3" 

15.68 

3-93 

10.06 

2-93 

t'* 

3-74 

.66 

10.65 

1-4 

44 

1-95 

gen. 


SUBITANCn. 


oil,  Olive 

Oysters 

Pease 

Potatoes 

Rye  Flour. . . . 

Salmon 

Sardines 

Tea 

Truffes 

Wheat 

"     Flour. . 
Wine 


Car- 
bon. 


18 


98 

7- 

44 
II 

41 

41 
16 

29 

2.1 

9-45 
4« 
38.5 

4 


Nlti«. 


2.13 
3.66 

.:? 

1-75 
2.09 
6 

1-35 

3. 
1.64 

.015 


Oatmeal. . . . 

NoTB. — Multiply  figures  representing  nitrogen  by  6.5,  and  equivalent  amount  of 
nitrogenous  matter  is  obtained. 

Human   and   A.nimal   Sustenanoe. 

Least  Quantity  of  Food  required  to  Sustain  Life.     {E.  Smithy  M.D.) 

Carbon.  Hydrogen. 

Qn.  Gre. 

13»!{  W^man.  '^\  «»».  4'~  X}  X-"-  •«- 

An  adult  man,  for  his  daily  sustenance,  requires  about  1220  grs.  nitrog- 
enous matter  or  200  of  nitrogen,  and  bread  contains  8.  i  per  cent,  of  it. 

I320 

Hence,  —  -  =  15  062  grains  which  -f-  7000  in  a  26.  r=  2  lbs.  2.43  oz.  of  bread. 
.081 

These  quantities  and  proportions  are  also  contained  in  about  16  lbs*  of 

turnips. 

Thus,  by  table  of  nutritive  values,  page  302,  turnips  have  263  grains  of  carbon  and 
13  of  nitrogen 

Hence,  ^-^  and  —  =  16.35  lbs,  for  the  necessary  carbon  and  1^4  Ws.fwr  tks 
263  13 

nitrogens 

Relative  Value  of  F'oods   compared   -witli   lOO  lbs.  of* 

Oood    VL&ym 


Lba. 

Clover,  green. .  400 
Cora,  green  . . .  275 
Wheat  straw . .  374 


Lbe. 

Rye  straw. ....  442 

Oat  straw 195 

Cornstalks ....  400 


Lbe. 

Carrots 276 

Barley 54 

Oats.. 57 


Lba. 

Com 59 

Linseed  cake . .   69 
Wbsat  bran. ...  10^ 


204 


ANIMAL  FOOD. 


VSTeigh.t  of*  Articles  of  yood.  ire<i"aired  to  l^e  consumed!  in 
tlie  liuiniaxx  system  to  d.evelop  a  po"wer  eq.ual  to  rais- 
ing 14rO  lbs.  to   a  heiglit   of*  lO  OOO   feet.     (Frankland.) 

Substances.  iWeigbt.  {  Subbtancks.  W«i{;bt.  Subbtancks.  Weight. 


Cod-liver  oil. 

Beef,  fat 

Bacon , 

Butter 

Cocoa 

Fat  of  Pork. 

Cheese 

Oatmeal .... 
Arrowroot. . 
Wheat  flour. 


Lbs. 
•553 
•555 
.67 

•693 
•797 

1. 150 

1.287 
I  311 


Rice 

Isinglass 

Sugar,  lamp 

Cream 

Egg,  boiled 

Bread 

Salt  Pork 

Ham,  lean,  boiled. 

Mackerel 

Ale,  bottled 


Lbs. 

1341 
'•379 
1-505 
2.062 
2.209 

2345 
2.826 

3.001 

3.124 

3.461 


Salt  Beef 

Veal,  lean 

Porter 

Potatoes 

Fish 

Apples 

Milk 

Egg,  white  of. 

Carrots 

Cabbage 


Lbs. 

3-65 

4-3 

4-615 

5.068 

6.316 

7-815 

8.02I 

8.745 
9.685 

12.02 


Relative  "Value  of  Various  Foods  as  I^roduotiv*  of*  Force 

wlien    Oxidized   iii.   the   J)od5r. 


Cabbage i 

Carrots 1.2 

Skimmed  Milk.  1.2 

White  of  Egg..  1.4 

Milk 1.5 

Apples 1.5 

Ale I  8 

Fish 1.9 

Potatoes 2.4 


Porter 2.6 

Vccil,  lean 2.8 

Salt  Beef 3.3 

Poultry 3.3 

Lean  Beef.....  3.4 

Mackerel 3.8 

Ham,  lean 4 

Salt  Pork 4.3 

Bread,  crumb. .  5.1 


Egg,  hard  boiPd 

Cream 

Egg,  yolk 

Sugar 

Isinglass 

Rice 

Pea  Meal 

Wheat  Flour . . 
Arrowroot 


5.4  ,  Oatmeal 9.3 

5.9  :  Cheese zo.4 

7.9  '  Fat  of  Pork.  12.4 

8     j  Cocoa 16.3 

8.7  i  Pemmican..   16.9 

8.9  j  Butter 17.3 

9.       Bacon 17-94 

9.1  I  Fat  of  Beef.,  21.6 
9.3  I  Cod-liver  Oil.  21.7 


JN'utritious    Properties   of  different  Vegetables   and    Oil- 
cake, compared   Avitli   eaoli   other   in   Quantities. 


Oilcake X 

Pease  and  Beans  1.5 
Wheat,  flour. . .  2 

"      grain  ..2.5 
Oats 2. 5 


Rye 2.5 

Bran,  wheat  |^'75 

Com , 

Barley 


3 
3 


Clover  hay 4 

Hay 5 

Potatoes 14 

"        old....  20 


Cabbage x8 

Wheat  straw..  26 

Barley     '*  26 

Oat  *'  27.5 


Carrots 17. 5    Turnips 30 

Illustration.— I  lb.  of  oil-cake  is  equal  to  18  lbs.  of  cabbage. 

Volume  of  Oxygen  required  to  Oxidize  100  pai'ts  0/ following  Foods  as  con^ 

sumed  in  the  Body. 

Grape  Sugar  . .  106  |  Starch 120  |  Albumen 150  |  Fat 393 

Hence,  assuming  capacity  for  oxidation  as  a  measure,  albumen  has  half  value  of 
fkt  as  a  food-producing  element,  and  a  greater  value  than  either  starch  or  sugar. 

Proportion  of  Alcohol  in  lOO  Parts  of  fbllowing;  ILiiq.uors. 

{Brande.) 


Small  Beer. . .  i     and  1.08 

Porter 3. 5  and  5.26 

Cider 5.2  and  9.8 

Brown  Stout.  5.5  and  6.8 

Ale 6.87  and  10 

Rhenish 7.58 

Moselle 8.7 

Johannisberger 8. 71 

Elder  Wine 8.79 

Claret  ordinaire 8.99 

Tokay 9. 33 

Rudesheimer 10.72 

Marcobruuner 11.6 

Gooseberry  Wine ...  iz.84 

Hockheimer 12.03 

Vin  de  Grave 12.08 


Hermitage,  red 12.32 

Champagne 12.61 

Amontillado 12.63 

Frontignac 12.89 

Barsac 13.86 

Sauterne 14.22 

Champagne  Burg'dy,  14.57 

White  Port 15 

Bordeaux 15.  i 

Malmsey 16.4 

Sherry 17.17 

Malaga 17.2 

Alba  Flora. 17.26 

Hermitage,  white . . .  17.43 

Cape  Maacat 18.25 

Constantia,  red 18.93 


Lisbon 18.94 

liachryma 19.7 

Teneriff'e 19-79 

Currant  Wine 20.55 

Madeira 22. 37 

Port 23 

Sherry,  old 23.86 

Marsala 25.09 

Raisin  Wine 25.  xa 

Madeira,  Sercial ....  27.4 

Cape  Madeira 29-51 

Gin 51.6 

Brandy 53.30 

Rum 53.68 

Irish  Whiskey 53,9 

Scotch  Whiskey 54.39 


ANIMAL  FOOD. 


Proportion    of*   F'ood   A.ppropriated    and  Expended 

follo'Viring*  .A.nixnal8. 
< 

Oxen.  Sheep.  Swioe. 

Proportion  appropriated 6.2  8  17.6 

**        in  manure 36.5  31.9  16.9 

**        respired 57-3  60.1  65.5 

100  ICX>  xoo 


205 

by 


Specific  Q-rarvity  of  l^ilk  and  Feroentetge  of*  Creaxn,  etc. 

Specific 


MlUE. 


Milk,  pure* 

"     10  per  cent  water. 

it  — Q  i(  il  CI 


Volume 

Volume 

Speeific 

of 

of 

Gravity. 

Cream. 

Curd. 

1030 

12 

6.3 

1027 

ia5 

5.6 

1024 

?-5 

4-9 

102 1 

6 

4-2 

Gravity  when 
■kimmed. 

1032 
ZO29 
XO26 
1023 


*  For  s  method  of  teeting  the  parity  of  mills,  see  Pavy  on  Food  (Philadelphia,  1874),  page  196. 

NoTB. — ^The  average  proportion  of  cream  is  10,  or  10  per  cent 


^Proportion   JPer   cent,  of*  Starcli   in    enndry  Vegeta'bles. 

Arrowroot. ...  82     I  Wheat  flour. . .  66.3  I  Oatmoal 58.4  I  Potatoes 1^8 

Rice 79.1  I  Com  meal....  64.7  |  Pease 55.4  |  Turnips. 5.2 


Composition  of  Cfa-eese   of  Different   Conn  tries. — {Payen.) 

Fat. 


Nenfchatel. 
Parmesan  . 

Brie 

Holland . . . 


Fat. 

Nitrogen, 

Salt. 

425 
7.09 

563 
6.21 

Water. 

18.74 
21.68 
24.83 
25.06 

2.28 
5.48 
2-39 
4X 

61.87 
30-31 

53-99 
41.41 

Chester 

Gruydres . . . 
MaroUes . . . . 
Roquefort. . . 


25.41 
28.4 
28.73 
32.31 


Nitrogen. 

Salt. 

Water. 

5.56 
5-4 
3-73 
507 

4.78 
4.29 

5-93 
4-45 

3039 
32.05 
40.07 

26.53 

Nntritive  Bquivalents.    Computed  from  Amount  of  Ni- 
trogen in  Su'bstanoes  -wlien  X>ried.     Kuman  IMilk  at  1. 


Rice.... 
Potatoes. 
Com  ... 

Rye 

Wheat.. 
Barley . . 
Oats 


.81 
.84 
I 

1.06 
1. 19 

1-25 

X.38 


Bread,  White. 
Milk,  Cows' . . 

Pease 

Lentils. 

Egg,  Yolk. ... 

Oysters 

Beans. 


1.42 
2.37 

2-39 
2.76 

3'05 
3-05 
3-2 


Cheese 

Eel 

Mussel 

Liver,  Ox 

Pigeon 

Mutton 

Salmon 


3-31 
4-34 
5.28 

5.7 
7- 56 

7-73 
7.76 


Lamb 

Egg,  White. . . 

I/)bster 

Veal 

Beef 

Pork 

Ham 


8-33 

8.45 

8. 59 

8.73 
8.8 

8-93 
9.x 


Herring,  9.14. 


Xhermoraetrio  Po-wer  and  ^Mechanical  Energy  of  lO 
O-rains  of  Various  SnlDStances  in  their  Natural  Con* 
dition,  -^^lien  Oxidised  in  the  A.nimal  Body  into  Car- 
l>onio  Acid,  Water,  and   XJ rea,—{Frankland.) 


Be 


AJfCS. 


Ale,  Bass's . . 

Apples 

Arrowroot. . . 
Beef,  lean . . . 

Bread 

Butter 

CiU>bage 

Carrots. 


Water 

Lifted 

raised 

X  foot 

i' 

high. 

Lbe. 

Lbe. 

;:?i 

1-54 
x.29 

iao6 

7-77 

3.66 

2.83 

5-52 

4.26 

18.68 

14.42 

1.08 

•83 

X.33 

z4oa|i 

SOBRANCB. 


v/nocso .....  • 

Cocoa-nibs . . 

Cod-liver  oil. 

Egg,  hM  boil. 

"  yolk 

"  white... 

Flour,  wheat. 


Water 

Lifted 

railed 

x  foot 

i». 

high. 

Lbe. 

Lbs. 

XI.2 

&65 

17- 

Z-3 

XI 

X8.I2 

5.86 

4.53 

8.5 

6.56 

x.4« 

1.X4 

9.87 

7.62 

4-3 

3.32 

SVBSTANCB. 


Mackerel.... 

Milk 

Oatmeal 

Pea  meal . . . . 

Potatoes 

Porter 

Rice,  ground. 
Sugar,  grape. 


Water 

Lifted 

raised 

I  foot 

i\ 

high. 

Lbs. 

Lbe. 

4-14 

32 

X.64 

'•2^ 

xax 

7.8 

9-57 

7-49 

2.56 

X.99 

2.77 

2.19 

9.52 

7-45 

8.42 

6.-- 

8 


2o6 


ANIMAL  FOOD. 


IDieestioix. 

Time  required,  for  I>igestioii  of*  several  A.rtioleB  of  F'ood. 

(Beaumoni^  M.D.) 
Food.  Time.  Food.  Tim*. 


Apple,  sweet  and  mellow  . . . . 

sour  and  mellow 

sour  and  hard 

Barley,  boiled 

Bean,  boiled 

Hean  and  Green  Corn,  boUed . 

Beef,  roasted  rare 

roasted  dry 

Steak,  broiled 

boiled 

boiled,  with  mustard,  etc. 

Tendon,  boiled 

fried 

old  salted,  boiled ,. 

Beet,  boiled 

Bread,  Com,  baked 

Wheat,  baked,  fresh . . . 

Butter,  melted 

Cabbage,  crude 

crude,  vinegar 

crude,  vin'r,  boiled  ] 

Carrot,  boiled 

Cartilage,  boiled 

Cheese,  old  and  strong 

Chicken,  fricasseed 

Custard,  baked 

Duck,  roasted \ 

Dumpling,  Apple,  boiled 

whipped 

boiled  hard 

"     soft 

fried 

Fish,  Cod  or  Flounder,  fried  . . 

Cod,  cured,  boiled 

Salmon,  salt'd  and  boiFd 

Trout,  boiled  or  fried. . . 

Fowl,  boiled  or  roasted 

Goose,  roasted 

Gelatine,  boiled 


I  50 

2 

2 


2 

3 

3 

3 

3 
2 

3 
5 
4 
4 
3 
3 
3 

3 

a 

2 

4 
4 
3 
4 

3 

2 

2 

4 
4 

3 

2 

I 

3 
3 
3 

3 

2 

4 

1  30 

4 

3 

2  30 


30 
45 

30 

45 
30 

30 

15 
45 
IS 
30 
30 
30 


30 
IS 
IS 
30 
45 
45 

30 


30 
3D 

30 
30 


Heart,  Animal,  fried 

LAmb,  boiled 

Liver,  Beefs,  boiled 

Meat  and  Vegetables,  hashed . 

Milk,  boiled  or  fresh [ 

Mutton,  roasted 

broiled  or  boiled .... 

Oyster 

roasted 

stewed 

Parsnip,  boiled 

Pig,  sucking,  roasted 

Feet,  soured,  boiled 

Pork,  fat  and  lean,  roasted  . . . 

recently  salted,  boiled . . 

"  "      fried . . . 

"  "      broUed  . 

"      raw 

Potato,  boilei 

baked 

roasted 

Rice,  boiled 

Sago,  boiled 

Sausage,  Pork,  broUed  ...... 

Soup,  Barley 

Beef  and  Vegetables . . . 

Chicken 

Mutton  or  Ovster 

Sponge-cake,  baked. 

Suet,  Beef,  boiled 

Mutton,  boiled ...-«.... 

Tapioca,  boiled 

Tripe,  soured 

Turkey,  roasted  {W^;^jV;; 

boiled 

Turnip,  boiled 

Veal,  roasted 

fried 

Brain,  boiled ......... 

Venison  Steak,  broiled  , 


4 
2  30 

2 


30 

15 
IS 

55 
IS 
30 
30 
30 

15 
30 
15 
IS 

30 
20" 

30 


2 
2 

2 

3 

3 

2 

3 
3 

2 

2 

I 

5 
4 
4 
3 
3 
3 

3 

2 

I 

I  45 
3  20 

1  30 
4 

3 

3  3P 

2  30 

5  3D 

4  30 

2 

I 

2 
2 
2 

3 

4 

4 

X 

X 


x8 
30 

25 

30 

50 
45 
35 


Greneral   Notes. 

The  per  ccntage  of  loss  in  the  cooking  of  meats  is  as  follows:  Boiling  23;  Baking 
31;  Koa8tiug34. 

I'otatoes  possess  anti-scorbutic  power  in  a  greater  degree  than  any  other  of  the 
succulent  vegetablea 

The  average  yearly  consumption  of  wheat  and  wheat  flour  in  Great  Britain  is  5.5 
bushels  per  capita  of  its  population. 

The  daily  ration  of  an  Esquimaux  Is  20  lbs.  of  flesh  and  blubber— (i9ir«/bAf»  Ami./ 


ANIMAL   FOOD. 


207 


An  adult  healthy  man,  acoonlisg  to  Dr.  Kdward  Smith,  requires  daily  of 
Phosphoric  acid  flrom  . .  3a  to   79  grains.        Potash  ....  27     to  107  graina 

(ChlSrine ..5»"'75      ;'  J^fda 80         171 

{ororcommoii8alt....85"  a9«      "  Lime 2.3*'      6.3" 

and  of  Magnesia  2. 5  to  3  gram& 

A  common  fowl's  egg  contains  lao  grains  of  Carbon  and  17.75  of  Nitrogen. 
An  ordinary  working-man  requires  for  his  daily  sustenance 
Oxygen X'47         Starch 66 

Albuminous  matter 305       S^!;!',"' /^« 

pm 22  Water 4-535 

^  7. 23  IbB.  Hvoirdupoia 

MiVe  —If  the  milk  of  an  animal  is  token  at  three  immediately  successive  periods, 
that  which  is  first  received  will  not  be  as  rich  in  milk  fafas  the  last. 

In  a  Devon  cow,  milked  in  this  manner^  the  first  milk  gave  but  ..166  per  cent  of 
fat,  and  the  last,  or  that  known  as  '^strippings,"  581  per  cent. 

Relative   Ricliiieas  of  M.ill£   of  Several   Animals. 

Milk-fat.  CaMin.       Sngar. 

A88 5  -B*  -94 

Sheep 2.52  2.1  .72 


Milk-fat. 

Cow. 1.66 

Mare 1.19 

Goat 2 


CaMin. 

1.38 

•75 
X.04 


Susar. 
.69 

.69 


Camel 1.4 


.96 


Tbe  condensation  of  milk  reduces  it  to  about  one  third  of  its  original  volume. 

A  Farm  of  second-rate  quality,  properly  cultivated,  will  sustain  100  bead  of  cattle 
per  100  acres,  besides  laborihg  stock  (employed  in  cultivation  of  farm),  and  swine. 

— (Ewart) 
Thus,  calves  25;  do.  i  year  25;  do.  2  years  25;  cows  25. 

Cane  Sugar  (Saccharose)— Is  insoluble  in  absolute  alcohol,  and  in  diluted  alcohol 
it  is  soluble  only  in  proportion  to  its  weakness.  Loaf  sugar,  as  a  rule,  is  chemically 
pure 

But  Rttot  5uf^ar— Conteins  85  to  96  per  cent,  of  cane  sugar,  1.6  to  5  1  of  organic 
matter,  and  2  to  4.3  of  water. 

iy>n<y— Contolns  32  per  cent,  of  sugar  (levulose),  25.5  of  water,  27.9  of  dextrine, 
and  14.6  of  other  matter,  as  mannite,  wax,  pollen,  and  insoluble  matter. 

Molcuses—ContSLxns  47  per  cent  of  cane  sugar,  20.4  of  fruit  sugar,  2.6  of  salts,  2.7 
extractive  and  coloring  matter,  and  27. 3  of  water. 

Flour.— TeslB  of  flour,  see  A  W.  Blyth,  T.ondon,  1882,  page  152. 

0r<*ad.— Wheat,  water  lost  by  drying  after  1  day  7.71  per  cent,  3  days  8.86,  and 
7  days  14.05  per  cent 

Sago. — 2.5  lbs.  per  day  will  support  a  healthy  man. 

^j^— Gontoins  aeaily  as  much  gluten  as  wheat  bread  (as  6  to  7),  and  in  starch  and 
sugar  it  is  16  per  cent  richer. 

Qooubtrry  (dry) — Is  as  nutritious  as  wheat  bread. 

WaUrmeUm^  Vegetable  ma/nrow^  and  Cfucumber — Contain  94,  95,  and  97  per  cent 
Of  water  re^Mctiv^. 

Oman  (dry)— Contains  25  to  30  per  cent  of  gluten.    Potato  contain  1  g  but  5. 

Cabbage^  Cauliflower^  Broccoli^  and  Leaves  are  generally  rich  in  gluten,  while  the 
polato  Is  poor. 

Ratio  of  IPlesh-ibrniera  of  1?ubers. 


Pty  Cent 


TUBBBS. 

FtMh- 

fbrmtra. 

Starcb, 
«Cc. 

Beet  root 

Turnip 

Carrot 

Potitto 

•4 
•5 
.5 

1-3 

134 

4 

5 
i9 

Ratio  to 
HMt-glT'n. 

1:30 
1:8 
1:10 
1:16 


TUBBBS. 


Parsnip 

Onion 

Sweet  Potato. 
Yam 


Fle»h- 

SUrcb, 

fomwra. 

«t«. 

1.2 

8.7 

1-5 

4.8 

1-5 

2a  a 

3.8 

.6.3 

Ratio  to 
Heat-ftfv'r«. 

■ '     '      t0 
i:  10 

1:   3-5 
1:13 
I-  7$ 


268      GBAVITY  OP  BODIES. — GBAVITY  AHD  WEIGHT. 

GRAVITY  OF  BODIES. 

Gravity  acts  equally  on  all  bodies  at  equal  distances  from  Earth^s 
centre ;  its  force  dimiuishes  as  distance  increases,  and  increases  as  dis- 
tance diminishes. 

Gravitating  forces  of  bodies  are  to  each  other, 
I.  Directly  as  their  masses. 
-    2.  Inversely  as  squares  of  their  distances. 

Gravity  of  a  body,  or  its  weight  above  Earth's  surface,  decreases  as 
square  of  its  distance  from  Earth's  centre  in  semi-diameters  of  Earth. 

Illustration  i. — If  a  body  weighs  900  lbs.  at  surface  of  the  Earth,  what  will  h 
w«igh  2000  miles  above  surface  ?— Earth's  semi-diameter  is  3963  miJes  (say  4000). 

Then  2000  -f-  4000 = 6ocx>  =  1.5  semi-diam^s,  and  000  -f-  x. «;'  =  •^— -  =  400  lbs. 

2.25 

Inversely,  If  a  body  weighs  400  lbs.  at  2000  miles  above  Earth's  surface,  what  will 
it  weigh  at  surface? 

400 X  i.s'^=9oo  lbs. 

2.  —  A  body  at  Earth's  surface  weighs  360  lbs. ;  how  high  must  it  be  elevated  to 
weigh  40  lbs.? 

—  =  9  semi-diameters^  if  gravity  acted  directly;  but  as  it  is  inversely  as  square 
40 

of  the  distance,  then  y/^  =  3  semi-diameters  =  3  X  4000  =  12  000  miies. 
3.— To  what  height  must  a  body  be  raised  to  lose  half  its  weight? 

As  -y/i  :  y  2  : :  4000  :  5656  =  as  si^uare  root  of  one  semi-diameter  is  to  square  root 
of  two  semi-diameters,  so  is,one  semi-diameter  to  distance  required. 

Hence  5656  —  4000  =  f656  =  distance  from  EarVi's  surface. 

Diameters  of  two  Globes  being  equcd^  and  their  densities  different,  weight 
of  a  body  on  their  surfaces  will  be  a^  tJieir  densities, 

Th^r  densities  being  equal  and  their  diameters  different,  weight  of  them 
will  be  as  tJieir  diameters. 

Diameters  and  densities  being  different,  weight  will  be  as  their  product. 

Illustration.— If  a  body  weighs  10  lbs.  at  surface  of  Earth,  what  will  it  weigh  at 
surface  of  Sun,  densities  being  394  and  100,  and  diameters  8000  and  883000  miles? 

883  000  X  100  -r-  8000  X  392  =  28. 157  =  quotient  of  product  of  diameter  of  Sun  and 
its  density,  and  product  of  diameter  of  Earth  and  its  density. 

Then  28. 1 57  X  xo = 281. 57  lbs. 
Note.— Gravity  of  a  body  is  .003  46  less  at  Equator  than  at  Polea 


SPECIFIC  GRAVITY  AND  WEIGHT. 

Specific  Gravity  or  Weight  of  a  body  is  the  proportion  it  bears  to  the 
weight  of  another  body  of  known  density  or  of  equal  volume,  and  which  is 
adopted  as  a  standard. 

If  a  body  float  on  a  fluid,  the  part  immersed  is  to  whole  body  as  specific 
gravity  of  body  fs  to  specific  gravity  of  fluid. 

When  a  body  is  immersed  in  a  fluid,  it  loses  such  a  portion  of  its  own 
weight  as  is  equal  to  that  of  the  fluid  it  displaces. 

An  immersed  body,  ascending  or  descending  in  a  fluid,  has  a  force  equal 
to  diflTerence  between  its  own  weight  and  weight  of  its  bulk  of  the  fluid,  less 
resistance  of  the  fluid  to  its  pass^e. 

Water  is  well  adapted  for  standard  of  gravity ;  and  as  a  cube  foot  of  it 
at  62°  F.  weighs  997.68  ounces  avoirdupois,  its  weight  is  taken  as  the  uni^ 
or  approximately  1000. 


SPBCIFIC   GRAVITY   AND   WEIGHT.  209 

French  standard  temperature  for  comparison  of  density  of  solid  bodies 
and  determination  of  their  specific  gravities,  is  that  of  maximum  density  of 
water,  at  4°  C.  or  39.1°  F.,  and  for  gases  and  vapors  under  one  atmosphere  or 
.76  centimeters  of  mercury  is  32°  F.  or  0°  C,  and  specific  gravity  of  a  body 
is  expressed  by  weight  in  kilogrammes  of  a  cube  decimeter  of  that  body. 

Densities  of  metals  vary  greatly. 

Potassium,  Sodium,  Barium,  and  Lithium  are  lighter  than  water.  Mercury 
is  heaviest  liquid,  and  Iridium  heaviest  metal.  Volcanic  scoriae  are  lighter 
than  water. 

Pomegranate  and  Lignum-vitsB  are  heaviest  of  woods.  Pearl  is  heaviest 
of  animal  substances,  and  Flax  and  Cotton  are  heaviest  of  vegetable  sub- 
stances, former  weighing  nearly  twice  as  much  as  water. 

Zircon  is  heaviest  of  precious  stones,  being  4.5  times  heavier  than  water. 
Garnet  is  4  times  heavier,  Diamond  3.5  times,  and  Jet,  lightest  of  all,  is  but 
^  heavier  than  water. 

To  .A.0oertairi  Speoifio  GKravity  of  a  Solid  Body  lieav.ier 

tlian   Water. 

Rule. — Weigh  it  both  in  and  out  of  water,  and  note  difference ;  then,  as 
weight  lost  in  water  is  to  whole  weight,  so  is  1000  to  specific  graWty  of  body. 

W  X  1000 
Or,  -^y-^ =  G,  W  and  to  representing  weiyhts  out  and  in  water ^  and  G 

ipecific  gravity. 

Example.  — What  is  specific  gravity  of  a  stone  which  weighs  in  air  15  Iba,  in 
water  10  Iba? 

15  — 10  =  5;  then  5  :  15  ::  1000  :  3000  Spec.  Orav. 

To  .A.8certain   Speoiflo   Gravity  of  a  Body  iigliter  tliaxL 

AVater. 

Rule. — Annex  to  lighter  body  one  that  is  heavier  than  water,  or  fluid 
used ;  weigh  piece  added  and  compound  mass  separatelv,  both  in  and  out  of 
water,  or  fluid ;  ascertain  how  much  each  loses,  by  subtracting  its  weight 
from  its  weight  in  air,  and  subtract  less  of  these  diflerences  from  greater. 

Then,  as  last  remainder  is  to  weight  of  light  body  in  air,  so  is  1000  to 
specific  gravity  of  body. 

ExAJiPLS.— What  is  specific  gravity  of  a  piece  of  wood  that  weighs  90  lbs.  in  air- 
annexed  to  it  is  a  piece  of  metal  that  weighs  24  lbs.  in  air  and  21  Iba  in  water,  and 
the  two  pieces  in  water  weigh  8  Iba? 

2o-{-24  —  8  =  44  —  8  =  ^6  =  loss  of  compound  mass  in  toater  ; 
24 — 21  =  3  =  loss  0/ heavy  body  in  water. 

33  :  20  ::  1000  •  606.06  Spec  Orav. 
To  A.8oertain.   Speoiflo   Gravity   of  a   ITlviid. 
Rule. — Take  a  body  of  known  specific  gravity,  weigh  it  in  and  out  of 
the  fluid ;  then,  as  weight  of  body  is  to  loss  of  weight,  so  is  specific  gravity 
of  body  to  that  of  fluid. 

ExAMPLK.  —What  is  specific  gravity  of  a  fluid  in  which  a  piece  of  copper  {spec 
grav.  =  9000)  weighs  70  lb&  in,  and  80  lb&  out  of  it  ? 

80  :  80  —  70  =  10  : :  9000  :  1125  £ipec.  Orav. 

To  Ascertaiix  Speoiiio   Gravity  of  a   Solid   Body  -wliioh. 

is   soluble   iti   '^^ater. 

Rule. — ^Weigh  it  in  a  liquid  in  which  it  is  not  soluble,  divide  its  weight 
out  of  the  liquid  by  loss  of  its  weight  in  the  liquid,  and  multiply  quotient 
by  specific  gravity  of  liquid ;  the  product  is  specific  gravity. 

ExAMPLB. — What  is  specific  gravity  of  a  piece  of  clay,  which  weighs  15  lbs.  in  air 
and  5  lbs.  in  a  liquid  of  a  specific  gravity  of  1500,  in  which  it  is  insoluble  ? 

xs  -f- 10  X  1500= 2250  Spec.  Grav 

S* 


2IO 


SPXCIFIC   GBAYITY   AND   WSIGHT. 


80LIIM3. 


SamnMMCMM. 


Aletals. 

Aluminom,  cast 

♦*        wrought. . . . 

^*        Bronxe 

Antimony 

Arsenic 

Bariam 

Bismuth. 

Boron  - 

Brass. 
Sheet,  cop.  75,  zinc  25. 
Yellow  •'    66,    "    34. 
MuDtz  "    60,    "    40. 

Plate 

Cast 

Wire 

Bromine 

Bronze,  gun  metal 

"  ■  ordinary  mean  . 
"  cop.  84,  tin  16  . . 
"         "    81,  "    19.. 

"       Tobin 

"       35t  tin  65 

"        21,  tin  74 

Cadmium 

Calcium 

Chromium 

Cinnabar 

Cobalt 

Coiumbium 

Copper,  cast 

"       plates. 

"  wire  and  bolts.. 
'*       ordinary  meun. 

Gold,  pure,  cast 

''     hammered 

*^    22  carats  fine 

»'     20     "       '•  

Iridium 

"      hammered 

Iron,  Cast,  gun  metal. . . 

*'     minimum 

"     maximum 

"     ordinary  mean.... 

"     mean,  Eug 

*'     cast,  hot  blast 

*'       "    cold    '•  

**     Wrought,  bars 

♦»  "    wire 

•♦  "   rolled  plates 

"  "   average  . . . 

•»  "    Eng.  rails  . 

"  "    Lowmoor. . 

"  "   pure 

*'     ordinary  mean. . . 

Lead,  cast 

*'     rolled 

Lithium 

Magnesium 

Manganese 

Mercury  — 40° 

''       +32^ 


BpMi«e 

Weight 
of  »  Cabe 

OniTUj. 

loch. 

Lb. 

3560 

.0936 

3O70 

.0906 

7700 

3785 

6712 

.3438 

5763 

.3084 

^70 
9823 

.017 

•3553 

aooo 

•0733 

8450 

.3056 

8300 

.2997 

8200 

.2966 

8380 

.3026 

8100 

.2930 

8214 

.297a 

3000 

.1085 

8750 

.3165 

8217 

.2972 

8832 

.3194 

8700 

.2929 

8379 

.3031 

8060 

.291 

7390 

.2668 

8650 

3129 

1580 

057 

§9<» 

•2134 

8098 

.2929 

8600 

.3111 

6000 

.217 

8608 

•3»'3 

8698 
8880 

.3146 
.3213 

8880 

.3212 

19258 

.6965 

19  361 

.7003 

17486 

•6335 

15709 

.5683 

18680 

.6756 

23000 

8319 

7308 

.264 

6900 

.2491 

7500 

.2707 

7207 

.2607 

7217 

.2609 

7065 

•2555 

7218 

.2611 

7788 

.2817 

7  774 

281 1 

7704 

.2787 

7698 

.2779 

7540 

.2722 

7808 

,2810 
.3938 

8140 

7  744 

.280X 

"353 

.4106 

XI 388 

.4119 

590 

.0813 

1750 

.0633 

8000 

.2894 

1563a 

13598 

.4918 

SCBITANCra. 


]Metala. 

Mercury     60° ; 

"        aiao 

Molybdenum. 

Nickel 

"     cast 

Osmium 

Palladium 

PllUinmn,  hammered . . 

*'        native 

"       rolled 

Potaasiam,  59^^ 

Red  lead 

Rhodium 

Rabidiom ■ 

Ruthenium 

Selenium 

Silver,  pure,  cast 

"        "    hammered. 

Sodium 

Steel,  minimum 

maximum 

plates,  mean 

soft 

tempered  and  hard- 
ened   

wire 

blistered 

crucible 

cast 

Bessemer 

ordinary  mean. . . . 

Strontium 

Tellurium 

Thalium 

Tin,  Cornish,  hammered. 

**         "      pure 

Titanium 

Tungsten 

Uranium 

Wolfram 

Zmc,  cast 

"    rolled 


Gnrity. 


it 
(t 
(t 

i( 

t( 
it 

Ci 

It 

tt 
It 


"WoociB 

Alder 

Apple 

Ash 

Bamboo 

Baytree 

Beech , 


{Dry). 


Birch 

Blackwood,  India . 
Boxwood,  Brazil. . . 

"        France.. 

'*        Holland. 

Bullet-wood 

Butternut. ........ 


'3569 

«337o 

8600 

8800 

8279 

to  000 

"350 

!  30337 

x6ooo 

22069 

865 

8940 

10650 

1530 

8600 

4500 

10474 

10511 

970 

7700 

7000 

7806 

7833 

7818 

7847 
7823 

7842 
7848 

7853 

7834 
2540 

6  no 
11850 

7390 
7291 

•5300 

17000 

1833c 

7  119 
6861 
7  191 


800 


Wdfflil 

oTaCabt 

Inch. 


l\ 


*45  i 
690 

400  i 

822  I 

852 

690 

567 
790 
898 
1031 
1328 
913 
998 
376 


Lb. 

.4008 

.4836 

.3111 

^3183 

•2994 
.3613 

•4105 
•7356 

•5787 
•7983 

•0313 
.334 

.3853 

.055 

.3111 

.1637 

.3788 

.3803 

.0351 

.3785 

.3857 

.2823 

.3833 

.2828 
.3838 
.383 
.2836 
.3899 
.384 
39x6 
.0918 
.231 
.4286 

3673 
•3637 

.19x7 

.6639. 

3575 
.3483 
.26 

Cub* 
FoH. 
50 

49-5^ 

53.8xa 

43  "S 

35 

5x375 

5335 

43- "5 

35-437 

45 

56.135 

$4-437 

83 

57 

58 

33.5 


SPHeiFIC   GBAVITY  AND  WEIGHT. 


211 


flOMtAHCM. 


{Dry). 


^Voods 

Campeacby 

Cedar 

*•    Indian 

Gharooal,  pine 

'*        fresh  burned.. 

•»        oak 

'*        soft  wood . . . . 

"        triturated.... 

Cherry 

Chestnut,  sweet 

Citron "... 

Cocoa   

Cork 

Cypress,  Spanish 

Dog- wood. 

Ebony,  American 

**      Indian 

EMer 

Elm 1 


"  rock 

ErronI,  India 

Filbert 

Fir,  Norway  Spruce. . . . 

*'    Dantzic 

Fustic 

GroMibeart  or  Sipiri. . . . 

Cum,  bine .., 

"'^    water 

Hackmatack 

Hawthorn 

Hazel 

Hemlock 

Hickory,  pig-nut 

'*       shell-bark. . » . . 

Holly 

Iron-wood. 

Jasmine 

Juniper. 

Kbair,  India 

Lanoewood,  mean 

Larch 


Lemon 

Lignum-vitflB | 

Lime 

Linden 

Ixxsust. 

Logwood 

Mahogany | 

"        Honduras. . . . 

<«        Spanish. 

Maple 

'*     bird's-eye 

MasUc 

Mulberry | 

Cak,  African 

»i    Canadian 

"    Oantilo 


Spaelfie 


9»3 
56t 
i3«S 
44" 
380 

1573 
a6o 

1380 

7«5 

610 

■  726 

1040 

240 

644 
756 

1 331 
1909 

695 

570 
671 

800 

1014 

600 

5»a 

58a 
970 

843 
1000 

59a 

)ZO 


368 
792 
690 

760 

770 

566 

1I7I 
720 

544 
560 
703 
650 

«333 
804 
604 
728 

9'3 
720 
1063 
560 
852 
750 

576 
849 

561 

^ 
823 

872 
759 


Weight 
Foot. 


57- 062 

3S-o6» 
82. 157 
27.562 
as- 75 
98.31a 

86.25 

44-687 

38.125 

45-375 
65 
«5 
40- as 

47-85 

83.187 

75562 

43-437 
35625 

41937 
50 

63375 

37-5 
3a 

36.375 
6a  695 

65-95 

52.687 

62.5 

37 
56.875 

53-75 
a3 
49-5 
43- "5 

47-5 

61.875 

48.125 

35-375 
73-X87 

45 

34 

35 

43  937 
40.625 

83.312 

50-35 

37-75 

45-5 

57062 

66.437 
35 

53- as 
46.875 

53062 
35-o6a 
56.062 

5«-437 

54-5 

47-437 


fltntriiicsi. 


"^VoodB 

Oak,  English. 


{DryY 


"    greea 

"    heart,  60  years. . . . 

"    live,  green 

it      a    seasoned 

"    white 

Olive 

Orange 

Pear 

Persimmon 

Plum 

Pine,  pitch. 

"    red 

*^    white 

"    yellow 

"     Norway.. 

Pomegranate 

Poott 

Poplar 

"     white.. 

Quince 

Rosewood 

Sassaflras 

Satinwood 

Spruce 

Sycamore 

l^marack 

Teak  (Aft-ican  oak).. . .  | 

Walnut 

'<     black 

Willow 

Yew,  Dutch. 

^'    Spanish 


{ 


{Well  Seasoned.*) 

Ash 

Beech 

Cherry 

Cypress 

Hickory,  red 

Mahogany,  St.  Domingo. 
Pine,  white 

"     yellow 

Poplar 

White  Oak,  upland 

'*       *^    James  River 

Stones,  Sartlis, 
eto« 

Alabaster,  white 

*'        yellow 

Alum 

Amber. 

Ambergris 

Asbestos,  sUrry 

Asphalte 

Bary  tes,  sulphate . . . .  | 

Beton,  N.  Y.  StCon'g  Co. 


SpMille 
Gnvity. 


858 

93a 

1146 

1170 

1260 

1068 

860 

680 

705 
661 
710 

785 
660 

590 
554 
461 
740 

»354 
580 

383 
529 
705 
728 

48a 
885 

500 
623 

657 

671 
500 
486 

585 
788 
807 


722 
624 
606 

441 
838 
720 

473 
54« 
587 
6B7 

759 


2730 
2699 
1714 
1078 
866 

3073 
2250 
4000 

486s 
2305 


Wflifffat 

oTaCab* 

Foot. 

Lb*. 

53-625 

58.35 

71-625 

73- "5 

78.75 

66.75 

53-75 

43.5 

44.062 

41.312 

44-375 
49.062 

41-25 

36.875 

34-625 

28.812 

46.25 

84.625 

36  as 

23.937 

33.062 

44.06a 

45-5 
30125 

55-3" 
31  35 

38.937 

33-937 
41. 063 

61.25 

41937 
31- 35 

30-375 
3^562 

4935 
50-437 


4S-»a5 

37875 
a7. 562 

Sa-375 

45 

29.562 

33- 81 2 

36.687 

43.937 

43.437 


17a  625 

168.687 

107. 125 

67.375 

192.062 

140.625 

250 

304.063 

144.06 


*  U.  ft.  OrdnanM  Maaosl,  1841. 


212 


SPECIFIC  GBAVITY   AND   WEIGHT. 


StTBSTAKCM. 


Stones,  Karths, 
etc. 


Basalt. 


Bitumen,  red  . . . 

"       brown. 

Borax 


Brick. 


**    pressed 

"    fire 

"    work  in  cement . . 


(( 


"     "  mortar 


Carbon 

Cement,  Portland 
Roman.. 


•{ 


(t 


Chalk. 


Clay 

"  with  gravel. 

Goal,  Anthracite. 


It 

(4 
t( 
U 

l( 
(( 
i( 

i( 

it 


Borneo 
Cannel . 


Caking 

Cherry 

Chili 

Derbyshire . . 
Lancaster. . . . 
Maryland. . . . 
Newcastle . . , 
Rive  de  Gier. 


"    Scotch. 


ti 
tt 


Splint 

Wales,  mean 

Coke '. 

"    Nat'l,  Va.« 

Concrete,  in  cement. . . . 

*'       mean 

Earth,*^  common  soil,dry 

loose  

moist  sand 

mold,  fresh 

rammed 

rough  sand 

with  gravel .... 

Potters' 

light  vegetable. . 


ti 
tt 
ti 
it 
it 
tt 
tt 
it 


Emery 

Feldspar. 

Flint,  black 

•'     white. . . . 

Fluorine 

Fuel,  Warlich's 

•'    Lignite. . . 
Glass,  bottle.... 
Crown... 


It 


It 


flint. 


Specific 

Weight 
ofaCabe 

Gravity. 

Foot. 

I.be. 

2740 

171.25  ! 

2864 

179 

1 160 

72.3 

830 

517 

1714 

107.125 

1367 

85437 

1900 

118.75 

2400 

150 

2201 

137562 

1800 

112.5 

1600 

100 

2000 

125 

3500 

218.75 

1300 

81.25 

1560 

97-25 

1520 

95 

2784 

«74^ 

1930 

120.025 

2480 

155 

1350 

84-375 

1436 

8975 

1640 

102.5 

1290 

8a  625 

1238 

77-375 

1318 

82.375 

1277 

79.812 

1276 

79-75 

X290 

80.625 

1292 

80.75 

"73 

79.562 

"355 

84.687 

1270 

79-375 

1300 

81.35 

"59 

78.687 

1300 

81.25 

1302 

81.375 

i3»5 

82. 187 

1000 

62.5 

746 

46.64 

2200 

137-5 

2000 

125 

X2l6 

76 

1500 

93-75 

2050 

128.125 

2050 

128. 125 

1600 

100 

1920 

X20 

2020 

126.25 

Z900 

118.75 

1400 

87.5 

4cx)o 

250 

2600 

162.5 

2582 

161.375 

2594 

162.125 

1320 

82.5 

1 150 

71-875 

1300 

81.25 

2732 

170-75 

2487 

155-437 

2933 

183.312 

3200 

196 

BUBSTAiraXB. 


stones,  KartliB, 
etc. 

Glass,  green 

*'''     optical 

"    white 

**     window 

"    soluble 

GniesB,  common 

Granite,  Egyptian  red.. 

*'       Patapsco 

"       Quincy 

"       Scotch 

'^       Susquehanna.. 

it  41  gray 

Graphite 

Gravel,  common 

Grindstone. 

Gypsum,  opaque 

Hone,  white,  razor 

Hornblende. 

Iodine, 


it 
tt 
tt 
tt 
tt 
it 
tt 
it 
tt 
tt 


Lava,  Vesuvius | 

Lias 

Lime,  quick 

"     hydraulic 

Limestone,  white 

*♦         green 

Magnesia,  carbonate. . . . 

Magnetic  ore 

Marble,  Adelaide 

Aflrican 

Biscayan,  black. 

Carrara 

common 

Egyptian 

French 

Italian,  white. . . 

Parian 

Vermont,  white. 

Silesian 

Marl,  mean 

tough 

Masonry,  nibble 

"■       Granite 

*'       Limestone 

"       Sandstone 

"       Brick 

"         ''rough  work 

Mica 

Millstone 

''      Quartz 

Mortar | 

Mud 

''   wet  and  fluid 

tt     it     it    pressed... 

Nitre 

Oyster-shell 

Paving-stone 

Peat,  Irish,  light 

"      "     dense 

tt       ^gyy         ti        

*  Specific  gr&Tity  of  earth  b  ettimated  at  from  1520  to  aaoo. 


Specific 
Gravity. 


2642 

3450 
2892 

2642 
1250 
2700 

2654 
2640 

2652 

2625 

2704 

2800 

2200 

1749 
2143 
2168 

2876 

3540 
4940 
1710 
2810 

1350 
804 

2745 
3156 
3180 

2400 
S094 

271S 
2708 

269s 
2716 
2686 
2668 
2640 
2708 
2838 
2650 
2730 

1750 
2340 

2050 
2640 
26^0 
2160 
2240 
1600 
2800 
2484 
1260 
1384 
1750 
1630 

1782 

1920 

1900 

2092 

2416 

278 

562 

675 


Weislit 

of  a  Cab* 

Foot. 

Lba. 


165.125 
215.625 
i8a75 
165.125 
78. 125 
167.4 
165.87s 
165 

165-75 
164.06a 
169 
175 

»37-5 
109.31a 

«33-937 
135-5 
179-75 
221.25 

106.875 
175.625 
146.875 
50.25 
171.568 

197-25 
198.7s 

150 
3'7-6 
169.687 
169.25 

168.437 
169.75 

167.87s 

166.75 

165.56ft 

169.25 

177-375 

16557 

170.625 

109-375 

146.25 

128.125 

16s 
165 

«35 
140 

100 
175 
155.25 

78.75 
86.5 

109-375 
101.875 
112 
lao 
118.75 
130.75 
151 
17.375 

35-125 
43.187 


SPECIFIC  GEAVITY  AKD  WEIGfiT. 


213 


SVBKAltCIS. 


Stones,  Karths, 
etc. 


Peat,  black 

Pbospborus 

Plaster  of  Paris. 


(t 


t( 


(( 


dry — 

Plumbago 

Porcelain,  Cbina 

Porpbyry ,  red. 

Pumice-Btone 

Qaartz. 

Red  lead 

Resin. «. 

Rock,  crystal 

Rotten-stone 

Salt,  common 

"    rock 

Saltpetre 

Sand,  coarse 

common 

damp  and  loose. . 

dried    "      " 

dry 

mortar,  Ft.  Rich  m'd 
*'      Brooklyn.. 

silicious. 

Sandstone,  mean 

♦*  Sydney 

Scborl 

Scoria,  volcanic  

Sewer  pipe,  mean 

Sbale 


tt 
(( 
(( 
(( 
II 
II 


Slate 


(*  purple 

Smalt 

Soapetone 

Spar,  calcareous 

Feld,  blue , 

"     green , 

Fluor , 

Specular  ore , 

Stalactite , 

Btone,  Batli,EngI 

Blue  Bill 

Bluestone  (basalt) 

Breakneck,  N.T.. 

Bristol,  Engl 

Caen,  Normandy. 

common 

Craigleith,  Scotl. . 

Kentish  rag,  ''  . . 

Kip's  Bay,  N. Y. . 

Norfolk     (Parlia- 
ment House). . . 

Portland,  Engl. . . 

StatenIsl'd,N.Y. 

Sullivan  Co.,  " 

Sulphur,  native 

Terra  Cotta 

Tile 

Trap. .*ttrf  •> 


It 
II 
II 


II 
«i 
ti 
It 

<t 
It 
If 
•I 
II 
<t 

tt 
II 

ti 


Wtiglit  I 


Specific 

of  a  Cube 

Gravity. 

Foot. 

Dm. 

1058 

66.  X25 

1329 

83.062 

1770 

1x0.625 

1 176 

73-5 

3400 

212.5 

1400 

87.5 

2IOO 

131.25 

2300 

143-75 

2765 

172.812 

9«5 

57- 187 

2660 

166.25 

8940 

558.75 

1089 

,68.062 

8735 

170.937 
123.812 

1981 

2130 

133-125 

2200 

137-5 

2090 

130.625 

1800 

X12.5 

1670 

104-375 

1392 

87 

X560 

?Z-S 

1420 

88.75 

1659 

X03.66 

1710 

107.25 

1 701 

106.33 

2200 

137-5 

2237 

x39-8x 

3170 

X98.125 

830 

51-875 

2250 

140.625 

2600 

162.5 

2672 

167 

2900 

181.25 

2784 

174 

2440 

152.5 

2730 

170.625 

2735 

170-937 

2693 

168.312 

2704 

X69 

3400 

212.5 

525« 

328.187 

2415 

150.937 

1961 

122.562 

2040 

165 

2625 

164.062 

'  2704 

X69 

2510 

156.875 

2C76 

129.75 

2520 

157-5 

2316 

M4-75 

2651 

165.687 

2759 

172 

2304 

144 

2368 

148 

2976 

186 

2688 

168 

2033 

127.062 

1953 
1815 

X22 

"3-437 

979Q 

170 

SuBSTAMcaa. 


O-ranite. 
iGenHGiUmore,U.  S.  A.) 
Dulutb,  Minn.,  dark. . . . 
Fall  River,  Mas&,  gray. . 
Garrison's,  N.  Y  "  .. 
Jersey  City^  N.  J.,  soap.. 
Keene,  N.  U.,  bluish  gray 

Maine 

Millstone  Pt,  Conn 

New  Ix>ndon,      "   

Quincy,  Mass.,  light .... 
Richmond,  Va. 

"  u  gray 

Staten  Island,  N  Y. . . . . 
Westchester  Co.,  N.  Y. . 
Westerly,  R.  I.,  gray. . . . 

Xjinaestone. 

{OenH  GiUm&re,  U.  S.  A. ) 

Bardstown,  Ky.,  dark  . . 

Caen,  France 

Canajoharie,  N.  Y 

Cooper  Co. ,  Mo. ,  d'k  drab 
Erie  Co.,  N.  Y  ,  blue... 

Garrison's,  N.  Y 

Glens'  Falls,  "  

Joliet,  111.,  white 

Kingston,  N.  Y 

Lake  Champlain.  N.  Y. . 
Lime  Island,  Mich.,  drab 
Marblebcad,  Ohio,  white 
Marquette,  Mich.,  drab . 
Sturgeon  Bay,  Wis.,  blu- 
ish drab 


Specific 
Gravity. 


AlarlDle. 
(Gen'lOUlmore.U.S.A.) 

Dorset,  Vt.... 

East  Chester,  N.  Y. 

Italian,  common 

Mill  Creek,  111.,  drab.... 
North  Bay,  Wis.,  "  .... 

Sandstone. 

(GenH  GiUmore,  U.  S.  A.) 

Albion,  N.Y.,  brown. . . . 
Belleville,  N.  J.,  gray . . . 


Berea.  Ohio,  drab 

I  Cleveland,  "  olive  green 
Edinb'h,Sc'tl.,  Craigleith 
Fond  du  lAC,Wis.,  purple 
FoutenaCjMinnnrg'tbuff 
Haverstraw,  N.  Y.,  red. . 
Kasota,  Minn.,  pink.... 
Little  Falls,  N.  Y,  brown 
Marquette,  Mich.,  purple 
Masillon,  O.,  yellow  drab 
Medina,  N.  Y,  pink 

'■  Middletown,  Ct.,  brown. 
Seneca,  Ohio,  red    '' 

;  Vermillion,  Ohio,  drab. . 

I  Warrensbargh,  Mo 


3780 

2635 
3580 
3030 
2656 
2635 
2706 
2660 
2695 
2727 
2630 
2861 

2655 
2670 


2670 
1900 
2685 
2320 
2640 

2635 
2700 
2540 
2690 
2750 
2500 
2400 
2340 

2780 


2635 
2875 
2690 
2570 
2800 


2420 
2259 
2110 
2240 
2260 

2220 
2325 

2130 
2630 
2250 
2285 
2x10 
2410 
2360 
2390 
2160 
2140 


Weisht 

of  a  Cab 

Foot. 


Lbt. 


173-7 
164.7 

161. 2 

189-3 
166 

164.7 

169  x 

166.25 

168.5 

170.5 
164.4 
178.8 
165.9 
X66.9 


66.9 
18.8 
67.8 

41-3 

65 

64.7 

68.7 

58.7 
68.1 
71.9 

56.3 

50 

46.25 

X73-7 


164.7 

;  179-7 

>  168.  z 

171.9 

'75 


X41.3 

»3i-9 
X40 

X41.25 

138-7 
145-3' 
133- 1 

X64.375 
140.6 

142-5 
131.87 

150.6 

«47-5 
149.4 

135 
133-75 


2X4 


spsciFio  GBAvrry  and  wiught. 


Spae.  Gmr. 

Agate 3590 

Amethyst. 3920 

CarnelittD 2613 

Chrysolite 2782 

Diamond,  Oriental. . .  3521 
*■*■        Brazilian..  3444 

"        pure 3520 

Emerald 3950 


Precious   Stones. 

Spec.  Gr«T. 
Emerald,  aqua    ma- 
rine   2730 

Garnet 4189 

"     black 3750 

Jasper. 2600 

Jet 1300 

ijipiB  lazuli : .  2960 

Mijachite 4030 


SpocGfiiT. 

Onyx 2700 

Opal 2090 

Pearl,  Oriental 2650 

Ruby 3980 

Sapphire 3994 

Topaz 3500 

Tourmaline 3070 

Turquoise 2750 


SuBSTAHCBa. 


l^iscellaneovis. 

Amber 

Atmospheric  Air 

Beeswax 

Bone 

Butter 

Camphor 

Caoutchouc 

Cotton 

Dynamite 

Egg 

Fat  of  Beef 

Hogs 

Mutton 

Flax 

Gamboge 

Glycerine,  60° 

Grain,  Barley 

"      Wheat 

"      Oats 

Gum  Arabic. 

Gunpowder,  loose , 

'''■         shaken 


It 
it 


it 


solid.. 

Gutta-percha 

Hay,  old  compact. 

Horn 

Human  body 

Ice.  at  32^ 

Indigo 

Isinglass 

Ivory 

Lard 

Leather 

Mastic 

Myrrh 

Nitro-Glycerine . . . 

Opium 

Potash 

Resin 

Snow 

Soap,  Castile 

Spermaceti 

Starch 

Sugar 

"    .66 

TaUow 

Wax 


SpMific 

Weicbt 
of  a  Cube 

Gravity. 

Foot. 

Lbs. 

1090 

68.125 

.001292 

.080728 

965 

60.312 

1900 

118.75 

942 

58.875 

988 

61.75 

930 

58.125 

950 

59-375 

1659 

103.125 

1090 

— 

923 

57.687 

936 

58.5 

923 

57.687 

1790 

X11.875 

1222 

— 

I26Z 

78.752 

590 

36.875 

750 

46.875 

500 

3125 

1452 

90.75 

900 

56.25 

1000 

62.5 
96.875 

1550 

1800 

112.5 

980 

61.25 

128.8 

8.05 

1689 

105.563 

1070 

66.935 

923 

57-5^ 

1009 

63.063 

IXII 

69-437 

1825 

114.062 

947 

59187 

960 

60 

1074 

67.125 

1360 

85 

1600 

xoo 

1336 

835 

2100 

131.25 

io8q 
.0833 

68.062 

5-2 

1071 

66.937 

943 

58.937 

950 

59-375 

x6o6 

"00-37S 

972 

60.25 

1326 

82.875 

941 

58.812 

964 

60.25 

970 

60.695 

SlXHTAKCES. 


ti 
tt 
tt 
Ct 
t( 
{( 

tt 
tt 
(t 

tt 


tt 
tt 
t( 
tt 
tt 
tt 
tt 
tt 

tt 


tt 
(t 
tt 
tt 
tt 
ft 


ILiiquids. 

Acid,  Acetic 

Benzoic 

Citric 

Sulphuric,  Gou'd. . 

Fluoric 

Muriatic 

Nitric 

Nitrous 

Phosphoric 

"  solid. . 

Sulphuric 

Alcohol,  pure,  (kP 

95  per  cent. 

50 

40 

as 
10 

S 

proof  spirit,  •so 
per  cent. ,  60* 
proof  spirit,  50 
per  cent. ,  80° 
Ammonia,  27.9  percent. 

Aquafortis,  double 

"         single 

Beer 

Benzine 

Bitumen,  liquid 

Blood  (human) 

Brandy,  .83  or  .5  of  spirit 

Bromine 

Cider 

Ether,  Acetic. . . . 
''  Muriatic. 
"  Nitric... 
''     Sulphuric 

Honey 

Milk 

Oil,  Anise-seed . . 

Codfish 

Whale 

Linseed 

Naphtha 

Olive 

Palm 

Petroleum... 

Rape 

Sunflower. . . 
Turpentine . 


Spociflc 
GrftTity. 


(I 
(( 
tt 
(( 
i( 
(( 
it 
i( 
<t 


1063 

667 
1034 
1531 
1500 
1200 
1217 
1550 

1558 
2800 
1849 

794 
816 
863 

934 
951 
970 
986 
992 

I  934 

[  875 

891 
1300 
1200 

1034 
850 
848 

1054 

924 

2966 

1018 

866 

845 

IIIO 

715 

1450 
1032 
9i6 
933 
933 
040 
850 

915 


Weisht 

of  a  Cub* 

Foot. 


80 

70 


I 


Urn. 

66.375 
41.687 
64.635 
95-063 

93-75 
75 

76.063 
96.87s 

97  375 
175 
115.563 

49.633 
51 

53-937 
58.375 

60.635 
61.635 
62 

58.375 

54687 

55687 
81.35 

75 
64.635 

53.  "5 

53  . 
65.875 
57-75 

185. 375 
63.635 

54- "5 
52.81a 

69-375 
44-687 

90.635 

64.5 

61.625 

57.687 

57.687 

58.75 

53125 

57- 187 

60.563 

55 

57.1  as 
57875 

54  37S 


•  Sp0oifl«  f;tvi\ij  of  pfoof  ipirif  Mcoptlj^^  |e  Uro^  T«bU  for  Byket'a  HydroimUri  93% 


SPECIFIC  <3lBAVlTlr  ANt>   WGIOHT. 


Hi 


Xiiquids. 
Bpirii,  rectified — 
Steam,  al  ai2°  . . . . 

I'ar 

Vinegar 

Water,  at  330. 


"  391°. 

"   620t.. 


212 

distilled,  at  39O. 
•  03818. 


Sp«eifie 

Wfllffkt 
ofsCvbe 

Grafity. 

Foot. 

Lbt. 

824 

51-5 

.00061 

.038* 

1015 

63-437 

1080 

67-5 

998.7 

62.418 

998.8 

62.425 

997-7 

62.35s 

956.4 

59-64 

998 

62.379 

SOBBTAIfCW. 


XjiquicLs. 

Water,  Dead  Sea. 

"     Mediterranean. 

**     sea.. 

"     Black  Sea.*!.*!! 

*'     rain 

Wine,  Burgandj 

''      Champagne 

"      MadeiRi 

"      Port 


Specific 
<;nivlty. 


1240 
1029 
1029 
lOiO 
1000 
992 

997 
1038 

997 


Weight 

ofaOalM 

Foot 


Lbs. 

77-5 

64.312 

64.312 

63-5 
62.5 

62 
62.312 

64-375 
62.312 


1 1  cnbe  inch  at  standard  temperature  =>  252.5954  graiiu. 


Compression  of  Tollowing  fluids  under  a  pressure  of  15  lbs.  per  square  inch: 
AlcoboL.  .00002x6  I  Mercury..  .00000265  |  Water..  .00004663  |  Ether..  .00006x58 

Slastio   iriuids. 

X  Ctibe  JFkxd  of  AlmasfAearie  Air  aJt  yi^  weighs  .080728  Ibt.  .iootn^ujiow  =  565.096 

ffrainBy  tmd  at  62°  532.679  gramt. 

Its  cusumed  Gravity  <ifi  is  Unit /or  Elastic  Fluids. 


Spec. 

Acetic  Ether 3 

Ammonia 

Atmos.  air,  at  32^. . 

AKOte 

Carbonic  acid 

'*       oxide 

CarbnretM  H  jdrog. 

Chlorine 2 

Cbloro-carbonic. . .  3 

Chloroform 5 

Cyanogen 1 

Gas,*coal........  j 

Hydrochloric  acid .  i 
Hydrocyanic     *'   . 

Hydrogea 

Muriatic  aoUL z 


Onv.  j  Spec.  Orar.  1 

04       Nitric  acid 1.217 

589  '     **     oxide 1.094 

Nitrogen 974 

976      Nitrous  acid 2.638 

53        Nitrous  oxide ... .  1.527 

972-  '  Oleflant  gas 9672 

559  I  Oxygen no6 

421  I  Phoephurett'd  Hy- 

389         dregen 1.77 

3         Sulphuretted  Hy- 

815         drogen x.17 

438      Sulphurous  acid..  2.21 
752     Steam,!  at  212°. . .    .47295 
278     Smoke. 
942         Bltum.  Coal . . . 

0692       Coke 

247         Wood 

%  Weight  of  a  cabe  foot  267.26  graifu,  and  compared  with  water  at 


.102 

.105 

09 


Spec.  Orsr. 
Vapor. 

Alcohol 1.613 

Bisulphuret        of 

Carbon 2.64 

Bromine 5.4 

Chloric  Ether ....  3.44 

Chloroform 4. 2 

Ether 2. 586 

Hydrochlor.  Ether  2.255 

Iodine 8.7x6 

Nitric  acid 3.75 

Spirits  of  Turpen- 
tine.   5-0x3 

Sulpburicaoki ...  2. 7 
"        Ether..  2.586 

Sulphur 2.214 

Water 623 

62*  epecific  gravity  =  .000  6ia  3. 


Weighl  of  a  Cvbe  Foot  of  Gtues  at  32*^  P,^  and  under  Pressure  of  one  Atntot' 

pkere^  or  2116.4  UfB.per  Square  Foot. 


Lbs. 

Air,at3aO 080728 

-'    '*  63O 076097 

Alcohol 130  2 

Carbonic  acid 12344 

Carburet.  Hydrog.  .04462 


Lbs. 

Chlorine. 197 

Chloroform 428 

Cbal  gas 035  36 

Ether,  Sulpharic. .  .2093 
Gaseous  steam 050  22 


Hydrogen . . 
Nitrogen  . . . 
Olefiant  gas. 

Oxygen 

Steam 


Lbs. 

•005  594 
.078  596 

.0795 
.089256 
.050  22 


Sulphurous  acid 1814  Ib& 


To   Oonxptxte   TVeinlit   of  a    Sody    or    Su'betaxxoe    -virhezi 

Speci^jo   Qravxty   is   isiveii. 

Rule. — Multiply-  spccifio  ^^nrvtty  by  umt  or  standard  of  body  or  sul>- 
stance,  and  product  is  the  weight. 

Or,  Divide  specific  gravity  of  body  or  subatauce  by  i6|  and  quotient  will 
give  weight  o€  a  enbe  loot  eil  it  in  lbs. 
ExAxruL — Specific  gravity  is  2250;  what  is  weight  of  a  cube  foot  of  it? 

3250  X  62. 5  =  X40.635  U>s. 


2l6 


WEIGHTS  OP  VABIOUS  SUBSTANCES. 


Weigbits  and  Volumes  of*  various  Su-'batanoes  in 

Ordinary  TJse. 


SUBSTAHCBS. 


Cabe  Foot. 


IMLetals. 

Brass      i^^P^erej) 
Brass.,  j^jjjj,      ^^> 

«<  gun  metal. 

**  sheets 

"  wire 

Copper,  cast 

^*      plates 

Iron,  cast 

"     gun  metal 

"     heavy  forging.. 

"     plat-es 

"  wrought  bars. . . 
Lead,  cast 

"      rolled 

Mercury,  60° 

Steel,  plates 

"      soft 

Tin 

Zinc,  cast 

"     rolled 


Ash 

Bay 

Blue  Gum 

Cork 

Cedar 

Chestnut 

Hickory,  pig  nut 

"       shell-bark.. 

Lignum- vit«e 

Logwood 

Mahoga'y,Hondur'8  { 

Oak,  Canadian 

English 

live,  seasoned... 

"    white,  dry 

"  "  upland. . . 
Pine,  pitch....* 

"     red 

"     white 

"  well  seasoned.. 
Pine,  yellow 


Lbs. 
488.7s 

543  75 

5»3-6 

514.16 

54725 
543-625 

450437 
466.5 

479-5 
481.5 
486.75 
709.5 

711.75 
848.7487 

48775 

489. 562 

455-687 
428.812 

449-437 


52.812 

51-375 

643 

15 

35-062 

38.  "5 

49-5 
43-125 

83-3" 
57.062 

35 

66.437 

54-5 

58.25 

66.75 

53-75 

42-937 
41.25 

36.875 
34-625 
29.562 

33-812 


Cabe  loch. 


Lb*. 

.2829 

•3147 
.297 

•3033 
•3179 
•3167 
.2607 
.27 

-2775 
.2787 

.2816 

.4x06 

•4119 
.491174 

•  2823 

.2833 

.2637 

.2482 

.2601 

Cab«  Feet 

in  M  Ton. 

42.414 

43.601 

34.837 

149-333 
63.886 

58.754 
45252 
51-942 
26.886 

39255 
64 

33-714 
41.X01 

38.455 
33-558 
41.674 
52.169 

543^3 
60.745 

64.693 

75-773 
66.248 


SI7B8TA.IICBS. 


"Woods. 

Spruce 

Walnut,  black,  dry. . . 

Willow 

"      dry 

A£ i  seel  1  ail  ecus. 

Air. 

Basalt,  mean 

Brick,  fire 


Cabe  Foot. 


ii 


mean. 


Coal,  anthracite....  | 


(t 


bitumin.,  mean. 

Cannel 

Cumberland. . . . 
"    Welsh,  mean... 

Coke 

Cotton,  bale,  mean . . . 

"        "   pressed  { 

Earth,  clay 

*'     common  soil.. 
**       gravel 

dry,  sand 

loose 

moist,  sand... 

mold 

mud 

with  gravel... 

Granite,  Qui  ucy 

'^       Susquehanna 

Gypsum 

Hay,  bale. 

*'    hard  pressed. . . . 

Ice,  at  32° 

India  rubber 

"         "  vulcanized 

fiimcstone  . .' 

Marble,  mean 

Mortar,  dry,  mean. . . 

Plaster  of  Paris 

Water,  rain 

»'      salt 

"      at  62° 


it 

K 

a 
ii 
ii 
(( 


Lb«. 

31-25 
31-25 
36.562 

30.375 


.075291 

175 

137-562 

102 

89.7s 
102.5 

80 

94875 
84.687 

81.25 

62.5 

14s 
20 

25 
120.625 

137-135 
109.312 

I20 

93-75 
128.125 
128.125 
101.87s 
126.25 
165.75 
169 

135-5 
12 

25 

57-5 

56.437 


MetaU.—Toh'm  Bronze. 


Cabe  fbot. 

522.02  lbs. 


197.25 

167.875 
97.98 

73-5 
62.5 
64.312 
62.355 

Cube  incn. 

3021  lb& 


Cube  Feet 
in  •  Ton. 


71.68 
7168 
61.265 

73.744 


12.  8 

16.284 

21.961 

24.958 
21.854 
28 

23.609 

26.451 

27- 569 

3584 

154-48 

114 
89.6 

18.569 
16.335 

20.49 
18.667 

23-893 

17.483 
17.482 
21.987 

17.742 

»3-5i4 
13-254 
i6.'53x 
186.66 
80.6 

38-95 
39-69 

"-355 

13-343 
22.869 

30.476 
35.84 
3483 
35-955 


To  Compvite  Proportions  of  T-w-p  Ingredieixts  in  a  Com- 
pound, or   to   DiHCOver   Advilteration   in    ^iletals. 

Rule.— Take  differences  of  each  specific  gravity  of  ingredients  and  spe- 
cific gravity  of  compound,  then  multiply  gravity  of  one  by  difference  of 
other ;  and,  as  sum  of  products  is  to  respective  products,  so  is  specific 
gravity  of  body  to  proportions  of  the  ingredients. 

Example.  —  A  compound  of  gold  [spec.  grav.  =  18.888)  and  silver  («p«c.  grao. :» 
10-535)  b&A  A  speciQc  gravity  of  14;  what  is  proportion  of  each  moUJ? 

18.8S8— r4=:4- 888  X  10.535  =  51-495-     14—10.535=3-465X18.888=65.447. 
65.447+51-495  =  65-447  "-14: 7835  P»W,    65. 447+51.495: 51. 495'. '.14: 6. 165  Wtoeil 


WSIGHTS   OP  VARIOUS  SUBSTAJ^CES  IN  BULK.      21/ 


'Weiglk.ts  of* Various  Su.'bstazioes  per  Cixlae  foot  in  Sulk. 


LiM. 

Lead,  in  pigs 567 

Iron,      "      360 

Marble,    in  blocics ) 
Limestone,     "      J    •  '^^ 

Trap 170 

Granite,  in  blocks ....  164 
Sandstone -.  141 


LbB. 

Potters'  clay 130 

Loam 126 

Gravel 109 

Sand 95 

Bricks,  common ....    93 

Ice,  at  32° 57.5 

Oak,  seasoned 52 


Ash,  dry,  100  feet  BM 175  ton. 

"    white,  *'        '• 141    " 

Cement, struck  bushel  and 

packed* 100  lbs. 

Cement,  Portland,  bushel. no  lbs. 

Cherry,  dry,  100  BM 156  ton. 

Chestnut,  dry,  100  BM...      .153    " 
Coal,  anthracite,  i  cub.  yd. 

broken  and  loose ...    1.75  yds. 

"       "       '*       I  ton..  41.5  cub.  feet 

Coke,  ton  = 80  to  97  cub.  feet. 

Earth,  common  soil 137-125  lbs. 

*  One  packed  basbel  =  z.43  looee. 
Comparative   AVeiglit   of*  G^reezi   and   Seasoned   Xixn'ber. 


Lb» 

Coal,  caking 50 

Wheat 48 

Barley 38 

Fruit  and  vegetables..  22 

Cottonseeds. 12 

Cotton 10 

Hay,  old '.    8 

Earth, loose 93.75  lbs. 

Elm,  dry,  icx)  feet  BM 13  ton. 

Gypsum,  ground,  str.  bush.    70  lbs. 

"  "    well  shaken  80  " 

Hemlock,  dry,  100  feet  BM.       .093  ton- 
Hickory,     "        "        '•    .       .197    " 
Masonry, Granite, dressed..  165  lb& 
"  '*      rough...  126  *' 

"       Limestone,  dresM  165  " 

"       Sandstone 135" 

"       Brick,  pressed  ...  140  ** 
"         ♦♦  com'n,  rough.  100  '* 


TiMBBX. 


AiacTican  Pine. 

Ash 

Beech 


Weie^t  of  •  Cube  Foot. 
Green.       Seasoned. 


Lbe. 

44-75 
58.18 
60 


Lbs. 
30-7 
50 
53-37 


TlMBBB. 


Cedar 

English  Oak 
Riga  Fir 


Weight  of  a  Cube  Foot. 
Green.       Seasoned. 


Lbs. 
32 
71.6 

48-75 


Lba. 
28.25 

43-5 
35-5 


^pplioatioxi  of  tlie  'Pa'bles. 


When  Weiffkt  of  a  Solid  or  Liquid  Subttance  is  required.  Rule. — Ascer- 
Ain  volume  of  substance  in  cube  feet ;  multiply  it  by  unit  in  second  column 
of  tables  (its  specific  gravity),  and  divide  proauct  by  16 ;  quotient  will  give 
weight  in  lbs. 

When  Volume  is  given  01*  ascertained  in  Inches.    RtiLE.—Multiply  it  by 
nnit  in  third  column  of  tables  (weight  of  a  cube  inch),  and  product  will  give 
weight  in  lbs. 
EzAMFLB.— What  is  weight  ol  a  cube  of  Italian  marble,  sides  being  3  feet? 

33  X  3708  =  731160*.,  which  -r- 16  =  4569. 75  Uu. 
Or  of  a  sphere  of  cast  iron  2  inches  m  diameter? 

2^  X  •  5336  X  .2607  weight  of  a  cube  inch  =  1.092  lbs. 

When  Weight  of  an  EScutic  Fluid  is  required.  Rule. — Multiply  specific 
gravity  of  fluid  by  532.679  (weight  of  a  cube  foot  of  air  at  62°  in  grains), 
divide  product  by  ycxxn.  (grains  in  a  lb.  Avoirdupois),  and  quotient  will  give 
weight  of  a  cube  foot  in  lbs. 

EzAMPLB.— What  is  weight  of  a  cube  foot  of  hydrogen? 

Specific  gravity  of  hydrogen  .0692. 

532.679  X  .0692  -T-  7000  =r  .005  265  9  lbs. 

To  Compute  "Weiglit  of  Cast  iMetal  t>y  "Weiglit  of  Pattern. 

When  Pattern  is  of  White  Pine,  Rule.— Multiply  weight  of  pattern  in 
lbs.  by  following  multipliers,  and  product  will  give  weight  of  casting : 

Iron,  14 ;  Brass,  15 ;  Lead,  22 ;  Tin,  14 ;  Zinc,  13.5. 

When  the  Cores  w  Prints  are  of  White  Pine.  Multiply  the  product  of  their 
area  and  length  in  inches  by  .0175  or  .02,  according  to  the  dryness  of  the  wood,  and 
proportionately  for  other  woods,  and  result  is  weight  of  core  or  print  to  be  deducted 
firom  weight  of  pattern. 


2l8         BALLOONS,  SdRINKAGB   OF   CASTINGS,  ETC. 

To  OoTOpu.te  Weiglits  of  Ingredients,  tliat  of  CoxnpoTixid. 

1361113  given. 

Rule. — As  specific  ^avity  of  compound  is  to  weight  of  compound,  so  are 
each  of  the  proportions  to  weight  of  its  material. 
ExAJiPLB.— Weight,  as  p.  2x6,  being  28  lbs.,  what  are  weights  of  the  ingredients f 


lA-  28"  f7-^35  :  1567  gold, 
'4  •  ***  ••  \6.i65  :  12.33  silver. 


Note. — Specific  gravity  of  alloys  does  not  usually  follow  ratio  of  their  compo- 
nents, it  being  sometimes  greater  and  sometimes  less  than  their  mean. 

To   Compute   Capacity  of*  a   Salloon. 
Rule. — From  specific  gravity  of  air  in  grains  per  cube  foot,  subtract  that 
of  the  gas  with  which  it  is  inflated ;  multiply  remainder  by  volume  of  bal- 
loon in  cube  feet ;  divide  product  by  7000,  and  from  quotient  subtract  weight 
of  balloon  and  its  attachments. 

ExAMPLB.— Diameter  of  a  balloon  is  26.6  feet,  Us  weight  is  100  lbs.,  and  specific 
gravity  of  the  gas  with  which  it  is  inflated  ts  .oy  (air  being  assumed  at  i);  what  is 
its  capacity,  specific  gravity  of  air  assumed  at  527.04  grains. 

527.04  —  (527.04  X  .07)  X  26. 6  3  X.  5236  ^ 
7^^^ ioo=59ao4n* 

To    Compute   Diameter  of*  a  Salloon. 

Weight  to  be  raised  being  given. — By  inversion  of  preceding  rule. 

/W  -^  7000  ^"  8  •"  s' 

^       ■— ^        - — *—  =.d',    8  and  s'  representing  loeight  of  mr  and  gas 

in  grains  per  cube  foot  ^  W  weight  to  he  raised  in  Ibs.j  and  d  diameter  of  bal- 
loon in  feet. 

Illustration.— Given  elements  in  preceding  case. 

Then    3/ 59004 -f  100  X  7000 -^5^7^4-36J9^    3 /S^^±^  =  ^6.6  feet. 
sf  .5236  V    -5236 

Proof  of  Spirituous    Liquors. 

A  cube  inch,  of  Proof  Spirits  weighs  234  grains ;  then,  if  an  immersed 
cube  inch  of  any  heavy  body  weighs  234  grains  less  in  spirits  than  air,  it 
sliows  that  the  spirit  in  which  it  was  weighed  is  Pi  oof 

If  it  lose  less  of  its  weight,  the  spirit  is  above  proof;  and  if  it  lose  more, 

it  is  below  proof. 

Illustration. —A  cube  inch  of  glass  weighing  700  grains  weighs  500  grains  when 
weighed  in  a  certain  spirit;  what  is  the  proof  of  it? 

yc)o  —  500  =  200  =  grains  =  weight  lost  in  spirit. 

Then  200  :  234  ::  i  :  1.17=  ratio  of  proof  qf  spirits  compared  to  proof  spirits^  or 
X  =3 .  17  above  proof 

Note.— For  Hydrometers  and  Rules  for  ascertaining  Proof  of  Spirits,  see  page 
67;  and  for  a  very  full  troatise  on  Specific  Gravities  and  on  Floatation,  see  Jamie- 
sou's  Mechanics  of  Fluids.     Load.,  1837. 

Slirixikage   of  Castings. 
It  is  customary,  in  making  of  patterns  for  castings,  to  allow  for  shrinkage 
per  lineal  foot  of  pattern  as  follows : 

Iron,  small  cylinders  . . .  =  ^  in.  per  ft.    Ditto  in  length. ...  =r  3^  in  16  ins. 

"    Pipes =  >^       "  Brass,  thin =  >^  in  9  ins. 

"    Girders,  beams,  etc.  =  >^  in  15  ins.        "      thick =  >^  in  10  ins. 

"    Large  cylinders, ")  '  Zinc =^  ^  in  a  foot 

tlie  contraction  >  =  ^  per  foot.    Lead =  ^        " 


of  diam.at  top.  J 
♦*    Ditto  at  bottom..^  A     " 


Ck)pper =^ 

Bismuth ar^V        ** 


GEOMETRY. 

IDefiiiitioiis. 

PtfifU  has  poeition,  but  not  magnitude. 

Line  is  length  without  breadth,  and  is  either  Rights  Curvedf  or  Mixed. 

RUfht  lAne  is  shortest  distance  between  two  points. 

Curved  Line  is  one  that  continually  changes  its  direction. 

Mixed  Line  is  composed  of  a  right  and  a  curved  line. 

Suwrficies  has  length  and  breadth  only,  and  is  plane  or  curved. 

Solid  Das  length,  breadth,  and  thickness,  or  depth. 

Angle  is  opening  of  two  lines  having  different  directions,  and  is  either 
Rightj  A  cute^  or  Obtuse. 
Biffht  Angle  is  made  by  a  line  perpendicular  to  another  falling  upon  it. 
Acute  Angle  is  less  than  a  ri^ht  angle. 
Obtuse  Angle  is  greater  than  a  right  angle. 

Triangle  is  a  figure  of  three  sides. 
Equilateral  Tiiangle  has  all  its  sides  equal. 
/.tveceles  Triangle  has  two  of  its  sides  equal. 
Scalene  Ti^ngle  has  aU  its  sides  unequal. 
Right-angled  Triangle  has  one  right  angle. 
Obtuse-angled  Triangle  has  one  obtuse  angle. 
A  cHte-angled  Tin  angle  has  all  its  angles  acute. 
Oblique-angled  Triangle  has  no  right  angle. 

Quadrangle  or  Quadrilateral  is  a  figure  of  four  sides,  and  has  following 
particular  designations — viz., 
ParaUehgram^  having  its  opposite  sides  paralleL 
Square,  miving  length  and  breadth  equal. 
Rt'ctangle,  a  parallelogram  having  a  right  angle. 

Rhombus  or  Lozenge^  having  equal  sides,  but  its  angles  not  right  angles. 
Rhomhmdy  a  parallelogram,  its  angles  not  being  right  angles. 
Trapezium,  having  unequal  sides. 

Trapezoid,  having  only  one  pair  of  opposite  sides  paralliel. 
Note. — Triangle  is  sometiines  termed  a  Trigon,  and  a  Square  a  Tetragon. 

Gnomon  is  space  included  between  the  lines  forming  two  similar  parallelo- 
grams, of  which  smaller  is  inscribed  within  larger,  so  as  to  have  one  angle 
m  each  common  to  both. 

Polggons  are  plane  figures  having  more  than  four  sides,  and  are  either 
Regular  or  Irregular,  according  as  tiieir  sides  and  angles  are  equal  or  un- 
equal, and  they  are  named  from  number  of  their  sides  or  angles.    Thus : 


Pentagon  has  five  sides. 
Hexagon    "  six     " 
Heptagon   "  seven" 
Octagon     "  eight  " 


Nonagon    has  nine  sides. 
Decagon       "    ten       " 
Undecagon  "    eleven  " 
Dodecagon   "    twelve" 


Circle  is  a  plane  figure  bounded  by  a  curved  line,  termed  Circum/erence 
or  Periphery. 

Diameter  is  a  right  line  passing  through  centre  of  a  circle  or  sphere,  and 
terminated  at  each  end  by  periphery  or  surface. 

A  re  is  any  part  of  circumference  of  a  circle. 

Chord  is  a  right  line  joining  extremities  of  an  arc. 

Segment  of  a  circle  is  any  part  bounded  by  an  arc  and  its  chord. 

Radius  of  a  circle  is  a  line  drawn  from  centre  to  circumference. 

Sector  is  any  part  of  a  circle  bounded  by  an  arc  and  its  two  radii. 

Semicircle  is  half  a  circle. 

Quadrant  is  a  quarter  of  a  circle. 

Zone  is  a  part  of  a  circle  included  between  two  parallel  cords. 

Lune  is  sjNice  between  the  intersecting  arcs  of  two  eccentric  circles. 


2^0  GEOMETRY. 

Secant,  is  line  running  from  centre  of  circle  to  extremity  of  tangent  of  arc. 

Cosecant  is  secant  of  complement  of  an  arc,  or  line  running  from  centre  of 
circle  to  extremity  of  cotangent  of  arc. 

Sine  of  an  arc  is  a  line  running  from  one  extremity  of  an  arc  perpendicu- 
lar to  a  diameter  passing  through  other  extremity,  and  sine  of  an  angle  is 
sine  of  arc  that  measures  that  angle. 

Versed  Sine  of  an  arc  or  angle  is  part  of  diameter  intercepted  between  sine 
and  arc. 

Cosine  of  an  arc  or  angle  is  part  of  diameter  intercepted  between  sine  and 
centre. 

Coversed  Sine  of  an  arc  or  angle  is  part  of  secondary  radius  intercepted 
between  cosine  and  circumference. 

Tanffent  is  a  right  line  that  touches  a  circle  without  cutting  it. 

CotanfferU  is  tangent  of  complement  of  arc. 

Circvmference  of  every  circle  is  supposed  to  be  divided  into  360  equal 
parts,  termed  Degrees ;  each  degree  into  60  Minutes^  and  each  minute  into  60 
Seconds^  and  so  on. 

Complement  of  an  angle  is  what  remains  after  subtracting  angle  from  90 
degrees. 

Supplement  of  an  angle  is  what  remains  after  subtracting  angle  from  180 
degrees. 

To  exemplify  these  definitions^  let  Acb^  in/ollomng  Figure,  be  an  (usumed 
arc  of  a  circle  described  with  radius  B  A : 

A  c  6,  an  Arc  of  circle  AGED. 
A  6,  Chord  of  that  arc. 
BA,  an  Initial  radius. 
B  C,  a  Secondary  radius, 
e  D  d,  a  Segment  of  the  circle. 
A  B  6,  a  Sector. 
A  D£,  a  Semicircle. 
€13  E.  a  Quadrant. 
A  « (J  E,  a  Zone, 
no  A,  a  Liine. 

B  g,  Secant  of  arc  A  c  6;  written  Sea 
\     \  J      bk.  Sine  of  arc  A  c  6 ;  written  Sin. 

\    Vc --/       A  fc,  Versed  Sine  of  arc  A  c  6;  written  Versin. 

N.  ^  y         B  Ar  or  711 6,  Cosine  of  arc  A  c  6. 

\CSs.  >/  A  g.  Tangent  of  arc  A  c  6. 

li""--'-.^ -^  C  B  6,  Complement,  and  6  B  E,  Supplement  of 

Jj  arc  kcb. 

C«,  Cotangent  of  arc,  written  Cot     B»,  Cosecant  of  arc;  written  Cosec. 
m  C,  Coversed  sine  of  arc,  or,  by  convention,  of  angle  A  B  6 ;  written  Coversin. 

Vertex  of  a  figure  is  its  top  or  ujjper  point.  In  Conic  Sections  it  is  point 
through  which  generating  line  of  the  conical  surface  always  passes. 

A  Uitude^  or  height  of  a  figure,  is  a  perpendicular  let  fall  from  its  vertex 
to  opposite  side,  termed  base. 

Mecisure  of  an  angle  is  an  arc  of  a  circle  contained  between  the  two  lines 
that  form  the  angle,  and  is  estimated  by  number  of  degrees  in  arc 

Segment  is  a  part  cut  off  by  a  plane,  parallel  to  base. 

Frvstum  is  the  part  remaining  after  segment  is  cut  off. 

Perimeter  of  a  figure  is  the  sum  of  all  its  sides. 

Problem  is  something  proposed  to  be  done. 

Postulate  is  something  required. 

Theorem  is  something  proposed  to  be  demonstrated. 

I^mmd  is  something  premised,  to  render  what  follows  more  easy* 

Coi\>ll(try  is  a  truth  consequent  upon  a  preceding  demonstration. 

Scholium  is  a  remark  upon  something  going  before  it. 

For  other  definitions  «ee  Mensuration  of  Surfaces  and  Solids,  and  Conic  Sections 


X^uBths  of  ibllowinc  Sli 


/  ^b"  'iny^mulll^eVorDSra  .-■'''    / 


--^r~~---^Ar.     (Fig.s.) 

/ T      From  «ny  two  poinls,  lui  c  d,  at  a  proper 

^  difiUnceapan,<leKnlw«rcsculllngallB,  ,^ 


(Dd  wuiiecl  lb«m.     (Ftg. 


e.             ^ 

' 

/7 

ra;     , 

i 

222 


GEOMETRY. 


T^ 


To  Bisect  a  Riglxt  X^ine  or  axx  A.ro  of  a 
Circle,  aud  to  Dra-w  a  Ir'erpeiidioix^ 
lar  to  a  Circular  or  fiiglxt  I^ine,  or  a 
]Eiadial   A.ro.— I^^ig.  7. 

From  A  B  as  centres  describe  arcs  catting  each  other 
at  c  and  d,  connect  c  d,  and  line  and  arc  are  bisected 
at  e  and  o. 

Line  c  d  is  also  perpendicular  to  a  right  line  as  A  B, 
and  radial  to  a  circular  arc  as  A  o  B. 


Xo  IDra-w  a  X^iixe  Parallel   to  a  Oiven 
Riglxt   I^iiie,  as   c  d,  Fig.  8.' 

From  A  B  describe  arcs  Ac,  Bd,and  draw  a  line  par- 
allel thereto,  touching  arcs  c  and  u. 


.Aji.gles. 

To    Describe   Angles    of  3O0    and   60°,  Kig.  9,  and    460, 

Fig.  lO. 

From  A,  with  ar  radius,  A  o,  de- 
scribe or,  and  ft'om  o  with  a  like  ra- 
dius cut  it  at  r,  let  &U  perpendicular 


r«;  then  oAr  =  6o^y  and  Ars. 
(Fig.  9) 


30 


To 
12. 


Describe  an 
f 


Set  off*  an^  distance,  a^  A  B,  erect 
perpendicular  A0  — A  B,  and  connect 
o  B.     (Fig.  10./ 


To  Bisect  Inclination  of  T-^^o  Xjines. 
-when  Point  of  Intersection  is  Inao^ 
oessible.^Ifig.  11. 

Upon  given  lines,  A  B,  C  D,  at  any  points  draw  |)erpen- 
diculars  eo^sr,  of  equal  lengths,  and  fVom  o  and  s  draw 
parallels  to  their  respective  lines,  cutting  at  n;  bisect 
angle  on$,  connect  nm^  and  line  will  bisect  lines  as  re- 
quired. 

IRectilineal    IHigiares. 

Octagon    upon   a   X^ine,  as   A  B.^Fis.  18- 
From  points  A  B  erect  indefinite  perpendiculars  A/,  Be; 
produce  A  B  to  m  and  n,  and  bisect  angles  m  A  0  and  nBp 
Vfith  A  u  and  B  r. 

Make  A  u  and  B  r  equal  to  A  B,  and  draw  «  s,  r  v  parallel 
to  A/,  and  equal  to  A  B. 

From  z  and  v,  as  centres,  with  a  radius  equal  to  A  B,  de- 
scribe arcs  cutting  A/  Be,  in  /  and  e.  Connect  e/,/e, 
and  ev. 


To  Inscribe  any  Regular  Polygon  in  a 
Circle,  or  to  Divide  Circuniference  into 
a  given  TQ'umber  o£  Sq.ual  Parts.— Fig.  13. 

If  Cirdt  U  to  contain  a  Heptagon.  —  Draw  angle  A  o  B  at 
centre  o  for  360®  -r-  7  =  sr**  42'  5i"-|-»  or  Si^'  *^^°  ^^  **^  «pon 
circumference  diatance  A  6  or  remaining  angles  A  0  6. 


GBOMETBY. 


223 


To  Ixxvovibe   a  Hexaeoix   ixi 
a  Circle.— Kig.  14:. 


Draw  a  diam- 
eter, AoB.  From 
A  and  B  as  ceu 
tre:i,  with  Aoand 
B  o,  cot  circle  at 


cm  and 
connect 


eM,  and 


To  Ineorilie  a  Pentagoxi 
a  Ctpole.— Kig.  16. 


in 


ij— 

--4r.- 

8 

"<>! 

•*i 

H  / 

1 

/ 

\ 

/, 

^. 

^ 

one  side  oi'a  iM'iUugou. 


Draw  diameters 
Ac  i|Qd  m  n,  at 
right  angles  to 
each  other;  bigevt 
0  n  in  r,  and  with 
9-  A  describe 
from  A  with 
describe  «  B. 

Connect  AB,and 
distance  is  equal  to 


A  s\ 
A  s 


To     Describe     a     Hexagon 
«ibou.t  a  Circle.**irig.  1£3. 


Draw  a  diam- 
eter as  a  ri  b ;  and 
with  ati  cut  uirole 
ate;  join  ac^and 
bisect  it  with  ra- 
)  dius  o  r,  through 
r  draw  e  r  paral- 
lel to  c  a,  cutting 
diameter  at  m; 
then  with  radius 


0  m  describe  circle,  within  which  describe 
a  hexagon  as  above. 


To     Describe      a     Pentagoii 
upon   a   Line,  as   A  B— irig. 


Draw  B  m  per- 
pendicular to  A  B, 
and  equal  to  one 
half  of  it;  extend 
A  m  until  m  n  is 
equal  to  B  m. 

From  A  and  B, 
with  radius  Bn,  de- 
scribe urcs  cutting 
each  other   in   »: 


then  from  0,  with  radius  o  B,  describe 
circle  A  'J  B,.and  line  A  B  is  equal  to  one 
side  of  a  pentagon  upon  circle  described. 

To  Describe  a  Regular  Polygon  of  any  reCLuired.  Number 

of  fcsides.— I^ig.  18. 

From  point  o,  with  distance  o  B,  describe  semicircle 
B  6  A,  which  divide  into  as  many  equal  parts,  A  a,  o  b,  b  c, 
etc. ,  as  the  polygon  is  to  have  sides. 

Thus,  let  a  Hexagon  be  required : 

From  o  to  second  point  b  of  six  divisions  draw  0  6,  and 
through  other  points,  c,  <f,  and  e,  draw  o  C,  o  D,  etc. 

Apply  distance  0  B,  from  B  to  E,  from  E  to  D,  from  D  to 
G,  eta    Join  these  points,  a»  b  C,  C  D,  etc. 

Constrxict     a     Hexagon 


To   Cotistrnct 
a    Keotangle 
Line.— ITig.  10. 

19.  mx  ?!cn 


a   Square "  or 
on     a    given 


A 

B  n,  and  join  0  r. 

2X,      To  XxxBcribo 


On  A  B  as  cen- 
tres, with  A  B  as 
radius,  describe 
arcs  cutting  at 
a;  one  describe 
arcs  CQtting  at 
0  r;  and  on  0  r 
descrbe  otiiera, 
cutting  at  mM; 
draw  A  m  and 


To 
-upon 
20. 


a  given   Line.— F'ig. 


From  ends  of  line, 
A  B,  describe  arcs 
cutting  each  other 
at  o,  and  from  o  as 
acentre,  with  radius 
o  A,  describe  a  cir- 
cle, and  with  same 
radius  set  off  A  c, 
c  d,  B/,/e,  and  con- 
nect them. 


an.  Octagon   in    a   Circle.— Fig.  Sl« 


Draw  diameters,  A  C,  B  D,  at  right 
angles,  bisect  ares,  A  B,  B  C,  etc. ,  at »,  r, 
0,  e,  and  join  A  p,  0  B,  eta    (Fig.  21.) 

To  Describe  an  Octagon, 
about  a  Circle.- Fig.  S3. 
Descriiie  a  squf^re  about  circle  A  B, 
draw  diagonals  cf,  e  d,  draw  o  i,  eta, 
perpendicular  to  diagoaal^  and  ioucli- 
ing  circle.    (Fig.  22.) 


224 


QEOMETBY. 


To   Izisoribe  a   Sq^taare  in   a   Circle.— Fig.  83u 


Draw  line  A  B  throagh  centre  of  circle ; 
take  any  radius,  as  A  e,  and  describe  the 
arcs  Aee,  Bee;  connect  ee,  continuing 
line  to  C  and  D ;  join  AC,  AD, etc.  (Fig. 23.) 


A  - 


/ 
1 

'-7- 

V 
/\ 

'  \ 

24. 


B 


To  Describe  a  Sqixare  about 
a  Circle.— Kig.  34. 

Draw  line  A  B  through  centre  of  circle. 

Take  any  radius,  as  A  e;  describe  arcs 
Aee,  Bee;  connect  ee,  continuing  line 
to  CD. 

Describe  B  r  and  D  r ;  draw  and  extend  B  r  a^d  D  r,  and  sides  A  and  C  parallel  tc 
them.     (Fig.  24. ) 

Describe   an   Octagon   in   a   Sq.uare.— Fig.  SO. 


D 


To 


Let  A  B  C  D  be  given  square 
Describe  A  o  r  r,  B  o  r  r,  etc. ;  join  in- 
tersections rrrr^  etc.,  and  figure  formed     y^ 
is  octagon  required.    (Fig.  25.)  "^ 


pal    I 


D  -- 


To  Inscribe  an  £2q^uilateral 
Triangle    in    a    Circle 
Fig.  26. 

From  point  A,  with  A  o  equal  to  radius 


x: 

d 


of  circle,  describe  oo\  from  0  and  o  describe  0Ty0r\  join  A  r,  r  r,  and  r  A.  (Fig.  26.) 
Note. — All  figures  of  10  or  20  sides  are  readily  determined  from  side  of  a  pentagon, 
being  halved  or  quartered;  and  in  like  manner,  all  figures  of  6,  12,  or  24  sides  are 
readily  determined  fVom  radius  of  a  Circle,  being  equal  to  the  side  of  a  hexagon. 

Circles. 
To  Describe  an  A.rc  of  a  Circle, 
tlirougli  Tavo  given  Ifoint^, 
^witli  a  given  Rcuiius.- Fig. 

sr. 

On  A  B  as  centres,  with  given  radius,  de-  '^' 
scribe  arcs  cutting  at  o,  and  from  o  with 
same  radius  describe  arc  A  B.     (Fig.  27.) 

To  Ascertain  Centre  of  a  Circle 
or  of  an  Arc  of  a  Circle.— Fig. 
28. 

Draw  chord  A  B,  bisect  it  with  perpendicular  c  d,  then  bisect  c  d  for  centre  0. 
(Fig.  28.) 

To  Describe  a  Circnlar   Segment  tliat 
Avill  botb.  iill  tbe  angle  bet-ween  t-wo 
diverging    lines    and.    toncli    tbem.^ 
Fig.  S©. 
Bisect  inclined  lines,  A  B,  D  E,  by  line  e/  and  connect 
perpendicular  thereto,  B  D,  to  define  boundary  of  seg- 
ment to  be  described.     Bisect  angles  at  B  and  D  by  lines 
cutting  at  o,  and  from  0,  with  radius  0  r,  describe  arc 

Dra-^^    a    Series    of  Circles    bet-ween    T^wo    Inclined 
I-iines,  touclxing   tbexn   and   eacb   otiier.— Fig.  30. 

Bisect  given  lines  AB,  CD,  by  line  oc. 
From  a  point  r  in  this  line  erect  r .«  peri)en- 
dicnlar  to  A  B,  and  on  r  describe  circle  «m, 
cutting  centre  line  at  u ;  ft'om  u  erect  u  n 
perpendicular  to  centre  line,  cutting  A  B  at 
n,  and  fVom  n  describe  an  arc  n  ti  v,  cutting 
A  B  at  »,  erect  x  v  parallel  to  r  «,  making  a; 
•B  centra  of  next  circle  to  be  described,  with 
radius  x  u,  and  so  on. 
Wow     laififi  circle  may  b«  dMcribed  flrtt. 


To 


GXOHBtB-r. 


225 


7o  Desoribe   a  Circle  tliat  shall  pass  tlirougli  any  tjbree 
given   Points,  as  A  B  C— ITigs.  31  and.  32. 

Upon  points  A  and  B, 
with  any  opening  of  a 
dividers,  describe  arcs 
cutting  each  other  at  ee. 

On  points  B  C  describe 
two  more  cutting  each 
other  in  points  c  c. 

Draw  lines  e  e  and  c  c, 
and  intersection  of  these 
lines,  0,  is  centre  of  circle 
ABC.    (Fig.  31.) 

When  Centre  is  not  attainable.  —  From  A  B  as  centres,  describe  arcs  A  g,Bh; 
through  C  draw  A  «.  B  c.  Divide  A  e  and  B  c  into  any  number  of  equal  parts,  also 
c  g  and  B  h  into  a  like  number.  Draw  A  i,  2,  ^,  etc.,  and  B  i,  2,  etc.,  and  intersec- 
tion of  these  lines  as  at  0  are  points  in  the  circle  required.    (Fig.  32. ) 

Or,  let  A  B  G  be  given  points,  connect 
A  B,  A  C,  C  B,  and  draw  e  c  parallel  to  A  B. 
Divide  C  A  into  a  number  of  equal  parts, 
as  at  1, 2,  and  3,  and  fh>m  G  describe  arcs 
through  these  points  to  meet  right  lines 
firom  C  to  points  x,  2,  and  3,  on  A  e,  and 
these  are  points  in  a  circle,  to  be  drawn  as 


before  directed.    (Fig.  33.) 

To  Dra-w  a  Xangent  to  a 
Circle  1  ronx  a  given  X*oint 
in  Circuxnfbrence.  ^  Fig. 
84.  e 

84. 


Through  point  A  draw  radial  line  Ao, 
and  erect  perpendicular  ef.    (Fig.  34.) 


To  T>-p&vir  Tangents  to  a 
Circle  from  a  foint  %vit]:i* 
oxxt  it.— Fig.  36. 

85. 


From  A  draw  A  0,  and  bisect  it  at  s; 
describe  arc  through  o,  cutting  circle  at 
m  n ;  Join  A  m  or  A  ra. 


To   Dra"^^  from   or  to   Circumference  of  a  Circle,  Lines 
leading  to   an   Inaccessible   Centre.^ITig.  36. 

Divide  whole  or  any  given  portion  of 


"■  '*.  ^  U 


I 


/ 


circumference  into  desired  number  of 
.parts;  then,  with  any  radius  less  than 
distance  of  two  divisions,  describe  arcs 
cutting  each  other,  as  A  r,  &  r,  c  r,  d  r, 
etc. ;  draw  lines  b  r,  c  r^  etc.,  and  they 
will  lead  to  centre. 

To  draw  end  lines^  as  A  r,  F  r.    From  b  describe  arc  0,  and  with  radius  b  i,  from 
A  or  F  as  centres,  cut  arcs  A  r,  etc.,  and  lines  A  r,  F  r,  will  lead  to  centre. 

To   Oesori'be  an  .A.rc,  or   Segment  of  a  Circle,  of  a  large 

Radius.— Fig.  ST. 

Draw  chord  A  c  B;  also  line  hDi 
parallel  with  chord,  and  at  a  distance 
equal  to  height  of  segment ;  bisect 
chord  in  c,  and  erect  perpendicular 
cD;  Join  AD,  DB;  draw  A  A  and  Bt 
perpendicular  to  A  D,  B  D;  erect  also  perpendiculars  A.n,  B  n;  divide  A  B  and  h  % 
into  any  number  of  equal  parts;  draw  lines  i  i.  2  7,  etc.,  and  divide  lines  A  n,  B  n, 
each  into  half  number  of  equal  parts  in  A  B;  draw  Mnes  to  D  from  each  division  io 
lines  A  n,  B  n,  and  at  points  of  intersection  with  former  lines  describe  arc  or  segment 


226 


GEOMETRY 


Ellipse. 

To    II>esori'be    an    Ellipse    to    any   JLiexigtla.    and    Breadtli 

given.— yig.  38. 

Let  longest  diameter  be  C  D,  and  shortest  E  F.  T.akc 
distance  (J  o  or  o  D,  and  with  it,  from  points  £  and  F, 
describe  arcs  h  and/ upon  diameter  C  D. 

Insert  pins  at  h  and  at  /,  and  loop  a  string  around 
them  of  such  a  length  that  when  a  penci2«iB  introduced 
within  it  it  will  just  reach  to  £  or  F.  Bear  upon 
string,  sweep  it  around  centre  o,  and  it  will  describe 
ellipse. 

NoTK.— It  Is  a  property  of  Ellipse  that  sum  of  two  Hues  drawn  from  foci  to  meet  in  any  point  in 
curve  is  equal  to  transverse  diameter. 


Bisect  transverse  axis  A  B  at  o,  and  on  centre  o 
erect  perpendicular  C  I),  making  o  D  and  o  C  each 
equal  to  half  conjugate  axis.  From  C  or  D,  with 
radius  A  o,  cut  transverse  axis  at  <  x  for  foci.  Divide 
A  o  into  any  n\unber  of  equal  parts,  as  i,  2,  3,  etc. 
With  radii  A  i,  B  i,  qu  <  and  s  as  centres,  describe 
arcs,  and  repeat  this  operation  for  all  other  divis- 
ions I,  2,  3,  etc.,  and  these  points  of  intersection  will 
give  line  of  curve. 


To  Ascertain  Centre  and  Tavo  Diameters  of  an  Ellipse. 

Let  A  B  c  u  be  diameters  of  an  Kllipse. 

Draw  at  pleasure  two  lines,  q  q,  o'm,  parallel  to 
each  other,  and  equidistant  from  A  and  B;  bisect 
them  in  points  An,  and  draw  line  ur;  bisect  it 
in  s,  and  upon  s,  as  a  centre,  describe  a  circle  at 
pleasure,  as/ 1 1>,  cutting  figure  in  points/ ». 

Draw  right  line  fv;  bisect  it  in  t,  and  through 
points  i  «  draw  greatest  diameter  A  B,  and  through 
centre, «,  draw  least  diameter  c  u,  parallel  to/©. 


To  Describe  an  Ellipse  approxinriately  l^y  Circxilar  Arcs. 

— Kig.  41. 

Set  off  differences  of  axes  from  centre  o  to  a.and 
c  01)  0  A  and  f>  C;  draw  a  c  and  bisect  it.  and  set  ofl' 
its  hair  to  r ;  draw  r  s  iiarallel  to  a  c,  set  off  o  n 
equal  to  o  r,  connect  n  s,  and  draw  parallels  r  m, 
nm;  from  m,  with  radii  m  s  and  s  m,  describe  arcs 
through  C  and  D,  and  from  n  and  r  describe  arcs 
through  A  and  B.  , 

Note. — This  method  is  not  satisfactory  when  con- 
jugate axis  is  less  than  two  thirds  of  transverse  axis. 

Sexni-Slllptio    Aro    -witli    Three 
Centres.— Fig,   43. 

Draw  A  M,  B  Mj  parallel  naspectively  to  B  C,  A  C, 
meeting  in  M.  Draw  M  Oi  perpendicular  to  A  B. 
cutting  B  Bi  in  Qi,  and  A  As  in  03  Find  a  mean 
proportional  (B  D)  between  C  A  and  C  B.  (This 
may  be  done  by  marking  B  c  on  M  B  produced,  equal 
to  B  C  and  describing  a  semicircle  on  M  c  cutting 
B  C  in  D).  Make  A  K  equal  to  B  D.  With  centres 
Oi,  03,  and  radii  O'  D.  03  K,  describe  arcs  intersect* 
ing  in  0=.  Then  0»,  O^,  0-^are  points  which  can  be 
used  as  centres  for  successive  arcs  of  the  required 
curve  —A.  L.  Lucas^  Asi't  Etig^r  U  S.  Dtp^U 


18. 


6EOMBTBT. 


227 


To  Construct  an  Sllipse  fvorxx  Tviro 
Ciroles.^F'ig.  <4r3. 

Describe  two  semicircles,  as  A  R,  C  D,  diameters  of 

which  are  respectively  lengths  of  msjor  and  minor 

azea    The  intersection  of  the  horizontal  and  vertical 

lines  drawn  flrom  any  radial  line  will  give  a  point  in 

D  the  carve  C  D. 

To  Construot  an  Ellipse,  "w-lien  Tvir© 
Dianieters  are  Ghiven.^Fis.  44. 

Make  c  o  and  A  v  equal  to  each  other,  but  less 
than  half  breadth.  Draw  vo,  and  from  its  centre  t 
draw  and  extend  perpendicular  at  t  to  d,  draw  d  v  m, 
make  B  u  =  A  v,  draw  d  ti  r,  fVom  u  and  v  describe 
B  r  and  A  m,  from  d  describe  m  cr,  extend  c  2  to  «, 
and  it  will  be  centre  for  other  half  of  figure. 

To   OonstTOCt   an    Kllipse   by    Ordinates.— ITigj.  4S. 

Divide  semi -transverse  axis,  as  A  6,  into  8  or  10 
divisions,  as  may  be  convenient,  and  erect  ordi- 
nates,  the  lengths  of  which  are  equal  to  semi-con- 
jugate, multiplied  by  the  units  for  each  division  as 
follows: 


Ili.llii 

1  9  34«<Tb 


,.\ 


I 

2 

3 

4 


Eightht. 
484 12   5 

.66144   6 

.78063 
.86603 


—  I 


Divisions. 

Tenths. 

92703 

I  —  435385 

5  — .86602 

9—   .99499 

96824 

a  — .6 

6  —  .91651 

10 —  I 

992  16 

3  — .71414 

7  — -95394 

4-.8 

8  — .97979 

To  Constrnot  An.  ICllipse  -^^lien  Diameters  do  not  Inter- 
sect  at  fiiglxt  A.ngles.-^lF'iS.  ^B.  • 


«6.  ~~-~. 


Let  A  B  and  C  D  be  given  diameters. 

Draw  boundary  lines  parallel  to  diameters, 
divide  longest  diameter  into  any  number  of 
equal  parts,  and  divide  shortest  boundary  lines 
into  same  number  of  equal  part& 

From  one  end  of  shortest  diameter,  D,  draw 

L  radial  lines  tftrough  divisions  of  longest  diame- 

"  ter,  and  fVoin  opposite  end,  C,  draw  radial  lines 

to  divisions  on  shortest  boundary  lines ;  the 

intersection  of  these  lines  will  give  points  in  the 

curve. 


To.  Describe  a  O-othic  Arc.— Kig.  -^T. 
Take  line  A  B.    At  points  A  and  B  draw  arcs  Ba  and  Ac. 


and  it  will  describe  arc  required. 


To  Describe  an 


Elliptic   A.ro^  Chord  and  Keigbt   being 
Ip.ven.^-Fig.  48. 

Bisect  A  B  at  c ;  erect  perpendicular  A  9,  and 
draw  line  q  D  equal  and  parallel  to  A  c. 

Bisect  A  c  and  A  9  in  r  and  n ;  make  c  I  equal  to 
e  D.  and  draw  line  Irq;  draw  also  line  nsD\  bisect 
f  D  with  a  line  at  right  angles,  and  cutting  line 
e  D  at  0;  draw  line  0  q;  make  cp  equal  to  e  k,  and 
draw  line  op  i. 

Then,  flrom  o  as  a  centre,  with  radius  o  D,  describe 
arc  f  D  i;  and  from  k  and  p  as  centres,  with  radius 
A  k,  describe  arcs  A  s  and  B  t. 


228 


GEOMKTBT* 


To 


49. 


U, 


y\ 


Describe  ci  Q-otliio  A.ro.-*Fie8<  ^&  and  SO. 

Divide  line  A  B  into  three  equal  parts,  e  c  ;  horn  points 
A  and  B  let  fall  perpendiculars  A  o  and  B  r,  equal  in  lengtb 
to  two  of  divisions  of  line  A  B; 
draw  lines  o  h  and  r  g  ttom  points 
«,  c ;  with  length  of  c  B,  describe  arcs 
A  g  and  B A,  and  flrom  points  o  and  r 
describe  arcs  g  t  and  i  h.    (Fig.  49.) 


B 


Or,  divide  line  A  B  into  three 
equal  parts  at  a  and  6,  and  on  points 
A,  a,  b,  and  B,  with  distance  of  two 
divisions,  make  four  arcs  intersect- 
ing at  c  and  o. 

Through  points  c,  o,  and  divisions  a,  &,  draw  lines  c/and  o  «,  on  points  a  and  I 
describe  arcs  A  e  and  B/,  and  on  points  c  0  arcsfs  and  e  «.    (Fig.  50.) 


o 


51. 


Cycloid   and   ICpicycloid. 
To   Describe   a   Cycloid.— Fig.  Ol. 

When  a  circle,  as  a  w^heel,  rolls  over  a 
straight  right  line,  beginning  as  at  A  and 
ending  at  B,  it  completes  one  revolution, 
and  measures  a  straight  line,  A  B,  exactly 
equal  to  circumference  of  circle  cer,  which 
is  termed  the  generating  circUj  and  a  point 
or  pencil  fixed  at  point  r  in  circumference 
traces  out  a  curvilinear  path,  A  r  B,  termed  a 
cycloid.     A  B  is  its  base  aod  c r  its  axis. 

Place  generating  circle  in  middle  of  Cy- 
cloid, OS  in  figure;  draw  a  line,  m  n,  paral- 
lel to  base,  cutting  circle  at  «;  and  tangent 
The  following  are  some  of  properties  of  Cycloid :  ^ 


n  t  to  curve  at  poipt  n. 

Horizontal  line  «n  =  arc  of  circl^  e  r. 
Half- base  A cr=half-circumference  cer. 
Arc  of  Cycloid  rn=:  twice  chord  r  e. 
Half  arc  of  cycloid  Ar=twice  diameter 
of  circle  r  c 


Or,  whole  arc  of  Cycloid  A  r  Brr:  four 
times  axis  cr. 

Area  of  Cycloid  A  r  B  A  =  three  times 
arearof  generating  circle  r  c. 

Tangent  n  %  is  parallel  to  chord  e  r. 


To  Describe   Cu.rve  of  a  Cycloid.— Fig..  6S. 

On  an  indefinite  line,  A  B,  set  o(rc0= 
circumference  of  generating  circle,  di- 
vide this  line  into  any  number  of  equal 
parts  (8  in  figure),  and  at  points  of  divis- 
ion erect  perpendiculars  thereto.  Upon 
.  j>  each  of  these  lines  describe  a  circle  = 
generating  circle.     On  c  i  take  ix  = 


To   Describe   an   Interior   Bpioycloid   or   Kypocycloid.«> 

Fig.  63. 

If  generating  circle  is  rolled  on  inside  of  Hmdnmentar 
circle,*  as  fn  Fig.  53,  it  forms  an  interior  epicycloid^  or 
hypocudoid,  A  c  B.  which  becomes  in  this  case  nearly  a 
L  straight  line.  Other  points  of  reference  in  figure  cor- 
respond  to  those  in  Fig.  51.  When  diameter  of  generat- 
ing circle  is  equal  to  half  that  of  flindamental  circle, 
epieyeloid  becomes  a  straight  line,  being  diameter  01 
tbe  larger  circle. 

*  8m  u:pUofttIoD,  Fig.  54. 


GEQMKTJIY. 


229 


To  Describe  an  £]xterior  SpioT-oloid.** 

Fig.  a^. 

An  Epicycloid  differs  from  a  Cycloid  in  this,  that  it  is 
generated  by  a  point,  o"\  in  one  circle,  0  r,  rolling  upon 
circumference  of  another,  A  r  «,  instead  of  upon  a  right 
line  or  horizontal  surface,  former  being  generating  circU 
and  latter  fundamental  circle. 

Generating  circle  is  shown  in  four  positions,  in  which 
its  gcueratiug  point  is  indicated  by  o</o^'o"'.  A&"  t 
is  an  Epicycloid. 

Involute. 
To   Describe  aix  Involute.— IPig.  OS. 

Assume  A  as  centre  of  a  circle,  bco\Q.  cord  laid  partly 
upon  its  circumference,  as  6«;  then  the  curve  et'mn, 
described  by  a  tracer  at  end  of  cord,  when  unwound  A'om 
a  circle,  is  an  involute. 

This  curve  can  also  be  defined  by  a  batten,  x,  rolling  on 
a  circle,  as  «  u. 

I^araljola. 

To    Construct    a    Parabola   by    Ordinates    or 
j^bsoissa.^IT'ig^.  60  and.  67. 

By  Ordinates. 
Divide  ordinate  a  b  into  10  equal  parts,  and  erect  perpendicu- 
lars, length  of  which  will  be  determined  by  multiplying  abscissa 
a  cpy  respective  units  for  each  perpendicular,  as  follows:        gy^ 

Divisions. 


I— .19 
a— .36 


3— .51 
4—  64 


5— -75 
6  — .84 


8  —  . 96 


9—  .99 
10  —  z 


Division*. 


•79057 
6~  .86602 

7—  •935  4« 


z  — 

2' 

3  — • 


7  — 

8  — 

9  — 
10  — 


.7746 
.83666 

•89443 
.94868 


By  Abscissa. 
Divide  abcissa  a  c  into  8  or  10  equal  parts,  as  may  be  convenient, 
and  draw  ordinates  thereto,  the  lengths  of  which  will  be  deter- 
mined by  multiplying  half  ordinate  a  6  by  respective  units  for 
each  ordinate,  as  foUows: 

lenuts. 
31623 
.44721 

•54773 
4  — .63245 

5  — .707  IX 

"With,  a  Sq.nare  and  Cord.— Fig.  ©8. 

Place  a  straight  edge  to  directrix  A  B,  and  apply  to  it  a 
square,  e  o. 

Attach  to  end  o  end  of  a  cord  equal  to  0  A,  and  attach  other 
end  to  focus  e;  slide  square  along  straight  edge,  maintaining 
cord  taut  against  edge  of  square,  by  a  point  or  pencil,  and  curve 
will  be  traced.    (Fig.  58.) 

"When  Height  and 
Sase  are  given.  «■ 
Fig.  6©. 

Assume  AB  axis  and  c  <2  a  double  ordinate  or  basa 

Through  A  draw  m  n  parallel  to  c  d,  and  through  c 
and  d  draw  cm,dn,  parallel  to  axis  A  B.  Divide  c  m, 
d  n  into  any  number  of  equal  parts,  as  at  a  c  <;  o,  also 

c  B,  B  d,  into  a  like  number  of  parts.  Through  points  c-  "{"2~^"^'n"±'t'9^t'^^ 
1, 2,  3,  and  4  draw  lines  parallel  to  axis,  and  through  i<o4i54   3^i 

aceo  draw  lines  to  vertex  A,  cutting  these  perpendiculars,  and  through  these  points 
curve  may  be  traced.    (Fig.  59.) 


'30 


GBOMKTRY. 


To  DesorilDe  Curve  of*  a  Parabola,  Sase  and 
Heielit  loeing  given. "-F'igr.  60. 

Draw  an  isosceles  triangle,  as  a  6  d,  base  of  which  shall  be  eqnal 
to,  and  its  height,  c  b,  twice  that  of  proposed  parabola.  Divide 
each  side,  a5,  d6,  into  any  number  of  equal  parts;  then  draw  lines, 
I  1, 2  2, 3  3,  etc.,  and  their  intersection  will  define  curve.  (Fig.  6o.) 

To  IDesori'be  a  Parabola,  any  Ordinate  to  Ajcis 
and  itts  A.'bscissa  being  given-^Fiflr.  61. 

Bisect  ordinate,  as  A  o  in  r;  Join 

B  r,  and  draw  r  s  perpendicular  to  it, 

meeting  axis  continued  to  «.    Setoff 

Be,  Be,  each  equal  to  o «;  draw  m 
c  u  perpendicular  to  B  «,  then  m  u  is  directrix  and 
B  e  focus;  through  e  and  any  number  of  points,  i,  i, 
I,  etc.,  in  axis,  draw  double  ordinates  v  i  v,  and  on 
centre  e,  with  radii  e  c,  i  c,  etc.,  cut  respective  or- 
dinates at  V  V,  etc.,  and  trace  curve  through  these 
point& 
NoTi.— Une  «  «  v  panlnic  tIiroug:h  focaa  ts  parameter. 

Spiral. 
To   Dra-^v  a  Spiral   about  a  given  Point.— 

Fig.  6S. 
Assume  c  the  centre.    Draw  A  h,  divide  it  into  twice  number 
of  parts  that  there  are  to  be  revolutions  of  line.    Upon  c  de- 
scribe r  e,  o  s,  A  A,  and  upon  e  describe  r8,os,  etc. 


To 


Hjrperbola. 
Describe    a    Hyperbola,  Transverse    and    Conjugate 
Diameters   being  given.— Fig.  63. 

Let  A  B  represent  transverse  diameter,  and  C  O 
conjugate. 

Draw  C  e  parallel  to  A  B,  and  e  r  parallel  to  C  D; 
draw  o  e,  and  with  radius  o  e,  with  o  as  a  centre, 
describe  circle  F  e  r,  cutting  transverse  axis  pro- 
duced in  F  and  /;  then  will  F  and  /be  foci  of  fig- 
ure. 

In  o  B  produced  take  any  number  of  points,  n,  n, 
etc.,  and  from  F  and/as  centres,  with  A  n  and  B  n 
as  radii,  describe  arcs  cutting  each  other  in  g,  «, 
etc.    Through  <, <, etc. ,  draw  cu rve  tstsBsMMS. 
NoTB.  —If  straight  lines,  aa  oey  and  ory,  are  drawn  fh>m  centre o  through  ex- 
tremities e  r,  they  will  be  asymptotes  of  hyperbola,  property  of  which  is  to  ap- 
proach continually  to  curve,  and  yet  never  to  touch  it.  , 

Wh^n  Foci  and  Conjugate  Axu  are  given.— Let  F  and/ be  foci,  and  C  D  ooi^ugate 
axis,  as  in  preceding  figure. 

Through  C  draw  gC  e  parallel  to  F  and  /;  then,  with  o  as  a  centre  and  o  F  afi  a 
radius,  describe  an  arc  cutting  ^  C  e  at  ^r  and  e:  from  these  points  let  fall  perpen- 
diculars upon  line  connecting  F  and/  and  part  intercepted  between  them,  as  A  B, 
will  be  transverse  axi& 

Catenary. 
Delineate   a  Catenary,  Span  and  Versed  Sine  being 
given.  —  Fig.  64.    ( W.  Hildenbrand. ) 

Divide  half  span,  as  A  B,  into  any  required 
number  of  equal  parts,  as  i,  3,  3,  and  let  fall  B  G 
and  A  o.  each  equal  to  versed  sine  of  curve;  divide 
A  o  into  like  member  of  parts,  i',  2',  3',  as  A  B. 
Connect  C  i',  C  2',  and  C  3',  and  points  of  intersec- 
tion of  perpendiculars  let  fall  (t'om  A  B  will  give 
points  through  which  curve  is  to  be  drawn. 
Or,  suspend  a  finely  linked  chain  against  a  ver- 
tical plane,  trace  curve  iVom  it  on  the  plane  in  accordance  with  conditions  of  given 
length  and  height,  or  of  given  width  or  length  of  arc. 

NoTB.— For  other  methods  see  D.  R.  Clark's  Manual,  pp.  18, 19. 


AREAS   OF  CIBCLBS. 


231 


OtAW. 

a; 

H 
H 

% 
% 

X 


^4 
% 
% 
% 


AjresLB  of  Circles,  fi»om 

DiAM. 


Aria. 


.000192 
.000767 
.003068 
.012  272 
.027612 
.049087 
.076699 
.110447 

•15033 
•19635 
.248505 
.306796 
.371  224 
.441  787 
.518487 
.601  322 
.690292 

•7854 

.8866 


DiAM. 


Pi 


Aria. 


7.0686 

7.3662 

7.6699 

7.9798 

82958 

8.618 

8.9462 

92807 

96211 

9.96S 

03206 

0,679 

1.0447 

I.416 

1-7933 
2.177 

2.5664 

2962 

33641 
3772 
4.1863 
4606 

5033 

5-465 

5-9043 

6.349 
6.8002 

7-257 
7.7206 

8.19 

8.6655 

9.147 

9-635 
20.129 

20.629 

2i^i35 
21.6476 

22.166 

22.6907 

23.221 

23-7583 
24.301 

248505 
25406 

259673 

26.535 
27-1086 

27.688 

28.27444 

29.4648 

30.6797 

31.9191 

33-1831 

34-4717 

35.7848 

I  37-1224 


}4 

}^ 
% 
H 
% 
% 
% 


8 


K 
% 
% 
% 

% 
}i 
% 

% 


lO 


II 


% 


% 
% 
% 

% 


% 


12 


H 
% 

•I 


13 


% 

% 
% 
% 


A  to  ISO. 

Area.       |  |    Diam. 


38.4846 

39-8713 
41.2826 

42.7184 

44.1787 

45.6636 

47-1731 
48.7071 

50.2656 

51.8487 

534563 
550884 

56.7451 
58.4264 

60.1322 

61.8625 

63.6174 

65.3968 

67.2008 

69.0293 

70.8823 

72-7599 
74.6621 

76.5888 

78.54 
80.5158 

,82.5161 

84.5409 

86.5903 

88.6643 

90.7628 

928858 

950334 
972055 
99.4022 
101.6234 
103.8691 
106.1394 
108.4343 
"0.7537 
113.098 
115.466 
117.859 
120.277 
122.719 
125.185 
127.677 
130.192 

132.733 
135-297 
137.887 

140.501 

143-139 
145.802 

148.49 

151.202 


14 


15 


16 


17 


18 


19. 


20 


Aria. 

153-938 
156.7 
159-485 
162.296 

165.13 
167.99 

170.874 

173.782 

176.715 

179.673 

182.655 

185661 

188692 

191.748 

194.828 

197933 
201.062 

204.216 

207.395 
210.598 
213.825 
217.077 
220.354 
223.655 
226.981 

230.331 
233.706 

237-105 
240.5-29 

243  977 

24745 

250.948 

25447 
258.016 

261.587 

265.183 

268803 

272.448 

276.117 

279.811 

283.529 

287.272 

291.04 

294.832 

298.648 

302  489 

306.355 
310245 

314.16 

318.099 

322.063 

326.051 

330.064 

334.102 

338.164 

342.23 


AEEAH   OF   CIRCLES. 


Diui. 

Am. 

Dl.H. 

Am. 

Dim. 

AUL 

Diu. 

AIU. 

M 

346.361 

38 

615-754 

963.1,5 

4« 

'385.4s 

« 

3S0.497 

621.264 

9^ 

^ 

'393-7 

K 

354-657 

626,798 

975.909 

.401.99 

% 

358-843 

633.357 

982,843 

363-051 

637-94' 

989-8 

1418.63 

367-285 

643-549 

996-783 

If 

.426.99 

37' -543 

649. 1E3 

143537 

375-836 

654-84 

% 

'443-77 

3S0.134 

660-5^1 

36" 

1017-878 

43 

1452.2 

384.466 

666.228 

% 

.02496 

.460.66 

388.8J2 

671.959 

X 

'6.13.065 

.469.14 

393  ™3 

677,714 

g 

'039  '95 

1477.64 

397.609 

683.4W 

.046.349 

.486.17 

402.038 

689.399 

1053-528 

» 

1494-73 

406.494 

695.128 

1060-733 

410.973 

700.982 

1067.96 

% 

151 '-9' 

33 

415-477 

30 

706.S6 

.075.213 

44 

1520.53 

420.004 

7.3,763 

1083,49 

bi 

1529.19 

424-558 

718.69 

1089.79= 

% 

'537-86 

g 

4^9-135 

H 

724643 

1097.  "8 

.546.56 

..04.469 

1 

438*364 

1 

736^619 

..11.844 

1564-04 

443.01s 

743.645 

1119.244 

.572-8. 

447-69 

748-695 

1.26.669 

.581.6. 

3' 

754-769 

38" 

1134.1.8 

45 

1590-43 

^ 

;irsa 

?^:^ 

!;£^ 

IffiS 

1 

466.63a 

773-14 

1.56613 

.617.05 

471.436 

% 

779-313 

1164.159 

1635.97 

476.259 

g 

785-51 

% 

1 

163492 

481.107 

791.733 

I '79-337 

.643.89 

485-979 

% 

797-979 

X 

.186.948 

.652.89 

»s 

490-875 

33 

804,25 

1194593 

46 

1661,91 

495-796 

8.0-S4S 

1203.263 

167095 

500.74a 

816.865 

1209.958 

.580-O2 

505-713 

823-2. 

.2.7.677 

1689,.. 

510.706 

>i 

829.579 

1225.42 

.69823 

i 

515-7*6 

835.973 

^ 

1707-37 

5*1-769 

843-39' 

1240981 

.716-54 

% 

535-838 

848-833 

.248.798 

'725-73 

■A 

530-93 

33 

855-30. 

40 

.256.64 

'734.95 

536^)48 

>S 

861.792 

1364,506 

S4..19 

yi 

868.309 

1272.397 

■753  45 

546-356 

% 

87485 

^ 

1280.313 

.763.74 

>4 

881,4.5 

.288.353 

1 

556^^63 

% 

RSS.dBS 

^ 

.296.3.7 

;?8i:f 

56a«i3 

% 

894-62 

1304.206 

1790.76 

S67-367 

% 

901.259 

1312.219 

1800.15 

"7 

573-557 

34 

907.92a 

1330.357 

4a" 

'809.56 

577  87 

914-6.1 

1338.33 

^ 

.8.9 

583-309 

921.333 

.336-407 

1828.46 

588.57' 

s 

9=8.06. 

1344-5 '9 

1837-95 

593-959 

1352.655 

.847-46 

K 

5W-371 

94.-609 

1360.8.6 

i 

'856.99 

604.S07 

948.43 

.369-001 

18665s 

% 

Gio.36)i 

% 

95S-3S5 

% 

1377.2" 

% 

.876.14 

ABBAS   OF  CIRCLES. 


A»^ 

Dun. 

*™- 

SlU. 

«».. 

D1.X. 

AUA. 

■  S85-75 

56 

2463.01 

31.7-25 

70 

3848.46 

1893.38 

H 

3'29-6t 

3862.32 

1905,04 

K 

2485-05 

3876 

1914.72 

2496.. I 

3.54-47 

3889.8 

2507.19 

3166.93 

3903-63 

1934.16 

H 

2518.3 

i 

39>7-49 

i«3-9i 

2529.43 

3191.9. 

393" -37 

'9S.I-69 

2540.58 

3204.44 

3945-27 

'9635 

S7 

255.-76 

3317 

71 

"973.33 

2362.97 

3229.58 

3973-15 

19S3.18 

2574.2 

3242.8 

3987-13 

1993.06 

2585.45 

325481 

4001.13 

ao<H.g7 

3267.46 

40.5-16 

aoia.59 

3280..4 

i 

3031.8S 

36.9.36 

3292.84 

4043.39 

303^.81 

3630.71 

3305-56 

4057-39 

=041.83 

58 

of        59 

33.8.31 

72 

■4071-5' 

205»-85 

S 

2(        t9 

333'-09 

2 

4085-66 

4099.84 

ss!s 

i  i 

i^-^ 

;iK 

ao93.3 

i 

2f          » 

3382-44 

s 

4142.51 

2103.3s 

» 

3395-33 

4156.78 

3113.52 

3408.26 

4171.08 

33-98 

66 

73 

4185.4 

2133.94 

45-57 

3434- '7 

4199.74 

2144.19 

3447-17 

2134.46 

2768.84 

3460.19 

4228.51 

2.64.76 

2780.51 

3473-24 

4242.93 

2175.08 

2792.21 

S 

3486.3 

S 

4257-37 

2.85-12 

280393 

3499-4 

4271.84 

2815.67 

4286.33 

2206.  .9 

ar      44 

3525-66 

4300.85 

22.6.61 

2f       23 

3538-83 

43'5.39 

2227.05 

2S       05 

3SS2-02 

4329.96 

2237.52 

2t         89 

3565.24 

4344-55 

2248.01 

3578.48 

4359- '7 

2258.53 

3591.74 

1 

43738. 

2269X>7 

a*       57 

3605.04 

43S8.47 

2279.64 

2910.5. 

36'8.35 

4403-16 

2290.23 

61 

a<       47 

363.-69 

75 

4417-87 

2J30.84 

^ 

2. 

46 

^ 

3645-05 

4432-61 

33I1.4B 

48 

3658.44 

4447-38 

2313.15 

52 

3671.86 

4462.16 

3332-83 

58 

3685.29 

4476-98 

a354.29 

i 

* 

67 
78 

S 

3698.76 
3712.24 

s 

449.-8. 
4506.67 

2365.05 

4521.56 

2375.83 

62 

3019.08 

69 

3739-29 

76 

453647 

2386.65 

^ 

3031.26 

3752-85 

4551-41 

2397-48 

3043-47 

3T66-43 

4i66-36 

2408.34 

3780.04 

4581.35 

2419.23 

3067-97 

3793-68 

4S96..16 

2430.14 

3080,25 

380J.34 

$ 

4611.39 

2441 'O? 

3092-56 

3821.02 

4626.45 

2432.03 

H 

3 

104.89 

K 

3834-73 

% 

464.-53 

TH... 

A.... 

Jn.H. 

Ah.. 

B..-. 

A.^.. 

p..-. 

Au.. 

77 

46S6.64 

5541-78 

9' 

98 

7543-98 

^ 

467' -77 

5558-29 

% 

t 

% 

7563.34 

468693 

SS74-83 

H 

^ 

7581.52 

4702.1    ■ 

5591-37 

fi 

7600.82 

560795 

t 

76=0-15 

H 

473=54 

gJ:S 

i 

6; 
6611.55 

Si, 

4763.07 

5657-84 

6629,57 

7678.28 

78 

4778-37 

5674-5" 

92 

6647,63 

7697.7' 

i 

47<13-7 

5691-22 

M65.7 

77.7.16 

4B09.05 

66838 

7736-63 

4824.43 

5724.69 

6701.93 

7756-13 

4839.83 

5741.47 

7775.66 

H 

485S-'6 
4870-71 

5758-27 
5775-1 

i 

6738.25 
6756.45 

s 

7795-21 
78.4-78 

4886,18 

6774.68 

7834.38 

4901.68 

86'" 

5808.83 

6792.92 

7854      . 

^ 

5*"      7S 

6811.3 

^ 

7S9l133 

4932.7s 

5f       &4 

6829.49 

7932.74 

4948.33 

5f       59 

6847.82 

4 

■4963.9= 

sf    56 

6866.16 

8o.i!87 

i 

4979-55 

S 

5*       55 

6884.53 

8051.58 

% 

55       58 

8c|..5; 

% 

% 

K       52 

6921.35 

8131.3 

80 

5<«6.s6 

5944.69 

94 

6939-79 

8171.3 

5043.28 

5961-79 

6958.26 

X 

5058.03 

5978.91 

6976,76 

^ 

8251:6! 

%  ;  S073  79 

5996.05 

6995-28 

% 

K    S089-59 

6013,32 

7013,83 

J  03 

8332.31 
8372.81 

X   51054' 

6030.41 

i 

7032,39 

5121-25 

6047.63 

7050.98 

84134 

S"3;-12 

606487 

7069.59 

H 

8454-09 

81 

88" 

6083.14 

7088.23 

8494.89 

^ 

5168:93 

609943 

7.06.9 

K 

8535.78 

5184.87 

6116.74 

K 

8576.76 

5200.83 

6134.0a 

7144.31 

% 

8617.85 

6151.45 

7163.04 

8659,03 

M 

5232.84 
5248.8S 

^ 

6168.84 
61S6.25 

i 

7.81.8. 

'1 

8700.32 
8741.7 

% 

5264.94 

6203.69 

,1 

.06^ 

8783,18 

to 

5*8.  oj 

623.. IS 

96 

7338.25 

88=4-75 

^ 

^ 

6238,64 

7257- 1' 

}i 

8866.43 

5313-38 

6356,15 

7275-99 

'^ 

8908.2 

6373.69 

% 

8950.07 

5345-63 

6391.25 

7313-84 

107 

8993.04 

i 

5361-84 

i 

630884 

^ 

7333.8 

a 

5378.08 

1 

63264s 

7351-79 

a 

9076:38 

5394-34 

6344.08 

% 

7370.79 

% 

9118.54 

83 

5410,62 

90 

6361.74 

97 

7389-83 

9160.91 

S4«5.93 

1 

637943 

H 

7J08.89 

H 

9203.37 

5443- =6 

6397-13 

H 

7427.97 

H 

ss.a 

5459.63 

641486 

7447-oS 

% 

^ 

S4Ao. 

6433,62 

7466.3. 

109 

9331-34 

li 

6450.4 

s 

748537 

9374.19 

^ 

5508^84 

6468.21 

5525.3 

f< 

6486.04 

K 

7523.75 

H 

946ai9 

AUKAS   OF  CIBCLBS. 


235 


DiAM. 


Arba. 


no 

% 

III 
H 

>i 

112 

}i 
%, 

H 
% 
114 

H 

yi 

"5 
116 

H 
H 
% 
117 

'A 
% 
118 

3^ 
■X 
% 
119 

% 


950334 
9546.59 
958993 
9633-37 
9676.91 

9720-55 
9764.29 
9808.12 

9852.06 
9896.09 1 
9940.22 1 

9984-45 
10028.77 
10073.2  I 
10117.72 
10162.34 
10207.06 
10251.88 
10296.79 
10  341.8 
10386.91 
10432.12 

I0477-43  ] 
10522.841 

10568.34! 
10613.94  j 
10659.65 
10705^41 

10751.34 

10  797-34 1 
10843.43, 

10889.62  > 

io935-9i_: 
10982.3 

I 

X 

I 

I 
I 
I 


DiAM. 


120 


028.78 

075.37  I 
122.05 
168.83  i 

215-71  I 
262.69, 


121 


122 


123 


124 


125 


126 


Akba. 


127 


X 

M 

a^ 


128 


% 


129 


yi 


11309.76 

"356.93 
11404.2 

"451-57 
11499.04 
11546.61 

11  594.27 
11(542.03 
11689.89 

"73785 
11785.91 
II 834  06 
1 1 882.32 
11930.67 
11979.12 
12027.66 
12076.31 
12 125.05 
12173.9 

12  222.84 
12271.87 
12321.01 
1237025 
12419.58 

12469.01 
12518.54 
12568.17 
12618.09 
12667.72 
12717.64 
12  767.66 
12817.78 
12867.99 
X2918.31 
12968.72 
13019.23 

13069.84 
13 120.55 

13 171.35 
13222.26 


DlAM. 


130 


131 


% 

yi 


132 


yi 

yi 
% 


133 


yi 
yi 


134 


AmBA. 


135 


H 
% 


136 


yi 
% 


137 


138 


3i 


139. 


3^ 


13273.26 
13324-36 
13375-56 
1342685 

13478.25 
1352974 

13581,33 
1363302 

13684.81 

1373669 

13788.68 

13840.76 

1389294 

13945.22 

13997.6 

14050.07 

14 102.64 

14 155-31 
14208.08 

1425309 

14313-91 
14366.98 

14420.14 

144734 

14526.76 

14580.21 

1463377 
14687.42 

14741.17 

1479502 

14848.97 

14903.01 

14957.16 

15011.4 

15065.74 

15 120.18 

15174-71 

1522935 
1528408 

1533891 


DiAM. 


140 


141 


yi 

yi 
% 

yi 

yi 
% 


Akba. 


142 


143 


3^ 

yi 


144 


yi 


145 


yi 
yi 


146 


147 


148 


yi 

yi 
% 


yi 
yi 


149 


yi 
yi 


150 


15393-84 
15448.87 

1550399 
1555922 

15614.54 
15669.96 

15725-48 
15781.09 

15836.81 
15892.62 

15948.53 
16004.54 

16060.64 
16116.85 
16173.15 
16229.55 

16286.05 
16342.65 

1639935 
16456.14 

16513.03 

16  570.02 

16627.11 

16684.3 

16741.59 

16798.97 

16856.45 

16914.03 

16971.71 
17029.48 
17087.36 

17 145-33 

17203.4 

17261.57 

17319.84 

17378.2 

17436.67 

17495-23 

17553.89 
17671.5 


To  Compute  Ajirea  or  a.  Circle  greater  tliaii  any  in  Talsle. 

Rule. — Divide  dimension  by  two,  three,  fonr,  etc.,  if  practicable  to  do  so, 
until  it  is  reduced  to  a  diameter  to  be  found  in  table. 

Take  tabular  area  for  this  diameter,  multiply  it  by  square  of  divisor,  and 
product  will  give  area  required. 

EzAMPLC.— -What  is  area  for  a  diameter  of  1050? 

1050-5-7  =  150;  (o^.  ar«a,  150  =  17671.5,  which  X  7' =  865  903. 5,  cwea. 

7o  Compute  .A.rea  of*  a  Circle  in.  I^eet   and  Indies,  et6., 

\yy   preceding   1?al>le. 

Rule. — Reduce  dimension  to  inches  or  eighths,  as  the  case  may  be,  and 
take  area  in  that  term  from  table  for  that  number. 


236 


AREAS   OF   CIRCLES. 


Divide  this  number  by  64  (square  of  8)  if  it  is  in  eighths,  and  quotient  will 
p^ve  area  in  inches,  and  divide  again  by  144  (square  of  12)  if  it  is  in  inches, 
and  quotient  will  give  area  in  feet 

ExAMPLB.— What  is  area  of  1  foot  6.375  ins.? 

I  foot  6. 375  ins.  =  18. 375  ins.  =  147  eightfis.  Area  of  147  =  16 971.71,  which  -?-  64 
=  265. 181 25  in$.;  and  by  144  =  1.84 125  feet 

To  CoTxipute  A.rea  of  a  Circle  Composed   of  an    Integer 

and  a  Fraction. 

Rule. — Double,  treble,  or  quadruple  dimension  given,  until  fraction  is  in- 
creased to  a  whole  number,  or  to  one  of  those  ui  the  table,  as  ^,  3^,  etc.. 
provided  it  is  practicable  to  do  so. 

Take  area  for  this  diameter ;  and  if  it  is  double  of  that  foi  which  area  is 
required,  take  one  fourth  of  it ;  if  treble,  take  one  sixteenth  of  it,  etc. 

ExAMPLB.— Required  area  for  a  circle  of  2.1875  ins. 

2. 1875  X  2  =  4. 375,  area  for  which  =  15.0331,  which  -f-  4  =  3.758  ins. 

When  Diameter  is  composed  oflviegers  and  Fractions  contained  in  Table, 

Rule. — Point  off  a  decimal  to  a  diameter  from  table,  and  add  twice  as 
many  figures  or  ciphers  to  the  right  of  the  area  as  there  are  figures  cut  off 
from  the  diameter. 

Example  i.— What  is  area  of  9675  feet  diameter? 

Area  of96.75  =  7351.79;  hence,  area =73  517  900/ccft 
2.  —What  is  area  of  24  375  feet  diameter  ? 

Area  of  2. 4375  =  4. 6664 ;  hence,  area  =  466  640  000  feet 

To   A.8oertaiix  ^rea   of  a  Circle    as  300,  3000,  etc.,  not 

contained   in,  Tal)le. 

Rule.— Take  area  of  3  or  30,  and  add  twice  the  excess  of  ciphers  to  the 
result.  *^ 

Example.— What  is  area  of  a  circle  3000  feet  in  diameter? 

Area  of  30  =  706. 86,  hence  area  of  3000  =  7  068  6oofeee. 

To   Compute  ^rea  of  a   Circle  by  Logarithm^. 

Rule.— To  bvice  log.  of  diameter  add  r.895091  (log.  of  .7854),  and  sum 
IS  log.  of  area,  for  which  take  number.         ^^^    ^  ^        1  y^J^         »""* 

Example.— What  is  area  of  a  circle  1200  feet  in  diameter? 

whi^b  =Ti3^97t^^°^'  ^  6.158362  + 1:895091  =  6.053453,  and  number  for 


Diam. 


No. 

I 

2 

3 

4 

5 
6 

7 
8 


.A.reas  of 

Area.         |    Dlam. 


SirxningliaTxx  "Wire  GKaiige* 


Sq.  Inch. 
.070686 

•063347 
.053685 

.044  488 
.038013 
.032365 
.025  447 
.021382 
.01 7  20^ 


No. 
10 
II 
12 

13 

14 

15 
16 

17 
18 


Area. 

Dlam. 

Sq.  Inch. 

No. 

.014  103 

19 

.011309 

ao 

•009331 
.007088 

21 
22 

.005411 

23 

.004071 
.003318 
.002  642 

.OOJ8S0 

24 

25 
26 

27 

Area. 

Dlam. 

Sq.  Inch. 

No. 

.001  385 

28 

.000962 

29 

.000804 

.^ 

.000616 

31 

.000491 

32 

.00038 

33 

.000314 

34 

.000254 

35 

.000201 

36 

I   Ana. 


Sq. Inch. 

.000154 

.000133 

.000  1 13 

.000078 

.000064 

.00005 

.000038 

.00002 

.000013 


CIBCUMFBBBMCES  OF  CIB0L&3. 


Ciroumfe 

rence 

s  of  CiTOlee,  fVom  ^  to  ISO. 

""-•  1    '^■"'"■ 

A 

.04909 

3 

9,424a 

6 

25-13^8 

47.124 

% 

.09818 

9.6211 
98175 

^ 

">g 

47-5167 
47-9094 

)i 

.19635 

1 

10.014 

26.3109 

48.3021 

H 

26,7036 

48.6948 

S. 

■589 

1 

t^ 

s 

37,0963 
27,489 

^ 

49.0875 

49.4802 

}i 

■78s  4 

10.799 

^ 

49.8729 

>i 

-9817s 

10,9956 

9 

38,3744 

16 

SO.26^ 

1 

28,667, 

50-6583 

% 

1.1781 

":^3 

29,0598 

51.051 

'•37445 
1.5708 
1.767 15 

i 

1..5&t 

11.781 

^ 

29.4525 
29A»S2 

H 

51-8364 

g 

11-977 

1 

ssgs 

^ 

52.6218 

% 

1.963  s 

% 

"''■S 

3i-<»33 

53.0145 

4 

12.5664 

31.416 

% 

2.15985 

s 

12.762 

^ 

31,8087 

g 

53-7999 

% 

2.3563 

12.9591 

322014 

541926 

X 

1 

13.155 

32.5941 

54-5853 

»-552  55 

13.3518 

32,9868 

54-978 

% 

2.7489 

13-547 

33-3795 

^ 

% 

2.9*525 

55.7634 

1394 

34.1649 

31416 

14.1372 

34-5576 

56^5488 

'k 

3-337  9 

1+333 

349503 

56.9415 

3-534  3 

14.5299 

35-343 

57-3342 

3-7306 

35-7357 

57.7269 

14.9226 

36,1=84 

58..  196 

i 

4.1233 
4-3197 

g 

15.119 
15.3153 

i 

36,5211 
36,9138 

% 

58.5123 
58.905 

4.516 

?i; 

15.511 

37.306s 

4.7124 

15.70S 

37-6992 

59.6904 

490S7 

^ 

i6.icx)7 

38,0919 

60.0831 

5-ios  I 

16.4934 

38.4846 

60.4758 

5.3014 

i 

i6,S86i 

38.8773 

60.8685 

17.2788 

39-27 

6t.26l3 

1 

5.&M1 

17.6715 

i 

39.6627 

61.6539 

S-890S 

18.0642 

63^1466 

% 

6.0868 

% 

18.456Q 

62.4393 

6.283  if 

6 

.8,8496 

'3 

62.832 

6-f795 

19.2423 

41-2335 

63.2247 

6.6759 

19-635 

4.,^ 

63.6174 

6JI722 

43,0189 

64.0101 

7.0686 

20.4204 

42,4.16 

64^*028 

7.'6^9 

20,8131 

i 

42,8043 

64.7955 

7-4613 

21.2058 

4.1-197 

65.1882 

7-6576 

2..598S 

43-5897 

65,5809 

7Jt54 

31,9912 

43.9824 

8*503 

^ 

".38.W 

% 

8.a,6  7 

22.7766 

% 

M:767a 

66.759 

8~t43 

23.1693 

% 

45-1605 

67,1517 

8.6394 

33.562 

^ 

67-5444 

883S7 

^ 

'3-9547 

45  9459 

67-937' 

90331 

24.3474 

46.3386 

68.3298 

% 

9^m84 

,  Ji 

24.7401 

46.7313 

% 

68,7325 

C1RCUMFBBEMC£S  OF  CIBCLBS. 


69.5079 

70.3933 

70,686 

71.0787 

7i-47'4 

71.8641 

7I.S56S 

72.6495 

73  W 

73-4349 

738276 

74-a203 

74-613 

75-0057 

75-3984 


91.1064 

91,4991 
91,8918 
>a,2845 

)3.&!73 

93.0699 
93-4626 
93-8553 
94.348 
94.6407 
950334 
93.4361 
95.8188 
96.=' 15 
56.604a 
96.9969 
.7-3896. 
97  7833  '< 
98.175      < 
9S5677    I 
98.9604    I 
993S3I    I 
997458    ■ 
«>-'3as    I 
105312 


136.267 
136.66 
137-053 
137-445 
137-838 
138.23 
138.623 


143-55 
■43.943 
143335 
143-728 


5 

8i,6Si6 

a 

82.0743 

K 

82.467 

82.8597 

83.2524 

83-645' 

84.0378 

84-4,105 

84.8232 

85-2159 

^ 

ass 

H 

aD.0013 

86-394 

86,7867 

87-1794 

87-5721 

87,9648 

109,171 
109.563 
109.956 


124,093 

124.486 
124.879 


129.198 

129.591 
129.984 
130,376 


'3' -554 
'3' -947 
'32,34 


145-692 

146.084 
146.477 
146.87 
147-263 
147-655 
148.048 
148^41 


153-938 
154-331 

154.724 


156-585 


CIBCnHFKBSNCBS  OF  CIBCLBS. 


i..85  , 

1-S78  I 

161.97  [| 

163-363  I 

163.756  I 

i64-'49  : 
164.541 
164.934 

'6S-3^7  I 
i6s.7«9 


179-857  1 

180.349  : 
180.64J  i 


183.784  ' 
184,176  I 
184.569  I 
184.96a  : 
'S5.354  II 
185.747  ■ 


'89,674  ] 
190.067  I 
'90-459  I 


176.331 

176.715 


177.893 

178.286    : 
178.678 


r>i.« 

1       ClBCIFH. 

Dlllt. 

Cnam. 

~64 

201.063 

7' 

^33-054 

>i 

201.4SS 

jl 

«J^46 

i 

201.848 

223-839 

202.6J3 

224.624 

203J)26 

^ 

225.017 

20J.419 

303.8M 

225802 

65 

J04.204 

7a 

226..95 

X 

204.597 

226.5B8 

% 

k 

204989 

1 

226.9S1 

^S^^S 

^Sn^ 

H 

206.167 

228,. 59 

y 

206.56 

I 

228.551 

% 

206.953 

66 

207.346 

229.337 

207.73a 

229.729 

208.131 

230.121 

208.5S4 

230.515 

23a908 

H 

209.309 

231-3 

% 

209.702 

231.693 

K 

232.086 

67 

210.487 

P 

232.478 

>i 

232.87. 

% 

233.264 

% 

2.1:665 

233.656 

'- 

2.2.058 

334-049 

I 

2.2.451 

234.442 

2.2.843 

234.835 

2.3.236 

68 

2.3.629 

235.62 

X 

214.021 

236.0.3 

H 

214.414 

236,405 

2.4.807 
2.5.2 

§ 

236.798 
337.191 

P 

2.5.593 

i 

237.583 

213.985 

237-976 

% 

2.6.378 

■k 

238.369 

2.6.77 

76 

238.762 

2.7-163 

239.154 

a.7-556 

339.547 

^;7.948 

239.94 

2i8i734 

s 

340.725 

34..1.8 

2.9.519 

141.51 

M 

1   219912 

VL 

241.9^ 

343.689 

»t3.474 
243-867 


ClHCtlWFliKENCKa   ( 


Dl.ll. 

Ciicinc. 

CllK. 

Caa~- 

Dl.H. 

CIUUIL 

85 

167,036 

93 

289^7 

99 

3" -018 

S 

267.429 

>i 

28942 

% 

267.82. 

X 

289.B.3 

268-314 

290,305 

i 

s68Jfc7 

290.59a 

i 

=68.999 
269.392 

$ 

290.991 

29' .383 

i 

312-983 

313.375 

% 

269.785 

391.776 

313.767 

S6 

270. 1J8 

393,169 

270.57 

293,562 

314-945 

270.963 

393.954 

315-731 

=71 -336 

=93-347 

316.5.6 

=71-748 

=93-74 

317.303 

294-132 

)i 

318.087 

2  7= '534 

294-525 

H 

318.873 

272.926 

394^,18 

% 

319.658 

t 

273-319 

=9S3' 

,330.443 

273.712 

¥. 

331.229 

374.105 

i< 

396.48S 

% 

3=2-799 

27<^ 

.03 

333.585 

275.283 

=97-274 

H 

334-37 

275^5 

297,667 

<i 

3=5-156 

276-068 

298,059 

% 

as" 

95 

298-452 

3=6-7*6 

^ 

2?t'^ 

=98-843 
299,237 

^ 

337-5" 

3=8.397 

277:629 

n 

399-63 

329^3 

278.033 

300/)=3 

'*^, 

329.868 

^ 

J78-434 

300.415 

H 

330-653 

278-817 

S 

300^18 

"A 

331-439 

279.21 

301.201 

% 

332-224 

89     ]  379.602 

96 

301 -594 

106 

>«   !  a79.99S 

H 

301.986 

333-795 

080.388 

a 

334-58 

380.78 

302-772 

335.956 

281.173 

303-164 

107 

336-151 

1 

281-566 

i 

303,557 

K 

336-937 

281.959 

30,1-95 

H 

,137.722 

282.351 

3^-342 

% 

338.507 

90 

282.744 

97 

loS 

339-293 

%   1  =83.137 

305.128 

H 

340.07a 

X   1  =83.529 

^ 

305-S2I 

H 

340.864 

% 

283-912 

H 

341.649 

% 

284-3IS 

109 

342-434 

384.707 

H 

343-33 

285.1 

307,091 

% 

285.493 

3o;-484 

% 

344-79' 

98 

307,877 

345-576 

%    ■   586,278 

308,27 

346.36. 

308.662 

347147 

%       \&iX. 

309055 

347-93= 

H     287.456 

309,448 

34871a 

8  SSI 

^ 

309-84 

H 

349503 

H 

350-388 

% 

288.634 

K 

310^626 

% 

351-074 

CIBCUMFERENCES   OF   CIRCLBS. 


241 


DiAM. 

Cncmi. 

DlAM. 

CtKCCM. 

DiAM. 

Cntcmi. 

DiAM. 

ClBCUlC 

112 

351-859 

121 

380.134 

130 

408.408 

139 

436.682 

H 

352.645 

3i 

380.919 

}i 

409.192 

3^ 

437-467 

X 

353-43 

K 

381.704 

K 

409.979 

K 

438.253 

% 

354.215 

% 

382.49 

% 

410.763 

Va, 

439037 

"3 

.355-OOI 

122 

383.275 

131 

411.55 

140 

439.824 

}i 

355.786 

}i  !  384.061 

K 

412.334 

3^ 

440.608 

¥. 

356.572 

X  ,  384.846 

y^ 

413-12 

3i 

441-395 

% 

357-357 

H    385.631 

% 

413.905 

% 

442.179 

114 

358.142 

123   386.417 

132 

414.691 

141 

442.966 

H 

358.928 

X ,  387.202 

X 1 415-476 1 

3^ 

443-75 

K  i  359-713  1 

K  i  387.988 

K 

416.262 

^6 

444.536 

% 

360.499 

%    388.773 

% 

417.046 

% 

445.321 

"5 

361.284 

124 

38^.558 

133 

417833 

142 

446.107 

X 

362.069 

H 

390.344 

X 

418.617 

}i 

446.891 

K 

362.855 

X 

391.129 

X 

419.404 

}4 

447.678 

5^ 

363.64 

% 

391.915 

K 

420.188 

% 

448.462 

116 

364.426 

'25,, 

392.7 

134 

420.974 

^^3_ 

449.249 

H 

365.211 

H 

393.484 

3^ 

421.759 

yi 

450.033 

K 

365.996 

H 

394.271 

K 

422.545 

y^ 

450.82 

% 

366.783 

Vi, 

395.055 

% 

423.33 

% 

451.604 

117 

367.567 

126 

395.842 

^35,, 

424.116 

144 

452.39 

X 

368.353 

X 

396.626 

3i 

424.9 

yi 

453175 

K 

369.138 

X 

397.412 

K 

425687 

K 

453-961 

% 

369-923 

% 

398.197 

% 

426.471 

% 

454.745 

118 

370.709 

127 

398.983 

^36. 

427258 

145 

455.532 

3^ 

371-494 

}i 

399.768 

3^ 

428.042 

yi 

456.316 

>i 

372.28 

X 

400.554 

K 

428.828 

% 

457.103 

% 

373.065 

% 

401.338 

!^ 

429.613 

146 

458.674 

119 

373-85 

128 

402.125 

1  137 

430.399 

yi 

460.244 

3^ 

374-636 

yi 

402,909 

3^ 

431.183 

H7 

461.815 

375.421 

yi 

403.696 

^ 

43197 

X 

463.386 

% 

376.207 

% 

404.48 

% 

432.754 

148 

464957 

120 

376.992 

129 

405.266 

'3^. 

433.541 

y^ 

466.528 

li 

377.777 

3i 

406.051 

Ya, 

434325 

149 

468.098 

H 

378.563 

K 

406.837 

X 

435112 

'A 

469.669 

H 

379-348 

% 

407.622 

% 

435-896 

150 

471.24 

fTo  Compute  Ciroxiznferexioe  of*  a  IDiazneter  greater  th.au 

an^  iu   precediuff   Table. 

Rule. — Divide  dimension  by  two,  three,  four,  etc.,  if  practicable  to  do  so, 
until  it  is  reduced  to  a  diameter  in  table. 

Take  tabular  circumference  for  this  dimension,  multiply  it  by  divisor, 
according  as  it  was  divided,  and  product  will  give  circumference  required. 

ExAMPLS.— What  is  circumference  for  a  diameter  of  1050? 
1050-i- 7  =  150;  tab.  circum.,  150  =  471.24,  which  X  7  =  3298.68,  cireumfei'ence. 

To  Compute  Ciroumfereuce  o£  a  Diameter  iu  Feet  aud 
IiiolieB,  etc.,  "by   preceding   Table. 

RuLR. — Reduce  dimension  to  inches  or  eighths,  as  the  case  may  be,  and 
take  circumference  in  that  term  from  table  for  tliat  number. 

Divide  this  number  by  8  if  it  is  in  eighths,  and  by  12  if  in  inches,  and 
quotient  will  give  circumference  in  feet 


242 


CIECUMFEEENCES   OF   CIROLES. 


ErucPLB.— Required  circumference  of  a  circle  of  i  foot  6.375  ina 

I  foot  6.375  ins-  =  18.375  ins.  =  147  eighths.  Circum.  of  147  =  461.815,  which~8 
=  57727  .tn&  /  and  by  1 2  =  4. 8 106  feet. 

To  Compute  Ciroiamfereiioe  for  a  Diameter  ooznposed  of 

an   Integer   and.  a  ITraotion. 

Rule.— Double,  treble,  or  quadruple  dimension  given,  until  fraction  is  in- 
creased to  a  whole  number  or  to  one  of  those  in  the  table,  as  i^,  V,  etc.  pro- 
vided it  is  practicable  to  do  so.  '      *' 

Take  circumference  for  this  diameter ;  and  if  it  is  double  of  that  for  which 
circumference  is  required,  take  one  half  of  it;  if  treble,  take  one  third  of  it  • 
Mid  if  quadruple,  one  fourth  of  it.  * 

iCxAMPLE.— Required  circumference  of  2.21S7";  ^^'* 

2.?i875X  2  =  4.4375,  which  X  2  =  8.875;  circum.  for  which  =  27. 8817,  which -7- a 
=6.9704  ins.  -^ 

When  Diameter  cotisists  of  Integers  and  Fractions  contained  in  Talhe, 

Rule.— Point  a  decunal  to  a  diameter  in  table,  take  circumference  from 
table,  and  add  as  many  figures  to  the  right  as  there  are  figures  cut  off. 

Example.— What  is  circumfo?ence  of  a  circle  9675  feet  in  diameter? 

Circumference  of  96. 75  =  303.95 ;  hence,  circumference  of  9675  =  30 395/erf. 

To    Ascertain    Oironmrerence    fbr    a    Diameter,  as    600, 
SOOO,  et<».,  not   contained    in    Table. 

Rule.— Take  circumference  of  5  or  50  from  table,  and  add  the  excess  of 
ciphers  to  the  result. 

Example.— What  is  circumference  of  a  circle  8000  feet  in  diameter? 

Circumference  of  80  =  251. 38 ;  hence,  circumference  of  8000  =  25 138 ^efc 

To  Compute  Circnrnference  of  a  Circle  "by  I^ogarithms. 

Rule. — To  log.  of  diameter  add  .497  15  (log.  of  3.1416),  and  sum  is  log. 
of  circumference,  from  which  take  number. 

Example. —What  is  circumference  of  a  circle  laoo  feet  in  diameter? 

Log.  1200  =  3.079 18  4-  497 15  =  3  576  33,  and  number  for  which  =  3769.92/e«t 


t>inin. 

No. 
X 
2 

3 

4 

5 
6 

7 
8 


Circnmfferenoes   of  Birmingliaxn    "^Vire   Grange. 

Circatn. 


Circam. 

Diam. 

Ins. 

No. 

.94248 

10 

.89221 

II 

.81367 

12 

.7477 

13 

.69115 

14 

.63774 

15 

•56549 

16 

.51836 

17 

.46495 

18 

Ins. 
.420  97 

•37699 

.342  43 

.29845 

.26075 

.226  19 

.2042 

.18221 

•15394 


Diam. 

Cirrnm. 

No. 

Ins. 

19 

•13195 

20 

.10995 

21 

•10053 

22 

.08796 

23 

.07854 

24 

.06911 

25 

.06283 

26 

.05655 

27 

.050  26 

)inm. 

Circum. 

No. 

Ina. 

28 

.04398 

29 

.04084 

30 

.0377 

31 

.031 41 

32 

.02827 

33 

•02513 

.34 

.02199 

35 

.01571 

3<>     1 

.01357 

ABBAS   AND   CIBCUHFBBBNCBS   OF  CIBCLBS. 


243 


-A.reas   and.   Ciroumferences, 


DiAU. 

.1 

.2 

•3 

.4 

S 

.6 

•7 
.8 


.1 

.2 

•3 

•4 

•5 
.6 

•7 
.8 


.1 

.2 

.3 
.4 
.5 

.6 

•7 
.8 


.1 
.2 

•3 

.4 

•5 
.6 

•7 
.8 


.1 
.2 

•3 

•4 

•5 
.6 

•7 
.8 


.1 
.2 

•3 
•4 
•5 


Area. 

ClBCtTM. 

.007854 

.31416 

.03T  416 

.62832 

.070686 

.94248 

.125664 

1.2566 

•19635 

1.5708 

.282  744 

1.885 

.384846 

2.1991 

.502656 

2.5133 

.636174 

2.8274 

.7854 

3.1416 

•9503 

34558 

1. 131 

37699 

13273 

4.0841 

1-5394 

43982 

1.767  I 

4.7124 

2.0106 

5  0266 

2.2698 

53407 

2.5447 

56549 

28353 

5969 

3. 141 6 

6.2832 

34636 

6-5974 

3-8013 

6.9115 

4.1548 

7.2257 

45239 

7-5398 

4.9087 

7854 

53093 

8.1682 

57256 

8.4823 

6.1575 

8.7965     i 

6.6052 

9.1106     1 

7.0686 

9.4248 

7  547  7 

9739 

8.0425 

10.0531 

8.553 

10.3673 

9.0792 

10.681 4 

9.621 1 

10.9956 

10.1788 

11.3098 

10.752  I 

11.6239 

11.3412 

11.9381 

11-9459 

12.2522 

12.5664 

125664 

13.2026 

12.8806 

13.8545 

13-1947 

14522 

135089 

152053 

13-823 

159043 

14-1372 

16  619 1 

14.4514 

17-3495 

147655 

18.0956 

15.0797 

18.8575 

15-3938 

19-635 

15.708 

20.4283 

16.022  2 

21.2372 

16.3363 

2».o6i  9 

16.6505 

22.9023 

16.9646 

33-7583 

17.2788 

DiAM. 


8 


10 


I 

2 

3 

4 

5 
6 

7 
8 


1 

2 

3 

4 

5 
6 

7 
8 


1 
2 

3 
4 

5 
6 

7 
8 


1 
2 

3 

4 

5 
6 

7 
8 


(Adwrneing  by  Tenths.) 

Aksa. 

CfBCOH. 

24.6301 

17593 

25-5176 

17.9071 

26.4209 

18.2213 

273398 

18.5354 

28.2744 

18.8496 

29.2247 

19.1638 

30.1908 

19.4779 

311725 

19.7921 

32-17 

20.1062 

331831 

20.4204 

34.212 

20.7346 

35-2566 

21.0487 

36.3169 

21.3629 

37-3929 

21.677 

38.4846 

21.9912 

39-592 

22.3054 

40.7151 

22.6195 

41-854 

22.9337 

43.0085 

23.2478 

44-1787 

23.562 

45-3647 

23.8762 

46.5664 

24.1903 

477837 

24.5045 

49.0168 

24.8186 

50.2656 

25   1328 

51-5301 

25447 

52.8103 

25   7611 

54.1062 

260753 

554178 

26.3894 

56.7451 

267036 

58.0882 

270178 

59.4469 

27.3319 

60.8214 

276461 

62.2115 

279602 

636174 

28  2744 

65039 

28.5886 

664763 

28.9027 

67.9292 

292169 

693979 

29531 

70.8823 

29.8452 

723825 

30.1594 

73-8983 

30.4735 

75.4298 

30.7877 

76.9771 

31.1018 

78.54 

31.416 

80.1187 

31.7302 

81.713 

320443 

833231 

32.3585 

84.9489 

32.6726 

86.5903 

32.9868 

88.2475 

33301       - 

89.9204 

336151 

91.6091 

339293 

93-3134 

34.2434 

244        ABEAS   AND   CIBCUHFEBENGBS   OF   CIBCLBS. 


DUM. 


11 


X2 


'3 


14 


15 


i6 


I 

2 

3 

4 

5 
6 

7 
8 


I 

2 

3 
4 

S 
6 

7 

8 


I 

2 

3 

4 

5 
6 

7 
8 


I 

2 

3 

4 

5 
6 

7 
8 


I 

2 

3 

4 

5 
6 

7 
8 


I 

2 

3 

•4 


Abba. 


95-0334 
96.7691 

98.5206 

100.2877 

102.0706 

103.8691 

105.6834 

107.5134 
109.3591 
II  1. 2205 

113.0976 
114.9904 
116.8989 
118.8232 
120.7631 
122.7187 
124.6901 
126.6772 
128.6799 
130.6984 

132.7326 
134-7825 
136  8481 
1389294 
141.0264 

1431391 
145.2676 

147.4117 

149.5716 

151-7471 

153.9384 
156.1454 

158  3681 

160.6064 

162.8605 

165.1303 

167.4159 

169.7171 

172.034 

174.3667 

176.715 

179.0791 

181.4588 

1838543 
186.2655 

188.6924 

191.1349 

1935932 
196.0673 

198557 

201.0624 

203.5835 

206.1204 

208.6729 

2x1.2412 


CtBcm. 

34-5576 
34.8718 

35.1859 
355001 

358142 
36.1284 
36.4426 

36.7567 
37.0709 

37385  • 
37.6992 

38.0134 

383275 
38.6417 

38  9558 

39.27 

39584? 

39-8983 
40.2125 

40.5266 

40.8408 

41.155 
41.4691 

41.7833 
420974 
42.4116 
42.7258 

430399 
43-3541 
436682 

43.9824 
44.2966 
44.6107 

44.9249 

45239 

45.5532 

45.8674 
461815 

46.4957 
46.8098 

47.124 
47.4382 

47.7523 
48.0665 

48.3806 

48.6948 

49.009 

49.3231 
496373 
49-9514 
50.2656 

50.5797 
50.8939 

51.2081 
51.5222 


DlAM. 

Abba. 

CiBcim. 

•5 

213.8251 

51.8.364 

.6 

,216.4248 

52.1505 

•7 

219.0402 

52.4647 

.8 

221.6713 

52.7789 

^  -9 

224.3181 

53.093  ^ 

17 

226.9806 

53.4072* 

.1 

'229.6588 

537214 

.2 

232.3527 

540355 

•3 

235.0624 

54-3497 

•4 

237.7877 

54-6638 

•5 

240.5287 

54-978 

.6 

243-2855 

55-2922 

.7 

246058 

556063 

.8 

248.8461 

55-9205 

•9 

251.65 

56.2346 

18 

254.4696 

56.5488 

.1 

257.3049 

56.863 

.2 

260.1559 

571771 

.3 

263.0226 

57-4913 

••4 

265.905 

57.8054 

.5 

268.8031 

58.1196 

.6 

271.717 

58.4338 

•7 

2746465 

58.7479 

.8 

2775918 

59.0621 

•9 

280.5527 

59.3762 

19 

283.5294 

59.6904 

.1 

286.5218 

6^.0046 

.2 

289.5299 

60.3187 

•3 

292.5536 

606329 

.4 

295  5931 

60.947 

•5 

298.6483 

61.2612 

.6 

301.7193 

61.5754 

■   .7 

304.806 

61.8895 

.8 

307.9082 

62.2037 

•9 

311.0263 

62.5178 

20 

314-16 

62.832 

.1 

3173094 

63.1462 

.2 

320  4746 

634603 

•3 

323-6555 

637745 

•4 

326.8521 

640886 

.5 

330.0643 

64.4028 

.6 

333.2923 

64.717 

•7 

336.536 

65.0311 

.8 

339.7955 

65-3453 

•9 

343.0706 

65.6594 

21 

3463614 

65.9736 

.1 

3496679 

66.2878 

.2 

352.9902 

66.6019 

•3 

356.3281 

66.9161 

•4 

359.6818 

67.2302 

•5 

363  05 1 1 

67.5444 

.6 

366.436* 

67.8586 

•7 

369-837 

68,1727 

.8 

373-2535 

68.4869 

•9 

376.6857 

^/k>i 

ABBAS   AND   CIBCUMFERSNOBS   OF   CIBCLBS.         245 


DiAM. 

Arba. 

ClBCUM. 

22 

380.1336 

69.1152 

.1 

383.5972 

69.4294 

.a 

387.0765 

69.7435 

.3 

390.5716 

70.0577 

•4 

394.0823 

70.3718 

.5 

397.6087 

70.686 

.6 

401.1509 

71.0002 

.7 

404.7088 

71.3143 

.8 

408.2823 

71.6285 

.9 

4IT.8716 

71.9426 

23 

415.4766 

72.2568 

.1 

419.0973 

72.571 

.2 

422.7337 

72.8851 

.3 

426.3858 

73.1993 

•.4 

4300536 

73.5134 

.5 

433-7371 

73.8276 

.6 

4374364 

74.1418 

•7 

44i'i5i3 

74-4559 

.8 

444.882 

74.7701 

.9 

448.6283 

75.0842 

24 

452.3904 

753984 

.1 

456.1682 

75.7126 

.2 

4599617 

76.0267 

.3 

463.7708 

76.3409 

•4 

467.5957 

76.655 

•5 

471-4363 

76.9692 

.6 

475.2927 

77.2834 

.7 

479.1647 

77-5975 

.8 

483.0524 

77.9117 

•9 

486.9559 

78.2258 

25 

490.875 

78.54 

.1 

494.8099 

78.8542 

.3 

498.7604 

79-1683 

.3 

502.7267 

79-4825 

•4 

506.7087 

797966 

•5 

510.7063 

80.1108 

Jb 

514.7196 

80.425 

•7 

518.7488 

80.7391 

.8 

522.7937 

81.0533 

•9 

526.8542 

81.3674 

a6 

530.9304 

81.6816 

.1 

535-0223 

81.9958 

.a 

S39»3 

82.3099 

.3 

543-2533 

82.6241 

4 

547.3924 

82.9382 

.5 

551-5471 

83.2524 

.6 

555.7176 

83.5666 

•7 

559-9038 

83.8807 

.8 

564.1057 

84.1949 

•9 

568.3233 

84.509 

27 

572.5566 

84.8232 

.1 

576.8056 

85.1374 

.2 

581.0703 

85.4515 

•3 

585.3508 

85.7657 

•4 

589.6469 

86.0798 

DlAM. 


-5 

.6 

-7 
.8 


28 


.1 
.2 

-3 
•4 
.5 
.6 

•7 
.8 

•9 


29 


.1 
.2 

•3 

-4 

-5 
.6 

•7 
.8 

-9 


30 


31 


32 


.1 
.2 

3 

.4 

.5 
.6 

-7 
.8 

•9 

.1 
.2 

•3 
-4 
.5 
.6 

.7 
.8 

•9 

.1 
.2 

-3 
-4 
•5 
.6 

.7 
.8 


Absa. 


593.9587 
598.2863 

602.6296 

606.9885 

611.3632 

615.7536 

620.1597 

624.5815 

629.019 

633.4722 

637.94" 
642.4258 

646.9261 

651.4422 

6559739 

660.5214 

665.0846 

669.6635 

674.258 

678.8683 

683.4943 
688.1361 

692.7935 
697.4666 

702.1555 

706.86 
711.5803 
716.3162 
721.0679 

7258353 
730.6183 

7354171 
740.2316 

745.0619 

7499078 

754.7694 

759.6467 

764.5398 

769.4485 

774-373 

779-3131 
784.269 

789.2406 

794.2279 

799.2309 

804.2496 
809.284 

814-3341 
819.4 

824.4815 

829.5787 

834-6917 
839.8204 

8449647 
850.1248 


ClBCCM. 


86.394 

86.7082 

87.0223 

87-3365 
87.6506 

87.9648 
88.279 

88.5931 
88.9073 

89.2214 

89-5356 
89.8498 
90.1639 
90.4781 
90.7922 

91.1064 
91.4206 

91-7347 
^.0489 

92.363 

92.6772 

92.9914 

93.3055 
93.6197 

939338 

94.248 

94.5622 

94.8763 

951905 
95.5046 
95.8188 

96.133 
964471 

96.7613 

970754 

97.3896 
97.7038 
98.0179 

98.3321 
98.6462 
98.9604 
99.2746 
99-5887 
99.9029 
100.217 

100.5312 

100.8454 

101.1595 

101.4737 

101.7878 

102.102 

102.4162 

102.7303 

103044s 
103.3586 


X* 


246        AREAS  A^D   OIBGUMPEBENOSS  OF  CIBCLBB. 


DiAM.   I 


Akba. 


33 


I 

2 

3 

•4 

5 
6 

7 
8 


34 


I 
2 

3 

-4 

5 
6 

7 
8 


35 


36 


37 


38 


I 
2 

3 
4 
5 
6 

7 
8 


I 
2 

3 

4 

5 
6 

7 
8 


I 
2 

3 

4 

5 
6 

7 
8 


I 
2 

3 
•4 


855.3006 
860.4921 
865.6993 
870.9222 
876.1608 
881.4151 
886.6S52 
891.9709 
897.2724 

902.5895 

907.9224 

913.271 

918.6353 

924.0152 

929^109 

934  8223 

940.2495 

9456923 

951.1508 

956.6251 

962.115 

967.6207 

973.142 

978.6791 

984.2319 

989.8003 

995-3845 
1000.9844 

1006.6001 

1012  2314 

loi  7.8784 
1023.5411 
1029.2 196 
1034.9137 
1040.6236 
1046.3491 
1052.0904 
1057.8474 
1063.6201 
1069.4085 

1075.2126 
108 1. 0324 
1086.8679 
1092.7192 
1098.586J 
1 104.4687 
1 1 10.367 1 
1 1 16.2812 
1 122.2109 
1 128.1564 

1134.1176 
1 140.0945 
1 146.0871 
1152.0954 
1 158. 1 194 


ClBCUM. 

03.6728 

03987 

04.3011 

04.6153 

04.9294 

05.2436 

05-5578 
05.8719 
06.1861 
06.5002 

06.8144 

07.1286 

07.4427 

07.7569 

08.071 

08.3852 

08.6994 

09.0135 

09.3277 

09.6418 

09.956 
0.2702 

0.5843 
0.8985 
I.2I26 
1.5268 
I.84I 

2.I55I 
2.4693 

2.7834 

3.0976 
3.41 18 

37259 
4.0401 

4-3542 
4.6684 
4.9826 

5-2967 
5.6109 

5-925 
6.2392 

6.5534 
6.8675 

7.1817 

7.4958 

7.81 

8.1242 

8.4383 

8.7525 
9.0666 

9-3808 

9-695 
20.0091 
20.3233 
?o.^74 


DliM. 

Arxa. 

CnuHTif. 

.5 

1 164.1591 

120.9516 

.6 

1170.2^46 

121.2658 

.7 

II  76.2857 

121.5799 

...8 

1 182.3726 

121.8941 

•9 

1188,4751 

122.2082 

39 

1 194-5934 

122.5224 

-.1 

1200.7274 

122.8366 

.2 

1206.8771 

123.1507 

•3 

1213.0424 

1234649 

•4 

1219.2235 

123.779 

.5 

1225.4203 

124.0932 

.6 

1231.6329 

124.4074 

.7 

1237.8611 

124.7215 

.8 

1244.105 

125-0357 

•9 

1250.3647 

125.3498 

40 

1256.64 

125.664 

.1 

1262.93x1 

125.9782 

.2 

1269.2378 

126.2923 

.3 

1275.5603 

126.6065 

A 

1281.8985 

126.9206 

.5 

1288.2523 

127.2348 

.6 

1294  62x9 

127.549 

.7 

1301.0072 

127.8631 

.8 

1307  4083 

128.1773 

•9 

13x3  825 

128.4914 

41 

1320,2574 

128.8056 

.1 

1326.7055 

129.1198 

.2 

1333-1694 

129.4339 

•3 

1339-6489 

129.7481 

•4 

1346. 1442 

130.0622 

•5 

1352-6551 

130.3764 

jS 

1359.1818 

130.6906 

•7 

1365*7242 

131.0047 

.8 

1372.2823 

131-3189 

•9 

1378.8561 

131-633 

42 

1385.4456 

131.9472 

.1 

1392.0508 

132.2614 

.2 

1398.6717 

132.5755 

.3 

1405.3084 

132.8897 

A 

14 II. 9607 

i33-»038 

•S 

1418.6287 

133-518 

.6 

1425.3125 

133-8322 

.7 

1432.012 

134- 1463 

.8 

1438.7271 

134-4605 

•9 

1445458 

1347746 

43 

1452.2046 

135.0888 

.1 

1458.9669 

135-403 

.2 

1465.7449 

135.71 71 

.3 

1472.5386 

136.0313 

•4 

1479.348 

136.3454 

•5 

1486.1731 

136.6596 

.6 

1493.014 

136.9738 

•7 

1499*8705 

137.2879 

.8 

1506.7428 

137.6021 

•9 

1513.6307 

137-9163 

AREAS   AND   CIBCUMFBBENGES   OF   CIRCLES.        247 


DiAM. 

AmBA. 

Ctscom. 

44 

1520.5344 

138.2304 

.1 

1527-4538 

138.5446 

.2 

1534-3889 

138.8587 

3 

1541-3396 

139.1729 

•4 

1548.30C1 

139.487 

•5 

1555.2883 

139.8012 

.6 

1562.2863 

140.1154 

•7 

1569.2999 

140.4295 

.8 

1576.3292 

140.7437 

•9 

1583.3743 

141.0578 

45 

1590-435 

141.372 

.1 

i597-S"S 

141.6862 

.a 

1604.6036 

142.0003 

3 

1611.7115 

I423145 

•4 

1618.8351 

142.6286 

•5 

1625.9743 

142.9428 

.6 

163.3.1293 

143  257 

•7 

1640.3 

14357" 

.8 

1647.4865 

1438853 

•9 

1654.6886 

144.1994 

46 

1661.9064 

144.5136 

.1 

1669.1399 

144.8278 

.2 

1676.3892 

145.1419 

•3 

1683.6541 

145.4561 

•4 

1690.9348 

145.7702 

•5 

1698.231 1 

146.0844 

.6 

17055432 

146.3986 

•7 

1712.871 

146.7127 

^ 

1720.2145 

147.0269 

•9 

1727-5737 

147-341 

47 

1734.9486 

147.6552 

.1 

1742.3392 

147.9694 

.2 

1749.7455 

148.2835 

.3 

1757.1676 

148.5977 

.4 

1764.6053 

148.9118 

•5 

1772.0587 

149.226 

.6 

1779-5279 

149.5402 

•7 

1 787.0128 

149.8543 

.8 

1794-5133 

150.1685 

•9 

1802.0296 

150.4826 

48 

1809.5616 

150.7968 

.1 

1817.1093 

151.111 

.2 

1824.6727 

151.4251 

•3 

1832.2518 

151.7393 

•4 

1839.8466 

152.0534 

.5 

1847.4571 

152.3676 

.6 

1855.0834 

152.6818 

•7 

1862.7253 

152.9959 

.8 

1870.383 

153-3101 

•9 

1878.0563 

153.6242 

49 

1885.7454 

1539384 

.1 

1893.4502 

154.2526 

.2 

1901.1707 

1545667 

'3 

1908.9068 

154.8809 

•4 

1916.6587 

155.195 

DlAlt. 

Abba. 

ClBCUM. 

.5 

1924.4263 

155.5092 

.6 

1932.2097 

155.8234 

.7 

1940.0087 

156.1375 

.8 

1947.8234 

156.4517 

.9 

1955  6539 

156.7658 

50 

19635 

15708 

.1 

1971.3619 

1573942 

.2 

1979.2394 

157.7083 

.3 

1987.1327 

158.0225 

•4 

1995.0417 

158.3366 

.5 

2002.9663 

158.6509 

,6 

2010  9067 

158.965 

.7 

2018.8628 

159279* 

.8 

2026.8347 

159.5933 

•9 

2034.8222 

1599074 

51 

2042.8254 

160.2216 

.1 

2050.8443 

160.5358  . 

.2 

2058.879 

160.8499 

.3 

2066.9293 

161.1641 

•4 

20749954 

161.4782 

.5 

2083.0771 

161.7924 

.6 

2091.1746 

162.1066 

.7 

2099.2878 

162.4207 

.8 

2107.4167 

162.7349 

'9 

21 15.5613 

163049 

52 

2123.7216 

163.3632 

.1 

213I.8976 

163.6774 

.2 

2140.0893 

1639915 

'3 

2148.2968 

164.3057 

•4 

2156.5199 

164.6198 

•5 

2164.7587 

164.934 

.6 

21 73.0133 

165.2482 

•7 

2181.2836 

165.5623 

.8 

2189.5695 

165.8765 

.9 

2197.8712 

166.1906 

53 

2206.1886 

166.5048 

.1 

2214.5217 

166.819 

.2 

2222.8705 

167.1331 

•3 

2231.235 

167.4473 

•4 

2239.6152 

167.7614 

•5 

2248.0111 

168.0756 

.6 

2256.4228 

168.3898 

•7 

2264.8501 

168.7039 

.8 

2273.2932 

169.0181 

•9 

2281.7519 

169.3322 

54 

2290.2264 

169.6464 

.1 

2298.7166 

169.9606 

.2 

2307.2225 

170.2747 

.3 

2315-744 

1705889 

•4 

2324.2813 

170.903 

.5 

2332.8343 

171.2172 

.6 

2341.4031 

171-5314 

•7 

23499875 

171-8455 

.8 

2358.5876 

172.1597 

•9 

2367.2035 

372.4738 

248        ABKAS  AND  CIBCUMFERENGSS   OF   CIBCL£S. 


DlAM. 

Abba. 

ClBCUM. 

55 

2375-835 

172.788 

.1 

2384.4823 

173.1022 

.2 

2393-1453 

173-4163 

•3 

2401.8239 

173-7305 

•4 

2410.5 183 

174.0446 

.5 

2419.2283 

174.3588 

.6 

2427.9541 

174.673 

.7 

2436.6957 

174.9871 

.8 

2445.4529 

175.3013 

.9 

2454.2258 

175.6154 

56 

2463.0144 

175.9296 

.1 

2471.8187 

176.2438 

.2 

2480.6388 

1A5579 

.3 

24^.4745 

176.8721 

^ 

2498.326 

177.1862 

.5 

2507. 1931 

177.5004 

.6 

2516.076  / 

177.8146 

.7 

25249736 

178.1287 

.8 

2533.8889 

178.4429 

•9 

2542.8189 

178.757 

57 

2551.7646 

179.0712 

.1 

2560.726 

179.3854 

.2 

2569-7031 

179.6995 

•3 

2578.696 

180.0137 

•4 

2587.7045 

180.3278 

•5 

2596.7287 

180.642 

.6 

2605.7687 

180.9562 

.7 

2614.8244 

181.2703 

.8 

2623.8957 

181.5845 

•9 

2632.9828 

181.8986 

58 

2642.0856 

182.2128 

.1 

265 1. 2041 

182.527  ' 

.2 

2660.3383 

182.841 1 

.3 

2669.4882 

183.1553 

•4 

2678.6538 

183.4694 

•5 

2687.8351 

183.7836 

.6 

2697.0322 

184.0978 

•7 

2706.2449 

184.4119 

.8 

2715.4734 

184.7261 

•9 

2724.7175 

185.0402 

59 

2733-9774 

185.3544 

.1 

2743253 

185.6686 

.2 

2752.5443 

185.9827 

•3 

2761.8512 

186.2969 

•4 

2771-1739 

186.61 1 

.5 

2780.5123 

186.9252 

.6 

2789.8665 

187.2394 

.7 

2799.2363 

187.5535 

.8  • 

2808.6218 

187.8677 

•9 

281 8.0231 

I88.I818 

60 

2827.44 

188.496 

.1 

2836.8727 

188.8102 

.2 

2846.321 

189.1243 

•3 

2855.7851 

189.4385 

•4 

2865.2649 

189.7526 

DlAM. 

Ar«a. 

.5 

2874.7603 

.6 

2884.2715 

•7 

2893-7984 

.8 

2903.3411 

•9 

2912.8994 

61 

2922.4734 

.1 

2932.0631 

.2 

2941.6686 

-3 

2951.2897 

.4 

2960.9266 

•5 

2970.5791 

.6 

2980.2474 

•7 

2989.9314 

.8 

2999.631 1 

•9 

3009.3465 

62 

3019.0776 

.1 

3028.8244 

.2 

3038.5869 

-3 

3048.3652 

•4 

3058.1591 

•5 

3067.9687 

.6 

3077.7941 

•7 

3087.6341 

.8 

3097-4919 

•9 

3107.3644 

63 

3117.2526 

.1 

3127.1565 

.2 

3137.0761 

.3 

3147.01 14 

•4 

3156.9624 

•5 

3166.9291 

.6 

3176.9116 

•7 

3186.9097 

.8 

3196.9236 

•9 

3206.9531 

64 

3216.9984 

.1 

3227.0594 

.2 

3237. 1361 

-3 

3247.2284 

.4 

3257-3365 

.5 

3267.4603 

.6 

3277-5999 

•7 

3287.7551 

.8 

3297.9261 

•9 

3308.1127 

65 

3318.31S 

.1 

3328.5331 

•2 

3338.7668 

-3 

33490163 

4 

3359.2815 

.5 

3369.5623 

.6 

3379-8589 

•7 

3390.1712^ 

.8 

3400.4993 

.9 

3410.843 

Ciacnc. 


190.0668 
190.381 
190.6951 
191.0093 

191-3234 
191.6376 
191.9518 
192.2659 
192.5801 
192.8942 
193.2084 
193.5226 

193.8367 
194.1509 

194.465 
194.7792 

195.0934 

195.4075 
195.7217 

196.0358 

196.3s 
196.6642 

196.9783 

197.2925 

197.6066 

197.9208 

198.235 
198.5491 

198.8633 

199-1774 
199.4916 

199.8058 

200.1199 

200.4341 

200.7482 

201.0624 

201.3766 

201.6907 

202.0049 

202.319 

202.6332 

202.9474 

203.2615 

203.5757 
203.8898 

204.204 

204.5182 

204.8323 

205.1465 

205.4606 

205.7748 

206.089 

206.4031 

206.7173 

207.0314 


AREAS  AND   CIBCUMFBBSNOES   OF   CIBGLB8.        249 


DiAM. 


66 


.1 

.2 

•3 
•4 
•S 
.6 

•7 
.8 


67 


.1 
.2 

•3 

•4 

•5 
.6 

.7 
.8 


68 


.1 
.2 

•3 
•4 
.5 
.6 

.7 
.8 


69 


.1 
.2 

.3 

•5 
.6 

•7 
.8 


70 


.1 

.2 

.3 

•4 

•5 
.6 

•7 
.8 


71 


.1 
.9 

•3 
•4 


J421.2024 

3431-5775 
3441.9684 

3452.3749 
3462.7972 

3473a35i 
34836888 

3494.1582 

3504.6433 

3515.1441 

3525.6606 
3536.1928 
3546.7407 

3557-3044 
3567.8837 

3578^1787 

3589.0895 

3599.716 

3610.3581 

3621.016 

3631.6896 

36423789 

3653-0839 
3663.805 

3674.541 

3685.2931 

3696.061 

3706.8445 

3717-6438 
3728.4587 

3739.2894 

3750.1358 
3760.9979 
3771.8756 
3782.7691 

3793.6783 
3804.6033 

38155439 
3826.5002 

38374722 

3848.46 

3859-4635 
3870  4826 

3881.517s 
3892.5681 

39036343 
3914.7163 

3925-814 
3936.9275 

3948.9566 

3959.2014 
3970.3619 
3981.5382 
3992.7301 
4003.9378 


ClBCUM. 


207.3456 
207.6598 

207.9739 
208.2881 

208.6022 

208.9164 

209.2306 

209.5447 

209.8589 

210.173 

210.4872 

210.8014 

2II.II55 

211.4297 

211.7438 

212.058 

212.3722 

212.6863 

213.0005 

213.3146 

213.6288 

213.943 
214.2571 

214.5713 

214.8854 
215.1996 

215.5138 

215.8279 

216. 142 1 

216.4562 

216.7704 

217.0846 

217.3987 

217.7129 

218.027 

218.3412 

218.6554 

218.9695 

219.2837 

219.5978 

219.912 

220.2262 

220.5403 

220.8545 

221.1686 

221.4828 

221.797 

222.1  III 

2^2.4253 

222.7394 

223.0536 
223.3678 
223.6819 
223.9961 
224.3102 


DiAM. 

Abba. 

ClBOClC. 

.5 

4015.161 1 

224.6244 

.6 

4026.4002 

224.9386 

.7 

4037.655 

225.2527 

.8 

4048.9255 

225.5669 

'9 

4060.21 1 7 

225.881 

72 

407I.5136 

226.1952 

.1 

4082.8312 

226.5094 

.2 

4094.1645 

226.8235 

.3 

4105.5136 

227.1377 

.4 

4116.8783 

227.4518 

•5 

4128.2587 

227.766 

.6 

4139-655 

228.0802 

•7 

415 1. 0668 

228.3943 

.8 

4162.4943 

228.7085 

•9 

4173.9376 

229.0226 

73 

4185.3966 

229.3368 

.1 

4196.8713 

229.651 

.2 

4208.3617 

2299651 

.3 

4219.8678 

230.2793 

.4 

4231.3896 

230.5934 

.5 

4242.9271 

230.9076 

.6 

4254.4804 

231.2218 

.7 

4266.0493 

231.5359 

.8 

4277.634 

231.8501 

•9 

4289.2343 

232.1642 

74 

4300.8504 

232.4784 

.1 

4312.4822 

232.7926 

.2  * 

4324.1297 

233.1067 

.3 

4335-7928 

233.4209 

-4 

43474717 

233.735 

.5 

4359.1663 

2340492 

.6 

4370.8767 

234.3634 

•7 

4382.6027 

2346775 

.8 

4394.3444 

234.9917 

.9 

4406. 1019 

2353058 

75 

4417.875 

235.62 

.1 

4429.6639 

235.9342 

.2 

4441.4684 

236.2483 

•3 

4453.2887 

2365625 

.4 

4465.1247 

236.8766 

.5 

4476.9763 

237.1908 

.6 

4488.8437 

237505 

.7 

4500.7268 

237.8191 

.8 

4512.6257 

238.1333 

•9 

4524.5402 

238  4474 

76 

4536.4704 

238.7616 

.1 

4548.4163 

2390758 

.2 

4560.378 

239.3899 

.3 

4572.3553 

239.7041 

.4 

4584.3484 

240.0182 

•S 

4596.3571 

240.3324 

.6 

4608.3816 

240.6466 

•7 

4620.4218 

240.9607 

.8 

4632.4777 

241.2749 

.9 

4644.5493 

241.589 

2SO 


ABEAB  JLSAD   CIBCUMFBBENCSS  OF  CIBCLBS. 


DiAU. 

Akba. 

ClBCDM. 

DiAM. 

77 

4656.6366 

241.9032 

•5 

.1 

4668.7396 

242.2174 

.6     , 

.2 

4680.8583 

242.5315 

•7 

•3 

4692.9928 

242.8457 

.8 

•4 

4705.1429 

243.1598 

•9 

5 

4717.3087 

243474 

83 

.6 

4729.4903 

243.7882 

.1 

•7 

4741.6876 

244  1023 

.2 

.8 

4753-9005 

244.4165 

.3 

•9 

4766.1292 

2447306 

.4 

78 

4778.3736 

245.0448 

•5 

.1 

4790.6337 

245359 

.6 

.2 

4802.9095 

2456731 

•7 

.3 

4815.201 

2459873 

.8 

•4 

4827.5082 

246.3014 

•9 

.5 

4839.8311 

246.6156 

84 

.6 

4852.1698 

246.9298 

.1 

•7 

4864.5241 

247  2439 

.2 

.8 

48768942 

2475581 

.3 

•9 

48892799 

247.8722 

•4 

79 

4901 .6S14 

248.1864 

•5     1 

.1 

4914.0986 

2485006 

.6  ; 

.2 

4926.5315 

248  8147 

.7 

•3 

4938.98 

249.1289 

.8 

•4 

4951.4443 

249443 

•9 

•5 

4963.9243 

2497572 

85 

.6 

4976.4201 

250.0714 

.1 

.7 

4988.9315 

250  3855 

.2 

.8 

5001.4586 

250.6997 

•3 

.9 

5014.0015 

251.0138 

.4 

80 

5026.56 

251.328     1 

•5 

.1 

5039.1343 

251.6422   ' 

.6 

.2 

5051.7242 

251.9563 

.7 

•3 

5064.3299 

252  2705 

.8 

•4 

5076.9513 

2525846 

•9 

.5 

5089.5883 

252.8988 

86 

.6 

5102.241 1 

253213 

.1 

•7 

51 14.9096 

2535271 

.2 

.8 

5'27.5939 

253-8413 

.3 

•9 

5140.2938 

2541554 

.4 

81 

5153.0094 

254.4696 

.5 

.1 

5165.7407 

2547838 

.6 

.2 

5178.4878 

255-0979 

•7 

•3 

5191.2505 

255.4121 

.8 

•4 

5204.0289 

255.7262 

•9 

•S 

5216.8231 

256.0404 

87 

.6 

5229633 

256.3546 

.1 

•7 

5242.4586 

256.6687 

.2 

.8 

52552999 

256.9829 

.3 

•9 

5268.1569 

257.297 

•4 

82 

5281.0296 

257.6112 

•5 

.1 

5293918 

257.9254 

.6 

.2 

5306.8221 

258.239s 

•7 

•3 

5319742 

258.5537 

.8 

•4 

$3326775 

2588678   . 

•9 

Aria. 


5345.6287 

5358.5957 
53715784 
5384.5767 
53975908 

54106206 
5423.6661 

54367273 
54498042 

54628968 

54760051 

5489.1292 

55022689 

5515.4244 

5528.5955 
5541.7824 

5554.985 
5568.2033 

5581.4372 
55946869 
5607.9523 
5621.2335 

5634.5303 
5647.8428 
5661. I711 

5674515 

5687.8747 

5701.25 

5714.6411 

5728.0479 

5741.4703 

57549085 

5768  3624 

5781.8321 

5795.3174 
5808.8184 
5822.3351 
5835.8676 
58494157 
5862.9796 

5876.5591 
5890.1544 

5903.7654 
5917.3921 

59310345 

5944.6926 

5958.3644 

59720559 
5985.7612 

5999.4821 

6013.2187 

6026.971 1 

6040.7392 

6054.5229 

6068.3224 


ClKCCM. 


259.182 

259.4962 

259.8103 

260.1245 

260.4386 

260.7528 

261.067 

261.3811 

261.6953 

262.0094 

262.3236 

262.6378 

262.9519 

263.2661 

263.5802 

263.8944 

264.2086 

264.5227 

2648369 

265.151 

265.4652 

265.7794 
266.0935 

266.4077 

266.7218 

267.036 

267.3502 

267.6643 

267.9785 

268.2926 

2686068 

268.921 

269.2351 

269.5493 
269.8634 

270.1776 
270.4918 
270.8059 
271.1201 
271.4342 
271.7484 
272.0626 
272.3767 
272.6909 
273005 

273.3192 
2736334 

273  9475 
274.2617 

2745758 

274.89 

275.2042 

275.5183 

275  8325 

276.1466 


ABSAS  AND  CIBOtTMF£R]&KC£S  OB*  CIBCLES.        2$  I 


DiAM. 

Akia. 

ClBCVM. 

DlAM. 

Abba. 

CiBcim. 

88 

6082.1376 

276.4608 

•5 

6866.1631 

293.7396 

.1 

6095.9685 

276.775 

.6 

6880.858 

294.0538 

.2 

61098151 

2770891 

•7 

6895.5685 

2943679 

•3 

6123.6774 

2774033 

.8 

6910.2948 

294.6821 

•4 

6137-5554 

277.7174 

•9 

69250367 

294.9962 

•5 

6151.4491 

278.0316 

94 

69397944 

295.3104 

.6 

6165.3586 

278.3458 

.1 

6954.5678 

295.6246 

•7 

6179.2837 

278.6599 

.2 

6969.3569 

295.9387 

•8 

6193.2246 

278.9741 

.3 

698/I.1616 

296.2529 

•9 

6207.181 1 

279.2882 

•4 

6998.9821 

296.567 

89 

6221. 1534 

279.6024 

.5 

7013  8183 

296  8812 

.1 

623^1  1414 

279.9166 

.6 

7028.6703 

297.1954 

.2 

6249  1451 

280.2307 

•7 

70435379 

297-5095 

•3 

6263.1644 

280.5449 

.8 

7058  4212 

297  8237 

•4 

6277.1995 

280.859 

•9 

7073.3203 

298.1378 

•5 

6291  2503 

281.1732 

95 

7088.235 

298.452 

.6 

63053169 

281.4874 

.1 

7103. 1655 

298.7662 

•7 

6319  3991 

281.8015 

.2 

7118.II16 

299.0803 

8 

6333  497 

282.1157 

.3 

71330735 

299.3945 

9 

63476107 

282.4298 

.4 

7148  0511 

299.7086 

90 

6361.74 

282.744 

^•5 

7163  0443 

300.0228 

.1 

63758851 

283  0582 

.6 

71780533 

300.337 

.2 

63900458 

2833723 

•7 

7193.078 

300.6511 

3 

6404.2223 

283.6865 

.8 

7208.1185 

300.9653 

•4 

6418  4144 

284.0006 

.9 

7223.1746 

301.2794 

.5 

6432.6223 

284.3148 

96 

7238.2464 

301.5936 

.6 

6446.8459 

284.629 

.1 

72533339 

301.9078 

•7 

6461.0852 

284.9431 

.2 

7268.4372 

302.2219 

.8 

^75.3403 

285.2573 

.3 

7283.5561 

302.5361 

•9 

6489.61 1 

285.5714 

•4 

7298.6908 

302.8502 

91 

6503.8974 

285.8856 

•5 

73138411 

303.1644 

.1 

6518.1995 

286.1998 

.6 

7329  0072 

3034786 

.2 

65325^74 

286.5139 

.7 

7344.189 

303.7927 

•3 

6546.8509 

286.8281 

.8 

7359.3865 

304  1069 

4 

6561.2002 

287.1422 

•9 

7374  5997 

304.421 

•5 

6575  5651 

287.4564 

97 

73898286 

304-7352 

.  .6 

6589.9458 

287.7706 

.1 

74050732 

305.0494 

•7 

660^.3422 

288.0847 

.2 

7420.3335 

305.3635 

.8 

66187543 

288.3989 

.3 

7435.6096 

305.6777 

9 

66331821 

288.713 

•4 

74509013 

305.9918 

92 

66476256 

289.0272 

•5 

7466.2087 

306.306 

.1 

66620848 

289.3414 

.6 

7481 .5319 

306.6202 

.2 

.  6676  5598 

289.6555 

•7 

7496.8708 

3069343 

•3 

66910504 

289.9697 

.8 

7512.2253 

307,2485 

•4 

6705  5567 

290.2838 

•9 

75275956 

307.5626 

•S 

6720.0787 

290.598 

98 

7542.9816 

307.8768 

^ 

6734  6165 

290.9121 

.1 

75583833 

308.191 

•7 

674917 

291.2263 

.2 

7573.8007 

308,5051 

.8 

6763.7391 

2915405 

•3 

7589  2338 

308.8193 

9 

6778  324 

291.8546 

•4 

7604.6826 

3091334 

93 

6792.9246 

292.1688 

.5 

7620. 147 1 

309.4476 

.1 

6807.5409 

292.483 

.6 

7635  6274 

309,7618 

.a 

6822.1729 

292.7971 

.7 

7651.1233 

310.0759 

.3 

68368206 

293-"i3 

.8 

7666.635 

310  3901 

•4 

6851.484 

293-4a54 

•9 

7682.1623 

310.7042 

252       ABBAS  AND  CIBCUKFBBENOBS  OV  CIBOLBS. 


DiAM. 

Abba. 

CiBcnt.' 

DlAM. 

Arxa. 

CimcnM. 

99 

7697.7054 

311.0184 

•5 

7775.6563 

312.589a 

.1 

7713.2643 

311.3326 

.6 

7791.2937 

312.9034 

.2 

7728.8337 

311.6467 

•7 

7806.9467 

313-2175 

•3 

7744.4288 

311.9609 

.8 

7822.6154 

313  5317 

•4 

7760,0347 

312.275 

•9 

7838.2999 

313.8458 

Q?o  Coxupute  A.rearOr  Cirouxxiferenoe  era IDiaxneter  greater 
than,   any   in.  preoecLing   Xable. 

See  ^ules,  pages  235-6  and  241-2. 

Or,  If  Diameter  exceeds  100  and  is  less  than  looi. 

Pat  a  decimal  point,  and  take  out  area  or  circumference  as  for  a  Whold 
Number  by  removing  decimal  point,  if  for  an  area,  two  places  to  right ,  and 
if  for  a  circumference,  one  place. 

Example. — What  is  area  and  what  circnmference  of  a  circle  967  feet  in  diame- 
ter? 

Area  of  96.7  is  7344.180;  hence,  for  967  it  is  734  418.9;  and  circumference  of  96.7 
is  303.7927,  and  for  967  it  is  3037.927. 

To  Compute  A^rea  an.d  Circumrerenoe  of  a  Circle  by  Xjog* 

aritliins. 

See  Rules,  pages  236, 242. 

JLreas   and  Ciroutixfbrenoes   of*  Circles. 

From  x  to  50  Feet  (advancing  by  an  Inch). 
Or,  From  i  to  50  Inches  {advancing  by  a  Tiveyth). 


DiAM. 


I 

2 

3 

4 
5 

6 

7 
8 

9 
10 

II 

a.  A 

I 

2 

3 

4 

5 
6 

7 
8 

9 
10 

II 


Akba. 


FMt. 

•7854 
.9217 

1.069 
1.2272 

1-3963 
1-5763 

1. 7671 

1.969 

2.I8I7 

24053 
2.6398 

2.8853 
3.I4I6 
3.4088 

3.687 

3.9761 

4.2761 

4.5869 
4.9087 

5.2415 
5.5852 
5.9396 

6.305 
6.6814 


ClBCVM. 


Feet. 
3-I416 

3-4034 
3.6652 

3927 
4.1888 

4-4506 

4.7124 

4-9742 

5236 

5.4978 

57596 

6.0214 

6.2832 

6.545 
6.8068 

7.0686 

7.3304 
7.5922 

7-854 
8.II58 

8.3776 
8.6394 
8.9012 
9.163 


DlAM. 


3  A 

I 

2 

3 
4 
5 
6 

7 

8 

9 
10 

II 

4A 

I 

2 

3 
4 
S 

^ 

7 
8 

9 
10 

II 


Aria. 


Feet. 
7.0686 
7.4668 

7.8758 
8.2958 
8.7267 
9.1685 
9.621 1 
10.0848 

10.5593 
11.0447 
II.54I 
12.0483 

12.5664 

130955 

13.6354 
14.1863 

14.7481 

15.3208 

15.9043 
16.4989 

17.1043 

17.7206 

18.3478 

18.9359 


ClROTM. 


Feet. 

9.4248 

9.6866 

9.9484 

10.2102 

10.472 

10.7338 

10.9956 

11.2574 

XI. 5192 
11.781 
12.0428 
12.3046 

12.5664 

12.8282 

13.09 

13.3518 

13.6136 

138754 

14-1372 
14.499 

14.660S 

14.9226 

15.1844 

15.4462 


AREAS   AND    CIBCUMFERENCES   OF   CIBCtKft.         253 


T>.AU 

AXSA. 

C1BCUIC. 

Feet. 

Feflt. 

5/^- 

19-635 

15-708 

I 

20.2949 

15.9698 

2 

20.9658 

16.2316 

3 

21.6476 

16.4934 

4 

22.3403 

16.7552 

5 

230439 

17.017 

,  6 

237583 

17.2788 

7 

24.4837 

17.5406 

8 

25.22 

17.8024 

9 

25.9673 

18.0642 

lO 

26.7254 

18.326 

It 

27.4944 

18.5878 

6ft. 

28.2744 

18.8496 

I 

29.0653 

I9.III4 

2 

29.867 

19.3732 

3 

30.6797 

19.635 

4 

31-5033 

19.8968 

5 

32-3378 

20.1586 

6 

33-1831 

20.4204 

7 

340394 

20.6822 

8 

34.9067 

20.944 

9 

35.7848 

21.2058 

lO 

36.6738 

21.4676 

II 

37-5738 

21.7294 

7^. 

38.4846 

21.9912 

I 

39.4064 

22.253 

2 

40.339 

22.5148 

3 

41.2826 

22.7766 

4 

42.2371 

23.0384 

5 

43.2025 

23.3002 

6 

44.1787  • 

23.562 

7 

451659 

23.8238 

8 

46.1641 

24.0856 

9 

47-1731 

24.3474 

lO 

48.193 

24.6092 

II 

49.2238 

24.871 

syi!. 

50.2656 

25.1328 

I 

51-3183 

25.3946 

2 

52.3818 

25.6564 

3 

53-4563 

25.9182 

4 

54.5417 

26.18 

5 

55638 

26.4418 

6 

56.7451 

26.7036 

7 

57.8632 

26.9654 

8 

58.9933 

27.2272 

9 

60.1322 

27-489 

lO 

61.283 

27.7508 

II 

62.4448 

28.0126 

9  A. 

63.6174 

28.2744 

I 

64.801 

28.5362 

2 

659954 

28.798 

3 

67.2008 

29.0598 

4 

68.417 

29.3216 

Mr 

696442 

29-5834 

DiAM. 

Aria. 

ClBCUM. 

Vf  3t. 

Feet. 

6 

70.8823 

29.8452 

7 

72-1314 

30.107 

8 

73.3913 

30.3688 

9 

74.6621 

30.6306 

lO 

75-9439 

30.8924 

II 

772365 

31-1542 

JO  ft. 

78.54 

31-416 

I 

798545 

31.6778 

2 

81.1798 

31.9396 

3 

82.5161 

32.2014 

4 

83.8633 

32.4632 

5 

85.2214 

32.725 

6 

86.5903 

32.9868 

7 

87.9703 

33.2486 

8 

89.3611 

33.5104 

9 

90.7628 

33-7722 

10 

92.1754 

34-034 

II 

93-599 

342958 

lift. 

.   950334 

34.5576 

1 

96,4787 

34.8194 

2 

97-935 

35.0812 

3 

99.4022 

35-343 

4 

100.8803 

35.6048 

5 

102.3693 

35.8666 

6 

103  8691 

36. 1284 

7 

105.38 

36.3902 

8 

106.9017 

36.652 

9 

108.4343 

36.9138 

10 

109.9778 

371756 

II 

I II. 5323 

37.4374 

12  ft 

113.0976 

37.6992 

1 

114.6739 

37-961 

2 

116,261 

38.2228 

3 

1 1 7.8591 

38.4846 

4 

119.468 

38.7464 

5 

121.088 

39.0082 

6 

122.7187 

39.27 

7 

124.3605 

39.5318 

8 

126.0131 

39.7936 

9 

127.6766 

40.0554 

10 

129.351 

40.3172 

II 

131.0366 

40.579 

^3A 

132.7326 

40.8408 

1 

134-4398 

41.1026 

2 

136.1578 

41-3644 

3 

137.8868 

41.6262 

4 

139  6267 

41.888 

5 

141-3774 

42.1498 

6 

143-1391 

/I2.4116 

7 

144.91 1 7 

42.6734 

8 

146.6953 

42.9352 

9 

148.4897 

43-197 

10 

150.295 

43.4588 

II 

152. 1 113 

43.7206 

254        ABBAS    AND   CIBCUMFEBENCES   OF  CIBCLSS. 


DlAH« 

Akca. 

CUCUM. 

Feet. 

Feet. 

14 /f- 

1539384 

43.9824 

I 

155.7764 

44.2442 

2 

157.6254 

44.506 

3 

159-4853 

44.7678 

4 

161.3561 

45.0296 

S 

163.2378 

45.2914 

6 

165.1303 

455532 

7 

167.0338 

45-815 

8 

168.9483 

46.0768 

9 

170.8736 

46.3386 

lO 

172.8098 

46.6004 

II 

174-7569 

46.8622 

ISA 

176.715 

47.124 

I 

178.684 

47.3858 

2 

180.6638 

47.6476 

3 

182.6546 

479094 

4 

184.6563 

48.1712 

5 

186.6689 

48.433 

6 

188.6924 

48.6948 

7 

190.7267 

.48.9566 

8 

192.7721 

49.2184 

9 

194.8283 

49.4802 

lo 

196.8954 

49-742 

IT 

198.9734 

50.0038 

it  ft. 

201.0624 

50.2656 

I 

203.1622 

50.5274 

2 

205.273 

50.7892 

3 

207.3947 

51-051 

4 

2095273 

51.3128 

5 

211.6707 

51-5746 

6 

213.8252 

51.8364 

7 

215.9904 

52.0982 

8 

218.1667 

52.36 

9 

220.3538 

52.6218 

lO 

222.5518 

52.8836 

II 

224.7607 

531454   • 

17  A 

226.9806 

534072 

I 

229.2113 

53669 

2 

231-453 

539308 

3 

233.7056 

54.1926 

4 

2359691 

54-4544 

S 

238,2434 

54-7162 

6 

240.5287 

54-978 

7 

242.8249 

55-2398 

8 

245.1321 

55.5016 

9 

247.4501 

557634 

i« 

-249.779 

56.0252 

II 

252.1188 

56.287 

i8.A 

254.4696 

56.5488 

I 

256.8312 

56.8106 

2 

259.2038 

57.0724 

3 

261.5873 

57.3342 

4 

263.9817 

57.596 

5 

266.3869 

'   57-8578 

1    DlAM. 

AjtSA. 

Feet. 

6 

268.8031 

7 

271.2302 

8 

273.6683 

1 

9 

276.1172 

10 

278.577 

II 

281.0477 

19  A 

283.5294 

I 

286.0219 

2 

288.5255 

3 

291.0398 

4 

293.5651 

5 

296.1012 

6 

298.6483 

7 

301.2064 

8 

303.7753 

9 

306.3551 

10 

308.9458 

II 

311.5475 

20/15. 

314.16 

I 

316.7834 

2 

319.4178 

3 

322.0631 

4 

324.7193 

5 

327.3864 

6 

330.0643 

7 

332.7532 

8 

335.4531 

9 

338.1638 

10 

340.8854 

II 

343.618 

21 A 

346.3614 

I 

349-1157 

a 

351.881 

3 

354.6572 

4 

3574442 

5 

360.2422 

6 

363.0511 

7 

365.8709 

8 

368.7017 

9 

371.5433 

10 

374.3958 

II 

377.2592 

a2/<. 

380.1336 

I 

383.0188 

2 

385915 

3 

388.8221 

4 

391.74 

5 

394.6689 

6 

397.6087 

7 

400.5594 

8 

403.5211 

9 

406.4936 

10 

409.477 

II 

412.4713 

CntovM. 


Feet. 
58.1196 
58.3814 
58.6432 

58.905 

59-1668 

59.4286- 

59.6904 

59-9522 

60.214 

60.4758 

60.7376 

60.9994 

61.2612 

61.523 

61.7848 

62.0466 

62.3084 

62.5702 

62.832 

63.0938 

63.3556 

63.6174 

63.8792 

64.141 

64.4028 

64.6646 

64.9264 

65.1882 

65.45 
65.7118 

65.9736 

66.2354 

66.4972 

66.759 

67.0208 

67.2826 

675444 
67.8062 

68.068 

68.3298 

685916 

68.8534 

69.1152 

69.377 
69.6388 

69.9006 

70.1624 

70.4242 

70.686 

70.9478 
71.2096 

7-4714 
71.7332 

71-995 


AREAS   ATSTD   CIBCUHFSBENCBS  OF   CIBCLES. 


255 


DiAM. 


23  A 

I 

2 

3 

4 

5 
6 

7 
8 

9 
10 

II 

24ft, 

I 

2 

3 

4 

5 
6 

7 

8 

9 
10 

II 

I 

2 

3 

4 

5 
6 

7 

8 

9 
10 

II 

26A 

I 
2 

3 

4 

5 
6 

7 
8 

9 
10 

II 

I 
a 

3 
4 
% 


A  SB  A. 

Cntomi. 

DiAM. 

Aria. 

ClBCUM. 

Feet. 

Feet. 

Feet. 

Feet. 

415.4766 

72.2568 

6 

593.9587 

86.394 

418.4927 

72.5186 

7 

597-5639 

86.6558 

421.5198 

72.7804 

8 

601.18 

86.9176 

424.5578 

73.0422 

9 

604.8071 

87.1794 

427.6067 

73.304 

10 

608.445 

87.4412 

430.6664 

73.5658 

II 

612.0938 

87-703 

4337371 

738276 

0 

28//. 

6157536 

87.9648 

436.8187 

74.0894 

I 

619.4242 

88.2266 

43991 

74-3512 

2 

623.1058 

88.4884 

443.0147 

74613 

3 

626.7983 

88.7502 

446.129 

74.8748 

4 

630.5016 

89.012 

449.2542 

751366 

5 

634.2159 

89.2738 

452.3904 

753984 

6 

637.9411 

89.5356 

455-5374 

75.6602 

7 

641.6772 

89.7974 

4586954 

75922 

8 

645-4243 

90.0592 

461.8643 

76.1838 

9 

649.1822 

90.321 

465.044 

76.4456 

:o 

652.951 

90.5828 

4682347 

76.7074 

11 

6567307 

90.8446 

471-4363 
474.6488 

477.8723 

481.1066 

484.3518 

"  487.6076 

76.9692 

20  ft. 

660.5214 

91.1064 

77.231 

77.4928 

77.7546 

78.0164 

78.2782 

I 
2 

3 
4 

5 

664.3229 
668.1354 
671.9588 

675-7931: 
679.6382 

91.3682 

91.63 

91.8918 

92.1536 

92.4154 

490.875 

78.54 

6 

683.4943 

92.6772 

494.1529 

78.8018 

7 

687.3613 

92,939 

497.4418 

79.0636 

8 

691.2393 

93.2008 

500.7416 

793254 

9 

695.1281 

93.4626 

50*0523 

79.5872 

10 

699.0278 

937244 

507.3738 

79.849 

II 

702.9384 

93.9862 

510.7063 

514.0485 

517.404 

520.7693 

524.1454 

527-5324 

80.1108 

80.3726 

80.6344 

80.8962 

81.158 

81.4198 

30/?. 

I 
2 

3 

4 
5 

706.86 
710.7924 

714  7358 
718.6901 
722.6553 
726.6313 

94.248 

945098 
94.7716 

950334 
95.2952 

95-557 

530.9304 

816816 

6 

730.6183 

958188 

534.5397 

81.9434 

7 

734.6162 

96.0806 

537-759 

82.2052 

8 

738.6251 

96.3424 

541.1897 

82467 

9 

742.6448 

96.6042 

544.6313 

82.7288 

10 

746.6754 

96.866 

5480837 

82.9906 

11 

7507164 

97.1278 

551.5471  . 
555-0214 

5585066 

562.0028 

5655098 
569.0277 

83.2524 
83.5142 

83.776 
84.0378 
84.2996 
84.5614 

31  yv. 

I 
2 

3 
»    4 

5 

754.7694 

758.8327 

762.907 

766.9922 

771.0883 

775.1952 

97.3896 
97.6514 
97.9132 

98.175 

984368 

98.6986 

572.5566 

84,8232 

6 

779-3131 

98.9604 

576.0963 

85.085 

7 

783.4419 

99.2222 

579.6467 

85.3468 

8 

787.5817 

99.484 

583.2086 

85.6086 

9 

791-7323 

997458 

586.781 

85.8704 

10 

795.8938 

100.0076 

590.3644 

86.1322 

II 

.800.0662 

100.2694 

256        ABEAS  AKD   CIBGUHF£BSXCES   OF   CIBCLBS. 


DiAM. 

Absa. 

CtKctm. 

Feet. 

Feet. 

32  A 

804.2496 

100.5312 

I 

808.4439 

100.793 

2 

812.649 

101.0548 

3 

816.8651 

101.3166 

4 

821.092 

101.5784 

5 

825.3299 

101.8402 

6 

829.5787 

102.102 

.  7 

8338384 

102.3638 

8 

838.1091 

102.6256 

9 

842.3906 

102.8874 

10 

846.683 

103.1492 

11 

850.9863 

103.41 1 

33  A 

855.3006 

103.6728 

I 

859.6257 

103.9346 

2 

863.9618 

104.1964 

3 

868.3088 

104.4582 

4 

872.6667 

104.72 

S 

877-0354 

104.9818 

6 

881.4151 

105.2436 

7 

885.8057 

105.5054 

8 

890.2073 

105.7672 

9 

894.6197 

106.029 

10 

899.043 

106.2908 

II 

9034772 

106.5526 

34  A 

907.9224 

106.8144 

I 

912.3784 

107.0762 

2 

916.8454 

107.338 

3 

921.3233 

107.5998 

4 

925.812 

107.8616 

5 

93O.3117 

108.1234 

6 

934.8223 

108.3852 

7 

939-3439 

108.647 

8 

943-8763 

108.9088 

9 

948.4196 

109.1706 

10 

952.9738 

109.4324 

II 

957.5392 

109.6942 

35  A 

962.115 

109.956 

I 

966.7019 

110.2178 

2 

971.2998 

1 10.4796 

3 

975.9086 

1 10.7414 

4 

9805287 

111.0032 

5 

985.1588 

111.265 

6 

989.8005 

111.5268 

7 

9944527 

111.7886 

8 

999.116 

112.0504 

9 

1003.7903 

112.3122 

xo 

1008.4754 

"^•574„ 

II 

1013.1714 

112.8358 

36  A 

loi  7.8784 

113.0976 

X 

1022.5962 

"3-3594 

9 

1027.325 

113.6212 

3 

1032.0647 

113-883 

4 

1036.8153 

114.1448 

5 

1041.5767 

X  14.4066 

DiAM. 

Abba. 

CiBcim. 

Feet. 

Feet. 

6 

1046.3491 

114.6684 

7 

1051.1324 

114.9302 

8 

1055.9266 

115.192 

9 

1060.7318 

115.4538 

10 

1065.5478 

115.7156 

II 

1070.3747 

115.9774 

37  A 

1075.2126 

116.2392 

I 

1080.0613 

116.501 

2 

1084.921 

116.7628 

3 

1089.7916 

117.0246 

4 

1094.6731 

117.2864 

5 

1099-5654 

117.5482 

6 

1104.4687 

117.81 

7 

1109.3829 

118.0718 

8 

1114,308 

118.3336 

9 

11 19.2441 

1185954 

10 

1124.191 

118.8572 

11 

1 129.1489 

119.119 

38A 

II34.II76 

1193808 

1 

1139.0972 

119.6426 

2 

1144.0878 

119.9044 

3 

1149.0893 

120.1662 

4 

1154.1017, 

120.428 

5 

1159.1249 

1206898 

6 

1164.1591 

120.9516 

\  7 

1 169.2042 

I2I.2134 

8 

II74.2O03 

121.4758 

9 

11793272 

121.737 

10 

1184.405 

121.9988 

11 

1189.4937 

122.2606 

39A 

"94.5934 

122.5224 

1 

1199.7039 

122.7848 

2 

1204.8254 

123.046 

3 

1209.9578 

123.3078 

4 

1215.101 

1235696 

5 

1220.2552 

123.8314 

6 

1225.4203 

124.0932 

7 

1230.5963 

124.355 

8 

1235-7833 

124.6168 

9 

1240.9811 

124,8786 

10 

1246.1898 

125.1404 

11 

1251.4094 

125.402a 

40  A 

1256.64 

125.664 

I 

1 261 .88 14 

125.9258 

2 

1 267. 1338 

126.1876 

3 

1272.3971 

126.4494 

4 

1277.6712 

126.7113 

5 

1282.9563 

ii6.973 

6 

1288.2523 

127.2348 

7 

1293-5592 

127.4966 

8 

1298.877 

127-7584 

9 

1304.2058 

1280203 

10 

1309-5454 

128.383 

II 

1314-8959 

128.5438 

ABEAS  AKD  ClBOtJMFSSSNCBS  OF  CIRCLES.       2^7 


DUM. 


41 A 

I 

2 

3 

4 

5 
6 

7 

8 

9 
10 

II 

42  A 

I 

2 

3 
4 
5 

6 

7 
8 

9 
10 

II 

I 
2 

3 

4 

5 
6 

7 
8 

9 
10 

II 

44  A 

I 
2 

3 
4 
5 
6 

7 
8 

9 
10 

II 

45  A 

I 

2 

3 
4 
5 


Abia. 


320.2574 
325.6297 

331  013 
336.4072 

341.8123 

347.2282 

352-6551 
358.0929 

363.5416 

369.0013 

374.4718 

3799532 

385.4456 

390.9488 

396.463 
401.9881 

407.5241 
4130709 
418.6287 
424.1974 
429.777 

4353676 

440969 

446.5813 

452.2046 

4578387 
4634838 
469.1398 
474.8066 
480.4844 
486.1731 
491.8717 

4975833 
5033047 
509037 
514.7802 

520.5344 
526.2994 
532.0754 
537.8623 

543-66 

549.4687 

5552883 

561.1188 

566.9603 

572.8126 

578.6756 

584.5499 

590.435 

596.3309 
602.2378 

608.1556 

614.0843 

620.0238 


CmcvM. 


Feet. 
28.8056 
29.0674 
29.3292 
29.591 
29.8528 
30.1146 

30.3764 
30.6382 

309 
31.1618 
31.4236 
31-6854 

31-9472 
32.209 
32.4708 
32.7326 

329944 
332562 

33518 

33-7798 
34.0416 

34-3034 
34-5652 
34.827 

350888 
35-3506 
35.6124 

35.8742 
36.136 

36.3978 
366596 

36.9214 
37.1832 

37-445 
37.7068 

37.9686 

38.2304 
38.4922 

38.754 
390158 

39.2776 

39  5394 
39.8012 

40.063 

40.3248 

40.5866 

40.8484 

41.1102 

41-372 

41.6338 

41.8956 

42.1574 

42.4192 

42.681 


Y* 


Duif. 

Ab«a. 

CisaDM. 

Feet. 

Feet. 

6 

1625.9743 

142.9428 

7 

163I.9357 

143.2046 

8 

1637.9081 

143.4664 

9 

1643.8913 

143-7282 

10 

1649.8854 

143.99 

II 

1655.8904 

144.2518 

46A 

1661.9064 

144.5136 

I 

1667.9332 

144-7754 

2 

1673.971 

1450372 

3 

1680.0197 

145.299 

4 

1686.0792 

145.5608 

5 

1692. 1 497 

145.8226 

6 

1698.231 1 

146.0844 

7 

1 704.3195 

146.3462 

8 

1 710.4267 

146.608 

9 

1716.5408 

146.8698 

10 

1722.6658 

147.1316 

11 

1728.8017 

147-3934 

47  .A 

1734.9486 

147-6552 

I 

1 741. 1063 

147917 

2 

1747275 

148.1788 

3 

1753-4546 

148.4406 

4 

1759-6451 

148.7024 

5 

1765.8464 

148.9642 

6 

1772.0587 

149.226 

7 

1778.2819 

149.4878 

8 

1784.516 

149-7496 

9 

1 790.761 1 

150.0114 

10 

1797.017 

150.2732 

II 

1803.2838 

150.535 

48  A 

1809.5616 

150.7968 

I 

1815.8502 

151.0586 

2 

1822.1498 

151-3204 

3 

1828.4603 

151.5822 

4 

1834.7817 

151.844 

5 

184I.II39 

152.1058 

6 

1847.4571 

152.3676 

7 

1853.81 12 

152.6294 

8 

1860.1763 

152.8912 

9 

1866.5522 

153153 

10 

1872.939 

153-4148 

11 

1879-3367 

153  6766 

49/'- 

1885.7454 

1539384 

I 

1892.1649 

154.2002 

2 

1898.5954 

154  462 

3 

19050368 

154-7238 

4 

191 1. 4897 

154-9856 

5 

I917.9522 

1552474 

6 

1924.4263 

1555092 

7 

1930.91 13 

155-771 

8 

1937-4073 

156.0328 

9 

1943.9142 

156.2946 

10 

1950.4318 

156.5564 

II 

1956.9604 

156.8182 

SoA 

1963.5 

157-08 

ijS  8IDBB   OF  BQUAABS  BQUAl,  TO   ABEA8. 

Sides  of  SQiiares— eQtial   in  Area  to  a  C: 


if  I 


SU.DrSq. 

Diua. 

Sl*..rfSq. 

.8863 

"4 

12.4072 

..T078 

a 

X 

12.8503 

1.5509 

K 

i3-07'8 

'3,, 

I3.»934 

H 

'3-S'5 

2.^,56 

S 

13.7365 

13-9581 

^.6587 

16 

14-1796 

i.ma 

)i 

14.4012 

3.1018 

H 

.4.6237 

% 

14,8443 

3-5449 

'7 

15.0659 

3.766s 

15.3874 

4.2096 

■5.7305 

iS 

'5-9531 

4-65a7 

16..  736 

4.87+3 

s 

.6.39SI 

5.0958 

16.6168 

5.3' 74 

19 

1&8383 

t^ 

I 

17.0599 
17.2814 

5^ 

6.2036 

x> 

1 7- 7*45 

64151 

X 

■  7-946. 

6.6467 

K 

18..677 

6.8683 

H 

.8.3893 

7.0898 

H 

18JI333 

7S3»9 

^ 

19^539 

7.7545 

H 

.9.3754 

7.976 

■9497 

8.1976 

■9.7185 

8^6407 

i 

30.1617 

8.8623 

=3 

=0.3833 

9.0838 

H 

ao.te48 

9.3054 

^ 

20.8263 

9.5369 

3I.04J9 

97485 

31.3694 

9-97 

H 

21.491 

10,4132 

I 

21.7126 
31.9341 

10.6347 

»5 

10-8563 

H- 

32.3772 

11.0778 

H 

33.5988 

11.3994 

% 

333303 

11.5309 

36 

23.0419 

33.3634 

i.W 

i 

=3.485 

ia.1856 

33.7066 

814..(S,- 

PUoi. 

33-9381 

40 

24.1497 

K 

'.< 

34:59^8 

% 

34.8144 

41 

35-0359 

H 

35,3575 

H 

35-479 

K 

25.7006 

35,9321 

a 

=6.1437 

a 

36.,i653 

36.5868 

43 

26.8084 

¥ 

27.0299 

37473 

37-6M6. 

27-9161 
28.1377 

$ 

38-3593 

38.580S 

28,8024 

i 

29.0339 

29467 

39.6886 

30.1317 

47 

30-3533 

}i 

30-5748 
30.7964 

g 

3..0.79 

48 

31-3395 

31.4611 

31.6836 

i 

31.9043 

49 

33.1357 

33^5688 

8 

33.790* 

33-0.. 3 

33-4551 

8 

33.6766 

51 

33-8983 

34.1197 

M 

34-3413 

34-5638 

53 

34-7884 

'^ 

35-006 

a 

35.3375 

35-4491 

35-6706 
358933 
36-1137 
36-3353 
36-5569 
36.7784 


40.3333 
40.5449 
40.7664 


43.3036 
434351 
43.6467 
43-8683 


44.976 

45- ■976 

45  4^  9' 
456407 
45.8633 
46.0838 
46-3054 
46.5369 
46.74SS 


SIDES  OF  SQUABES  EQUAI.  TO   ABBAS. 


259 


Dlam.    I  Side  of  Sq. 


53 

46.97 

}i 

47.1916 

% 

47.4131 

% 

47-6347 

54 

47.8562 

K 

48.0778 

M 

48.2994 

% 

48.5209 

55 

48.7425 

yi 

48.964 

^ 

49.1856 

% 

49  4071 

5^. 

49.6287 

^ 

49-8503 

n 

50.0718 

H 

50.2934 

57, 

50.5149 

H 

50.7365 

^ 

50958 

H 

51-1796 

58  . 

51.4012 

X 

51.6227 

K 

51.8443 

9i 

52.0658 

59, 

52.2874 

H 

52.5089 

^ 

52.7.305 

5i 

52.9521 

60 

53.1736 

)^ 

533952 

K 

536167 

5i 

53  8383 

61 

540598 

3i 

54-2814 

K 

54503 

H 

54-7245 

62 

54.9461 

K 

55.1676 

K 

553892 

% 

55  6107 

63 

55.8323 

H 

56.0538 

K 

56.2754 

?i 

56.497 

64 

56.7185 

^ 

56.9401 

K 

57.1616 

% 

573832 

[1  Dlam. 

Sid«ofSq. 

1  65 

576047 

H 

57.8263 

H 

58.0479 

% 

58.2694 

66 

58.491 

H 

58.7125 

}4 

58.9341 

% 

59.1556 

67 

59.3772 

59.5988 

}4 

59.8203 

% 

60.0419 

68 

60.2634 

yi 

60.485 

}4 

60.7065 

H 

60.9281 

69 

61.1497 

H 

61.3712 

K 

61.5928 

% 

61.8143 

70 

62.0359 

3^ 

62.2574 

K 

62.479 

% 

62.7006 

71 

62.9221 

X 

63.1437 

K 

63.3652 

% 

635868 

72 

63.8083 

H 

64.0299 

X 

64.2514 

H 

64.4730 

73 

646946 

H 

64.9161 

:  H 

65.1377 

% 

65.3592 

74 

65.5808 

H 

65.8023 

I  i^ 

66.0239 

1  % 

66.2455 

1  75 

66.467 

1  H 

66.6886 

,   K 

66.9104 

^ 

67.1317 

7^,. 

67.3532 

3^ 

67.5748 

K 

67.7964 

'   % 

68.0179 

Diam. 


77 


^ 

M 


78 


79. 


80 


81 


82 


% 


83 


84 


8s 


3^ 


86 


87 


88 


3^ 


SIdAofSq. 


68.2395 
68.461 
68.6826 
68.9041 

69.1257 

69-3473 
69.5688 

69.7904 
70.01 19 
70.2335 

70.455 
70.6766 

70.8981 

71.1197 
71.3413 
71.5628 

71.7844 
72.0059 
72.2275 
72.4491 

726706 
72.8921 

73.1137 
73.3353 
73.5568 

73.7784 

73.9999 
74.2215 

74.4431 
74.6647 

74.8862 

75.1077 

75.3293 
75.5508 

75.7724 

75-9934 
76.2155 

76.4371 
76.6586 

76.8802 
77.1017 
773233 

77.5449 
77.7664 

77.988 
78.2095 
78.4316 
78.6526 


Dlam. 

8ld«orSq. 

89 

78.8742 

K 

79.0957 

K 

793173 

% 

79.5389 

90 

79.7604 

X 

79.982 

K 

80.2035 

% 

80.4251 

91 

80.6467 

H 

80.8682 

K 

81.0898 

H 

81.31 13 

^.. 

81.5329 

U 

81.7544 

H 

81.976 

% 

82.1975 

93_ 

82419I 

K 

82.6407 

K 

82.8622 

% 

83.0838 

94 

83.3053 

83.5269 

)? 

83.7484 

^ 

83.97 

95  . 

84.1916 

3^ 

84.4131 

K 

846347 

% 

848562 

96 

85.0778 

3^ 

85.2993 

3^ 

85-5209 

% 

85.7425 

97  , 

85.9646 

3^ 

86.185 

>^ 

86.4071 

^i 

86.6289 

98,. 

86.8502 

K 

87.0718 

M 

87.2933 

% 

87.5449 

^w 

87.7364 

3^ 

87.958 

% 

88.1796 

% 

88.4011 

100   !  88.6227 


^Application  of  Tal>le. 
Q?o  A.0oertain.  a  Square  tliat  lias  same  A.rea  as  a  d-iven 

Cirole. 
Illus.— If  side  of  a  square  that  has  same  area  as  a  circle  of  73. 25  ins.  is  required. 
By  Table  of  Areas,  page  233,  opposite  to  73.25  is  42x4.11;  and  io  this  Uble  is 
64.9161,  which  is  side  of  a  square  haying  same  area  as  a  circle  of  that  diameter. 


266 


LENGTHS   OF  OIBCULAB  ABC& 


Lengtlis    of  Circu-lar  -A.rcs,  lap   to   a   Seiiiioircle. 
Diameter  of  a  Circle  =  i,  and  divided  into  looo  equai  Parts, 


H'ght. 


.1 

.lOI 

,102 
.103 
.104 
.105 
.106 

.IQ7 
.loS 
.109 

.11 

.III 

.112 

"3 
.1x4 

.1x6 

.117 
,118 
.119 

.12 

.121 
,122 
.123 
.124 
.125 
.126 
.127 
.128 
.129 

•13 

•131 
.132 

•133 

■134 
•13s 
.136 

•137 

.138 

•139 

.14 

.141 

.142 

•143 
.144 

•1451 
,146 

.147 

.148 

.149 


Length. 


.02645 

.02698 

.02752 

.02806 

.0286 

.029 14 

.0297 

.030  26 

.03082 

•03-39 

.03196 

.03254 
.03312 

■03371 

.0343 

•0349 

•03551 
.036 1 1 

.036  72 
•03734 

•03797 
.0386 

•03923 
.03987 
.04051 
.041  16 
.04181 
.04247 

•043  13 
.0438 

.04447 

•04515 
.04584 
•04652 
.04722 
.04792 
.04862 
.04932 
.05003 
•05075 

.05147 
.0522 

.05293 
.05367 
.05441 
.055  16 

•05591 
.05667 

.05743 
•Q5319 


H'ght. 


5 

51 
52 

53 

54 

55 

56 

57 

58 

59 

6 

61 

62 

63 
64 

65 
66 

67 
68 
69 

7 

71 
72 

73 

74 

75 
76 

77 

78 

79 

8 

81 

82 

83 

84 

85 
86 

87 
88 

89 

9 

91 
92 

93 
94 
95 
96 
97 
98 
?99 


Length. 

H'ght.  1 

1.05896 

.2 

1.05973 

.201 

1 

1.06051 

.202  ' 

I.0613 

.203 

1.06209 

.204 

1.06288 

.205 

1.06368 

.206 

1.06449 

.207 

1.0653 

.208 

1.066  1 1 

.209 

1.06693 

.21 

1.06775 

.211 

1.06858 

.212 

1. 069  41 

.213  1 

1.07025 

•214  1 

I.O7109 

.215 

I.07194 

.216 

1.07279 

.217 

I  •073  65 

.218 

1.074  5 1 

.219 

1.07537 

.22 

1.07624 

.221 

1.077  11 

.222 

1.07799 

.223 

1.07888 

.224' 

1.07977 

.225 

1.08066 

.226 

1.08156 

.227 

I  08246 

.228 

108337 

.229 

1.08428 

.23 

1.085  19 

.231 

1.086  11 

.232 

1.08704 

•233 

1.08797 

•234 

1.0889 

•235 

1.08984 

.236 

1.09079 

.237 

1.091  74 

.238 

1.09269 

.239 

1.09365 

.24 

1.09461 

.241 

109557 

.242 

1.09654 

.243 

1.09752 

.244 

10985 

•245 

1.09949 

.246 

1. 100  48 

•247 

1. 101  47 

.248 

f.  109  47 

.949 

0348 

0447 

0548 

065 

0752 

0855 
0958 

1062 

1165 

1269 

1374 
1479 
1584 

1692 

1796 
1904 

20II 
21  18 
2225 

2334 

2445 
2556 
2663 

2774 
2885 

2997 

3108 

3219 

3331 

3444 

3557 

3671 
3786 

3903 
402 

4136 
4247 

4363 
448 

4597 

4714 

4831 

4949 
5067 

5186 

5308 

5429 

5549 

567 

5791 


H'ght. 


Length. 


25 

251 
252 

253 

254 

255 
256 

257 
258 

259 

26 

261 

262 

263 

264 

265  I 

2661 

267  I 

268, 

269 

27 

271 

272 

273 
274 

275 
276 

277 
278 

279 

28 

281 

282 

283 

284 

^85 

286 

287 

288 

289 

29 

291 

292 

293 
294 

29s 
296 
297 
298 
299 


.15912 
.16033 

.161 57 
.16279 
.16402 
.16526 
.16649 
.16774 
.16899 
.17024 

•1715 

.17275 

.17401 

.17527 

•17655 

•17784 

.17912 

.1804 

.18162 

.18294 

.18428 

•18557 
.r8688 
188 19 
.18969 
.19082 
.19214 

•19345 

19477 
.1961 

•19743 
.19887 
.20011 
.201 46 
.20282 
.20419 
.20558 
.20696 
.20828 
.20967 

.21202 

.21239 

.21381 

.2152 

.21658 

.21794 

.21926 

.22061 

.22203 

.823471 


H'ght. I  Length. 


3 

301 

302 

303 

304 

305 
306 

307 
308 

309 

31 

311 

312 

313 

314 

315 
316 

317 
318 

319 

32 

321 

322 

323 

324 

325 
326 

327 
328 

329 

33 

331 

332 

333 
334 
335 
336 
337 
338 
339 

34 

341 

34a 

343 

344 

345 

346 

347 
348 

349 


2249s 
22635 
22776 
22918 
23061 
23205 

23349 

23494 
23636 

2378 

23925 

2407 
24216 

2436 

24506 

24654 
24801 

24946 

25095 
25243 

25391 

25539 
25686 

25836 

25987 

26137 
26286 

26437 
26588 
2674 

26892 

27044 
27196 

27349 
27502 

27656 

2781 

27964 
28118 

28273 

28428 
28583 

28739 
2889s 

29053 

29209 

29366 

29523 
29681 

29839 


LENGTHS   OF  OlBCULAB  ABCS. 


261 


H'gbt 


.35 

.351 

.352 

.353 

•354 

.355 

.356 

.357 

.358 

359 

36 

.361 

.362 

•364 
•365 
.366 

•367 
368 

•369 

37 
371 
372 
•373 
•374 
•375 
^76 
377 
•378 
•379 


Langth. 


29997 

301 56 

30315 

30474 

30634 

30794 

30954 

3"  15 
31276 

31437 

31599 
31761 

31923 
32086 

32249 
32413 
32577 
32741 
32905 
33069 

33234 

33399 

33564 

3373 

33896 

34063 

34229 

34396 

34563 

34731 


H'Rht. 


Length. 


38 

381 

382 

383 
384 
385 
386 

387 
388 

389 

39 

391 

392 

393 

394 

395 

396 

397 

398 

399 

4 
401 

402 

403 

404 

405 
406 

407, 

408 

•409  1 


34899 
35068 

35237 
35406 

355  75 

35744 

35914 
36084 

36254 
36425 

36596 
36767 
36939 
371 II 
37283 

37455 
37628 

37801 

37974 
38148 

38322 

38496 
38671 

38846 

39021 

39196 

39372 

39548 

39724 

399 


H'glit. 


41 

411 

412 

413 
414 

415 
416 

417 
418 

419 

42 

421 

422 

423 

424 

425 
426 

427 
428 

429 

43 

431 
432 
433 
434 
435 
436 
437 
438 
439 


Leogth. 


40077 

40254 

40432 

4061 

40788 

40966 

41145 
41324 
41503 
41682 

41861 
42041 
42222 
42402 

42583 
42764 
42945 
43127 
43309 
43491 

43673 
43856 

44039 
44222 

44405 
44589 
44773 
44957 
45142 
45327 


H'^ht.!  Lengtb. 


44 
441 

442 

443 

444 
445 
446 

447 
448 

449 

45 

451 

452 

453 
454 
455 
456 

457 
458 

459 

46 

461 

462 

463 
464 

465 
466 

467 
468 
469 


46512 

45697 
45883 
46069 

46255 
46441 

46628 

46815 
47002 
47189 

47377 
47565 
47753 
47942 
48131 

4832 

48509 
48699 

48889 

•49079 

.49269 
.4946 

•49651 
•49842 
•50033 
.50224 

.504 16 
.50608 
.508 
.50992 


H'ght. 


47 

471 

472 

473 

474 

475 

476 

477 

478 

479 
48 
481 
482 

483 
484 

485 
486 

487 
488 

489 

49 
491 

492 
493 
494 
495 
496 
497 
498 
499 
5 


Lengtii. 

.51185 
.513  78 
.51571 
.51764 
.51958 
.521  52 
.52346 
.52541 
.52736 
•52931 
.531  26 
.53322 

•535  18 

•537  14 

•5391 
.54106 

•54302 

.54499 
.54696 
.54893 

.5509 
.55288 

•55486 

•55685 

•55854 
.56083 
.56282 
.56481 
.5668 

.56879 
.57079 


Xo  -A-scertain.  Ijength.  of  an  Arc  of  a  Circle  "by  pre- 
ceding Talkie. 

Rule. — Divide  height  by  base,  find  quotient  in  colamn  of  heights,  take 
len^h  for  that  height  opposite  to  it  in  next  column  on  the  right  hand. 
Multiply  length  thus  obtained  by  base  of  arc,  and  product  will  give  length. 

Example  —What  is  length  of  an  aro  of  a  circle,  base  or  span  of  it  being  100  feet, 
and  height  25? 

25-r-ioos=.a^;  and  .25,  per  table,  =  1.15912,  length  ofbase^  which^  multiplied  by 
lao  —  iis.gi2  Jeet. 

When,  in  division  of  a  height  by  baae^  the  ^otierU  has  a  remainder  after 
third  place  of  decimals^  and  great  accura:cy  w  required. 

Rule.— Take  len^  for  first  three  figures,  subtract  it  from  next  following 
length;  multiply  remainder  bv  this  Pactional  remainder,  add  product  to 
first  length,  and  sum  will  give  length  for  whole  quotient 

Example.— What  is  length  of  an  arc  of  a  circle,  base  of  which  is  35  feet,  and 
height  or  versed  sine  8  feet? 

8-5-35-^.2285714;  tabular  length  for  .228  =  x.  133 31,  and  for  -229  =  1.13444, 
Vie  difference  beboeen  wfticA  is  . 001 13.    Then  .  571 4  x  .001 13 = .  000  645  682. 

Hence  .228         =  1. 133  31, 
and         .0005714=  .000645682 

X-  «33  955682,  the  sunn  by  which  b€Ue  0/ 
ore  is  to  be  multiplied ;  and  1.133955683  X  35  =^39. 688 45 ^eet 


262 


LENGTHS   OF   CIRCULAR    ARCS. 


XjengtHs  of  Ciroular  Arcs  fl-om  1°  to  lSO«. 

'  {Radius^  %.) 


.legrtiM. 


1 

3 

3 
4 
5 
6 

7 
8 

9 

lO 

II 
I? 

13 

14 

IS 
i6 

17 
i8 

19 

20 
21 

22 

23 
24 

35 
26 

27 

28 

29 
30 
31 
33 

33 

34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 


L«qgth. 


.0174 

.0349 
.0524 

.Q698 

•0873 

.1047 
.T222 

.1^96 
•157* 

•1745 
.192 
.2094 
.2269 

•2443 
.2618 

.2792 

•3967 
•3141 
.3316 

.3491 
.3665 

.384 

.4014 

^4189 

4363 
•4538 
.4712 
.4887 
.5061 

•5236 

.541 

•5585 

•5759 

•5934 
.6109 

.6283 

.6458 

,6632 

.6807 

.6981 

•7156 

•733 

•7505 

.7679 

.7854 


DefprMt. 


46 
47 
48 

49 

50 
S« 
52 

53 
54 
55 
56 
57 
58 

59 

60 
61 
62 

63 
64 

65 
66 

67 
68 

69 

70 
71 
72 
73 
74 

75 
76 

77 
78 
79 

80 
81 
82 

83 
84 
85 
86 

87 
88 

89 
90 


LeDgth. 

.8028 
.8203 

.8377 
.8552 

.8727 
.8901 
.9076 

.925 
.9424 

•9599 
.9774 
,9948 
.0123 
.0297 

•0472 
.0646 
,0821 

:0995 
.117 

•1345 

•1519 
.1694 

.1868 

.2043 

.2217 
.2392 
.2566 
.2741 

.2915 

•309 
.3264 

.3439 
•3613 
•3788 

•3963 

•4137 
•4312 
.4486 
.4661 

4835 

.501 

.5184 

'5359 
•5533 
•5708 


Degre«a. 

Length. 

91 

1.5882 

92 

1.6057 

93 

1  6231 

94 

1.6406 

95 

1. 6581 

96 

1-6755 

97 

1.693 

98 

1.7104 

99 

1.7279 

100 

1-7453 

101 

1.7628 

102 

1.7802 

103 

1-7977 

104 

1.8151 

los 

1.8326 

106 

1.8s 

107 

1.8675 

108 

1.8849 

109 

1,9024 

110 

1.9199 

III 

1-9373 

112 

1.9548 

"3 

1.9722 

114 

1.9897 

115 

2.0071 

116 

2.0246 

117 

2.042 

118 

2.0595 

119 

2.0769 

190 

2.0944 

121 

2.1118 

122 

2.1293 

123 

2.1467 

124 

2.1642 

125 

2.1817 

126 

2.1991 

127 

2.2 166 

128 

2.2304 

129 

22515 

130 

^.2689 

131 
132 

2.286d 
2.303S 

^33 

2.3313 

134 

2.3387 

135 

2.356a 

PegroM. 

Length. 

136 

2.3736 

137 

2.39" 

138 

2.4085 

139 

2.426 

140 

2^435 

141 

2.4609 

142 

2.4784 

143 

24958 

144 

25133 

145 

25307 

146 

2.5483 

147 

25656 

148 

2.5831 

149 

2.6005 

150 

2.618 

151 

2.6354 

152 

2.6539 

153 

2.6703 

154 

2.6878 

155 

2-7053 

156 

3. 722 7 

157 

2.7403 

158 

2.7576 

159 

2-7751 

160 

3.7935 

161 

3.81 

162 

3.8374 

3.8449 

3.8633 

3.879« 
3.8972 

2.9147 
2.9331 

3.9496 


170 

171 

2.967 
2.9845 

173 

3003 

173 
174 

30194 
3.0369 

175 
176 

177 
178 

30543 
3-0718 

3-0893 

3.1067 

179 
180 

3-1241 
3.1416 

To   iVaoertaln   Lenstli   of  a  Cirovilar  Aro   by   Table. 

Rule. — Prom  column  opposite  to  degrees  of  arc,  take  length,  and  multli 
ply  it  by  radius  of  circle. 
EJ(AMrLK.>-Nainber  of  degrees  In  ^n  arc  are  4s<',  and  diameter  of  circle  5  feet 
Then  .7854  Ub.  length  x  5-^  a  s=  t'^35,^*^ 


LENGTHS   OF   ELLIPTIC   ARCS. 


263 


Len^tlis   of  EJlliptio   A.ros. 
Up  to  a  Semi-eUipse* 

Transffene  Diameter  z^i,  and  divided  into  1000  equal  Parts, 


^'ght. 


Length.    IjH'ght 


.1  1.04^62 

.101  1.04262 
.102  *  1.04362 
.103  '  1.04462 
.104  1.04562 
.105  1.04662 
.106  1.04762 
.107  I.Q4862 
.108  1.04962 
.109    1.05063 

.II  1.05164 
.III  1.05265 
.112     1.05366 

.113  1-05467 
.114  I  1.05568 
.115  ,  1.05669 
.116  I  1.0577 
.117  I  1.05872 
.118  1.03974 
.119    1.06076 

.12  1.06178 

.121  '  1.0628 

.122  1.06382 

.123  1.06484 

.124  1.06586 

.125  1.06689 

.126  1.06792 

.127    1.06895 

.128  I.0699S 
.129     1. 07001 

.13  1.07204 

.131  1.07308 

.132  1.074 12 

.133  1.07516 

.134  1.07621 

.135  1.07726 

.136  1.07831 

.137  1.07937 

.138  1.08043 

.139  1. 081  49 

.14  1.08255 
.141  1.08362 
.142     1.08469 

.143  108576 

.144  1.08684 

.145  1.08792 

.146  1. 08901 

.147  1.0901 

.148  1. 091 19 

•149  1.09238 


IS 

151 

152 

153 

154 

155 

156 

157 

158 

159 

16 

161 

162 

163 

164 

165 
166 
167 
168 
169 

17 

171 

172 

173 

174 

175 
176 

177 

178 

179 

18 

181 

182 

183 
184 

18s 
186 

187 
188 
1851 

19 
191 

192 

193 
194 

195 
196 

197 

198 

^99 


L«|f«>. 


0933 
09448 

09558 

09669 

0978 

09891 

10002 

101  13 

10224 

10335 

10447 

1056 

10672 

10784 

10896 

11008 

1II2 

11232 

"344 
11456 

11569 
11682 

"795 
11908 

1302I 
12134 
12247 
1236 

12473 
12586 

12699 
12813 
12927 
I3O4I 

131 55 
13269 

13383 

13497 
136 II 
13726 

13841 

13956 
14071 
14186 
14301 
144 16 

145  31 
14646 

14762 

14888 


H'jfM. 


2 

201 
202 
203 
204 
205 
206 
207 
208 
209 

21 

211 

212 

213 

214 

215 
216 
217 
218 
219 

22 
221 
222 
223 

224 
225 
.226 
227 
228 
229 

23 

231 

232 

233 

234 

235 
236 

237 
238 

239 

24 
241 

242 

243 
244 

24s 
246 

247 

248 

249 


Leairth. 


SO  14 
51 31 
5248 
5366 

5484 
5602 

572 

5838 

5957 
6076 

6196 
6316 
6436 

6557 
6678 

6799 
692 

7041 
7163 
7285 

7407 

7529 
7651 

7774 
7897 
802 

8143 
8266 

839 
8514 

8638 
8762 
8886 
901 

9134 
9258 

9382 
9506 

963 
9755 

988 
20005 
2013 
20255 
2038 
20506 
20632 
20758 
20884 
2101 


H'ght. 


25 

251 
252 

253 

254 

255 
256 

257 
258 

259 

26 

261 

262 

263 

264 

265 

266 

267 

a68 
269 

27 
271 

272 

273 
274 
275 
276 

277 
278 

279 

28 

281 

282 

283 

284 

285 

286 

287 

288 

289 

29 
291 

292 

293 

294 

295 
296 

297 

298 

«99 


Lmfctb. 


21136 

21263 

2139 

215  17 

21644 

21772 

219 

22628 

22156 

22284 

22412 

22541 

2267 

22799 

22928 

23057 
23186 

23315 
23445 
23575 
23705 

23835 
23966 
24097 
24228 

24359 
2448 

24612 

24744 
24876 

.2501 
.25142 
.252  74 
.25406 

•25538 
.2567 

.25803 

•25936 
.26069 
.26202 

•26335 
.26468 
.26601 
•26734 
.26867 
.27 

•27133 
.27267 
.27401 

•2753s 


H'ghL 


3 

301 

302 

303 
304 
305 
306 

307 
308 

309 

31 

3" 
312 

313 

3H 

315 
316 

317 
318 

319 

32 

321 

322 

323 

324 

32s 

326 

327 
328 

329 

33 

331 

332 

333 

334 

335 

336 

337 
338 
339 

34 

341 

342 

343 

344 

345 

346 

347 
348 

349 


Lenglb. 


[.27669 
f. 278  03 

•27937 
[.28071 

.28205 

•28339 

[.28474 

1.28609 

:.28744 

.28879 

.29014 

.29149 

t. 292  85 

.29421 

.29557 
[.29603 
[.29829 

.29965 
[.30102 

C.30239 

[.30376 

•305  13 
[.3065 

[.30787 

•30924 
[.31061 

[.31198 
•31335 
•31472 
[•3161 

[.31748 

[.31886 

.32024 

[.32162 

•323 
f.32438 
t.32576 

•32715 
^3^854 

•32993 

•33132 
•33272 
•33412 
•33552 
.33692 
^338  33 
•33974 
•34115 
34256 

•34397 


LENGTHS  OF   ELLIPTIC   ABCB. 


I  H'||hl.l    Lnip>.    ||H-.hl.      Lnga.    II 


1.34681 1 

1-348=3;  ■ 

'■34965  . 

1.351  oS| 

'■3S394  . 

'-35537  . 


'■38439'  ./ 
'■38s  85,  .< 
I^3S73'|  -1 
■.38879'  -1 


1  ■52074 

■5=384! 
'■52539 
1.52691 


'■53937 
1-54093 
■-54=49 
1.54403 
I-S4S6l; 
1.54718 
1-54875' 
'-5503= 


i.56iS9 
1^5^47 
1.56605 
'■56763 


.403    1.42092  ' , 


H'gH. 

u«u,.   1 

-515 

1,59408 1 

■5'(> 

'■59564 

-517 

'■597=     ' 

.518 

'.59876; 

■519 

1.60032  ' 

I.6018SI 

■  52. 

'■60344 

■522 

'■60s       1 

1.60656  1 

■5=4 

1.60812  : 

1.60968  ' 

■5=6 

1.6TI94 

■527 

-528 

I.61436  ! 

■5=9 

1.61592 

53 

1.61748 

1.61904 

532 

533 

'■632161 

'■6=3  7=  1 

535 

i.6as=a 

536 

1.62684  ' 

537 

1.62S4     < 

538 

1.62996, 

539 

r63iS2 

54 

i^63309 

541 

"■6346s 

163623 

543 

■  ■6378 

544 

163937 

545 

1.64094 

546 

■.64251 

1,64408 

548 

i.&tS65 

1.647== 

1.6,879 

551 

1-65036 

1.65193 

353 

1-6535 

554 

1.65507  I 

555 

..65665 

556 

1.658=3! 

5S7 

1.6598.1 

SS8 

'.66.39 

559 

1.66297! 

56 

'.664SS 

561 

',666.3, 

562 

1.66771  , 

5^3 

..66929 ! 

564 

1.67087,: 

565 

1.67245 1  - 

5« 

1.67403 

567 

1.67561    . 

568 

1.67719 

569 

1.67877,1. 

1  ■69467 
1.69626 

1.69785 

'-69945 

1.701 05 
1.70264 
1.70424 
1.70584 
1.70745 
1,70905 
■  ■71065 
1.7.225 


.595  1.72029 


1.74283 
1.74444 

1. 7460s 
1.74767 
1.74929 
1.75091 
1-75252 


LENGTHS   OP  ELLIPTIC   ABCS. 


265 


H'ghi. 

.625 
•626 

.628 
.629 

.63 

.631 

.632 

.633 
.634 

.636 

.637 
.638 

.639 
.64 
.641 
.642 

.643 
.644 

•645 
.646 

.647 

.648 

.649 

.65 

.651 

.652 

.653 

.654 

.655 
.656 

.657 
.658 

.659 
.66 
.661 
J662 

.663 
.664 
.665 
.666 
.667 
.668 
.669 

.67 

.671 

.672 

•673 
.674 

.675 
.676 

.677 

J678 

^9 1 


Length. 


76872 

77034 
77197 

77359 

77521 

77684 
77847 

78009 
781  72 

78335 
78498 
7866 
78823 

78986 
79149 
79312 

794  75 
70038 
79801 
79964 
80127 
8029 

80454 
80617 

8078 
80943 
811 07 
812  71 

81435 
81599 

81763 

81928 

82091 

82255 

82419 

82583 
82747 
829 II 

83075 
8324 

83404 

83568 

83733 

83897 
84061 

84226 

84391 

84556 

8472 

84885 

8505 

85215 

85379 

85544 

^5709 


H'ght. 


68 

681 

682 

683 
684 

685 
686 
687 
688 
689 

69 
691 

692 

693 

694 

695 
696 

697 
698 

699 

7 

701 

702 

703 
704 

705 
706 

707 
708 

709 

71 
711 

712 

713 
714 
715 
716 
717 
718 
719 

72 

721 

722 

723 
724 

725 
726 

727 

728 

729 

73 

731 

732 

733 

734 


Leni^h. 


85874 
86039 

86205 
8637 

86535 
867 

86866 
87031 
87196 
87362 

87527 
87693 

87859 

88024 

8819 

88356 

88522 

88688 

88854 

8902 

89186 

89352 
89519 

.89685 

89851 
90017 

90184 

9035 

90517 
90684 

90852 
910 19 
,91187 

91355 
91523 
916  91 
91859 
92027 

92195 
92363 

92531 

927 

92868 

93036 
■93204 

93373 

93541 

9371 

93878 

94046 

94215 
94383 
94552 
94721 
9489 


H'ght. 


735 
736 
737 
738 

739 

74 

741 

742 

743 
744 
745 
746 

747 
748 

749 

75 

751 

752 

753 
754 
755 
756 
757 
758 

759 

76 

761 

762 

763 

764 

765 
766 

767 
768 

769 

77 
771 

772 

773 

774 

775 
776 

777 
778 

779 

78 
781 

782 

783 
784 

785 
786 

787 
788 

789 


Length.   H'ght. 


95059 
95228 

95397 
95566 

95735 

95994 
96074 
96244 
96414 

96583 
96753 
96923 
97093 
972  62 

97432 
97602 
97772 

97943 
981 13 

98283 

98453 
98623 

98794 
98964 

99134 

9930s 

99476 

99647 
99818 

99989 

0016 

00331 

00502 

00673 

00844 

010 16 
01 1 87 

01359 

015  31 
01702 

01874 

02045 

02217 

02389 

02561 

02733 
02907 

0308 
03252 
03425 
03598,: 
03771 1  [ 

03944' 

041 17! 

0429   1 1 


Length. 


79  2.04462 

791  2,04635 

792  2.04809 

793  1  2.04983 

794  2.05157 

795  2.05331 

796  2.05505 

797  2.05679 

798  2.05853 

799  2.06027 

,8  2.06202 

8oi  2.06377 

,802  2.06552 

,803  2.06727 

,804  2.06901 

,805  2.07076 

,806  2.07251 

807  2.07427 

,808  2.07602 

,809  2.07777 

,81  2.07953 

811  2.08128 

812  2.08304 

813  2.0848 

814  1 2.08656 
,815  '2.08832 
,816  2.09008 
,817  ;  2.091 98 

818  2.0936 

819  2.09536 

82  2.097 12 
821  2.09888 
,822  2.10065 
823  2.10242 
,824  2.104 19 
,825  2.10596 
826  2.10773 
,827  2.1095 
,828  2.1  II 27 
,829  2.1 13  04 

83  2.1 14  81 
,831  2.1 16  59 
,832  2. 1 18  37 
833  2.12015 
,834  2.12193 
.835  2.123  71 
.836  2-12549 
,837  2.12727 
,838  2.12905 
839  2.13083 

84  2.132  61 

841  2.13439 

842  2.136 18 

843  2.13797 
,84412.13976 


H'ght.  Lnigth. 


845 
846 

847 
848 
849 

85 

851 

852 

853 
854 
855 
856 

857 
858 

859 

86 

861 

862 

863 

864 

865 
866 
867 
868 
869 

87 

871 

872 

873 

874 

875 
876 

877 
878 

879 

88 

881 

882 

883 

884 

885 

886 

887 

888 

889 

89 
891 

892 

893 

894 

895 
896 

897 
898 

899 


4155 

4334 

4513 
4692 

4871 

505 
5229 

5409 

5589 

57  7 

595 

613 

6309 

6489 

6668 

6848 

7028 

7209 

7389 

75  7 

7751 

7932 

81 13 

8294 

8475 

8656 

8837 
9018 

92 
9382 

9564 

9746 

9928 

201 1 

202  92 

20474 
20656 
20839 
21022 
21205 
21388 
21571 

21754 

21937 
221  2 

22303 

22486 

2267 

22854 

23038 

23222 

23406 

2359 

23774 

23958 


e66 


LPKGTHS   OF  EI.UPTIC   A^CS. 


ft'gbt. 

Lenprth. 

H'ght 

L«|igth. 

H'gbt 

•94 

Length. 

H'ght. 

I/engtb. 

H'gbt. 

•9 

2.241  42 

.92 

2.27803 

2.31479 
2.31666 

.96 

235241 

.98 

.901 

2.24325 

.921 

2.27987 

.941 

.961 

2.35431 

.981 

.902 

2.24508 

.922 

2.281  7 

•942 

2.31852 

.962 

2.35621 

.982 

•903 

2.24691 

•923 

2.28354 

•943 

2.32038 

.963 

2.3581 

.983 

.904 ,  2.248  74 

.924 

2.28537 

•944 

2.322  24 

.964 

2.36 

.984 

.905   2.25057 

•925 

2.287  2 

•945 

2.32411 

.965 

2.361 91 

.985 

.906 , 2.2524 

.926 

2.28903 

946 

2.32598 

.966 

2.36381 

.986 

.907 '2.25423 

•927 

2.29086 

•947 

2.32785 

•967 

2.36571 

.987 

.908 . 2.25606 

.928 

2.2927 

.948 

2.32972 

.968 

2.36762 

.988 

.909  2.25789 

.929 

2.29453 

•949 

2.3316 

•969 

2.36952 

.989 

•99 
•991 

.91     2.25972 

.93 

2.29636 

•95 

2.33348 

•97 

2.37143 

.911   2.26155 

•931 

2.2982 

•951 

2.33537 

.971 

237334 

.992 

.912  2.26338 

.932 

2.30004 

•952 

2.33726 

•972 

2.37525 

•993 

.913  12.26521 

•933 

2.30188 

•953 

2.33915 

.973 

2.377  161  .994 

.914  2.26704 

•934 

2.30373 

■954 

2.34104 

•974 

2.37908    .99s 

.915  2.26888 

•935 

2.30557 

•955 

2.34293 

•975 

2.381 

.996 

.916  2.27071 

•936 

2.30741 

.956 

2.34483 

•976 

2.382  9J 

•997 

.917  12.27254 

•937 

2.30926 

.957 

234673 

•977 

238482 

•998 

.918  2.27437 

•938 

2.31 1  II 

.958 

2.34862 

•978 

2.38673 

•999 

.919 

2.2762    ■ 

•939 

2.31295 

•959 

2.35051 

•979 

2.38864 

I. 

2.3905s 
2.39247 

2.39439 
2.39631 
2.39^23 

2.^00 16 
2.40208 
2.404 

2.40593 
2.407  84 
2.409  76 
2.4II09 
2.41362 
2.41556 
2.41749 
2.41943 

2.42136 
2.42329 

2.425  23 
2.427  15 
2.42908 

To   A.8oerta.in.    i^ength    of  a,xi   B^lliptic   A.ro   (right   Bemi- 

S^llipee)  "by  preceding   Table. 

KuLK. — Divide  heif^ht  by  base,  find  quotient  in  column  of  heists,  and 
take  len«?th  for  tliat  height  from  next  right-hand  column.  Multiply  length 
thus  obtained  by  base  of  arc,  and  product  vil)  give  length. 

Example.— What  is  length  of  arc  of  a  semi-ellipse,  base  being  70  feet,  and  height 
30.10  feet? 

30.  ID -4- 70  = . 43 ;  and  43, per  <ab2^  =  X.  463  68. 

.Then  1.46268  x  70  =  102.3876/56^ 

When  Curve  is  not  thai  of  a  right  Semi-EUipse^  Height  being  half  of  Trans- 
verse Diameter. 

Rui.K. — Divide  half  base  by  twice  height,  then  proceed  as  in  prexseding 
example ;  multiply  tabular  length  by  twice  hei^t,  and  product  will  give 
length. 

ExAHPLis.— What  is  length  of  arc  of  a  seroi-eUipse,  height  being  35  feet,  and  base 
60  feet  ? 


Lenjftli. 


60  -j-  2  =  30,  and  30  -4-35X2  =  .  428,  tcUnUar  Ungth  qfwkick = i. 459 66. 
Then  1.45966  X  35  X  2  =  102. 1762/584. 

When^  in  Division  of  a  Height  by  Base,  Quotient  bat  a  Remainder  after 
third  Place  of  Decimals,  and  great  A  ccuracy  is  required, 

Rule.— Take  length  for  first  three  figures,  subtract  it  from  next  following 
length ;  multii^ly  remainder  bv  this  fractional  remainder,  add  product  to 
first  length,  and  sum  will  give  length  for  whole  quotient 

Example.  —What  is  length  of  an  arc  of  a  semi-ellipse,  base  being  171. 9  feet  aai 
height  J 25  feet? 

171.3-7-2  =  8565.  an*  i2SX2  =  a5a      85.65 -7-250  =  .  3426  :  tabuUxr  length  Jvr 
342  =  J. 334 12,  and  for  .343  =  1.335  52,  the  difference  between  which  is  .0014. 
Then  .6  x  -0014  =  .0084. 

Hence,  .342  =1.33412 
.0006=  .0084 

•.*  I.        ,*.  f  .J        J  t3A^59jhe  sum, bffwkUh  bate  qfwre 

utohe  muUtplted ;  and  1.343  5a  X  171.. 3 = 239.973  676/wt 


AKKAS    OF   SEGMENTS   OF   A   CIRCLE. 


267 


A.reas   of*  Sesznents   of  a   Circle. 
The  Diameter  of  a  Circle  ss  i,  and  divided  into  1000  equxsi  Parts. 


V«nMl 

SiiM. 

.001 
•002 
003 
.004 
005 
006 
007 
.008 
.009 

01 
.Oil 

oia 

013 
.014 

.015 

.016 

.017 

.018 

.019 

.02 

.021 

.022 

.023 

.024 

.025 

.026 

.027 

.028 

.029 

•03 
•031 

•032 

•033 

034^ 

•035 
.036 

•037 
038 

•039 

•<H 

.041 

.042 

.043 
.044 

045 
.046 

.047 

.048 

•049 

•05 
^51 


V«Md 

S«g.  ArM. 

Slno. 

8«f.  ArM. 

.cx>oa4 

.052 

.01556 

.00012 

•053 

.01601 

.00022 

.054 

.01646 

.0U034 

.055 

.01691 

.00047 

.056 

.01737 

.00062 

.057 

.01783 

.00078 

.058 

.0183 

.00095 

•059 

•OJ877 

.00113 

.06 

.01924 

.001.13 

.061 

.019  72 

.001  53 

.062 

.0202 

•0017s 

.063 

.02068 

.00197 

.064 

.021  17 

.0022 

.065 

.02165 

.00244  , 

.066 

.02215 

.00268 

.067 

.02265  , 

.00294 

.068 

.023  IS  1 

•0032 

.069  .02366  i 

00347 

.07 

02417 

.003  75  1 

.071  .02468 

.004031 

.072 

.025 19 

.00432 

.073 

.02571 

.00462 

.074 

.02624 

.00492 

•075 

.02676 

•00523, 

.076 

.02729 

.00555 

.077 

.02782 

-00587 

.078 

.02835 

.00619 

.079 

.02889 

.00653 

.c3 

.02943 

.00686 

.081 

.02997 

.00721 

.082 

.03052 

.00756 

.083 

.031 07 

.00791 

.084 

.03162 

.00827 

.085 

.03218 

.00864 

.086 

.03274 

.00901 

xA^ 

.0333 

.00938 

x>88 

.03387 

.00976 

.089 

.03444 

.01015 

.09 

.03501 

.01054 

.091 

•03558 

.01093 

.092 

.036 16 

.01133 

.093 

.03674 

.01173 

.094 

.03732 

.012 14 

.095 

•0379 

.o"55 

.096 

.03849 

.01297 

.097 

.03908 

01339 

.098 

.03968 

.01382 

.099 

.04027 

.01425 

.1 

.04087 

.01468 

.101 

.04148 

.015 12 

.102 

.04208 

VctMd 

Sin*. 


S«fc.  Area. 


V«rMd 

Sine. 


03  .04269 

04  .0433 

05  .04391 

06  .04452 

07  .045  14 

08  I  .045  75  ! 

09  .04638  I 

1  .047 

11  .04763 

12  .04826  I 

13  .04889 

14  .04953 

15  .05016 

16  .0508  I 

17  .05M5 

18  .05209 

19  .05274 

2  .05338 

21  .05404 

22  .05469 

23  .05534 

24  .056 

25  .05666 

26  .05733 

27  .05799 

28  .05866 

29  .05933 

3  .06 

31  .06067 

32  .061 35 

33  .06203 

34  .06271 

35  .06339 

36  .06407 

37  .06476 

38  .06545 

39  .06614 

4  .06683 

41  .06753 

42  .06822 

43  .06892 

44  .06962 

45  07033 

46  .07103 

47  .07174 

48  .07245 

49  07316 

5  .07387 

51  .07459 

52  .07531 

53  -07603 


54 
55 
56 

57 
58 

59 
6 
61 
62 

63 
64 

65 
66 

67 
68 

69 

7 

7J 
72 

73 
74 
75 
76 
77 
78 

79 
8 
81 
82 

83 

84 

85 
86 

87 
88 

89 

9 
91 
92 
93 
94 
95 
96 
97 
98 
99 
2 

201 
202 
203 
204 


Seg.  Area. 


07675 

07747 
0782 

07892 

07965 

08038 

oSi  II 
08185 
08258 
08332 
08406 
0848 

08554 
08609 

,08704 

08779 

08853 

08929 

09004 

0908 

09155 
09231 

09307 
09384 
0946 

09537 
09613 
0969 
09767 

09845 
09922 


0077 

0155 
0233 
0312 

039 
0468 

0547 
0626 

0705 
0784 
0864 

0943 
1023 

1102 

II 82 
1262 

1343 
1423 
1503 


VeiMd 
Siue. 

Seg.  Area. 

.205 

.11584 

.206 

.11665 

.207 

.11746 

.208 

.11827 

.209 

.11908 

.21 

.1199 

.211 

.12071 

.212 

.121  53 

.213 

.12235 

.214 

.12317 

.215 

.12399 

.216 

.12481 

.217 

.12563 

.218 

.12646 

.219 

.12728 

.22 

.12811 

.221 

^12894 

.222 

.12977 

.223 

.1306 

.224 

.13144 

.225 

.13227 

.226 

•133" 

.227 

•13394 

.228 

•13478 

.229 

.13562 

.23 

.13646 

.231 

•137  31 

.232 

.13815 

•233 

.139 

.234 

.13984 

.235 

.14069 

.236 

.14154 

.237 

.14239 

.238 

.14324 

.239 

.14409 

.24 

.14494 

.241 

•1458 

.242 

.14665 

.243 

.14751 

.244 

.14837 

.245 

.14923 

.246 

.15009 

.247 

.15095 

.248 

.15182 

.249 

.15268 

.25 

.15355 

.251 

.15441 

.252 

.15528 

.253 

.15615 

.254 

.15702 

.255 

.15789 

268 


AREAS    OF   SEGMENTS   OF   A   CIRCLE. 


Ven«d 
Sine. 


.256 

•257 

.258 

•259 

.26 

.261 

.262 

.263 

.264 

.265 

.266 

.267 

.268 

.269 

.27 

.271 

.272 

•273 
.274 

.275 
.276 

•277 
.278 
.279 

.28 

.281 

.282 

.283 

.284 

.285 

.286 

.287 

.288 

.289 

.29 

.291 

.292 

•293 
.294 

•29s 
.296 

.297 

.298 

.299 

.3 
.301 

.302 

.303 

.304 


Seg.  Area. 

~~58"76 

5964 
6051 
6139 
6226 

6314 
6402 
649 

6578 
6666 

6755 

6844 

6931 
702 

7109 
7197 
7287 
7376 
7465 
7554 
7643 
773.3 
7822 

7912 
8002 
8092 
8182 
8272 
8361 
8452 
8542 

8633 
8723 
8814 

8905 

8995 
9086 
9177 
9268 
936 
9451 
9542 
9634 
9725 
9817 
9908 
2 

20092 
20184 


Versed 
Sine. 

305 
306 

307 
308 

309 

31 

3" 
312 

313 

314 

315 
316 

317 
318 

319 
32 
321 
322 

323 
324 
32s 
326 

327 
328 

329 
33 
331 
332 

333 

334 

335 

336 

337 

338 

339 

34 

341 

342 

343 

344 

345 

346 

347 

348 

349 

35 

351 

353 

353 


Seg.  Area. 


20276 
^0368 
2046 

20553 
2064s 

20738 

2083 

20923 

210  15 

21108 

2I20I 

21294 

21387 

2148 

21573 

21667 

2176 

21853 

21947 

2204 

22134 

22228 

22321 

22415 

22509 

22603 
22697 
22791 
22886 
2298 

23074 
23169 

23263 

23358 

23453 

23547 
23642 

23737 
23832 

23927 
24022 

241  17 

24212 

24307 
24403 
24498 

24593 
24689 

24784 


Veraed 

Sine. 


354 
355 
356 
357 
358 

359 

36 

361 

362 

363 

364 

365 

366 

367 
368 

369 

37 

371 

372 

373 

374 

375 

376 

377 

378 

379 

38 

381 

382 

383 
384 
385 
386 

387 
388 

389 

39 

391 

392 

393 

394 

395 

396 

397 

398 

399 

4 
401 

402 


Seff .  Area. 


2488 

24976 

25071 

25167 

25263 

25359 
25455 
25551 
25647 
25743 
25839 
25936 
26032 
26128 
26225 
26321 

26418 
26514 
26611 
26708 
26804 
26901 
26998 

27095 
27192 

27289 

27386 

27483 
27580 

27677 

27775 
27872 
27969 
28067 
28164 
28262 

28359 

28457 

28554 
28652 

2875 
28848 

28945 
29043 
291 41 
29239 

29337 
29435 
29533 


Verted 
Sine. 


•403 
.404 

•405 
.406 

•407 
.408 

.409 

.41 

.411 

.412 

•413, 
.414 

•415 
.416 

.417 

.418 

.419 

•42 

.421 

.422 

•423 
.424 

•425 
.426 
.427 
.428 
.429 

•43 

•431 

•432 

•433 

•434 

435 

•436 

•437 

.438 

•439 

•44 
.441 

•442 
•443 
•444 
•445 
•446 

•447 
•448 

•449 

•45 
t!  -451 


Seg.  Area. 


29631 
29729 
29827 

29925 
30024 

30122 

3022 

30319 

30417 

30515 
30614 

30712 

30811 

30909 
31008 
311 07 
31205 

31304 

31403 

31502 

316 

31699 

31798 

31897 

31996 

32095 

32194 
.32293 

•32391^ 

•3249 

•3259 
.32689 

.32788 

.32887 

.32987 

.33086 

.331  85 
.33284 
.3.3384 

.33483 
82 
\2 
•33781 
.3388 
.3398 
•34079 
•34179 
•34278 
•34378 


•335 
.33681 


Versed 
Sine. 


•452 

•453 
.454 
-455 
.456 
•457 
.458 

•459 
.46 
.461 
.462 

.463 
•464 
•465 
.466 

.467 
.468 
.469 

•47 
.471 

.472 

•473 
•474 
•475 
•476 
•477 
•478 

•479 
.48 
.481 
.482 

.483 
•484 
.485 
.486 

•487 
.488 

.489 

•49 
u^gi 

.492 

.493 
•494 
•495 
.496 

•497 
•498 
•499 


Seg.  Area. 


344  77 

345  77 
34676 
34776 
34875 
34975 
35075 
351  74 

35274 
35374 
35474 
35573 
35673 
357  73 
35872 
35972 
36072 

36172 
36272 

36371 

36471 

36571 
36671 

36771 
36871 

36971 
37071 
3717 

3727 
3737 
3747 
3757 
3767 
377  7 
3787 
3797 
3807 
3817 
3827 
3837 
3847 
3857 
3867 
3877 
3887 
3897 
3907 
3917 
3927 


To  Coxxipute  ^rea  of  a  Segment  of  a  Circle  by  preoediutr 

Table. 
Rule.— Divide  height  or  versed  sine  by  diameter  of  circle ;  find  quotient  in 
column  of  versed  sines.    Take  area  for  versed  sine  opposite  to  it  in  next  col- 
umn on  right  hand,  multiply  it  by  square  of  diameter,  and  it  will  give  area. 


AREAS   OP  ZONES   OP   A  CIRCLE. 


269 


E^XAHPLB.  — Required  area  of  a  segment  of  a  circle,  its  beight  being  10  feet  and 
diameter  of  circle  50. 

io-^5o=.2,  and  .2,p«rto6fe,  =.11182;  then  .11182  X  50' =  279. 55 /«jct 

WkeUj  in  Division  of  a  Height  by  Base,  Quotient  has  a  Remainder  after 
Third  Place  oj" Decimals,  and  great  Accuracy  is  required. 

Rule. — Take  area  for  first  three  figures,  subtract  it  frona  next  following 
area,  multiply  remainder  by  said  fraction,  add  product  to  first  area,  and 
sum  will  give  area  for  whole  quotient 

Example.— What  is  area  of  a  segment  of  a  circle,  diameter  of  which  is  10  feet,  and 
height  of  it  1-575? 

I-  575  -^  10 = •  1575 ;  tabular  area  for  .  157  =  .078  92,  and  for .  158  =  .C79  65,  the  dif- 
ference between  which  is .  000  73. 

Then  .  5  x  .000  73  =  .000  365. 
Hence,  .157  =.07892 

.0005  =  .000  365 

.079  285,  sum,  by  which  square  of  diameter 
of  circle  is  to  be  mvUiplied  ;  and  .079285  X  io*  =  7.9285/«g?. 

^reas   of  Zones   of  a    Circle, 
7%e  Diameter  of  a  Circle  =  i,  vnid  divided  into  1000  equid  Parts, 


H'ght. 

Area. 

.001 

.001 

.002 

.002 

.003 

.003 

.004 

.004 

.005 
.006 

.005 
.006 

.007 
.008 

.007 
.008 

.009 

.009 

.01 

.01 

.Oil 

.01  r 

.012 

.012 

.013 

.013 

.014 

.014 

.015 
.016 

.015 
.016 

.017 
.018 

.017 
.018 

.019 

.019 

.02 

.02 

.021 

.021 

.022 

.022 

.023 

.023 

.024 

.024 

.025 
.026 
.027 
.028 
.029 

.025 

.03599 
.02699 

.02799 

.02898 

•03 
.031 

.02998 
.03098 

.032 
.033 

.03198 
.03298 

^34 

.03397 

H'ght. 

Area. 

.035 
.036 

•037 
.038 

•039 
.04 
,041 
.042 

•043 
.044 

•045 
.046 

.047 

.048 

.049 

.05 

.051 

.052 

•053 
•054 
.055 
.056 

.057 
.058 

.059 

.06 

.061 

.062 

.063 

.064 

.065 

.066 

.067 

.068 

.03497 

•03597 
.03697 

.03796 

.03896 

.03996 
.04095 
.04195 
.04295 
.04394 
.04494 

.04593 
.04693 

.04793 
.04892 

.04992 
.05091 
.0519 
.0529 

.05389 
.05489 

.05588 

.05688 

.05787 

.05886 

.05986 

.06085 

.06184 

.06283 

.06382 

.06482 

.0658 

.0668 

.0678 

H'ght. 
.069 

Area. 

.06878 

.07 

.06977 

.071 

.070  76 

.072 

.071  75 

•073 

.07274 

.074 

•07373 

.075 

.07472 

.076 

•0755 

.077 

.07669 

.078 

.077  68 

.079 

.07867 

.08 

.07966 

.081 

.08064 

.082 

.08163 

.083 

.08262 

.084 

.0836 

.085 

.08459 

.086 

•08557 

.087 

.08656 

.088  .08754 

.089 

.08853 

.09 

.08951 

.091 

.0905 

.092  1  .09148 

•093 

.09246 

.094 

.09344 

.095  i  .09443 

.096  .0954 

•097   -09639 

.098  .09737 

•099 

.09835 

.1 

•09933 

.101 

.10031 

•loa- 

.101^29 ! 

H'ght. 

Area. 

.103 

.10227 

.104 

.10325 

.105 

.10422 

.106 

.1052 

.107 

.10618 

.108 

.10715 

.109 

.10813 

.11 

.10911 

.III 

.11008 

.112 

.11106 

•"3 

.11203 

.114 

•113 

•115 

.11398 

.116 

."495 

.117 

.11592 

.118 

.1169 

.119 

.11787 

.12 

.11884 

.121 

.11981 

.122 

.12078 

.123 

.121  75 

.124 

.12272 

.125 

.12369 

.126 

.12469 

.127 

.12562 

.128 

.12659 

.129 

.12755 

•13 

.12852 

•131 

.12949 

.132 

.13045 

•133 

•13141 

•134 

.13238 

•135 

.13334 

'  .136 

•1343  ' 

H'ght. 


37 
38 
39 
4 

41 
42 

43 
44 
45 
46 

47 
48 

49 

5 

51 

52 

53 

54 

55 

56 

57 

58 

59 

6 

61 

62 

63 
64 

65 
66 

67 
68 

69 
7 


Area. 

13527 
13623 

13719 

13815 

13911 
14007 

14103 
141 98 

14294 

1439 

14485 

14581 

14677 

14772 
14867 
14962 
15058 
15153 
15248 
15343 
15438 

15533 
15628 

15723 

15817 
15912 

16006 

161 01 

16195 
1629 

16384 

16478 

16572 

16667 


z* 


270 


ABEAB   OF  ZONES   OF   A   CIBCLB. 


H*gfat. 

.171 
.172 

•173 
.174 

•175 
176 
.177 
.178 
.179 

.18 

.181 

.182 

.183 
.184 

.185 
.186 
.187 
.188 
.189 

.19 

.191 

.193 

•193 
.194 

.195 
.196 
.197 
.198 
.199 

.2 

.201 

■202 

•203 

.204 

•205 

.206 

.207 

.208 

.209 

.21 

.211 

.212 

.213 

.214 

.215 

.216 

.217 

.2X8 

.2x9 

.22 

.221 

.222 

.223 

.224 

•ass 


Aiw. 


6761 

6855 
6948 
7042 
7136 

723 

7323 

7417 

751 

7603 

7697 

779 

7883 

7976 

8069 

8162 

8254 

8347 
844 

8532 
8625 

8717 
8809 
8902 

8994 
9086 

9178 

927 

9361 

9453 

9545 

9636 

9728 

98x9 

991 

20001 

20092 

20x83 

20274 

20365 
20456 
20546 
20637 
20727 
208x8 
20908 
20998 
2io83 
21 X  78 

21268 
21358 
21447 

21537 
21626 

2x716 


H'KhLI  Afh.     llH'Rlit. 


.226 
.227 
.228 
.229 

•23 

.231 

.232 

233 

•234 

•235 
.236 

237 
238 

239 

24 
.241 

.242 

243 

•244  I 

245 
246  ! 

•247  I 

248 

249 

.25 

251 
252 

253 

254 

255 
256 

257 

258 

259 

26 

261 

262 

263 

■264 

.265 

266 

267 

.268 

269 

.27 

.271 

.272 

•273 
.274 

•275 
.276 

.277 
.278 
.279 

.28 


21805 
21894 
21983 
22072 

221  61 
2225 

22335 
22427 

22515 

22604 

22692 

2278 

22868 

22956 

23044 

23131 
23219 

23306 
23394 

234  8x 
23568 

23655 
23742 
23829 

23915 
24002 

24089 

24175 
24261 

24347 
24433 
24519 
24604 
2469 

24775 
24861 

24946 

25021 

251  16 

25201 

25285 

2537 

25455 

25539 

25623 

25707 

25791 

25875 

25959 
26043 

26126 

26209 

26293 

26376 

.26459 


i| 


Aka. 


281 
282 

283 
284 

285 

286 
287 
288 
289 

29 

29X 
292 

293 
294 

295 
296 

297 
298 

299 

3 

301 

302 

303 
304 
305 
306 

307 
308 

309 

31 

311 

312 

3^3 

314 

315 
316 

317 
318 

319 
33 
321 
322 

323 
324 
325 
326 

327 
328 

329 

33 
331 
332 
333 
334 
<33S 


26541 
26624 
26706 
26789 
26871 

26953 

27035 
27X 17 

27199 

2728 
27362 

27443 
27524 
27605 
27686 
27766 

27847 
27927 
28007 

28088 
28x67 
28247 
28327 
28406 
28486 
28565 
28644 
28723 
28801 

2888 

28958 

29036 

29115 
29192 

2927 

29348 

2942s 
29502 

2958 
29656 

29733 

2981 

29S86 

29962 

•30039 

.30114 

.30x9 

.30266 

•30341 
.304x6 
.30491 
.30566 
.3064X 

•30715 
0079 


H*gfat. 

•336 
•337 
•338 

.339 

•34 

•341 

•343 

•343 

•344 

345 

346 

347 
348 

349 
35 
351 
352 

353 
354 
355 
356 

357 
358 

359 
36 
361 
362 

363 
364 
365 
366 

367 
368 

369 

37 

371 

373 

373 

374 

375 

376 

377 
378 

379 
38 
381 
382 

383 
384 

385 
386 

387 
388 

389 

39 


ArML 

H'gfct. 

.30864 

•391 

•30938 

•393 

.310x2 

.393 

.31085 

•394 

.31159 

•395 

•3"  32 

•396 

•31305 

•397 

•31378 

•398 

•3145 

•39S 

•31523 

•4 

•31595 

.401 

.31667 

.402 

•31739 

•403 

•31811 

.404 

.31882 

•405 

•31954 

.406 

.32025 

•407 

.32096 

.408 

.321 67 

.409 

•32237 

•41 

•32307 

.411 

•32377 

.412 

•32447 

•413 

32517 

.4x4 

•32587 

•415 

.32656 

.4x6 

■32725 

•417 

•32794 

.4x8 

.32862 

•419 

•32931 

•42 

•32999 

.42  X 

•33067 

.422 

•33135 

•423 

.33203 

.424 

•3327 

•425 

•33337 

.426 

•33404 

•427 

•33471 

.428 

•33537 

•429 

.33604 

•43 

•3367 

•431 

•33735 

•433 

•3.3801 

•433 

.3386b 

•434 

.33931 

'  435 

•,33996 

436 

.34061 

437 

.34125 

•438 

•3419 

.439 

.34253 

.44 

.34317 

•441 

.3438 

•442 

.34444 

•443 

.34507 

i  -444 

.345691 

1445 

.34632. 

•34694 
•34756 
.34818 

.34879 

.3494 

.35001 

.35062 

•351  22 
.351  82 
•35242 
•35302 
•35361 
•3542 

•354  79 
.35538 
•35596 
•35654 
.35711 
•35769 
.35826 
•35883 

•35939 

•35995 
•36051 

.361 07 

.36162 

.36217 

.36272 

.36326 
•3638 

.36434 
.36488 

•36541 
•36594 
.36646 

.36698 

•3675 
.36802 

.36853 
•36904 
.36954 
.37005 
.37054 
•37104 

•37153 
.37202 

•3725 
•37298 

•37346 

.37393 

.3744 

.37487 

37533 

•37579 


AKBAS   OF   ZONES    OF   A   Cl&CLE. 


271 


fTgbt. 

446 

•447 
.448 

449 

.45 

•45J 

^52 

•453 

•454 

•455 

.456 


ArML 


IJHVht. 


.37624 
.37669 

•377 14 
-37758 
.37802 

•37845 
.37888 

•37931 

•37973 
.38014 

.38056 


I  -457 
L458 

i  -459 

I  .46 

1^61 
.462 

•463 

I  464 

•465 
.466 

!  .467 


Ar6A« 


.38096 
•38137 

•381  77 
.382  16 

.382  55 
.38294 

.38332 

.38369 
.38406 

.38443 
•38479 


H'ght. 


468 
469 

47 

471 
472 

473 
474 
475 
476 
I  477 
•478 


Area. 

H'gfat. 

•479 

Area. 

•38514 

.38867 

•38549 

.48 

•38895  ' 

.38583 

.481 

•38923 

.38617 

.482 

•3895     i 

.3865 

•483 

38976' 

.38683 

.484 

.39001 

.387151 

.485 

.39026 

•38747  ! 

.486 

•3905 

•387  78 

.487 

•39073 

.38808 

.488 

•39095 

•38838 : 

.489 

•39117' 

iH'Rfat. 

•49 

•491 ; 
.492 1 

•493 

•494 

•495 

■496, 

•497 , 

•498; 

•499 

•5 


Akb. 


•39137 
•391  56 
•39175 
•39192 
.39208 
•39223 
.392  36 

•392  48 
.39258 
.39266 

•3927 


mt  Table  is  compiUed  only  for  Zones^  low/est  Chord  oj*  which  is  Diamr 
tier. 

To  Compute  .A^rea  of*  o.  Zone  "b^-*  preceding  Talkie. 

When  Zone  is  Iau  than  a  Semicircle, 

Rule. — Divide  height  by  diameter,  find  quotient  in  column  of  heights. 
Take  area  for  height  opposite  to  it  in  next  column  on  ci^riit  hand,  uiuhiplv 
it  by  square  of  diameter,  and  pruduct  will  give  area  of  zone. 

KxAMPLB. — Required  area  of  a  2one,  diameter  of  which  is  50,  and  its  height  15. 

1 5  -r-  50  = .  3 ;  and  3,  as  per  table,  = .  280  88. 
Hence  .28088  X  50^  =  702.2  area. 

Whm  Zone  is  Greater  than  a  Semicircle, 

kuLE. — Take  height  on  each  side  of  diameter  of  circle,  and  ascertain,  by 
preceding  Rule,  their  respective  areas ;  add  areas  of  these  two  portions  to- 
gether, and  sum  will  give  area. 

EXAMPLB.  —  Required  area  of  a  zone,  diameter  of  circle  being  50,  and  heights  of 
cone  on  each  side  of  diameter  of  circle  20  and  15. 

90-5-50  =  .4;  .4,  o«p«r^aftte,  =.35182;  and  .351 82  X  50=  =  879. 55. 
15-5-50  =  .3;   3.  tupcr  fti*te,  =.28088;  and  .28088X50^  =  702.2. 

Hence  879. 55  -f  702.2  =  1581.75  area. 

When^  in  Division  of  a  Height  by  Chords  Quotient  has  a  Remainder  after 
Third  Place  of  Decinuds,  and  great  Accuracy  is  reqvired. 

Rule. — Take  area  for  first  three  figures,  subtract  it  from  the  next  follow- 
ing area,  multiply  remainder  by  said  fraction,  and  add  product  to  first  area ; 
snm  will  give  area  for  whole  quotient. 

ExAMPLR.  — What  is  area  of  a  zone  of  a  circle,  greater  chord  being  100  feet,  and 
breadth  of  it  14  feet  3  ins.? 

14  feet  3  in&  =  14.25,  and  14. 25-7-100=.  1425;  tahular  length  for  .142  =  .14007, 
anil  for  .143  =  .141 03,  difference  between  which  it  .00096. 

Then  .  5  X  .000  96  :=  .000  48.    Hence .  142  = .  140  07 

.0005  =  .00048 

.14055,  sum  by  which  square  of  greater 
chord  is  to  be  muU^ftHed  ;  and .  140  $$  X  xoo*  -=  1405. 5  feet. 


272 


SQUABES,  CUBES,  AND   BOOTS. 


Sqviareis,  Cu'bes,  and.   Square   and.   Cube  I^oots, 

From  I  to  1600. 


NUMKK. 

S^UARB. 

Cube. 

SquARB  Root. 

CuBB  Root. 

I 

2 

I 

4 

I 

8 

I 
I.4142136 

I 

1.259  921 

3 

9 

27 

1-7320508 

1.442  2496 

4 

16 

64 

2 

1.587  401  I 

5 

25 

125 

2.236068 

1.7099759 

6 

36 

216 

2.4494897 

I.817  1206 

7 

49 

343 

2.645  751  3 

I.9129312 

8 

64 

512 

2.828  427  I 

2 

9 

81 

729 

3 

2,0800837 

10 

100 

IOCX> 

3.16227/7 

2.1544347 

II 

121 

1331 

3.3166248 

2.2239801 

12 

144 

1728 

3.464  loi  6 

2.2894286 

13 

169 

2197 

36055513 

2.3513347 

14 

196 

2744 

3.7416574 

2.410  142  2 

15 

225 

3375 

38729833 

2.466  212  I 

16 

236 

4096 

4 

2.519  842  I 

17 

289 

4913 

4.123 105  6 

2.571  281 6 

18 

324 

5832 

4.242  640  7 

2.620  741  4 

19 

361 

6859 

4.3585989 

2.6684016 

20 

400 

8000 

4.472  136 

2.7I44177 

21 

441 

9261 

4-5825757 

2.7589243 

22 

484 

10648 

4.6904158 

2.8020393 

23 

529 

12  167 

4.7958315 

2.843867 

24 

576 

13824 

4.8989795 

2.8844991 

25 

62s 

15625 

5 

2.9240177 

26 

676 

17576 

5.0990195 

2.962496 

27 

729 

19683 

5.196 1524 

3 

28 

784 

21952 

5.2915026 

30365889 

29 

841 

24389 

5.3851648 

3.0723168 

30 

900 

27000 

5.4772256 

3.1072325 

31 

961 

29791 

5.5677644 

3. 141 3806 

32 

1024 

32768 

5.6568542 

3.174  802 1 

33 

1089 

35937 

57445626 

32075343 

34 

1156 

39304 

5.8309519 

3.239  61 1 S 

35 

12  25 

42875 

5.9160798 

3.271066^ 

36 

1296 

46656 

6 

3.301 927  2 

37 

J369 

50653 

6.082  762  5 

3.3.32  221 8 

38 

1444 

54872 

6.164  414 

3-3619754 

39 

15  21 

593'9 

6.244998 

3.3912114 

40 

1600 

64000 

6.3245553 

3.419  951  9 

41 

168I 

68921 

6.4031242 

3.4482172 

42 

176^ 

74088 

6.480  740  7 

3.4760266 

43 

1849 

79507 

6.5574385 

3.5033981 

44 

1936 

85184 

6.6332496 

35303483 

45 

20-25 

91125 

6.70S2039 

3.5568933 

46 

21  lb 

973j6 

6.78233 

3-5830479 

47 

2209 

103823 

6.8556546 

3.60S8261 

48 

23  <H 

110592 

6.938  303  2 

3.6J42411 

49 

2401 

ii7«M9 

7 

3-6593057 

SO 

2500 

125000 

7.0710678 

3.6840314 

51 

aooi 

13-2651 

7.1414284 

3.7084298 

52 

27  <H 

140  60S 

7.311  1026 

3.7325111 

S3 

2809 

148877 

7.2801099 

3.7562858 

54 

2916 

157464 

7^84692        1 

37797631 

SQUABES,  CUBES,   AND   ROOTS. 


273 


Vvummu. 

55 
56 
57 
58 

59 
60 
61 
62 

63 
64 

65 
66 

67 
68 

69 
70 

71 
72 

73 
74 
75 
76 

77 

78 

79 

80 

81 
82 

83 

84 

85 
86 

87 
88 

89 
90 

91 
93 
93 
94 
95 
96 
97 
98 

99 

100 

lOI 

102 
103 
104 
105 
106 
107 
108 
109 
zzo 


8«I7ABB. 


3025 
3136 
3249 
3364 
3481 
3600 
3721 

3844 
3969 
4096 
4225 
4356 

4489 
4624 

4761 
4900 

5041 
5184 

5329 
5476 
5625 
5776 

5929 
6084 
6241 

64cx> 

6561 

6724 

6889 

7056 

7225 

7396 

7569 

77  44 
7921 

8icx> 

8281 

8464 

8649 

8836 

9025 
9216 
9409 
9604 
9801 

IOOCX> 

1 02  01 
10404 
10609 

1 08 16 
1 1025 
11236 
11449 

I  1664 

1 1881 

I  2100 


Cubs. 


166375 
175  616 
185  193 
195  "2 

205379 

216000 
226981 

238328 

250047 
262  144 
274  625 
287496 

300  763 
314432 

328509 
343000 

3579" 
373248 
389017 
405  224 
421  875 
438976 

456533 
474552 

493039 
512000 

531  441 
551368 

571  787 
592704 
614  125 
636056 

658503 
681472 

704969 

729000 

753571 
778688 

804357 

830584 

857375 

884736 

912673 

941192 

970299 

1000  000 

1 030  301 

1 061  208 

1092727 

1 124864 

1157625 

1 191016 

1 225  043 

1259712 

1295029 

I  331000 


Sqcabb  Root. 


7.416  198  5 
7-4833148 

7-5498344 
7-615  773  I 
7.681  145  7 
7.7459667 
7.810  249  7 
7.8740079 

7.9372539 
8 

8.062  257  7 

8.1240384 

8.1853528 

8.2462113 

8.306623-9 

8.3666003 

8.426 149  8 

8.485  281 4 

8.5440037 

8.602  325  3 

8.660  254 

8.7177979 

8.7749644 
8.831  7609 

8.8881944 

8.9442719 

9 

9-0553861 
9.1104336 
9.165  151 4 
9.2195445 
9.2736185 

9-3273791 
9.3808315 

9.4339811 

9.486833 

9539392 
9.591 663 
9.6436508 

96953597 
9.7467943 

9-797959 
9.8488578 

9.8994949 

99498744 

10 

10.049  875  6 

10,0995049 

10.1488916 

10. 198  039 

10.2469508 

10.295  630 1 

103440804 

10.392  304  8 

10.4403065 

104880885 


CVBB  Root. 


3.8029525 
3.8258624 
3.848  501  1 
3.8708766 
3.8929965 

3.914  867  6 

39364972 

39578915 

3979057  I 

4 

4.020  725  6 

4.041  240 1 
4.061  548 
4.081 655  1 
4.101  566 1 
4.1212853 
4.1408178 
4. 160 167  6 

4179339 
4.1983364 

4.2171633 

4.2358236 

4.254321 

4.272  658  6 

4.2908404 

4.3088695 

4.3267487 

4.3444815 

4.3620707 

4-3795191 
4.3968296 
4.4140049 
4.4310476 
4.4479602 
4.464  745  I 
4.481 404  7 
4.4979414 

45143574 
45306549 

45468359 

4.562  902  6 

4.578857 

45947009 

4.6104363 

4.626065 

4.6415888 

4.6570095 

4.6723287 

4.6875482 

4.7026694 

4.717694 

4.7326235 

4.7474594 
4.7622032 

4.7768562 

4.791 4199 


274 


SQUARES,   CUBES,   AJTD   ttOOtEJ. 


NUMBIS. 

SOUABS. 

Ill 

12321 

1X2 

I2S44 

"3 

12769 

114 

12996 

115 

13225 

116 

13456 

117 

13689 

118 

13924 

119 

1 41 61 

120 

14400 

121 

I  4641 

122 

14884 

123 

1 51 29 

124 

15376 

125 

15625 

T26 

15876 

127 

161  29 

128 

16384 

129 

16641 

130 

16900 

131 

I  71 61 

132 

17424 

133 

17689 

134 

17956 

135 

18225 

136 

18496 

137 

18769 

138 

19044 

139 

1 9321 

140 

19600 

141 

19881 

142 

20164 

H3 

20449 

144 

20736 

MS 

2  1025 

146 

2  13  16 

147 

2  1609 

148 

21904 

149 

22201 

ISO 

22500 

'51 

22801 

^52 

23104 

153 

23409 

154 

23716 

iSS 

24025 

156 

24336 

»57 

24649 

158 

24964 

'59 

25281 

160 

25600 

161 

25921 

162 

36244 

163 

26569 

164 

26896 

i6s 

27225 

166 

27556 

Cub*. 

1  367  631 

I  404  928 

1442897 

1  481  544 

I  520  875 

1560896 

1  601  613 

1643032 

1  685  159 

I  728000 

I  771  561 

I  815  848 

1860867 

1906624 

1 953  125 

2000376  ' 

2048383 

2097152 

2  146689 

2197000 

2  248  091 

2299968 

2352637 

2406104 

2460375 

2515456 

2  571  353 

2  628  072 

2  685  619 

2744000 

2803221 

2  863  288 

2  924  207 

2985984 

3048625 

3112136 

3176523 

3241792 

3307949 

3375000 

3442951 

35"8o8 

3581577 

3652264 

3723875 

3796416 

3860893 

3944312 

4019679 

4096000 

4173281 

4251528 

4330747 

4410944 

4492125 

4574296 

S^UAKB  Root. 


10.5356538 
0.5830052 
0.630  145  8 
0:677  078  3 
0.7238053 
0.7703296 
0.8166538 
0.862  780  5 
0.908  712  I 
0^9544512 


.045  361 
.0905365 
.135  528  7 
.1803399 
.224  972  2 
.269  427  7 

313  708  5 
•3578167 

401  754  3 
•445  523  I 
•4891253 

•532  562  6 
•5758369 
.61895 
.661  903  8 
.7046999 

•7473401 
.7898261 
.8321596 
.8743421 

•9163753 
.958  260  7 


2.041 594  6 
2.083  046 

2.1243557 
2.1655251 

2.2065556 

2.247  448  7 

2288  205  7 

2.328828 

2.3693169 

2.4096736 

2.4498996 

2.489996 

2.5^9964  I 

2.5698051 

2.6095202 

2.6491106 

2.688  577  5 

2.727922  I 

2.7671453 
2.806  248  5 

2.845  232  6 

3.8840987 


CuBxRbdf. 

4.8058955 
4.820  ^84  5 
4.834  588  1 
4.8488076 
4.8629442 

4.876999 

4.8909732 

4.9048681 

4.9186847 

4.932  424  2 

4.9460874 

4.9596757 
4.9731898 

4.986631 

5 

S.0132979 
5.0265257 
5.0396842 

50527743 
5.065  797 

5.0787531 

5.0916434 

5.1044687 

5.1172299 

5.1299278 

5.1425632 

5.1551367 
5. 167  649  3 

5.180 101  5 

5.1924941 

5.204  827  9 

5.2171034 

5.2293215 

5.241  482  8 

5.2535879 
5.2656374 

5.2776321 

5.2895725 

5.3014592 

5  313  292  8 

5325074 
53368033 

5.34^4812 

5.3601084 

5.3716854 

5.3832126 

53946907 
5.4061202 

5-4175015 
5.4288352 

5.440 121 8 
5451 361 8 
54625556 

5-473  703  7 
5.4848066 

54958^7 


SQtTABEB,  CUBBS,  AKD   BOOTS. 


275 


NCMBBB. 

SqCABB. 

167 

87889 

168 

28224 

169 

88561 

170 

28900 

lyi 

89241 

17a 

29584 

173 

29929 

174 

30276 

17s 

30625 

176 

30976 

177 

31329 

178 

31684 

179 

32041 

180 

32400 

181 

32761 

1S2 

33^24 

183 

33489 

184 

33856 

185 

34225 

186 

34596 

187 

34969 

188 

35344 

189 

35721 

190 

36100 

191 

36481 

193 

36864 

193 

37249 

194 

37636 

195 

38025 

196 

38416 

197 

38809 

198 

39204 

199 

39601 

200 

40000 

30X 

40401 

ao3 

40804 

ao3 

41209 

304 

4  16  16 

205 

42025 

206 

42436 

207 

42849 

208 

43264 

209 

43681 

210 

44100 

211 

4v45  2i 

212 

44944 

213 

45369 

214 

45796 

315 

46225 

316 

46656 

317 

47089 

218 

47524 

219 

47961 

220 

48400 

221 

48841 

223 

49284 

CVBC. 


4657463 

4  741 632 

4826809 
4913000 
5000211 
5088448 

5  177  717 
5268024 

5359375 
5451776 
5  545  233 
5639752 

5  735  339 
5832000 

5929741 
6038568 

6138487 

6  229  504 
6331625 
6434856 
6539203 
6644672 
6751269 
6859000 
6967871 
7077888 
7189057 
7301384 

7414875 
7529536 

7645373 
7762392 

7880599 
8000000 

8130601 

8342408 

8365427 
8489664 

8615125 

8  741  816 

8869743 
8998912 

9139329 

9261000 

9393931 
9528138 

9663597 

9800344 

9938375 
10077696 
10318313 
10360232 

10503459 
10648000 

lo  793  861 

10  941 048 


8ttUASB  Root. 


2.922  848 
2.961  481  4 

3 
3.0384048 

3.0766968 

3.II4877 

3.1529464 

3.190906 

3.2287566 

3.2664992 

3.304  134  7 

3.341  664  1 

33790882 

3.4164079 

3.453624 

3-4907376 

3  527  7493 
356466 

3.6014705 

3.638 181  7 

3.6747943 

3.71 1  3092 

3.747  727  I 

3.7840488 

3.820  275 

38564065 

3.89244 

39283883 
396424 

4 

4.0356688 

4.0712473 

4.106736 

4.1421356 

4,1774469 

4.2126704 

4.2478068 

4.2828569 

4.317821  I 

4.352  700  I 

43874946 

4.422  205  I 

4.4568323 

4  491  376  7 

4525839 
4.5602198 

45945195 
4.628  738  8 

4.6628783 

4.6969385 
4.7309199 
4.764  823  I 
4.79S6486 

4832397 
48660687 

4.8996644 


Cdb'k  Root. 


5.5068784 
5.5178484 
5.5287748 

5-5396583 
5-5504991 

5.561  297  8 

5.5720546 
5.582  770  3 

5-593  444  7 
5.6040787 
5.6146724 
5.6252263 
56357408 

5  6462162 
5.6566528 
5.6670511 
5.6774114 
5.687  734 
5.6980192 
5.708  267  5 
5.718  479  I 
5.7286543 
5-7387936 
5-7488971 

5.7589652 

5.768998a 

5.7789966 

5.7889604 

5.79889 

5.8087857 

5.8186479 

5.8284767 

5.8382725 

5.8480355 

5.857  766 

5.8674643 

5.8771307 

5.8867653 
5.8963685 

5.9059406 

5.9154817 

5.9249921 

5.9344721 

5.943922 

5-9533418 

5.962  732 

5.9720926 

5.981  424 

59907264 

6 

6009245 

6.018  461  7 

6  027  650  2 
6.036  810  7 
6045943s 
6.055  0489 


276 


6QUABES,   CUBES,   AND   BOOTS. 


Number. 

Squakb. 

CUSB. 

Sqoarb  Root. 

CvBB  Root. 

823 

49729 

II 089  567 

14.9331845 

6.064  127 

224 

50176 

II 239424 

14966629  s 

6.0731779 

225 

50625 

11390625 

15 

6.082202 

226 

51076 

11543176 

150332964 

6.091  1994 

227 

51529 

II 697  083 

15.0665192 

6.1001702 

228 

51984 

11852352 

15.0996689 

6.1091147 

229 

52441 

12008989 

15.132746 

6.1180332 

230 

52900 

12  167  000 

15-1657509 

6.1269257 

231 

53361 

12326391 

15.1986842 

6.1357924 

232 

'     53824 

12  487  168 

15-2315462 

6.1446337 

233 

54289 

12649337 

15-2643375 

6.1534455 

2.34 

54756 

I28I2904 

15.2970585 

6.1622401 

235 

55225 

12977875 

15.3297097 

6.1710058 

236 

55696 

13144256 

15.3622915 

6.1797466 

237 

56169 

13  312  053 

15.3948043 

6.1884628 

238 

56644 

13  481 272 

15.4272486 

6.197  1544 

239 

5  71  21 

13  651 919 

15.4596248 

6.205  821  8 

240 

57600 

13824000 

15-4919334  - 

6.214  465 

241 

58081 

13997  521 

15.5241747 

6.223p8^3 

242 

58564 

14 172488 

15.5563492 

6231 679  7 

243 

59049 

14348907 

15-5884573 

6.2402515 

244 

59536 

14526784 

15.6204994 

6.2487998 

245 

60025 

14706125 

15.6524758 

6.2573248 

246 

60516 

14886936 

15.6843871 

6.2658266 

247 

61009 

15069223 

15-7162336 

6.2743054 

248 

61504 

15  252  992 

15.7480157 

6.282  761 3 

249 

62001 

15438249 

15-7797338 

6.291 194  6 

250 

62500 

15625000 

15.8113883 

62996053 

231 

63001 

15  813  251 

15.8429795 

6.3079935 

252 

63504 

16003008 

15-8745079 

6.3163596 

253 

64009 

16194277 

15-9059737 

6.3247035 

254 

64516 

16387064 

159373775 

6.3330256 

255 

65025 

16581375 

15.9687194 

6.341 325  7 

256 

65536 

16777216 

16 

6.3496042 

257 

66049 

16974593 

16.03121^5 

6.357  861 1 

258 

66564 

17I735I2 

16.062  378  4 

6.3660968 

259 

67081 

17373979 

16.0934769 

6.3743111 

260 

67600 

17576000 

16.1245155 

6.3825043 

261 

681  21 

17779581 

16.1554944 

6.3906765 

262 

68644 

17984728 

16.186  4141 

6.3988279 

263 

69169 

18  191 447 

16.2172747 

64069585 

264 

69696 

18399744 

16.2480768 

6.4150687 

265 

70225 

18609625 

16.2788206 

6.4231583 

266 

70756 

I882I096 

16.3095064   ' 

6.431  2276 

267 

71289 

19034163 

16.3401346 

6.4392767 

268 

7  1824 

19248832 

16.3707055 

64473057 

269 

72361 

19465109 

16.401  2195 

64553148 

270 

72900 

19683000 

16.431  676  7 

6.4633041 

271 

73441 

19902  511 

16.462  077  6 

6.4712736 

272 

73984 

20123648 

16.492  422  5 

64792236 

273 

74529 

20346417 

16.5227116 

6.487  154 1 

274 

75076 

20570824 

16.5529454 

6.4950653 

275 

75625 

20796875 

16.583  124 

6-502  957  2 

876 

761  76 

21  024  576 

16  613  247  7 

6.51083 

277 

76729 

21253933 

16643317 

6.5186839 

278 

77284 

21484952 

16.678332 

6.5265189 

SQUABE3,  CUBES,  AND  HOOTS. 


277 


NvmMM, 

279 
280 

281 
28a 

283 

284 
28s 
286 
287 
288 
28$ 

290 
291 
292 

293 
394 

29s 

296 

297 
298 
299 
300 

301 

J02 

303 

304 

305 
306 

307 
308 

309 
310 

3" 
312 

313 

314 

315 
316 

317 

318 

319 
320 

321 

^  322 

323 

324 

325 
326 

327 
328 
329 
330 
331 
332 
333 
3^ 


StUAXB. 


OtTBB. 


77841 
78400 
78961 

79524 
80089 
80656 
81225 
81796 
82369 
82944 
83s  21 
84100 
84681 
85264 

85849 
86436 

87025L 

87616 

88209 

88804 

89401 

90000 

90601 

91204 

91809 

924  16 

93025 

93636 
94249 

94864 

95481 
961  00 
96721 

97344 
97969 

98596 
99225 
99856 
100489 
10 II  24 
101761 
X02400 
10  30  41 
103684 
104329 
10  49  76 
105625 
106276 
106929 
107584 
10  82  41 
108900 
10  95  61 
II 02  24 
110889 
JI1556 


21  717639 
21952000 

22  188  041 
22  425  768 
22665187 
22906304 

23 149 125 
23393656 

23639903 
23887872 

24 137  569 
24389000 

24642  171 

24897088 

25153757 
25412  184 

25672375 
25934336 
26198073 
26463592 
26730899 
27000000 
27270901 
27543608 
27818127 
28094464 
28372625 
28652616 
28934443 
29218  112 
29503629 
29  791 000 
30080231 
30371328 
30664297 
30959144 

31255875 
31554496 
31 855  013 

32157432 
32461759 
33768000 
33076161 
33386248 
33698267 
34012224 
34328125 
34645976 

34965783 
35287552 

35  61 1  289 

35937000 

36264691 

36594368 

36926037 

37^59704 

Aa 


Square  Root. 

Cdbb  Root. 

16  703  293  I 

6.5343351 

16.7332005 

6.542 132  6 

16.763  054  6 

6.5499116 

16.7928556 

6  557  672  2 

16.8226038 

6.5654144 

168522995 

6.5731385 

16  881  943 

6.5808443 

16  911  5345 

65885323 

16.9410743 

65962023 

16.970  562  7 

6.6038545 

17 

6.611489 

17.0293864 

6.619  106 

17.0587221 

6.626  705  4 

17.0880075 

6.634  287  4 

I7.II72428 

6.641  852  2 

17.1464283 

6.6493998 

17175564 

66569302 

17.2046505 

66644437 

172336879 

66719403 

17.2626765 

6.679  42 

17.2916165 

6.6868831 

17.3205081 

6.6943295 

17-3493516 

6.7017593 

17-3781472 

6.709  1729 

174068952 

6.71657 

17.4355958 

67239508 

17.4642492 

6.7313155 

17.4928557 

6-7386641 

17-5214155 

6.7459967 

17.5499288 

6.7533134 

175783958 

6.7606143 

17.6068169 

6,7678995 

17.635  192  I 

6.775  169 

17.6635217 

6.7824229 

17.691806 

6.7896613 

17.7200451 

67968844 

17.7482393 

6.8040931 

17.7763888 

6.8113847 

17.8044938 

6.818463 

17-8325545 

6.825  624  3 

17.860571  I 

6.832  771  4 

17.8885438 

6.8399037 

17.9164729 

6.847  021 3 

17-9443584 

6.854 124 

17.9722008 

6.861  212 

18 

6.8682855 

18.0277564 

6.8753443 

18.0554701 

6.8823888 

18.083  141  3 

68894188 

18.1107703 

6.8964345 

18.138357  I 

6.9034359 

18.1659021 

6.9104232 

18.1934054 

6.9173964 

18.220  867  2 

6.9243556 

18.248  287  6 

6.9313088 

18.2756669 

6  938  232 1 

278 


SQUARES,  CUBES,   AND   BOOTS. 


NUMBBll. 

Square.          | 

Cdbb. 

Squakb  Root. 

CuBB  Root. 

335 

1 1  22  25 

37  595  375 

18.3030052 

6.945  1496 

336 

II  2896 

37933056 

18.3303028 

6.9520533 

337 

"3569 

38  272  753 

18.3575598 

6.9589434 

338 

114244 

38614472 

18.3847763 

6.9658198 

339 

II492I 

38958219 

18.4119526 

6.972  682  6 

340 

II  56 00 

39304000 

18.4390889 

6.9795321 

341 

I16281 

39651821 

18.4661853 

6.9863681 

342 

II6964 

40001688 

18493242 

6.9931906 

343 

II  7649 

40353607 

18.520  259  3 

7 

344 

118336 

40707584 

18.547  237 

7.006  796  2 

345 

II9025 

41063625 

18.5741756 

70135791 

346 

II 97  16 

41 421  736 

18  601  075  2 

7.020349 

347 

120409 

41  781  923 

18.627936 

7.027 105  8 

348 

121104 

42  144 192 

18.654  758  1 

7.0338497 

349 

12  18  01 

42508549 

18.681  541  7 

7.0405806 

350 

122500 

42  875  000 

18.7082869 

70472987 

351 

12  32  01 

43243551 

18.734994 

7.0540041 

352 

123904 

43614208 

18.761  663 

7.0606967 

353 

124609 

43986977 

18.788  294  2 

7.0673767 

354 

12  53 16 

44361864 

18.814  887  7 

7.074044 

3SS 

126025 

44738875 

18.841  443  7 

7.0806988 

356 

126736 

45118016 

18.8679623 

7.087341 1 

357 

127449 

45499293 

18.8944436 

7.0939709 

358 

12  81 64 

45  882  712 

18.9208879 

7.1005885 

359 

12  88  81 

46  268  279 

18.9472953 

7.1071937 

360 

129600 

46656000 

18.973666 

7.1137866 

361 

130321 

47045831 

19 

7.1203674 

362 

131044 

47437928 

19.0262976 

7.126936 

363 

131769 

47832147 

190525589 

71334925 

364 

132496 

48  228  544 

19.078  784 

7.140037 

365 

133225 

48627125 

19.1049732 

7.1465695 

366 

133956 

49027896 

19.131  1265 

71530901 

367 

134689 

49430863 

19.157  244  I 

71595988 

368 

135424 

49836032 

19  183  326  I 

7.1660957 

369 

13  61 61 

50243409 

19.2093727 

7.1725809 

370 

136900 

50653000 

19235  384  1 

7.1790544 

371 

137641 

51 064  811 

19.261  3603 

7.1855162 

37a 

138384 

51478848 

19.2873015 

7.1919663 

373 

139129 

51895117 

19.3132079 

7.198405 

374 

139876 

52313624 

19-3390796 

7.2048322 

375 

140625 

52734375 

19.3649167 

7.2112479 

376 

141376 

53157376 

I9'39P7I94 

7.2176522 

377 

14  21  29 

53582633 

.  19.4164878 

7.22404s 

378 

142884 

54010152 

19.442  222  1 

7.2304268  0 

379 

143641 

54439939 

19.4679223 

l'^2f>19rj^ 

380 

144400 

54  872  000 

»9-493  588  7 

72431565 

381 

14  51  61 

55306341 

19.519  221 3 

7.2495045 

382 

145924 

55742968 

19.5448203 

7.2558415 

383 

146689 

56  181  887 

»9-570  3858 

7.262  167  5 

384 

147456 

56623  104 

19-5959179 

7.2684834 

385 

148225 

57066625 

19.621  4169 

7.2747864 

386 

148996 

57512456 

19.6468827 

7.281  0794 

3!7 

149769 

57960603 

i9'672  315  6 

7.287  361 7 

388 

150544 

58411072 

19.6977156 

7293633 

389 

15  13  21 

58863869 

19.7230829 

7.2998936 

390 

152100 

593»9«» 

19.7484177 

73061436 

SQITABBS,  CrBBS,  Am)  BOOTS. 


m 


NUMBSB. 

391 
392 

393 
394 
395 
396 
397 
398 

399 
400 

401 

402 

403 
404 

405 
406 

407 

40S 

409 

410 

411 

4J2 

4^3 
414 

415 
416 

417 
418 

419 
420 
421 
422 

423 
424 

425 
426 

427 

428 

429 
430 
431 
432 
433 
434 
435 
436 
437 
438 

439 
440 

441 

442 

443 

444 

445 
446 


SquASB. 

CUB«. 

Sqvabb  Root. 

Cubb  Root. 

[52881 

59776471 

19-7737199 

7.312  382  8 

153664 

60236288 

19.7989899 

7.318  61 1  4 

^5  4449 

6q  698  457 

19.824  227  6 

7.3248295 

155236 

61 162  984 

19.8494332 

73310369 

15602s 

61 629  875 

19.8746069 

73372339 

[56816 

62  099  136 

19.8997487 

7.3434205 

[57609 

62  570  773 

19,924  858  8 

7.3495966 

[58404 

63044792 

19.9499373 

7-355  762  4 

[59201 

6^521199 

19.9749844 

7.3(^19178 

[60000 

64000000 

20 

7.308063 

[60801 

64481  201 

20.024  984  4 

7-3741979 

[6  1604 

64964808 

20.0499377 

7.3803227 

[62409 

65450827 

20.0748599 

73864373 

[632  16 

65939264 

200997512 
20  124011  8 

7.3925418 

[64025     * 

66430125 

73986363 

[64836 

66923416 

201494417 

7.4047206 

[65649 

67  419  143 

20  174241 

7410795 

[6  64  64 

67  917  312 

20.1990099 

7.4168595 

[67281 

68417929 

20.2237484 

7.4229142 

[68100 

68921000 

20.248  456  7 

7.4289589 

[6  89  21 

69426531 

20.2731349 

74349938 

[69744 

69934528 

20  297  783 1 

7.4410189 

[70569 

70444997 

20.322  401 4 

7-4470342 

[71396 

70957944 

20.3469899 

7-4530399 

[7  22  25 

71473375 

20.3715488 

74590359 

173056 

71  991  296 

20.396  078  I 

74650223 

[73889 

72  511  713 

20.4205779 

7.4709991 

[74724 

73034632 

20.445  048  3 

7.4769664 

175561 

73560059 

20.469  489  5 

7  482  924  2 

[76400 

74088000 

20.4939015 

7.488  872  4 

[7724T 

74618  461 

20.5182845 

7.4948113 

[78084 

75  151  448 

20.542  638  6 

7.5007406 

[78929 

75686^^7 

20.5669638 

7.5066607 

[79776 

76  225  024 

20.591  260  3 

7-51257x5 

[80625 

76  765  625 

20.6155281 

7-518473 

[8  14  76 

77308776 

20.639  767  4 

7.5243652 

[8  2^  29 

77854483 

20.663  978  3 

.  7.5302482 

[8  31 84 

78402752 

20.688  160  9 

7.536 122  I 

18  40  41 

78953589 

20.7123152 

7.541 986  7 

[84900 

79  507  000 

20.7364414 

7.5478423 

[85761 

80062991 

20.7605395 

7.5536888 

[86624 

80621568 

20.7846097 

7-5595263 

[87489 

81 182  737 

20.808  652 

75653548 

[88356 

81746504 

20.832  666  7 

7-571  1743 

[89225 

82312875 

20.8566536 

7.5769849 

[90096 

82  881  856 

20.880613 

7.582  786  5 

[99969 

83453453 
84027072 

20.904545 

7-5885793 

[91844 

20.9284495 

7-5943633 

[92721 

84604^19 

20.9523268 

7.600  138  5 

[93600 

85184000 

20.976177 

7.6059049 

[94481 

85  766 121 

21 

7.6116626 

195364 

86350^ 

21.023796 

7.6174116 

[96249 

.86938307 

21.0475652 

7.623  151  9 

9  71  36 

87528384 

21.0713075 

7.6288837 

[9  So  25 

88121  125 

21.0950231 

7.634  606  7 

[98916       J 

88716536 

21.1187121 

7.6403213 

28o 


SQUARES,  CUBES,  AND  BOOTS. 


Number. 

Sqvasb. 

447 

199809 

448 

200704 

449 

20  16  01 

450 

202500 

451 

203401 

452 

204304 

453 

205209 

454 

2061  16 

455 

207025 

456 

207936 

n57 

208849 

458 

209764 

459 

21  0681 

460 

21  1600 

461 

21  2521 

462 

213444 

463 

214369 

464 

21  5296 

465 

216225 

466 

21  71  56 

467 

218089 

468 

219024 

469 

21  9961 

470 

220900 

471 

22  18  41 

472 

222784 

473 

223729 

474 

22  46  76 

475 

22  56  25 

476 

22  65  76 

477 

22  75  29 

478 

228484 

479 

229441 

480 

230400 

481 

23  13  61 

482 

23  23  24 

483 

233289 

484 

234256 

485 

23  52  25 

486 

236196 

487 

237169 

488 

238144 

489 

239121 

490 

240100 

491 

24  10  81 

492 

242064 

493 

243049 

494 

244036 

495 

245025  .. 

496 

246016 

497 

247009 

498 

248004 

499 

249001 

Soo 

250000 

501 

25  1001 

502 

252004 

CCBS. 


S<it7ABB  Root. 


89314623 

89915392 
90518849 
91  125000 

91  733851 
92345408 
92959677 
93576664 

94196375 
94818816 

95  443993 
96071912 

96  702  579 
97336000 
97972  181 
98611 128 
99252847 

99897344 
100544625 

101  194696 
101847563 

102  503  232 

103  161  709 

103  823  000 

104  487  III 
105154048 
105823817 

106  496  424 

107  171  875 
107850176 
108531333 
109215352 
109  902  239 
no  592  000 
III  284641 
111980 168 
112678587 

1 13  379  904 
114084  125 

114  791  256 

115  501  303 
116214272 

116930 169 

117649000 

118370771 

119095488 

1 19  823 157 

120553784 
121287375 
122023936 
122763473 

123505992 
124251499 
125000000 

125  751  501 
126506008 


21.1423745 
21.1660105 
21.1896201 
21.2132034 
21.2367606 
21.2602916 
21.2837967 
21.3072758 
21.330729 

21.3541565 

21.3775583 
21.4009346 

21.4242853 

21.4476106 

21.4709106 

21.4941853 

21.5174348 
21.5406592 

21.5638587 

21.5870331 
21.6101828 

21.6333077 

21.6564078 

21.6794834 

21.7025344 

21.725561 

21.7485632 

21.771  541  I 

21.7944947 

21.8174242 

21.8403297 

21.863211 1 

21.8860686 

21.9089023 

21.931  7122 

21.9544984 

21.977261 

22 

22.022  715  5 

22.0454077 

22.0680765 

22.090  722 

22.1133444 

22.1359436 

22.1585198 

22.181  073 

22.2036033 

22.2261108 

22.248  595  5 

22.271  057  5 

22.293  496  8 

22.3159136 

22.3383079 

22.360  679  8 

22.3830293 

22.405  356  5 


CvBB  Root. 


7.646  027  2 
7.6517247 

7.6574138 
7.6630943 
7.6687665 
7.6744303 
7.6800857 
7.6857328 
7.691  371  7 
7.6970023 
7.7026246 
7.7082388 
7.7138448 
7.7194426 
7.7250325 
7.7306141 
7.736  187  7 

7-7417533 
7.7473109 
7.7528606 
7.7584023 

7-7639361 
7.769463 

7.7749801 
7.7804904 
7.7859928 
7.791487  s 

7.7969745 
7.8024538 
7.8079254 
7.813389  a 
7.8188456 
7.824  294  a 
7-8297353 
7.835  1688 
7.8405949 
7.8460134 
7.8514244 
7.8568281 
7  862224  a 
7.867613 

7.8729944 
7.8783684 
7-8837353 
7.8890946 
7.894  446  8 
7.8997917 
7.9051294 
7.9104599 

7-9157833 
7.9210994 

7.926  408  5 

7.931  7104 

7-9370053 

7.942  293 1 

7-947  5739 


SQUABES,  CUBES,  AND  BOOTS. 


281 


503 
504 
50s 
506 

507 
508 

509 

510 

512 
513 
514 

516 

517 

518 

519 

520 

521 
522 

523 

524 

525 
526 

527 
528 

529 
530 

531 

532 

533 
534 
535 
536 
537 
538 

539 
540 

541 
542 
543 
544 
545 
546 

547 
548 

549 
550 

551 
552 

553 
554 
555 
556 

557 
558 


S^VASK. 


253009 

254016 

255025 

256036 

257049 

258064 

259081 

260100 

261I  21 

2621  44 

263169 

264196 

265225 

266256 

267289 

268324 

269361 

270400 

27  14  41 

27  24  84 

273529 
274576 
275625 
276676 

277729 

27  87  84 
279841 
280900 

28  19  61 
283024 
284089 
285156 
28  62  25 
287296 
288369 
289444 
290521 
291600 
292681 
293764 

294849 
295936 
297025 
2981  16 
299209 
300304 

30  14  01 
302500 
303601 

304704 
305809 

306916 

308025 

309136 

310249 

31  1364 


Cdbb. 


127  263  527 

128  024  064 

128  787  625 

129  554  216 

130323843 
131  096  512 

131  872  229 

132  651  000 
133432831 
134  21 7  728 
135005697 

135796744 
136590875 
137388096 
138  188  413 
138991832 

139798359 
140608000 

141  420  761 

142  236  648 
143055667- 
143877824 
144  703  125 

145531576 
146363  183 

147  197  952 
148035889 

148  877  000 

149  721  291 
150568768 
151419437 

152  273  304 

153  130375 
153990656 

154  854  153 
155720872 
156590819 
157464000 
158  340  421 
159220088 

160  103007 
160989  1S4 

161  878625 

162  771  336 
163667323 
164566592 
165  469  149 
166375000 

167  284  151 

168  196608 

169  112  377 

1 70  031  464 

170953875 

171  879616 

172808693 

173  74J  113 


SqDAEB  Root. 


CuBB  Root. 


22.427  661  5 
22.4499443 
22.472  205  I 
22.4944438 
22.5166605 
22.5388553 
22.561  028  3 
22.5831796 
22.605  309  I 
22.627  41 7 
226495033 
22.671  5681 
22.6936114 
22.7156334 
22.737634 
22.7596134 
22.781  571  5 
22.8035085 
•  22.8254244 
22.8473193 
22.8691933 
22.8910463 
22.9128785 
22.9346899 
22.9564806 
22.9782506 

23 

23.021  7289 

23043  437  2 

23.0651252 

23.086  792  8 

23.10844 

23.130067 

23.1516738 

23.1732605 

23.194827 

23.2163735 

23.237  900 1 

23  259  406  7 
23.280  893  5 
233023604 
233238076 

23345 23s  I 
23.366  642  9 

23,388  031 1 
234093998 
23-430  749 
23452  078  8 
234733892 
23.494  680  2 

23515952 
23-5372046 

23558438 
235796522 
23.600  847  4 
23.622  023  6 


7.9528477 
7.9581144 

79633743 
7.968  627  I 

7-9738731 

7.979 112  2 

7.9843444 

7.9895697 

79947883 

8 

8.0052049 

8.010  403  2 

8.0155946 

8.0207794 

8.0259574 

8.031 1287 

8.0362935 

8.041 451  5 

8.046  603 

8.0517479 

8.0568862 

8.062018 

8.067  143  2 

8.072  262 

8.0773743 

8.08248 

8.0875794 

8.092  672  3 

8.0977589 

8.102839 

8.1079128 

8.1129803 

8.1 18  041 4 

8  1230962 

8.1281447 

8.133187 

8.138223 

8.1432529 

8.1482765 

8.1532939 

8.1583051 

8.1633102 

8.1683092 

8.173302 

8.1782888 

8.1832695 

8.188244  I 

8.1932127 

8.1981753 

8.203 131 9 

8.2080825 

8.213027  I 

8.2179657 

8.222  898  5 

8.227  825  4 

8.2327463 


282 


SQUABESy  CUBES,   AKD   BOOTS. 


NOMBXS 


SOUAXB. 


559 

31  24  81 

560 

313600 

S6i 

31  47  21 

562 

315844 

563 

316969 

564 

318096 

565 

319225 

566 

320356 

567 

321489 

S68 

32  26  24 

369 

32  37  61 

570 

324900 

571 

326041 

572 

327184 

573 

328329 

574 

329476 

575 

330625 

576 

331776 

577 

332929 

578 

334084 

579 

335241 

580 

336400 

581 

337561 

582 

338724 

583 

339889 

584 

341056 

585 

34  22  25 

586 

343396 

587 

344569 

588 

34  57  44 

589 

346921 

590 

348100 

591 

349281 

592 

350464 

593 

35  1649 

594 

352836 

595 

354025 

596 

35  52  16 

597 

356409 

598 

357604 

599 

358801 

600 

360000 

601 

36  12  01 

602 

362404 

603 

363609 

604 

364816 

605 

366025 

606 

367236 

607 

368449 

60S 

369664 

609 

370881 

610 

372100 

611 

373321 

612 

37  45  44 

613 

375769 

0«4 

376996 

Cube. 

Squarb  Root. 

Cvbb  Rooiv 

174676879 

23.6431808 

8.237  661  4 

175616000 

23664  319  1 

8.2425706 

176558481 

236854386 

8.247474 

177504328 

23.7065392 

8.2523715 

178453547 

23.727  621 

8.2572633 

179406  144 

23.7486842 

8.2621492 

180362  125 

23.7697286 

8.2670294 

181  321  496 

23.7907545 

8.2719039 

182  284  263 

23.8117618 

8.2767726 

183250432 

238327506 

8.2816255 

184  220  009 

23.8537209 

8.2864928 

185193000 

23.8746728 

8.2913444 

186169411 

23.8956063 

8.2961903 

187  149  248 

23.916  521  5 

8.3010304 

188  132  517 

23.9374184 

8.3058651 

189  119224 

23.958  297  1 

8.3106941 

190109375 

239791576 

8.3155175 

191  102  976 

24 

8.3203353 

192100033 

24.020  824  3 

8.325  147  5 

193  100  552 

24.041  630  6 

8.3299542 

194  104  539 

24.0624188 

8.3347553 

195  1 12  000 

24.0831891 

8.3395509 

196122941 

24.1039416 

8.344341 

197  137  368 

24.1246762 

8.3491256 

198155287 

24.1453929 

8.3539047 

199176704 

24.1660919 

8.3586784 

200201625 

24.1867732 

8.3634466 

201230056 

24.2074369 

8.3682095 

202262003 

24.228  082  9 

8.3729668 

203297472 

24.2487113 

8.3777188 

204336469 

24.2693222 

8.3824653 

205379000 

24.2899156 

8.3872065 

206425071 

24.310  491 6 

8.3919423 

207  474  688 

24  331 050 1 

8.3966729 

208527857 

24351  591 3 

8.401  398  1 

209584584 

24.3721152 

8.406  1 18 

210644875 

24.392  621  8 

8.4108326 

211  708736 

24.413  III  2 

8.415  54^9 

212  776 173 

244335834 

8.420246 

213847192 

244540385 

8.424  944  8 

214921799 

244744765 

8.4296383 

216000000 

24.4948974 

8.4343267 

217081801 

24-5153013 

8.4390098 

218  167  208 

24-5356883 

8.4436877 

219256227 

24-5560583 

8.4483605 

220348864 

24.5764115 

8.4530281 

221 445  125 

245967478 

8.4576906 

222  545  016 

24.6170673 

8.4623479 

223648543 

24-63737 

8467 

224  755  712 

24.657  656 

8u|7i  647  I 

225866529 

24.6779254 

8^762892 

226981000 

24.698 178 1 

8.4809261 

228099131 

24.7184142 

8.4855579 

229  220  928 

247386338 

8.4901848 

230346397 

24-7588368 

8.4948065 

231475544 

84.7790234 

8.4994233 

SQUABBS,  CUBES,  AND   BOOTS. 


283 


JfWVMM. 

Squabb. 

Cube. 

Squabb  Root. 

CcBB  Root. 

61s 

378225 

232  608  375 

24.7991935 

8.504035 

616 

379456 

233744896 

24.8193473 

8.5086417 

617 

380689 

234885  113 

24.8394847 

8.5132435 

618 

381924 

236029032 

24.8596058 

8.5178403 

619 

3831^1 

237176659 

24.8797106 

8.522  432  1 

620 

384400 

238  328  000 

24.8997992 

8.5270189 

621 

385641 

239483061 

24.9198716 

8.531  6009 

62s 

386884 

240641848 

24.9399278 

8.536178 

623 

388129 

241804367 

24-9599679 

8.540  750  1 

624 

389376 

242  970  624 

24.979992 

8.5453173 

625 

390625 

244140625 

25 

8.5498797 

626 

391876 

245134376 

25.019992 

8.5544372 

627 

393129 

246491  883 

25.0399681 

8.5589899 

628 

394384 

247673152 

250599282 

8.5635377 

629 

395641 

248  858  189 

25.0798724 

8.5680807 

630 

396900 

250047000 

25.0998008 

8.5726189 

631 

39  81 61 

251239591 

25.1197134 

8.5771523 

632 

399424 

252435968 

25.1396102 

8.5816809 

633 

400689 

253636137 

35-1594913 

8.5862047 

634 

401956 

254  840  104 

25.1793566 

8.5907238 

635 

403225 

256047875 

25.1992063 

8.595238 

636 

404496 

257259456 

25.2190404 

8.5997476 

637 

405769 

^258474853 

25.2388589 

8.604  252  5 

638 

407044 

259694072 

25.258  661  9 

8.6087526 

639 

408321 

260917119 

352784493 

8.613  248 

640 

409600 

262144000 

25.2982213 

8.6177388 

641 

41 08  81 

263374721 

25.3179778 

8.622  224  8 

642 

41  21 64 

264609288 

25-3377189 

8.6267063 

643 

413449 

265847707 

25-357444  7 

8.631 183 

644 

414736 

267089984 

35.377  155  1 

8.6356551 

645 

416025 

268336125 

353968502 

8.6401226 

646 

41  73  16 

269585136 

35.4165301 

8.6445855 

647 

418609 

270840023 

25.4361947 

8.6490437 

648 

419904 

272097792 

35.4558441 

8.6534974 

949 

42  12  01 

273359549 

25-4754784 

8.6579465 

650 

422500 

274625000 

35.4950976 

8.662391 1 

651 

42  38  DI 

275894451 

35  514  701 6 

8.666831 

652 

425104 
420409 

277  167  808 

35.5342907 

8.6712665 

653 

278445077 

355538647 

86756974 

654 

42  77  16 

279726264 

35.5734237 

8.680 123  7 

65s 

429025 

281  Oil  375 

35.5929678 

8.6845456 

656 

430336 

282300416 

25.6124969 

8.688963 

657 

431649 

283593393 

25.6320112 

8.6933759 

658 

432964 

284890312 

25,6515107 

8.6977843 

659 

454281 

286191  179 

25.6709953 

8.7021882 

660 

4356OQ 
43692^ 

287496000 

25.6904652 

8.7065877 

661 

288804781 

25.7099203 

8.7109827 

662 

438244 

290117528 

35-7293607 

8.7153734 

663 

439569 

291434247 

25.7487864 

8.7197596 

664 

440896 

293754944 

25.768197  s 

8.724 141 4 

66s 

44  32  2  J 

294079625 

25.7875939 

8.7285187 

666 

443556 

29s  408  296 

258069758 

8.7328918 

667 

444889 

296740963 

25.8263431 

8.7372604 

668 

446224 

298077632 

95.845696 

8.741  ^^4  6 

669 

447561 

299418309 

35.8650343 

8.7459846 

670 

448900 

300763000 

35.8843583 

8. 7503491 

2S4 


SQUABES,  OtTBES,  AKD  BOOTS. 


NtTBIBKB. 

S<IUABB. 

CUBR. 

671 

450241 

302  III  711 

672 

451584 

303464448 

673 

452929 

304821  217 

674 

454276 

306  182  024 

675 

455625 

307546875 

676 

456976 

308915776 

677 

458329 

310288733 

678 

459684 

311  665  752 

679 

46  10  41 

313046839 

680 

462400 

314432000 

681 

463761 

315  821  241 

682 

465124 

317  214  568 

683 

466489 

3186II987 

684 

467856 

320013504 

685 

469225 

321  419  125 

686 

470596 

322828856 

687 

471969 

324  242  703 

688 

473344 

325660672 

689 

474721 

327  082  769 

690 

476100 

328509000 

691 

477481 

329939371 

692 

478864 

331373888 

693 

48  02  49 

332812557 

694 

481636 

334255384 

695 

483025 

335702375 

696 

484416 

337153536 

697 

485809 

338608873 

698    • 

48  72  04 

340068392 

699 

488601 

341532099 

700 

490000 

343000000 

701 

49 14  01 

344472  lOI 

702 

49  28  04 

345948408 

703 

494209 

347428927 

704 

49  56  16 

348913664 

705 

497025 

350402625 

706 

498436 

351 895  816 

707 

499849 

353393243 

708 

501264 

354894912 

709 

502681 

356400829 

710 

504100 

357911000 

711 

505521 

359425431 

712 

506944 

360944128 

713 

508369 

362467097 

714 

509796 

363994344 

71S 

51  1225 

36552587s 

716 

512656 

367  061 696 

717 

514089 

368601813 

718 

51  55  24 

370146232 

719 

516961 

371694959 

720 

518400 

373248000 

721 

5198  41 

374805361 

722 

52  1284 

376367048 

723 

52  27  29 

377933067 

724 

52  41  76 

379503424 

72s 

52  56  25 

381 078 125 

726 

52  70  76 

382  657 176 

S<it7ARB  Root. 

Cubs  Root. 

25.9036677 

8.7546913 

25.922  962  8 

8.7590383 

25.942  243  5 

8.7633809 

25.961  51 

8.767  7^9  2 

25.980  762  1 

8.7720532 

26 

8.776383 

26.0192237 

8.7807084 

26.0384331 

8.7850296 

26.0576284 

8.7893466 

26.0768096 

8.7936593 

26.095  976  7 

8.7979679 

26.115  129  7 

8.802  272  I 

26.1342687 

8.8065722 

26.1533937 

8.8108681 

26.1725047 

8.815  1598 

26.191601  7 

8.8194474 

26.2106848 

8.8237307 

26.229  754 1 

8.8280099 

26.248  809  5 

8,832285 

26.267  851 1 

8,8365559 

26.2868789 

8.8408227 

26-3058929 

8.8450854 

26.3248932 

8.849344 

26.3438797 

8.8535985 

26.362  852  7 

8.8578489 

26.3818119 

8.862  095  2 

26.400  757  6 

8.8663375 

26.4196896 

8.8705757 

26.4386081 

8.8748099 

26.4575131 

8.87904 

26.4764046 

8.8832661 

26.495  282  6 

8.8874882 

26.5141472 

8.891  7063 

26.5329983 

8.8959204 

26.551 836 1 

8.9001304 

26,5706605 

89043366 

26.5894716 

8.908  538  7 

26.608  269  4 

8.912  7369 

26.6270539 

8.916931 1 

26.645  825  2 

8.921  121 4 

26.6645833 

8.9253078 

26.6833281 

8.9294902 

26.702  059  8 

8.9336687 

26.7207784 

8.9378433 

26.7394839 

8,942014 

26.7581763 

8,9461809 

26.7768557 

8.9503438 

26.795522 

8.9545029 

26.8141754 

8.9586581 

26.8328157 

8,962809  s 

26.8514433 

8.966957 

26.8700577 

8.971  1007 

26,8886593 

8.9752406 

26.907  248 1 

8.9793766 

26.925  824 

8.9835089 

26.9443872 

8.9876373 

SQUABES,   CUB£8,  AKD   KOOTS. 


285 


fTcmn. 

Squabs. 

CUVM. 

Squabi  Root. 

CiTBK  Root. 

727 

528529 

384  240  583 

26.9629375 

8.991  762 

728 

539984 

385828352 

26.981  475  I 

8.9958829 

729 

53 14  41 

38742048^ 

27 

9 

730 

532900 

389017000 

27.0185122 

9.004 113  4 

731 

534361 

390617  891 

27.037  01 1  7 

9.008  333  9 

732 

535824 

393  333  168 

27-0554985 

9.0133388 

733 

537289 

393832837 

27.0739727 

9.0164309 

734 

538756 

395446904 

27.0924344 

9.0305293 

735 

540225 

397065375 

27.1108834 

'^^   9.024  623  9 

736 

541696 

398688356 

37.1393199 

9.0287149 

737 

543169 

40031^553 

27-1477439 

9.032  803  I 

738 

5^:644 

401 947  373 

27.1661554 

9.036  885  7 

739 

546131 

403583419 

37.1845544 

9.0409655 

740 

547600 

405334000 

37.303941 

9.0450417 

741 

549081 

406869031 

27.3313153 

9.0491143 

742 

550564 

408518488 

27.3396769 

9053 183 1 

743 

552049 

410 173  407 

27.3580363 

9.057  348  3 

744 

553536 

41 1  830  784 

27.2763634 

9.0613098 

745 

555025 

413493635 

37.3946881 

9.0653677 

746 

556516 

415160936 

37.3130006 

9.069  422 

747 

558009 

416833733 

27-331300^ 

90734726 

748 

559504 

418508993 

273495887 

9.0775197 

749 

56  10  01 

430189749 

27.3678644 

9.081 563 1 

750 

562500 

431875000 

37.3861279 

9.085  603 

751 

564001 

423564751 

27-4043792 

9.0896392 

752 

565504 

435359008 

37.4336184 

90936719 

753 

567009 

426957  777 

87.4408455 

9097701 

754 

568516 

438  661 064 

37.4590604 

9.1017365 

755 

570035 

430368875 

27.4773633 

9.1057485 

756 

571536 

433081 316 

274954542 

-9.1097669 

757 

573049 

433798093 

27-513633 

9.1137818 

758 

574564 

435  519  512 

27-531  7998 

9.1177931 

759 

576081 

437245479 

275499546 

9.121 801 

760 

577600 

438976000 

27.568  097  5 

9.1258053 

761 

57  91  31 

440  71 1  081 

27.586  228  4 

9.129  806 1 

762 

580644 

443450738 

27.6043475 

9-1338034 

763 

582169 

444194947 

37.623  454  6 

9.137  797 1 

764 

583696 

445943744 

27.6405499 

9.1417874 

765 

585235 

447697135 

37.6586334 

9.1457742 

766 

586756 

449455096 

27.676  705 

9-1497576 

767 

588289 

451  217663 

27.6947648 

9-153  7375 

768 

589824 

453984833 

27.7128129 

9157  7139 

769 

59 13  61 

454756609 

27.7308492 

9.161 6869 

770 

592900 

456533000 

27.7488739 

9.1656565 

771 

594441 

458  314  on 

27.7668868 

9.1696335 

773 

595984 

460099648 

27.784888 

9-1735852 

773 

597529 

461 889917 

27.802  877  5 

91775445 

774 

599076 

463  684  834 

27.8208555 

9. 181  5003 

775 

600625 

465484375 

27.8388218 

9.1854527 

776 

60  31  76 

467388576 

27.8567766 

9.1894018 

777 

603739 

469097433 

27.874  719  7 

9-1933474 

778 

605284 

470910953 

27.8926514 

9.1972897 

779 

606841 

473739139 

27.9105715 

9.201  2286 

780 

608400 

474552000 

27.928  480  z 

9.205  164 1 

781 

609961 

476379541 

279463772 

9.2090963 

783 

61  1524       . 

478311768      i 

27.9643629 

9.213025 

286 


SQTTABBS,   CUBES,  AND   BOOTS. 


NOMBER. 

SaUAKK. 

Cube. 

8<ti7ARi  Root. 

783    . 

613089 

480048687 

27.982  137  2 

784 

614656 

481890304 

38 

785 

61 62  25 

483736625  ' 

38.0178515 

786 

61  7796 

485587656 

28.035  691  5 

787 

619369 

487443403 

28.0535203 

788 

620944 

489303872 

28.0713377 

789 

622521 

491  169069 

28.089 1 43  8 

790 

624100 

493039000 

28.1069386 

791 

62^681 

494  913  671 

28.1247222 

792 

627264 

496793088 

28.1424946 

793 

628849 

498677257 

28.1602557 

794 

630436 

500566184 

28.1780056 

795 

63  20  25 

502  459  875 

28.1957444 

796 

633616 

504358336 

28.213  472 

797 

635209 

506261573 

28.231  1884 

798 

636804 

508169592 

28.2488938 

799 

63  84  01 

510082399 

28.2665881 

800 

640000 

512000000 

38.2842712 

801 

64  16  01    . 

513922401 

38.3019434 

802 

643204 

515849608 

28.319604  s 

803 

644809^ 

517781627 

28.3372546 

804 

6464  16 

519718464 

28.3548938 

805 

648025 

521  660  125 

28.372  521 9 

806 

649636 

523606616 

28.390 139 1 

807 

651249 

525557943 

28.407  745  4 

808 

652864 

527  514  112 

28.4253408 

809 

654481 

529475129 

28.4429253 

8to 

656100 

531  441  000 

28.4604989 

811 

65  77  21 

5334"  731 

28.478061  7 

812 

659344 

535387328 

28.4956137 

813 

660969 

537367797 

28.5131549 

814 

662596 

539353144 

28.5306852 

815 

664225 

541343375 

28.548  204  8 

816 

665856 

543338496 

28.5657137 

817 

667489 

545  338  513 

28.5832119 

818 

669124 

547343433 

28.6006993 

819 

67  07  61 

549353259 

28.618  176 

820 

672400 

551368000 

28.635  642  I 

821 

674041 

553387661 

28.6530976 

822 

675684 

555412248 

28.6705424 

823 

677329 

557441767 

28.6879766 

824 

67  89  76 

559476224 

28.7054002 

825 

680625 

561515625 

28.722  813  2 

826 

682276 

563559976 

28.7402157 

827 

683929 

565609283 

28.757  607  7 

828 

685584 

567663552 

28.7749891 

829 

687241 

569722789 

28.7923601 

830 

688900 

571787000 

28.8097206 

831 

690561 

573856191 

28.827  070  6 

83a 

692224 

575930368 

28.844  410  2 

833 

693889 

578009537 

28.8617394 

834 

695556 

580093704 

288790582 

835 

697335 

582182875 

28.8963666 

836 

698896 

584277056 

289136646 

837 

700569 

586376253 

289309523 

838 

702244 

588480472 

38.948  229  7 

CuBB  Roon 

9.216950  s 
9.2208726 

9.2247914 

9.2287068 
9.2326189 

9.2365277 
9.2404333 

9-244335  5 
9.2482344 

9.252  13 

9.256  022  4 
9.259  91 1  4 
9.2637973 

9.267  679  8 

9-2715592 

9-2754352 

9.2793081 

9.2831777 

9.287044 

9.2909072 

9.294  767  1 

9.298  623  9 

9.3024775 

9.3063278 

9-310175 

9.314  019 

93178599 
9.321697  s 

9325532 
93293634 
9-333 191 6 
9.3370167 
9.3408386 

9-3446575 

93484731 
9.3522857 

9-3560952 

93599016 

93637049 
9-3675051 
9.3713023 

9-3750963 

9.3788873 

9.3826753 

9.38646 

9.3902419 

9.3940206 

9-3977964 
9.401  569 1 

9-4053387 

94091054 

9.412869 

9.4166297 

9.4203873 

9.424  143 

9.4278936 


SQUAB£:S,  CUBJSfe,  Al^D   BOOTS. 


287 


(fmBn. 


Sqv 


Cvss. 


839 

703921 

840 

705600 

841 

70  72  81 

842 

708964 

843 

710649 

844 

71  23  36 

845 

714025 

846 

71  57  16 

847 

717409 

848 

719104 

849 

720801 

850 

722500 

85^ 

72  42  01 

852 

725904 

853 

727609 

854 

729316 

855 

731025 

856 

732736 

857 

7344  49 

858 

736164 

859 

737881 

860 

739600 

861 

74  13  21 

862 

743044 

863 

744769 

864 

746496 

865 

748225 

866 

749956 

867 

751689 

868 

753424 

869 

755161 

870 

756900 

871 

758641 

872 

760384 

873 

762129 

874 

763876 

87s 

765625 

876 

767376 

877 

7691  29 

878 

770884 

879 

772641 

880 

774400 

881 

77  61 6i 

882 

777924 

883 

779689 

884 

781456 

885 

783225 

886 

784996 

887 

786769 

888 

788544 

889 

790321 

890 

792100 

891 

793881 

892 

795664 

893 

797449 
799236 

894 

590589719 
592704000 
594823321 

596947688 

599077107 

601  211  584 
603351  125 
605495736 
607645423 
609800192 
611960049 
614125000 
616295051 
618470208 
620650477 
622  835  864 
625026375 
627222016 
629422793 
631  628  712 

633839779 
636056000 

638  277  381 

640503928 

642735647 

644972544 
647214625 

649  461  896 

651  714363 
653972032 

656234909 
658503000 
660776311 
663054848 
665338617 
667  627  624 
669921875 
672  221  376 
674526133 
676836152 

679 151  439 
681 472  000 

683797841 
686128968 
688465387 
690807  104 
693 154  125 
695506456 
697  864 103 
700  227  072 

702595369 
704969000 

707347971 
709  732  288 

712  121  957 
7X4516984 


S^CARB  Root. 


28.9654967 

28.982  753  5 

29 

29.0172363 

29.0344623 

290516781 

29.0688837 

29.0860791 

29.1032644 

29.1204396 

29.1376046 

291547595 
29.1719043 

29.189039 

29.206  163  7 

29.223  278  4 

29.240383 

292574777 
29.2745623 

29  291  637 
29.308  701  8 
293257566 
29.342  801  5 

293598365 
29.3768616 

29-3938769 
29.4108823 
29.4278779 
294448637 
29.461 839  7 
29.4788059 
29.4957624 
29.512  709 1 
29.5296461 

295465734 

29563491 
295803989 

29  597  297  2 
29  614  185  8 
29.631  0648^ 
29.6479342" 
296647939 
29.681  644  2 
296984848 
297153159 

29-7321375 
29.7489496 

29  765  752  I 
29.782  545  2 

297993289 
29.816 103 
29.8328678 
29.849623  1 
29.866369 
29.883 105  6 
29.8998328 


CiJBB  Root. 


9.4316423 

9-43538 

94391307 
9.4428704 

9.446  607  2 

9.450341 

9.4540719 

9  457  7999 
9.461  524  9 

9.465  247 

9.468  966 1 

9  472  682  4 

94763957 
9.480 106  1 

9.4838136 

9.4875182 

9.491  22 

9.4949188 

94986147 

9.5023078 

9505998 
9.5096854 

95133699 
9-5170515 
9-5207303 

9.5244063 
9.5280794 

95317497 
95354172 
9  539081 8 

95427437 
9.5464027 

95500589 

95537123 
9557363 
9  561 010  8 

95646559 
9.568  298  2 

9-5719377 

9-575  5745 
95792085 

9.5828397 

9.586  468  2 
95900937 
95937169 

9-597  3373 
9.600  954  8 

9.604  569  6 

9608181  7 

9.61 1  791 1 

9-6153977 
9.619001  7 
9  622  603 
9.626  201 6 
9.629  797  5 

0.6333907 


288 


BQUABBS,  CUBES,  AMD  BOOTS. 


NulfBKB. 

896 
897 
898 
899 
900 
901 
902 

903 
904 

905 
906 

907 

908 

909 

910 

911 

912 

913 
914 

915 
916 

917 

918 

919 

920 

921 

922 

923 
924 

925 
926 

927 

928 

929 
930 
931 
932 

933 
934 
935 
936 
937 
938 

939 
940 

941 

942 

943 

944 

945 
946 

947 
948 

949 
9SO 


SQOAftS. 


801025 
802816 
804609 
806404 

80  $2  01 
810000 

81  18  01 
813604 
815409 

81  72  16 
819025 
820836 

82  26  49 
824464 
826281 
828100 
829921 

831744 
833569 
835396 

83  72  25 
839056 
840889 

84  27  24 
844561 
846400 

84  82  41 
850084 
851929 

853776 
855625 
857476 

85  93  29 
861184 
863041 
864900 
866761 
868624 

870489 

872356 
874225 
876096 

877969 
879844 

881721 

883600 

885481 

887364 

889249 

891136 

89.  325 
894916 

896809 

898704 

900601 

902500 


CUBK. 


716917375 

719  323  136 
721734273 
724  150  792 
726  572  699 
729000000 

731  432  701 
733870808 

736314327 
738763264 

741  217625 

743677416 

746  142  643 

748  613  312 

751089429 

753571000 

756058031 

758550528 

761  048  497 

763551944 
766060875 
768  575  296 
771  095  213 
773620632 

776 151  559 
778688000 
781 229961 

783777448 
786330467 
788889024 
791453125 
794  022  776 
796597983 

799178752 
801  765089 
804357000 
806954491 
809557568 
812  166237 
814780504 
817400375 
820025856 
822  656  953 
825  293  672 
827936019 
830584000 
833237621 
815896888 
838561807 
841  232  384 
843908625 

846590536 
849278  123 

851  971 392 

854670349 
857375000 


Sqdabr  Root. 


29.9165506 

299332591 
29.9499583 

29.966648  I 

299833287 

30 

30.016662 

300333148 

30.0499584 

30.066  592  8 

30.0832179 

30.0998339 

30.1164407 

30.1330393 
30.1496269 

30.1662063 

30.1827765 

30.1993377 
30.2158899 

30.232  432  9 

30.248  966  9 

30.265  491  9 

30.282  007  9 

30.2985148 

303150128 

30.331  501  8 
30.347  981  8 

30.3644529 
30.3809151 

30.3973683 

304138127 

30.4302481 

30.4466747 

30.4630924 

30.4795013 

30.4959014 

30.5122926 

30.528675 

30.5450487 

30.5614136 

30.5777697 

30.5941171 

30.6104557 

30.626  785  7 

30.6431069 

30.6594194 

30.6757233 

30.692  018  5 

30.708305  I 

30.724583 

30.7408523 

30.757113 

30.7733651 

30.7896086 

30.8058436 
30.823  07 


CuBB  Roof. 


9.636  981  2 

9.640  569 
9.6441542 

9.647  736  7 

9.6513166 
9.6548938 

9.658  468  4 
9.662  04Q  3 
9.6656096 
9.6691762 
9.672  740  3 
9.676  391 7 
9.6798604 
9.6834166 
9.686  970  1 
9.690521  1 
9.6940694 
.9.6976151 
9.7011583 
9.7046989 
9.7082369 
9.7117723 

9-7153051 
9.7188354 
9.722  363  I 
9.725  888  3 
9.7294109 

9.7329309 
9.7364484 

97399634 
9-7434758 
9.7469857 

9750493 

9-7539979 
9-7575002 

9.761  000 1 

9-7644974 
9.767  992  2 

9.771 484  5 

9-7749743 
9.778  461  6 

9.7819466 
9.7854288 
9.7889087 
9.792  386 1 
9.795  861 1 
9-7993336 
9.802  803  6 
9.806271 1 
9.8097362 
9.8131989 
9.816659  I 
9.8201169 
9.8235723 
9.827  025  2 

9.8304757 


BQITABBS,  CtTBBS,  AND  BOOTS. 


289 


SQOilBI. 


9SI 

904401 

860085351 

95a 

906304 

862801408 

953 

908209 

865523177 

954 

91 01 16 

868250664 

955 

912025 

870983875 

956 

913936 

873  722  8i6 

957 

915849 

876467493 

958 

917764 

879  217  912 

959 

91 96  81 

881974079 

960 

921600 

884736000 

961 

923521 

887503681 

963 

925444 

890277128 

963 

927369 

893056347 

964 

929296 

895841344 

96s 

931225 

898632125 

966 

933156 

901428696 

967 

935089 

904231063 

968 

937024 

907039232 

969 

938961 

909853209 

970 

940900 

912673000 

971 

942841 

915  498  61 1 

972 

944784 

918330048 

973 

^.!l3 

921167317 

974 

948676 

924010424 

975 

950625 

926859375 

976 

95  25  76 

929714176 

977 

954529 

932574833 

978 

956484 

935441352 

979 

958441 

938313739 

980 

960400 

941 192000 

981 

962361 

944076141 

982 

964324 

946966168 

983 

966289 

949862087 

984 

968256 

952763904 

98s 

970225 

955671625 

986 

972196 

958585256 

987 

974169 

961504803 

988 

976144 

964430272 

989 

97  81 21 

967361669 

990 

980100 

970299000 

991 

982081 

973242271 

992 

984064 

976 191 488 

993 

986049 

979146657 

994 

988036 

982 107  784 

995 

990025 

985074875 

996 

992016 

988047936 

997 

994009 

991026973 

9Q8 

996004 

994011992 

999 

998001 

997002909 

1000 

lOOQOOO 

1000000000 

zooz 

looaooi 

z  003  003  001 

I003 

ZOO  40  04 

z  006012008 

XOO3 

zoo  60  09 

z  009027027 

1004 

Z0080Z6 

Z012048064 

1005 

XOZ0025 

1015075125 

1006 

1019036 

1018108216 

CVBK. 


Squakb  Root. 


30^382879 
30.8544972 
30.8706981 
30.8868904 

30.9030743 
30.9192477 

30.9354166 

30.951  575 1 
30.967  725  I 
30.9838668 

31 

31.016 124  8 

31.0322413 

31.0483494 

31.0644491 

31.0805405 

31.0966236 

31.1126984 

31.1287648 

31.144823 

31.1608729 

31.1769145 

31.1929479 
31.2089731 

31.22499 

31.2409987 

3Z.2569992 

3Z.27299Z5 

31.2889757 

31.304951  7 

31,3209195 

31*3368792 

31*3528308 

31.3687743 

31.3847097 
31.4006369 
31.4165561 
31.4324673 
31.4483704 
31.4642654 
31.4801525 
31.4960315 
31.5119025 

31-5277655 
31.5436206 

31-5594677 

31-5753068 

31.591 138 

31.6069613 

31.6227766 

31.638584 

31.6543836 

31.6701752 

31.685959 

31.7017349 

3i*7i7503 


CvBB  Root. 

9-8339238 

9.8373695 
9.8408127 

9.8442536 

9.847692 

9.851  128 

9-8545617 

9-8579929 
9.861  421  8 

9.8648483 

9.868  272  4 

9.871 694  1 

9-8751135 

9-8785305 
9.881 945  1 

9-8853574 

9.8887673 

9.8921749 

9-8955801 

9.898983 

9-9023835 

9.9057817 

99091776 

9.912  571  2 

9.9159624 

9.9193513 
9.9227379 

9.926 122  2 

9.9295042 

99328839 

9.9362613 

9.9396363 

99430092 

99463797 
9-9497479 
9-9531138 

9956477  s 

99598389 
9.963 198 1 

9-9665549 
9-9699095 
9.9732619 

9.976612 

9-9799599 
9-9833055 
9.9866488 

9.98999 
9-9933289 
9.9966656 
10 

10.003  322  2 
10.0066622 
10.0099899 
10.0133155 
10.016^89 
zox>i996ox 


290 


SQtTABBS,  OUBBS)  AND  BOOTS. 


NUMBBB. 

SqUARB. 

Ct'BB. 

1007 

1 01 40  49 

1021  147343 

1008 

1 01 6064 

1024  192  512 

1009 

1 01 8081 

1027243729 

lOIO 

1 02  01 00 

I  030  301  000 

lOlI 

1 02  21 21 

XO3336433I 

10x2 

1024144 

1036433728 

IOI3 

1 02  61 69 

I  039  509  197 

IOI4 

1 02  81 96 

1042590744 

IOI5 

1030225 

104567837s 

IOI6 

1 03  22  56 

1048772096 

1017 

1034289 

I  051  871  913 

IOI8 

1036324 

1054977832 

IOt0 

1038361 

1058089859 

1020 

10404UO 

1061208000 

102 1 

104244X 

1064332261 

I023 

1044484 

1067462648 

1023 

1046529 

1070599167 

1024 

1048576 

1073741824 

1025 

1050625 

1076890625 

1026 

1 05  26  76 

1080045576 

1027 

1054729 

1083206683 

1028 

1056784 

108637395a 

XO29 

1058841 

1089547389 

1030 

1060900 

1092727000 

IO3I 

1 06  2961 

1095  912  791 

1032 

1065024 

1099104768 

«033 

1067089 

1102302937 

1034 

1 0691 56 

1105507304 

X035 

107x225 

1108717875 

X036 

1073296 

1111934656 

1037 

1075369 

I  115  157653 

X038 

1077444 

1  1 18  386  872 

1039 

1079521 

1121  622319 

X040 

io8i6xx> 

I  124864000 

1041 

1083681 

1  128111921 

i04d 

1085764 

1  X31  t66o88 
X  134626507 

1043 

1087849 

J044 

1089936 

1137893184 

1045 

1092025 

1 141 166x25 

1046 

1 09  41 16 

114444533^ 

1047 

1096209 

1147730833 

1048 

1098304 

1151022593 

1049 

1 10040X 

1154320649 
1 157625000 

X050 

1 102500 

1051 

1 104601 

1 160935651 

1053 

1 106704 

1 164252608 

1053 

1108809 

1167575877 

IOS4 

1 11 09 16 

1170905464 

«o55 

I II 3035 

1174241375 

1056 

111  51 36 

1177583616 

I0S7 

1117249 

1180932T93 

1058 

1119364 

z  184287x12 

1059 

1121481 

1187648379 

1060 

1 123600 

1 191 016000 

1061 

1125721 

1194389981 

tote 

1137844 

1197770388 

SquABB  Root.       |       Cvbb  BooIL 


31-7332633 

10.023  379 1 

31.7490157 

10.0265958 

31.7647603 

10.0299x04 

31.780497  a 

10.033  223  8 

31.7962263 

10.036533 

31.81 1 9474 

10.039  641 

31.8276609 

10.043  1469 

31.843  3O6  6 

10.0464506 

31.8590646 

10.0497531 

31.8747549 

10.0530514 

31.8904374 

10.0563485 

3x9061123 

10.0596435 

31.9217794 

10.0629364 

31-9374388 

10.066  337  1 

31.9530906 

10.0695156 

31.9687347 

10.072  803 

31.9843712 

10.0760863 

32 

10.0793684 

32.0x56212 

10.0826484 

32.0312348 

10.0859262 

32.0468407 

10.0892019 

32.063  439  X 

10.0924755 

32.0780298 

10.0957469 

32.0936131 

10.0990163 

32.1091887 

10.1022835 

32.1247568 

10.1055487 

321403173 

10.1088117 

32.1558704 

10.1120736 

32.1714159 

10.1155314 

32.1869539 

10.1185882 

32.2024844 

10.1218438 

33.3x80074 

10.126095.3 

32.3335239 

10.1283457 

32.24^31 

10.1315941 

32.2645316 

10.1348403 

32.3800248 

10.1380845 

33.3955105 

10.1413266 

333109888 

10.1445667 

33.3264598 

10.1478047 

33.3419233 

10.15x0406 

32.3573794 

XO.I549744 

32.373  828 1 

10.1575062 

33.38^2695 

10.1607359 

32.4037035 

10.1639636 

32.419 130 1 

10.167  1893 

32.4345495 

10.1704139 

32.4499615 

10.1736344 

32.465366  a 

10.1766539 

33.4807635 

10.1800714 

33.496 1536 

10.1832868 

32*5115364 

10.1865002 

33.5369119 

10.1897116 

33.543  280  a 

10.1939209 

32.5576413 

XO.I961283 

32.5729949 

10.1993336 

38-5883415 

10.202  5569 

SQUABES,  CUBSSy  AND   BOOTS. 


291 


NUMBSB. 

Sqvabb. 

1 129969 

Ctm. 

Squakx  Root. 

Cv»  Rook. 

1063 

X20X  157047 

32.6036807 

10.205  738  S 

XO64 

1x32096 

1204550x44 

32.6190129 

10.2089375 

1065 

1 134225 

1207949625 

32.6343377 

10.212  134  7 

1066 

1136356 

I  2X1  355496 

32-6496554 

10.21533 

1067 

1 138489 

X  214  767  763 

32.6649659 

10.2185233 

IO6S 

1 140624 

X  218 186432 

32.6802693 

10.221  7146 

1069 

1 14  27  61 

X  221  6X1  509 

32.6955654 

10.2249039 

1070 

1 144900 

1225043000 

32.7108544 

10.228091  3 

XO7I 

X  147041 

X  228  480  911 

32,726x363 

10.23x2766 

1072 

X  149x84 

X  231 925  248 

32.74141x1 

10.2344599 

XO73 

1151329 

1235376017 

32.7566787 

10.2376413 

1074 

II53476 

1238833224 

32.7719392 

10.240  820  7 

1075 

1 155625 

1242296875 

32.7871926 

10.2439981 

1076 

1157776 

1245/66976 

32.8024389 

10.2471735 

1077 

1159929 

1249243533 

32.8176782 

XO.250347 

1078 

1 162084 

X  252  726  552 

32.8329103 

10.2535186 

1079 

I  X6424I 

1 256216039 

32.848x354 

XO.2566881 

1080 

1 166400 

I  259712000 

32.8633535 

10.2598557 

IO8I 

1168561 

1263  214  441 

32.8785644 

102630213 

1082 

1 170724 

1266723368 

32.8937684 

10.266  185 

1083 

1 172889 

1  270  238  787 

33.9089653 

10.2693467 

1084 

1 175056 

1273760704 

32.9241553 

10.2725065 

1085 

1177225 

1 277  289 125 

32.9393382 

10.2756644 

1086 

1 179396 

1280824056 

32.9545141    • 

10.2788203 

1087 

1 181569 

1284365503 

32.969683 

10.281  974  3 

1088 

1x83744 

1287913472 

32.984845 

X0.285  1264 

1089 

X  x8592X 

1 291 467  969 

33 

X0.288  276  5 

1090 

X188100 

1295029000 

33.015  148 

10.291 424  7 

XO9I 

X  X90281 

1 298  596  571 

33.030  289 1 

10.2945709 

1092 

X  192464 

1302170688 

33.0454233 

10.2977153 

1093 

1x94649 

1 305  751  357 

330605505 

10.3008577 

1094 

XX96836 

1309338584 

33.0756708 

10.3039983 

1095 

X  199025 

.1312932375 

330907843 

10.3071368 

XO96 

I  20  12  16 

1 316  532  736 

33.1058907 

10.3102735 

1097 

1203409 

I  320 139673 

33.1209903 

10.3x34083 

1098 

1205604 

I  323  753  192 

33.136083 

X0.316  541  X 

1099 

X  20  78  01 

1327373299 

33.151 1689 

10.3196721 

1 100 

X  2x0000 

X  331 000000 

33.1662479 

10.322  801 2 

IIOI 

I  21  2201 

1 334  633  301 

3318132 

10.3259284 

XI02 

I  21  4404 

1338273208 

33.1963853 

10.3290537 

1X03 

12x6609 

1 341  919  727 

33.2114438 

10.332177 

1X04 

1 21 88  x6 

1345572864 

33.2266955 

10.3352985 

ixos 

1221025 

1349232625 

33.2415403 

10.3384181 

1x06 

1223236 

X  352  899016 

33.2565783 

10.3415358 

1x07 

1225449 

1356572043 

33.2716095 

10.3446517 

1 108 

I  227664 

13602517x2 

33.2866339 

10.3477657 

1x09 

X  229881 

1363938029 

33.301  651 6 

10.3508778 

IXIO 

I  23  21  00 

1367631000 

33.3166625 

10.353988 

IKII 

I  234321 

1 371 330631 

33.3316666 

10.3570964 

XXI2 

1236544 

1375036928 

33.346664 

10.3602039 

i"3 

X  238769 

1378749897 

33-3616546 

10.363.3076 

IXI4 

1240996 

1382469544 

33.3766385 

10.3664103 

"I5 

1243225 

I  386 195  875 

33391 615  7 

10.3695113 

1X16 

1245456 

1389928896 

33.4065862 

10.3726103 

III7 

X  24  76  89 

I  393668613 

33.4215499 

10.3757076 

XI18 

1349924 

1397415032 

33.436507 

10.378803 

292 


BQUABBS,  CUBBS,  AND  BOOTS. 


NUMBBK.  ' 
[1 19 

:i20 

tI2I 
[122 
CI23 
[124 

:i25 
[I26 
[127 

[I28 

;i29 

130 
131 
132 
133 
134 
135 
:i36 
137 
138 

1 139 
[140 

[141 

[142 

fi43 
[144 

ti45 
[146 

[147 

[148 

[I49 

:i5o 

151 

:iS2 

C153 

C154 

^155 
[156 

ti57 
:iS8 

C159 
[160 

[161 

[162 

:i63 

;i64 

165 

166 

[167 

:i6g 

169 

170 

171 

:i72 

X73 

:x74 


Squarb. 


J 


Cube.' 


I  25  21  61 
1254400 
I  256641 
1258884 
I  261129 
1263376 
1265625 
I  26  78  76 
1  2701  29 
1272384 
I  27  46  41 
I  276900 
I  27  91  61 
I  28  14  24 
1283689 
I  28  59  56 
1288225 
1290496 
1292769 
1295044 
I  29  73  21 
1299600 

1 30  i8-8i 
1304164 
1306449 
1308736 
1 31 10  25 

1 31 33 16 

1315609 

1317904 

132020Z 

1322500 

1 32  48  01 . 

I  32  71 04 

1329409 

1331716 

133402s 

1336336 
1338649 
1340964 
1343281 
1345600 

1347921 
1350244 

1352569 

1354896 
135722s 

1359556 
136 1889 
1364224 
1 3665  61 
1368900 

1371241 
1373584 

1375929 
1378276 


401 168 159 
404928000 
408694561 
412  467  848 
416  247  867 
420034624 
423828125 
427628376 

431435383 
435249152 

439069689 

442897000 

446731091 
450571968 

454419637 
458274104 

462135375 
466003456 

469878353 
473760072 

477  648  619 

481544000 

485446221 

489355288 

493  271  207 

497193984 
SOI  123625 

505  060 136 

509603523 

512953792 
5 16  910  949 
520875000 

524845951 
528823808 

532808577 

536800264 

540798875 

544804416 

548816893 

552836312 

556862679 

560896000 

564936281 

568983528 

573037747 
577098944 

581 167 125 

585  242  296 

589324463 
593413632 
597509809 
601  613000 
605723211 
609840448 
613964717 
618096024 


S<iDABB  Root. 


334514573 
33.466401  1 

33.481  338  I 
33.4962684 
33.51U921 
335261092 
33.5410196 

33.5559234 
33.5708206 

33.585  711  2 
33.6005953 

33.6154726 
33.6303434 
33.6452077 
33.6600653 
33.6749165 
33.689  761 

33.7045991 
33.7194306 

33.7342556 

33.7490741 
33.7638860 
33.7786915 

337934905 
33.808  283 

33.8230691 

33.8378486 

33.8526218 

33.8673884 
33.8821487 
33.8969025 
33.9116499 
33.9263909 
33.9411255 

33-9558537 

33.9705755 

33.985291 

34 

34.014  702  7 

34.029399 

34.044089 

34.0587727 

34.0734501 

34.088 121  I 

34.102  785  8 

34.1174442 

34.1320963 

34.1467422 

.34.1613817 

34.176015 

34.190642 

34.205  262  7 

34.2198773 

34.2344855 

34.2490875 

34.2636834 


Cum  Root. 

[0.381  896  5 
[O.3849882 
[O.3880781 
[O.391  166 1 
10.3942523 
10.3973366 
[O.4004192 
[&.4034999 
[O.4065787 
10.4096557 
[O.412  731 
[O.4158044 
[O.418  876 
[O.421 945  8 
[O.425  013  8 
[O.42808 
[O.431 1443 
[0.4342069 
[O.437  267  7 
[O.440  326  7 

10.4433839 
10.4464393 

10.4494929 
10.4525448 

10.4555948 
[0.4586431 
[  0.461 6896 

10.4647343 
[04677773 

[O.4708185 

104738579 
[0.4768955 

10.4799314 
[O.482  965  6 

[O.485998 

[0.4890286 

[0492057S 

[O.4950847 

[0.4981101 

10.5011337 

[0.5041556 

[O.5071757 

[0.510 194  2 

[0.5132109 

[0.5162259 

[O.5192391 

[0.522  2506 

[0.5252604 

[O.5282685 

10.5312749 

10.5342795 
[0.5372825 

[0.540  283  7 

[0.543283  a 

[0.546281 

[0.5492771 


6<)tTABBS,  CUBES,  AND  BOOTS. 


293 


"75 
1x76 

1177 

1 178 

1179 

1 180 

1 181 
1182 
I183 
I184 
1 185 
1186 
1 187 
I188 
I189 
I190 
1191 
1192 

"93 
"94 
"95 
1196 

"97 
1198 

"99 
1200 

I20I 
X202 
1203 
1204 
I20S 
1206 
1207 
1208 
1209 
I2IO 
I2XI 
I2I2 
1213 
I2I4 
1215 
12X6 
I217 
12X8 

I2I9 
1220 

I22I 
1222 
1223 
1224 
X225 
1226 
1227 
1228 
Z229 
K2J0 


8«VAK>. 


380625 
382976 

385329 
387684 
390041 
393400 
394761 

397124 
399489 
401856 
404225 
406596 
408969 

41  1344 

41 37  21 

41 61 00 

41 84  81 

420864 

423249 

425636 

428025 

430416 

432809 

435204 

437601 

440000 

442401 

444804 

447209 

449616 

452025 

454436 
456849 

459264 
46 16  81 
464100 
466521 
468944 

471369 
473796 
476225 

478656 
481089 

483524 
485961 
488400 
490841 
493284 

495729 
498176 
500625 
503076 
505529 
507984 
5*0441 
512900 


CUBB. 


622  234  375 
626379776 
630532233 
634691752 
638858339 
643032<xx> 
647  212  741 
651400568 
655595487 

659797504 
664006625 

668  222  856 

672  446  203 

676676672 

680914269 

685159000 

689  410  871 

693669888 

697936057 
702209384 

706489875 

710777536 

715072373 
719374392 
723683599 
728000000 
732323601 
736654408 
740992427 
745337664 
749690x25 
754049816 
758416743 
762790912 
767172329 
771  561 000 

775  956  9"^! 
780360128 

784770597 
789188344 
7936x3375 
798045696 
802  485  313 
806932232 
811  386459 
815848000 
8203x6861 
824793048 
829  276  567 

833  767  424 
838265625 

842771  X76 

847  284  083 

85x804352 

856331  989 
860867000 


BquAKm  Root. 


34.278273 
34.2928564 
34-3074336 
34.3220046 

34-3365694 
34.351  128  I 

34.3656805 

34.380  226  8 

34-394767 
34-409301  X 

34.4238289 

344383507 
34.4528663 

34-4673759 
34.4818793 

34.4963766 

34.5108678 

34-525353 
34-5398321 

345543051 
34.568772 

34.5832329 

34.5976879 

34.6x21366 

34.6265794 

34.64X  0x6  2 

34.6554469 

34.66987x6 

34.6842904 

34.698  703  X 

34-7131099 

34.7275x07 

34.74x9055 

34.7562944 

34.7706773 

34-7850543 

34.7994253 
34.8137904 

34.828x495 

34.842  502  8 

34.8568501 

34.87X  19X  5 

34.885  527  X 

34.8998567 

34.9141805 

34.9284984 

34.9428x04 

34.957x166 

34.9714169 

34.985  7"  4 

35 

35.0x4  282  8 

35.0285598 
35.0428309 
35.0570963 
35.071.3558 


Chbb  Root. 


10.552  27 X  5 
10.555  264  2 
10.558  255  2 
XO.5612445 
10.564  232  2 
10.567  2x8  I 
10.570  202  4 
10.5731849 
XO.576 165  8 

10.5791449 
XO.582X225 

XO.5850983 

XO.5880725 

10.591  045 

XO.594OX58 

10.596985 

10.5999525 
10.6029184 

XO.605  882  6 
10.608  845 1 
10.61 1 806 
X0.6X4  765  2 
10.6177228 
10.6206788 
10.6236331 
10.626  585  7 
XO.6295367 
10.632  486 
10.6354338 
10.6383799 
10.641 324  4 
XO.644  267  2 
10.647  208  5 
10.650  X48 
10.653086 
XO.6560223 
X0.658957 
XO.661 890  2 
XO.664  821  7 
XO.667  751 6 
10.6706799 
10.673  606  6 
10.6765317 
10.6794552 
10.682  377 1 
10.6852973 
10.6882x6 
10.691 133 1 
10.6940486 
10.696  962  5 
XO.699  874  8 
10.702  785  5 
10.7056947 
10.7086023 
10.7x15083 
10.714  412  7 


294 


SQtJABBS,  CUBES,  AND   BOOTS. 


[231 
[232 

t234 

^235 
[236 

t237 
[238 

1239 

[240 

[241 

[242 

C243 
[244 

C245 
[246 

[247 

[248 

[249 

1250 

[251 

[252 

t253 

1254 

t255 
1256 

t257 
[258 

t259 
[260 

[26t 

[262 

[263 

[264 

[265 

[266 

[267 

[26S 

[269 
1270 
[271 
[272 
t273 
[274 

127s 
[276 

[277 

C278 

t279 

t28o 

[281 

[282 

[283 

[284 

t285 

286 


SqUARB. 


151  5361 
I  51  7824 
I  520289 
1  52  27  56 
1525225 
1527696 
I  5301  69 
1532644 
1535121 
1537600 
1540081 
1542564 

1545049 
1547536 
1550025 

1 55  25  16 
1555009 

1557504 
1  560001 
1  56  25  00 
1565001 

1567504 
1570009 
1572516 

1575025 
1577536 
1580049 
1 58  25  64 
1585081 
1587600 
1590121 
1592644 
1595169 

1597696 
1600225 
1602756 
1605289 

1 60  78  24 
1 61 03  61 

161  2900 
1615441 

161  7984 

1 62  05  29 
1 62  30  76 
1625625 
1628176 
1630729 
1633284 
1635841 
1638400 
1640961 
1643524 
1646089 
1648656 
1651225 
1653796 


CVBB. 


I   SqvAKC  Root.   |   Cubs  Root. 


1865409391 
1869959168 
1874516337 
1879080904 
1883652875 
1 888  232  256 
1 892  819053 
1897413272 
1 902  014  919 
1 906  624  000 
191 1  240521 
1915864488 
1920495907 

1925134784 
1929781 125 

1934434936 
1939096223 

1943764992 

1948441249 
1953125000 

1957816251 

1962515008 

1 967  221  277 

1971935064 

1976656375 

1 981  385  216 

1 986 121  593 

1990865512 

1995616979 

2000376000 

2005  142581 

2009916728 

301469S447 

2019487744 

2024284625 

2029089096 

2033901 163 

2038720832 

2043548109 

2048383000 

2053225511 

2058075648 

2062933417 

2067798824 

2072671875 

2077552576 
2082440933 
2087336952 
2  092  240  639 
2  097  152  000 
2 102  071 041 
2 106  997  768 
2  III  932 187 
2  1 16  874  304 
2  121 824 125 
2126781656 


35.0856096 
35.0998575 
35.1140997 
35128  3361 
35.1425568 

35-1567917 
35.171 0108 

35.1852242 

351994318 

352136337 
35.2278299 

35.2420204 

35.2562051 

35.2703842 

352845575 

35.298  725  2 

35.3128872 

353270435 
35  341 1941 

35-3553391 

353694784 
35.383612 

35  397  74 
35  411  8624 

354259792 
35.4400903 

35-4541958 
35.4682957 
35.48239 

35.4964787 
35-5105618 

355246393 

355387113 

355527777 
35.5668385 

355808937 

35-5949434 
35.6089876 
35.6230262 

356370593 
35."65i  0869 

35.665  109 

35.6791255 

35.6931366 

35.707  142  I 
35.721 1422 

35.7351367 
35-7491258 

35.7631095 
35.7770876 

35.7910603 

35.8050276 

35.8189894 

35.8329457 

35.8468966 

35.8608421 


0.7173155 
0.7202168 
0.7231165 
0.7260146 
0.7289112 
0.7318062 

0.7346997 
07375916 
0.7404819 

0.7433707 
0.7462579 

0.7491436 
0.7520277 
0.7549103 

0.757  791 3 
0.7606708 

0.7635488 

0.7664252 

0.7693001 

0.7721735 

0.7750453 
0.7779156 

0.7807843 

0.7836516 

0.7865173 

0.7893815 

0.792  244  T 

0.7951053 
0.7979649 

0.800823 

0.8036797 

0.8065348 

0.8093884 

0.8122404 

0.8150909 

0.81794 

0.820  787  6 

0.8236336 

0.8264782 

0.8293213 

0.8321629 

0.835003 

0.837  841 6 

0.8406788 

08435144 

08463485 

0-849 181 2 

0.8520125 

0.854  842  2 

08576704 

0.860  497  2 

0.8633225 

08661464 

0.8689687 

0871  7897 

0-8746091 


SQUABBS,  CUBES,  AKD   ROOTS. 


««'"■ 

Con. 

S4u.ll  R»I. 

Cd«R»i.   ' 

1656369 

B  131  746  903 

35.8747822 

10.8774271 

16S89M 

2136719872 

35.8887.69 

.O.8S03436 

i66isai 

3141700569 

35.902646. 

16641 «. 

3.46689010 

35.9165699 

10.8858723 

2151685171 

35.9304834 

10-8886845 

16693  6^ 

2156689088 

35.94440.5 

10.891  495  2 

1671B49 

3161700757 

359583093 

.0.8913044 

167443S 

2166720.84 

.0.8971123 

1677025 

35^9«6>o8  4 

.0-8999186 

.679616 

21767833^5 
2  iS.  825  073 

36 

l6Baa09 

36.0.3  886  3 

.09055369 

1684S04 

2.86875593 

36.037767' 

.0,^08339 

.68  7401 

2191933899 

36.0416436 

10,911  .296 

.6900™ 

3.97000000 

360555138 

10.9.39287 

.69=60. 

3  202073901 

36.0693776 

109.67365 

.695204 

3  307  .55  60a 

36.083  337  1 

10.9.95238 

.697809 

2  212  345  137 

36.09709.3 

10,9223177 

1700+16 

2217343464 

36.1.09403 

10925.11. 

.703025 

2222447635 

36.1347837 

10.9279031 

.705636 

2227560616 

36.. 33  623 

10.9306937 

.708249 

2332681443 

36.. 52455 

10.9334839 

17.0864 

23378101(2 

36.1662836 

10.9363706 

I  71  3481 

2342946629 

36.180  .05 

10.9390569 

1716.00 

2  248  09.  QOO 

36.1939331 

10.941  S41  8 

171873. 

36.307734 

.0.9,46253 

2258403328 

3622.5406 

.0.9475074 

1733969 

3363571297 

36.2353419 

10.950.88 

17=6596 

36.349  137  9 

10.9529673 

1729235 

3273930875 

36.3639387 

10.9557451 

1731S56 

2379 '23  496 

363767.43 
36.3904946 

1734489 

2284323013 

loile.^s 

1737.24 

3289539433 

36.3043697 

.0.96,070. 

.739761 

3394744759 

36.3>8o396 

10.966  B43  3 

1742400 

3299  96S  000 

36.33' 80,  3 

10.9696131 

174504. 

3  305  199  >6l 

36.3455637 

10-9733825 

1747684 

if'stiX 

36.3593179 

.0,975.505 

1750329 

36.37,1 '*7 

3320940234 

36.i!«iHio3 

10.980  6S2  3 

1755635 

3336303.25 

36.400  s+9  4 

10-9834462 

.758^76 

3  33"  473  976 

-'  -.4  38--9 

10.9863086 

1760939 

3336753783 

10.9889696 

1763584 

2343039553 

10-99. 7293 

.766341 

23473342S9 

554533 

10-9944876 

1768900 

3352637000 

69^65 

10.9973445 

177156. 

2357947691 

1774334 

336326636S 

965753 

i..oD3  754i 

1776889 

3368593037 

1.-0055069 

1779556 

2373937704 

36^5339647 

.7833JS 

337937037s 

36.537651a 

U.01IOO8  3 

.784896 

23B463T056 

36.5513338 

11.013  7569 

1787569 

3389979753 

365650.06 

11.0.6  504 1 

I  79" 44 

36.5786833 

340072.3.9 

36.5933489 

.1-02.  9MS 

.795600 

3  4C6,04000 

36.6060.04 

11.0247377 

I  798381 

24..  494821 

36.6.96668 

11.0374795 

1800964 

3416893688 

36.633318  I 

11.0302199 

296 


SQEJABBS,  CUBSS,  AMD   BOOTS. 


Bo-.... 

8tiii». 

Cun. 

S«C.Ulb»T. 

Cm  Root. 

1343 

1803649 

3433300607 

36.6469644 

■  1.033959 

■344 

■  8063.16 

36.6606056 

...0356967 

134s 

I  80  90  IS 

2433138625 

36.67434.6 

".038433 

■346 

1 81 17 16 

3438569736 

36.6878726 

ii^.'U 

"347 

18.4409 

3444008923 

36.70.  4986 

..x)439o.  7 

.348 

.817104 

3449456193 

36.715  ■19s 

...0461339 

'349 

1 81 9801 

=  4S49'>S49 

36.7287353 

...0493649 

l^asoo 

2460375000 

36.7433461 

...0520945 

'35' 

2 465 84655- 

~* -15  95.  9 

...0548227 

13SJ 

■  827904 

3471326308 

■95536 

"*«7  549  7 

1353 

18.10609 

24768.3977 

(31483 

'3S4 

■  8333^6 

3482309864 

16739 

1IJ3639994 

I3SS 

■  836025 

=  487813875 

103346 

"J3657233 

1356 

■83B736- 

24933360.6 

'39053 

...068^437 

1357 

,84:449 

2498846393 

174809 

.1J37.  1639 

"3S8 

1844164 

=  S04  374  7'3 

;■  05. 5 

11.0738838 

I3S9 

1846881 

350991.279 

■46.72 

1I.OJ66003 

1360 

■  849600 

35.5456000 

---J8.778 

11.0793.65 

i36r 

■  853321 

252.00888. 

36.891733  s 

1.. 083  0314 

1363 

■855044 

252656992S 

36.9053843 

...0847449 

-363 

1857769 

3533139.47 

.16,9.88399 

1.0B74571 

13&I 

1860496 

2537716544 

36.933  37"^ 

11.0901679 

1365 

■  863225 

3543303125 

36.9459064 

11.0938775 

13M 

■865956 

3548895896 

36.9594373 

1..095  585  7 

1367 

.868689 

'554497863 

36,972963  I 

..,0982936 

"368 

■  87  14  34 

2  560 108  033 

36.986484 

ii.iSo^Ssa 

1369 

I  87  41 61 

35657364^9 

11.1037035 

1370 

1876900 

a  571333000 

37.0.3  s.. 

11.106^05  J 

'37' 

187964. 

35769878.1 

37.0370.73 

I. .109 107 

137a 

.883384 

3582630848 

37.0405.84 

■■,■..8073 

■373 

.885139 

2  588  282. .7 

37.0540.46 

.....45064 

■374 

.887876 

25939,,  624 

37.067  506 

"...7204. 

1375 

I  89  06  25 

359960937s 

37.0S99934 

'376 

.893376 

2605285376 

37.094474 

1...325955 

1377 

.896139 

3  6i0969«3J 

37.1079506 

....353893 

'378 

.898884 

36.6663.53 

37-'31433  4 

•379 

..901641 

3623363939 

37.1348893 

.1..306729 

13S0 

2638073000 

37.^48  35.a 

1..1333638 

>3S' 

1907.6. 

=  633789341 

37.^6.8o84 

II, .36051  4 

.383 

1909924 

3*395.4968 

37.1753606 

.1.387386 

■383 

.91.3689 

3645248887 

37-.887079 

11,1414346 

1384 

■9'S4S6 

3650991.04 

37.202.505 

11..44K193 

138s 

.9.&J25 

3656741635 

37-3.55881 

11,1467^6 

1386 

.930996 

3663500456 

37.3299309 

11,1494747 

.387 

1933769 

2668267603 

37.3434489 

11.1531555 

138S 

1936544 

2674043072 

37.355873 

11, .54835 

1389 

.939331 

3679826869 

37.3692903 

"■■575133 

1390 

1933100 

3685619000 

37.3837037 

lilies  8^1 

139' 

193488. 

3691419471 

37.396  "3  4 

139a 

1937664 

2697228388 

37.3095.63 

..,.655403 

"3W 

1940449 

3703045457 

37 .333  9.5  3 

....682134 

'394 

.943336 

3708870984 

37.3363094 

..,.708852 

■395 

37.3496988 

".■735558 

"396 

19488.6 

3720547136 

37.3630834 

",.76225 

1397 

195 '6  09 

3726397773 

37.376463  3 

11..78893 

■398 

1954404 

3733356793 

37.389838  a 

".181 5^8 

SQUAKES,  CUBES,  AND   BOOTS. 


297 


NVU»9WL. 

1399 
1400 

140X 

1402 

1403 
1404 

1405 
1406 

1407 

1408 

1409 

1410 

1411 
1413 

1413 
1414 

141S 
1416 

1417 
1418 
1419 
1420 
1421 
1422 

1423 
1424 

1425 
1426 

1427 

1428 

1429 

1430 

1431 

1432 

1433 

1434 

143s 

1436 

1437 

1438 

1439 
1440 

1441 
144a 

1443 

1444 

1445 
1446 

1447 
1448 

1449 
1450 
1451 
1452 
1453 
Z454 


8«VABB. 


1 95  72  OX 
1960000 

1 96  28  01 
1965604 
1968409 

1 97  12  16 
1974025 
1976836 
1979649 
1982464 
1985281 
X988100 
199  0921 

1993744 
1996569 

1999396 

2  00  22  25 

2005056 

2007889 

2010724 

2013561 

20x6400 

201924X 

2022084 

2024929 

2  02  77  76 

2030625 

2033476 

2036329 

2039184 

204204X 

2044900 

2  04  77  6x 

2050624. 

2053489 

2056356 

2059225 

2062096 

2064969 

2067844 

207072X 

2073000 

2076481 

2079364 

2  08  22  49 

2085x36 

2088025 

20909x6 

2093809 

2096704 

20996  ox 

2102500 

2  10  54  ox 

2x08304 

2x1 1209 

21x41  16 


Cubs. 


2  738  X24  X99 
2744000000 
2  749  884  20X 
2755776808 
2  761  677  827 
2  767  587  264 
2773505125 
2  779431  416 

2785366143 
2791309312 
2797260929 
2  803  22X  000 
280918953X 
2815x66528 
282X  X5X997 

2  827  X45  944 

2833148375 
2839159296 

2845x78713 

2  85X  206  632 

2857243059 

2863288000 

286934146X 

2875403448 

2  88x  473  967 
2887553024 
2893640625 

2899736776 
290584x483 

2911954752 
2918076589 
2  924  207  000 

2930345991 
2936493568 
2942649737 
2948814504 

2954987875 
2  96X  X69  856 
2967360453 
2973559672 
2979767519 
2985984000 
299220912X 
2998442888 
30046853*7 
30x0936384 
30x7x96125 
3023464536 
3029741623 
3036027392 
3042321849 
3048625000 
30549368SX 
3061257408 
3067586677 
3073924664 


SquABB  Root. 


37.4032084 
374165738 

37-4299345 
37.4432904 

37.45664x6 

37.469988 

37.4833296 

37.4966665 

375099987 
37523  326  X 

37-5366487 

37.5499667 

37-5632799 
37.5765885 

37.5898922 
37.603  X9X  3 
37.6x64857 
37.6297754 
37.6430604 
37.6563407 
37.6696164 
37.6828874 
37.6961536 
37.7094x53 
37.7226722 

37-7359245 
37.7491722 

37.7624152 

377756535 

37.7888873 
37.8021163 

37-8153408 

37.8285606 

37.8417759 
37.8549864 

37.868  192  4 
37.8813938 
37.8945906 
37.9077828 
37.9209704 
379341535 

37-9473319 
37.9605058 

37-9736751 
37.9868398 

38.0x31556 
38.0263067 

38.0394532 
38.0525952 
38.065  732  6 
38.0788655 
38.0919939 
38.105x178 
38.118237  X 

38.1313519 


CcBB  Root. 


X84  225  2 
X868894 

1895523 
X922X39 

1948743 
1975334 
200x9x3 

2028479 
205  503  2 
208x573 
2x08x01 
2x346x7 
2X6X12 

2x8  761 1 

22X  408  9 
2240054 
226  700  7 
2293448 
23X0876 
2346292 
2372696 

2399087 
2425465 

245  X83  X 

2478x85 

2504527 
2530856 

2557173 

2583478 

260977 

26360s 

26623x8 

2688573 

27  X  48X  6 
274  X04  7 
276  726  6 

2793472 
28x9666 

2845849 
287  20X  9 

2898177 

2924323 

2950457 
2976579 

3002688 

3028786 

3054871 
3080945 
3x07006 
3133056 
3159094 
3185119 
3211132 

3237134 
3263x24 

3289x02 


298 


SQUARES,   CUBES,   AND   BOOTS. 


NoitfeBtt. 

S40AXB. 

Cuts. 

SauARB  Root. 

CUBlRoOT. 

1455 

211  7025 

308027137$ 

38.1444622 

11.3315067 

1456 

2  II 9936 

3086.626816 

38.1575681 

IJ.334  102  2 

1457 
1458 

2  12  28  49 
21257^ 

3092990993 

38.1706693 

11.3366964 

3099363912 

38.1837662 

11.3392894 

1459 
1460 

2128681 

3105745579 

38.1968585 

11.3418813 

2  13 1600 

3X12136000 

38.209^63 

11.3444719 

1461 

a  1345  21 

3118535181 

38.2230297 

11.3470614 

1462 

2*3  7444 

3124943128 

38.2361085 

11.3496497 

1463 

2140369 

3131359847 

38.2491829 

11.3522368 

1464 

2143296 

3137785344 
3144219625 

3150662696 

38.262  252  9 

11.3548227 

1465 

2146225 

38.2753184 

11-3574075 

1466 

2149156 
2152089 

38.2883794 

11-3599911 

1467 
1468 

3157114563 

38.301  436 

11-3625735 

2  15  so  24 

3163575232 

38.3144881 

11-3651547 

1469 

2  15  7961 

3170044709 

38.3275358 

11-3677347 

1470 

2160900 

3176523000 

38.340579 

"•3703136 

1471 

2  16  38  41 

3 183010  111 

38.3536178 

11.3728914 

1472 

2166784 

3189506048 

38.3666522 

11-3754679 

1473 

2169729 

3 196  010  81 7 

38.3796821 

11.3780433 

1474 

2172676 

3202524424 

38.3927076 

11.3806175 

147s 

2175625 

3209046875 

38.405  728  7 

11.3831906 

1476 

2178576 

3215578176 

38.4187454 

11.3857625 

1477 

2181529 

3222118333 

38.431  757  7 

11-3883332 

1478 

21844S4 

3228667352 

38.4447656 

11.3909028 

1479 

2187441 

3235225239 

38.457  769 1 

11-3934712 

1480 

2190400 

3  241  702  000 
3248367641 

38.4707681 

11-3960384 

1481 

2  19  3361 

38.483  762  7 

11.3986045 

1482 

2196324 

3254952168 

38.496  753 

11.4011695 

1483 

2199289 

3261545587 

38.509739 

11-4037332 

1484 

2  20  22  56 

3268147904 

38.522  7206 
38.5350977 

11.4062959 

1485 

2205225 

3274759125 

11.4088574 

i486 

2208196 

3281379256 

38.5486705 

11.4x14177 

1487 
1488 

221 1109 

3288008303 

38.5616389 

11.4139769 

2214144 

3294646272 

38.574603 

11.4165349 

1489 

221  7121 

3301293169 

38.587  562  7 

11.4190918 

1490 

2  22  01 00 

3307949000 

38.6005181 

1X.4206476 

1491 

2223081 

3314613771 

38.6134691 

11.4242022 

1492 

2226064 

3321287488 

38.6264158 

11.4267556 

1493 

2229049 

3327970157 

38.6393582 

11.4293079 

1494 

2232036 

3^34661784 

38.652  296  2 

11.431 859  X 

1495 

2235025 

334136237s 

38.6652299 

11.4344092 

1496 

2  23  80 16 

3348071936 

38.678x593 

11.4369581 

1497 
1498 

2  24  to  09 

3354790473 

38.691 084  3 

11.4395059 

2  24  40  04 

3361517992 

38.704005 

1x4420525 

1499 

2  24  70  01 

3368254499 

38.7169214 

11.444598 

1500 

2250000 

3375000000 

38.7298335 

IX.4471424 

1501 

2  25  30  01 

3381754501 

38.7427412 

X1.4496857 

1502 

2256004 

3388518008 

38.7556447 

XX.4522278 

1503 

2259009 

3395290527 

38.7685439 

IX.4547688 

1504 

2  26  20  16 

3  402  072  064 

38.7814389 

11.4573087 

150S 

2  26  50  25 

3408862625 

38.7943294 

IX.4598474 

1506 

2  26  80  36 

3415662216 

38.8072158 

11.462385 

1507 

2  27  10  49 

3422470843 

38.8200978 

11.4649215 

1508 

2  27  40  64 

3429-288512 

38.8329757 

11.4674568 

1509 

2  27  70  81 

3436115229 

38.845  849 1 

11.469991 1 

15x0 

2280100 

3442951000 

38.8587184 

11.4735343 

SQUARES,   CUBES,  AND   BOOTS. 


299 


SfOIIBSB. 


SQVAmi. 


15" 

22831 21 

I5I2 

2286144 

I5I3 

2289169 

1514 

2292196 

1515 

2  29  52  25 

1516 

2298256 

I5I7 

2301289 

1518 

2304324 

I5I9 

2307361 

1520 

2310400 

I52I 

231 3441 

1522 

2316484 

1523 

2319529 

1524 

2322576 

1525 

2325625 

1526 

2328676 

1527 

2331729 

1528 

2334784 

1529 

2,137841 

1530 

2340900 

I53I 

2343961 

1532 

2347024 

1533 

2350089 

1534 

2353156 

1535 

23^6225 

1536 

2359296 

1537 

2362369 

1538 

2365444 

1539 

2368521 

1540 

2371600 

1541 

2374681 

154a 

2377764 

1543 

2380849 

1544 

2383936 

1545 

2387025 

1546 

23901 16 

1547 

2393209 

1548 

2396304 

1549 

2399401 

1550 

2  40  25  00 

1551 

2405601 

1553 

2408704 

1553 

241 1809 

1554 

341 49 16 

1555 

2  41 80  25 

1556 

2421136 

1557 

3424249 

1558 

2427364 

1559 

2430481 

1560 

2433600 

1561 

2436721 

1562 

2439844 

1563 

2442969 

X564 

2446096 

1565 

2449225 

1566 

2452356 

Cobs. 


3449795531 
3456649728 
3463512697 
3470384744 
3477265875 
3484156096 
3  491  055  413 

3497963832 
3504881359 
35118080OO 

3  518  743  761 
3525688648 
3532642667 
3539605824 
3546578125 

3553559576 
3560558183 

3567549952 
3574558889 
3581577000 
3588604291 
3595640768 
3602686437 
3609741304 
3616805375 
3623878656 
3630961  153 
3638052872 

3645  153  819 
3  652  264  000 

3659383421 
3666512088 
3673650007 
3680797184 
3687953625 

3695  119  336 
3  702  294  333 

3709478592 
3716672  149 

3  723  875  000 
3  731 087  151 
3738308608 

3  745  539377 
3752779464 
3760028875 

3  767  387  616 
3774555693 

3  781  833  113 

3789119879 
3  796  416  000 
3803721481 
3  81 1 036328 
3818360547 
3  825  641 144 

3833037125 
3840389496 


Squarb  Root. 


38.8715834 

38.884  444  a 
38.8973006 
38.9101529 
38.9230009 

38.9358447 
38.948  684 1 

38.961  5194 

38.9743505 

38.9871774 

39 
39.0128184 

39.0256326 

39.0384426 

39.0512483 

39.0640499 

39.0768473 

39.0896406 

39.1024296 

39.115  2144 

39.1279951 

39.1407716 

39-1535439 
39.166313 

39.179076 

391918359 
39.804591S 

39-2173431 
39.3300905 

39.2428337 

39-2555728 

39.2683078 

39.281 038  7 

392937654 
39.306488 

39.3192065 

39-3319208 

393446311 

39-3573373 
39.3700394 

39-3827373 
39-395  431 8 
39.408 121 
39.420  806  7 
39.4334883 
39.4461658 
39-4588393 
39.4715087 
39.484174 

39-4968353 
39.5094925 

39.522  145  7 

395347948 

39-547  4399 
39.5600809 

39.5737179 


CuBB  Root. 


".4750563 

"•4775871 
11.480  I169 
11.4826455 

".4851731 
11.4876995 

11.4902249 

11.4927491 

11.4952722 

".4977942 
11.500315  I 
11.5028348 

".5053535 
".507871  I 

11.5103876 

11.512903 

".5154173 

11.5179305 
11.5204435 

".5229535 

".5254634 
11.5279723 

"•5304799 
11.5329865 

".535492 
"5379965 
"5404998 
11.543002  I 

".5455033 
11.5480034 

".5505025 
11.5530004 

"5554973 

"•5579931 
11.5604878 

11.5629815 

11.565474 

115679655 

".5704559 
11.5729453 

"•5754336 
11.5779208 
11.5804069 
11.5828919 

"•5853759 
11.5878588 

"-S903407 
11.5928215 

"•5953013 

"•597  7799 
11.6002576 

H.6027342 

11.6052097 

1 1.607  684 1 

11.610157  s 

11.61363^3 


300 


SQUARES,  CUBES,  AND  ROOTS. 


NVMBSB. 


1567 
1568 

1569 
1570 
1571 
1572 

1573 
1574 
1575 
1576 

1577 
1578 

1579 
1580 

1581 
1582 

1583 
1584 
1585 
1586 

1587 
1588 

1589 
»S90 
1591 
1592 
1593 
1594 
IS95 
1596 
1597 
1598 

XS99 
1600 


Sqvabs. 

<?m. 

8«UABB  Root. 

2455489 

3847751263 

395853508 

2  45  86  24 

3855122432 

39597  979  7 

2  46  17  61 

3862503009 

39.610  604  6 

2  46  49  00 

3869893000 

39.6232255 

.  2  46  80  41 

3  877  292  411 

39635  842  4 

247  II  84 

3  884  701  248 

39.6484552 

2474329 

3892  119  517 

39.661  064 

2477476 

3899547224 

39.6736688 

2  48  06  25 

3906984375 

39.686  269  6 

2483776 

3914430976 

39.6988665 

2486929 

3921887033 

39.7114593 

2  49  00  84 

3929352552 

39.7240481 

2493241 

3936827539 

397366329 

2496400 

3944312000 

39.7492138 

2499561 

3951805941 

39-76r790  7 

2  50  27  24 

3959309368 

397743636 

2505889 

3  966  822  287 

397869325 

2  50  90  56 

3974344704 

39  799497  5 

2  51  22  25 

3981876625 

39.8120585 

2515396 

3989418056 

39.824615  s 

2  51  85  69 

3996969003 

39.8371686 

2521744 

4004529472 

39.8497177 

2524921 

4012099469 

39  862  262  8 

2  52  81  00 

4  019  679  000 

39874804 

2  53  12  81 

4027268071 

39.8873413 

2534464 

4  034  866  688 

39.8998747 

2537649 

4042474857 

39,9124041 

2540836 

4050092584 

399249295 

2544025 

4057719875 

39937451  I 

2  54  72  16 

4065356736 

39.9499687 

2550409 

4073003173 

39  962  482  4 

2553604 

4  080  659 192 

39.9749923 

2556801 

4088324799 

39.987498 

2560000 

4096000000 

40 

Cubs  Boot. 

11.615  101  a 

11.6175715 

11.6200407 

11.6225088 

11.6249759 

11.627442 

11.629907 

11.632371 

"•6348339 

11.6372957 

"6397566 

11.6422164 

11.6446751 

11.6471329 

11.6495895 

11.6520452 

11.6544998 

11.6569534 

11.6594059 

11.6618574 

11.6643079 

11.6667574 

II  6692058 

11.6716532 

11.6740996 

11.6765449 

11.6789892 

11.6814325 

11.6838748 

11.6863161 

11.6887563 

11.6911955 

"6936337 
11.6960709 


Uses  of  preceding  table  may  be  extended  by  aid  of  followiujif  Rules,  tc 
Compute  Square  or  Cube  of  a  bigher  Number  than  is  contained  in  it. 

Q?o   Compute   Square. 

When  Number  is  cm  Odd  Number. 

RiTLB.  — Take  tbe  two  nambers  nearest  to  each  other,  which,  added  together, 
make  ihat  sum ;  then  flrom  sum  of  squares  of  these  two  numbers,  multiplied  by  a, 
lubtract  i,  and  remainder  will  give  result 

To   Compute    Square   or   Cu'be. 
When  Number  is  divisible  by  a  Number  without  leaving  a  Remainder, 

RpLK.— If  number  exceed  by  a,  3,  or  any  other  number  of  times,  any  number 
contained  In  table,  multiply  square  or  cube  of  that  number  in  table  by  square  of  a 
),  eto.,  and  product  will  give  result. 

EZAJIPLI.— Required  square  of  170a 

1700  is  10  timet  X70,  and  square  of  170  is  3890a 

Then,  28900 X  io'  =  389oooa 

•...-What  is  cube  of  2400? 

3400  IB  twice  Z20O,  and  cube  of  1999  i|  f  728000000^ 

IbOD  I  738  000000  X  9^  =^  13  834000009, 


SQUABBS,  CUBES,  AND  BOOTS.         3OI 

Example. —What  Is  sqoara  of  1745? 

Two  nearest  nambers  ^^  {gis  }  ^  '745- 
Then,  per  table,  {«73:=  76 g.g9 

15225x3X2  =  3045026  —  x=:3045oa5. 

To  Compute  Square  or  Culse  Root  of*  st  liigh.er  Nrxzxiloev 

tliaix  is  ooiitained   in   Xable. 

When  Number  is  divisible  2y  4  or  8  without  leaving  a  Remainder, 

RuLK.— Divide  namber  by  4  or  8  respectively,  as  square  or  cube  root  is  required ; 
take  root  of  quotient  in  table,  multiply  H  by  2,  and  product  will  give  root  required. 

ExAMPLK— What  are  square  and  cube  roots  of  3200? 

320o-r-4  =  8oo,  and3aoo-r-8=:400w 

Then,  square  root  for  800,  per  table,  is  28. 28  42  71 2,  which,  being  x  2 = 56. 56  85  42  4 
rooL 

Cube  root  for  400,  per  table,  Is  7.368  063,  which,  being  X  2 = 14-736 126  root 

When  the  Root  (which  is  taken  as  Number)  does  not  exceed  1600.     V 

The  Numbers  in  table  are  roots  of  squares  or  cubes,  which  are  to  be  taken 
as  numbers. 

Illubtratiov.— Square  root  of  6400  Is  80,  and  cube  root  of  5x2000  is  So. 

When  a  Number  has  Three  or  more  Ciphers  at  its  right  hand, 

RcTLX.— Point  off  number  into  periods  of  two  or  three  figures  each,  according  as 
aquare  or  cube  root  is  required,  until  remaining  figures  come  within  limits  of  table; 
then  take  root  for  these  figures,  and  remove  decimal  point  one  figure  for  every  pe- 
riod pointed  ofil 

EzAJCPLK.— What  are  square  or  cube  roots  of  1 500000? 

1 500000=  X50,  remaining  figure, square  root  of  which=x2.247  45;  hence  1224.745, 
iquare  root 

X  500000  =  1500,  remaining-  figures,  cube  root  of  which  s=  zx.447  X4  ;  hence 
iZ4.47i4,  cu6eroo& 

T*o  ^eoertaiu  Cul>e   Root  of*  axiy  19'uzn'ber  over  1300. 

RcLB.— Find  by  table  nearest  cube  to  number  given,  and  term  it  assumed  cube* 
multiply  it  and  given  number  respectively  by  2 ;  to  product  of  assumed  cube  ada 
given  number,  and  to  product  of  given  number  add  assumed  cube. 

Then,  as  sum  of  assumed  cube  Is  to  sum  of  given  nomber,  so  Is  root  of  assumed 
cube  to  root  of  given  number. 

ExAMPLB.— What  is  cube  root  of  224  809  T 

By  table,  nearest  cube  is  ai6ooo,  and  Its  root  Is  60. 

2x6  000  X  3  +  224  809 = 656800, 
And  224  809  X  a  4- 216  000 = 665  6x8. 

Then  656  809 :  665  6x8 ::  60 :  60.804+,  root 

7o  A^Boertaiu  Square  or  Oulae  Root  of  a  Number  oon* 
sistiufi;  of*  lutegers   and.   IDeciznals. 

RuLK.— Multiply  difference  between  root  of  integer  part  and  root  of  next  higher 
flot^er  by  decimal,  and  add  product  to  root  of  integer  given ;  the  sum  will  give  root 
of  number  required. 

This  is  eorrect/or  Square  root  to  three  places  o/decimals,  and  for  Cube  root  to  seven. 


302  SQUABEB,  CUBES,  AND    BOOTS. 

ExAMPLs.  —What  l8  square  root  of  53. 75,  aad  enlie  root  of  843. 75  ? 

'844      =9.45< 

'843     =9.4466 


V.54      =7-3484  1^844      =9.4503 

V* 


V53      =7-2801 

.0683 

•75 


.051 225 
^53      =7.2801 

V53-75  =  7- 33*325 


.0037 
•75 


•a»775 
V843       =94466 

^843.75  =  9.449375 


Wken  the  Square  or  Cube  Root  is  required  for  Numbers  not  exceeding  Roots 

given  in  Table. 

Numbers  in  table  are  squares  and  cubes  of  root& 

RuLB. — Find,  by  table,  in  colnmn  of  numbers  that  number  representing  figures 
of  integer  and  decimals  for  which  root  is  required,  and  point  it  off'  decimally  by 
places  of  2  or  3  figures  as  square  or  cube  root  is  required;  and  opposite  to  it,  in 
column  of  roots,  take  root  and  point  off  i  or  2  additional  places  of  decimals  to  those 
In  root,  as  square  or  cube  root  is  required,  and  result  is  root  required. 

ExAMPLB  I.— What  are  square  roots  of  .15,  x.50,  and  15.00? 

In  table,  15  has  for  its  root  3.87  298;  hence  .387298  =  sqiuire  rootjur  ,1^ 
150  has  for  its  root  12.24745;  benoe  1.224745  =  square  root  for  1.5a 
1500  has  for  its  root  38.7298;  hence  3.87  298  =  square  root  fir  15. 

3.— What  are  cube  roots  of  .15,  z.50,  and  15.00? 

Add  a  cipher  to  each,  to  give  the  numbers  three  places  of  figures,  as  .150, 1.500^ 

and  15.00Q1 

In  table  150  has  for  its  root  5.3x33;  hence.  531 33  =  cube  root  of  .1^ 

1500  has  for  its  root  11.447;  hence  1.1447  =  cube  root  of  i.^ 
x5  has  for  its  root  3.466a;  and  15.000,  by  addition  of  3  places  of  figures,  has 
04.662 ;  hence  3. 466a  =  CMde  root  of  1^.00. 

"Po  A-soertaixx  Square  or  CuIdo  H.oot8  or  Deoiznals  alone. 

RuLB.— Point  off  number  from  decimal  point  into  periods  of  two  or  three  figures 
each,  as  square  or  culie  root  is  required.  Ascertain  fVom  table  or  by  calculation 
root  of  number  corresponding  to  decimal  given,  the  same  being  read  off  by  remov- 
ing the  decimal  point  one  place  to  left  for  every  period  of  2  figures  if  square  root  is 
required,  and  one  place  for  every  period  of  3  figures  if  cube  root  is  required. 

EzAMPLB. — What  are  square  and  cube  roots  of  .810,  .081,  and  .0081 V 
.810,  when  pointed  off  =  .8x,     and  V.Sz     =.9. 
,081,       "         "        "  =.oSi,     ♦•    v^oSi   =.8846. 
.0081,     "         "        "  =.«)8i,  "    Voo8«  =  .o9. 

.810^  wbeo  pointed  off =.8zo»  and  ^.8x0  =  93217. 
.081,       "  "        "  =.o8i,     "    V.o8i   =.4336^. 

.oo8x,     "  "        "  =.oodx,   "    ^.0081  =.30083. 

To  Compute  4th.   Root  of*  a  r^uxxilser* 

RuLs.— Take  square  root  of  its  square  root 

ExAMFLK.— What  is  the  -^  of  x6oo? 

•^1600 = 40,  and  v'40  =  6. 32  45  55  3. 

To   Coxnpute   6tli   H.oot  of  a   Nuxn'beib 

Bulk. —Take  cube  root  of  its  square  root. 

ExAMPLB-^What  is  the  ^  of  44X  t 

V441  =  ai,  and  ^ai  =  a. 7  589  34^ 


FOUBTH  AND  FIFTH  POWBBS  OF  NVHBSBS. 


303 


<4rth.  and  5th.  Po-wers  of  IN'uixi'bers* 


fVom  I  to  15a 


Namtier, 

4th  Power. 

I 
9 

1 
x6 

3 

8x 

4 

356 

5 

635 

6 

1396 

i 

3401 

J^ 

9 

10 

zoooo 

sx 

14641 

12 

30736 

'3 

28561 

X4 

38416, 

X5 

50625 

z6 

65536 

*7 

83521 

z8 

X04976 

»9 

130321 

90 

160000 

21 

194  48X 

39 

234256 

23 

279841 

84 

331 776 

25 

39062s 
456976 

26 

S 

614  036 

907  98Z 
810000 

89 

30 

31 

923  52X 

32 

X  048  576 

33 

X  185  92X 

34 

1336336 

35 

X  500625 

36 

X  679616 

37 

z  874 i6x 

38 

2085136 

39 

3313441 

40 

0560400 

41 

3  825  761 

42 

3ZII696 

43 

34I880Z 

44 

3748096 

45 

4  X00625 

46 

4477456 

47 

4879681 

48 

5308416 

49 

5764801 

50 

6250000 

51 

6  765  201 

52 

7  3XX  6x6 

53 

7890481 
8503056 

54 

55 

9150625 

56 

9834496 

11 

xo  556  001 

1x3x6496 

59 

X2  117  361 

60 

13060000 
13845841 

61 

63 

X4  776  356 

63 

X5  753  961 

Sth  Power. 


32 

243 
X034 

312s 

7776 

X6807 

33768 

59049 
100  000 

z6x  051 

348832 

371  293 

537  824* 

759375 
X  048  576 

X  41981 

i889  5( 

2476099 

3000000 

4084  lOI 

5x53639 

6436343 
7  962  624 

9765625 

zi  881 376 

14348907 

17  910368 

30511  X49 

24300000 

38629x51 

33554432 

39 135  393 

45435424 
53  521 875 

60466x76 

69343957 
79235168 
90  224  X99 
102400000 
X1585620X 
X30691233 
147008443 
X64  916  334 
X84  528 125 
205  962  976 
229345007 
254803968 
382  475  249 
312  500000 
345025251 
380904033 
418x95493 
459165024 

503384375 
550731776 
601 693  057 
656  356  768 
7x4934299 
777600000 
84459630X 
916  X39  833 
992436543 


Namber. 


64 
65 
66 

f7 
68 

69 

70 

7« 
73 

73 
74 
75 
76 
77 
78 

80 
8x 

83 

83 
84 

85 
86 
87 
88 
89 
90 

9> 
92 
93 
94 

96 

98 

99 
zoo 

xox 

Z03 
XO3 
XO4 

XOO 

»07 
X08 
109 
xxo 
XIX 
XX3 

XI3 

"4 
xxs 

X16 

"7 
118 

XX9 
120 

X2Z 
X22 

133 
124 
125 

Z36 


4tii  Power. 


16777316 
17850635 
18974736 

90x51  X3Z 
21  381  376 

32  667  X3Z 
94010000 
35411681 
86.873  856 
28  398  241 
39986576 
31  640  625 

33  362 176 
35153041 
370x5056 

389qoo8x 
409000Q0 
4304672X 
45  212 176 

47458321 
49787136 

52200635 
547080x0 
57  289  76X 
59969536 
62  742  24X 
656x0000 

6857496? 

71639996 

7480390X 

78074896 

81 450635 

84034656 

88580381 

98  330  8x6 

9605960Z 

XOO  000  000 

X04  060  40Z 

X08  243  2x6 

X1255088X 

116985856 

X3X  550625 

X26  247  690 
131 079601 
X36048896 
141 158 161 
146410000 
X5X807Q4X 

157  3Si  93^ 

163  047  36X 

X68896016 
174900625 

i8z  063  936 
187  388  721 
X93877776 
200  533  92X 
207360000 
9x4358881 

221533456 
338886641 
936  421  376 

844140635 
252047376 


5tli  Power. 


1073741834 
1 160990635 
X  353  333  576 
1 350 125 107 
1453933568 

1564031349 
1680700000 

X  804  329  251 
5^934917633 
2073071593 
9319006694 
2373046875 

2535525376 

8  706  784  157 
8887x74368 

3077056399 
3276800000 

3  486  784  40X 
3707398433 
3939040643 
4182  119  424 
4437053x25 
4704*70x76 

4  984  209  207 
52773x9168 
5584059449 
5904900000 
6  940  33X  4<;x 
65908x5339 
6956883693 
7339040234 
7737809375 
8x53720976 

8387340*57 
9039207968 

9509900499 

XOOQOOOOOOO 

X05IOI0050X 
X]K>4o8o8o32 
XI 592740743 

13  166  599094 

Z2  762  815  625 

13382255776 
14035517307 

14693280768 

15386239549 

16x05100000 

1685058x551 

176234x6833 

18  424  351 793 

19  254 145  824 
801x3581875 

2X  003  416  576  . 

21024480357 

22  877  577  568 

23  863  536  599 
3488320OOOQ 
2593742460X 
27027081632 
28153096843 
39316350624 

305X7578X85 

31757969376 


304 


POWEBS   OF  NCHBBBS. — RKC1PBOCAL8. 


Nnmber. 

4th  Power. 

Sth  Power. 

Number. 

4th  Power. 

127 

260 144  641 

33038369407 

139 

373  30 '641 

138 

368435456 
976933881 
385610000 

34359738368 

140 

384  160000 

139 

35723051649 

141 

395254161 

130 

37  129300000 

142 

406586896 

131 

394499921 

38579489651 

>43 

418  161  601 

133 

303595776 

40074642432 

144 

429981696 

133 

313900721 

41 615  795  893 

145 

442050625 

134 

322417936 

43204003424 

146 

455371856 

^35 

332150625 

4484033437s 

X47 

466948881 

136 

342102016 

46525874176 

148 

479785216 

'3Z 

352375361 

48261724457 

149 

492  884  401 

138 

362673936 

50049003168 

ISO 

506250000 

5th  Power. 


51888844699 
53782400000 
55730896701 

5773533923a 
59797108943 

61917364224 
64097340625 
66  338  290976 
68  641 485  507 
71008211968 

73  439775749 
75937500000 

To   Compute  4tli   Fewer  of  a  N"vim"ber  greater  th.axi  is 

contained   in   Table. 

Rule. —Ascertain  square  of  number  by  preceding  table  or  by  calculation,  and 
square  it;  product  is  power  required. 

EzAMPLB— What  IS  4tb  power  of  1500? 

1500^  =  2  250000,  and  2  250  006^  =  5  063  500 000  00a 

To  Compute  Sth.  Po^xrer  of  a  I^uzn'ber  greater  tlian  is 

contained  in   Table. 

R0LB. — Ascertain  cube  of  number  by  preceding  table  or  by  calculation,  and  mul- 
tiply it  by  its  square;  product  is  power  required. 

To  Compute  4th  and  6tlx  Powers  \>y  another  Afethod. 

RuLi. — ^Reduce  number  by  2  until  it  is  one  contained  within  table.  Take  power 
which  is  required  of  that  numl>er,  and  multiply  it  by  16,  x6',  or  i63  respectively 
for  each  division,  by  3  for  4th  power,  and  by  32,  33',  or  323  respectively  for  each 
division  by  2  for  5th  power. 

Example.— What  are  the  4th  and  5th  powers  of  600? 

600 -T-  3  =  300,  and  300-7-2  =  15a 

The  4th  power  of  150,  per  table,  =  506  250000,  which  x  z6^,  multiplier  for  a  teoond 
division  256  =  129600000000,  4th  power. 

Again,  the  5th  power  of  150=75937  500000,  which  X  33",  multiplier  for  a  second 
division  1034  =  77  760000000000 =j}oioer. 

To  Compute  Oth.  Po"wer  of  a  dumber. 

Rule  —Square  its  cube. 

Example.— What  is  the  6th  power  of  3? 

3 

33  =  64. 

To  Compute  '^th  or  Bth.  Root  of  a  K'umber  per  Table. 

Rule— Find  in  column  of  4th  and  5th  powers  number  given,  and  number  fh>m 
which  that  power  is  derived  will  give  root  required. 

Example.— Whkt  is  the  5th  root  of  3  200000? 

3  200  000  in  table  is  5th  power  of  20;  hence  20  is  root  required 


RECIPROCALS. 

Reciprocal  of  a  number  is  quotient  arising  firom  dividing  i  by  number;  thua,  re- 
tiprocalof  2  is  1 -{-2=1.5 

Product  of  a  number  and  its  reciprocal  is  always  equal  to  i ;  thus,  3  x  5  =  z. 
Reciprocal  of  a  vulgar  (htction  Is  denominator  divided  by  numerator ;  thus,  -  z= .  c 


liOGABITHMa  305 

LOGABITHMS. 
XjOgaritlixns  of*  I4'iiin.'bei*s« 

Logarithms  are  a  series  of  numbers  adapted  to  facilitate  the  operation  of 
nimierical  computation, 

Addition  being  substituted  for  Multiplication,  Subtraction  for  Division, 
Multiplication  for  Involution,  and  Division  for  Evolution 

The  ILiOfiraritlixn  of  a  number  is  the  exponent  of  a  power  to  which  10 
must  be  raised  to  give  that  number. 

It  is  not  necessary,  however,  that  the  bcue  should  be  xo,  it  may  be  any  other  num> 
ber;  but  Tables  of  Logarithms,  in  common  use,  are  computed  with  10  as  the  base. 

*    Thus,  Number      xoo  Log.  =  2,  as  lo^  base  and  exponent  =     loa 
"       10000   "    =4,  »»  lo*    "      "  "       =10000. 

The  Vmt  or  Integral  part  of  a  Logarithm  is  termed  the  Index,  and  the  Decimal 
part  the  Mantissa  ;  tJbe  sum  of  the  Index  and  mantissa  is  the  Logarithm. 

The  Index  of  the  Logarithm  of  any  immbery  Integral  or  Mixed,  when  the  base  is  10, 
Is  equal  to  the  number  of  digits  to  the  left  of  the  decimal  point  less  i.  From  o  to 
9,  it  is  o;  firom  10  to  99,  it  is  i,  and  flrom  100  to  999,  it  is  3,  eta 

Thus,  logarithm  of  3304  =  3.51904,  3  being  the  index  and  .5x904  the  mantissa. 

The  Index  of  the  Logarithm  of  a  Decimal  FraiMon  is  a  negative  number,  and  is 
•qoal  to  the  number  of  places  which  the  first  significant  figure  of  the  decimal  is  re- 
moved from  Uie  place  of  unita 

Thus,  index  of  logarithm  .005  is  3  or  —3,  the  first  significant  figure,  5,  being  re- 
moved three  places  from  that  of  unita  The  bar  or  minus  sign  is  placed  over  an 
index  to  indicate  that  this  alone  is  negative,  while  the  decimal  part  is  positive. 

The  Difference  is  the  tabular  difilBrence  between  the  two  nearest  logarithms 

The  Proportional  Part  is  the  difllerence  between  the  given  and  the  nearest  less 
tabular  logarithm. 

The  Arithmetical  Complement  of  a  number  is  the  remainder  after  subtracting  it 
from  a  number  consisting  of  i,  with  as  many  ciphers  annexed  as  the  number  has 
Integers.  When  the  index  of  a  logarithm  is  less  than  10,  its  complement  is  ascer- 
tained by  subtracting  it  from  zo. 

Illvistratioiia. 


Number.  Lc^pirithm. 

4743 3676053 

474-3 2.676053 

47-43 1.676053 

4-743 676053 


Nnmber.  Lofvithm. 

.4743 1.676053 

.047  43 -. 3. 676  053 

•004743 3-676353 

CompTitatioii  of  M'eg;ati^e  Indices.         _     _     _ 

To  add  two  Negative  Indices.  Add  them  and  put  the  sum  negative.  As  5  -f  3  =  8. 

To  add  a  Positive  and  Negative  Index.  Subtract  the  less  from  the  greater,  and 
to  remainder  give  the  positive  or  negative  sign,  according  as  the  positive  or  nega- 
tive index  is  the  greater.    As  6  +  3  =  4,  and  6  -f  s  =  4. 

Illcstration.  —Add  6. 387  57  and  2. 924  59.  6. 387  57 

g- 934  59 
5.313x6 
Here  the  excess  of  x  fkt)m  13  in  the  first  decimal  place,  being  positive,  is  carried 
to  the  positive  6,  which  makes  7,  and  7  -—  2  =  5. 

To  Subtract  a  Negative  Index.  Change  its  sign  to  plus  or  positive,  and  then  add 
it  as  in  addition.  As  3  tram  2,  =  3  -f  2  =:  5.  And  5  fh>m  2]  =  5  -)-  a  =  3 ;  also 
Jftoms,  =  3  +  s  =  2.       _  _ 

iLLusTRATioir.— Sabtract  5. 765  59  from  3. 346  74.  2. 346  74 

5-765  Sa 
3.58132 
Here,  excess  of  x  in  the  first  decimal  place  used  with  the  .3  in  subtracting  the  .8 
from  the  1.3  Is  to  be  subtracted  from  the  upper  number  2,  which  maices  it  3 ;  then 


3o6 


LOaABITHKS. 


To  Subtract  a  Potitive  Index.  Cbaoge  ita  sign  to  negative,  and  then  add  as  in 
addition.     As  2  —  2  =  2-|-3  =  4< 

To  Multiply  a  Negative  Index.  Multiply  the  fractional  parts  by  the  ordinaij  rule, 
then  multiply  the  negative  index,wh\ai  will  give  a  negative  product, and  when  an 
excess  over  10  is  to  be  carried,  subtract  the  less  index  from  the  greater,  and  the  re- 
mainder gives  the  positive  or  negative  index,  according  as  the  positive  or  negalive 

index  is  the  greater.    As  2  x  5  =3  10,  and  i  to  be  oarrled  =£9. 

Illustration.— Multiply  2.3681  by  2,  and  3.7856  by  6. 

2.3681  3-7856 

2  6 


4.7362  Z4-7Z36  • 

Here  2X2  =  4,  ftlso  3X6  =  18,  with  a  positive  excess  of  4  =  14. 

To  Divide  a  Negative  Index.  IT  index  is  divisible  by  divisor,  without  a  remain* 
d«r,  put  quotient  with  a  negative  sign.  If  negative  exponent  is  not  divisible  by 
divisor,  add  such  a  negative  numl)er  to  it  as  will  make  it  divisible,  and  prefix  an 
equal  positive  integer  to  fVactional  part  of  logarithm;  then  divid«  increased  Nega- 
tive exponent  and  the  other  part  of  logarithm  separately  by  ordinary  rules,  and  for- 
mer quotient,  taken  negatively,  will  be  index  to  firaotional  part  of  quotient.    As 

6-4-3  =  2.    10  -}-  3  requires  2  to  be  added  or  2  to  be  subtraoted,  to  make  it  divisible 

without  a  remainder,  then  io'-4-T=  12, 12-^-3  =  4,  and  2  (the  sum  subtracted)^ 

3  =  .66,  the  quotient  therefore  Is  4,66. 

Illustration  l— Divide  6.324282  by  3. 

6. 324  282  -j-  3  =  2. 108  094. 

2. — Divide  14.326745  by  9. 

14. 326  745  -4-  9  =  is  +  4.326  745  ^  9  =  2. 480  7494-. 

Here  4  is  added  10*14,  ^^^  ^^^  ^'^^  ^  "^^7  ^  divided  by  9,  and  as  4  is  added,  4 
must  be  prefixed  to  the  fractional  part  of  the  logarithm,  and  thus  the  value  of  the 

logarithm  is  unchanged,  for  there  is  added  4,  and  4  =  o,  or  4  is  subtracted  and  4 
added. 

To  ^soertain  JjogaritHixi  of  a  l^Tum.'ber  "by  Ta"ble. 

When  the  Number  is  less  than  loi. 

Look  into  first  page  of  table,  and  opposite  to  number  is  its  logarithm  with  its 
index  prefixed. 

_  Illustration. ^Opposite  7  is  .845098,  its  logarithm;  Jience  70=1.845098,  .7  = 
1.845098,  and  .07=3.845098. 

When  the  Number  is  hetioeen  100  and  1000. 

Rule. — Find  the  given  number  in  left-band  column  of  table  headed  No.,  and  un- 
der o  in  next  column  is  decimal  part  of  its  logarithm,  to  which  is  to  be  prefixed  a 
whole  number  for  an  index,  of  i  or  2,  according  us  the  number  consists  of  2  or  3 
flgurea 

Example.— What  is  logarithm  of  450,  and  what  of  .45  f 

Log.  450  =  2.653  213,  and  of  .45  =  1.653  2x3. 

When  the  Number  is  between  looo  and  10  000. 

RuLB.— Find  the  three  left-hand  figures  of  the  number  in  the  left-hand  column 
of  the  table  headed  No. ,  and  under  the  4th  figure  at  top  of  table  is  the  four  last 
figures  of  the  decimal  part  of  logarithm,  to  which  is  to  be  prefixed  the  proper 
index. 

Example.— What  is  logarithm  of  4505,  and  what  of  .04505? 

Log-  4505  =  3-653  695>  ^°<*  of  -045  05  =  2- 653  695- 


LOGARITHMS.  307 

When  the  Number  eofuists  of  Five  Figures. 

RuLB.— Find  the  logarithm  or  the  number  composed  of  the  first  four  figures  as 
preceding,  then  take  the  tabular  difference  from  the  right-hand  column  under  D 
and  multiply  it  by  the  fifth  figure;  reject  the  right-hand  figure  of  the  product  and 
add  the  other  figures,  which  are,  and  are  termed,  a  proportional  part  to  the  logarithm 
found  as  above,  observing  that  the  right-hand  figure  of  the  proportional  part  iB  to 
be  added  to  that  of  the  logarithm,  and  the  rest  in  order. 

ExAMPLS.— -Required  logarithm  of  83  407  ? 

Note. — When  the  number  consists  of  less  than  4  figures  conceive  a  cipher  an- 
nexed to  make  it  four. 

Log.  of  8340  (83  407)  =  4. 921 166 

Tabular  difliBrence  52,  which  x  7  (5th  figure)  =  364  =  364 

4.921 2024  logarithm. 

The  difference  of  the  numbers  is  nearly  proportionate  to  the  difference  of  their 
logarithma 

Thus,  difference  between  the  numbers  8340  and  8341,  the  next  in  order,  is  x,  and 
the  difllbrence  lietween  their  logarithms  or  tabular  difference  is  52. 

The  log.  of  this  i  in  the  4th  place  is  therefore  52.  The  correction  then,  for  the  7 
of  the  5th  place,  which  is  .7  of  x  in  the  4th  place,  is  ascertained  by  the  proportion 
X  :  52::  .7  :  36.4. 

The  correction  is  obtained  by  multiplying  the  tabular  difference  by  7.  rejecting 
the  right  hand  figure  of  the  product,  if  the  log.  is  to  be  confined  to  six  decimal 
place& 

When  the  Number  connsts  of  any  Number  over  Four  Figures. 

RuLB. — Proceed  as  for  four  flgnres  for  the  first  four,  multiplying  the  tabular  dif- 
ference by  the  excess  of  figures  over  4  and  rejecting  one  right-hand  figure  of  the 
product  for  a  number  of  five  figures,  and  two  for  one  of  six,  and  so  on. 

ExAMPLB  L— Required  logarithm  of  834079? 

Log.  of  8340  (a34079)=  5.921 166 

Tabular  difference  5a,  which  X  79  =  4108 

5.921 20708  logariUim. 
2.— Required  logarithm  of  8340794? 

\jog.  of  8340  (8  340  794)  =  6. 921  x66 

Tab.  diff.  52,  which  x  794  {5th,  6th,  and  7th  figures)  =  4x288 

6. 921 207  388  logariOim. 

Or,  Mantissa  of  8340  =  .921166 

'•     *'  7     (5th  figure)  X'52  tab.  dif  =s         364 

"     "  9   (6th     "    )X52   "     "  =  468 

"     "  4  (7th     "    )X52   "     •'  =  208 

Log.  with  index  for  7  figures 6.921 207  288 

To   A.8certaixi   ILiOgaritlixn    of  a   Alixed    N'u.xn'bor. 
RuLB. — ^Take  out  logarithm  of  the  number  as  if  it  were  an  integer  or  whole  nam- 
ber,  to  which  prefix  the  index  of  the  Integral  part  of  the  number. 

Example.— What  is  logarithm  of  834.0794? 
Matttfaea  of  log.  of  834 .  0794 =9319  073 ;  hence  log.  of  834^0794  =  2. 921 207  3. 

To  ^soertain   Xjosaritlini,  of*  a  I>eoicaal   ITvaotioja. 

Rule.— Take  logarithm  fh)m  table  as  if  the  figures  were  all  integers,  and  prefix 
index  as  by  previous  rules. 

Example.— Logarithm  of . X234  =1.091 305. 

To  A.8oertain.   Xjogaritlxni   ot  a  Vulgar   Fraction. 
Rdlb. — Reduce  the  fhiction  to  a  decimal,  and  proceed  as  by  preceding  rule.    Or, 
subtract  logarithm  of  denominator  flrom  that  of  numerator,  and  the  difference  will 
give  logariUun  required. 

Example.— Logarithm  of  ^? 

^  = .  X875.    Log.  .1875      =7. 273  001  logarithm. 
Or,  Log.  3  =  .477 I2X 

"       X6  =  X.204I2 

X.37300X  logarithm. 


3o8 


LOGARITHMS. 


To  J^soertain   th.e  19'uiaci'ber  Correepoxxding;   to  a  O-iven 

Uogaritlxzn. 

When  the  given  or  exact  Logarithm  U  in  the  Table. 

Operation.— Opposite  to  first  two  figures  of  logarithm,  neglecting  the  index^  in 
column  0,  look  for  the  remaining  figures  of  the  log.  in  that  column  or  in  any  of  the 
nine  at  the  right  thereof;  the  first  three  figures  of  the  number  will  be  found  at  the 
left  in  column  under  No.,  and  the  fourth  at  top  directly  over  the  log. 

The  number  is  to  be  made  to  correspond  to  index  of  logarithm,  by  pointing  off 
decimals  or  prefixing  ciphers. 

Illustration. — What  is  number  corresponding  to  1(^.  3.963  977  ? 

Opposite  to  963977,  in  page  339,  is  920,  and  at  top  of  column  is  4;  hence,  num- 
ber =:  9204. 

When  the  given  or  exact  Logarithm  it  not  in  the  Table, 

Operation.— Take  the  number  for  the  next  less  logarithm  from  table,  which  will 
give  first  four  figures  of  required  number. 

To  ascertain  the  other  figures,  subtract  the  l(^;arithm  m  table  fh>m  the  given 
logarithm,  add  ciphers,  and  divide  by  the  difference  in  column  D  opposite  the 
logarithm.  Annex  quotient  to  the  four  figures  already  ascertained,  and  place  deci- 
mal point. 

Illustration  i.— What  is  number  corresponding  to  log.  5.921  zoj  ? 

Given  log.  =  5-92i  207 

Next  less  in  table  5.921 166  8340 

D=  53)4100(78+  78 

J64  834078 

460 
.4'6 

Hence,  number  =:  834  078.  44 

s.— What  is  number  corresponding  to-Iog-  3. 922  853  T 

Given  log.  =  3-923853 

Next  less  in  table  3.922829  837  2 

D  =  53)  2400  (46  +  46 

!2L  837  346 

320 

3" 

Hence,  number  =  8373.46.  u 

IMultiplioatioxL. 

Rule.— Add  together  the  logarithms  of  the  numbers  and  the  sum  will  give  the 
logarithm  of  the  product. 

Examplb  I. — Multiply  345.7  by  3.581. 

Log- 345-7     =3.538690 
"       3.581=  .411788 

3.950  487  log.  qf  product    Number  =£  893.351. 
s.— Multiply  .03903,  59.71,  and  .003 147. 

Log.  .039  03  =  2. 591 387 
**  59- 7»  =1^.776047 
"       .003 147  =  3- 4^7897 

3. 865  231  log.  of  product.    Number  =:  .007  33a  i^ 

X>ivisionL. 

Rule.— From  logarithm  of  dividend  subtract  that  of  divisor,  and  remainder  will 
give  logarithm  of  the  quotient 

EzAMPLK.— Divide  371.4  by  53.37. 

Log.  371.4  =3.569843 

**      53.37  =  1-7 '9  083 

.  850  759  log.  qf  quotient    Number  =  7. 091 85. 


LOGABITUMS.  3O9 

Rrile  of*  Tliree,  or   Proportion. 

RuLS.— Add  together  the  logarithms  of  the  second  and  third  terms,  from  their 
sum  subtract  logarithm  or  the  first,  and  the  remainder  will  give  logarithm  of  the 
fourth  term. 

Or,  instead  of  subtracting  logarithm  of  first  term,  add  its  Ari^metical  Comple- 
ment, and  subtract  10  flrom  its  index. 

Example  i.— What  is  fourth  proportional  to  723.4,  .025 19,  and  3574? 

As       723.4         log.  =s  _  2859379 

Is  to  .025  19     '*      :=  2.401  228 

So  is  3574  "   =3553155     . 

1.954  383 
First  term  *'       2.859379 

1 .  095  cx)4  log.  of  4th  term.    Number  = .  124  453. 

Bjf  Arithmetical  ComplemenL 

Illubtratioh. — ^As  723.4  log.  =  2.859  379,  Ar.  com.  =2*  140621 
Is  to  .025 19  **    =  2.401 228 

So  is  3574       "    =  3-553155 

I  095  004  log.  o/j^Ot  term. 
Number  =: .  124  453. 

2. — If  an  engine  of  67  W  can  raise  57  600  cube  feet  of  water  in  a  given  time,  what 
H^  is  required  to  raise  8 575000  cube  feet  in  like  time? 

Log.  8  575  000  =  6.933  234 
"  67  =  1.826075 

,         8-759309 
"        57600  =  4.760422 

3.998  877  log.  of^ik  term.    N  umber  =  9974. 4  HP 

3.  —  If  14  men  in  47  days  excavate  5631  cube  yards,  what  time  will  it  require  to 
excavate  47  280  at  same  rate  of  excavation  ?  394. 626  days. 

I XX  volution.. 

RuLB. — Multiply  logarithm  of  given  number  by  exponent  of  the  power  to  which 
It  is  to  be  raised,  and  the  product  will  give  the  logarithm  of  the  required  power. 

ExAMPUB.— What  is  cube  of  3a  71  ? 

Log.  3a  71  =  1.487  28 

3 

4.461 84  log.  of  power.    Number = 28  962.73. 

B  volution. 

Rdul — Divide  logarithm  of  given  number  by  exponent  of  the  root  which  Is  to  be 
oKtracted,  and  quotient  will  give  logarithm  of  required  root 

ExAMPLB  L— What  is  cube  root  of  1234  ? 

Log.  1234  =  3.091315 

Divide  by  3  =  i. 030  438  log.  qf  root    Number  =  xa  726  01. 

a.*— What  is  4th  root  of  .007  654  ? 

Log.  .007654  =  3.883888 

Divide  by  4  (here  3  -f  i  -|- 1)  =  1.470  972  log.  of  root    Number = .295  78. 

To  A^soertain   Reciprocal   of  a  M'uznber. 

RuLS.— Subtract  decimal  of  logarithm  of  the  number  trom  .000000;  add  i  to  iQ< 
dex  of  logarithm  and  change  its  sign.    The  result  is  logarithm  of  the  reciprocal. 

EZAMFUL— Required  reciprocal  of  230? 

.000000 
IX)g.  230  =  2. 361 728 

3.638  273  =s  log.  of  .004  348  reetproooL 


X 


3IO 


I.OGAKITHMS. 


Sizziple   Interest. 

RuLS. — Add  together  logarithm  of  principal,  rate  per  cent.,  and  time  in  years,  firom 
the  sum  subtract  2,  and  the  remainder  will  give  logarithm  of  the  interest. 

ExAMFLB.— What  is  interest  on  $500,  @  6  per  cent.,  for  3  years? 

Log.  500  =  2.698  97 
6=   .778151 
3=  .477121 

3954242 
2 


1 .  954  242  log.  of  interest.    Number  =  90  dollars. 

Compound.   Interest. 

RuLB.— Ck)mpQte  amount  6f  $  i  or  X  i,  etc.,  at  the  given  rate  of  interest  for  one 
year  for  the  first  term,  which  is  termed  the  ratio. 

Multiply  logarithm  of  ratio  by  the  time,  add  to  product  logarithm  of  the  principal, 
and  sum  is  logarithm  of  the  amount. 


I^ogaritlxxiis  of*  Katios   at  given 


Rate. 


I 
«-25 

1-5 
1-75 

2 

2.25 

2.5 

2.75 

3 


Log.  of  Ratio. 

Rate. 

.004  321  4 

325 

.005  395 

3-5 

.006466 

3-75 

•0075344 

4 

.0086002 

425 

.0096633 

4-5 

.0107239 

4-75 

.0117818 

5 

.0128372 

525 

Log.  of  Ratio. 


.013  890  I 

0149403 

.0159881 

.0170333 
.0180761 
.0191163 
.020154 

.02X  1893 
.022  222  I 


Rate. 


5-5 

5-75 

6 

6.25 

6-5 
6.75 

7 

7.25 

7-5 


1   liates 

Per   C 

Log.  of  Ratio. 

Rate. 

.0232525 
.0242804 

l'' 

.0253059 
.0263289 
.0273496 
.0287639 
•0293838 

8.25 

8.5 

8.75 

9 

9-25 

•0303973 
.0314085 

9-5 
9-75 

Cent. 
Log.  of  Ratio. 


.0324373 
.0334238 
.0344279 

•0354297 
•0364293 
.0374265 
.0384214 
.0394141 
.0404045 


Example— Whut  will  $364,  at  6  per  cent,  per  annum,  compounded  yearly,  amount 
to  in  23  years? 

Log.  of  ratio  from  above  table   .025  305  9 

23 


(t    ti 


364 


.5820357 

2.561  lOI 


3. 143 1 36  7  log.  of  amoMfi/.  Number  =s  139a  39  doU 

Afisoellaneons    Illustrations. 
I.  What  is  area  and  circumference  of  a  circle  of  21.72  feet  in  diameter? 
Log.  of  21.72      1,336860 


Log.  of  21.72"  =2.673720 
«*    »»      .7854=1.895091 


(t 


2. 568  81Z  =:  370. 54  ftiti  area. 


Log.  of  21.72     =1.33686 
"     "    3.1416=  .49715 


t( 


(( 


X.834  OS  =  68.236  feet  ctrctMii, 
3.  Sides  of  a  triangle  are  564,  373,  and  747  feet;  what  is  its  ana? 

Log.  of  sides 


u 


5644-373+747  ^,,^,g  3,, 

*•  .  5  side  —  o  =  842  —  564  =  2. 444  045 
"  .5  side  —  6  =  842  —  373  =  2.671173 
*'  . 5  side  —  c  =  842  —  747  =  1.977724 

2)10.018254 

Area  =  Number  of      5.009127  =  102120.4 /«et 

3.— What  is  logarithm  of  8^'^? 

Log. ^  =  — X  log.  8  =  3.6 X. 903 09  =  3. 251 124.    Number  =1783.8^ 


IiOOABtTBMS  OF  NUIIBXBS. 


3ii 


XjOfsaritliixis  of*  ^uxxi'bexTS. 

From  1  to  loooo. 


No.    I    Logarithm. 


1 

2 

3 

4 

5 

6 

7 
8 

9 
lo 

11 

13 

14 

15 

i6 

17 
i8 

19 
ao 

21 

22 

23 

24 

25 

No. 
100 

lOI 
I02 
I02 
103 
104 
104 

106 

106 
107 
107 
108 
109 
109 

110 

III 
1x2 
112 

"3 
114 

"4 
Ma 


.0 

.30103 
.477  121 

.60206 

.69897 

.778 151 
.845098 
.90309 

'954  243 

1 

1-041 393 
1.079  ^8i 

1-113943 
1. 146  128 

1.176  091 

1.204  12 
1.230449 

1255273 
1.278754 
1.301  03 

1.322219 

1-342423 
1. 361  728 

1.380211 
1-39794 


No.  I  Logarithm. 


26 

27 

28 

29 
30 

81 

32 
33 
34 
35 

36 
37 
38 

39 
40 

41 

42 

43 

44 

45 

46 

47 
48 

49 
50 


1.414973 
1. 431  364 

1.447  158 
1.462398 
1.477  121 

1.491  362 

1505  15 
1.518514 

1531  479 
1.544068 

1.556303 
1.568202 

1579784 
1.591  065 

1.60206 

1. 61 2  784 
1.623  249 
1.633468 

1.643453 
1.653  213 

1.662  758 
1.672098 
1.681  241 
1.690  196 
1.69897 


No. 


61 

52 
53 
54 
55 

56 
57 
58 

59 
60 

61 

62 

63 
64 
65 
66 
67 
68 

69 

70 

71 

72. 
73 
74 
75 


Logarithm. 


•70757 
.716003 

.724  276 

.732394 

•740363 

.74S188 

.755  875 
.763  428 
.770852 
.778  151 

•785  33 
.792  392 

•799341 
.80618 

.812  913 

.819544 
.826  075 
.832  509 
.838849 
.845098 

.851  258 

.857332 
•863  323 
.869232 
.875061 


No. 


00-  0000  0434  0868  1301  1734 

00-  4321  4751  5181  5609  6038 

00-  86   9026  9451  9876  — 

01-  —   —  —   -—03 
01-  2837  3259  368  41   4521 

01-  7033  7451  7868  8284  87 

02-  —   —  —   —   — 


02-  I 189 

02-  5306 

03-  9384 
03-  — 

03-  3434 

03-  7426 

04-  — 


1603  20l6 

5715  6125 
9789  — 
—  0195 

3826  4227 
7825  8223 


2428  2841 

6533  6942 


06  1004 
4628  5029 
862  9017 


04-  1393 

04-  5323 

04-  92x8 

05-  — 
05-  3078 

05-  6905 

06-  — 


1787  2183 

5714  6105 

9606  9993 

3463  3846 

7286  7666 


2576  2969 
6495  6885 


038  0766 

423  4613 
8046  8426 


76 

7*^ 
78 

79 
80 

81 
82 

83 
84 
85 
86 

87 
88 

89 
90 

91 

92 

93 
94 
95 

96 

97 

98 

99 
100 

8 


Logarithm. 


3166  2598  3029 
6466  6894  7321 

0724  1147  157 

494  536  5779 
9116  9532  9947 


3252  3664  4075 
735  7757  8164 


3461  3891 

7748  8174 

1993  2415 

6197  6616 

0361  0775 

4486  4896 

8571  8978 


1408  1812  2216 

543  583  623 

9414  9811  — 

—  —  0207 


3362  3755  4148 
727s  7664  8053 


2619  3021 
6629  7028 

o6o2  0998 

454  4932 
8442  883 


1153  1538  1924 
4996  5378  576 
8805  9185  9563 


2309  2694 

6142  6524 

9942  — 

—  032 


.880814 
.886491 
.892095 
.897  627 
.90309 

.908485 
.913  814 
.919  078 

.924279 
•929419 

.934498 

.939519 

.944483 

•94939 

.954243 

.959041 
.963788 

.968483 
•973  128 
.977  724 

.982  271 
.986772 
.991  226 

•995635 


D 

432 
438 

425 

424 
420 

417 
416 

412 

408 

40s 
404 
400 
398 
397 

393 
389 
388 

386 
383 
383 
379 


312 


LOOABITHMS  OF  NT^KBBBS. 


No. 
115 

0 

1    a    3    4 

I   5    6 

789 

D 

06- 

0698 

1075  1452  1829  2206  ,  2582  2958 

3333  3709  4083 

376 

ii6  1  o6- 
117  06- 

4458 
8186 

4832  5206  558  5953  6326  6699 

firr**  flrkoR  rvvoS  /W>M  >   

7071  7443  7815 

373 
380 

0557  0920  929"  yuuo  ,    —      — 

117  07- 

— 

■  0038  0407 

0776  1 145  1514 

370 

118 

07- 

1882 

225    2617  2985  3352  ,  3718  4085 

4451  4816  5182 

366 

119 
120 

07- 

5547 
9181 

5912  6276  664    7004 

7368  7731 

8094  8457  8819 

3^3 
362 

07- 

9543  9904  —   — 

X20 

08- 

— 

—   —  0266  0626 

0987  1347 

1707  2067  2426 

360 

121 

08- 

2785 

3144  3503  3861  4219 

4576  4934 

5291  5647  6004 

357 

122 

08- 
08- 

636 

6716  7071  7426  7781 

8136  849 

8845  9198  9552 

355 

123 

9905 

^■^   —   —   ^— 

355 

123 

09- 

— 

0258  061 1  0963  13 1 5 

1667  2018 

237  2721  3071 

353 

124 

09- 

3422 

3772  4122  4471  482 

5169  5518 

5866  6215  6562 

349 

126 

09- 

691 

7257  7604  7951  8298 

8644  899 

9335  9681  — 

348 

125 

10- 

—   _—   —   — 

—   — 

—   —  0026 

346 

126 

10- 

0371 

0715  1059  1403  1747 

2091  2434 

2777  3"9  3462 

343 

127 

10- 

3804  4146  4487  4828  5169 

551  5851 

6191  6531  6871 

341 

128 

10- 

721 

7549  7888  8227  8565 

8903  9241 

9579  9916  — 

338 

128 

II- 

— 

—   —   —   __ 

—   — 

—   —  0253 

337 

129 

II- 

059 

0926  1263  1599  1934 

227   2()OS 

294  3275  3609 

335 

180 

II- 

3943 

4277  4611  4944  5278 

56H  5943 

6276  6608  694 

,133 

131 

11- 

7271 

7603  7934  8265  859s 

8926  9256  9586  9915  — 

331 

»3i 

12- 

— 

—   —   —   — 

—   — _ 

—   —  0245 

330 

132 

12- 

0574 

0903  1231  156  1888 

2216  2544 

2871  3198  3525 

328 

133 

12- 

3852 

4178  4504  483  5156 

5481  5806  6131  6456  6781 

325 

134 

12- 

710S 

7429  7753  8076  8399 

8722  9045 

9368  969   — 

323 

134 

13- 

— ^ 

— *   ^—   —   ^— 

—   -^ 

—    —   C»I2 

323 

185 

13- 

0334 

065s  0977  1298  1619 

1939  226 

258   29    3219 

321 

136 

13- 

3539 

3858  4177  4496  4814 

5133  5451 

5769  6086  6403 

318 

137 
138 
138 

13- 

13- 
14- 

6721 
9879 

7037  7354  7671  7987 

8303  8618 

8934  9249  9564 

316 

0  r  ^ 

0194  0508  0822  1136 

145  1763  2076  2389  2702 

315 
314 

139 

14- 

3015 

3327  3639  3951  4263 

4574  4885 

5196  5507  5818 

3" 

140 

141 

14- 
14- 

6128 
9219 

6438  6748  7058  7367 

7676  7985  8294  8603  891 1 

309 
308 

9527  9^35 

~~~   """■ 

«^^        ^"^       ^"^^ 

141 

15- 

— — 

—    —   0142  0449 

0756  1063 

137   1676  1982 

307 

142 

15- 

2288 

2594  29   3205  351 

3815  412 

4424  4728  5032 

30s 

143 

15- 

5336  564  5943  6246  6549 

6852  7154 

7457  7759  8061 

303 

144 

15- 

8362  8664  8965  9266  9567 

9868  — 

302 

144 

l6- 

— 

— -    —    —   — 

—  0168 

0469  0769  1068 

301 

145 

16- 

1368 

1667  1967  2266  2564 

2863  3161 

346  3758  4055 

299 

146 

16- 

4353 

46s  4947  5244  5541 

5838  6134  643  6726  7022 

297 

M7 

16- 

7317 

7613  7908  8203  8497 

8792  9086  938  9674  9968 

295 

148 

17- 

0262 

0555  0848  1 141  1434 

1726  2019 

231 1  2603  2895 

293 

149 

17- 

3186  3478  3769  406  4351 

4641  4932 

5222  5512  5802 

291 

160 

17- 

6091 

6381  667  6959  7248 

7536  7825 

81 13  8401  8689 

289 

151 

17- 

8977  9264  9552  9839  — 

—   — 

—   -»   — 

287 

151 

18- 

— 

—   —   —  0126 

0413  0699  0986  1272  1558 

287 

152 

18- 

1844 

2129  2415  27   2985 

327  3555 

3839  4123  4407 

285 

153 

18- 

4691 

4975  5259  5542  5825 

6108  6391 

6674  6956  7239 

283 

154 

18- 

7521 

7803  8084  8366  8647 

8928  9209 

949  9771  — 

281 

154 

19- 

^— 

—   —   —   — 

—   — 

—   —  0051 

281 

Na 

0 

1    a    3    4 

5    6 

789 

I> 

LOOABTTHHS  OF  NIJMBEBS. 


313 


0333 

3125 

59 

8657 


0612 

3403 
6176 
8932 


0893  1 1 71  1451 

3681  3959  4237 

6453  6729  7005 

9206  9481  9755 


1397 

412 

6826 

9515 


167 

4391 
7096 

9783 


1943  2216  2488 

4663  4934  5204 
7365  7634  7904 


0051  0319  0586 
272  2986  3252 
5373  5638  5902 
801  8273  8536 
0631  0892  1 153 
3236  3496  3755 
5826  6084  6342 
84   8657  8913 


0449  0704  096  1 215  147 

2996  325  3504  3757  4011 

5528  5781  6033  6285  6537 

8046  8297  8548  8799  9049 


0799  1048  1297  1546 

3286  3534  3782  403 

5759  6cx>6  6252  6499 

8219  8464  8709  8954 


CX42 

2853 

5273 
7679 

0071 

2451 
4818 

7172 

9513 


[89  .  27- 
100  27- 


2074 

4389 
6692 

8982 


0908  1151  1395 

3338  358  3822 

5755  5996  6237 

8158  8398  8637 

0548  0787  1025 

2925  3162  3399 

529  5525  5761 

7641  787s  811 

998    -    - 

—  0213  0446 

2306  2538  277 

462  485  5081 

6921  7151  738 

9211  9439  9667 


1033  1261  1488  1 715  1942 

3301  3527  3753  3979  4205 

5557  5782  6007  6232  6456 

7802  8026  8249  8473  8696 

0035  0257  048  0702  0925 

2256  2478  2699  292  3141 

4466  4687  4907  5127  5347 

6665  6884  7104  7323  7543 

8853  9071  9289  9507  9725 


4 


8 


201 


173 

4514  4792 

7281  7556 


2289  2567  2846 
5069  5346  5623 
7832  8107  8382 


0029  0303 

2761  3033 

5475  5746 

8173  8441 


0577  085  1 124 
3305  3577  3848 
6016  5286  6556 
871  8979  9247 


0853  1121 

3518  3783 

6166  643 

8798  906 

1414  167s 

4015  4274 

66  6858 

917  94a6 


1388  1654 
4049  4314 
6694  6957 

9323  9585 
1936  2196 

4533  4792 
7"5  7372 
9682  9938 


1724  1979 

4264  4517 

6789  7041 

9299  955 


1795  2044 

4277  4525 
6745  6991 
9198  9443 


2234  2488 

477  5023 

7292  7544 

98  - 

—  005 

2293  2541 

4773  5019 

7237  7482 

9687  9933 


163S  1881 
4064  4366 

6477  6718 
8877  91 16 
1263  1501 

3636  3873 
5996  6232 

8344  8578 


2125  2368 

4548  479 

6958  7198 

9355  9594 

1739  1976 

4109  4346 

6467  6702 

88x2  9046 


192 1 

4579 
7221 

9846 
2456 

5051 
763 

0193 
2742 
5276 

7795 

03 
279 
5266 
7728 

0176 
261 

5031 

7439 

9833 
2214 

4582 
6937 
9279 


0679  0912 

3001  3233 

53"  5542 

7609  7838 

9895  - 

—  0123 

2169  2396 

443t  4656 

6681  6905 

892  9143 

1 147  1369 

3363  3584 

5567  5787 

7761  7979 

9943  — 

—  0161 


"44  1377 

3464  3696 

5772  6002 

8067  8296 

0351  0578 

2622  2849 

4882  5107 

713  7354 

9366  9589 

1591  1813 

3804  4025 

6007  6226 

8198  8416 


1609 

3927 
6232 

8525 

0806 

3075 
5332 
7578 
9812 

2034 
4246 
6446 

8635 


0378  059s  0813 


279 
278 

276 

27s 
274 

272 

371 
269 
268 
267 
266 
264 
263 
361 

259 
358 

257 
356 

25s 

253 
253 

251 

350 

249 
248 
246 
246 
245 

243 

242 

241 

239 
238 

237 

235 

234 

234 

233 
232 

230 

229 

228 
228 
227 
226 
225 
223 

222 
221 
220 
219 
218 
218 


314 


L06A£ITHM&  OF  NIJKBBB8. 


No. 


200 

20I 
202 
203 
204 
204 

806 

206 
207 
208 
209 

«10 

211 

212 
213 

214 

215 

2x6 
2x7 
218 
218 
219 

820 

221 

222 
223 
223 

224 

225 

226 
227 
228 
229 
229 

230 

231 
232 

233 
234 

234 

2a5 

236 

237 
238 


30-  103  1247  1464 
30-  3196  3412  3628 

30-  5351  5566  5781 
30-  7496  771  7924 

30-  963  9843  — 

31-  —   —  0056 

31-  1754  1966  2177 
31-  3867  4078  4289 
31-  597  618  639 

31-  8063  8272  8481 

32-  0146  0354  0562 


16811  1898 

3844  4059 

5996  621 1 

8137  8351 


2219  2426  2633 

4282  4488  4694 

6336  6541  674s 

838  8583  8787 


32 

32 

32 

32 

33-  —'   ~   —   — 
33-  0414  0617  0819  1022 


0268 

2389 

4499 

6599 
8689 

0769 

2839 

4899 

695 

8991 


0481 
26 

471 
6809 

8898 

0977 

3046 
5105 

7155 
9194 


33- 
33- 
33- 
33- 
34- 
34- 

34- 
34- 
34- 
34- 
35- 
35- 

35- 
35- 
35- 
35- 
35- 
36- 

36- 
36- 
36- 
36- 
36- 

37- 
37- 
37- 
37- 
37- 


2438  264  2842 

4454  4655  4856 

646  666  686 

8456  8656  8855 


1225 
3044  3246 

5057  5257 
706  726 

9054  9253 


0444  0642  0841 
2423  262  2817 

4392  4589  4785 
6353  6549  6744 
8305  85   8694 


1039  1237 

3014  3212 

4981  5178 

6939  7135 

8889  9083 


8 


2 1 14  2331  2547  2764 

4275  449»  4706  4921 

6425  6639  6854  7068 

8564  8778  8991  9204 


0693 

2812 
492 
7018 
9106 
1 184 

3252 
531 
7359 
9398 

1427 

3447 
5458 

7459 
9451 


0248  0442  0636 

2183  2375  2568 

4108  4301  4493 

6026  6217  6408 

7935  8125  8316 

9835  -   - 

—  0025  0215 

1728  191 7  2105 

3612  38   3988 

5488  5675  5862 

7356  7542  7729 

9216  9401  9587 


1435 

3409 

5374 

733 
9278 


0906  1118  133  1542 

3023  3234  3445  3656 

513  534  5551  576 

7227  7436  7646  7854 

9314  9522  973  9938 

1391  1598  1805  2012 

3458  3665  3871  4077 

5516  5721  5926  6131 

7563  7767  7972  8176 

9601  9805  —   — 

—  —  0008  021 1 
163  1832  2034  2236 

3649  385  4051 

5658  5859  6059 

7659  7858  8058 

965  9849  — 

—  —  0047 
1632  183  2028 

3606  3802  3999 

557  5766  5962 

7525  772  7915 

9472  9666  986 


298  I  217 
5136  216 
7282  215 

9417  313 
213 

212 


211 

210 
209 
208 
207 

206 

20s 
204 

204 
203 
202 


0829  1023 

2761  2954   3147 

4685  4876  '  5068 

6599  679  I  6981 

8506  8696  '  8886 


1 216  141   1603  1796 


3339  3532  3724 

526  5452  5643 

7172  7363  7554 

9076  9266  9456 


0404  0593  0783 

2294  2482  ,  2671 

4176  4363  4551 

6049  ^3^  '.  6423 

7915  8101  8287 

9772  9958 


239  37- 

239  I  38- 

240  38- 

241  38- 

242  38- 

243  38- 

244  38- 


1068  1253  1437 
2912  3096  328 
4748  4932  51 15 
6577  6759  6942 
8398  858  8761 


0972  1 161  135 

2859  3048  3236 
4739  4926  5113 
661  .6796  6983 
8473  8659  8845 


0143 
1991 

3831 


1622  1806 

3464  3647 

5298  5481  ;  5664 

7124  7306    7488 

8943  9124   9306 


0328  0513 

2175  236 

40X5  4198 

5846  6029 

767  7852 

9487  9668 


02 1 1  0392   0573 

2017  2197   2377 

3815  3995  4174 

5606  5785  5964 

739  7568  7746 


0754  0934  1 115 

2557  2737  2917 

4353  4533  4712 

6142  6321  6499 

7923  8xoi  8279 


1296  1476 
3097  3277 
4891  507 
6677  6856 
8456  8634 


4253  202 
626  '  201 
8257  200 

—  200 
0246  '  199 
2225  198 

4196  ,  197 

6157  I  190 
811   195 

—  I  194 
0054  194 
1989  193 

3916  I  493 
5834  192 

7744  I9» 
9646  190 

189 
189 

188 
188 
187 
186 
186 

0698  0883  X85 

2544  2728  184 

4382  4565  X84 

6212  6394  183 

8034  8216  182 

9849  — 
—  003  I 

1656  1837 

3456  3636 
5249  5428 

7034  7212 
8811  8989  ' 


1539 

3424 

5301 
7169 

903 


I 


8 


182 
x8i 

181 
180 
179 
178 
178 


LOGABITHMS   OF  NUMBSBS. 


315 


Ko. 


846  I  38-  9166  9343  952  9698  987s 


245 
246 

247 

248 

249 

350 

251 
251 
25a 

353 
254 
855 
256 

257 

257 
258 

259 
260 
261 
26a 
263 

2<^ 
264 

265 
266 
267 
a6S 
269 
269 

270 

271 
272 

273 
274 
875 

27s 
276 

277 
278 

279 
280 

281 
281 
282 
283 


39- 

39- 
39- 
39- 
39- 

39- 

39- 
40- 

40- 

40- 

40- 

40- 
40- 
40- 
41- 
41- 

41- 
41- 
41- 
41- 
41- 
42- 
42- 

42- 
4a- 
42- 
42- 

42- 
43- 
43- 
43- 
43- 
43- 
43- 
43- 
44- 
44- 
44- 
44- 
44- 

44- 
44- 
45- 
45- 
45- 


0935 
2697 

4452 
6199 

794 
9674 

140X 
3121 

4834 

654 
824 

9933 

162 

33 

4973 
6641 

8301 

9956 

1604 

3246 
4882 
6511 

8135 
9752 

1364 
2969 

4569 
6163 

7751 

9333 


1 1 12  1288 

2873  3048 

4627  4802 

6374  6548 

81 14  8287 

9847  - 

—  002 

1573  1745 

3292  3464 

5005  5176 

671  6881 

841  8579 


1464  1641 

3224  34 

4977  5152 

6722  6896 

8461  8634 


8 


0192  0365 

1917  2089 

3635  3807 

5346  5517 

7051  7221 

8749  8918 


0102  0271 

1788  1956 

3467  3635 

S14  5307 

6807  6973 

8467  8633 


044  0609 

2124  2293 

3803  397 

5474  5641 

7139  7306 

8798  8964 


0121  0286 

1768  1933 

341  3574 

5045  5208 

6674  6836 

8297  8459 

9914  — 

—  0075 

1525  1685 

313  329 

4729  4888 

6322  6481 

7909  8067 

9491  9648 


0451  0616 

2097  2261 

3737  3901 

5371  5534 

6999  7161 

86ai  8783 


0236  0398 

1846  2007 

345  361 

5048  5207 

664  6799 

8226  8384 

9806  9964 


0051  0228 

1817  1993 

3575  3751 

5326  5SOI 

7071  7245 

8808  8981 


0405 
2169 
3926 
5676 

7419 

9154 


0582 

2345 
4101 

585- 

7592 

9328 


07S9 
2521 

4277 

6025 

7766 

9501 


0538  07  n  0883  1056  1228 

2261  2433  2605  2777  2949 

3978  4149  432  4492  4663 

5688  5858  6029  6199  637 

7391  7561  7731  7901  807 

9087  9257  9426  9595  9764 


0777  0946  1 1 14  1283  1451 

2461  2629  2796  2964  3133 

4137  4305  4472  4639  4806 

5808  5974  6141  6308  6474 

7472  7638  7804  797  8135 

9129  9295  946  9625  9791 


0781  0945  III   1275  1439 

2426  259  2754  2918  308a 

4065  4228  439a  4555  4718 

5697  586  6023  6186  6349 

7324  7486  7648  7811  7973 

8944  9106  9268  9429  9591 


!  0559  072  0881  1042  1203 

'  2167  2328  2488  2649  2809 

i  377  393  409  4249  4409 

5367  5526  5685  5844  6004 

6957  71 16  7275  7433  7593 

,  854a  8701  8859  9017  9175 


0909  1066  1334 

248  2637  2793 

4045  4201  4357 

5604  576  5915 

7158  73>3  7468 

8706  8861  9di5 


1381  1538 

29s  3106 

4513  4669 

6071  6226 

7623  7778 

917  9324 


0249 
1786 
3318 

4845 
6366 

7883 
9392 


0403  0557 
194  2093 

3471  3624 


071 1  0865 
2247  24 

3777  393 


284  45- 

885  ,  45- 

286  I  45- 

287  '  45- 

288  45- 

288  46- 

289  t  46-  0898  X048  X198  1348  1499 


4997  515 

6518  667 

8033  8184 

9543  9694 


5302  5454 

6821  6973 

8336  8487 

9845  9995 


OI23  0279  0437  0594 

1695  1852  2o«9  2166 

3263  3419  3576  3732 

4825  4981  5137  5293 

6382  6537  6692  6848 

7933  8088  8242  8397 

9478  9633  9787  9941 


1018  1 1 72  1326  1479 

2553  2706  2859  3012 

4082  4235  4387  454 

5606  5758  591  6062 

7125  7276  7428  7579 

8638  8789  894  9091 


075a 

2323 
3889 

5449 
7003 

8553 

0095 
1633 
3165 
4692 

6214 

7731 
9242 


N& 


0146  0296  0447  0597  0748 
1649  1799  1948  2098  2248 


D 

177 
177 
176 
176 

175 
174 

173 
173 
173 
172 

171 
171 

170 

169 
169 
X69 
168 
167 
167 
166 
165 
165 
165 
164 

164 
163 
162 
162 
162 
161 
161 
160 

159 
159 
158 

158 
158 
J57 
X57 
156 
»55 

155 

154 

154 
154 
153 
153 
152 
152 
151 
151 
151 
150 


8 


3i6 


LOGABITHM^   OF  KUKBBBS. 


No. 

290 
291 
292 

393 
294 

296 

295 
296 

297 

298 

299 

800 

301 
302 

303 
304 


306 

307 
308 

309 
309 

810 

3" 
312 
313 
314 

8I0 

316 
316 

317 
318 

319 

880 

321 
323 
323 
323 

324 

826 

326 

327 
328 

329 

880 
331 
331 
332 
333 
334 

No. 


46-  2398  2548  2697  2847 

46-  3893  4042  4191  434 

46-  5383  5532  568  5829 

46-  6868  7016  7164  7312 

46-  8347  8495  8643  879 

46-  9822 

47-  — 
47--  1292 

47-  2756 
47-  4216 

47-  5671 


2997 

449 

5977 
746 

8938 


9969  —   —   — 

—  0116  0263  041 

1438  1585  1732  1878 

2903  3049  319s  3341 

4362  4508  4653  4799 

5816  5962  6107  6252 

7266  741 1  7555  77 

871 1  885s  8999  9143 

01 5 1  0294  0438  0582 

1586  1729  1872  2016 

3016  3159  3302  3445 


47-  7"i 
47-  8566 

48-  ooo^ 

48-  1443 
48-  2874 

48-  43  4442  4585  4727  4869 
48-  5721  5863  6005  6147  6289 
48-  7138  728  7421  7563  7704 
48-  8551  8692  8833  8974  9114 

48-  9958  ----- 

49-  —  0099  0239  038  052 


56789 

3146  3296  3445  3594  3744 

4639  4788  4936  5085  5234 

6126  6274  6423  6571  6719 

7608  7756  7904  8052  82 

9085  9233  938  9527  967s 


49-  1362 
49-  276 

49-  41SS 
49-  5544 
49-  693 

49-  831 I 
49-  9687 

so-  — 
50-  1059 
SO-  2427 
50-  3791 

SO-  515 
SO-  6505 
SO-  7856 

50-  9203 

51-  — 
51-  0545 


1S02  1642  1782  1922 

29   304  3179  3319 

4294  4433  4572  4711 

5683  5822  596  6099 

7068  7206  7344  7483 

8448  8s86  8724  8862 
9824  9962  — 
—   —  0099 
1 196  1333  147 
2564  27   2837 
3927  4063  4199 


5286  5421  S557 

664  6776  691 1 

7991  8126  826 

9337  9471  9606 


0236 
1607 

2973 
4335 

5693 
7046 

8395 
974 


0557  0704  o8si  0998  114s 

202s  2171  2318  2464  261 

3487  3633  3779  3925  4071 

4944  509  5235  5381  5526 

6397  6542  6687  6832  6976 

7844  7989  8133  8278  8422 

9287  9431  9575  9719  9863 

072s  0869  1012  iis6  1299 

2159  2302  2445  2588  2731 

3587  373  3872  401S  4157 

5011  5153  529s  5437  5579 

643  6572  6714  685s  6997 

784s  7986  8127  8269  841 

9255  9396  9537  9677  9818 


0661  0801  0941  X081  1223 


2062 

3458 

485 

6238 

7621 


2201 


2341 

3597  3737 
4989  S128 

6376  651s 

7759  7897 


2481  2621 

3876  4015 

S267  5406 

66S3  6791 

8035  8173 


8999  9137  9275  9412  955 


0374  0511  0648 

1744  188  2017 

3109  3246  3382 

4471  4607  4743 


0785  0923 

2IS4  2291 

3518  3655 

4878  5014 


0679  0813  0947  1081 


SI- 
51- 
51- 
51- 

SI- 
SI- 
52- 
52- 
52- 
52- 


1883 
3218 
4548 

5874 
7196 

8514 
9828 

1 138 
2444 
3746 


2017  21SI  2284 

3351  3484  3617 

4681  4813  4946 

6006  6139  6271 

7328  746  7592 

8646  8777  8909 

9959  —   — 
—  009  0221 

1269  14   153 

2575  2705  283s 

3876  4006  4136 


5828  5964  6099  6234  637 
7181  7316  7451  7586  772X 
853  8664  8799  8934  9068 
9874  —   -   —   — 
—  0009  0143  0277  04H 
1 215  1349  1482  1616  175 


2418  2551  2684 

375  I  3883  4016 
5079  '  5211  5344 
6403  6535  6668 
7724  7855  7987 


904 


0353 
1661 

2966 

4266 


2818  2951  3084 
4149  4282  4415 
5476  5609  5741 
68  6932  7064 
81 19  8251  8382 


9171  9303  9434  9566  9697 


0484  061S  0745  0876  1007 

1792  1922  2053  2183  2314 

3096  3226  3356  3486  3616 

4396  4526  4656  4785  4915 

56780 


[5^ 
[49 
[49 
[48 
148 

t47 
147 
[46 
[46 
t46 

145 

t45 
[44 

[44 

^3 
t43 

143 
14a 

141 
[41 
[40 
[40 

[40 

139 
139 
^39 
t38 

138 
137 
137 
t37 
136 
t36 

136 

^35 
^35 
134 
134 
^34 

^33 
t33 
^33 
t33 

133 

^31 
131 
131 
131 
130 
[JO 


LOOABITHHS   OF  IfTTMBBBS. 


317 


Na 

S86 

336 
337 
338 
338 
339 

S40 

341 
342 
343 
344 

146 

346 
346 
347 
348 

349 

850 

351 
352 
353 
354 
354 

865 

356 
357 
358 

359 

860 

361 
362 
363 
363 
364 

865 

366 

367 
368 

369 

870 

371 
371 
372 
373 
374 

876 

376 
377 
378 
379 

No. 


52-  5045 
52-  6339 
52-  763 

52-  8917 

53-  — 
53-02 

53-  1479 

53-  2754 
S3-  4026 

53-  5294 
53-  6558 

53-  7819 
53-9076 

54-  — 
54-  0329 
54-  1579 
54-  282s 

54-  4068 
54-  5307 
54-  6543 

54-  7775 
54-9003 

55-  — 

55-  0228 

55-  145 
55-2668 

55-  3883 
55-  5094 

55-  6303 
55-  7507 
55-  8709 

55-  9907 

56-  — 

56-  IIOI 

56-  2293 
56-  3481 
56-4666 
56-  5848 
56-  7026 

56-  8ao2 
56-  9374 


5174  5304  5434  5563 

6469  6598  6727  6856 

7759  7888  8016  8145 

9045  9174  9302  943 


0328  0456  0584  0712 

i6c7  1734  1863  199 

2882  3009  3136  3264 

4153  438  4407  4534 

5421  5547  5674  58 

6685  681 1  6937  7063 

7945  8071  8197  8322 

9202  9327  9452  9578 


0455  058  0705  083 

1704  1829  1953  2078 

295  3074  3199  3323 

4192  4316  444  4564 

5431  5555  5678  5802 

6666  6789  6913  7036 

7898  8021  8144  8267 

9126  9249  9371  9494 


0351  0473  059s  0717 

1572  1694  1816  1938 

279  2911  3033  3155 

4004  4126  4247  4368 

5215  5336  5457  5578 

6423  6544  6664  6785 

7627  7748  7868  7988 

8829  8948  9068  9188 


0026  0146  0265  0385 

1221  134  1459  1578 

2412  2531  265  2769 

36  3718  3837  3955 

4784  4903  S021  5139 

5966  6084  6202  632 

7144  7262  7379  7497 

8319  8436  8554  8671 

9491  9608  9725  9842 


57-  — 

57-  0543 

57-  1709 
57-  2872 

57-  4031 
57-  5188 
57-  6341 
57-  7492 
57-  8639 


066  0776  0893 

1825  1942  2058 

3988  3104  322 

4147  4263  4379 

5303  5419  5534 

6457  6572  6687 

7607  7722  7836 

8754  8868  8983 


zoi 

2174 

3336 

4494 

56s 

6802 


8 


5693  5823  5951 

6985  71 14  7243 

8274  8402  8531 

9559  9687  9815 


084  0968  1096 

2117  2245  2372 

3391  3518  3645 

4661  4787  4914 

5927  6053  618 

7189  7315  744X 

8448  8574  8699 

9703  9839  9954 


095s  108  1305 

3303  3337  3453 

3447  3571  3696 

4688  48x3  4936 

5935  6049  6172 

7159  7383  7405 

8389  8513  863s 

9616  9739  9861 


6081  631 

7372  7501 

866  8788 

9943  — 

—  0073 

1333  1331 

35  2637 

3772  3899 

5041  5167 

6306  6433 

7567  7693 

8835  8951 

0079  0204 

133  1454 

2576  2701 

382  3944 


506 
6296 

7529 
8758 

9984 


084  0963  1084 

206  3181  3303 

3276  3398  3519 

4489  461  4731 

5699  583  594 

6905  7036  7146 

8108  8338  8349 

9308  9438  9548 


1206 
2425 

3^ 
4852 

6061 


5183 
6419 

7653 

8881 

0106 

1328 

2547 
3762 

4973 
6182 


7267  7387 
8469  8589 
9667  9787 


0504  0624  0743 
1698  181 7  1936 


2887 
4074 
5257 
6437 
7614 

8788 
9959 


1 126 
2391 
3452 

461 

5765 
6917 


7951  8066 

9097  9313 


3006  3125 

4192  431 1 

5376  5494 

6555  6673 

7732  7849 

8905  9023 

0076  0193 

1243  1359 

2407  3523 

3568  3684 

4726  4841 

588  5996 

7032  7147 

8181  8295 

9326  9441 


0863  0982 

2055  2174 

3244  3362 

4429  4548 

5612  573 

6791  6909 

7967  8084 

914  9357 


0309 
1476 
2639 
38 

4957 
6111 

7363 

841 

9555 


0436 
1592 
2755 
3915 

5072 
6336 

7377 
8525 
9669 


4   I   5 


8 


139 

139 
129 
128 
128 

138 

138 
137 
137 

136 
136 

136 

126 
135 

125 

125 
124 

124 
1 124 

!  123 

:  123 
I  123 
i  123 

123 
122 
121 
121 
121 

I30 
I30 
120 
120 
119 
119 

H9 

119 
118 
118 
118 

117 

"7 
117 

117 

116 

116 

116 

"5 
"5 
"5 
"4 

D 


318 


LOGABITHMS  OF  NUKBSB8. 


No.  I      o 

88o|'s7-  9784 
380!  58 

381  '  58-  0925 

382  58-  2063 

383  I  58-  3199 

384  58-  4331 


386 

386 

387 
388 

389 
389 

890 

391 
392 
393 
394 


S8 

58 
58 
58 
58 
59 

59- 
59- 
59- 
59- 
59- 


9898 

1039 
2177 
3312 

5574 
67 

7823 

8944 


0012 

"53 
2291 

3426 
4557 

5686 
6812 

7935 
9056 


8 


0126  0241  0355  0469  0583  0697  081 1 

1267  1381  I  1495  1608  1722  1836  19s 

2404  2518  I  2631  274s  2858  2972  3085 

3539  3652  3765  3879  3992  410S  4218 


467  4783 


5461 

6587 
7711 
8832 

995   —   —   —   —^ 
I-  —  0061  0173  0284  0396 


4896  5009  5122  5235  5348 


5799  5912  6024  6137  625  6362  6475 
6925  7037  ,  7149  7262  7374  7486  7599 


8047  816 
9167  9279 


1065 
2177 
3286 

4393 
5496 

895  59-  6597 

396  I  59-  769s 

397  I  59-  8791 

398  .  59-  9883 

398  60-  — 

399  60-  0973 


60- 
60- 


400 

401 

402  I  60- 

403  i  60 

404  I  6o- 


40o 

406 
407 
407 
408 
409 

410 

4" 
412 

413 
4x4 

416 

416 
416 

417 
418 
419 

420 

421 
422 

423 
424 


60- 
60 
60- 
61- 
61' 
61- 

61- 
61- 
6i- 
61- 
61- 

61- 
61- 
62- 

62- 

62- 
62- 


2o6 

3144 

4226 

5305 

6381 

7455 
8526 

9594 


1 176  1287 

2288  2399 

3397  3508 

4503  4614 

5606  5717 

6707  6817 

7805  7914 

89  9009 

9992  — 

—  OIOI 

1082  1 191 

2169  2277 

3253  3361 

4334  4442 

5413  5521 

6489  6596 

7562  7669 

8633  874 

9701  9808 


1399  151 
251  2621 

3618  3729 

4724  4834 

5827  5937 

6927  7037 
8024  8134 
91 19  9228 


8272  8384  8496  8608  872 
9391  9503  9615  9726  9838 


0507  0619  073 

1621  1732  1843 

2732  2843  2954 

384  395  4061 

4945  5055  5165 

6047  6^57  ^^7 


0842  0953 

1955  2066 

3064  3175 
41 71  4282 
5276  5386 
6377  6487 


066  0767  0873 

1723  1829  19;^ 

2784  289  2996 

3842  3947  4053 

4897  5003  5108 

595  605s  616 

7  7105  721 

8048  8153  8257 

9093  9198  9302 


021  0319 

1299  1408 

2386  2494 

3469  3577 

455  4658 

5628  5736 

6704  681 1 

7777  7884 

8847  8954 

9914  — 

—  0021 

0979  1086 

2042  2148 

3ica  3207 

4159  4264 

5213  5319 

6265  637 

7315  742 

8362  8466 

9406  9SII 


0136 
1 176 
22x4 

62-  3249 
62-  4282 
62-  5312 
62-  634 
62-  73^ 


024  0344 

128  1384 

2318  2421 

3353  3456 

4385  4488 

5415  5518 

6443  6546 

7468  7571 


0448  0552 

1488  1592 

2525  2628 

3559  3663 

4591  4695 

5621  5724 

6648  6751 

7673  7775 


7146  7256  7366  7476  7586 
8243  8353  8462  8572  8681 
9337  9446  9556  9665  9774 


0428  0537  0646  0755  0864 

1517  1625  1734  1843  1951 

2603  271 1  2819  2928  3036 

3686  3794  3902  401  4 118 

4766  4874  4982  5089  5197 

5844  5951  6059  6166  6274 

6919  7036  7133  7241  7348 

7991  8098  8205  8312  8419 

9061  9167  9274  9381  9488 


0128 
119a 

2254 

3313 
437 
5424 
6476 

7525 

8571 
9615 


0234.  0341  0447  0554 

1298  1405  1511  16x7 

236  2466  2572  2678 

3419  3525  363  373^ 

4475  4581  4686  479a 

5529  5634  574  584s 

6581  6686  679  6895 

7629  7734  7839  7943 


8676  878 
9719  9824 


0656 

1695 
2732 

3766 

4798 
5827 

6853 
7878 


076  0864 

1799  1903 

2835  2939 

3869  3973 

4901  5004 

5929  6032 

6956  7058 

798  8082 


8884  8989 
9928  — 
—  0032 
0968  1073 
2007  211 
3042  3146 

4076  4x79 
5107  52 X 
6135  6238 
7 161  7263 
8x85  8387 

~0    9~ 


14 
^4 

14 
14 
13 
'3 

C3 

[2 
[2 
L2 

[2 

[2 

I 

[I 

;i 

[O 
[O 

[O 

[O 

[09 
[09 
[09 

[09 

[08 
[08 
[08 
[08 
[07 

107 
107 
[07 
107 
[06 
106 

[06 
[06 
105 
105 
105 

loS 
105 
104 
[04 

104 

103 

103 
103 
103 

t02 


LOGARITHMS  OF  NTTMBBBS. 


319 


426 

426 
426 
427 
438 
429 

4S0 

431 
433 
433 
434 

486 

436 
436 
437 
438 
439 

44« 

441 
443 

443 


446 

446 
446 

447 

448 

449 

460 

451 
453 
453 
454 

166 

456 
457 
457 
458 
459 

460 

461 
462 

463 
464 

166 

466 
467 
467 
468 
469 

Now  I 


62- 

62- 

63- 
63- 
63- 
63- 

63- 
63- 
63- 
^- 
63- 

63- 
63- 
64- 
64- 
64- 
64- 

64- 
64- 
64- 
64- 
64- 

64- 
64- 
65- 
65- 
65- 
65- 

65- 
65- 
65- 
65- 
65- 


8389  8491  8593  869s  8797 
941   9512  9613  9715  9817 


0428  053   0631  0733  0835 

1444  154s  1647  1748  1849 

3457  2559  266  2761  2862 

3468  3569  367   3771  3873 

4477  4578  4679  4779  488 

5484  5584  5685  5785  5886 

6488  6588  6688  6789  6889 

749  759  769  779  789 


8489  8589.  8689 
9486  9586  9686 


8789  8888 
9785  98S5 


0481  0581  068 

1474  1573  167a 

2465  2563  2662 

3453  3551  365 

4439  4537  4636 

5422  5^21  5619 

6404  6502  66 

7383*  7481  7579 

836  8458  8555 

9335  9432  953 


0779  0879 

1771  1871 

2761  286 

3749  3847 

4734  4832 

5717  5815 

6698  6796 

7676  7774 

8653  875 

9627  9724 


0308  0405  0502 

1278  1375  1472 

2246  2343  244 

32x3  3309  3405 

4177  4273  4369 

5138  5235  5331 

6098  6194  629 

7056  7152  7247 


65-  8011  8107  8202 

65-  8965  906  9155 

65-  99x6  —   — 

66-  —  0011  0106 
66-  0865  096  105s 

66-  1813  1907  80O2 

66-  2758  2832  2947 

66-  3701  3795  3889 

66-  4642  4736  483 

66-  5581  5675  5769 

66-  6518  66ia  6705 

66-  7453  7546  764 

66-  8386  8479  8572 

66-9317  941  9503 

67-  —  —   — 
67-  0246  0339  0431 

67-  1173  1265  1358 


0599  0696 

1569  1666 

2536  2633 

3502  3598 

446^  4562 

5427  5523 

6386  6482 

7343  7438 

8298  8393 

925  9346 


0201  0296 
"5  1245 
2096  2191 

3041  3135 
3983  4078 
4924  5018 
5862  5956 
6799  ^892 

7733  7826 
8665  8759 

9596  9689 


0524  0617 
»45«  1543 


8 


89  9002 
9919  — 

—  0021 
0936  1038 
1951  205a 
2963  3064 

3973  4074 

4981  S081 

5986  6087 

6989  7089 

799  809 

898S  9088 

9984  — 

—  0084 

0978  1077 

197  2009 

2959  3058 

3946  4044 

4931  5029 

5913  601 1 

6894  6992 

7872  7969 

8848  8945 

9821  99x9 


0703  089 

1762  x8s9 

273  2826 

3695  3791 

4658  4754 

5619  5715 

6577  6673 

7534  7629 

8488  8584 

9441  9536 


9104  9206  9308 

0x23  0224  0326 

1x39  1241  1342 

2x53  22SS  2356 

3x65  3266  3367 

4175  4276  4376 

5182  5283  5383 

6187  6287  6388 

7189  729   739 

8x9  829   8389 

9x88  9287  9387 

0x83  0283  0382 

1177  1276  X37S 

2x68  2267  2366 

3156  325s  3354 

4143  4242  434 

5x37  5226  5324 

6x1  6208  6306 

7089  7187  7285 

8067  8x65  8262 

9043  914  9237 

c»i6  0XX3  021 

0987  1084  1x81 

1956  2053  2x5 

2923  3019  31 16 

3888  3984  408 

485  4946  5042 

581  5906  6cx>2 

6769  6864  696 

7725  782  7916 

8679  8774  887 

9631  9726  982X 


0391  0486 

1339  1434 

2286  238 

323  3324 

4x72  4266 

51 12  5206 

605  6143 

6986  7079 

792  80x3 

8852  8945 

978a  987s 


07t  0803 
1636  1738 


0581  0676  0771 
1529  1623  1 7 18 
2475  2569  2663 

3418  3513  3607 

436  4454  4548 

5299  5393  5487 
6237  6331  6424 

7x73  7266  736 

8x06  8x99  8293 
9038  9x31  9224 
9967  —   — 

—  006  0x53 
0895  0988  X08 
1831  1913  2C05 

780 


D 

X03 
X02 
X02 
X03 
XOI 
XOI 

lOI 
XOI 
XOO 
XOO 
100 

XOO 
XOO 

99 
99 
99 
99 

99 
98 

^ 
98 

98 

97 
97 
97 
97 
97 
97 

^ 

96 

96 

95 
95 
95 
95 
95 
95 

94 
94 
94 
94 
94 

93 
93 
93 
93 
93 
93 

D 


320 


LOGABITHMS  OF  KUHBBBd. 


No. 

0 

1 

2 

3 

4 

5 

6 

789 

470 

67- 

2098 

219 

2283 

2375 

2467 

256 

2652 

2744  2836  2929 

471 

67- 

3021 

3"3 

3205 

3297 

339 

3482 

3574 

3666  3758  385 

472 

67- 

3942 

4034 

4126  4218 

431 

4402 

4494 

4586  4677  4769 

473 

67- 

4861 

4953 

5045 

5137 

5228 

532 

5412 

5503  5595  5687 

474 

67- 

5778  587 

5962  6053  6145 

6236  6328  6419  65 1 1  6602 

475 

67- 

6694  6785  6876  6968 

7059 

7^51 

7242 

7333  7424  7516 

476 

67- 

7607 

7698 

7789  7881 

7972 

8063  8154  824s  8336  8427 

477 

67- 

8518  8609  87 

8791 

8882 

8973  9064 

915s  9246  9337 

478 

67- 

9428 

9519 

961 

97 

9791 

9882 

9973 

—       —   -  - 

478 

68- 

— 

— 

— 

— 

— 

— 

— 

0063  0154  0245 

479 

68- 

0336 

0426 

0517 

0607  0698 

0789  0879 

097  106  1 151 

480 

68- 

1 241 

1332 

1422 

1513 

1603 

1693 

1784 

1874  1964  2055 

481 

68- 

2145 

2235 

2326 

24x6 

2506 

2596 

2686 

3777  3867  2957 

482 

68- 

3047 

3137 

3227 

3317 

3407 

3497 

3587  3677  3767  3857  1 

483 

68- 

3947 

4037 

4127 

4217 

4307 

4396  4486  4576  4666  4756  1 

484 

68- 

484s 

4935 

5025 

5"4 

5204 

5294 

5383 

5473  5563  5652 

486 

68- 

5742 

5831 

5921 

601 

61 

6189  6279  6368  6458  6547 

486 

68- 

6636  6726  6815  6904  6994 

7083 

7172 

7261  7351  744 

487 

68- 

7529 

7618 

7707 

7796  7886 

7975 

8064 

8153  8242  8331 

488 

68- 

842 

8509  8598  8687  8776 

8865  8953 

9042  9131  922 

489 

68- 

9309 

9398  9486 

9575 

9664 

9753 

9841 

993   —   — 

489 

69- 

—— 

— 

-^ 

— ^ 

— - 

~^ 

-^ 

—  0019  0107 

490 

69- 

0196 

0285 

0373 

0462 

055 

0639  0728 

0816  0905  0993 

491 

69- 

1081 

117 

1258 

1347 

1435 

1524 

1612 

17   1789  1877 

492 

69- 

1965 

2053 

2142 

223 

2318 

2406 

2494 

2583  2671  2759 

493 

69-  2847 

2935 

3023 

3"i 

3199 

3287 

3375 

3463  3551  3639 

494 

69- 

3727 

3815 

3903 

3991 

4078 

4166 

4254 

4342  443  4517 

495 

69-  4605  4693  4781 

4868  4956 

5044 

5131 

5219  5307  5394 

496 

69-  5482 

5569  5657 

5744 

5832 

5919 

6007  6094  6182  6269  1 

497 

69-  6356  6444  6531 

6618 

6706 

6793 

688 

6968  7055  7142 

498 

69- 

7229 

7317 

7404 

7491 

7578 

7665 

7752 

7839  7926  8014 

499 

69- 

8101 

8188 

8275  8362  8449 

8535 

8622 

8709  8796  8883 

600 

69-  897 

9057 

9144 

9231 

9317 

9404 

9491 

9578  9664  9751 

501 

69-9838 

9924 

— 

— 

— 

— 

— 

—   ___   — 

501 

70- 

— 

— 

001 1 

0098 

0184 

0271 

0358 

0444  0531  0617 

502 

70- 

0704 

079 

0877  0963 

los 

1 136 

1222 

1309  1395  1482 

503 

70- 

1568 

1654 

1 741 

1827 

1913 

1999 

2086 

2172  2258  2344 

504 

70-  2431 

2517 

2603 

2689 

2775 

2861 

2947 

3033  3119  3205 

606 

70-  3291 

3377 

3463 

3549 

3635 

3721 

3807  3893  3979  4065 

S06 

70-  4151 

4236 

4322 

4408 

4494 

4579 

4665 

4751  4837  4922 

S07 

70- 

5008 

5094 

5179 

5265 

535 

5436 

5522 

5607  5693  5778 

508 

70- 

5864 

5949 

6035 

612 

6206 

6291 

6376  6462  6547  6632  1 

509 

70- 

6718  6803 

6888 

6974 

7059 

7144 

7229 

7315  74   7485 

510 

70- 

757 

7655 

774 

7826 

79" 

7996 

8081 

8166  8251  8336 

511 

70- 

8421 

8506  8591  8676  8761 

8846  8931 

9015  91   918s 

512 

70-  927 

9355 

944 

9524 

9609 

9694 

9779 

9863  9948  — 

512 

71- 

— 

— 

— 

— 

— 

— 

— 

—   —  00.1^ 

5x3 

71- 

OH7 

0202 

0287 

0371 

0456 

054 

0625 

071  0794  0879 

514 

71- 

0963 

1048 

1 132 

1217 

1301 

138s 

147 

1554  1639  1733 

Na 

0 

1 

a 

3 

4 

5 

6 

789 

93 
93 
92 
92 
93 

91 
91 
91 
91 
91 
91 

90 

90 
90 
90 
90 

89 
89 
89 
89 
89 
89 

89 

88 
88 
88 
88 

88 
87 
87 
87 
87 

87 

87 

87 
86 

86 

86 

86 
86 

86 

8S 

85 

8S 
85 
85 
8S 
85 
84 


L06ABITHMS   OF  KT7MBBBB. 


321 


No. 

515 

516 

517 
518 

519 
620 

522 

523 
524 
524 

525 

526 

527 
528 

529 

580 

53« 
532 
533 
534 

535 

536 
537 
537 
538 
539 

640 

541 
542 

543 
544 

545 

546 
547 
548 

549 
549 

650 

551 
552 
553 
554 

655 

556 

557 
558 
559 


1807  1892  1976  206  2144 

26(5  2734  2818  2902  2986 

3491  3575  3659  3742  3826 

433  4414  4497  458i  4665 


8 


71 
71 
71 
71 
71-  5167  5251  5335  5418  5502  5586  5669  5753  5836  592  ,  84 


2229  2313  2397  2481  2566  1  84 

307  3154  3238  3323  3407  84 

391  3994  4078  4162  4246  84 

4749  4833  4916  5  5084  84 


71- 
71- 
71- 
71- 
71- 
72- 

72- 

72- 
72- 
72- 
72- 

72- 
72- 

72- 
72- 
72- 

72- 
72- 
72- 
73- 
73- 
73- 

73- 
73- 
73- 
73- 
73- 

73- 
73- 
73- 
73- 
73- 
74- 

74- 
74- 
74- 
74- 
74- 

74- 
74- 
74- 
74- 
74- 


6003  6087  617  6254  6337 

6838  6921  7004  7088  7171 

7671  7754  7837  792  8003 

8502  8585  8668  8751  8834 

9331  9414  9497  958  9663 


0159  0242  0325  0407  049 

0986  1068  1151  1233  1316 

181 1  1893  1975  2058  214 

2634  2716  2798  2881  2963 

3456  3538  362  3702  3784 

4276  4358  444  4522  4604 

5095  5176  5258  534  5422 

5912  5993  6075  6156  6238 

6727  6809  689  6972  7053 

7541  7623  7704  7785  7866 

8354  8435  8516  8597  8678 

9165  9246  9327  9408  9489 

9974  —   —  —   — 

—  CXD55  0136  0217  0298 

0782  0863  0944  1024  1 105 

1589  1669  175  183  191 1 


2394  2474  2555  2635  271S 

3197  3278  3358  3438  3518 

3999  4079  416  424  432 

48  488  496  504  512 

5599  5679  5759  5838  59i8 

6397  6476  6556  6635  6715 

7193  7272  7352  7431  751 1 

7987  8067  8146  8225  8305 

8781  886  8939  9018  9097 

9572  9651  9731  981  9889 


0363  0442  0521  06  0678 

1 152  123  1309  1388  1467 

1939  2018  2096  2175  2254 

2725  2804  2882  2961  3039 

351  3588  3667  3745  3823 

4293  4371  4449  45^8  4606 

5075  5153  5231  5309  5387 


6421  6504  6588  6671  6754 

7254  7338  7421  7504  7587 

8086  8169  8253  8336  8419 

8917  9    9083  9165  9248 

9745  9828  991 1  9994  — 
—   —   —   —  OQ77 

0573  0655  0738  0821  0903 

1398  1481  1563  1646  1728 

2222  2305  2387  2469  2552 

3045  3127  3209  3291  3374 

3866  3948  403  41 12  4194 

4685  4767  4849  4931  S013 

5503  5585  5667  5748  583 

632  6401  6483  6564  6646 

7134  7216  7297  7379  746 

7948  8029  811  8191  8273 

8759  8841  8922  9003  9084 

957  9651  9732  9813  9893 


0378  0459  054  0621  0702 

1186  1266  1347  1428  1508 

1991  2072  2152  2233  2313 

2796  2876  2956  3037  3117 

3598  3679  3759  3839  3919 

44  448  ^  456  464  472 

52  5279  5359  5439  55^9 

5998  6078  6157  6237  6317 

6795  6874  6954  7034  7113 

759  767  7749  7829  7908 

8384  8463  8543  8622  8701 

9177  9256  9335  9414  9493 
9968  ~   -   -   - 

—  0047  0126  0205  0284 

0757  0836  0915  0994  1073 

1546  1624  1703  1782  186 

2332  2411  2489  2568  2647 

31 18  3196  3275  3353  3431 

3902  398  4058  4136  4215 

4684  4762  484  4919  4997 

5465  5543  5621  5699  5777 


5855  5933  601 1  6089  6167  6245  6323  6401  6479  6556 
6634  6712  679  6868  6945  7023  7101  7179  7256  7334 
7412  7489  7567  7645  7722  j  78   7878  7955  8p33  811 

V1234I56799 


83 
83 
83 
83 
83 
83 

83 
82 

82 

82 
82 

82 
82 
82 
81 
81 

81 
81 
81 
81 
81 
81 

80 
80 
80 
80 
80 

80 

79 
79 
79 
79 
79 

79 
79 
79 
78 
78 

78 
78 
78 
78 
78 


322 


LUGABITHMS   OF   NUHBBBS. 


No. 
660 

0    1    a    3    4  ^ 

56789 

D 

74-  8188  8366  8343  8431  8498 

8576  8653  8731  8808  888s 

77 

S6i  74-  8963  904  9118  9195  9273 

935  9427  95<H  9582  9659 

77 

562  74-  9736  9814  9891  9968  — 

77 

562  75-  —   —   —   —  0045 

0133  03   0377  0354  0431 

77 

563  75-  0508  0586  0663  074  0817 

0894  .0971  IG48  1 135  I303 

77 

564  75-  1279  1356  1433  151  1587 

1664  1741  1818  1895  1973 

77 

665  75-  2048  2125  2203  2379  2356  2433  2509  2586  2663  «74 

77 

566  75-  2816  2893  297  3047  3123 

32   3277  3353  343  35o6  .  77 

567  75-  3583  366  3736  3813  3889 

3966  4042  4"9  4^95  4272  ;  77 

568 

75-  4348  442s  4501  4578  4^54 

473  4807  4883  496  5036  ,  76 

569 

75-  5112  5189  5265  5341  5417 

5494  557  5646  5722  5799 

76 

570 

75-  5875  5951  6027  6103  618 

^56  6333  6408  6484  656 

76 

571 

75-  6636  6713  6788  6864  694 

7016  7093  7168  7344  733 

76 

572 

75-  7396  7472  7548  7624  77 

7775  7851  7927  8003  8079  1  76 

573 

75-  8155  823  8306  8382  8458 

8533  8609  8685  8761  8836  1  76 

574 

75-  8913  8988  9063  9139  9214 

929  9366  9441  9517  9592 

76 

576 

75-  9668  9743  9819  9894  997 

76 

575 

76-  -   -   -   -   - 

0045  OI2I  0196  0272  0347 

75 

576 

76-  0422  0498  0573  (^9  0724 

0799  0875  095   1025  IIOI 

75 

577 

76-  1J76  1251  1326  1403  1477 

1552  1627  1702  1778  1853 

75 

578 

76-  1928  2003  2078  3153  3228 

2303  2378  2453  2529  2604 

75 

579 

76-  2679  2754  2829  2904  2978 

3053  3128  3203  3278  3353 

75 

580 

76-  3428  3503  3578  3653  3737 

3802  3877  3952  4027  4101 

75 

581 

76-  4176  4251  4326  44   4475 

455  4624  4699  4774  4848  75 

582 

76-  4923  4998  5072  5147  5221 

5296  537  5445  552  5594  75 

583 

76-  5669  5743  5818  5893  5966 

6041  61 15  619  6264  6338  .  74 

584 

76-  64.13  6487  6563  6636  671 

6785  6859  6933  7007  7082  1  74 

685 

76-  7156  723  7304  7379  7453 

7527  7601  7675  7749  7823  74 

586 

76-  7898  7973  8046  8i3  8x94 

8268  8343  8416  849  8564  74 

587 

76-  8638  8713  8786  886  8934 

9008  9083  9156  933  9303  74 

588 
588 

76-  9377  9451  9525  9599  9^73 

^^—    ■       ^^.     ^^     ^^_     ^^_ 

9746  983  9894  9968  —  ,  74 

■^^w       ■v^v*       ^^^K       -         ^^^\A^%            mm  M 

77   —   —   —   —   — 

—    —    —    —   0043  ,  74 

589 

77-  01 15  0189  0363  0336  041 

0484  0557  0631  0705  0778   74 

690 

77-  0853  0926  0999  »«>73  1^46 

133  1293  1367  144  1514  74 

591 

77-  1587  1661  1734  1808  1881 

1955  2038  3 102  3175  3348  ,  73 

592 

77-  2322  2395  2468  3543  2615 

3688  3763  3835  3908  3981  .  73 

593 

77-  3055  3128  3201  3274  3348 

3421  3494  3567  364  37x3  73 

594 

77-  3786  386  3933  4006  4079 

4153  4325  4398  4371  4444  73 

L 

506 

77-  4517  459  4663  4736  4809 

4883  4955  S038  51   5173  73 

596 

77-  5246  5319  5392  5465  5538 

561  5683  5756  5839  5903  73 

597 

77-  5974  6047  613  6193  6365 

6338  6411  6483  6556  6629  73 

598 

7064  7137  7209  7383  7354  73 

599 

77-  7427  7499  7572  7644  7717 

7789  7863  7934  8006  8079  7a 

600 

77-  8151  8334  8396  8368  8441 

8513  8585  8658  873  8803  73 

601 

77-  8874  8947  9019  9091  9163 

9236  9iy>8  938  9452  9534  ,  7a 

603 

77-  9596  96^  9741  9813  9885 

9957  —   —   —   —  '  7a 

603 

78 —   —   —   — 

—  0039  o'o*  0173  0245  7a 

603 

78-  0317  0389  0461  0533  0605 

0677  07^9  0831  0893  0965  73 

604 

78-  IQ37  1109  1 181  1353  1334 

1396  1408  154  1613  1684 

7a 
D 

No. 

•    •    «    I    4 

S    «    7    8    0 

LOGABITHMS  OF  NUMBBBS. 


323 


No. 

«05 

606 
607 
608 
609 

610 

611 
612 
613 
614 

616 

616 
616 
617 
618 
619 

3S0 
621 
622 
623 
624 

686 

626 
627 
628 
629 

680 

631 
632 

633 
634 
685 

636 

637 
638 

639 

640 
641 
642 

643 
644 

646 

645 
646 

647 

648 

649 

660 

651 
652 

654 
Na 


1755 
2473 
3189 
3904 
4617 

533 
6041 

6751 
746 

8168 


78- 
78- 
78- 
78- 
78- 

78- 
78- 
78- 
78- 
78- 

78-  8875 

78-  9581 

79-  — 
79-  0285 
79-  0988 
79-  1691 

79-  239a 
79-  3093 
79-  379 
79-  4488 

79-  5185 
79-  588 
79-  6574 
79-  7268 
79-  796 
79-  8651 

79-  9341 

80-  0029 

80-  0717 
80-  1404 
8cH  2089 

80-  2774 

80-  3457 
80-  4139 
80-  4821 
80-  5501 

80-  618 
80-  6858 

80-  7535 
80-  821 I 
80-  8886 

80-  956 

81-  — 
I-  0233 
I-  0904 
I-  1575 

I-  2245 

I-  2913 
1-  3581 
i>  4348 

I-  4913 
I-  5578 


1827  1899 

2544  2616 

326  3332 

3975  4046 

4689  476 

5401  5472 

6112  6183 

6822  6893 

7531  7602 

8239  831 

8946  9016 

9651  9722 


1 97 1  2042 

2688  2759 

3403  3475 

4118  4189 

4831  4902 

5543  561S 

6254  632s 

6964  7035 

7673  7744 

838X.  8451 

9087  9157 

9792  9863 


0356  0426  0496  0567 

1059  1 129  1 199  1269 

1 761  1831  1901  197X 

2462  2532  2602  2672 

3162  3231  330I  3371 

386  393  4  407 

4558  4627  4697  4767 

5254  5324  5393  5463 

5949  60x9  6088  6x58 

6644  67x3  6782  6852 

7337  74^  7475  7545 

8029  8098  8167  8236 

872  8789  8858  8927 

9409  9478  9547  9616 

0098  0167  0236  0305 

0786  0854  0923  0992 

1472  X541  X609  X678 

2x58  2226  2295  2363 

2842  291  2979  3047 

3525  3594  3662  373 

4208  4276  4344  44x2 

4889  4957  5025  5093 

5569  5637  5705  5773 

6248  6316  6384  645X 

6926  6994  7061  7129 

7^3  767  7738  7806 

8279  8346  84x4  848X 

8953  9021  9088  9x56 

9627  9694  9762  9829 


03  0367 

097X  X039 

1642  X709 

23x2  2379 

298  3047 

3648  37H 

4314  4381 

498  5046 

5644  571 1 


0434  0501 

XX06  XX73 

X776  X843 

2445  2512 

3XX4  3x8x 

3781  3848 

4447  4514 

5113  5179 

5777  5843 


8 


21x4  2x86  2258 

2831  2902  2974 

3546  3618  3689 

4261  4332  4403 

4974  504s  5"6 

5686  5757  5828 

6396  6467  6538 

7x06  7x77  7248 

781S  7885  7956 

8522  8593  8663 

9228  9299  9369 

9933  —   — 

—  0004  0074 

0637  0707  0778 

134  X4X   148 

2041  2XXI  21S1 

2743  28x2  2882 

3441  35H  3581 

4139  4209  4279 

4836  4906  4976 

5532  5602  5672 

6^27  6297  6366 

6921  699  706 

7614  7683  7752 

8305  8374  8443 

8996  9065  9134 

9685  9754  9823 

0373  0442  05 1 1 

X061  X129  XX98 

X747  1815  X884 

2432  25   2568 

3xx6  3184  3252 

3798  3867  3935 

448  4548  4616 

5x61  5229  5297 

5841  5908  5976 

6519  6587  6655 

7x97  7264  7332 

7873  7941  8008 

8549  8616  8684 

9223  929  9358 

9896  9964  — 

—  —  003X 
0569  0636  0703 
X24  X307  1374 
X9X  X977  2044 
2579  2646  27x3 

3247  3314  3381 

39M  3981  4048 

458X  4647  4714 

5246  5312  5378 

591  5976  6043 


2329  240X  73. 

3046  3x17  72 

3761  3832  7« 

4475  4546  71 

5187  .5259  71 

5899  597  7» 

6609  668  71 

7319  739  71 

8027  8098  71 

8734  8804  71 

944  95«  71 

—   —  70 

0x44  02x5  70 

0848  0918  70 

X55  x63  70 

2252  232a  70 

2952  3022  70 

3651  3731  70 

4349  '4418  70 

5045  5"5  70 

574X  581 X  70 

6436  6505  69 

7129  7198  69 

782  X  789  69 

8513  8582  69 

9203  9272  69 

9892  9961  69 

058  0648  69 

1266  X335  69 

1952  2021  69 

2637  2705  69 

3321  3389  68 

4003  407  X  68 

4685  4753  68 

5365  5433  68 

6044  61 12  68 

6723  679  68 

74   7467  68 

8076  8x43  68 

8751  8818  67 

9425  9492  67 

^   ~  67 

0098  0165  67 

077  0837  67 

X441  X508  67 

2XXX  2178  67 

278   2847  67 

3448  3514  67 

4II4  4181  67 

478   4847  67 

5445  55"  66 

6109  6x75  66 

~9       0  sT 


324 


LOOABITHMS   OF  KUMBEBfi. 


No. 


9     I    D 


666 

81- 

6241  6308  6374  644  6506 

6573  6639  6705  6771  6838  ' 

66 

656 

81- 

6904  697  7036  7102  7169 

7235  7301  7367  7433  7499 

66 

657 

81- 

7565  7631  7698  7764  783 

7896  7962  8028  8094  816  i 

66 

658 

8i- 

8226  8292  8358  8424  849 

8556  8622  8688  8754  882 

66 

659 

81- 

8885  8951  9017  9083  9149 

9215  9281  9346  9412  9478 

66 

660 

81- 

9544  961  9676  9741  9807 

9873  9939  —   --   — 

66 

660 

82- 

—   —   ^   —   -•- 

—   —  0004  007  0136 

66 

661 

82- 

0201  0267  0333  0399  0464 

053  059s  <j66i  0727  0792 

66 

662 

82- 

0858  0924  0989  1055  I" 

1 186  1251  1317  1382  1448 

66 

663 

82- 

1514  1579  1645  171   1775 

184 1  1906  1972  2037  2103 

65 

66i 

82- 

2168  2233  2299  2364  243 

2495  256  2626  2691  2756 

65 

665 

82- 

2822  2887  2952  3018  3083 

3148  3213  3279  3344  3409 

65 

666 

82- 

3474  3539  3605  367  3735 

38   3865  393  3996  4061 

6S 

667 

82- 

4126  41 91  4256  4321  4386 

4451  4516  4581  4646  471 1 

65 

668 

82- 

4776  4841  4906  4971  5036 

5101  5166  5231  5296  5361 

65 

669 

82- 

5426  5491  5556  5621  5686 

5751  5815  588  5945  601 

65 

670 

82- 

6075  614  6204  6269  6334 

6399  6464  6528  6593  6658 

65 

671 

82- 

6723  6787  6852  6917  6981 

7046  7111  7175  724  7305 

65 

672 

82- 

"7369  7434  7499  7563  7628 

7692  7757  7821  7886  7951 

65 

673 

82- 

8015  868  8144  8209  8273 

8338  8402  8467  8531  8595 

64 

674 

82- 

866  8724  8789  8853  8918 

8982  9046  91 1 1  9175  9239 

64 

636 

82- 

9304  9368  9432  9497  9561 

9625  969  9754  9818  9882 

64 

676 

82- 

rf'W<4  T       ,         ^^_       «^^       ^^i- 

64 

9947  —   —   —   — 

676 

83- 

—  0011  007s  0139  0204 

0268  0332  0396  046  0525 

64 

677 

83- 

0589  0653  0717  0781  0845 

0909  0973  1037  1 102  1 166 

64 

678 

83- 

123  1294  1358  1422  i486 

155  1614  1678  1742  1806 

64 

679 

83- 

187  1934  1998  2062  2126 

2189  2253  2317  2381  244s 

64 

680 

83- 

2509  2573  2637  27   2764 

2828  2892  2956  302  3083 

64 

681 

83- 

3147  3211  327s  3338  3402 

3466  353  3593  3657  372i 

64 

682 

83- 

3784  3848  39"  3975  4039 

4103  4x66  423  4294  4357 

64 

683 

83- 

4421  4484  4548  461 1  4675 

4739  4802  4866  4929  4993 

64 

684 

83- 

5056  512  5183  5247  531 

5373  6437  55   5564  5627 

63 

685 

83- 

5691  5754  5817  5881  5944 

6007  6071  6134  6197  6261 

63 

686 

183- 

6324  6387  6451  6514  6577 

6641  6704  6767  683  6894 

63 

687 

83- 

6957  702  7083  7146  721 

7273  7336  7399  7462  7525 

63 

688 

83- 

7588  7652  7715  7778  7841 

7904  7967  803  8093  8156 

63 

689 

83- 

8219  8282  8345  8408  8471 

8534  8597  866  8723  8786 

63 

690 

83- 

8849  8912  8975  9038  910X 

9164  9227  9289  9352  9415 

63 

691 

83- 
84- 

9478  9541  9604  9667  9729 

9792  9855  9918  9981  — 

63 

—   —   —   —  0043 

692 

84 

0106  0169  0232  0294  0357 

042  0482  0545  0608  0671 

63 

693 

84- 

0733  0796  0859  0921  0984 

1046  1109  1172  1234  1297 

63 

694 

84- 

1359  1422  1485  1547  161 

1672  1735  1797  186  1922 

;63 

696 

84- 

1985  2047 '211  2172  2235 

2297  236  2422  2484  2547 

62 

696 

84- 

2609  2672  i734  2796  2859 

2921  2983  3046  3108  317 

62 

697 

84- 

3233  3295  3357  342  3482 

;  3544  3606  3669  3731  3793 

62 

1 

698 

84- 

3855  3918  398  4042  4104 

4166  4229  4291  4353  4415 

!  62 

699 

84- 

4477  4539  4601  4664  4726 

;  4788  485  4912  4974  5036 

i  62 

700 

84- 

5098  516  5222  5284  5346 

5408  547  5532  5594  5656 

63 

701 

84- 

5718  578  5842  5904  5966 

6028  609  6151  6213  6275 

6a 

702 

84- 

6337  6399  6461  6323  6585 

6646  6708  677  6832  6894 

i  62 

703 

84- 

•  6955  7017  7079  7141  7202 

7264  7326  7388  7449  75 1 1 

62 

704 

84- 

■  7573  7634  7696  7758  7819 

7881  7943  8004  8066  8127 

6a 

No. 

•    t    9    9    A 

S    6    7    8    9 

D 

LOGARITHMS  OF  lOJMBSBS. 


32s 


Ko. 

706 

706 
707 
708 
709 

710 

711 
712 

713 
714 

715 

716 

717 
718 
719 

720 

721 
722 

723 
724 

724 

726 

726 
727 
728 
729 

7S0 

731 
732 
733 
734 
785 
736 
737 
738 
739 
740 
741 
741 
742 

743 
744 
745 

746 

747 
748 

749 
750 

751 
752 
753 
754 

Na 


4* 


8 


84-  8189  8251  831a  8374  8435 

84-  8805  8866  8928  8989  9051 

84-  9419  9481  9542  9604  9665 

85-  0033  0095  0156  0217  0279 
85-  0646  0707  0769  083  0891 

85-  1258  132  1381  1442  1503 
8s-  187  1931  1992  2053  21 14 
85-  248  2541  2602  2663  2724 

85-  309  31S  321 1  3272  3333 
85-  3698  3759  382  3881  3941  , 

85-  4306  4367  4428  4488  4549 

85-  4913  4974  5034  5095  5156 

85-  5519  558  564  5701  5761 

85-  6124  6185  6245  6306  6366 

85-  6729  6789  685  691  697 

85-  7332  7393  7453  75»3  7574 

85-  7935  7995  805^  81 16  8176 

85-  8537  8597  8657  8718  8778 

85-  9138  9198  9258  9318  9379 

85-  9739  9799  9859  99i8  9978 
86- 


86-  0338 
86-  0937 

86-  1534 
86-  2131 
86-  2728 

86-  3323 
86-  3917 
86-  4511 
86-  5104 
86-  5696 

86-  6287 
86-  6878 
86-  7467 
86-  8056 
86-  8644 

86-  9232 

86-  9818 
87 

87-  0404 
87-  0989 

87-  1573 
87-  2156 
87-  2739. 
87-  3321 
87-  3902 
87-  4482 

87-  5061 

87-  564 
87-  6218 
87-  6795 
87-  7371 


0398  0458  0518 

0996  1056  11x6 

1594  1654  I7»4 

2191  2251  231 

2787  2847  2906 

3382  3442  3SOI 

3977  4036  4096 

457  463  4689 

5163  5222  5282 

5755  5814  5874 

6346  6405  6465 

6937  6996  7055 

7526  7585  7644 

8115  8174  8233 

8703  8762  8821 

929  9349  9408 

9877  9935  9994 

0462  0521  0579 

1047  1106  1164 

1631  169  1748 

2215  2273  2331 

2797  285s  2913 

3379  3437  3495 

396  4018  4076 

454  4598  4656 

5"9  5177  5235 

5698  5756  5813 

6276  6333  6391 

6853  691  6968 

7429  7487  7544 


0578 
1176 

1773 

237 
2966 

3561 

4155 
4748 

5341 
5933 
6524 
7114 

7703 
8292 

8879 
9466 

0053 
0638 
1223 
1806 

2389 
2972 

3553 
4134 
4714 

5293 
5871 
6449 

7026 
7602 

4 

£s 


8497  8559 

9112  9174 

9726  9788 

034  0401 

0952  1014 

1564  1625 

2175  2236 

2785  2846 

3394  3455 

4002  4063 

461  467 

5216  5277 

5822  588a 

6427  6487 

7031  7091 

7634  7694 

8236  8297 

8838  8898 

9439  9499 

OQ38  0098 

0637  0697 

1236  129s 

1833  1893 

243  2489 

3025  3085 

36a  368 

4214  4274 

4808  4867 

54  5459 

5992  6051 

6583  6642 

7173  7232 

7762  V^2I 

835  8409 

8938  8997 

9525  9584 


862 

9235 
9849 
0462 

1075 
1686 
2297 

2907 
3516 
4124 


8682 

9297 
991 1 

0524 
1 136 

1747 

2358 

2968 

3577 
4185 


4731  479a 

5337  5398 

5943  6003 

6548  6608 

7152  7212 

7755  7815 

8357  8417 

8958  9018 

9559  9619 

Q158  03l8 

0757  0817 

1355  1415 

1952  2012 

2549  2608 

3144  3ao4 

3739  3799 

4333  4392 

4926  4985 

5519  5578 

611  6169 

6701  676 

7291  735 

788  7939 

8468  8527 

9056  91 14 

9642  9701 


8743 
9358 
9972 

0585 
1 197 

1809 
2419 
3029 

3637 

4245 

4852 

5459 
6064 

6668 

7272 

7875 
8477 
9078 

9679 

0278 
0877 

1475 
2072 

2668 
3263 

3858 

4452 

5045 

5637 
6228 

6819 
7409 
7998 
8586 

9173 
976 


oiii  017 

0696  0755 

1281  1339 

1865  1923 

2448  2506 

303  3088 

361 1  3669 

4192  425 

4772  483 

5351  5409 

5929  5987 

6507  6564 

7083  7141 

7659  7717 


02Cc  0287  0345 

0813  0872  093 

1398  1456  1515 

I981  204   2098 

2564  2622  2681 

3146  3204  3262 

3727  3785  3844 

4308  4366  4424 

4888  4945  5003 

5466  5524  5582 

6045  ^T^02    616 

6622  668  6737 

7199  7256  7314 

7774  7832  7889 

780 


62 
6x 
61 
61 
61 

61 
61 
61 
61 
61 

61 
61 
6x 
60 
60 

60 
60 
60 
60 
60 
60 

60 
60 
60 
60 
60 

59 
59 
59 
59 
59 

59 
59 
59 
59 
59 

59 
59 
59 
58 
58 
58 
58 
58 
58 
58 
58 
58 
S8 
58 
S8 
S8 


326 


LOGARITHMS   OF  NUMBEB8* 


No. 

0123 

4 

5 

6    7 

8    9  1 

755 

87- 

7947  8004  8062  81 19 

8177 

8234  8292  8349  8407  8464 

756 

87- 

8522  8579  8637  8694  8752 

8809 

8866  8924 

8981  9039 

757 

87- 

9096  9153  92 1 1  9268 

9325 

9383 

944  9497 

9555  9612 

758 

87- 

9669  9726  9784  9841 

9898 

9956 

758 

88- 

—   —   —   — 

— 

— 

0013  007 

0137  0185 

759 

88- 

0243  0299  0356  0413 

0471 

0538 

0585  0642 

0699  0756 

760 

88- 

0814  0871  0928  0985 

1042 

1099 

1156  1213 

1371  1328 

761 

88- 

1385  1442  1499  1556 

1613 

167 

1727  1784 

1841  1898 

762 

88- 

1955  2012  2069  2126 

2183 

224 

2297  2354 

241 1  2468 

763 

88- 

2525  2581  2638  2695 

2752 

2809 

2866  2923 

298  3037 

764 

88- 

3093  315  p207  3264 

3321 

3377 

3434  3491 

3548  3605 

765 

88- 

3661  3718  377S  3832 

3888 

3945 

4003  4059 

41 15  4172 

766 

88- 

4229  4285  4342  4399 

4455 

4512 

4569  4635  4682  4739} 

767 

88- 

4795  4852  4909  4965 

5022 

5078 

5135  5193 

5248  5305 

768 

88- 

5361  5418  5474  5531 

5587 

5644 

57   5757 

5813  587 

769 

88- 

5926  5983  6039  6096  6152 

6309  6265  6321 

6378  6434 

770 

88- 

6491  6547  6604  666 

6716 

6773  6829  6885  6942  6998 

771 

88- 

7054  71 1 1  7167  7223 

728 

7336 

7392  7449 

7505  7561 

772 

88- 

7617  7674  773  7786  7842 

7898 

7955  801 1 

8067  8123 

773 

88- 

8179  8236  8292  8348  8404 

846 

8516  8573  8629  8685  1 

774 

88- 

8741  8797  8853  8909  8965 

9021 

9077  9134 

919  9246 

775 

88- 

9302  9358  9414  947 

9526 

9582 

9638  9694 

975  9806 

776 

88- 

9863  9918  9974  — 

— 

— 

776 

89- 

—   —   —  003 

0086 

0141 

0197  CWS3 

0309  0365 

777 

89- 

0421  0477  0533  0589  0645 

07 

0756  0813 

0868  0924 

778  89-  098  I03S  1091  U47 

1203 

1259 

1314  137 

1436  1482 

779  89- 

1537  1593  1649  1705 

176 

1816 

1873  1938  1983  2039 

780  ,  89- 

2095  215  2206  2262 

2317 

2373 

3429  2484 

254  2595 

781  89- 

2651  3707  2762  2818 

2873 

2929 

2985  3<?4 

3096  3T51 

782  89- 

3207  3263  3318  3373 

3429 

3484 

354  3595 

3651  3706 

783 

89- 

3763  3817  3873  3928  3984 

4039 

4094  415 

4305  4261 

784 

89- 

4316  4371  4427  4482 

4538 

4593 

4648  4704 

4759  4814 

786 

89- 

487  4925  498  5036 

5091 

5146 

Ssoi  5357 

5312  .«67 

786 

89- 

5423  5478  5533  5588  5644 

5699 

5754  5809  5864  593  1 

787 

39- 

5975  603  6085  614 

6195 

6251 

6306  6361 

6416  6471 

788 

89- 

6526  6581  6636  6692 

6747 

6802 

6857  6913 

6967  7033 

789 

89- 

7077  7132  7187  7242 

7297 

7352 

7407  7463 

7517  7572 

7f>0 

89- 

7627  7682  7737  7792 

7847 

7903 

7957  8013 

8067  8133 

791 

89- 

8176  8231  8286  8341 

8396 

8451 

8506  8561 

8615  867 

792 

89- 

8725  878  8835  889 

8944 

8999 

9054  9109 

9164  9218 

793 

89- 

9273  9328  9383  9437 

9492 

9547 

9603  9656 

971 I  9766 

794 

89- 

9821  9875  993  9985 

— 

— 

—   — 

794 

90- 

—   ^—   ^^   _- 

0039 

0094 

0149  0303 

0258  0313 

795 

90- 

0367  0422  0476  0531 

0586 

064 

0695  0749 

0804  0859 

796 

90- 

0913  0968  1022  1077 

1131 

1186 

134  1295 

1349  1404 

797 

90- 

1458  1513  1567  1622 

1676 

1 731 

1785  184 

1894  1948 

798 

90- 

2003  2057  21 12  2166 

2221 

2275 

3329  3384 

2438  2493 

799 

90- 

2547  2601  2655  271 

2764 

2818 

3873  2937 

2981  3036 

800 

90- 

309  3144  3199  3253 

3307 

3361 

3416  347 

3524  3578 

801 

90- 

3633  3^7  3741  3795 

3849 

3904 

3958  4013 

4u66  413 

802 

90- 

4174  4229  4283  4337 

4391 

4445 

4499  4553 

4607  4661 

803 

90- 

4716  477  4824  4878 

4932 

4986 

504  5094 

5148  5202 

804 

90- 

5256  531   5364  5418 

5472 

5526  558  5634  5688  5742  1 

No. 

0    1    a    ^ 

4 

S 

6    7 

8    9     \ 

57 
57 
57 
57 
57 
57 
57 
57 
57 
57 
57 
57 
57 
57 
57 
56 

56 
56 
56 
56 
56 

56 
56 
56 
56 
S6 
56 
56 
56 
56 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
54 
54 
54 
54 
54 
54 
54 
54 


LOGASITHMS   OF   NUMBESS. 


327 


806 

806 
807 
808 
809 

SIO 

81 X 
812 
812 

813 
814 

815 

816 
817 
818 
819 

820 
821 
822 
823 
824 

82S 
826 
827 
828 
829 

880 

831 

831 
83a 

83.3 
834 
885 

836 

837 
838 

839 
840 

841 
842 

843 
844 
845  ' 
846! 

847; 

848  I 

849  I 

850 

851 
85t 
852 
853 
854 

Kp. 


90-  S796 

90-  633s 
90-  6874 

90-  7411 

90-  7949 

90-  8485 
90-  9021 

90-  9556 

91-  — 
I-  0091 
I-  0624 

I-  1158 
I-  169 
I'  2222 

I-  2753 
I-  3284 

I-  3814 

I-  4343 
I-  4872 

I-  54 
1-  5927 
I-  6454 
I-  698 
I-  7506 
t-  803 
1-  8553 
I-  9078 
1-  9601 

92-  — 
92-  0123 
92-  064s 
92-  I 166 

92-  1686 
92-  2206 
92-  2725 
92-  3244 
92-  3762 

92-  4279 
92-  4796 
92-  53^2 
9a-  5828 
92-  6342 
92-  6857 

92-  737 
92-  7883 
92-  8396 
92'  8908 

92-  9419 

92-  993 

93-  — 
93-  044 
93-  0949 
93-  1458 


585  5904  5958  6012 

6389  6443  6497  6551 

6927  6981  703s  7089 

7465  7519  7573  7626 

800a  8056  811  8163 

8539  8592  8646  8699 

9074  9128  9181  9235 

9609  9663  9716  977 


8 


9 

9 

9 

9 

9 

9 

91 

91 

9 

9 

91 

91 

9 

9 

9 

91 

91 

9 

9 


0144  0197  0251  0304 

0678  0731  0784  0838 

1211  1264  1317  1371 

1743  1797  185  1903 

2275  2328  2381  243s 

2806  2859  2913.2966 

3337  339  3443  349^ 

3867  392  3973  4026 

4396  4449  4502  455S 

4925  4977  503  5083 

5453  5505  5558  5611 

598  6033  6085  6138 

6507  6559  6612  6664 

7033  7083  7138  719 

7558  -7611  76^  77*6 

8083  8135  8188  824 

8607  8659  8712  8764 

913  9183  9235  9287 

9653  9706  9758  981 


0176 
0697 
1218 

1738 
2258 
2777 
3296 

3814 

4331 
4848 

5364 
5879 
6394 
6908 
7422 

7935 
8447 
8959 

947 
9981 

0491 

I 

1509 


0228  028  0332 

0749  0801  0853 

127  1322  1374 

179  1842  1894 

231  2362  2414 

2829  2881  2933 

3348  3399  3451 

3865  3917  3969 

4383  4434  4486 

4899  4951  5003 

5415  5467  5518 

5931  5982  6034 

644s  6497  6548 

6959  701 1  7062 

7473  7524  7576 

7986  8037  8088 

8498  8549  86ot 

901  9061  91 12 

9521  9572  9623 


0032  0083  0134 

0542  059a  0643 

1051  iioa  1 153 

156  i6f  i66t 


6066  6119 

6604  6658 

7143  7196 

768  7734 

8217  S27 

8753  8807 

9289  9342 

9823  9877 


6173  6227 

671a  6766 

725  7304 

7787  7841 

8324  8378 

886  8914 

9396  9449 

993  9984 


0358  04 1 1 

0891  0944 

1424  1477 

1956  2009 

2488  2541 

3019  3072 

3549  3602 

4079  413a 

4608  466 

5136  5189 

5664  5716 

6191  6243 

6717  677 

7243  7295 

7768  782 

8293  8345 

8816  8869 

934  9392 

9862  9914 


0384  0436 

0906  0958 

1426  1478 

1946  1998 

2466  2518 

2985  3037 

3503  3555 

4021  4072 

4538  4589 

5054  5106 

557  5621 

6085  6137 

66  6651 

7114  716s 

7627  7678 

814  8191 

8652  8703 

9163  9215 

9674  972s 


0464  0518 

0998  1051 

153  1584 

2063  21 16 

2594  2647 

3125  3178 

3655  3708 

4184  4237 

4713  4766 

5241  5294 

5769  5822 

6296  6349 

6822  6875 

7348  74 

7873  7925 

8397  845 

8921  8973 

9444  9496 
9967  — 

—  0019 

0489  0541 

loi  1062 

153  1582 

205  2102 

257  2622 

3089  314 

3607  3^58 

4124  4176 

4641  4693 

5157  5209 

5673  5725 

61 88  624 

6702  6754 

7216  7268 

773  778t 

8242  8293 

8754  880s 

9266  9317 

9776  9827 


6281 

683 

7358 

789s 

8431 

8967 

9503 

0037 

0571 
1 104 

1637 
2169 
27 

3231 
3761 

429 
4819 

5347 
5875 
6401 

6937 

7453 
7978 
8502 
9026 

9549 

c»7i 

0593 
1 1 14 

1634 

2154 
2674 

3192 

371 
4228 

4744 
5261 

5776 
6291 
6805 

7319 
7832 

8345 
8857 
9368 

9879 


0185  0236  0287  0338  0389 

0694  0745  0796  0847  0898 

1203  1254  1305  1356  1407 

1712  1763  1814  1865  1915 

&    $    7    9    9 


D 

54 
54 
54 
54 
54 

54 
54 
54 
53 
53 
53 
53 
53 
53 
53 
53 

53 
S3 
53 
S3 
53 
53 
53 
52 
52 
52 
52 

5^ 
52 
52 

52 

52 

52 

52 

52 

52 

52 

52 

52 

52 

55 

51 

51 

5^ 

51 

51 

51 

5^ 

51 

51 

5] 

51 

51 


328 


LOeABTTHMS  OF  NUHBEBS. 


No. 

01234 

5    «    7    8    9 

866 

93-  1966  2017  2068  2118  2169 

222  2271  2322  2372  2433 

856 

93-  2474  2524  2575  2626  2677 

2727  2778  2829  2879  293 

857 

93-  2981  3031  3082  3133  3183 

3234  3285  3335  3386  3437 

858 

93-  3487  3538  3589  3639  369 

374  3791  3841  3892  3943 

859 

93-  3993  4044  4094  4145  4195 

4246  4296  4347  4397  4448 

860 

93-  4498  4549  4599  465  47 

4751  4801  4852  4902  4953 

861 

93-  5003  5054  5104  5154  520s 

5255  5306  5356  5406  5457 

862 

93-  5507  5558  5608  5658  5709 

5759  5809  586  591  596 

863 

93-  6oii  6061  61 1 1  6162  6212 

6262  6313  6363  6413  64^ 

864 

93-  6514  6564  6614  6665  6715 

6765  6815  6865  6916  6966 

866 

93-  7016  7066  71 17  7167  7217 

7267  7317  7367  7418  7468 

866 

93-  7518  7568  7618  7668  7718 

7769  7819  7869  7919  7969 

867 

93-  8019  8069  81 19  8169  8219 

8269  8319  837  842  847 

868 

93-  852  857  862  867  872 

877  882  887  892  897 

869 

93-  902  907  912  917  922 

927  932  9369  9419  9469 

870 

93-  9519  9569  9619  9669  97*9 

9769  9819  9869  9918  9968 

871 

94-  0018  0068  01 18  0168  0218 

0267  0317  0367  0417  0467 

872 

94-  0516  0566  0616  0666  0716 

0765  0815  0865  0915  0964 

873 

94-  1014  1064  X114  1 163  1213 

1263  1313  1362  1412  1462 

874 

94-  151 1  1561  161 1  166  171 

176  1809  1859  1909  1958 

876 

94-  2008  2058  2107  2157  2207 

2256  2306  2355  2405  2455 

876 

94-  2504  2554  2603  2653  2702 

2752  2801  2851  2901  295 

877 

94-  3    3049  3099  3148  3198 

3247  3297  3346  3396  3445 

878 

94-  3495  3544  3593  3^43  3692 

3742  3791  3841  389  3939 

879 

94-  3989  4038  4088  4137  4186 

4236  4285  4335  4384  4433 

880 

94-  4483  4532  4581  4631  468 

4729  4779  4828  4877  4927 

881 

94-  4976  5025  5074  5124  5173 

5222  5272  5321  537  5419 

882 

94-  5469  5518  5567  5616  5665 

5715  5764  5813  5862  5912 

883 

94-  5961  601  6059  6108  6157 

6207  6256  6305  6354  6403 

884 

94-  6452  6501  6551  66   6649 

6698  6747  6796  6845  6894 

886 

94-  6943  6992  7041  709  714 

7189  7238  7287  7336  7385 

886 

94-  7434  7483  7532  7581  763 

7679  7728  7777  7826  7875 

887 

94-  7924  7973  8022  807  81 19 

8168  8217  8266  8315  8364 

888 

94-  8413  8462  85 1 1  856  8609 

8657  8706  8755  8804  8853 

889 

94-  8902  8951  8999  9048  9097 

9146  9195  9244  9292  9341 

890 

891 

94-  939  9439  9488  9536  9585 

9634  9683  9731  978  9829 

94-  9070  99-^u  9975 

891 

95-  —   —   —  0024  0073 

0121  017  0219  0267  0316 

892 

9t5-  0365  0414  0462  0511  056 

0608  0657  0706  0754  0803 

893 

95-  0851  09   0949  0997  1046 

1095  1 143  1192  124  1289 

894 

95-  1338  1386  1435  1483  1532 

158  1629  1677  1726  1775 

896 

95-  1823  1872  192  1969  2017 

2066  2114  2163  221 1  226 

896 

95-  2308  2356  240s  2453  2502 

255  2599  2647  2696  2744 

897 

95-  2792  2841  2889  2938  2986 

3034  3083  313^  318  3228 

898 

95-  3276  3325  3373  3421  347 

3518  3566  3615  3663  371 1 

899 

95-  376  3808  3856  3905  3953 

4001  4049  4098  4146  4194 

900 

95-  4243  4291  4339  4387  4435 

4484  4532  458  4628  4677 

901 

95-  4725  4773  4821  4869  4918 

4966  5014  5062  511  5158 

902 

95-  5207  525s  5303  5351  5399 

5447  5495  5543  5592  564 

903 

95-  5688  5736  5784  583a  588 

5928  5976  6024  6072  6l2 

904 

95-  6168  6216  6265  6313  6361 

6409  6457  6505  6553  6601 

Na, 

0     12    3    4 

56789 

51 
51 
51 
51 

51 

50 
50 
50 
50 
50 

so 
50 
50 
SO 

50 

SO 
50 
50 
SO 
SO 

SO 
SO 
49 
49 
49 

49 
49 
49 
49 
49 

49 
49 
49 
49 
49 

49 
49 
49 
49 
49 
49 

48 
48 
48 

48 
48 

48 
48 
48 
48 
48 


jbOOAKITHMS   OF  NUMBUSS. 


•329 


No. 

0 

1         s        3        4 

56789 

•05 

95-  6649  6697  6745  6793  684 

6888  6936  6984  7032  708 

906 

95-  7128  7176  7224  7272  732 

7368  7416  7464  7512  7559 

907 

95-  7607  7655  7703  7751   7799 

7847  7894  7942  799     8038 

908 

95-  8086 

8134  8181  8229  8277 

8325  8373  8421  8468  8516 

909 

95-  8564 

8612  8659  8707  8755 

8803  885     8898  8946  8994 

910 

95-  9041 

9089  9137  9185  9232 

928     9328  9375  9423  9471 

911 

r\T»5i 

95-  95<8  9566  9614  9661  9709 

rtf  •  rw^c   ^.^    •^—          ^—     — 

9757  9804  9852  99      9947 

913 
912 

95  9995 
96-  — 

0042  009    0138  0185 

0233  028     0328  0376  0423 

913 

96-  0471 

0518  0566  0613  0661 

0709  0756  0804  0851  0899 

914 

96-  0946 

0994  X041   1089  1 136 

1184  1231    1279  1326  1374 

016 

96-  1421 

1469  1516  1563  161 1 

1658  1706  1753  1801   1848 

916 

96-  1895 

1943   199     2038  2085 

2132  2i8     2227  2275  2322 

917 

96-  2369 

24x7  2464  251 1   2559 

2606  2653  2701   2748  2795 

918 

96-  2843 

289     2937  2985  3032 

3079  3126  3174  3221  3268 

919 

96-  33»6  3363  341     3457  3504 

3552  3599  3646  3693  3741 

020 

96-  3788  3835  3882  3929  3977 

4024  4071   4118  4165  4212 

921 

96-  426 

43C7  4354  440i   4448 

4495  4542  459     4^37  4684 

922 

9^  4731 

4778  4825  4872  4919 

4966  5013  5061   5108  5155 

923 

96-  5202 

5249  5296  5343  539 

5437  5484  5531  5578  5625 

924 

96-  5672 

5719  5766  5813  586 

5907  5954  6001   6048  6095 

925 

96-  6142 

6189  6236  6283  6329 

6376  6423  647     6517  6564 

926 

96-  661 1 

6658  6705  6752  6799 

6845  6892  6939  6986  7033 

927 

96-  708 

7127  7173  722     7267 

7314  7361   7408   7454  7501 

928 

9^  7548 

7595  7642  7688  7735 

7782   7829  7875   7922  7969 

929 

96-  8016 

8062  8109  8156  8203 

8249  8296  8343  839     8436 

980 

9^  8483  853     8576  8623  867 

8716  8763  881     8856  8903 

931 

96-895     ' 

8996  9043  909    9136 

9183  9229  9276  9323  9369 

932 
933 
933 

96-  9416  9463  9509  9556  9602 

06-  t^Vi^    /w^ft  tfv^«9r    .^^          «i_ 

9649  9695  9742  9789  9835 

97-    — 

—   —  0021  0068 

01 14  oi6x  0207  0254  03 

934 

97-  0347 

0393  044  0486  0533 

0579  0626  0672  0719  0765 

08& 

97-  0812 

0858  0904  0951  0997 

1044   109     1137  1183  1229 

936 

97-  1276 

1322  1369  1415  1461 

1508   1554  1601   1647   1693 

937 

97-  174 

1786  1832  1879  1925 

1971   2018  2064  2x1     2157 

938 

97-2203 

2249  2295  2342  2388 

2434  2481   2527  2573  2619 

939 

97-  2666 

2712  2758  2804  2851 

2897  2943  2989  3035  3082 

940 

97-  3128 

3174  322  3266  3313 

3359  3405  3451  3497  3543 

941 

97-  359 

3636  3682  3728  3774 

382     3866  39x3  3959  4005 

942 

97-  4051 

4097  4143  4189  4235 

428X  4327  4374  442     4466 

943 

97-  4512 

4558  4604  465  4696 

4742  4788  4834  488     4926 

944 

97-  4972 

5018  5064  511   5156 

5202  5248  5294  534     5386 

945 

97-  5432 

5478  5524  557     5616 

5662  5707  5753  5799  5845 

946 

97-  5891 

5937  5983  6029  607s 

6i2x  6167  6212  6258  6304 

947 

^"5^o 

6396  6442  6488  6533 

6579  6625  667X  67x7  6763 

948 

97-  6808 

6854  69      6946  6992 

7037  7083  7129  7x75  722 

949 

97-  7266 

7312   7358  7403   7449 

7495   7541   7586  7632   7678 

950 

97-  7724 

7769  7815   7861   7906 

7952  7998  8043  8089  8135 

951 

97-  8181 

8226  8272  8317  8363 

8409  8454  8s       8546  8591 

952 

97-  8637  8683  8728  8774  8819 

8865  891 X   8956  9002  9047 

953 

97-  9093 

9138  9184  923     9275 

9321   93O6  9412  9457  9503 

954 

97-  9548 

9594  9639  9685  973 

9776  982X   9867  9912  9958 

Ka 

0 

1234 

56789 

48 
48 
48 
48 

48 
48 
48 
48 
48 

47 

47 
47 
47 
47 
47 

47 
47 
47 
47 
47 

47 
47 
47 
47 
47 

47 

47 

47 

47 

47 
46 

46 
46 
46 
46 
46 

46 
46 
46 
46 
46 

46 

46 
46 
46 
46 

46 
46 
46 
46 
46 


Ek» 


330 


LOGABITHKS  OP  NUMBBBS. 


Ko. 

956 
957 
958 
959 

•60 

961 
962 

964 

065 
966 
967 
968 

969 

970 

971 
972 

973 
974 

975 

976 

977 

977 
978 

979 

980 

981 
982 

983 
984 

085 

986 
987 
988 

989 

090 
991 
992 

993 
994 

995 
996 

997 
998 
999 

Na 


8 


98-  0003 
98-  0458 
98-  0912 
98-  1366 
98-  1819 

98-  2271 
98-  2723 

98-  3175 
98-  3626 
98-  4077 

98-  4527 
98-  4977 
98-  5426 

98-  5875 
98-  6324 

98-  6772 
98-  7219 
98-  7666 
98-  81 13 
98-  8559 

98-  9005 
98-  945 

98-  9895 

99-  — 
99-  0339 
99-  0783 

99-  1226 
99-  1669 
99-  2111 

99-  2554 
99-  3995 

99-  3436 
99-  3877 
99-  43>7 
99-  4757 
99-  5196 

99-  5635 
99-  ^74 
99-  6512 
99-  6949 
99-  7386 

99-  7823 
99-  8259 
99-  8695 
99-  9131 
99-9565^ 


0049  0094 

0503  0549 

0957  1003 

141 I  1456 

1864  1909 

2316  2362 

2769  2814 

322  3265 

3671  3716 

4122  4167 

4572  4617 

5022  5067 

5471  5516 

592  5965 

6369  6413 

6S17  6861 

7264  7309 

771 I  7756 

8157  8202 

8604  8648 

9049  9094 

9494  9539 

9939  9983 

0383  0428 

0827  0871 

127  1315 

1713  1758 

2156  22 

2598  2642 

3039  3083 

348  3524 

3921  3965 

4361  4405 

4801  4845 

524  5384 

5^79  5723 

6117  ^i^i 

6555  6599 

6993  7037 

743  7474 

7867  791 

8303  8347 

8739  8782 

9174  9218 

9609  9632 


014  0185 

0594  064 

1048  1093 

1501  1547 

1954  2 

2407  2452 

2859  2904 

331  3356 

3762  3807 

4212  4257 

4662  4707 

5"2  5157 

5561  5606 

6oi  6055 

6458  6503 

6906  6951 

7353  7398 

78  7845 

8247  8291 

8693  8737 

9138  9183 

9583  9628 


0028  0072 

0472  0516 

0916  096 

1359  1403 

1802  1846 

2244  2288 

2686  373 

3127  3173 

3568  3613 

4009  4P53 

4449  4493 

4889  4933 

5328  5372 

S767  5811 

6205  6249 

6643  6687 

708  7124 

7517  7561 

7954  7998 

839  8434 

8826  8869 

9261  9305 

9696  9739 


0231  0276  0322 

0685  073  0776 

1x39  1 184  1229 

1592  1637  1683 

304s  309  3135 

2497  2S43  2588 

2949  2994  304 

3401  3446  3491 

3852  3897  3942 

4302  4347  4392 

4752  4797  4842 

5202  5247  5292 

5651  5696  5741 

61  6144  6189 

6548  6593  6637 

6996  704  7085 

7443  7488  7532 

789  7934  7979 

8336  8381  8425 

8782  8826  8871 

9227  9272  9316 

9672  9717  9761 


0367  0412 

0821  0867 

1275  132 

1738  1773 

2 18 1  2326 

2633  3678 

3085  313 

3536  3581 

3987  4032 

4437  4482 

4887  4932^ 

5337  5382 

5786  583 

6234  6279 

6682  6727 


713 

7577 

8024 

847 
89x6 

9361 
9806 


7175 
7622 

8068 

8514 
896 

9405 
985 


01 17  0161  0206  025 

0561  0605  065  0694 

1004  1049  ^093  1 137 

144B  1492  1536  158 

189  193s  1979  2023 

2333  2377  2431  2465 

2774  2819  2863  2907 

3316  326  3304  3348 

3657  3701  3745  3789 

4097  4141  4185  4229 

4537  4581  4625  4669 

4977  5Q2I  5065  5108 

5416  546  5504  5547 

5854  5898  5942  5986 

6293  6337  638  6424 

6731  6774  68i8  6862 

7168  7212  7255  7299 

7605  7648  7692  7736 

8041  8085  8129  8172 

8477  8521  8564  8608 

8913  8956  9  9043 

9348  9392  9435  9479 

9783  9826  987  9913 

S    6    7    8 


45 
45 
45 
45 
45 

45 
45 
45 
45 
45 

45 
45 
45 
45 
45 

45 
45 
45 
45 
45 

45 
44 
44 
44 
44 
44 

1625  !  44 
3067  ,  44 
3509;  44 
2951  i  44 
3392)  44 

3833  44 
4273  44 
4713  I  44 
5»S2  44 


0294 
0738 
1 182 


5591 


44 


^3   44 
6468  44 

6906  ,  44 

7343  -  44 
7779  '  44 

8216  44 

8652  ;  44 


9087 
9522 

9957 


1 


44 
44 
43 


HTPEBBOLIC  LOOABITHUB  OF  NDMBEBS. 


331 


UyperT3olio  Ijogjarith.iiis  of  !N'uxxil>ers. 

From  1. 01  to  30. 

In  following  table,  the  numbers-  range  from  1.01  to  30,  advancing  by  .01, 
op  to  the  whole  number  10 ;  and  thence  by  larger  intervals  up  to  3a  The 
hvperbolic  logarithms  of  numbers,  or  Neperian  logarithms,  as  they  are  8oine> 
times  termed,  are  computed  by  multiplying  the  common  logarithms  of  num> 
bers  by  the  constant  multiplier,  2.302  585.     • 

The  hyperbolic  logarithms  of  numbers  intermediate  between  those  which 
are  given  in  the  table  may  be  readily  obtained  by  interpolating  proportional 
differences. 


No. 


1. 01 
1.02 
1.03 
ix>4 
1.05 

ijdS 
1.07 
1.08 
1.09 
I.I 

1. 11 

1. 12 

1. 14 

1. 15 

1.16 
1. 17 
i.iS 
t.19 
1.2 

1. 21 
1.22 
123 
1.24 
1.25 

1.26 
1.27 
1.28 
1.29 

1-3 

I-3I 
1.32 
i»33 
»«34 
JOS 

1.36 
1-37 
1.38 
1-39 


Log. 


0099 
0198 

0296 

0392 
0488 

0583 

0677 

077 

0862 

0953 
1044 

"33 
1222 

131 
1398 

1484 

157 

165s 

174 
1823 

1906 

1988 

207 

2151 

2231 

23H 

239 
2469 

2546 
2624 

27 

2776 
2852 
2927 

3001 

3075 
3148 
3221 

3293 
3365 


No. 


1. 41 
1.42 

1-43 
1.44 

1-45 
1.46 

147 
1.48 

M9 
15 

1.5^ 
1.52 

153 
1.54 
1-55 

1.56 

1-57 
1.58 

1-59 
1.6 

1. 61 
1.62 
1.63 
1.64 
1.65 

1.66 
1.67 
1.68 
1.69 

1.71 
X.72 

1-73 
1.74 

1-75 

1.76 
1.77 
1.78 
1.79 
1.8 


Log, 


•3436 

•3507 

.3577 
.3646 

.3716 

.3784 

•3853 

•393 
.3988 

.4055 

.4121 
.4187 

.4253 
.4318 

.4383 
.4447 

45" 

•4574 
•4637 
•47 

.4762 
.4824 
.4886 

•4947 
.5008 

.5068 
.5128 
.5x88 

.5247 
•5306 

•53(^5 

•5423 
.5481 

•5539 
•5596 

•5653 

•571 

.5766 

.5822 

.5878 


No. 


.81 
.82 

.83 
.84 
■85 

.86 
.87 
.88 

89 
•9 

.91 
.92 
•93 
■94 
•95 

.96 

•97 
.98 

•99 


2.01 
2.02 
2.03 
2.04 
2.05 

2.06 
2.07 
2.08 
2.09 

2.x 

2.II 
2.12 

2.13 
2.14 

2.X5 

2.16 
2.17 

2.18 

2  19 
3.3 


Log. 


•5933 
•5988 

.6043 
.6098 
.6152 

.6206 
.6259 

•6313 
.6366 
.6419 

.6471 
.6523 

.6575 
.6627 

.6678 

.6729 

.678 

.6831 

.6881 

.6931 

.6981 

.7031 

.708 

.7129 

.7178 

.7227 
.7275 
•7324 
.7372 
.7419 

.7467 

•7514 

.-75^1 
.7608 

.7655 
.7701 

•7747 
•7793 
.7839 
.7885 


No. 


2.21 
2.22 

2.23 
2.24 
2.25 

2.26 
2.27 
2.28 
2.29 

2.3 

2.31 
2.32 

2.33 
2.34 
2.35 

2.36 

2.37 
2.38 
2.39 
2.4 

2.41 
2.42 

2.43 
2.44 

2.45 

2.46 
2.47 
2.48 
3.49 

2.5 

2.51 
2.53 

2.53 
2.54 

2.S5 

2.56 

2.57 
2.58 
2.59 

2.6 


Log. 


793 

7975 
802 

806s 

8109 

8154 
8198 

8242 

8286 

8329 

8372 
8416 

8458 
8502 

8544 

8587 
8629 
8671 

8713 
8755 

8796 

8838 

8879 

892 

8961 

9C»2 

9042 

9083 
9123 

9163 

9203 
9243 

9282 

9322 
9361 

94 

9439 

9478 

95*7 
9555 


No. 

2.61 
2.62 
2.63 
2.64 
2.65 

2.66 
2.67 
268 
2.69 
2.7 

2.7X 
2.72 

2.73 
I  2.74 
'  2.75 

2.76 
i  2.77 
2.78 
2.79 
2.8 

2.81 
2.82 
2.83 
2.84 
2.8s 

2.86 
2.87 
2.88 
2.89 
2.9 

2.91 
2.92 

2.93 
2.94 

2.95 

2.96 
2.97 
2.98 
2.99 

3 


Log. 

•9594 
.9632 

.967 

.9708 

.9746 

•9783 
.9821 

.9858 

.9895 

•9933 

.9969 

1.0006 
1.0043 
1.008 
1.0116 

1.0152 
1. 0188 
1.0225 
1.026 
1.0296 

1.0332 
1.0367 
1.0403 
1.0438 

1.0473 
1.0508 

1.0543 
1.0578 
1.0613 
1.0647 

1.0683 

1.0716 

1.075 

1.0784 

1.0818 

1.0853 
1.0886 
1. 0919 

10953 
1.0986 


332 


HTPXBBOLIO   L06ABITBMB   OF  jmUBEBS. 


No. 

1^.  f 

301 

1.1019 

3.02 

1.1053 

3.03 

1. 1086 

304 

1.1119 

305 

1.1151 

3'<^ 

1.1184 

307 

1.1217 

308 

1.1249 

309 

1.1282 

3.1 

1.1314 

3." 

1.1346 

3-12 

1.1378 

3.13 

1. 141 

314 

1.1442 

3J5 

1.1474 

3.16 

1. 1506 

3-17 

1.1537 

3.18 

1.1569 

3.19 

1. 16 

3-2 

1.1632 

321 

1.1663 

3-22 

1.1694 

323 

1.172s 

3.24 

1.1756 

325 

1.1787 

3.26 

1. 1817 

327 

1.1848 

328 

1.1878 

329 

1.1909 

33 

I-I939 

3-3^ 

1.1969 

332 

1.1999 

3-33 

1.203 

3-34 

1.206 

3.35 

1.209 

336 

1.2119 

3-37 

1. 2149 

3.38 

1.2179 

3.39 

1.2208 

3.4 

1.2238 

341 

1.2267 

3^ 

1.2296 

3*43 

1.2326 

3^ 

1.235s 

3-45 

1.2384 

3.46 

1.2413 

3-47 

1.2442 

3.48 

1.247 

3-49 

1.2499 

3.5 

1.2528  ! 

No. 

Log. 

351 

J.2556 

352 

1.2585 

3-53 

1.2613 

3-54 

1.2641 

3-55 

1.2669 

356 

1.2698 

357 

1.2726 

3.58 

1.2754 

3-59 

1.2782 

3.6 

1.2809 

3.61 

1.2837 

3.62 

1.2865 

3-^3 

1.2892 

3.64 

1.292 

365 

1.2947 

3.66 

1-2975 

367 

1.3002 

3.68 

1.3029 

369 

1.3056 

3-7 

1.3083 

3.71 

1.3" 

372 

1. 3137 

3-73 

1. 3164 

3-74 

1.3191 

3-75 

1.3218 

376 

1.3244 

3-77 

1.3271 

3.78 

1.3297 

3-79 

1.3324 

3.8 

1-335 

3-8i 

1.3376 

382 

1.3403 

3.83 

1.3429 

384 

1-3455 

3-85 

1. 3481 

3.86 

1.3507 

3.87 

1-3533 

3.88 

1.3558 

3.89 

1.3584 

3-9 

1.361 

3.9X 

1.3635 

3.92 

1.3661 

393 

1.3686 

3-94 

1.3712 

3.95 

1.3737 

3.96 

1.3762 

3-97 

1.3788 

398 

1.3813 

3.99 

1.3838 

4 

1.3863 

No. 

Log. 

No. 

Log. 

4.01 

1.3888 

4.51 

1.5063 

4.02 

1.3913 

4.52 

1-5085 

403 

1.3938 

4-53 

1-5107 

4.04 

1.3962 

4.54 

1.5129 

4.05 

1.3987 

4.55 

1.5151 

4.06 

1.4012 

456 

1.5173 

4.07 

1.4036 

4-57 

1.5195 

4.08 

1.4061 

4.58 

1.5217 

4.09 

1.4085 

4-59 

1.5239 

4.1 

1. 411 

4.6 

1.5261 

4.11 

1-4134 

4.61 

1.5282 

4.12 

1.4159 

4.62 

1.5304 

4.13 

1.4183 

4.63 

1.5326 

4.14 

1.4207 

4.64 

1-5347 

4.15 

1.4231 

4.65 

1-5369 

4.16 

1.4255 

4.66 

1.539 

4.17 

1.4279 

4.67 

1-5412 

4.18 

1-4303 

4.68 

1-5433 

4.19 

1.4327 

4.69 

1.5454 

4.2 

1.4351 

4.7 

1-5476 

4.21 

1.4375 

4.71 

1-5497 

4.22 

1.4398 

4.72 

15518 

4.23 

1.4422 

4.73 

1.5539 

4.24 

1.4446 

4-74 

1556 

4.25 

1.4409 

4-75 

1.5581 

4.26 

1.4493 

4.76 

1.5602 

4.27 

1.4516 

4.77 

15623 

4.28 

1-454 

4.78 

15644 

4.29 

1.4563 

4.79 

1.566s 

4-3 

1.4586 

4.8 

1.5686 

4.31 

1.4609 

4.81 

1.5707 

4.32 

1.4633 

4.82 

1.5728 

4.33 

1.4656 

'4.83 

1.5748 

4-34 

1.4679 

,4.84 

1.5769 

4.35 

1.4702 

4.85 

1-579 

4.36 

1-4725 

4.86 

1.581 

4.37 

1.4748 

4.87 

1.5831 

4-38 

1.477 

4.88 

1.5851 

4.39 

1-4793 

4.89 

1.5872 

4.4 

1.4816 

4.9 

1.5892 

4-41 

1.4839 

4.91 

1.5913 

4.42 

1./I861 

4.92 

1-5933 

4.43 

1-48H4 

4.93 

1-5953 

4.44 

1.4907 

4.94 

1-5974 

4.45 

1.4929 

4.95 

1-5994 

4.46 

14951 

4.96 

1.6014 

4-47 

1.4974 

4.97 

1.6034 

4-48 

1.4996 

4.98 

1.6054 

14-49 

1.5019 

4-99 

1.6074 

I4.5 

1.5041 

5 

1.6094 

No. 


5-01 
502 

5.03 
5.04 
5.05 

5.06 

507 
5.08 

509 

5-1 

5.11 
5.12 

5-13 
5.14 
5.15 

5.16 

5.17 
5.18 

519 
5-2 

5.21 
5.22 

5.23 
5.24 
5.25 

5.26 

5.27 
5-28 

s-29 

5-3 

5-31 
5-32 
5-33 
5-34 
5.35 

5.36 

5.37 
S.38 

5-39 
5.4 

5.41 
5-42 
543 
5-44 
5-45 

5.46 

5.47 
548 

5.49 
5.5 


l^. 


[.6114 
1.6134 
:.6iS4 
r.6174 
[.6194 

[.6214 
1-6233 
^.6253 
1.6273 
[.6292 

t.6312 
.6332 

c-635* 
.6371 

.639 

[.6409 
;.6429 
.6448 
1.6467 
t.6487 

[.6506 

1.6525 
[.6514 

[.6563 

[.6582 

[.6601 

[.663 

t.6639 

[.6658 

[.6677 

.6696 

•6715 

.6734 

1.6752 

i.6771 

•679 
[.6808 

[.6827 

.6845 
[.6864 

[.6889 
[.6901 
[.6919 
[.6938 
t.6956 

f.6974 

t.6993 
.7011 

.7029 
■7047 


HYt-dBBOLIC  LOOABITHUS  OF  MtTUBBBS. 


333 


No. 

5-51 
5.5a 
5-53 
5-54 
5-55 

5.56 
5-57 
5.58 
5*59 
5.6 

5.61 
5.62 
563 
5.64 
5.65 

566 

567 
5.68 

5.69 
5-7 

5.71 
572 
5-73 
5-74 
5-75 

576 
5-77 
5.78 
5-79 
5^ 

S.81 
583 

583 
5.84 
5.85 

5.86 

5.87 
5.88 

S89 
5.9 

5.91 
5.9B 
5.93 
5-94 
5-95 

5.96 
5-97 
598 

5-99 
6 


Loj. 


[.7066 

[.7084 

,7102 

.712 

[.7138 

[.7156 

.7174 
•7193 
.72X 
[.7228 

.7246 

7263 

[.7281 

.7299 

•7317 

.7334 
•7352 

•737 

.7387 

.7405 

.7422 

.744 
•7457 
.7475 
.7492 

.7509 
.7527 
.7544 
t.7561 
•7579 

f.7596 
1.7613 

^•763 
1.7647 

N7664 

[.7681 

17699 

[.7716 

•7733 
•775 

[.7766 

f.7783 

[.78 

[.7817 

^•7834 

[.7851 
1.7867 
1.7884 
.7901 
[.7918 


No. 


6.01 
6.02 
6.03 
6.04 
6.05 

6.06 
6.07 
6.08 
6.09 

6.1 

6.11 
6.12 
6.13 
6.14 
6.15 

6.16 
6.17 
6.18 
6.19 
6.2 

6.21 
6.22 
6.23 
6.24 
6.25 

6.26 
'6.27 
J6.28 
i  6.29 
16.3 

'6.31 
6.32 

6.33 
6.34 
6.35 

6.36 

6.37 
6.38 

6.39 
6.4 

6.4X 
6.42 

6.43 

6.44 

,  6.45 

6^46 
6.47 
6.48 
6.49 
6.5 


P<«. 


•7934 
•7951 
.7967 

.7984 
.8001 

.8017 

.8034 

.805 

.8066 

.8083 

.8099 
.8116 
.8132 
.8148 
.8165 

.8181 

•8197 
.8213 
.8229 
.8245 

.8262 
.8278 

8294 

831 

8326 

8342 

8358 

8374 

839 
8405 

8421 

8437 
8453 
8469 
8485 

85 
8516 

8532 
8547 
8563 

8579 

8594 
861 

8625 

8641 

8656 
8672 
8687 

8703 
8718 


No. 
6.51 

i^. 

1.8733 

6.52 

1.8749 

16.53 

1.8764 

!6.54 

1.8779 

,6.55 

1.8795 

1  6.56 

1.881 

i6.57 

1.8825 

6.58 

1.884 

6.59 

1.8856 

6.6 

1.8871 

6.61 

1.8886 

6.62 

1.8901 

6.63 

1.8916 

6.64 

1. 8931 

6.65 

1.8946 

6.66 

1.8961 

6.67 

1.8976 

6.68 

1.8991 

6.69 

1.9006 

6.7 

1.9021 

6.71 

1.9036 

6.72 

1.9051 

6.73 

X.9066 

6.74 

1.9081 

6.75 

19095 

6.76 

1.91 1 

6.77 

i.9"5 

6,78 

1.914 

6.79 

1-9155 

6.8 

1.9169 

6.8x 

I. 9184 

6.82 

1.9199 

6.83 

1.9213 

6.84 

1.9228 

6.85 

I.9C42 

6.86 

1-9357 

6.87 

1.9272 

6.88 

1.9286 

6.89 

1.9301 

6.9 

1-9315 

6.91 

1-933 

6.92 

1-9344 

6.93 

1.9359 

6.94 

1-9373 

6.95 

19387 

6.96 

1.9402 

6.97 

1.9416 

6.98 

1-943 

6.99 

1.9445 

7 

1*9459 

No. 


7.01 
7.02 

7.03 
7.04 

7-05 

7.06 
7.07 
7.08 
7.09 

7-1 

7-11 
7.12 

7.13 
7.14 

7-15 

7.16 
7.17 
7.18 
7.19 
7-3 

7.21 
7.22 

733 
7.24 

7-35 

7.26 

7.37 
7.28 

7-39 
7-3 

7-31 
7.33 
7.33 
7-34 
7-35 

7.36 
7-37 
7-38 

7-39 
7.4 

7.41 
7-43 
7-43 
7-44 
7-45 

7.46 

7-47 
7.48 

7-49 


Log. 


•9473 
.9488 
.9502 
.9516 

•953 

•9544 
•9559 
•9573 
•9587 
.9601 

.9615 
.9629 

-9643 

-9657 
.9671 

.9685 
.9699 

•9713 
.9727 

-9741 

-9755 

-9769 
.9782 

-9796 
.981 

.9824 
.9838 
.9851 

•9865 
.9879 

.9892 
.9906 
.992 

•9933 
-9947 

.9961 

.9974 
.9988 
2.0001 
2.0015 

2.0028 
2.0042 
2.0055 
2.0069 
2.0082 

2.0096 
2.0109 
2.0122 
2.0136 
2.0149 


No. 


7^51 
7-52 

753 
7^54 
7-55 

7-56 

7-57 
7-58 

7-59 
7.6 

7.61 
7.62 

7-63 
7.64 

7^65 

7.66 
7.67 
7.68 
7.69 

7-7 

7.71 
7.72 

773 
774 
7^75 


Log. 

2.0162 
2.0176 
2.0189 
2.0202 
2.0215 

2.0229 
2.0242 
2.025s 
2.0268 
2.0281 

2.0295 
2.0308 
2.0321 

3.0334 
2.0347 

2.036 

3.0373 

2.0386 

3.0399 
2.0412 

2.0425 
2.0438 
2.0451 
2.0464 
2.0477 


7.76  i  2,049 

7-77  1  3.0503 

7.78  I  2.0516 

7.79  I  2.0528 


7.8 


2.0541 


7.81  ,  2.0554 

7.82  I  2.0567 

7.83  I  2.058 

7.84  I  2.0592 

7.85  •  2.060s 


7.86 
7.87 
7.88 
7-89 
7.9 

7.91 
7.92 
7-93 
7-94 
7-95 

7-96 

7.97 

7.98 

799 
8 


2.0618 
2.0631 
2.0643 
2.0656 
2.0669 

d.o68i 
2^0694 
2.0707 
2.0719 
2.0732 

2.0744 

3.0757 
2.0769 

2.0782 

2.079^ 


334 


UYPBBBOLIC  LOGABITUMB   OF  NUMBKBS. 


No. 

8.0I 

8.02 

8.03 

8.04 
8.05 

8.06 
8.07 
8.08 
8.09 

8.1 
8.11 

8.13 

8.13 
8.14 
8.15 

8.16 
8.17 
8.18 
8.19 
8.3 


Lof. 


a.0807 
3.0819 
3.0830 
3.0844 
3.0857 

3.0869 
3.0882 
3.0894 
3.0906 
3.0919 

3.0931 

20943, 
3.0956  I 

3.0968 

3.098 

3.0992 
3.1005 
3.IOI7 
3.1099 
3.1041 


N*. 


I^ 


8.31  13  1054 

8.33  I  3.1066 

8.33  3  1078 

8.34  I  3.109 

8.35  3  1102 


8.36 
8.37 
8.38 
8.39 
83 

8.31 
8.33 
8.33 
834 
83s 

8.36 

8.37 
8.38 

8.39 
8.4 

10.35 
10.5 

10.75 

IX 
11.35 

1 1.5 
".75 


3.III4 

a  1136 
3.1138 
3.1 15 
3.1 163 

3.1 175 
3,1187 
3.1199 

3.I3II 
3.1333 

3.1335 
3.1347 

a.  1358 

3.137 

3.1383 

3.3379 
^•3Si3 
3-3749 

2.3979 
3.4201 

3»443 
3.4636 

34849 


8.41 
8.43 

8.43 
8-H 
845 

8.46 
8.47 
8.48 

8.49 
8.5 

8.51 
8.52 

8.53 
8.54 
8.5s 

8.56 

8.57 
8.58 

8.59 
8.6 

8.61 
863 
8.63 
8.64 
8.65 

8,66 
8,67 
8.68 
8.69 
8.7 

8.7X 
8,73 
8.73 
8.74 
8.75 

8.76 

8.77 
8.78 

8.79 
8.8 

13.35 

ia.5 

13-75 

13 

13-2S 
13.S 
13-75 

14 


No, 


3.1394 
3-1306 
3.1318 

3.133 
3.1343 

3.1353 
3.1365 

3.1377 

S.I389 
3.1401 

3.1413 
3.1494 
2.1436 
2,1448 
2.1459 

3.1471 1 

2.1483', 
3.1494 

3.1506 

3.1518 

3.1539 
3.1541 

3.1552 
3.i56d 

3.1570, 

3.1587 ! 
3.1599 

3.I6I 
3.1622 

3.1633 

3.1645 
3,1656 
9.1668 
3.1679 
3.1691 

3.1703 

3.I7I3 
3.1735 

3.1736 
3.1748 

a.5053 
3.5363 

3.5455 

3.5649 
2.584 

3.6027 

3.6311 

3.6391 


8.81 
8.83 
8.83 
8.84 
8,85 

8.86 
8.87 
8.88 
8.89 
8.9 

8.91 
8.93 

8.93 
8.94 
8.95 

8.96 

8.97 
8.98 
8.99 

9 

9«oi 
9.03 

9-03 
9.04 

9.05 

9.06 
9.07 
9.08 
9.09 
9.1 

9.1  X 
9,13 

9.13 
9.14 
9.15 

9.16 
9.17 
9.18 
9.19 
9.3 

14.35 

14.5 
14.75 

15 
15-5 
x6 
16.5 

ii7 


3.1759 
3.177 

3.1783 

3.1793 

3.1804 

3.1815 
3.1837 
3,1838 
3,1849 
3.1861 

3.1873 
3.1883 
3.1894 

3,1905 
2.1917 

3.1938 
3.1939 

2.195 

3.1961 

3.1973 

3.1983 
3.1994 

3.3006 
3.3017 
3.9038 

3.ao39 

3.305 

3.9061 
3.3073 
3.3083 

a.3094 
3.3105 

3.31X6 
3.3137 
3.3138 

3.3148 

3.3159 

3.317 

3.3181 

3.3X93 

3.6567 

3.674 

3.6913 

3.7081 
3.7408 
3.7736 
2.8034 

3,8333 


N*. 


9.31 
9.33 

9-33 
9.34 

9-35 

9.36 
9.37 
9.38 

9-39 
9-3 

9-31 
932 
9-33 
9-34 
9-35 

936 

9-37. 

9.38 

9.39 
9.4 

9.41 
9.43 
9-43 
9.44 
9-45 

9.46 

9-47 
948 

949 
9.5 

951 
9-53 
953 
9  54 
9-55 

9-S6 
9-57 
9-58 

9-59 
9.6 

17-5 
x8 

18.5 

19 
19-5 

90 
31 

33 


UK- 


3.3303 
3.33X4 
3.3335 
3.3335 
3.3346 

2.3357 
3.3368 
3.3379 
2.3389 
2.33 

3.3311 
3.3333 
3.3333 

2.3343 
2.3354 

3.3364 

2.3375 
23386 

a.3396 

2.3407 

2.3418 
3.3428 

33439 

2345 

3346 

3.3471 
3.3481 
33493 
3.3503 
2.2513 

3.3523 

3.3534 
3.3544 

3.3555 
3,3565 

3.3576 
3.3586 
3.3597 
3,3607 
3.3618 

3.8621 
3^8904 
3.9173 

2.9444 
3.9703 

9.9957 
30445 

3.0911 


No. 


9.61 
9.63 

963 
9-64 
9-65 

9.66 
9.67 
9.68 

9.69 
9.7 

9.71 
9.73 

9  73 
974 
9  75 


L-t. 


3.3638 
2.3638 
2.3649 
3.3659 
3.367 

3,368 

3.369 
3.3701 
3.3711 
3.3731 

3.3733 

2.3742 

3.3752 

2  3762 
23773 


9.76  3.3783 

9.77  33793 
978  33803 

9  79  3.3814 

9  8  3.3824 


9.81 
9.83 

983 
984 
98s 

9.86 
9.87 
9.88 
9.89 
9.9 

9.91 

9-99 
993 
994 
995 

9.96 

9-97 
9-98 

9.99 
10 

33 
34 
35 

26 

27 
38 

39 
30 


3.3834 
3.3844 
33854 
3.3865 
3.3875 

3.2885 
3.2895 
3.2903 
3.2915 
3.2935 

3-3935 
3.394c 
3.395^ 

3.396< 

3.397< 

fl.398C 
9.399^ 
9.3006 
9.3016 
3.3036 

3.1355 
3.1781 
3.3189 

3.3581 

3-3958 
3.3333 

3.3673 
3.401a 


10BN8UBATION  OF  ABSAS,  LINXS,  AND  SURFACES.       33$ 


MENSURATION  OF  AREAS.  LINES,  AND  SURFACED 

iParalleloerams* 

DiF(inTf05.^QuadrtlatemIs,  having  (hdir  opposite  sides  parallel. 

To  Coznpvite  A^rea  of  a.  Sq.uare,  Xteotangle,  R.h.om'bus,  or 
H.h.oiu'boid.'F'igs.  1,  8,  3,  and  •^. 

RuLB. — Multiply  length  by  breadth  or  height 

Or,  <  X  b  =  aretif  I  reprtKnting  lengthy  and  b  breadth. 


Fig.  I. 


Fig.  3- 


£f 

» 

! 1 

L_J 

Fig.  2. 


Fig.  4. 


117 


EzAMPLt.— Sides  a  &,  Cf  c,  Fig.  i,  are  5  feet  6  ins. ;  what  is  area? 

5. 5  X  5-  5  =  30-  25  square  feet. 
NoTB  I. — Opposite  angles  of  a  Rhombus  and  a  Rhomboid  are  equal, 
a. — In  any  parallelogram  the  (bar  angles  equal  360*^. 

3.~3kle  of  B  square  multiplied  by  1.52  Is  equal  to  side  of  an  equilateral  triangle 
of  equal  area. 

Grixoxnoxi. 

DsFiinTiov.  «•  Space  included  between  the  lines  forming  two  similar  parallel- 
ograms, of  which  smaller  is  inscribed  within  larger,  so  that  one  angle  in  each  is 
common  to  both,  as  shown  by  dotted  Hues,  Fig.  z. 

1*0   Compute  .A.rea  o^*  a   GI-noitton.**P^ig.  1. 

RuT.K.'^ABCertain  areas  of  the  two  paraUelograms,  and  subtract  less  from 
greater. 

Or,  a—a'  =  area,  a  and  o'  representing  areax 

ExAMPLB.— Sides  of  a  gnomon  are  io  by  10  and  6  by  6  ins. ;  what  is  its  area? 

10  X  10  =  ic»,  and  6  x  6  =  36.    Then  100  —  36  =  64  square  ins. 

1?riaiigles. 
DsFUfinoK. — Plain  superficies  having  three  sides  and  angles. 

To  Conxpute   Area  of  a  7riax^gle.•— Fiss.  6^  G,  and   7« 
Rule. — Multiply  base  by  height,  and  divide  product  by  a. 

Or,  ?^^1^.     Or,  5i  =  area,  b  represenHng  base,  and  h  height. 
2  2 

Vfifrm  I. — Hypotenuse  of  a  right  angle  is  side  opposite  to  right  angla 

a.'^Perpendicular  height  of  a  triangle  ^  twice  ito  area  divided  by  its  basoi 

3.— Perpendicular  height  of  an  equilateral  triangle  =  a  side  x  -866. 

4. — Side  of  an  equilateral  triangle  x  .658255  =  side  of  a  square  of  equal  area, 
Or  -;- 1.3468  =  diameter  of  a  circle  of  equal  area. 

Fig.  5-  Fig.  6.  Fig.  7. 

CO  c 

CxAMrLB.  —  Base  a  b,  Fig. 
5.  is  4  feet,  and  height  c  6, 6; 
what  is  area  ? 

4  X  6  =:  24,  and  24-^9 =» 
square  feet 


33^      MENSUBATION  OF  ABEAS,  LIKES,  AND  gTTBFACBS. 

To  Compute  Area  of  a  Triangle  by  Tuength.  of*  its  Sidee.** 

ITies.  6  and  7. 

Rule. — From  half  sum  of  the  three  sides  subtract  each  side  separately; 
then  multiply  half  sum  and  the  three  remainders  continually  togc^er,  and 
take  square  root  of  product. 

Or,  y/{t  —  a)  X  (s—b)  X  (»— c)  S  =  area,  a,  6,  c  representing  sidety  and  S  half  sum 
of  the  three  sides. 

Example.— Sides  of  a  triangle,  Figs.  6  and  7,  are  30, 40,  and  50  feet;  what  is  area? 

■30 -♦- 40 -I- so       120  60— 30  =  30  J 

^  ~      —  —  =60,  or  half  sum  of  sides.  60 — 40 = ao  J  remainien. 

^  ^  60  —  50=10) 

Whence,  30  x  20  X  xo  x  60  =  360000,  and  y/ 360  000=  600  sqtuirefeeL 

When  all  Sides  are  Equal.  Rule. — Square  length  of  a  side,  and  multi- 
ply product  by  .433. 

Or,  S^  X  .433  =  areOy  S  representing  length  qfa  side. 

To   Compute   X^eugtli    of  One    Side    of*  a   R.igb.t-A.neled 

THangle. 

When  Length  of  the  other  Two  Sides  are  given. 

To   Ascertain   Hjrpotenuse.  ^  Fis.  G. 

Rule.  —  Add  together  squares  of  the  two  legs,  and  take  square  root  of 

sum. 


Or,  Va  6«  -|-  6  c*  =  hypotenuse.    Or,  vW-fh^. 

Example.—  Base,  a  b,  Fig.  5,  is  30  in&,  and  height,  &  c,  40;  what  is  length  of  hy- 
potenuse? 

30'  -f  40'  =  3500,  and  -^2500  =  50  ins. 

To  ^Lsoertain  -otlier   ILiefi:. 
When  Htfpotenuse  and  One  of  the  Juega  are  piw».— Fig.  5.    Rule.— Sub- 
tract square  of  given  leg  from  square  of  hypotenuse,  and  take  square  root 
of  remainder. 


or.yi^Hl^sS;  or.7:;3{«fri 


=  6c 

b. 


Example.— Base  of  a  triangle,  a  &,  Fig.  5,  is  30  feet,  and  hypotenuse,  a  c,  50; 
what  is  height  of  it? 

50'  —  30*  =  1600,  and  •v/1600  =  ^ofeet 

To   Compute   IL<ength.   of  a   Side. 

When  Hypotenuse  of  a  Right-angled  Triangle  of  Equal  Sides  alone  is 
given.— ¥\g.  8.    Rule.— -Divide  hypotenuse  by  1,414  313- 

Or,     ^'^^'     =  length  of  a  side. 
1.414213 
Fig.  8.  o  ^  ^    ^ 

ExAVPLK.  —  Hypotenaae  a  e  of  a  right-angled  triangle,  Fig.  8,  Is 
300  feet ;  what  is  length  of  its  sides  ? 

300  -T- 1. 414  213  =  312. 1321  fiet, 

b 

To    Compute    Perpendioixlar    or   Height    of*  a   Triangle. 

When  Base  and  Area  alone  are  given. — Fig.  9.    Rule. — Divide  twice 
area  by  its  base.        Or,  20^ 6  =  fc. 

Example.— Area  of  a  triangle.  Fig.  9,  is  10  feet,  and  length  of  its  base,  a  6, .5; 
what  is  its  perpendicular,  c  di 

10  X  a  :=  20,  and  ao-S-  5  =  4  feet. 


MENSUBATION  OF  AREAS,  ONES,  AND  SURFACES.       33^ 

To   Compute    Ferpendioular    or   £Lelgh.t   of*  s   Triangle. 

When  Bcue  and  Two  Sides  are  given.  Rule. — As  base  is  to  sum  of  the 
sides,  so  is  difference  of  sides  to  difference  of  divisions  of  base.  Half  this 
difference  being  added  to  or  subtracted  from  half  base  will  give  the  two  di- 
visions thereof.  Hence,  as  the  sides  and  their  opposite  division  of  base  con- 
stitute a  right-angled  triangle,  the  perpendicular  thereof  is  readily  ascertained 
by  preceding  rules. 

Or,  — - — r^ =  bd^da. 

'  ba 

ac^A-ab^  —  bd'  .  / 

Or, r sad;  whence  vac^— ad^sKde. 

aab 

Fig.  9.  ExAMPLB.— Three  sides  of  a  triangle,  a  6  e,  Fig.  9,  are  9.928, 

c  8,  and  5  feet;  what  is  length  of  perpendicular  on  longest  side  ? 

As  9.928  :  8  +  5  ::  8  fv  5  :  3.928  =  difference  of  divuunu  of 

tKtbOM. 

Then  3.928  -7-  3  =  x.964,  which,  added  to  ^^'   =  4.964  ■\- 

2 

1.964  =  6  928  =  length  of  longest  division  ofbaie. 

ad  b 

Hence,  there  is  a  right-angled  triangle  with  its  base  6.928,  and  its  hypotenuse  8; 
consequently,  Its  remaining  side  or  perpendicular  is  -^(8^  — 6.928')  =  4  feet. 

When  any  Two  of  the  Dimensions  of  a  Triangle  and  One  of  the  corresponding 
Dimensions  of  a  simiUu'  Figure  are  given^  and  it  is  required  to  ascertain 
the  other  carreiponding  Dimensions  of  the  last  Figure, 

Fig.  xa  Fig.  11. 

Let  a  &  c,  a'  b'  c\  he  two  similar  triangles,  Figs,  zo 
and  II. 

Then  ab'.bcv.  a'b' :  6'c',  or  a'6' :  6'c'  ::ab:be. 

KoTB.  —Same  proportion  holds  with  respect  to  the 
similar  lineal  parts  of  any  other  similar  Qgures,  whether 
plana  or  solid. 

ExAMPUL—Shadow  of  a  vertical  stake  4  feet  in  length  was  5  feet;  at  same  time^ 
shadow  of  a  tree,  both  on  level  ground,  was  83  feet;  what  was  height  of  tree? 

5  a'  6*  :  4  6'  c' ::  83  o  6  :  ^.^feet 

To  Compiate  i^oreace* 

Divide  area  into  convenient  triangles,  and  multiply  base  of  each  triangle 
in  links  by  half  perpendicular  in  links ;  cut  off^5  figiires  at  the  riglU^  remam- 
ing  figures  will  give  acres ;  multiply  the  5  figures  so  cut  off"  by  4,  and  again 
cut  off  5,  and  remainder  will  give  roods ;  multiply  the  5  by  40,  and  again 
cut  off  5  for  perches. 

Trapezium. 
Dnminioir.— A  Quadrilateral  havIng^  unequal  sides  of  which  no  two  are  paraUeL 

To   Compute   Ajveek  of  a  Trapezium. i— Fig.  IS. 

Rule. — Multiply  diagonal  by  sum  of  the  two  perpendiculars  falling  upon 
it  from  the  opposite  angles,  and  divide  product  by  2. 

_    dbxa-\-e 

Or,  =.area. 

Pig.  19,    a  * 

y^ !    ^^^^»v^,      ExAMPLB.— Diagonal  d  6,  Fig.  12,  Is  125  feet,  and  perpen- 
il^»__j .^ — .^j  dlculars  a  and  c  50  and  37 ;  what  is  area? 

^v^l/^         «a5  X  50  -|-  37  =  10875,  and  10  875  -r  2  =  5437. 5  square  feet. 
e 

Ff 


Jjg      MBNSUBATION  OF  ABEAS,  LINKS,  AND  SURFACES. 

When  the  Turn  omotiU  AngUs  are  SupplementM  to  etich  other^  thai  t«,  tchen 
a  TvaptZMon  can  he  inaci-ibed  in  a  Circle^  the  Sum  o/*  its  oppotite  Anylea 
being  equal  to  Two  Right  Anglei^  or  i8o°.  Bule. — From  hau*  sum  of  the 
four  sides,  subtract  each  side  severally ;  then  multiply  the  four  reuiaiudcrs 
continually  together,  and  take  square  root  of  product 

ExAXPiji.-^In  a  trapeiium  the  sides  are  15, 13, 14,  and  13  feet;  its  oppueito  an- 
gles being  sapplements  to  each  otber,  required  its  area. 

15  +  X3  + 14  +  "  =  54i  M»d  51  =s  87. 
37     37      37     37  *  ^ 

15      13      M      ££ 

IS  X  14  X  13  X  15  =  3a  760,  and  -/sa  760=  180.997  iquare/ket 

Trapezoid. 

DKFiinTiON. — A  Quadrilateral  with  only  one  pair  of  opposite  sides  parallel. 

To   Compute   Area   of*  a  Trapezoid. «»l4^igr.  13. 
RuLK. — Multiply  sum  of  the  parallel  sides  by  per|)endicular  distance  be- 
tween them,  and  divide  product  by  3. 

Or, .     Or, =  area,  s  and  «*  representing  sides. 

***?•  '3-  a  e  b      ExAMPLB.  —Parallel  sides  a  b,  c  d.  Fig.  13,  are  xoo  and  13a 

feet,  and  distance  between  them  62.5  feet;  whjit  is  area? 
100  -f  132  X  62. 5  =  14  500,  and  14  5CX3  -»-  2  =  7250  sqwitt 


c-% d  f"^ 

^Polygons. 

DsviNiTioif.— Plane  figures  having  three  or  more  sides,  and  are  either  regular  or 
irregular,  according  as  their  sides  or  angles  are  equal  or  unequal,  and  they  are  named 
trom  the  number  of  their  sides  and  angles. 

Regular  Polygons. 
Xo   Comptate   A.rea  of  a   Regular   Polygon. ^Fig.  1-^. 

Rule.— Multiply  length  of  a  side  by  perpendicular  distance  to  centre; 
multiply  product  by  number  of  sides,  and  divide  it  by  a. 

0  6  X  c  ^  X  w 

=  area^  n  representing  nwnher  of  sides. 

2 

'  '^     >^  ExAiiPi.K.^Wtaat  is  area  of  a  pentagon,  side  a  6,  Fig.  14,  being 

5  feet,  and  distance  c  e  4. 25  feet  t 

5  X  4-25  X  5  (n)  =  106.25  =  product  of  length  of  a  side^  dis- 
tance to  centre,  and  number  of  sides. 

Then,  106.25  -J-  2  =  53.125  square  feet. 

To  Oompxite   rtadi-us  of  a  Circle  that  contains   a  GUveix 

1*01  ygon. 

When  Ijength  of  a  Perpendicular yrom  Centre  aioiie  ia  given,  Rulb.— 
Multiply  distance  from  centre  to  a  side  of  the  poly^^on,  by  unit  in  column  A 
of  following  Table. 

ExAMpLK— What  is  rattius  of  a  circle  that  eontattis  a  hexagon,  diatance  to  centre 

being  4.33  inches? 

4-33  X  1.156  =  5  tn«. 

To  Compute  XjengtU  ot  a  Side  of  a  I^olygon  th.at  is  oon- 

tained   in   a   d-iven    Circle. 

When  Radius  of  Circle  is  given.  Rule. — Multiply  radius  of  circle,  by 
imit  in  column  B  of  following  Table. 

Example.— What  is  length  of  side  of  a  pentagon  contained  in  a  circle  8.5  fiset  in 
diameter? 

8.5  -r-  2  =  4.25  radiqs,  and  4.25  x  1. 1756  =  5  /«?*• 


MENSUEATION  OF  ABEAS,  LINES,  AND  SURFACES.      339 


To  Ooxnpute  Radl-ttv  of  a  CiTOVLram^vitiiJis  Oirole. 

When  length  qf  a  Side  is  given.  Rule.— Multiply  length  of  a  side  of  the 
polygon,  by  nnit  in  column  C  of  following  T»ble. 

ExAMPLB-^What  is  radius  of  a  circle  that  will  contain  a  hexagon,  a  aide  being  5 
inches? 

To  Compvite   Radius -oT  a  Circle   that  can.   be   Inacribed 

in    a   GUven.    Folygon. 

When  Length  of  a  Si^  is  given.  Rule.— Multiply  length  of  a  side  of 
polygon,  by  unit  in  column  D  of  following  Table. 

Example.— What  is  radius  of  the  circle  that  is  bounded  by  a  hexagon,  it^  Sides 
being  5  Inches? 

|X.866=4-33"'*' 

To   Compute   A.rea  of  a  Regular  Polygon^ 

Wlten  Letigth  of  a  Side  only  is  given.  Rulk.— Multiply  square  of  side, 
by  multiplier  opposite  to  term  of  p  )lygoii  in  following  Table: 

B. 


No.  of 
Sid«. 

POIVOON. 

3 

Trigon 

4 

Tetrageo 

5 

Pentagon 

6 

Hexagon 

7 

Heptagon 

8 

Octagon 

9 

Nonagon 

to 

Decagon 

II 

Undecagon 

12 

Dodecagon 

Arba. 


•43301 
I 

1.72048 
2.59808 

3-6339" 

4828^3 

6. 1 81 82 
7.69421 

9-36564 
II.  196 15 


A. 

RHdiw  of 

Circaaiscri()e4 

Circle. 


2 

1.414 

1.338 

1. 156 

I.XI 

1.083 

X.064 

1.051 

1.042 

1037 


Length  of  a 


I  732 
1. 4142 

1.1756 

I 
8677 

7653 

684 

618 

5634 
5176 


C. 
RiMHmof 

Circumacrib- 
ing  Circle. 


5773 
.7071 

.8506 

X 

r.1524 
1.3066 
1. 4619 
1.618 

1-7747 
1.9319 


Radlw  of 

(OBGribed 

Circle. 


.2887 

.5 

.6889 

.866 

1.0383 

x.ao7x 

1-5^8 
I  7028 
1.866 


Example.  —  What  is  area  of  a  square  (tetragon)  when  length  of  its  sides  is 
70710678  inches? 

7.071 067  82  =  50,  and  50  X  1  =  50  square,  ins. 

To   Compute   Uength.  of*  a   Side  and    Radii  of  a  Regular 

I^olygon. 

When  Area  ahne  is  given.  Rule. — Multiply  square  root  of  area  of  poly- 
gon by  multiplier  in  column  E  of  the  following  table  for  length  of  side ;  by 
multiplier  in  column  G  for  radius  of  circumscribing  circle,  and  by  muHiplier 
in  column  H  for  radius  of  inscribed  circle  or  perpendicular. 


TBagent. 


•5774 
X 

1-3764 
i.7aai 
?.Q76s 

2.4142 

2-7475 
30777 
3-4057 
3-7321 

Example  L-«Area  of  a  square  (tetragon)  is  16  inches;  what  is  length  of  its  side? 

V16  ^  4,  and  4X1—4  ins, 

2.— Area  of  an  octagon  is  70.698  yards;  what  is  diameter  of  its  circumscribing 
circle? 

•v/7a698  X  •  5946  =  5,  and  5  X  2  =  10  yards. 


E. 

0. 

H. 

No.  of 
SMm. 

POLYOON. 

Lengtli  of 

Radios  of 
Circunuorlb- 

Radius  of 
Inscribed 

Angl«. 

Angle  of 
Polygon. 

tng  Circle. 

Circle. 

3 

Trigon 

1.5197 

.8774 

.4387 

120^ 

60O 

4 

Tetragon 

1 

.7071 

•5 

90 

90 

5 

Pentagon 

.7624 

.6485 

.5247 

72 

108 

6 

Hexagon 

#61204 
.5246 

•6^04 

•5373 
'5440 

60 

*^ 

7 

Heptagon 

•604s 

5*  95-7^' 

198  34*99' 

8 

Octagon 

•4551 

•5946 

•5493 

45 

»35 

9 

Nonagon 

.4092 

.588 

.5525 
•5548 

^5 

140 

10 

Decagon 

J605 

•5833 

36 

^^    .      . 

II 

Undecagon 

.3268 

■5799 

•5564 

32  43-64' 

147  16.36' 

12 

Dodecagon 

.2989 

•5774 

-5577 

30 

ISO 

340      MJEKSUBATION  OP  ABSAS^  LIlfES^  AND  SUBFAGE8. 

AddeUanal  Utu  iffvregmn§  TViUe.— 6th  and  vth  'colamns  of  Uble  facHitaM  con- 
Btruction  of  these  figures  with  aid  of  a  sector.  Thus,  if  it  is  required  to  describe  an 
octagon,  opposite  to  it  in  column  6th,  is  45;  then,  with  chord  of  60  on  sector  as 
radius,  describe  a  circle,  taking  length  45  on  same  line  of  sector;  mark  this  dis- 
tance off  on  the  circumference,  which,  being  repeated  around  the  circle,  will  give 
points  of  the  sides. 

7th  column  gives  angle  which  any  two  adjoining  sides  of  the  respective  figures 
^ake  with  each  other;  and  8th  gives  tangent  of  .5  angle  in  column  7th. 

To    Compute    H>adius    of    Iiisoriloed.    or    Ciroumsoritoed. 

Circles. 

When  Radius  of  (Srcunucribing  Circle  is  given.  Rule.— Multiply  radius 
given  by  unit  in  column  E,  in  following  Table,  opposite  to  term  of  polygon 
for  which  radius  is  required. 

When  Radius  of  Inscribed  CircU  is  given.^  Rulb.— Multiply  radius  given 
by  unit  in  column  F,  in  following  Table,  opposite  to  term  of  pqlygon  for 
which  radius  is  required. 

To   Coxupute   A.r&&>» 
When  Radii  of  Inscribed  or  Circumscribir^  Circles  are  given.    Rule.— 
Square  radius  given,  and  multiply  it  by  unit  in  columns  G  or  H,  in  following 
Table,  and  opposite  to  term  of  polygon  for  which  area  is  required. 

When  Length  of  a  Side  is  given.  Rule.  —  Square  length  o£  side  and 
multiply  it  by  unit  in  column  I,  in  following  Table,  opposite  to  term  of 
polygon  for  which  area  is  required. 

To  Compute  Uengtfa.  of  a   Side. 
When  Radius  of  Inscribed  Circle  is  given.    Rule.— Multiply  radius  given 
by  nmt  in  colunm  K,  in  following  Table,  and  opposite  to  term  of  polygon  for 
which  length  is  required. 


No.  of 
SidM. 


3 
4 
5 
6 

5 

9 
zo 

II 

12 


POLYOOIf. 


Trigon 

Tetragon 

Pentagon 

Hexagon 

Heptagon 

Octagon 

Nonagon 

Decagon 

Undecngon 

Dodecagon 


E. 

lUdiatof 

Inscribed 

by  Cireain- 

■ori^ing 

Circle. 


F. 


Radios  of 

ClrcuniKrlb- 

log  by 

InKiiblng 

Circle. 


G. 

Area. 

ByRadiiu 

of  Inscribed 

Circle. 


•5 

2 

.707  11 
.80902 
.8660a 

1.41421 
1.23607 

'•1547 

•90097 
.92388 
.93969 
.95106 

r.zo992 

X.  082  39 
1.064 10 
1.051  46 

•95949 
•96593 

X. 042  22 
1.035  3^ 

5- "96 15 

3.63272 

3- 464' 
3.37102 

3-3«37« 
3-275  73 
3.2492 

3-88989 
3.21539 


H. 

L 

Area. 

Bt  Radius 
ofCircum- 

Area. 

By  Tjenetb 

scribhig 

of  Side. 

Circle. 

1.29904 

.43301 

2 

1 

2.37764 
2.59808 

1.72048 

2.59808 

2.73641 

3- 6339" 

0.82842 

4.81845 

2.89254 

6.18282 

2-93893 

7.69421 

2-973  53 

9.36564 

3 

1X.19615 

K. 

Length  of 

Side. 

By  Radioa 

of  Inscribed 

Circle. 

3- 464* 

2 

1-45308 

^-1547 

?63i5 
2843 
.72704 

.64984 
•58725 
•535  9 


Regular  Bodies. 
To  Compute  Surfaoe  or  Uinear  XQdge  of  Regular  Sodjr. 
Rule. — Multiply  square  of  linear  edge,  or  radius  of  circumscribed  or  in- 
scribed sphere,  by  units  in  following  table,  under  head  of  dimension  used : 

Radios  of 

Circa  mscribed 

Sphere. 


No.  of 
Sides. 


t 


8 
12 

20 


Boot. 


Tetrahedron 

Hexahedron 

Octahedron 

Dodecahedron 

Icosahedron 


Sarfiwe  by 
Linear  Edg*. 


i.732«S  1.63299  4.89898  .75984 

6  Z-I54  7  2  .40825 

3.4641  1.41421  2.44949  .53720 

20.64578  .71364  .89806  .22008 

8.66025  1.05146  1.32317  -33981 

EzAMrLi.— What  is  surface  of  a  hexahedron  or  cube,  having  sides  of  $  inchest 

5'  X  6  =  25  X  6  =  150  square  ins. 


Radial  of 

Inscribed 

Sphere. 


Linear  Edf^e 
by  Sarf^oa. 


HBNfiUHATIO^  OF  ABBAS^  LINES,  AKD  StJBFACES.       3^1 


rTo   Ooznptite   I^ixieaar  I3dge. 

When  Surface  ahne  ii  given.  Rule. — Multiply  square  root  of  surface^ 
by  multiplier  opposite  to  term  of  body  under  head  of  Linear  Edge  by  Sur- 
face in  preceding  Table. 

ExiMFLB.— What  n  linear  edge  of  a  hexahedron,  surfkce  being  6  inches? 

y/6  X  40825  =  X  iruik. 

When  Radius  of  an  Inscribed  or  Circumscribed  Sphere  is  given.  Rule. — 
Multiply  radios  given,  by  multiplier  opposite  to  term  of  body  in  preceding 
Table,  under  head  of  the  Radius  given. 

Example.— Radius  of  circumscribing  sphere  of  a  hexahedron  is  zo  inches;  what 
is  its  linear  edge? 

10  X  ^•i547  =  "'547  **»*• 

To  Compute   Surfbtoe. 

When  Linear  Edge  is  given.  Rule. — Multiply  square  of  edge,  by  multi-r 
plier  opposite  to  term  of  body  in  prec^ng  Table,  under  head  of  Surface. 

Example. —Linear  edge  of  a  hexahedron  is  x  inchj  what  is  its  surface? 

x'  X  6  =  6  square  ins. 

Irregttlctr  Polygona, 
Definition  <— Figures  with  unequal  sides.  • 

To    Compute   Afreet   of*  axi    Irregular    Polygon.— Fig>s.  Ifi 

axid  le. 

Rule. — Draw  diagonals  and  per- 
pendiculars, as  df^  dg,  a,  and'c,  Fig. 

J  i5,and/<f,^d,^<ft,^tt,andt,o,r,ftBd 
5,  Fig.  16^  to  divide  the  figures  into 
triangles  and  quadrilater^s :  ascer« 

Q  tain  areas  of  these  separately,  and 
take  their  sum. 

NoTS. — ^To  ascertain  area  of  mixed  or  compound  figures,  or 
such  as  are  composed  of  rectilineal  and  cuivllloeal  figures  to- 
gether, compute  areas  of  the  several  figures  of  which  the  whole  is  composed,  then 
add  them  together,  and  the  sum  will  give  area  of  compound  figure.  In  this  manner 
any  irregular  sur&ce  or  field  of  iand  may  be  measured  by  dividing  it  into  trapeziums 
and  triangles,  and  computing  area  of  each  separately. 

When  any  Part  qfa  Figure  is  hounded  hu  a.Cui've  the  Area  may  he  ascer- 
tained aafoUows: 

■   ■  '      •  ■  ... 

Erect  any  number  of  perpendiculars  upon  base,  at  equal  distances,  and 
ascertain  thieir  lengths. 

Add  lengths  of  the  perpendiculaFa  thus  ascertained  together,  and  their 
sum,  divided  by  their  number,  will  give  mean  breadth ;  then  multiply  mean 
breadth  by  length  of  ba^e* 

To  Compute  A:rea  of*  ct  Ijo3]ig»  Ikvegular  ITigure.^^E^ig.  17. 

Fig.  x7  Rule. — Take  mean  breadths  at  several  places,  at  equal 

distances  apart,  as  i,  2,  3,  b  d,  etc. ;  add  them  together, 
b  divide  their  sum  bv  number  of  breadths  for  total  mean 
bretidth,  and  multiply  quotient  by  lengtli  of  figure. 


Or. 


j-|-6'4.b'',etc. 


X  I  =  are€L 


F  k- 


342      MSNSUBATION  OF  ABSU^S,  LINES,  AND  SUBFACBS^ 

To  Cozupute   an   A.re^  'boundad   "by    a  Curve. —  Fig.  18, 

{8impson^8  Rule.) 

-X'^i  '^  Opkration.— Divide  line  a  b  into  any  number  of  equai  parU, 

>^'ii}*S^      l>y  perpendiculars  from  base,  as  i,  2,  j,  etc.,  whicn  will  give 
X'     !    !     !     i\    an  ocW  number  of  points  of  division.    Measure  lengths  of 
u~i    8   8    A    s    6  these  perpendicuiars  or  ordinates,  and  proceed  as  follows: 

To  sum  of  lengths  of  first  and  last  ordinates,  add  four  times  sum  of  lengths  of  all 
even  numbered  ordinates  and  twice  sum  of  odd;  multiply  their  sum  by  one  ttiird 
of  distance  between  ordinates^  and  product  will  give  area  required. 

Illustration.— Water-line  of  a  vessel  has  a  length  of  80  feet,  and  ordinates  o,  i. 
1.2, 1.5, 2,  t.9, 1.5,  I.I,  and  o,  each  10  feet  apart;  what  is  its  area? 

Ordinates. 

Cveti.  Odd.  ButM. 

I  1.2  first  o 

Z.5  a  last  o 

1.9  1.5  even  22 

I.I  odd   9.4 

^X4  =  a2.    4.7X2  =  9.4  31. 4  X  10 =314,  which 4-3  =  104. 66  «5uare/e«t 

Circle. 

Diameter  Is  a  right  line  drawn  through  its  centre,  bounded  by  its  periphery. 

Radius  is  a  right  line  drawn  from  its  centre  to  Its  clrenmference. 

Circum/erence  is  assumed  to  be  divided  into  360  equal  parts,  termed  d^rees; 
each  degree  is  divided  into  60  parts,  termed  mintUes;  each  minute  into  60  parts, 
termed  seconds  ;  and  each  second  into  60  piuts,  termed  thirds^  and  so  on. 

To   Compute   Circuxiafbrenoe  o€  a  Circle. 
Rule. — Multiply  diameter  by  3.1416. 

Or,  as  7  is  to  22,  so  Is  diarodter  to  clrcumfertnce. » 
Or,  as  113  is  to  355,  so  Is  diameter  to  circumference. 
EzAMTLB. — Diameter  of  a  circle  is  1.25  inches;  what  is  its  circumference? 

1.25  X  3.1416  =  3.927  ins. 

To  Compute  Diaixieter  of  a  Circle. 
RuLK. — Divide  circumference  by  3.1416. 

Or,  as  22  Is  to  7,  so  is  circumference  to  diameter. 
NoTB.  —Divide  area  by .  7854,  and  square  r6ot  of  quotient  will  give  diameter  of  circlo, 

To   CoTnpute    A.rea  of  a   Circle. 
Rule. — Multiply  square  of  diameter  by  .7854. 

Or,  multiply  square  of  clrcumfbrenoe  by  .07958. 
Or,  multiply  half  ciroaroferenoe  by  half  diameter. 
Or,  multiply  square  of  radius  by  3. 1416. 
Or,  pr^=.  area^  r  refnsenUng  rodttM. 
Example.— The  diameter  of  a  circle  is  8  inches;  what  Is  the  area  of  it? 

8*= 64,  and  64  X .  7854 = 50. 2656  ins. 

Proportions   of*  a   Circle,  its   Kq.ual,  Inscribed.,  and.  Oir* 

ouxnaoril>ed   S^L'u.ares. 

CIRCLB. 

1.  Diameter         X    8f6«  I  =  side  of  an  fiqual  Square. 

2.  Circumference  x   .2821  j  ^      dh"»"»- 

3.  Diameter  X   .7071} 

4.  Circumference  X   .2251  [  =  Side  of  Inscribed  Square. 

5.  Area  x  .9003  -r-  diam.     ) 

6.  Diameter         X  1.3468    as  Side  of  as  Equilateral  Triaoglek 

SQUARE. 

7.  A  Side  X  !•  41 42  3=  Diameter  of  its  Circumscribinf  Circle. 

8.  "  X  4.443  =  Circumference  of  its  CircumscribiQgClrcte. 

9.  •*  X1.128  =  Diameter  } 

10.  "  X  3-545  =  Circumference}  of  an  EquitlCiitle. 

11.  Square  inches  X  1.273  :&  Circle  inohss    ) 

Note.— Square  described  wHl)iR  a  pifcle  is  one  half  area  of  one  described  without  ii. 


MBNSUBATION  OF  ABKAS,  LINBS,  AND  SCBFACBS.      343 


To  Coznpnte  Side  of  Q-reateat  Square  tba^t  oan.  be  In- 

scribed   in   a   Circle, 

Rule. — ^Multiply  diameter  by  .7071,  or  take  twice  square  of  radius. 

TTsefu.!  JHaotors. 
In  wliioli  p  or  IT  represent*  Oircuxnf^rence  of  a  Circle. 

Diameter  :=  z. 


pz=i  3- MX  59«  653  589+ 

ap=  6.283185307179+ 

4  p  =  la.  566  370  6f  4  359-f 

>ip=   1.570796326794+ 

XP=     .785398163397+ 


Jp»4.t8879+ 

^p=  .5*3598+ 

HP=-  .3^699+ 

.^p=' .461  799+ 

ThP=    008726+ 
Diameter  =  10. 


y/P^ 
2 


VP 


*•  77a  453 

.797884 


Log.,J>=       .497 '4987 
)^y/P=        .886226+ 
36^=113.097335+ 


X. 
3. 

3- 

4- 

5- 
6. 

7- 
& 

9- 
10. 

II. 

12. 

X3- 


Chord  of  arc  of  semicircle  =  xo 

Cbord  of  half  arc  of  semicircle  =:  7.071067 

Versed  sine  of  arc  of  semicircle.  =  5 

Versedsineof  half  arc  of  semicircle  =  1.46446^ 

Chord  of  half  arc,  of  half  of  arc  of  semicircle  =  3. 826  83 

Half  chord,  of  chord  of  half  arc  =   3, 535  533 

Length  of  arc  of  semicircle  =  1 5. 707  963 

Length  of  half  arc  of  semicircle  s=s.  7. 853  981 

Square  of  chord,  of  half  arc  of  semicircle  (2)  =  50 

Square  root  of  versed  sine  of  half  arc  (4)  =  1.210151 

Square  of  versed  sine  of  half  arc  (4)  =  2. 144  664 
Square  of  chord  of  half  arc,  of  half  arc  of  semicircle  (5)  =  14.64467 

Square  of  half  chord,  of  chord  of  half  arc  (6)  =  12. 5 


NoTK—In  all  eompntationsp  is  taken  at;  3.14x6,  )^  ptit  .7854,  ^p  at  .5336;  and 
whenever  the  decimal  figure  next  to  the  one  last  taken  exceeds  5,  one  is  added. 
Thus,  3. 141 59  for  four  places  of  decimals  is  taken  as  3.1416. 

7o  Oonxpute  Xjengtb  of  an  A.ro.of  a  Circle. ^^S^ijy.  19. 

\^en  Ntanber  of  Degrees  and  Radius  are  mven.  Rvlb  1.  —  Multiply 
number  of  degrees  in  the  arc  by  3.1416  times  tne  radius,  and  divide  by  180. 

3. — Multiply  radius  of  circle  by  .01745329,  and  product  by  degrees  in 
the  arc. 

If  length  is  required  for  minuted,  multiply  radius  by  .000290889;  if  for 
seconds,  by  xxx>  004  848. 

EzAMPLR  I. — Number  of  degrees  in  an  arc,  006,  Fig.  19,  are 
90,  and  radius,  o  6,  5  inches;  what  is  length  of  arc? 

90  X  (3- 1416  X  5)  =  1413.72,  which  -f- 180  =  7.854  iru. 

3.^Radius  of  an  arc  is  xo,  and  measure  of  its  angle  44^  3<y 
30";  what  is  length  of  arc? 

JO  X  .0x7  453  ^  ==  •  »74  53*  Of  which  X  44  =  7-679  447  6,  length 
for  440. 

10  X  -000390  889  =  .002  908  80,  which  X  30  =:  .087  866  7,  Ungik/pr  y>'. 


xoX  000  004  848  =  .000  048  48,  which  X  3o  =  .oox4544^fonflr<A/or  30". 

61 

•  7^  =7.768x687  ins. 

4) 
Or,  reduce  minutes  and  seooods  to  decimal  of  a  degree,  and  multiply  by  it 

See  Rule,  page  93.    30^  30"  =  .5083,  and  .1745329  from  above  x  44-5083 
7.768x63  int. 


Then  7.6794476] 
.087266; 
.001454, 


344     MENSUBATIO];^  OF  ABEAS,  LINES,  AND  SUBFAGBS. 

When  Choird  of  Half  Arc  and  Chord  of  A  re  are  given.  Rule. — From  eight 
times  chord  of  half  arc  subtract  chord  of  arc,  and  one  third  of  remainder  will 
give  length  nearly. 

g  g» f> 

Or, ,  cf  rqnresenHng  chord  o/ha^arc^  and  c  chord  of  arc 

3 
ExAHpLB.— Chord  of  hajf  arc,  a  c,  Fig.  19,  is  30  inches,  and  chord  of  arc,  a  5, 48; 
what  is  length  of  arc? 

30 X  8  =  240=8  times  chord  ofhaifare;  340—48  =  192,  and  192-5-3=64  ifu. 

When  Chord  of  Arc  and  Versed  Sine  of  Arc  are  given.  Rule.  —  Muk 
tiply  square  root  of  sum  of  square  of  chord,  and  four  times  square  of  the 
versed  sine  (equal  to  twice  chord  of  half  arc),  by  ten  times  square  of  yersed 
sine ;  divide  this  product  by  sum  of  fifteen  times  square  of  chord  and  thirty- 
three  times  square  of  versed  sine ;  then  add  this  quotient  to  twice  chord  of 
half  arc,*  and  sum  will  give  length  of  arc  very  nearly. 

^     y/c^  +  4  t).  sin.'  X  10  v.  sin.^  ,      ^         •  ^.  j.    . 

Or, '-  ^-1 r-^ \-2&jV.  nn.  representing  versed  tine. 

EzAMPLB.  —Chord  of  an  arc  is  80,  and  its  versed  sine,  c  r,  30;  what  is  length  of  arc? 
80^  =  6400  =  square  ofdutrd  ;  yjfzi:  900 = square  of  versed  sine. 

<\/(64oo-|-9ooX4)  =  100  =  square  root  ofsqttare  of  chord  and  fawr  times  square 
of  versed  sine  =  tunce  dufrd  ofhaifarc 

Then  100  X  3cy»x  10  =  900  000  =^pTodM(A  of  to  Hmes  square  of  versed  sine  and  root 
above  obtained. 

And  80^  x  15  =96000  =  15  times  squcwe  of  chord. 

30^  X  33  =  29700  =  33  times  square  €^  versed  sine. 

125700 

Hence  ^^^^  =  7.1599,  and  7.1599-1- loo^  or  twice  chord  of  ha{fare  =  loj.tsoa 
135700 

length. 

When  Diameter  and  Versed  Sine  are  given.  Rule. — Multiply  twice  chord 
of  half  the  arc  by  10  times  versed  sine ;  divide  product  by  37  times  versed 
sine  subtracted  from  60  times  diameter,  add  quotient  to  twice  chord  of  half 
.arc,  and  the  sum  will  give  length  of  arc  very  nearly. 

^     sc*  X  10  V.  sin.    .       . 
'  6ott  —  27  V.  sin. 

EzAMPLB.— Diameter  of  a  circle  is  100  feet,  and  versed  sine,  c  r,  of  arc  25 ;  what 
is  length  of  arc? 

V25  X  100 = 50 = chord  ofha^arc.    See  Rule,  page  345. 


50  X  2  X  25  X  »o  =  25000  =  twice  chord  of  half  arc  by  10  times  versed  sine 
100X60 — 25X27  =  5325  =  27  Hmes  versed  sine  from  60  times  diameter. 

Then  ■   °°^  =  4-^4^)  (^i^d  4.6948  -f-  50  x  2  — 104.6948  feet 

rFo   Coxnpute  Chord  of  an.  A,to» 

When  Chord  of  Half  the  Arc  and  Versed  Sine  are  given.  Rule. — From 
square  of  chord  of  half  arc  subtract  square  of  versed  sine,  and  take  twice 
square  root  of  rem&inder. 

Or,  y/  (c'«  —  r.  »fn.«)  X  2 = c. 

ExAVPLB.— cau>rd  of  half  arc,  a  c,  is  60,  and  versed  sine,  c  r,  36;  what  is  length 
of  chord  of  arc? 

60'—  36>sr3304,  and  ^3304  X  2  =  96. 


*  Sqa«r«  root  of  •am  of  aqoar*  of  chord  aftd  foor  Umet  aqoaiv  of  Ik*  renti  rint  li  Mod  to  feiftaf 
cihord  of  half  arc. 


MSNSUBATIOK  OF  ABBAS,  LINBS,  ANB  SUBFACES.       34J 

When  Diameier  and  Versed  Sine  are  given.  Multiply  versed  sine  by  3, 
and  subtract  product  from  diameter ;  subtract  square  of  remainder  from 
square  of  diameter,  and  take  square  root  of  that  remainder. 

Or,  V^^^^^nid^^^^vTiinrxlp  =  c. 

Example.— Diameter  of  a  circle  is  100,  and- versed  sine  of  the  arc  is  36;  what  is 
length  of  chord  of  arc  ? 

(100 — 36  X  2)* — 100'  =  9216,  and  '\/92i6  =  96. 
To    Compu-te    Ch.ord.   of  ££alf  an   ^ro. 

When  Chord  of  the  Arc  and  Versed  Sine  are  given.  Rule  i. — Divide 
square  root  of  sum  of  square  of  chord  of  the  arc  and  four  times  square  of 
versed  sine  by  two. 

2. — Take  square  root  of  sum  of  squares  of  half  chord  of  arc  and  versed 
sine. 

Or, *-^ =  0*.      Or,  ^/  (  — )  -f  V.  sm.^  =  &. 


When  Diameter  and  Versed  Sine  are  given.  Rule. — ^Multiply  diameter 
by  versed  sine,  and  take  square  root  of  their  product. 

Or,  Vd  X  V.  «n. = c*. 

To   Compute   I>iaxxieter. 

Rule  i. — Divide  square  of  chord  of  half  arc  by  versed  sine. 

Or,  c'^  _!.  t,,  jju,  ^  diameter. 

2. — Add  square  of  half  chord  of  arc  to  the,  square  of  versed  sine,  and  divide 
this  sum  by  versed  sine. 

Or,"'-"°+''-"-'  =  d 
V.  sin. 

To   Compute   Versed,   Sine. 
Rule. — Divide  square  of  chord  of  half  arc  by  diameter. 

Or,  -7  =  V.  sin. 

When  Chord  of  the  Arc  and  Diameter  are  given.  Rule. — From  square 
of  diameter  subtract  square  of  chord,  and  extract  square  root  of  remainder ; 
subtract  this  root  from  diameter,  and  divide  remainder  by  2. 

Or, =  u  rfn. 

2 

When  it  is  greater  than  a  Semidiameter,  Rule. — Proceed  as  before,  but 
add  square  root  of  remainder  (of  squares  of  diameter  and  chord)  to  diam- 
eter, and  halve  the  sum.  

Or,  — ^t —  V.  sin. 

2 

ExAXPLB.— Diameter  of  a  circle  is  100,  and  chord  of  arc  97-9796;  what  is  Its  versed 
sine? 


100  -f-  V 100* — 97. 9796  ' 100 -|- 20 


=  60. 


To  Compute  Ordiziate  of  a  Circular  Curve.— Fig.  SO. 

^**^*^  y^^^\      "^^  Vr*  _  x2  —  (r  — 1>)  =  ordinate. 

Illustration. — Radius  of  circle  5  ins.,  versed  sine 
2,  and  distance  x  2 ;  what  is  length  of  ordinate  0  ? 

Vs"— 2«  — (5  — 2)  =  4.58-3  =  i.58t»w. 


346      MEKSUBATION  OF  ABBAS^  LOBS,  AND  STJBFACBS. 

Sector  of  a  Circle. 

Definition.— A  part  of  a  circle  bounded  by  an  arc  and  two  radii. 

To   Coxxipute  A^rea.  of  a   Sector   of  a   Circle. 
When  Degrees  in  the  Arc  are  given. — Fig.  21.    Rule. — As  360  is  to  num- 
ber of  degrees  in  a  sector,  so  is  area  of  circle  of  which  sector  is  a  part  to  area  « 
of  sector. 

tt  /I 
*"'&  21-^^-^ ^^^        Or, =  areOj d  representing  degrees  in  arc^ and  a  area 

**^" "~^^  ofcircie. 

\^        /  Example.  —  Radius  of  a  circle,  0  a,  Fig.  21,  is  5  ins.,  and 

\y.  number  of  degrees  of  sector,  o  b  o,  is  22°  30' ;  what  is  area  f 

o  Area  of  a  circle  of  5  ins.  radius  =  78. 54  ins. 

Then,  as  360°  :  22^  30' ::  78.54  :  4-90875  *'»»• 

When  Length  of  the  Arc^  etc,  are  given.  Rule.— Multiply  length  of  arc 
by  half  length  of  radius,  and  product  is  area. 

Or,  i>  X  r  -j-  a  =x  areOy  b  representing  arc,  and  r  radius. 

Segment  of  a  Circle. 

Definition. — A  part  of  a  circle  bounded  by  an  arc  and  a  chord. 

To   Compnte   iVrea   of  a    Segment  of  a   Circle. 
When  Chord  and  Versed  Sine  qfArCj  and  Radius  or  Diameter  of  Circle  are 

given. 

When  Seament  is  less  than  a  Semicircle,  as  abc, Fig. 21.    Rule. — Ascer- 
tain area  of  sector  having  same  arc  as  segment ;  then  ascertain  area  of  tri-  . 
angle  formed  by  chord  of  segment  and  radii  of  sector,  and  take  difference  of 
these  areas. 

Note.  _ Subtract  versed  sine  from  radius;  multiply  remainder  by  one  half  of 
chord  of  arc,  and  product  will  give  area  of  triangle. 

Or,  a — a' =  area,  a  and  a'  representing  areas  of  sector  and  triangle. 

When  Segment  is  greater  than  a  Semicircle.  Rule. — Ascertain,  by  pre- 
ceding rule,  area  of  lesser  portion  of  circle;  Subtract  it  from  area  of  whole 
circle,  and  remainder  will  give  area. 

Or,  a  —  a''  =  area,  a  and  a'  representing  areas  ofcircie  and  lesser  portion. 

See  Table  of  Areas  of  Segments,  page  267. 

Fig.  22.    ;^  Example.  —  Chord,  a  c.  Fig.  22,  is  14. 142;  diameter,  b  e,  is  20 

.^^         ins. ;  and  versed  sine,  b  r,  is  2.929;  what  is  area  of  segment? 

-^•9  14. 142  -r-  2  =  7.071  =  halfcfwrd  of  arc. 

\       '\/7.o7i^-{-  3.929"  =  7.654  —  square  root  of  sum  of  squares  of 
s    half  chord  of  arc  and  versed  sine,  which  is  chord  ab  of  hjdf  are 
/    abc. 

y  By  Rule,  page  344, 

7. 654  X  2  X  2. 929  X  10  =  448. 37 1  =  <toic«  chord  of  ha^  arc  by  10 

times  versed  sine. 


20  X  60 2.929  X  27  =  1120.917  =  60  times  diarneter  subtracted  from  27  times 

versed  sine.  

Then  448. 371  -f- 1120.917  =  .4,  and  .4  added  to  7.654  X  2  (twice  chord  of  half  arc) 
=  15.708  inches,  length  of  arc. 

By  Rule  above,  15.708  X  —  =  78.54  =  tfc«  are  mtdtipHed  by  half  length  of  radius. 

z=  area  of  sector. 
10  — 3.929  =  7.071  =v«r«ed  sine  subtracted  from  a  radius,  which  is  height  of  tri 

angle  aoc,  and  7.071  X  '^ '^^  =  50  =  area  qf  triangle. 

Consequently,  78. 54  —  50= 28.54. 


MENSURATION  OF  ABSAS^  LINES,  ANP  SXJBITACSS.       347 

When  the  Chords  of  Arc,  and  ofhgifo/Arc,  and  Verted  Sine  are  given, 
RuiJs.— To  chord  of  whole  arc  add  chord  of  half  arc  and  one  third  of  it 
more ;  multiply  this  sum  by  versed  sine,  and  thi^  product,  multiplied  by 
404  261,  will  give  area  nearly. 

c' 

Or,  <r+  c'  H ».  nn.  x  .404  26  =  area  nearly. 

3 

Exjkxpix.— Chord  of  a  segment,  a  c,  Fig.  32,  is  38  feet;  cbord  of  balf  arc,  a  6,  is 
1 5 ;  and  versed  sine,  b  r,  6 ;  what  is  area  of  segment  ? 

28  +  IS  +  —  =  chord  of  arc  added  to  chord  of  "haXf  arc  and  one.  third  of  it  more. 
3 
48  X  6  =  288  =  product  qf  above  turn,  and  versed  sine.    Hence  288  x  .404  26  =  116.427 
sqiuire  feet. 

When  tke  Chord  of  Arc  and  Versed  Sine  only  are  given.  Rule. — Ascer- 
tain chord  of  half  arc,  and  proceed  as  before. 

To  Compute  ClxOFcl  and  Hoislxt  of*  a  Segment  of  a  Circle. 

When  A  rea  is  given.  Rule. — Divide  area  by  square  of  diameter  of  circle, 
take  tab.  height  for  area  from  table  of  Areas  of  Segments  of  a  Circle,  p.  267, 
multiply  it  by  diameter,  and  product  will  give  required  height, 

FrtMU  diameter  subtract  height,  multiply  remainder  by  height,  take  square 
root  of  product  and  multiply  it  by  2  for  required  chord. 


Or,  —  =  [tab.  area  for  height)  xd  =  h,  and  Vd  — AX  A  x  2  =sc. 
Circular  IVIeasure.    (See  Rule,  page  113.) 

Spliere. 

DEFimmoN.— A  figure,  surface  of  which  is  at  a  uniform  distance  fh)m  centre. 

Xo   Compute    Coixvex   Surraoe    of  a   Spliere.— Tfig.  Q3. 
Fig.  33.  Rule. — Multiply  diameter  by  circumference,  and  prod* 

/^""'^^^  uct  will  give  surface. 

/  ^^k  ^'''  4  P  ''^  =  surface.  *    Or,  pd^  =  surface. 

a[— iSM^       Example.— What  is  convex  surface  of  a  sphere,  Fig.  23,  hav- 

Y  ^«a^F  ^^^  ^  diameter,  a 6,  of  10  ins? 

\f^B^^^  10  X  31-  416  =  314. 16  square  ins. 

Segment   of  a  Sphere. 

DspiMTiow.  —A  section  of  a  sphere. 

To  Compute  Surface  of  a  Segment  of  a  SpKere.— Fig.  24. 
Rule. — Multiply  height  by  the  circumference  of  sphere,  and  add  product 
to  the  area  of  base. 

Or,  2prh=: cor  .2X  surface  aXone. 

Fig.  34.  Example H:.ight,  &  o,  of  a  segment,  a  he.  Fig.  24,  is  36  ina. 

and  diameter,  b  e,  of  sphere  100 ;  what  is  convex  surface,  and 
what  whole  surlkce? 

36  X  100  X  3. 1416  =  11 309. 76  =  height  of  segment  multiplied  by 
eircumftrence  of  sphere. 

To  ascertain  area  of  base ;  diameter  and  versed  sine  being 
given,  diameter  of  base  of  segment,  being  equal  to  chord  of  arc, 
is,  by  Rule,  page  344^ 

100  — 36X2  =  28;  Vioo=  — 28'  =  96. 

96*  X . 7854  =  7238. 2464  =  convex  surface,  and  7238. 2464  -|- 1 1  309. 76  =  18  548.0064 
=.  convex  surface  added  to  area  of  bases:,  square  ists. 

Nora. —When  convex  surface  of  a  figure  alone  is  required,  area  or  areas  of  base 
or  ends  mast  be  omitted. 

*  par  w  nprwento  in  this,  sad  In  all  cmm  w1i«r*  It  b  VMd,  ratio  of  elrcnmforMiM  of  a  cficlo  to  ik 
"  r»or3.s4i& 


348       MENSUBATION  OF  ABEAS,  LINES^  AJfB  SURFACES. 

When  the  Diameter  of  Bcue  bf  Segment  and  Height  of  it  are  aXona  given. 
Rule. — Add  square  of  half  diameter  of  base  to  the  square  of  height ;  divide 
this  sum  by  height,  and  result  will  give  diameter  of  sphere. 

3 

Or,  d-r-  2  +  h^-T-h=.diameter. 

Spherical   ZaTi.ei  (or  EVustum  of*  a  Sphere). 
Dbfinition.— The  part  of  a  sphere  included  between  two  parallel  chorda 

To   Compute    Surface   of  a    Spherical    Zone.— ITig.  SiC 

^ \  Rule.— Multiply  height  by  the  circumference  of  sphere, 

yT  >v      and  add  product  to  area  of  the  two  ends. 

/ T — T^^m  OXyhc-{-a-\-a*  z=gurf(ux. 

tX .;..-,  ^Htj  Or,  2p r  A  =  conwx  surface  cUone. 

V         £         y        ExAMPLM.  —  Diameter  of  a  sphere,  a  6,  Fig.  25,  from  which  a 
\^  y     zone,  c  g,  is  cat)  is  35  inches,  and  height,  c  ijr,  is  8 ;  what  is  convex 

^•^-^ -^        surface? 

25  X  3.1416  X  8  =  628.32  =  A«tpW  X  circumference  ofq)here=:zsqttare  ins. 

When  the  Diameter  of  Sphere  is  not  given.  Rule. — ^Multiply  mean  length 
of  the  two  chords  by  half  their  difference ;  divide  this  product  by  breadth 
of  zone,  and  to  quotient  add  breadth.  To  square  of  this  snm  add  square  of 
lesser  chordf  ana  square  root  of  their  sum  will  give  diameter  of  sphere. 

Spheroids   or  B^llipsoids. 

Definitiok.— Figures  generated  by  the  revolution  of  a  semi-ellipse  about  one  of 
Its  ci)ameters. 

When  revolution  is  about  Transverse  diameter  they  are  Prolate,  and  when  it  is 
about  Conjugate  they  are  Oblate. 

To   Compute    Surface   of  a   Spheroid.— ITlg.  SQ. 

When  Spheroid  is  Isolate.  Rule.  —  Square  diameters,  and  multiply 
square  root  of  half  their  sum  by  3.1416,  and  this  product  by  conjugate 
diameter. 

Fig.  26 (,  Or,     / — — —  X  3. 1 4 16  X  d= «Mr/acc,  d  and  d*  represent- 

ing corrugate  and  transverse  diameters. 

ExAMPLK. — A  prolate  spheroid,  Fig.  26,  has  diameters,  ed 
and  a  by  of  10  and  14  inches;  what  is  its  surface? 

10'  -|-  142  =  296  =  sum  of  squares  of  diameters. 

i2i^-^^  =  148.  and  v^i48  =  12. 1655  =  «9uare  root  of  half 
sum  of  squares  of  diameters. 

12. 1655  X  3. 1416  X  10  =  382. 191  ins.  =  product  of  root  al>ove  obtained  X  3. 1416, 
and  by  coi^vi{fate  diameter. 

When  Spheroid  is  Oblate.  Rule. — Square  diameters,  and  multiply  square 
root  of  half  their  sum  by  3.1416,  and  this  product  by  transverse  diameter. 


Or,     /  — ^ —  X  3-  H»6  X  d'  =  surface. 


ExAMPLa— An  oblate  spheroid  has  diameters  of  14  and  xo  inches;  what  is  its 
Burfkce? 

12^  -f- 10'  =  ^ = <v^  of  squares  of  diameters. 

296  -T-  2  =  148,  and  •\/i48  =  12. 1655  =  square  root  of  haJlf  sum  of  sqwurt*  of  di^ 
ampler. 

13.1655  X  3-1416  X  14  =  5^0679  ins.z=produ^  of  root  above  obtained  X  3.14x61 
and  by  transverse  diameter. 


MENSURATION  OF  ASEAS,  LINES^  AND  SURFACES.     349 


Xo  Coxnpixte  Convex  Sxirfaoe  of  a  Segxnent  of  a   Splie* 

roid.^Kig^s.  27  and  88. 

Rule. — Square  diameters,  and  take  square  root  of  half  their  sum ;  then^ 
as  diameter  fr<Mn  which  the  segment  is  cut  is  to  this  root,  so  is  the  height 
of  segment  to  proportionate  height  required.  Multiply  product  of  other  dU 
ameter  and  3. 14 10  by  proi^ortionate  height  of  segment,  and  this  last  product 
will  give  su^ce. 


Or, 


Vd='+d'^-H2 


Xhxd^  or  dx  3.1^16  =  surf ace. 


Pig.  s& 


--i -d* 


.  --X.... 


dord' 

EXAMPLK.  — Height,  a  o,  of  a  seg- 
ment, «/,  of  a  prolate  spheroid,  Fig. 
27,  is  4  inches,  diameters  being  10  and 
14;  what  is  convex  surface  of  it? 

Square  root  of  half  sum  of  squares  a 
of  diameters,  12. 1655. 

Then  14 :  12. 1655 1:4: 3.4758  =  height 
of  segmerUy  proportionate  to  mean  of 
diametert,  and  10  X  3-1416  X  3-4758  =  109. 1957  ins. 

9.— Height,  CO,  of  a  segment  of  an  oblate  spheroid,  Fig.  28,  is  4  inches,  the  diam 
•ters  being  14  and  10;  what  is  convex  surface  of  it?  214.0272  square  ins. 

To    Coxnpute    Convex    Surface    of  a    Fruatvim    or    Zone 
of  a   Splieroid.— FigTB.  Q&  and  30. 

Rule. — Proceed  as  by  previous  rule  for  surface  of  a  segment,  and  obtain 
propOTtionate  height  of  frustum ;  then  multiply  product  of  diameter  par- 
allel to  base  of  frustum  and  3.1416  by  proportionate  height  of  frustum,  and 
it  will  give  surface. 


Fig.  29. 


Fig.  3a 


Example.— Middle  fVustum,  0  e,  of 
a  prolate  spheroid,  Fig.  29,  is  6  inch- 
es, diameters  of  spheroid  being  10 
and  14;  what  is  its  convex  surface? 

Mean  diameter,  as  per  preceding 
example,  is  12. 1655. 

Diameter  parallel  to  base  of  Orus- 
turn  is  la 

Then  14  :  12.1655  •'•  <^  •  5«'38,  and  10  X  3.1416  X  5.2138  =  163.7967  square  ins. 

2.— Middle  frustum  of  an  oblate  spheroid,  as  o  «,  Fig.  30,  is  2  inches  in  height, 
diameters  of  spheroid,  as  in  preceding  examples,  being  10  and  14;  what  is  its  con- 
vex sorfiioe?  107.0136  square  ins. 

Circular  Zone. 
DiFiiiinoN.~A  part  of  a  circle  included  between  two  parallel  chord& 

Xo  Compute   Area,  of  a  Cironlar  Zone. 

RuiiB. — From  area  of  circle  subtract  areas  of  segments. 
Or,  see  Table  of  Areas  of  Zones,  page  269. 

When  Diameter  of  Circle  is  not  given. — Multiply  mean  length  of  the  two 
chorda  by  half  their  difference ;  divide  this  product  by  breadd  of  zone,  and 
to  quotient  add  the  breadth. 

To  square  of  this  sum  add  square  of  lesser  chord,  and  square  root  of  their 
sum  will  give  diameter  of  circle. 

ExAXPLB.— Greater  chord,  %^,  is  90  inches;  lesser,  a  c,  is  80;  and  breadth  of  zonei 
a  Of  is  7x526;  what  is  its  diameter? 


Then  V78. 385'+ 8o»=V«  544- »  =  "» 

Go 


:  diamdo'' 


3JO      MEKHl'KATION  OF  AREAS,  LINES,  ASD  SUKFACEfl. 


riipn  30'  X  .?Ss4  -7cVj.S6  =  01-/0  of  one  end;  jatt.ib  X  a  =  *4 
urea  of  both  tndi^uti  4712-4  +  J413. 72  ^  612^,19  SfUdm'rit. 


Lrfaii<>  or  a  IliKlit  I>i 


„ „.a  tliein  logtlher. 


lDcbes.uid  leIiElb,(i«,  30; 

tfbtlhndi;  i-i}(.ya  =  iia  =  artaofo!>eti 


,o^a 

m.V/^'- "■■'".  ""1=88+  M40 

flHi 

r(\iiip  of  ail  Oliliqiie  01- 

FiB.  3*. 

RlT 

ic.-MuUi|>ly     perimGUi   of 

,..j     r --    —    -'nd,  by  perpendic- 

4"  ular  lii'igliL,  11  n.  Or,  multiply  perimeter  as  >t  c,  at  a  right 
7      Hiiglii  tu  sides  by  actual  lengtli  of  li^'ure,  and  add  area  of  endi. 

■'•iHt'l.K.— 3ii]«,ac,DriU)  obliqna  baiagoDSI  iirism,  Fig.  34.  art 
iliat,  and  perpeudicular  belgtit,  a  d,  IB  5  f»t^  what  ia  lu  aut- 


■^o    J»,10 


5.9-6.6 


,ii».6.6  a^aan  I 

"Wedfiie. 
laiTiDX — A  wedge  la  a  pnlile  triaogular  priem.  and  Ita  nrftce  )B  compnled 
Lf  n.r  ttut  of  a  riglit  prtem. 

To  Cotiipnl^  SurAofl  oC  a  'Wad ee.— Fig.  3S. 

KiiufLB— Back  oravvdgp,  a»ed.  P>g  35.  Ii  nbyilDcbea, 


=  «.w.of,q»ar„ofl,olfba 


M  ^fiHb.     nance  So<  -{-  ^o-f  tesUi  a 


MENSITJKATIOIir  OF  ABSAB,  LINES,  AND  SURFACES.      3$! 


Fig.  38. 


Frlsmoids. 

DsFiNinoy.— Figures  alike  to  »  prism,  having  only  one  pair  of  sides  parallel 

To  Compute   Surface  of  a  P*ris33aoid.— Fig.  30. 

RuLB.  —  Ascertain  area  of  sides  and  ends  as  by  rules  for 
squares,  triangles,  etc.,  and  add  them  togetlier. 

ExAHPLK-^-EDds  ofaprisrnoid,  efgk  and  abed.  Fig.  36, are  10 and 
8  inches  square,  and  its  slant  height,  d  A,  25;  what  is  its  surface? 

10  X  10  =ziooz=  area  of  baie;  8  X  8=64  =  areao/'top. 

— 5—  X  25  =  225,  and  225  X  4 =9»=area  qfnda. 

2 

Then  loo  +  64  +  900  =  1064  =  sqiuire  ins. 

To  CoiTipute  Surface  of  an  Oblique  or  Irregular  Frisznoid, 
Proceed  as  directed  for  an  Oblique  or  Irregular  Prism,  page  35a 

TJngnlas. 

Definition.— Cylindrical  uugulas  are  the  parts  (including  all  or  part  of  the  base) 
led  by  a  plane  cutting  a  cylinder  through  any  portion  ^nd  at  any  angle. 

To  Compute  Curved   Surface  of  an  XJiiffvila.^F'iss*  37, 

38,  39,  aud  40, 

When  Section  is  paraUd  to  Axis  of  the  Cylinder^  Fig.  37.    Rule  i,— Mul- 
tiply length  of  arc  of  one  end  by  height 

ExAMPLB. — Diameter  of  a  cylinder,  a  c,  from  which  an 
ungula,  Fig.  37,  is  cut,  is  10  inches,  its  length,  b  d,  50,  and 
versed  sine  or  depth  of  ungnla  is  5  inches;  what  Is  curved 

sarfiace? 

lo-r-  2  =  s  =  radius  of  cylinder. 

Hence  radius  and  versed  sine  are  equal ;  the  arc,  there- 
fore, of  ungula  is  one  half  circumference  of  the  cylinder, 
which  is  31.416  -r-  2  =  15.708,  and  15.-708  x  50  =  785-4 
square  ins. 

When  Section  passes  obliqueli/  through  opposite  Sides  of  Q/l- 
inlerj  Fig.  38.  Rule  2. — Multiply  circumference  01  base  of  cylinder  by 
half  sum  of  greatest  and  least  heights  of  ungula. 

Example.— Diameter,  cd,  of  a  cylindrical  ungula,  Fig.  38,  is  10  inches,  and  great- 
er and  less  heights,  b  d  and  a  c,  are  25  and  15  inches;  what  is  its  curved  surface? 

10  diameter  =  31. 416  circumference;  25  + 15  =  40,  and  40 -f-  2  =  20.   Henco  31.416 
X  20  =  628.32  square  ins. 

When  Section  passes  through  Base  of  Cylinder  and  one  of  its  Sides,  and 
Versed  Sine  does  not  exceed  Sine^  or  Base  is  equal  to  or  less  than  a  Semi- 
circkf  Fig.  39,  Rule  3. — Multiply  sine,  a  d,  of  half  arc,  d  g,  of  base,  d  gf 
by  diameter,  e  g^  of  cylinder,  and  from  this  product  subtract  product  *  of  arc 
and  cosine,  a  o.  Multiply  difference  thus  found  by  quotient  of  height,  g  c, 
divided  by  versed  sifae,  a  g. 
NoTE.~Tbe  sine  of  base  is  half  of  the  longest  chord  that  can  be  drawn  in  base. 

Y'lft  ,0         ExAMFLB.— Sine,  a  d,  of  half  arc  of  base  of  an  nngula.  Fig.  30,  is  5, 
..-  :      diameter  of  cylinder,  eg^  is  xo,  and  height,  c^,  of  ungula  10  inches; 
whal  is  carved  surf«ce? 

5  X  10  ss  50  =  »n«  q^Aoy  arc  fry  dmmcier. 

length  of  arc,  versed  sine  and  radius  being  equal,  under  Rule,  page 
346  =  15.708,  and  as  versed  sine  and  radius  are  equal,  cosine  is  a 

Hence,  when  cosine  is  o,  product  is  a    Therefore  50 — o  =  5o=dt/- 
ference  of  product  b^ore  obtained  and  product  of  arc  and  cosine,  and 

50 X  io-»-s  =  50  X  azszioosquare ins. 


•  WliiD  the  eodM  ia  o,  this  products-  o> 


352      MENSURATION  OF  ABBAS,  LINES,  AND  SUEFACEB. 


When^  Section  pastes  through  Base  o/Q^Under^  and  Versed  Sine,  ao^ea^' 
ceeds  Sine^  or  when  Base  exceeds  a  Semicircle^  Fig.  40.    Ruuc  4. — Multiply 


Fig.  4a 


sine  of  half  the  arc  of  base  by  diameter  of  cylinder,  and  t(»  tnis 
product  add  product  of  arc  and  the  excess  of  versed  sine  over 
the  sine  of  base.  Multiply  sum  thus  found  by  quotient  of 
height  divided  by  versed  sine. 

ExAUPLK. — Sine,  a  d,  of  half  arc  of  an  ungnla,  Fig.  40,  is  12  inches; 
versed  sine,  ag,  is  16;  height,  c  9, 16;  and  diameter  of  cylinder,  h  g, 
35  inches;  what  is  carved  surface? 

la  X  25=3oo=<tn«  of  half  arc  by  diameter  of  cylinder,  and  length 
of  arc  of  base.  Rule,  page  344  =  arc  qfd  hf—  circumference  of  bast  = 

46-39g- 

Then  46. 392  X  16  — 12. 5  =  162. 372,  and  300  -f*  162. 372  =  462. 372 ;  z6  -r-  z6  =r  x,  and 
462.372  X  X =462.372  square  ins. 

NoTB.— When  sine  of  an  arc  is  o,  the  versed  sine  is  equal  to  diameter. 

When  Section  passes  obliqueig  through  both  Ends  of  Cylinder^ 
Fig.  41.  Rule  5. — Conceive  section  to  be  continued  to  wi,  till  it 
meets  side  of  cylinder  produced ;  then,  as  difference  of  versed 
sines,  a  e  and  d  0,  of  arcs  of  two  ends  of  ungula  is  to  versed  sine, 
a  e,  of  arc  of  the  less  end,  so  is  height  of  cylinder,  a  (2,  to  the 
part  of  side  produced. 

Ascertain  surface  of  each  of  ungulas  thus  found  by  Rules  3 
and  4,  and  their  difference  will  give  curved  surface. 

Definition.— Space  between  mtorsecting  arcs  of  two  eccentric  circles. 
To   Compnt©   A,vea.  of  a   Lviiie.— Fig.  48, 
Rule. — Ascertain  areas  of  the  two  segments  from  which  lune  is  formed, 
and  their  difference  will  give  area. 


Fig.  42. 


ExAMPLB-^Length  of  chord  ac.  Fig.  42,  is  ao  inches,  height 
e  d  is  3,  and  e  &  2 ;  what  is  area  of  lune  ? 

By  Rule  2.  page  345,  diameters  of  circles  of  which  lune  is 
formed  are  tnus  ascertained: 


Forade, 


io*  +  (3  +  2)' 


==  35.      For  a  e  tf. 


xo»+a«_ 


=  Sa. 


Then,  by  Rule  for  Areas  of  Segments  of  a  Circle,  page  267, 

Area  of  a  d  c  is  70.5577  sq.  ins. 
ate  '■'■  27.1638 


t( 


i( 


Tkdr  difference  43'3939.<9.  ins. 

Cycloia. 
Dkpinition.— A  curve  generated  by  revolution  of  a  circle  on  a  plane. 

To   Compute   Area  of  a   Cycloid.— B^ifc.  43. 

Fig.  43.     J ^^  Rule. — Multiply  area  of  generating  circle  by  ^ 

^       ^       ExAMPLK.— Generating  circle  of  a  cycloid,  a  6  c,  Fig.  43, 
has  an  area  of  1 1 5. 45  sq.  inches ;  what  is  area  of  cycloid  ? 

"5-45  X  3  =  346- 35  *qwire  ins. 

Compute   I^engtb.  of  a  Cyoloidal   Cxxx^re* 

Rule. — Multiply  diameter  of  generating  circle  by  4. 

ExA]fPLR.~Diameter  of  generating  circle  of  a  cycloid,  Fig.  43,  is  8  inches;  what 
is  length  of  carve  dsc^ 

8X4  =  32 =prodtte(  of  diameter  and  4  =  ins. 
Note.— The  curve  of  a  cycloid  is  line  of  swiftest  descent;  that  is,  a  body  will  fall 
through  arc  of  this  curve,  from  one  point  to  another,  in  less  time  than  through^any 
other  path. 


To 


BCSNSUBATION  OF  AREAS,  LINES,  AND  6UBFACSS.       353 


Circular  Xlings. 

Definition.— Space  between  two  concentric  circles. 

To  Conupiite  Sectional  A.rea  of  a  Circular  'Rii\s,^Fig,'4At 
Rule. — From  area  of  greater  circle  subtract  that  of  less. 

Cylindrical   Rings. 

DKn^TiON.— A  ring  formed  by  curvature  of  a  cylinder. 

To  Compnte  SuriUoe  of  a  Cylindrical  Ring.— F'ig.  44. 

Rule. — To  diameter  of  body  of  the  ring  add  inner  diameter  of  the  ring ; 
multiply  this  sum  by  diameter  of  the  body,  and  product  by  9.8696. 
Fig.  44. Or,  c  X  i  =  surface. 

ExAMPLK.— Diameter  of  body  of  a  cylindrical  ring,  a  6,  Fig.  44, 
ia  3  inches,  and  inner  diameter,  b  c,  is  18 ;  what  is  surface  of  it? 

3  4- 18  =  2o = Ihickness  qf  ring  qdded  to  inner  diameter. 

2o  X  2  X  Q  8696  =  mm,  above  obtained  X  thickneu  of  ring^  and 
thai  product  by  9. 8696  =  394. 784  int. 

Xjinls. 

,  Definition.— An  elongated  ring. 

To   Compnte   Surface   of  a   I^ink.— ITigs.  4f5  and  4G. 
Rule. — Multiply  length  of  axis  of  link  hy  circumference  of  a  section  of 

body,  a  b. 

Or,  i  X  c  =  surface. 

To   Coxnptite   T^ength.   of  A^xis   and   Circumference. 

When  Rinff  is  Elongated,  Rule.— To  less  diameter  add  the  diameter  of 
the  body  of  the  link,  and  multiply  sum  by  3.1416;  subtract  less  diameter 
from  greater,  multiply  remainder  by  2,  and  sum  of  these  products  is  length 
of  axis. 

Example.— Link  of  a  chain,  Fig.  45,  is  x  Inch  in  diameter 
of  body,  a  b,  and  its  inner  diameters,  b  c  and  ef  are  13.5 
and  3.5  inches;  what  ia  its  circumference? 

3. 5  -|-  I  X  3- 1416  =  10.9956  =  length  of  axis  of  ends. 

13.5— 3.5  X  :t^  20  =  length  of  sides  of  body. 

Then  10.9956  -f-  20  =  30.9956  =  length  of  axis  of  link,  and 
30-9956  X  3.1416  (cir.  of  I  inch)  =97.3758  square  ins. 

When  Rinff  is  FMij)tical^  Fig.  46.  Rule. — Square  diameters  of  axes  of 
ring,  multiply  square  root  of  half  their  sum  by  3.1416,  and  product  is  length 
of  axis. 

Cones, 

DanxiTiov.  —A  figare  described  by  revolution  of  a  right-angled  triangle  about 
one  of  its  leg& 

For  Sections  of  a  Cone,  see  Conic  Sections,  page  379. 

To  Compute   Surface  of  •»  Cone.—ITig.  47', 

Rule. — Multiply  perimeter  or  circumference  of  base  by  slant  height,  or 
aide  of  cone ;  divide  product  by  2,  and  add  the  quotient  to  area  of  the  base. 
Fig:  47.  o  Or,  c  X  *  -r-  2 + «'  =  sutfaoe,  c  representing  perimeter. 

ExAMPLB. — Diameter,  a  b.  Fig.  47,  of  base  of  a  cone  is  3  feet, 
ttud  slant  height,  a  c,  15;  what  is  surface  of  cone? 

Ciroam.  of  3  feet =9. 4248,  and  ^^^ ^:=z 70.686  =s  sur- 
face of  side;  area  of  base  3=7.068,  and  70.686-1-7.068  =  77.754 
tquarefeet. 

4  i  u« 


354      MENSURATION  OF  ABEAS^  LINES,  AND  SUBFAGE8. 

To    Compnte    Sixrfaoe    of  tUo    EVixBtum   of  a    Cone.— 

Fig.  48. 

Rule. — Multiply  sum  of  perimeters  of  two  ends  by  slant  height  of  frus- 
tum ;  (fivide  product  by  2,  and  add  it  to  areas  of  two  ends. 

Or, -T-^ l-a  +  a  =«Mr/acfi 

Example.— Frustuin,  abed.  Fig.  48,  has  a  slant  height,  c  d,  of  26  inches,  and 
circumferences  of  its  ends  are  15.71  and  22  inches  respectively; 
what  is  its  surface? 

j/rr3:l^ d  +  (rrid^  ^  *^®^^  ^  ^^' ' '^  "^  *'^""  ''•^  ^''^'  ^^'^  490-23 + 

58. 119  =  548. 349  square  ins. 

Pyramids. 

Definition— A  figure,  base  of  which  has  three  or  more  sides,  and  sides  of  which 
are  plane  triangles. 

To   Compute   Surface   of  a  Pyramid.— Figs.  40  and  SO. 

Rule.— Multiply  perimeter  of  base  by  slant  height;  divide  product  by  2, 
and  add  it  to  area  of  base. 

Fig.  40.   o                                   o.    c  ^  I  ^  ^'8-  so. 

A  ^^' H  <»  =  surface. 

//  V  Example.— Side  of  a  quadrangular  pyramid,  a  6, 

//      vk        Fig.  49,  is  12  inches,  and  its  slant  height,  o  c,  40; 
//        1^     what  IS  its  surface? 

/l.ll!~"So      12  X  4  =  48 =perimeter  of  base.    ^ —  =  960  = 

^ J  ft    area  of  sides,  and  12  X  12  +  960  =  1104  square  ins. 

To    Coxnpute    Surface    of  Frustum    of  a   Pyramid.— 

Fig,  01. 

Rule. — Multiply  sum  of  perimeters  of  two  ends  by  slant  height ;  divide 
product  by  2,  and  add  it  to  areas  of  ends. 

Fig.  5,.  Or,  -^^~-  +  a  +  a'  =  «*rface, 

fi ^  Example.  —Sides  a  &,  c  d,  Fig.  51,  of  fhistum  of  a  quadrangular 

pyramid  are  10  and  9  inches,  and  rtsidaot  height  is  so  ;  what 
is  itssQrfkce? 

10  X  4  =  40,  and  9  X  4  =  36;  40-I-  36  =  76  =  ««m  ofperimetert. 

h.        t       ■  yg  ^  2Q  _  J  jjjQ^  j^qji    520  __  y^  _  ^j.g^  of  sides  ;  10  X  xo  =  loo, 

*■ to  2 

and  9X9  =  81.    Then  zoo -|- 81 +760=941  rrxguafvifM. 

When  I\framid  is  Irregular  sided  or  Oblique.  Rule.  —  The  surfaces  o£ 
each  of  the  sides  and  ends  must  be  computed  and  added  together. 

Helix  (Sore-w). 

DEFnnnoN.— A  line  generated  by  progressive  rotation  of  a  point  around  an  axis 
and  equidistant  fVom  its  centre. 

To   Compute  Xjengtli   of  a  Helix.- Fig.  6S. 

Rule. — To  square  of  circumference  described  by  generating  point,  add 
square  of.  distance  advanced  in  one  revolution,  extract  square  root  of  theii 
suiUi  and  multiply  it  by  number  of  revolutions  of  genejatmg  point. 


MENSUBATIOK  OF  AREAS,  LINES,  AND  SURFACES.       355 

Fig.  52.  Or,  y/{p^  -|- 1*)  n  =  lengthy  n  repretenting  nvimher  of  revoltUion*. 

ExAMPLi.-^What  is  length  of  a  helical  line,  Fig.  52,  running  3.5 
times  mound  a  cylinder  of  23  inches  in  circumference,  and  advancing 
16  inches  in  each  revolution  ? 

22^  -|- 16  2  =  ^^o  =  sum  of  squares  of  circumference  and  of  distance 
advanced.  *    Then  ^74©  X  3. 5  =  95. 21  ins. 

To    Compute    I-ieiigrtlx    of  a    Revolution    of  Tliread    of   a 

Sore-wr. 

Rule.—  Proceed  as  above  for  length  and  omit  number  of  revolutions. 

Spirals. 

Definition.— Lines  generated  by  the  progressive  rotation  of  a  point  around  a 
fixed  axia 
A  Plane  SpircU  is  when  the  point  rotates  around  a  central  point. 

A  Conical  Spiral  is  when  the  point  rotates  around  an  axis  at  a  progressing  dis- 
tance from  its  centre,  as  around  a  cone. 

To  Compxite  Lengtli   of  a  Plane   Spiral  I-.iue.— Kig.  ©3. 

Rule. — Add  together  greater  and  less  diameters ;  divide  their  sum  by  2 ; 
multiply  quotient  bv  3.1416,  and  again  by  nmnber  of  re\  olutions. 

Or,  when  circumferences  are  given,  take  their  mean  length,  and  multiply 
it  by  number  of  revolutions. 

_.  0T,d-\-d'-i-2K  3. 1416  n  =  length  of  line;  P  x  n  =  radius,  and 

*  '8-  53^,     ^^  pr'-i-l  =pitch.     P  representing  the  pitch. 

Exam  PLE.— Less  and  greater  diameters  of  a  plane  spiral  spring, 
as  a  b,  c  d,  Fig.  53,  are  2  and  20  inches,  and  number  of  revolutions 
d  10*  what  is  length  of  it? 

<r+-~2o  -^  2  =  II  =  wm  of  diameters  -j-  a  ;    11  X  3. 1416  = 
.   34-5576. 

Then  34.5576  X  10=  345. 576  inches. 
NoT«. — Above  rale  Is  applicable  to  winding  engines,  see  page  86«,  where  it  is  re- 
quired to  ascertain  length  of  a  rope,  its  thickness,  number  of  revolutions,  diameter 
of  drum,  etc 

To  Coixipiite  I^ength  of  a  Conical  Spiral  Line.— Fig.  54:. 

Rule. — Add  together  greater  and  less  diameters;  divide  their  sum  by 
2,  and  multiply  quotient  by  3  14 16. 

To  sqoare  of  product  of  this  circumference  and  number  of  revolutions  of 
spiral,  add  square  of  hci;^ht  of  its  axis,  and  take  square  root  of  the  sum. 


Or.  \/{d  -\-  d*^  2  X  3. 1416  n  4- A«)  =  length  of  line. 

Example. — Greater  and  less  diameters  of  a  conical  spiral.  Fig.  54,  are 
20  and  2  inches;  its  height,  cd,  10,  and  number  of  revolutions  10;  what 
is  length  of  it? 

2o  +  a-i-a  =  ii  X  3.1416  =  34- 5576  =  <wm  of  diameters  -r-  a,  and  x 
3. 1416;  34.5576  X  10  =  345- 576- 

Then  V 345. 576*-!-  10*  =  345. 72  inchet. 

Spindles. 

Dwnmrtos.  — Fignires  generated  by  revolution  of  a  plane  area,  when  the  curve  is 
revolved  about  a  chord  perpendicular  to  its  axis,  or  about  its  double  ordinate,  and 
they  are  designated  by  the  name  of  the  arc  or  curve  ft*om  which  they  are  generated, 
as  Circular,  Elliptic,  Parabolic,  etc. 

#  Whtn  tb«  tpiral  !•  otlMr  tlMUi  •  Up«f  nwMlire  diuatton  of  It  from  middl*  of  body  compoalng  II 


356      MENSUBATION  OF  AREAS,  LINES,  AND  SURFACES. 

Cironlar  Spindle. 

To  Compute  Ooiftvesc  Surfaoe  of  a  Circular  Spindle,  Zoxie» 

or   Segment  of  it.—Ii^igs.  GCS,  66,  and.   £37. 

Rule. — Multiply  length  by  radius  of  revolvinj^  arc ;  multiply  this  arc  by 
central  distance,  or  distance  between  centre  of  spindle  and  centre  of  revolv- 
ing arc ;  subtract  this  product  from  former,  double  remain- 
der, and  multiply  it  by  3.1416. 

Or,  /  r  — (awr*—  f  -J  )  2  p  — surf  cue,  a  representing  length 

ofarc^  and  e  the  spindle  chord. 

ExAMPLB.— What  is  surface  of  a  circular  spindle,  Fig.  55,  leugth 
y      of  it,/c,  being  14.142  inches,  radius  of  its  arc,  oc^  10,  and  central 
*^*-^-— -*'        distance,  o  e,  7.071  ? 

14. 142  X  10  =  141.42  =  lengtJi  x  radius.  Length  of  arc.,/ a  c,  by  Rules,  page  344 
=  15.708. 

i5-7o8x  7.071  =  111. 0713  =  /«n^  of  arc  X  central  distance;  14J.  42  — 111.0713  = 
30. 3487  =  difference  of  products.    Then  30. 3487  X  2  X  3. 1416  =  190.687  square  vns. 

Fig.  56.  Zone. 

d b  Example. — What  is  convex  surface  of  zone  of  a  circular 

y''lfr  e     /St***-  spindle,  Fig.  56,  length  of  it,  i  c,  being  7.653  inches,  radius  of 

^..».l....-^fl-^^  its  arc,  our,  10,  central  distance,  o«,  7.071,  and  leugth  of  its 

-v>V9^^^^^^;^  side  or  arc,  d  6,  7.854  inchei^? 

\  I     /  7.653Xio=76.53=i€n^W«X»adtt«;  7  854 X 7- 07*  =  55- 5356 

\\y  =  tmgtk  of  arc  X  central  distance  ;  76. 53  —  55. 5356  =  20. 9944 

0  =:  difference  of  products. 

Then  2a9944  X  a  X  3- 1416  =  131.9x2  square  ins.  dL — — ,^'  57- 

Segment.  *4^"'T '^y^ 

Example.— What  is  convex  surface  of  a  segment  of  a  cir-  \  "— !• — '''/ 

cular  spindle.  Fig.  57,  length  of  it,  tc,  being  3.2495  inches,  \     :   ,/ 

radius  of  its  arc,  0  jjr,  10,  central  distance,  o  «,  7.071,  and  length  <]/ 

of  its  side,  t  d,  3. 927  inches  ?  o 

3.2495  X  10  =  32.495  =  length  X  radius;  3.927  X  707»  =  37.7678  =  Unglh  of  arc 
X  central  distance  ;  32. 495  —  27. 7678  =  4. 7272  =  difference  of  products. 

Then  4.7272  x  2  x  3. 1416  =  29.702  square  ins. 

'General  Formcla.— S  =  2  Ji r — o c)p  =  surfoux^  I  repi'esenting  length  ofspindU^ 
segment,  or  tone,  a  length  of  its  revolving  arc,  r  radius  of  generating  circle,  and  c 
central  distance. 

Illustration.- TiCngth  of  a  circular  spindle  is  14.142  inches,  length  of  its  revolv- 
ing arc  is  15.708,  radius  of  its  generating  circle  is  10,  and  distance  of  its  centre  ttom 
centre  of  the  circle  fVom  which  it  is  generated  is  7.071 ;  what  is  its  surface? 


2  X  (14.142  X  10  —  15.708  X  7071)  X  3.1416=  190.687  square  indies. 

Note.— Surfhce  of  a  fVustum  of  a  spindle  may  \)e  obtained  by  division  of  the 
surface  of  a  zone. 

Cyoloidal   Spindle. 

1?o   Compute  Convex  Surfietce   of  a   Cyoloidal   Spindle.-^ 

ITig.  68. 

Rule. — Multiply  area  of  generating  circle  by  64,  and  divide  it  by  3. 

f 'g-  58.  ...  /x    a  X  64  - 

**  ^    — -  »  Or,  ^  =  surface. 

3 
Example.— Area  of  generating  circle,  a  6  c,  of  a  cycloidal 
spindle,  d«,  is  32  inches;  what  is  surface  of  spindle? 

32  X  64  3=  2048  =:  area  of  circle  x  64 ,  and  2048  ^  3  = 
682.667  square  ins. 

NoTL—Area  of  greatest  or  peQti^  I^^QP  pf  A  c^roloidal  spindle  ig  twloe  (trea  of 
(he  cjroloi4. 


MJIsINSUBATIOX  OF  AREAS,  LINES,  AND  SUBFACES.       357 


£:ilipsoicU  Para'boloicU  or  iHyperlsoloid  of  Rev- 
olution.. 

Obfinitiox. — Figaree  alike  to  a  cone,  generated  by  roTolution  of  a  conic  secUon 
cround  its  axis. 

NoTB.— These  figares  are  asually  known  as  Conoids. 

When  they  are  generated  by  revolution  of  an  ellipse,  they  are  termed  Ellipsoids, 
and  when  by  a  parabola,  Paraboloids,  eta 

Revolution  of  an  arc  of  a  conic  section  around  the  axis  of  the  curve  will  give  a 
segment  of  a  conoid. 

!E211ipsoid.. 

To  Coxupixte  Couvex  Su.rfEbce  or  an  ICllipsoid.^ITig.  &0. 

RcLK.  —  Add  together  square  of  base  and  four  times  square  of  height; 
multiply  square  root  of  half  their  sum  by  3.1416,  and  this  product  by  radius 
of  the  base.  

Fig.  59.  ^  ^'*  \/~^~  ^'  '*'^ ''  =  '^•^^^ 

Example.— Base,  a  b,  of  an  ellipsoid,  Fig.  59,  is  zo  inches,  and 
vertical  height,  c  il,  7 ;  what  is  its  surface? 

«o*+  7*  X  4  =  296  =  sum  of  square  o/base  and  4  times  square 
of  height;  296  -i-  2  =  148,  and  v '4^  =  !>•  i655=<9uai'e  root  of  half 

above  fum.    Then  12.1655  X  3-i4i6  X  —  =  191.0957  square  ins. 

To   Compute  Convex   Snrflaoe  of*  a   Segizxent,  Frustuxn, 
or  Zone  of*  an  Kllipsoici.—irig.  69. 

See  Rules  for  Convex  Surface  of  a  Segment,  Frustum,  or  Zone  of  a 
Spheroid  or  Ellipsoid,  pages  348-9. 

<i  or  d'  X  3- 1416  X  A = surfact, 

ynean.  diam.  Xh      .     ^,        ,  ,     .  j, 

-=5 A  ;  then  d X  3.M«6  X  A  =  surface. 


and 


dord' 


I*ara"boloid. 


To  Compute  Convex  Surface  of  a  Faraboloid.-^iFig.  GO. 

Rule. — From  cube  of  square  root  of  sum  of  four  times  square  of  height, 
and  square  of  radius  of  base,  subtract  cube  of  radius  of  base ;  multiply  re- 
mainder by  quotient  of  3.14^6  times  radius  of  base  divided  by  six  times 
square  of  height 


Fig.  60.  b 


Or,  (V4A«+r=')3-r3  x  ^^  =  surface. 


Example.— Axis,  6d,  of  a  paraboloid,  Fig.  60,  is  40  inches;  ra- 
dius, a  cf,  of  its  base  is  18  inches;  what  is  its  convex  surface? 

40'  X  4  =  6400  =  4  times  square  of  height ;  6400  -f- 18'  =  6724  — 
sum  ofv^w  product  and  square  of  radius  of  base;  (■v/6724)3 — 183 
545  536  =  remainder  of  cube  of  radius  of  base  subtracted  from  cube 
of  square  root  of  pr^eding  sum ;  3.14x6  X  i8-f-(6  X  40*)^.oo58905 
—quotient  0^3.1416  Hmes  radius  ofbase-i-e  times  square  of  height 

Then  545  536  X  .005  890  5  =:;  3213. 48  square  ins. 

Cylinder   Sectioxxs* 

To  Compute  Surface  of*  a  Cylinder  Section. 

— Kie.  ei. 

Ruijc.  —  From  entire  surface  of  cylinder  a  o  subtract 
surface  of  the  two  ungulas,  r  0,  o  c,  as  per  rule,  page  351^ 
and  multiply  result  by  4. 


3S8      MEl^SUBATION  OP  ABEAB,  LINES,  AND  SUBFAoES. 

Any  WUsoTG  of  Revolution. 

To  A.0oertaiii  Convex  Surface  of  any  I^igure  of  Revolu* 

tiou.— Kigs.  a^,  &3,  and   6*^. 

RuLB.— Multiply  length  of  geiieratiug  line  by  circumference  described 
by  its  centre  of  gravity. 

Or,  *  2  r  p  =  sur/acey  r  repreKuting  radius  of  centre  of  gravity. 

ExAMPLK  I.  —If  generating  line,  a  c,  of  cylinder,  acdf,jo  inches 
Fig.  6a.  ^        ^    In  diameter,  Fig.  62,  is  xo,  then  centre  of  gravity  of  it  will  be  in  6, 
^' jj- -'^    radius  of  which  is  6  r  =  5. 


r, 


Cv-'.ir      '  Hence  10  X  5  X  2  X  3i4>6  =  3»4- 1<5  itu. 

\  Again,  if  generating  line  \b  eacg,  and  it  is  (<•  a r=  5,  a e=::  10. 

I       and  cfli=:  5)  =  20,  then  centre  of  gravity,  o,  will  be  in  micUile  or 
V     line  Joining  centres  of  gravity  of  triangles  eac  and  ac p  =  3.75 
fVom  r. 


/     *     • 


blot- 


Hence  20  x  3-75  X  a  X  3. 1416  =  471.24  square  ifu.=  entire  surface. 

^  I  Convex  surface  as  above 314. 16 

VERIFICATION.   J  ^^.^  ^f  ^^j^  ^^^    ^^a  ^    ^g^^  ^  ^  z= .157.08 

471.24  mcftM. 

Fig.  63.  2.— If  generating  elements  of  a  cone.  Fig.  63,  are  ad=io. 

^^  dc=  10,  and  a  c.  generating  line,  =  14. 142,  centre  of  gravity  of 

y]  \  which  is  iu  o,  and  o  r  =  5, 

o/....\r   \  .pijgjj  14.14a  X5X2X  3.1416=444.285,  con- 

/         I         \,  2 

^- "i *  w***  surface^  and  10  X  2  X  .7854  =  314.16,  area 

of  base. 

Hence  444.285  -f-  31 4'  16  =  758.445,  cn<ir«  surface. 

3.— If  generating  elements  of  a  sphere,  Fig.  64,  are  a  c  =  vo,  a  6  0 
will  be  1 5. 708,  centre  of  gravity  of  which  is  in  0,  and  by  Rule,  page 
606,  o  r  =  3. 183. 

Hence  15.708  X  3.183X2  X  3.1416  =  314.16  square  ins. 

Capillary  Tube. 

To   Compute   X)iaxneter   of  a   Capillar^r   T-a"be. 

liULE. — Weigh  tube  when  empty,  and  again  when  filled  with  mercury; 

subtract  one  weight  from  the  other ;  reduce  difference  to  grains,  and  divide 

it  by  length  of  tube  in  inches.     Extract  square  root  of  this  quotient,  multi* 

ply  it  by  .019  224  5,  and  product  will  give  diameter  of  tube  in  inches. 

—  X  .019224  5  =  diameter y  w  representing  difference  in  weights  in  grains 

and  I  length  of  tube. 

ExAMPLK  — Difference  in  weights  of  a  capillary  tube  when  empty  and  when  filled 
with  mercury  is  90  grains,  and  length  of  tube  is  10  inches;  what  is  diameter  of  it? 

90  -s- 10  —  9  —  weight  of  mercury  -i-  length  of  tube  ;  y/a  —  3,  and  3  X  .019  224  5  = 
■057  673  5  —  square  root  of  above  quotient  x  .019  224  5  incnes  =  diameter  ofhibe. 

Proof. —Weight  of  a  cube  inch  of  mercury  is  3442.75  grains,  and  diameter  of  a 
circular  inch  of  equal  area  to  a  square  inch  is  1.128  (page  342). 

If.  then,  3442.75  grains  occupy  i  cube  inch,  90  grains  will  require  .026 141 9  cube 
inch,  which,  -^  10  for  height  of  tube  =:=  .002614  '9  ii^^h  for  area  of  section  of  tube. 

Then  v/.no2  614 19  =  .051 129  =  side  of  square  of  a  column  of  mercury  of  this  area 

Hence  .051 129  X  i.iaS  (which  is  ratio  between  side  of  a  square  and  diameter  of  a 
circle  of  equal  area)  =  .057  673  5  ins. 

1*0   A^soertain   A.rea  of  an   Irregular  ITig-ure. 

Rui.R. — Take  a  uniform  piece  of  board  or  pasteboard,  weigh  it,  cut  out 
figure  of  which  area  is  required,  and  weigh  it ;  then,  as  weight  of  board  or 
pasteboard  is  to  entire  surface,  so  is  weight  of  figure  as  cut  out  to  its  sur&ce. 

Or,  see  rule  page  341,  or  Simpson's  rule,  page  34^. 


MENSURATION  OF  ABSAS,  LINES,  SURFACES,  ETC.       359 

To  A.scertaixx  A.rea  of  any  Plane  Figure. 
Rule.  -"  Di\ide  surfaces  into  squaresj  triangles,  prisms,  etc. ;  ascertain 
their  areas  and  add  them  together. 

Reduction,  of  an  A-soending;  or  Descending  Line  to  Hor« 

izontal    IVleasurement. 

In  Link  and  Foot. 

Foot. 


i>BffreM. 

Uok. 

Foot. 

D^p^es. 

Link. 

Foot. 

DOgl'068. 

Link. 

X 

.000099 

.00015 

7 

.004917 

•00745 

13 

.016915 

a 

.000403 

.00061 

8 

.006421 

.00973 

14 

.019602 

3 

.000904 

.00137 

9 

.008125 

.01231 

15 

.022486 

4 

.001  61 

00244 

zo 

.010025 

.015  19 

16 

.025569 

5 

.002515 

.00381 

II 

.012124 

.01837 

>7 

.028925 

6 

.003617 

00548 

12 

.014421 

.02285 

18 

.0323 

02563 

•0297 

.0340^ 

•03874 

•0437 

.04894 


Illustbation  l — 1q  an  ascending  grade  of  14O,  what  is  reduction  in  500  feel? 

14°  =  500  X  .0297  =  i4.85^i?c<  =  14  feet  laa  ins. 
2.— What  IB  reduction  in  500  links? 

14O  =  500  X  .019 602  =  9.801  feet  =  gfe«t  9.6  ins. 

Reduction  ofGI-rade  of*  an  .Ascending  or  IDescendiug  Ljine 

to  Degrees. 

Per  100  Links,  Feet,  etc. 

Grado.  Dflffrees.         Grade.         T>egreM.        Grade.        Degree*. 


Grade. 

De 

» 

.25 

'     8 

•5 

17 

'75 

25 

I 

34 

I-25 

42 

15 

51 

352 

10.3 

47.6 

22.7 

57-9 
35-2 


1-75 

2 

2-5 
3 

3-5 

4 


1 

Oegi 

'ees. 

/ 

»* 

0 

10.3 

3 

845-5 
25  57-6 
43    8.3 

0  20.7 

2 

17 

33-1 

45 

5 

6 

\ 


2 
2 
3 
4 
4 
5 


34 

51 

26 

o 

35 
9 


45- 

57- 
22. 

49. 

18. 

49. 


10 
II 

12 

13 
14 

15 


5 
6 

6 

7 
8 


44  20.7 
18  55.8 

53  31 
38  10.3 

2  51-7 
8  37  37-2 


To   Plot   Angles  -witliout  a   Protractor. 

On  a  given  line  prick  off  100  with  any  convenient  scale,  and  from  the 
point  so  pricked  off  lay  off  at  right  angle  with  the  same  scale  the  natural 
tan^nt  due  to  the  angle  (see  table  of  Natural  Tangents  and  Sines) ;  or 
strike  out  a  portion  of  a  circle  with  radius  100  and  lay  off  a  chord  =  2  sin. 
of  half  the  angle  required. 

To   Compute   Ch.ord.  of  an   ^ngle. 
Double  sine  of  half  angle. 
Illustration. -> What  is  the  chord  of  21^  30'? 

Sine  of  _L_32.  =  jqO  45',  and  sine  of  \cP  45'  =  .18652,  which,  X  2  =  .37304  cftorA 


To  -A^soertain.  Value  of  a  FoT?ver  of  a  Quantity, 

•  • 

Rtii.E.-^Maltiply  logarithm  of  quantity  by  fractional  exponent,  and  prod- 
net  is  logarithm  of  required  number. 

Example.— What  ig  the  valno  of  16^  ' 

^  X  log.  16  =  3j^  X  1.304 13  =  -90309.    J!«Iumber  for  whichsft 


MENBUBATIOH   OF   VOLUME& 


KuLE.— Multi|ily  a  siile  of  cube  by  itoelf,  md  that  product 
sgain  by  a  aide. 

Or,  *3  =  V.  a  r^TESenting  Ifng/h  of  a  side,  and  V  votwne, 
[AMPLE.— Side,  a  A,  Fig.  I,  la  la  Inches;  wbat  laiolums  otllf 


iPrisras,  Prismoide,  and  "hedges. 
Prisma. 

jal,  Bimllar,  aod  parallel  plaaea,  aad 

a  irlanglea,  il  la  lermed  a  Iriangular 


Lnllelogratna. 


of  a    Pri 


Flga.  3  and  4. 

RULK.-Mulliply  SKH  oPbaae  by  height. 

A 

EiAKPLK.  -A  Iplangiilar  prlani,  a  be.  Fig.  4,  h«a  Bld« 

By  Rule,  page  339,  a.5' x.433  =  »  T^'S  =  o™>  V 
J  Ufa,  Bddi.;a(iis  X  10=  17.1169;  cube  y^f. 

LI 

Wim  a  /Vtjin  ii  Oblique  or  tmgular. 
Rule.  —  Hulti|>]y  nr«a  of  an  end  by  heii;lit,  aa 
niuUiply  area  taken  at  a  rigbt  angk  to  aidts,  as 
uclual  Icnj^tii. 


Rule.— Multiply  area  of  base  h_   .    , 
distances  between  it  and  centre  of  gravity  of  uppw 
or  other  end. 

gula''"r''cy"hndrl(!al  prBm.  Fig  6,  la  .s  tn«l 
Geigbt  10  ccnlra  of  gMsity,  e,  13  u ;  what  IB 


MENSURATION   OF    VOLUMES. 


361 


Prifionoids*  • 
X£>   Compnte  "Volvixne   of  a   Prisxnoid..— •F'ig.  8. 
Rule. — To  sum  of  areas  of  the  two  ends  add  four  times  area  of  middle 
section,  parallel  to  them,  and  multiply  this  sum  by  one  sixth  of  perpendicu- 
lar height. 

NoTB.— This  is  the  general  rule,  and  known  as  the  Fasmoidal  Formula^  and  ii 
applies  equally  taall  figures  of  proportionate  or  dissimilar  ends. 

Or,  o  +  a'  -|-  4 »«  X  A  -i-  6  =  V,  a  and  a*  repretenting  areat  ojendt^ 
and  m  area  of  middle  section. 

Example.  —  What  is  volame  of  a  rectangular  prismoid,  Fig.  8, 
lengths  and  breadths,  e  g  and  gh^  ab  and  6  d,  of  two  ends  being 
7X6  and  3X2  inches,  and  height  15  feet? 

7X6  +  3X  2  =  42  + 6  =  48  =  «*i»o/'orea«o/'<uwend«;  7  +  3-^- 
2  =:  5  =  length  of  middle  section;  64-2-7-2  =  4  =  breadth  of  middle 
tectum;  5  X  4  X  4  =  80  =four  times  area  of  middle  section. 

Then  48  4-  80  X  '^^  "  =  128  X  30  =  3840  cube  ins. 

NoTB  I.— Length  and  breadth  of  middle  section  are  respectively  equal  to  half 
sum  of  lengths  and  breadths  of  the  two  enda 

2.— Frisraoids,  alike  to  prisms,  derive  their  designation  from  figure  of  their  ends, 
as  triangular,  square,  rectangular,  pentagonal,  etc 

When  ii  is  Irregular  or  Oblique  and  their  ends  are  united  by  plane  or 
curved  surfaces,  through  which  and  every  point  of  them,  a  right  line  may  be 
drawn  from  one  of  the  ends  or  parallel  faces  to  the  other, — Figs.  9, 10,  and  iz. 

Figi  la  Fig.  IX. 

/  •  \  n 


Pig.  9. 


ExAMPLC— Areas  of  ends,  a  c  and  ors.  Fig.  10,  a  6  c  d,  and  t  m  n  u.  Fig.  n,  and 
abce  and  vxws,  Fig.  9,  are  each  10  and  30  inches,  that  of  their  middle  section 
30,  and  their  perpendicular  heights  j8;  what  is  their  volume  f 

xo-f-3o-t-2oX4  =  120  =  sum  of  areas  of  ends  4-  4  times  middle  Kction.     And 

120  X  -7-  =  360  cube  ins. 

"Wedge. 
To   Compute  Volnme  of  a,  l^edge.— Fig.  IS. 

Rule. — ^To  length  of  edge  add  twice  length  of  back ;  multiply  this  sum 

by  perpendicular  height,  and  then  by  breadth  of  back,  and  take  obe  sixth 

of  product.  

Or,(l4-rx2XAb)-^6  =  V. 

ExuiPLB.  —Length  of  edge  of  a  wedge,  e  p,  is  20  inches,  back, 
abed,  is  aoby  2,  and  its  height,  ef,  20;  what  is  its  volume f 

ao4-2oX2=s6o  =  length  of  edge  added  to  twice  length  of 
back;  60  X  20  X  2  =  2400 =above  sum  muUij^ied  by  height,  and 
that  product  by  breadth  ofttack. 

Then  2400  -!-  6  =  400  cube  ins. 

KoTK.  —  When  a  wedge  is  a  true  prism,  as  represented  by 
Fig.  12,  volume  of  it  Is  equal  to  area  of  an  end  multiplied  by  its  length. 


*  An  •zoiTatkMi  or  cmtMoksMnt  of  •  road,  when  terminated  by  parallel  croM 
gttlar  priamoid. 

H  H 


Mctiou,ia  •  reeUv- 


362  MENSURATION   OP    VOLUMES. 

To   Compnte   ITrxiatrxxii  of  a  "Wedge.— Fig.  13. 

Rule. — To  sum  of  areas  of  both  ends,  add  4  times  area 
<rf  section  parallel  to  and  equally  distant  from  both  ends, 
and  multiply  sum  by  one  sixth  of  length. 

^  Or,A  +  a-|-4a'Xj  =  V. 

Example.— liengths  of  edge  and  back  of  a  frustum  of  a  wedge 
a  b  and  c  d  are  20  x  i  and  20  x  2  ins. ,  and  height  o  r  is  ao  in&  ; 
what  is  its  volume? 


20X  2-l-j 


/         2  4-  >\      20 
X2  +  4X(20X-^JX-^ 


20 


60  -f  lao  X  ^  =  600  cube  im. 
6 


2  \  2 

Note. —When  frustum  is  a  true  prism,  as  represented  Fig.  13,  volume  of  it  is  equal 
to  mean  area  of  ends  multiplied  by  its  length. 

Regular   Bodies   (Polyhedrons). 

Dkfixition. — \  regular  body  is  a  solid  contained  under  a  certain  number  of  simi- 
lar and  equal  plane  feces,*  all  of  which  are  equal  regular  polygons. 

NoTB  I. — Whole  number  of  regular  bodies  which. can  possibly  be  formed  is  five. 

2. — ^A  sphere  may  always  be  inscribed  within,  and  may  always  be  circumscribed 
about  a  regular  body  or  polyhedron,  which  will  have  a  common  centra 


Fig.,x4. 


Fig.  IS. 


Fig.  16. 


Fig.  17. 


1.  Tetrahedron,  or  Pyramid,  Fig.  14,  which  has  four  triangular  fkces. 

2.  Hexahedron,  or  Cube,  Fig.  z,  which  has  six  square  faces. 

3.  Octahedron,  Fig.  15,  which  has  eight  triangular  faces. 

4.  Dodecahedron,  Fig.  16,  which  has  twelve  pentagonal  facea 

5.  Icosahedron,  Fig.  17,  which  has  twenty  triangular  faeea 

To  Compute  Klexnents  o£  axxy  XI,egulAr  Sody.i^SHgs.  14, 

16,  16,  and  17. 

To  Compute  Baditis  of  a  Sphere  that  witl  Circumscribe  a  given  Regular 
Body^  or  that  may  be  Ifiscribed  within  it. 

When  Linear  Edge  is  given*  Rule. — Mtiltiply  it  by  multiplier  opposite 
to  body  in  columns  A  and  B  La  following  Table,  under  head  of  dement  re- 
quired. 

Example.— Linear  edge  of  a  hexahedron  or  cube.  Fig.  i,  is  2  inches;  what  are 
radii  of  circumscribing  and  inscribed  spheres? 

2  X  .86602  =  1.73204  inches  :=  radius  of  circumscribing  tphcre;  3  X  .5  =  1  inch=: 
radius  &f  inscribed  sphere. 

When  Surface  is  given.  Rule. — Multiply  square  root  of  it  by  multiplier 
opposite  to  body  in  columns  0  and  D  in  loUowing  Table,  under  head  of 
element  required. 

When  Volume  is  given.  Rule.  —  Midtiply  cube  root  of  it  by  multiplier 
opposite  to  body  in  columns  K  and  F  in  fcllowiDg  Table,  under  head  of  ele- 
ment required. 

-  —    ■ 

*  AngU  of  wyacanl  facM  of  •  polyiioD  it  termed  diedral  angle. 


MENSURATION    OP    VOLUMES  363 

When  one  of  the  Radii  of  Circumscribing  or  Inscribed  Sphere  alone  is  re- 
quired, the  other  being  given.  Rule. — Mul^ly  given  radius  by  multiplier 
opposite  to  body  in  columns  G  and  .H  in  Table,  page  364,  under  head  of 
other  radius. 

To   Coi-npnte   I^inear  lBld.ge, 

When  Radius  of  Clrcttmscribiiw  or  Inscribed  Sphere  is  given.  Rule. — 
Multiply  radius  given  by  multiplier  opposite  to  body  in  coluums  I  aud  K  in 
Table,  page  364. 

When  Swface  is  given.  Rule. — Multiply  square  root  cf  it  by  multiplier 
opposite  to  body  in  column  L  in  Table,  page  364. 

When  Volume  is  given.  Rule.  —  Multiply  cube  root  of  it  by  multiplier 
opposite  to  body  in  column  M  in  Table,  p^e  364. 

To    Compute   Surface. 

When  Radius  of  Circumscribing  Sphere  is  given.  Rule.— Multiply  square 
of  radius  by  midtiplier  opposite  to  body  in  column  N  in  Table,  page  364. 

When  Radius  of  Inscribed  Sphere  is  given.  Rule. — Multiply  square  of 
radius  by  multipuer  opposite  to  body  in  column  O  in  Table,  page  364. 

When  Linear  Edge  is  given.  Rule. — ^Multiply  square  of  edge  by  multi- 
plier opposite  to  body  in  column  P  in  Table,  page  364. 

When  Volume  is  given.    Rule. — Extract  cube  root  of  volume,  and  multi* 

ply  square  of  root  by  multiplier  opposite  to  body  in  column  Q  in  Table, 

page  364. 

To   Coxnpute   Volarpe. 

When  Linear  Edge  is  given.  Rule. — Cube  linear  edge,  and  multiply  it 
by  multiplier  opposite  to  body  in  column  R  in  Table,  page  364. 

When  Radius  of  Circumscribing  Sphere  is  given.  Rule. — Multiply  cube 
of  radius  given  by  multiplier  opposite  to  body  in  coliimn  S  in  Table, 
page  364. 

When  Radius  of  Inscribed  Sphere  is  given.  Rule.  —  Multiply  cube  of 
radius  given  by  multiplier  oppasite  to  body  in  column  T  in  Table,  page  364.  ^ 

When  Surface  is  given.    Rule. — Cube  surface  given,  extract  square  root, 
and  multiply  the  root  by  multiplier  opposite  to  bmly  in  column  U  in  Table,  r 
page  364. 

Fig.  18.  Cylinder. 

To    Compute  Volume    of  a   Solid    Cylinder.— 

Fig.  18. 

Rule. — Multiply  are^  of  base  by  height. 

ExAMPLB.— Diameter  of  a  cylinder,  6  c,  is  3  feet,  and  its  length,  a  b 
7  feet;  what  is  its  volume? 

Area  of  3  feet  =  7.068.    Then  7.068  X  7  =  49.476  cube  feet 

To   Coxupute  "Volume  of  a   HoUotv  Cylinder. 
Rule. — Subtract  volume  of  internal  cylinder  from  that  of  cylinder. 

Fig.i9k  c  Cone. 

To  Compute  Volume  of  a  Oone.^Ifig:,  19. 

Rule. — Multiply  area  of  base  by  perpendicular  height, 
and  take  one  third  of  product. 

Ex  AMPLK.— Diameter,  aft,  of  base  era  cone  is  15  inches,  and 
\b      height,  c«,  32.5  inches;  what  is  its  volume? 

Area  of  15  inches  =  176.7146.    Then  '7  7'5X32.5  _  ,^,^,^„g  ^ube  i»w, 


364 


MENSURATION    OF  VOLUMES. 


ajaqdg  paqijos 
^     -ui  JO  sniptsH  ^a 
aj^py  jwaui'i 


■8. 


Qvqg  ff 


fO 


'djaqds 
duiquosiuna 

-jiOjosnipoHiCa 
aSpa  jvaaiq 


N  ^  ^  rO  •-• 


'djaqds 
•        poquosai  Xg 
W     -ajdqds  'ajquas 
-uinajio  ju  snipvH 


m 
9 

0 

n 

e8 

»-« 

4) 

l< 

■♦» 

0 

« 

a 


<8 

■ 
■♦J 


d 


*8iaqds 
8niqij3suinaiio  Aq 

'ajaqds 
paquasaxjosnipcH 


1010  H  M 

o  o  -«♦•  ^ 

C«  C4  00  00 
rO  ro  m  »0 

•  •  •  p 

f)  M  M  M  M 


fO  >o  lO  »o  10 
fO  fO  fOvO  vO 
ro  r*  t-*  ^  «* 
CO  r*  t^  Ov  Q» 
ro  «o  10  t-*  r>. 


'amniOA  Aq 
^  -ajaqdg 

pequosai  jo  snip«H 


\0  M 

1000    t^ 

^  NnO  00 
^  ■/)  10  >o  10 


-omnioA  Aq 
^     'ojaqdg  Saiqijos 
-mnaiio  jo  suipsg 


0>  O   O   t"^  N 


Ov  t^  t>. 


'adttjjng  is 

aiaqdg 

paqiiOsniJosnipvH 


d     10  t^  M 

^M  M  ro  O  00 
M   S   N   N   « 


aoitjins  ^a 

Ojaqdg  SniqiJdS 

-mnaiio  jo  sntpvn 


to  «  OnOO 
rO  »o  O^  fO  w 

10  r*5  ONOO  fO 
\0  m.F- O  « 

^  fO  CO  f)  f) 


-a8p3  jvaaiq  ig 
pq  'aiaqdg 

paqtidBaijosniptiH 


N 


? 


10  ^  w  f* 


*ajaqds  iiaiqijos 
-aniojiojosnjpOH 


g 


tS  V13  5  9 


^^•0 


3S 


-awniOA 


»ovS  1^00  00 
00000 


ajaqdg  paquos 

-axjosnipvH  ^B. 
-auiniOA 


W   N   O 
00   O   ^ 

00      omo  q 


10 


'Ojoqdg 
.       Sniquosuino 
^   -jiOJosnipuH^a 
-amnioA 


ro  c*.  10 

«  vO  ro  »-•  HI 

fO  O^  f*^  lOvO 
H  <*)  fOOO  f. 
10  10  ro  t-»  lO 

•         ■  ■  •  ■ 

M    M    «    « 


-J    -oSpa  jreaniq  ig 
•^  -ainniOA 


00 


•      •     • 


^       aniniOA  Xg 
^  'oavjjng 


NO 

C*»vO  10  10  10 


M    «0 

0\  M  00 


aSpg  jvaaiq  Xg 
•aoBjjng 


10 

o 
n 

H  \0 


fodoo 


'aiaqdg  paquos 
O    -ai  JO  snjpBg  Xg 
-aoijjjns 


10 


M     1^   t^ 

vO  00    M 

^  O  Q 
00   lOvO 


^  N   Ci   H   11 


'djaqdg 

^    -JiO  JO  snipvg  Xg 
-dovjjqg 


00 
00 


4oo>d 


00  'I-  •*• 
Ov  >o  10 


O  O^ 


^ 


'duiniOA  Xg 
'o8p3  jvanrj 


10 


o^« 

00  O 


8 


r* 
r* 


J         oowjjng  Xg 
'a8p3  jvaaiq 


O\00  1^ 
•O  O  fO 
t>.  rt-io 


M 

00 


«  fO 


N 


•  •  :  d 

nil 
nil' 


■ii-.'-.'.L"_a.-i— ■ij"»«'»' 


*««0 


sa 


MBK6UBATION   OF  VOLUUKS. 


365 


To  Compixte  "Volume  of  Frixatum  of  a  Cone.— P'ig.  SO. 
Rule.— Add  together  squares  of  the  diameters  or  circumferences  of  greater 
and  lesser  ends  and  product  of  the  two  diameters  or  circumferences ;  mul- 
tiply their  sum  respectively  by  .78^4  or  .07958,  and  this  product  by  height; 
then  divide  this  last  product  by  3. 


Fig.  20 


Or,d2  +  d'a+£xd'X.7854*-5-3  =  V. 
Or,  c» +c'»  +  c  X  c' X  .079  58  A -=- 3  =  V. 

Example. — What  is  volume  of  frustum  of  a  cone,  drameters 
of  greater  and  lesser  ends,  6  d,  a  c,  being  5  and  3  feet,  and  heigb^, 
«o,9?  

5'  +  3^+Tx3  =  49;  and  49  X  .7854  =  384846  =  efbove  sum 
*,  ,854;  and  3iiMiii  =  ..5.4538  «*./«. 

I'yramid. 

Note.  —Volume  of  a  pyramid  is  equal  to  one  tbird  of  that  of  a  prism  having  equal 
bases  and  altitude. 

To   Compxite   Volume   of  a   Pyramid.-" Fig.  81. 

Rule. — Multiply  area  of  base  by  perpendicular  height,  and 
take  one  third  of  product. 

Example.— What  is  the  volume  of  a  hexagonal  pyramid,  Fig.  21, 
a  side,  a  6,  being  40  feet,  and  its  beigbt,  e  c,  60? 

40'  X  2.5981  (tabular  mnllipller,  page  339)  =  4x56.96=:  area  o/baae. 

^}^.^^2i^=.B3 139-^  cia>e  feet 
3 

To  Compute  Volume  of  Frustum  of  a  Pyramid.— Fig.  88. 

Rule. — Add  together  squares  of  sides  of  greater  and  lesser  ends,  and 
product  of  these  two  sides ;  multiply  sum  by  tabular  multiplier  for  areas  in 
Table,  page  339)  and  this  product  by  height ;  then  divide  last  product  by  3. 

Or,  «2  4-  «'2  -{-TxP  X  tab.  rnuU.  x  *  -^  3  =  V. 

Wheti  A  teas  of  Ends  are  knotcn^  or  can  bt  obtained  without  reference  to 
a  tabular  muiUptkr^  usefoUotvinff. 

Or,  a-f  a'+  \/ax  a'X*-T-3  =  V. 

Example.  —What  is  the  volume  of  the  IVustum  or  a  hexagonal 
pyramid,  Fig.  22,  the  lengths  of  the  sides  of  the  greater  and  lesser 
ends,  ab,cd,  being  respectively  3.75  and  2.5  feet,  and  its  perpen- 
dicular height,  0  o,  7. 5  ? 

3.75'  +  2.5'  =  20.3125  =  mm  of  gqttares  of  sides  of  greater  and 

lesser  ends:  2o.3i25'-f-3-75X2.5=29.6875=::afroiM  sum  (xdded  to 
product  of  the  two  sides ;  29.6875  x  2.5981  X  7.5=  578.48  X  tab. 
muiLy  and  o^atn  by  t!ie  height^  which,  -^  3= 192.83  cube  feet. 

When  Ends  of  a  Pyramid  are  not  those  of  a  Rpf/ular  Pclygon^  07'  when 
Areas  of  Ends  are  given 

Rule. — Add  together  areas  of  the  two  ends  and  square  root  of  their  prod- 
act  ;  multiply  snm  by  height,  and  take  one  third  of  product. 

Or,a  +  a'4- Vaa^XA^3  =  V. 

ExAMPLK.—What  fs  the  volume  of  an  irregular-sided  fVustum  of  a  pyramid,  the 
areas  of  the  two  ends  being  22  and  88  inches,  and  the  length  20? 

22  4-88  =  iio  =  «tf}ii  qf  areas  of  ends;  22  X  88  =  1936,  and  >/i936.=  44 =«9uar0 
root  of  product  of  areas.    Then  "°"r  44 — 20  _.  ,^26. 66  cube  ins. 


368 


MENSURATION   OF  TOLUMES. 


Splierioal   Zone  (or   BVustiain   of  a  Spliere). 

Dbfixition. — Part  of  a  sphere  included  between  two  parallel  chords. 

*Fo   Compute  'Volvixne   of*  a   Splierioal   Zone.— ir*igf.  30. 

Defisition.— Part  of  a  sphere  included  between  two  parallel  planea 

Rule. — To  sum  of  squares  of  the  radii  of  the  two  ends  add  one  third  of 
square  of  height  of  zone ;  multiply  this  sum  by  height,  and  again  by  1.5708. 

*'»8-  30-  Or,  r*  +  r*' -f- A»^  h  x  1.5708  =  V. 

EzAMPLK.— What  is  the  volume  of  a  spherical  zone,  Fig.  30, 
greater  and  less  diameters, /A  and  d  e,  being  20  and  15  inches, 
and  distance  between  them,  or  height  of  zone,  cg^  being  10  ins.? 

io»-f-  7-5'  =  156.25  =  sum  of  squares  of  radii  of  the  two  endsf 

156.25  +  10*  -^  3  =  189.58  =  above  sum  added  to  one  third  oj 
tquare  of  the  height. 

Then  189. 58  X  10  X  1.5708  =  2977.9226  cube  ins. 

Cylindrical  IRing. 
Dkfinition.— A  ring  fbrmed  by  the  curvature  of  a  cylinder. 

To   Coxnpute  Volume    of*  a   Csrliudrioal    RixiK.^BHs.  31. 
Rule. — To  diameter  of  body  of  ring  add  inner  diameter  of  ring ;  multi-* 
ply  sum  by  square  of  diameter  of  body,  and  product  by  2.4674. 

Fig.  31.  Or,  TTfW  d»  2. 4674  =  V. 

Or,  a  2  =  V,  a  representing  area  of  section  ofbody^  and  I  length 
of  axis  of  body.. 

ExAMPUE.— What  is  volume  of  an  anchor  ring,  Fig.  31,  diameter 
of  metal,  a  &,  being  3  inches,  and  inner  diameter  of  ring,  6  c,  8  ? 

3  +  8  X  3'  =  99  =  product  of  sum  of  diameters  and  square  of  di- 
ameter of  body  of  ring. 

Then  99  X  a>4674  =  244.2726  cube  inn. 

Splieroids  (X^llipsoids). 

DKFnonoM.— Solids  generated  by  the  revolution  of  a  semi-ellipse  a'oout  one  of  its 
diameters.  When  the  revolution  is  about  the  transverse  diameter  they  are  termed 
Prolate,  and  when  about  the  coi^ugate  they  are  Oblate. 

To  Compute  Volume  of*  a  Sph,eroid.<->F*iK.  3S. 

Rule. — ^Multiply  square  of  revolving  axis  by  fixed  axis,  and  this  product 

by  .5236. 

Or,  a'a'X-  5336  =  V,  a  and  a'  representing  revolving  and 
faedaxes. 

Or,  4-T-3  X  3-  14x6  r*  r'sr  V,  r  and  r'  representing  semi-axes. 

ExAHPLS.— In  a  prolate  spheroid.  Fig.  32,  fixed  axis,  a  5,  is 
14  inches,  and  revolving  axis,  c<l,  10;  what  is  its  volume? 

xo'  X  14  =  i4oo=product  of  square  of  revolving  axis  and 
fixed  (xxis.    Then  1400  x  •  5936  =  733-04  cube  ins. 

NoTB.— Volume  of  a  spheroid  is  equal  to  5^  of  a  cylinder  that  will  circumscribe  it 

Seipnents  of  Splieroids. 
To  Compute  Volume  orSefirmexit  of*  a  Splieroid.^F^g.  33. 

When  Base,  ef,  is  Circular^  or  parallel  to  revdrit^  Axis,  as  cd.  Fig.  33, 
or  as  efto  Axis  a  6,  Fig.  34.  Rule. — Multiply  fixed  axis  by  3,  height  of 
segment  by  a,  and  subtract  one  product  from  the  other ;  multiply  remainder 
by  square  of  height  of  segment,  and  product  by  .5236.  Then,  as  square  of 
fixed  axis  is  to  square  of  revolving  axis,  so  is  last  product  to  vouime  of 
segment. 


Fig.  32. 


MENSURATION   OF   VOLtJMES. 


369 


3  g  — a  ^  fc«  X  -Saa^  X  o"»  _  ^ 
ur,  -5  _  V. 

EzAifPLX. — In  a  prolate  spheroid,  Fig.  33,  fixed  or  trans- 
verse axis,  a  b,  is  100  inches,  revolving  or  cui^ugate,  c  d,  60, 
and  height  of  segment,  a  a,  10;  what  is  its  volume? 

100  X  3  — 10  X  2  =  280= hm'cc  the  height  of  tegment  wb- 
traded  fi-om  three  times  fixed  axis;    280 X  10' X  .5236  = 
X466a8  inches = product  of  <ibove  remainder,  square  of  he^U,  and  .5236.    Then 
100* :  60*  ::  14669.8  :  5277.888  cube  ins. 

When  Base^  ef,  is  Elliptical,  or  petpendicular  to  rerolciiuj  Axis^  a  6,  Fig. 
33,  or  as  ef  to  Axis  c  d^  Fig.  34.  Rule. —  Multiply  fixed  axis  by  3, 
and  height  of  segment  by  2,  and  subtract  one  from  the  "other ;  multiply  re- 
mainder by  square  of  height  of  segment,  and  product  by  .5236.  Tnen,  as 
fixed  axis  is  to  revolving  axis,  so  is  last  product  to  volume  of  segment 

*■'&  34-                                               _     3  a'  — 27*  A'  X  .5236  X  a     „ 
JL^      J  Or, ^, =  V. 

Example.— Diameters  of  an  oblate  spheroid.  Fig.  34,  are 
100  and  60  inches,  and  height  of  a  segment  thereof  is  12; 
what  is  its  volume? 


100  X^  — 12  X  2  =  276 = twice  the  height  of  the  segment  sub- 
^  tractedjrom  three  times  the  revolving  axis ;  276  X  12^  x  5236 

=  20809.9584= product  of  above  remainder,  the  square  of  height,  and  .5236. 
Then  100  :  60  ::  20809.9584  :  12485.975  cube  ins. 


BVasta   of  Spheroids. 

To  Coinpute  Vol-ame  of  Alidclle  Frustuxn  of  a  Spheroid..— 

ITijg.  35. 

When  Ends^  efand  g  h,  are  Circular,  or  parallel  to  revolving  A  3ns,  as  c  d. 
Fig.  35,  or  a  6,  Fig.  36.  Rule.— 'To  twice  s<|uare  of  revolving  axis  add 
square  of  diameter  of  either  end ;  multiply  this  sum  by  length  of  frustum, 
and  product  by  .2618. 

Or,  2a'»  +  d«X/.26i8  =  V. 

Example.  —  Middle  fVustum  of  a  prolate  spheroid,  i  o, 
Fig.  35,  is  36  inches  in  length,  diameter  of  it  being,  in 
middle,  cd,  50,  and  at  its  ends,  e/and  g  h,  40J  what  is  its 
volume  f 

5o»  X  2  +  40'  =  6600  =  sum  of  tvfice  square  of  middle  di- 
ameter  added  to  square  of  diameter  of  ends.  Then  6600  X 
36  X  26x8  =  62  203.68  cube  ins. 

When  EndSj  e/and  g  h,  are  Elliptical,  or  perpendicular  to  revolving  Axis, 
a  b.  Fig.  3S^cr  ef  and  g  h  to  Axis,  c  d.  Fig.  36.  Rulb. — To  twice  product 
of  transverse  and  conjugate  diameters  of  middle  section,  add  product  of 
transverse  and  conj1^^te  of  either  end;  multiply  this  sum  by  length  of 
frustum,  and  product  by  .2618. 


Fig.  36^ 


Or,  d  d' X  2  +  d  c/'  rx  .2618  =  V. 

Example.— In  middle  frustum  of  a  prolate  spheroid,  Fig. 
36,  diameters  of  its  middle  section  are  50  and  30  inches,  its 
ends  40  and  24,  and  its  length,  oi,  18;  what  is  its  volume? 

50  X  30  X  2  =  3000  =  twice  product  of  transverse  and  con- 
jugate diameters ;  3000  +  40  X  24  =  3960  =  sum  of  above 
pnduet  and  product  of  transverse  and  cof^jugate  diameters 
of  ends. 


Thea  3960  X  18  x  .26x8  =  x8  661.104  cubcins. 


370 


MENSURATION    OF   VOLUMES. 


Fig.  38. 


Definition. — Elongated  or  Elliptical  rings. 

Ifilongated.   01*  S^lliptioal  Jjizilcs. 

To  Compute  Volume  of  aix  Kloiigated  or  Klliptioal  luink 

— ITlgs.  37   axicl   38- 

RuLB. — Multiply  area  of  a  section  of  the  body  of  link  by  its  length,  01 

circumference  of  its  axis. 

Or,  a  J  or  c  =  V. 

NoTB.— By  Rule,  page  353,  Ciroumference  or  length  of  axis  of  an  Elongated  link 
=  ihe  sum  of  3.1416  times  sum  of  less  diameter  added  to  thickness  of  ring,  and 
product  of  twice  remainder  of  less  diameter  subtracted  from  greater. 

Also,  Circumference  or  length  of  axis  of  an  Elliptical  ring  —  square  root  of  half 
sum  of  diameters  added  to  thickness  of  ring  or  axes  squared  x  31416. 

Fifr  37*  Example.— Elongated  link  of  a  chain,  Fig.  37,  is  i  inch  in  diameter 

a         of  body,  a  6,  and  its  inner  diameters,  6  c  and  e/  are  10  and  2. 5  inches; 
what  is  its  volume? 

Area  of  i  inch  =  .7854 ;  2-5  -h  i  X  3- 1416  =  10.9956  =  3. 14x6  tima  sum 
of  less  diameter  and  thickness  of  ring  =  length  of  axis  of  ends;  10  —  2. 5 
X  2  =  15  =  ttoice  reTnainder  of  the  less  diameter  subtracted  from  greater 
=  length  of  sides  of  body. 

Then  ia9956  + 15  =  25.9956  =  length  of  axis  of  length. 
Hence  .7854  X  25.9956  =  2a  41 7  ctU)e  ins. 

2.— EllipMcal  link  of  a  chain,  Fig.  38,  is  of  the  same  dimensions  as 
preceding;  what  is  its  volume? 

2     3  ll'Vk  2'? 

2. 5  -|- 1  -}- 10  4- 1  =  133. 25  =  diameter  of  axes  squared  ;    /  3. 1416 

=  25.643  —  square  root  of  half  sum  of  diameters  squared  X  3- 1416  =  cir- 
cumference  of  axis  of  ring.    Area  of  i  inch  = .  7854. 

Then  25.643  x  .'7854  =  2a  14  cube  ins. 

Spherical  Sector. 

Dbfinition.— A  figure  generated  by  the  revolution  of  a  sector  of  a  circle  about  a 
straight  line  through  the  vertex  of  the  sector  as  an  axis. 

Note. — Arc  of  sector  generates  surface  of  a  zone,  termed  base  of  sector  of  a 
sphere,  and  the  radii  generate  surfaces  of  two  cones,  having  a  vertex  in  common 
with  the  sector  at  the  centre  of  the  sphere. 

To  Compute   "Volume   of  a   Splierioal    Sector.— ITig.  30. 

Rule. — Multiply  external  surface  of  zone,  which  is  base  of  sector,  by  one 
third  of  the  radius  of  sphere. 

Or,  o  r  -f-  3  =  V,  a  representing  area  of  hose. 

Note. —Surface  of  a  spherical  sector = sum  of  surface  of  zone  and  surfaces  of  the 
two  cones 

Example.— What  is  volume  of  a  spherical  sector.  Fig. 
39,  generated  by  sector,  e  a  A,  height  of  zone,  a  6  c  <l,  be 
ing  ao,  12  inches,  and  radius,  gh^  of  sphere  15? 

t2  X  94-248  =  1130.976  =  height  of  zone  X  circumference 
of  sphere  =  external  surface  of  zone  {see  page  350). 

1130 976  X  15-T-3  =  surface  X  one   third  of  radiuB  = 
5654  88  cube  ins. 

Spindles. 

Definition.— Figures  generated  by  revolution  of  a  plane  area  bounded  by  a  curve, 
when  the  curve  is  revolved  about  a  chord  perpendicular  to  its  axis  or  about  its 
double  ordinate,  and  they  are  designated  by  the  name  of  arc  from  which  they  are 
<<enerated,  as  Circular,  Elliptic,  Parabolft,  etc 


Fig  39- 


MBNSUEATION   OP   VOLUMES.  37 1 

Circu.lar   Spindle. 
To  Compxite   Volunae   of  a   Circular   Spindle.— Fig.  40. 

Rule. — Multiply  central  distance  by  half  area  of  revolving  sepnent*, 
subtract  product  from  one  third  of  cube  of  half  length,  and  multiply  re- 
mainder by  12.5664. 

( c  X  -  j  X  12. 5664  =  V,  a  representing  area  of  revolving  segment 

ExAMFLK.— What  is  volume  of  a  circular  spindle,  Fig.  40,  whec 
central  distance,  o«,  is  7.071067  inches,  length,/c,  14.142 13,  and 
radius,  oc,  lo? 

NoTK.— Area  of  revolving  segment;  /«,  be  ng=:sido  of  square 

\   that  can  be  inscribed  in  a  circle  of  20,  is  20^  x  7854  —  14.142  13" 
I    -^  4  =  28. 54  area. 

T.orjx  067  X  28. 54-i-2=ioa904i  =  central  distance  X  haJ/ared  of 

7.071 67^ 
revolving  segment ; 10a  904 1  =  16. 947  =  remainder  of 

above  product  and  one  third  of.atbe  of  ka^  length. 

Then  16.497  x  12-5664  =  212.9628  cttbe  ins. 

Frustum   or   Zone   of  a   Circular   Spindle.* 

To  Coxxiptite  Volmue  of  a  Frustviiii  or  Zone  of  a  Ciroxilar 

Spindle.— Kig.  41. 

Rule. — From  square  of  half  length  of  whole  spindle  take  one  third  of 

square  c€  half  length  of  frustum,  and  nmltiply  remainder  by  said  half  length 

01  frustum ;  multiply  central  distance  by  revolving  area  which  generates 

the  frustum ;  subtract  this  product  from  former,  and  multiply  remainder  by 

6.2832. 

2 

2    J'  _i-  2      I' 

Or,  1^9 '■ —  X (c  X  a)  X  6. 2832  =  V,  2  and  t'  repretenting  lengths  of 

3  2 

Spindle  and  of  frustum^  and  a  area  of  revolving  section  of  frustum. 

Note.  —Revolving  area  of  n*iistum  can  be  obtained  by  dividing  its  plane  into  a 
segment  of  a  circle  and  a  parallelogram. 

Example. — length  of  middle  fyustum  of  a  circular  spindle, 
«e.  Fig.  41,  is  6  inches;  length  of  spindle./j/,  is  8;  central  dis- 
tance, o  <;,  is  3;  and  area  of.  revolving  or  generating  segment 
is  10;  what  is  volume  of  frustum  f 

(8  -r-  2)2  —     - ' =  13,  and  13  x  3  =  39  =  product  of  — 

3  2 

length  of  frustum,  and  remainder  of  one  third  square  of  half 
ler^h  of  frustum  subtracted  from  square  of  half  length  of 

spindle ;  39  —  3  x  10 = 9  =  product  of  central  distance  and  area  of  segment  subtracted 
from  preceding  product 

Then  9X6, 2832  =  56. 5488  cube  ins. 

Segment   of  a   Cix*oular   Spindle. 

To    Compnte    "VoKimft    of  a    Segment    of  a    Circular 

Spindle.— Fig.  4rS. 

RuLR. — Subtract  length  of  segment  from  half  length  of  spindle ;  double 
remainder,  and  ascertain  volume  of  a  middle  frustum  of  this  length.  Sub- 
tract result  from  volume  of  whole  spindle,  and  halve  remainder.t 

Or,  C  —  c-4-2  =  V,  C  and  c  representing  volume  of  spindle  and  middle  frustum. 

*  MIddl*  fnMtam  of  »  CircaUr  Spindle  la.one  of  tbo  vnrioiu  formt  of  cukt. 

t  This  niU  U  ■m^ieabl*  to  Mfmont  of  any  Splndlo  or  anj  Conoid,  Tolomo  of  tbo  figaro  and  fnuisp 
b«iM  <nt  obUfaMd. 


372  MENSURATION    OF   VOLUMES. 

Fig.  42.  Example.  —  I/ength  of  a  circular  spindle,  i  a,  Fig.  42,  !» 

^ff -..^^  14. 142 13  inches;  central  distance,  o  e,  is  7.C7107;  radius  of 

j/^L\ 4*. y.-^a  arc,  ott,  is  10;  and  length  of  segment,  t  c,  is  3.53553;  what  is 

»sgjj^    ]          /  its  volume? 

*\     T'""/'  14.14213  jr.  .J        . 

\     »    ,' 3. 535  53  X  2  =  7.071 07  =  double  remainder  of 

\  J  /  2 

*^  length  of  segment  subtrcbcted  from  half  length  of  spindle  = 

length  of  muldle  frustum. 

Note. — Area  of  revolving  or  generating  segment  of  whole  spindle  is  28.54  inches, 
and  that  of  middle  frustum  is  19.25. 

The  volume  of  whole  spindle  is 212.0628  cube  ins. 

"         "     middle  flrustum  is 162.8982    "     " 

Hence 50.0646  -r-  2  =  25.0323  cube  ins. 

Cycloidal    Spindle.* 

To   Compute  "Volume  of  a  Cycloidal   Spindle.— Fig.  43. 

KuLE. — Multiply  product  of  square  of  twice  diameter  of  generating  circle 
and  3.927  by  its  circuraferenee,  and  divide  this  product  by  8. 

Fiff  A.-i  —2 

\/""-*        ^^  2dX3-927XdX3i4»6      ...  s.-      ^-        ,  ■ 

>iC        \         Or, Q ^— ^ —  =  ^ » f^  representing  diameter 

d(- T-p-.-j-V--'       of  circle^  or  half  width  of  spindle. 

Example Diameter  of  generating  circle,  a  &  c,  of  a  cy- 
cloid, Fig.  43,  is  10  inches;  what  is  volume  of  spindle,  d«? 


_2 


10  X  2  X  3-927  =  ino.%z=i product  of  twice  diameter  squared  and  3.927. 
Then  1570.8  X  10  x  3.1416-7-8=6168.5316  cube  ins. 

Elliptic   Spindle. 
To    Compute    Volume   of  aii    Klliptio    Spin  die. ^Fig.  '^4. 

Rule.  —  To  square  of  its  diameter  add  square  of  twice  diameter  at  one 
fourth  of  its  length ;  multiply  sum  by  length,  and  product  by  .1309.! 

Or,  d^-\-2d'  1. 1309  =  V,  d  and  d'  representing  diameters  a*  above. 

Fig.  44.  Example.  —  liCngth  of  an  elliptic  spindle,  a  6,  Fig.  44,  is 

^       <-  75  inches,  its  diameter,  c  d,  35,  and  diameter,  ef  at .  25  of  its 

^x-T       !     """v.  length,  25;  what  is  its  volume? 

{^^^^^^^^^^\  35'  -|-  25  X  2  =  3725  =  sum  of  squares  of  diameter  of 
r  ^^^^^^^  "J  ^indle  and  of  twice  its  diameter  at  one  fourth  of  its  length; 
\.      J       \d  J  2725  X  75  =  279  375  =  a^ove  sum  x  l/estigth  of  spindle. 

^---..j__.'-'  Then  279375  X  .1309  =  36570- 1875  cube  ins. 

NoTK.— For  nil  such  solid  bodies  this  rule  is  exact  when  body  is  formed  by  a 
conic  section,  or  a  part  of  it,  revolving  about  axis  of  section,  and  will  always  be 
very  near  when  Qgure  revolves  about  another  line. 

To   Coxnpute   "Volume   of*  Aliddle   ITrustxim   or   Zone   of* 
an.   Slliptio   Spind.le.*«B*ig.  4S. 

RiTi.K.T— Add  together  squares  of  greatest  and  least  diameters,  and  square 
of  double  diameter  in  middle  between  the  two ;  multiply  the  sum  by  length, 
and  product  by  .1309. | 


3 


Or,  d^  -\-d'^-{-2  d"  i.  1309  =  V,  d,  d\  and  d"  reprewnting  different  diameten. 

*  Volume  of  x  Cycloidal  Spindla  ia  eqaal  to  .625  of  lU  circumtcribinK  evlinder. 
1 8«e  pr«c«dinK  Note.  %  See  Note  ftbove. 


MENSURATION    OP   VOLUMES. 


373 


«l^45. 


ExAMPLR.— Greatest  and  least  diameters,  ab  and  cd,  of 
the  frustum  of  an  elliptic  spindle,  Fig.  ^5,  ai'e  68  and  59 
inches,  its  middle  diameter,  p/t,  60,  and  its  length,  e/,  75; 
what  is  its  volume? 


682  ^_  50^  -|-  60  X  2  =  21  524  =  sum  of  squares  of  gi-ecUea 
and  least  diameters  and  of  double  middle  diameter. 

Then  21  524  X  75  X  1309  =  211  311.87  cube  ins. 

To  Compute  "Volume  of*  a  Segment  of  an  fClliptio  Spin- 
dle.—ITig.  40. 

Rule. — Add  together  s^juare  of  diameter  of  base  of  segment  and  square 
of  doable  diameter  in  middle  between  base  and  vertex ;  multiply  sum  by 
length  of  segment,  and  product  by  .1309.* 


Or,  d?-\-2d"  Ix  .  1309  =  V,  (i  cmd  d"  representing  diameters. 

Fig  46.  1«:xAMPLR. — Diameters,  cd  and  gh,  of  the  segment  of  an 

c..—- »— ...,^  elliptic  spindle,  Fig.  46,  are  20  and  12  inches,  and  length, 

j         *\     o«,  is  16;  what  is  its  volume? 


/      20^  -j- 12  X  2  =  976  =  sum  of  squares  of  diameter  at  bafe 
"      and  in  middle. 


-..J.*-* 


Then  976  X  16  X  -1309  =  2044. 134  cube  int. 

I*ara"bolic   Spindle. 

To  Compute  Volume   of  a   i*ara"bolio   Spindle.— TTig.  47'. 

RuLK  I.  —  Multiply  square  of  diameter  by  length,  and  the  product  by 

.4i888.t 

Or,  (Z»2x.4i888  =  V. 

Rule  2. — To  square  of  its  diameter  add  square  of  twice  diameter  at  one 
fourth  of  its  len.i>th;  multiply  sum  by  length,  and  product  by  .1309. J 


Fig.  47- 


Or,d»4-aU'iX.i309  =  V. 

Example.— Diameter  of  a  parabolic  spindle,  a  b.  Fig. 

47,  is  40  ins.,  and  its  length,  cd,  10;  what  is  its  volume? 

40'  X  10  =  16  000  =  square  of  diameter  X  length. 
Then  1 6  000  X  •  41 8  88  =  6702. 08  cube  ins. 

Again,  If  middle  diam.  at  .25  of  its  length  is  30,  Then, 

ft 

by  Rule  2, 40'  -|-  30  X  2  x  40  X  .  1309  =  6806. 8  cube  ins. 

To  Coianpute  Volume  of*  ]VIiddle  Frustum  of  a  Parabolic 

Spindle.— Fig.  48. 

Rule  i.  —  Add  together  8  times  square  of  greatest  diamet-er,  3  times 
square  of  least  diameter,  and  4  times  product  of  these  two  diameters ;  mul- 
tiply sum  by  length,  and  product  by  .052  36, 

Or,d»8  +  d^-fdd'X4iX.o52  36=V. 

Rule  2.  —  Add  together  squares  of  greatest  and  least  diameters  and 
square  of  double  diameter  in  middle  between  the  two;  multiply  the  sum 
by  length,  and  product  by  .1309. 

Or,  d'  -f  cT'  +  2  d"*  i  X .  1309  =  V,  d"  represenHng^iameter  between  the  two. 

ExAMPLB — Middle  n*u8tum  of  a  parabolic  spindle.  Fig. 

48,  has  diameters,  a  b  and  ef,  of  40  and  30  inches,  and  its 
length,  cd,  is  10;  what  is  its  volame? 

b  40'  X  8  +  3o«  X  3  +  40  X  30  X  4  =  20  3<»  =  sum  of  8 
tim^s  square  of  greatest  diameter,  3  times  square  of  least 
diameter,  and  4  times  product  of  these. 

Then  ao  300  x  10  X  052  36  =  10629.08  cube  int. 


•  l«fKo(t,)>af«37a. 


1 8-M  of  .7854, 


t8««Not«,p«gf97t, 


■*' 


374 


MENSURATION    OF   VOLUMES. 


To    Compute    "Volume    of  a    Segment    of*  a   ParaTsolio 

Spiixdle.— Fig.  49. 

RuLK. — Add  together  square  of  diameter  of  base  of  segment  and  square 
of  double  diameter  in  middle  between  base  and  vertex ;  multiply  sum  by 
height  of  segment,  and  product  by  .1309. 

0r,d2  +  d"2fx.i3O9  =  V. 

Flff.  4Q. 

**  ^  Example.— Segment  of  a  parabolic  spindle,  Fig.  49,  has 

^7^.,_-«^x  diameters,  c/and  g  h,  of  15  and  8.75  inches,  and  height, 

^^'^^l—'V^^^f     c  d,  is  2.5;  what  is  its  volume? 

V i.        15' -f  8.75  X  2  =  531.25  =  sum  of  square  of  base  and  of 

double  diameter  in  middle  of  segment.    Then  531. 25  X  2.5 
J ---'  X  .1309=  173.852  cube  ins. 


Hyperbolic   Spindle. 

To  Compute  "Volume  of  a  Hyperl>olio  Spindle. ~Fig.  SO. 

Rule.— To  square  of  diameter  add  square  of  double  diameter  at  one 
fourth  of  its  length ;  multiply  sum  by  length,  and  product  by  .1309.* 


Or,  d=  +  2d'ix.i309  =  V. 

Example.— Length,  a  6,  Fig.  50,  of  a  hyperbolic  spindle 
is  100  inches,  and  its  diameters,  c  d  and  ef  are  150  and 
1x0:  what  is  its  volume? 


150^  -j-  1 10  X  2  X  109  =  7  090000  =  product  of  sum  of 
squares  of  greateM  diameter  and  of  twice  diameter  at  one 
fourth  of  length  of  spindJ^  and  length.  Then  7090000  x 
.  1 309  :=  928  081  cti^  inches. 

To  Coxrxpute  Volume   of  A^iddle  ITrustum   of  a  Hyper- 

l>olio   Spindle.— IT'ig.  Gl. 

Rule. — Add  together  squares  of  greatest  and  least  diameters  and  square 
of  double  diameter  in  middle  between  the  two ;  multiply  this  sum  by  length, 
and  product  bv  .i309.t 
Pigg,.  '  Or,d«  +  d'2-|-(2d'r«X.i309=V. 

Example.  —Diameters,  a  b  and  c  d,  of  middle  flrustum  of  a 
hyperbolic  spindle,  Fig.  51,  are  150  and  no  inches;  diam- 
eter, g  h,  140;  and  length,  ef,  50;  what  is  its  volume? 


X--' 


1502  -f-iio»  4-140  X2=ii3  000  =  sum  of  squares  of  great- 
est and  least  diameters  and  qf  double  middle  diameter.  Iben 
113000X  50 X  -1309  =  739585  "mbeins. 


To  Compute  "Volume  of  a  Segment  of  a  Hyperl3olio  Spin- 
dle.—Fig.  6S. 

Rule. — Add  together  square  of  diameter  of  base  of  segment  and  square 
of  double  diameter  in  middle  between  base  and  vertex  j  multiply  sum  by 
length  of  segment,  and  product  by  .1309. 

Or,  d»+d"»i X.  1309  =  V. 

Example.  —Segment  of  a  hyperbolic  spindle.  Fig.  53,  has 
diameters,  «/and  ^  A,  of  no  and  65  inches,  and  its  length,  a  b, 
25;  what  is  its  volume? 

110*4-65  X  2  =  29ooo  =  mm  of  squares  of  diameter  of  base 
and  ofaov^le  middle  diameter. 

Then  29  000  x  25  x  •  1309  =  94  902.5  cube  int. 


Pig.  52 


f  &W  Note,  pag«  37?, 


t  Ibid. 


MBK8UBATI0N  OV  VOLUMBS. 


375 


*'ig-  54. 


Hillipsoid,  ^Paraboloid,  and  Hyperboloid  of  Revo- 
lution*  (Conoids). 

Dbfikition. — Figures  like  to  a  oooe,  described  by  revolution  of  a  conic  section 
around  and  at  a  right  angle  to  plane  of  their  fixed  axes. 

Sjllipsoid  of  Revolution  (Sph.ei*oid). 

DEFQanov.— An  elliptoid  of  revolution  is  a  semt-sphcroid.    (See  page  36&) 

Paraboloid   of  Revolu.tion.t 

^o  Compvite  Voluxue  of*  a>  Para'boloid   of  Revolution."- 

Fig.  63. 

Rule. — Multiply  area  of  base  by  half  height 

Pig.  53.    ^  0r,aA-r-2  =  V. 

Note.  — This  rule  will  hold  for  any  segment  of  paraboloid, 
whether  base  be  ])erpcndicular  or  oblique  to  axis  of  solid. 

Example. —Diameter,  a  b,  of  base  of  a  paraboloid  of  revolution, 
Fig.  53,  is  20  Inches,  and  its  height,  d  c,  20;  what  is  its  volume  ? 

^       Area  of  20  inches  diameter  of  base  =  314. 16.    Then  314. 16  X 
2o-=-2  =  3i4i.6ctt^  ins. 

KVustum   of  a  Paraboloid  of  Revolution. 

To  Compute  Volume  of  a  frustum  of  a  Paraboloid  of 

Revolution .^Pig.  64. 

Rule.  —  Multiply  sum  of  squares  of  diameters  by 
height  of  firustum,  and  this  product  by  .3927. 

Or,(d«H-(Z'2)AX.3927  =  V. 

Example. — Diameters,  a  b  and  d  c,  of  the  base  and  vertex 
of  firustura  of  a  paraboloid  of  revolution,  Fig.  54,  are  20  and 
X1.5  inches,  and  its  height,  ef,  X3.6;  what  is  its  volume? 

20^  -|- 1 1 . 5'  =  532. 25  =  «um  of  squares  of  diameters.  Then 
532.25  X  X2.6  X  .3927  =  a633.5837  cube  ins. 

Segment  of  a  Petraboloid   of  Revolution. 

To  Compute  Volume  of  Segment  of  a  Paral>oloid  of  Revo- 
lution. .••Fig.  SO. 

Rule. — Multiply  area  of  base  by  half  height. 

Or,  axfc^Hl=:V. 

Note.— This  rule  will  hold  for  any  segment  of  paraboloid, 
whether  base  be  perpendicular  or  oblique  to  axis  of  solid. 

Example. — Diameter,  a  b,  of  the  base  of  a  segment  of  a  para- 
boloid of  revolution.  Fig.  55,  is  11  5  inches,  and  its  height,  e/  is 
7.4 (  what  is  its  volume? 

Area  of  11. 5  inches  diameter  of  base  =  103.869.    Then  103.869 

X  7-4  -^  3  =  384-315  cw*«  »«*• 

Hyperboloid  of  Revolution. 
To  Compute  Volume  of  a  Hypertooloid  of  Revolution. 

—Pig.  oe. 

JiuhK. — To  square  of  radius  of  base  add  square  of  middle  diameter ;  mul- 
tiply tUs  sam  by  height,  and  product  by  .5256. 

•  Tb«M  fignrai  !>•▼•  been  known  m  Ckmoidi.    For  the  definition  of  %  Conoid,  Me  Haaw^t  Men 
nmOiam,  page  233. 
lofePa 


Fig  55 


t  Volnme  1 


ranboloid  of  Revolution  li  =  .5  of  ite  circumference. 


376 


M£liSU]£ATION   OF  VOLUMES. 


Fig.  56-       / 


Or,  r'+d»  *x.S236=V,  d  rq>resenting  middU  diametef 

ExAHPLB.  —  Base,  a  &,  of  a  hyperboloid  of  revolution. 
Fig.  56,  is  80  inches;  middle  diameter,  cdj66\  and  height, 
ef,  60;  what  is  its  volume? 


80  -T-  2  +  66  *  =  5956 = sum  of  square  of  radius  ofbau  and 
middle  diam.    Then  5956  X  60  X  •  5236  =  87 113.7  cube  int. 

Sejocment  of  a  Hyperfeoloid.  of  Revolution. 

To  Coiupute  Volvime   of  Segment  of  a.  Hyperboloid  of 

Revolution,  as   Fig.  G6. 

Kui.B. — To  square  of  radius  of  base  add  square  of  middle  diameter;  mul- 
tiply this  smn  by  height,  and  product  by  .5236. 

Or,  r*  -f-  d"'  h  X  .  5236  =  V,  r  represmling  radiut  of  base. 

RxjiiiPi.K.— Radius,  a  e,  of  base  of  a  segment  of  a  hyperboloid  of  revolution,  as 
Fig  56.  is  21  inches;  its  middle  diameter,  c  cl,  is  30;  and  its  height,  ef  15;  what  is 
its  volume? 

21'  -|-  30'  X  15  =  20  IIS  =product  of  sum  of  squares  of  radius  of  base  and  middle 
diameter  mtUliplied  by  height.  Then  20 1  x 5  X  •  5236  =110532.214  cuJbe  int. 

■BVusitnin   of  a  HjrperlDoloid   of  Revolntion.. 

To  Compute  Voluine  of  Frustum   of  a  Hyperboloid  of 

K-evolution..— ITigp,  OT'. 

Rule. — Add  (ogether  sauares  of  greatest  and  least  semi-diameters  and 
square  of  diameter  iu  middle  of  the  two ;  multiply  this  sum  by  height,  and 
product  by  .5236. 

Or,  ( -  J  +  (  -  j  +  d"»  /*  X .  5«36  =  V,  d,  d',  and  d"  representing  several  diametert. 

Example.— Frustum  of  a  hyperboloid  of  revolution.  Fig. 
57,  is  in  height,  «i,  50  inches;  diameters  of  greater  and 
lesser  ends,  a  b  and  c  d,  are  no  and  42 ;  and  that  of  middle 
diameter,  ^  A,  is  80;  what  is  volume? 

iio-^2  =  55,  and  42-=-9  =r  21.  Hence  55»+2i'-|-8o' 
.  =9866=:«um  of  squares  of  semi-diameijrs  of  ends  and  of 
"  middle  diam.   Then  9866  X  50  X  •  5236  =  258  291. 88  cube  int. 

A.ny  r^gnire   of  Revoliation. 

To   Compute   Voluxue  of  eaxy  Figure  of  Itevolutioxx.^ 

Fig.  OS. 

Rule. — Multiply  area  of  generating  surface  by  circumference  described 
by  its  centre  of  gravity. 

Or,  a  2rp  =  V,  r  representing  radius  of  centre  of  gravity. 


Fig-  57-       J^ 


Fig.  58. 


'/"  •    1 


--V3| 


iLLrsTRATioN  I.  — If  generating  surface,  a  ft  c  d,  of  cylinder, 
b  e  dfy  Fig.  58,  is  5  inches  in  width  and  10  in  height,  then  will 
a  b  =  5  and  6  d  =  10,  and  centre  of  gravity  will  be  in  o,  the  ra- 
dius of  which  is  r  o  =  5  -=-  2  =  2. 5.  Hence  10  X  5  =  50= area 
of  generating  surfaoe. 


a  f"'*-  59- 


Then  50  X  2.5  X  2 X  3- M^^  =  785-4  =  «»*«« 
'.Tr.-.rJ  f  of  generating  surface  X  circumference  of  its 
',"''"  J  centre  ofgramty  =  volume  of  cylinder. 

Proof. r- Volume  of  a  cylinder  10  inches  in  diameter  and  10 
Inches  in  height.    10*  x  .7854  =  78.54,  and  78.54  x  10  =  785.4. 

2.  —If  generating  surface  of  a  cone,  Fig.  59,  is  a  e  =  10,  d  e  ^ 
5,  then  will  ad  =  11. 18,  and  area  of  triangle  =  10  x  5 -j- 2  =  25, 
centre  of  gravity  of  which  is  in  o,  and  o  r,  by  Rule,  page  607,  d 

=:  1.666. 

Hence,  25  x  1666  X  2  X  31416  =  261.8  =  area  of  generating  surface  X  cireun^ 
rence  of  its  centre  of  gravity  =  volume  of  cone. 


MBNSUBATION   OF  VOLUMES.  377 

3. —If  generating  snrfl&ce  of  a  sphere,  Fig.  60,  Is  a  be,  and  ae 

=  10,  a  6  c  will  be  (— ]  =  39.27,  centre  of  gravity  of 

\    which  is  in  0,  and  by  Rule,  page  607,  0  r  =  2. 122. 

/       Hence,  39. 27  X  2.  X22  X  2  X  ^.  1416  =  523. 6  =  area  of  generat- 
J    ing  surface  X  circumference  of  its  centre  of  gravity  =  volume  oj 
y      gj^ere. 

Irregulai?  Sodies. 

To   Compute  "Vol-unae   of  an   Irregular   Body. 

Rule. — Weigh  it  both  in  and  out  of  fresh  water,  and  note  difference  in 
lbs. ;  then,  as  62.5*  is  to  this  difference,  so  is  i728t  to  number  of  cube  inches 
in  body. 

Or,  divide  difference  in  lbs.  by  62.5,  and  quotient  will  give  volume  in 
cube  feet 

Note.— If  salt  water  is  to  be  used,  ascertained  weight  of  a  cube  foot  of  it,  or  64,  is 
to  be  used  for  62. 5. 

ExAMKLK.— An  irregular-shaped  body  weighs  15  lb&  in  water,  and  30  out;  what 
is  its  volume  in  cube  inches? 

30  — 15  =  15  =  difference  ofvoeights  in  and  out  of  water. 

62.5  :  15  ::  1728  :  414.72  =  vo2um«  in  cube  ins. 

Or,  15 -i- 62. 5  =  .24,  and  .24  x  1728  =  414. 72  ^  volume  in  cube  ins. 


CASK   GAUGING. 

"Varieties   of  Casks. 
To   Coxnpvite  Volume  of  a  Cask. 

i8t  Variety,    Ordinary  form  of  middle  frustum  of  a  Prolate  Spheroid. 
This  class  comprises  all  casks  having  a  spherical  outline  of  staves,  as  Rum 
puncheons,  Whiskey  barrels,  etc. 

Rule. — To  twice  square  of  bung  diameter  add  square  of  head  diameter ; 
multiply  this  sum  by  length  of  the  cask,  and  product  by  .2618,  and  it  will 
give  volume  in  cube  inches,  which,  being  divided  by  231,  will  give  result  in 
gallons. 

2d  Variety,    Middle  frustum  of  a  Parabolic  Spindle. 

This  class  comprises  all  casks  in  which  curve  of  staves  quickens  at  the  chime, 
as  Brandy  casks  and  Provision  barrels. 

Rule. — ^To  square  of  a  head  diameter  add  double  square  of  bung  diam- 
eter, and  from  sum  subtract  .4  of  square  of  difference  of  diameters ;  multiply 
remainder  by  length,  and  product  by  .2618,  which,  being  divided  by  231, 
will  give  volume  in  gallons. 

3d  Vaanety,    Middle  frustum  of  a  Paraboloid. 

This  class  comprises  all  casks  in  which  curve  of  staves  quickens  slightly  at 
bilge,  as  Wine  casks. 

Rule. — ^To  square  of  bung  diameter  add  square  of  head  diameter ;  mul- 
tiply sum  bv  length,  and  product  by  .3927,  which,  being  divided  by  231, 
will  give  volume  in  gallons. 

4^  Variety,    Two  equal  frustums  of  Cones. 

This  class  comprises  all  casks  in  which  curve  of  staves  quickens  sharply  at 
bilge,  as  Gin  pipes. 

Rule. — Add  square  of  difference  of  diameters  to  three  times  square  of 
^eir  sum ;  multiply  sum  bv  length,  and  product  by  .06566,  and  it  will  give 
volume  in  cube  inches,  which,  oeing  divided  by  231,  will  give  result  in 
gallons. 

*  Weight  of  ft  enbe  foot  of  firwh  mXtx,  f  Nomber  of  Inches  In  »  cobe  foot. 

T  tft 


378  MKW8U  RATION   OP   VOLUMES. 

Examplk.— Bung  and  bead  diameters  of  a  cask  are  24  and  16  inches,  and  length 
36;  what  is  its  volume  in  gallons? 


24  — 16 +  (24 4-16)^X3  =  4864,  which  X  36  =  175 K04,  and  175104  x.065 66  = 
II  497.339«  which  -i-  231  =  49- 77  gallon*. 

Generally. 

Dd~pM^  .001 692  L  —  U.  S.  gaiUms,  and  .001 416 2  =  Imperial  gallons. 

D,  d,  and  M  representing  interior,  head  and  bung  diatneters,  arui  L  length  of  cask 
in  inches. 

Xo    Ascertain    M.ean    Diameter   of  a   Caalz. 

RuLR. — Subtract  head  diameter  from  bun^  diameter  in  inches,  and  mul- 
tiply difference  by  followinjij  units  for  the  four  varieties;  add  product  to 
bea(l  diameter,  and  sum  will  give  mean  diameter  of  varieties  required. 

ist  Variety   7       I      3d    Variety 56 

2d  Variety 68     |     4th  Variety 52 

ExAMPLK.— Bung  and  head  diameters  of  a  cask  of  ist  variety  are  24  and  20  inch- 
es; what  is  its  mean  diameter? 

24  —  20  =  4,  and  4  X  •  7  =  2- 8,  which,  added  to  20,  =  22.8  ins. 

ULLAG£  CASKS. 
Xo   Compute   Volume   of  XJllage   Casks. 

When  a  cask  is  only  partly  filled,'  it  is  termed  an  ullage  ccuk,  and  is  con^ 
sidered  in  two  positions,  viz.,  as  lying  on  its  side,  when  it  is  termed  a  Seg- 
ment  Ufing^  or  as  standing  on  its  end,  when  it  is  termed  a  Segment  Standing. 

Xo   Ullage   a    I-iyilig   Caelt. 

Rule. — Divide  wet  inches  (depth  of  liquid)  by  bung  diameter ;  find  quo- 
tient in  column  of  versed  sines  in  table  of  circular  segments,  page  267,  and 
take  its  .corresponding  segment;  multiply  this  segment  by  capacity  of  cask 
in  gallons,  and  product  by  1.25  for  ullage  required. 

Exam PLK. — Capacity  of  a  cask  is  90  gallons,  bung  diameter  being  32  inches;  what 
is  its  volume  at  8  inches  depth?  ^ 

%-r- 12  =  .iS'.taJb.  seg.  of  which  {8.153  55,  which  X  90  =  13.8195,  and  again  X  1.25  = 
17.2744  gallons. 

Xo   Ullage    a  Standing   Cask. 

Rule. — Add  together  square  of  diameter  at  surface  of  liquor,  square  of 
head  diameter,  and  square  of  double  diameter  taken  in  middle  between  the 
two;  multiply  sum  by  wet  inches,  and  product  by  .1309,  and  divide  by  231 
for  result  in  gallous. 

Xo  Compute  Volume  of  a   Cask  \>y   F'our  Dimensions. 

Rule. — Add  together  squares  of  bung  and  head  diameters,  and  square  of 
double  diameter  taken  in  middle  between  bung  and  head;  multiply  the  sum 
by  length  of  cask,  and  product  by  •1309,  and  divide  this  product  by  231  for 
result  in  gallons. 

Xo  Compute  Volume  of  ansr  Cask  fVom  Xliree  Dinaen- 

.sions   onlsr. 

Rule. — Add  into  one  sum  39  times  square  of  bung  diameter,  25  timea 
square  of  head  diameter,  and  26  times  product  of  the  two  diameters ;  mul- 
tiply sum  by  length,  and  product  by  .008  726 ;  and  divide  quotient  by  231 
for  result  in  gallons. 

For  Rules  in  Gauging  in  all  its  conditions  and  for  description  and  use  of 
instruments,  see  HofweU's  Mensuration^  pages  307-23. 


CONIC   6ECTI0NS. 


379 


CONIC  SECTIONS. 

A  Con^  is  a  figure  described  by  revolution  of  a  right-angled  triangle 
about  one  of  its  legs,  or  it  is  a  solid  having  a  circle  for  its  base,  and 
terminated  in  a  vertex. 

Omic  Sections  are  figures  made  by  a  plane  cutting  a  cone. 

If  a  coiw  Is  cat  by  a  plane  through  vertex  and  base,  section  will  be  a  triangle, 
and  if  cut  by  a  piano  parallel  U>  its  base,  section  will  be  a  circle. 

Axi*  is  line  about  which  triangle  revolves.  Base  is  circle  which  is  described  by 
revolving  base  of  triangle. 

Fig.  I.  y\  'An  ^aiipde  is  a  figure  generated  by  an  oblique  plane  cut- 

ting a  cone  above  its  base. 

Trturuvarse  axia  or  diameter  is  longest  right  line  that  can  be 
drawn  in  it,  as  a  b^  Fig.  x. 

Car^fugate  axis  or  diameter  is  a  line  drawn 
through  centre  of  ellipse  perpendicular  to  trans* 
verse  axis,  aiacd. 

A  Parabola  is  a  fij^ure  generated  by  a 
plane  catting  a  cone  ^utrallel  to  its  side,  as  a  6  c,  Fig.  2. 
Axit  is  a  right  line  drawn  fVora  vertex  to  middle  of  base,  as  60. 
NuTK. — A  parabola  has  not  a  coqjugate  diameter. 

A  Hyperhda  is  a  figure  generated  by  a  plane 
cuttin;;  a  cone  at  any  angle  with  base  greater  than  that  of 
side  of  ctme,  as  a  b  c,  Fig.  j. 

TVansverse  axis  or  diameter,  o  6,  is  that  part  of  axis,  e  6,  which, 
if  continued,  as  at  o,  would  join  an  opposite  cone,  ofr. 

GoiyngaU  axit  or  diameter  is  a  right  line  drawn  through  centre, 
g^  or  transverse  axis,  and  perjwndicular  to  it. 

Straight  line  through  foci  is  indefinite  transverse  axis;  that  part 
of  it  between  vertices  of  curves,  as  o  6,  is  detlnite  transverse  axis. 
Its  middle  point,  g^  is  centre  of  curve. 

Eccenti-icity  of  a  hyperbola  is  ratio  obtained  by  dividing  distance  from  centre  to 
either /octM  by  semi-transverse  axis. 

Parameter  is  cord  of  curve  drawn  through  ^britf  at  right  angles  to  axia. 

Asymptotes  of  a  hyperbola  are  two  right  lines  to  which  the  curve  continually  ap- 
proaches, touches  at  an  infinite  distance  but  does  not  pass;  they  are  prolongations 
of  diagonals  of  rectangle  constructed  on  extremes  of  the  axea 

Two  hyperbolas  are  conjugate  when  transverse  axis  of  one  is  coAjugatQ  of  the 
other,  and  contrariwise. 

Oeneral   X>efinitious. 

An  Ordinate  is  a  right  line  fVom  any  point  of  a  curve  to  either  of  diameters,  as 
a«  and  do.  Fig.  4,  and  ab  and  d/,  are  double  ordinates;  cb.  Fig.  5,  is  an  ordinate, 
and  a  6  an  abscissa. 

An  Abscittsa  is  that  part  of  diameter  which  is  contained  between 
vertex  and  an  ordinate,  as  ce,  ^o,  Fig.  4,  and  a  b, 
Fig.  5- 
. .      Parameter  of  any  diameter  is  equal  to  four  times 
l^  distance  from  focus  to  vertex  of  curve;  parameter 
'^  of  axis  is  least  possible,  and  is  termed  parameter 
of  curve. 

Parameter  of  curve  of  a  eon'c  section  is  equal 
to  chord  of  curve  drawn  through  focus  perpendic- 
alar  to  axis. 

Pamn,eter  of  transverse  axis  is  least,  and  is  termed  parameter  of  t^urve. 

Paramder  of  a  conic  section  and  fod  are  sufficient  elements  for  construction 
of  carve 


38o 


CONIC   SECTIONS. 


A  Focut  Is  a  point  on  principal  axis  where  double  ordinate  to  axis,  through  point, 
is  equal  to  parameter,  as  e/,  Fig.  5. 

It  may  be  determined  arithmetically  thus:  Divide  square  of  ordinate  by  four 
times  abscissa,  and  quotient  will  give  focal  distances,  as  and  »,  in  preceding  figures. 

Fig. 6.  Directrix  of  a  conic  section  is  a  right  line  at  right  angles  to 

p.  I ^  migor  axis, and  it  is  in  such  a  position  that 

/:  g::u  :  o. 

Here  a  d,  Fig.  6,  is  directrix,  and  o  is  offset  to  directrix. 

L<iUis  Rectum,  or  principal  parameter,  passes  through  a  focus; 
it  is  a  double  ordinate,  which  is  a  third  proportion  to  the  axis. 

Or,  A:  a::a:1j. 

A  and  a  representing  major  and  minor  asxs.    (See  UasweWs 
Mensuration^  I)age  232.) 

A  Conoid  is  a  warped  surface  generated  by  a  right 
line  being  moved  in  such  a  manner  that  it  will  touch 
a  straight  line  and  curve,  and  continue  parallel  to  a 
given  plane.  Straight  line  and  cur\'e  are  called  di- 
rectiices^  plane  a  plane  directrix^  and  moving  line  the 
genei'oirix. 

Thus,  let  a  h  a\  Fig.  7,  be  a  circle  in  a  horizontal  plane, 
and  d  d*  projection  of  right  lines  perpendicular  to  a  ver- 
tical plane,  r'  6  e ;  if  right  lines,  da,rs^r*b,  r"  «,  and  d'  a, 
be  moved  so  as  to  touch  circle  and  right  line  d  d'  and  be 
constantly  parallel  to  plane  r' 6  e,  it  will  generate  conoid 
daha'  d , 

Radii  vecUyres  are  lines  drawn  from,  the  foci  to  any  point  in  the  curve;  hence  a 
raditu  vector  is  one  of  these  lines 

Traced  angle  is  angle  formed  by  the  radii  vectores  and  the  transverse  diameter. 

EUipaoidf  Paraboloid^  and  Hyperboloid  of  i^evo/u^ton— Figures  generated 
by  the  revolution  of  an  ellipse,  parabola,  etc.,  aroimd  their  axes.  (See  i/en- 
surcUion  0/ Surfaces  and  Solids,  pages  357-75.) 

Note  i. — All  figures  which  can  possibly  be  formed  by  cutting  of  a  cone  are  men- 
tioned in  these  definitions,  and  are  five  following— viz.,  a  lYiungle^  a  Circlej&n  El- 
lipse^  a  ParaboUtj  and  a  Hyperbola ;  but  last  three  only  are  termed  Conic  Sections. 

2. — In  Parabola  parameter  of  any  diameter  is  a  third  proportional  to  abscissa 
and  ordinate  of  any  point  of  curve,  abscissa  and  ordinate  being  referred  to  that 
diameter  and  tangent  at  its  vertex. 

3.->-Ib  ElMpse  and  Hyperbola  parameter  of  any  diameter  is  a  third  proportional 
to  diameter  and  its  coi^ugate. 

To  IDeterxniiie  Parameter  of  an.  Ellipse  or  Hyperbola. 

RuLK.  —  Divide  product  of  cotgugate 
diameter,  multiplied  by  itself,  by  trans- 
verse, and  quotient  is  equal  to  para- 
meter. 

**     In  annexed  Figs.  8  and  9,  of  nn  Ellipse 
and  Hyperboles,  tmnsverse  and  conjugate  *^ 
diameters,  ab^cd^  are  each  30  and  20. 

Then  30  :  20  ::  20  :  13.333  ^parowicter. 

Parameter  of  curve  =  e/,  a  double  ordinate  passing  through 
fbcuB,  s, 

iBllipse. 

To  Describe   Kllipses.    (See  Geometry,  page  226.) 

To   Compute   Terms    of*  an    Kllipse. 

When  any  three  of  four  Terms  of  an  Ellipse  are  given,  viz..  Transverse 
and  Coujvyate  Diameters,  an  OrdinaU^  and  its  Abscissa,  to  ascerfain  remattt- 
•n^  Terms. 


r 


Fig.  9. 


CONIC   SECTIONS.  38 1 

To   CoTnp-ute   Ordinate. 

Traruwrse  and  Cot^ugate  Diametera  and  Abscissa  being  given.  Rulk. — As  trans- 
verse diameter  is  to  coiijugate,  so  is  square  root  of  product  of  absciasHB  to  ordinate 
which  divides  them. 

Example.  —Transverse  diameter,  a  b,  of  an  ellipse,  Fig. 
xo,  is  25;  coi^ugate,  c  d,  16;  and  abscissa,  at,  7;  what  is 
length  of  ordinate,  t «  ? 

25  —  7  =  18  less  abscissa ;  Vt~X  18  =  1 1.225. 

Hence  25  :  16  ::  11.225  :  7.184  ordinate 

Or,  \/c'—  (-7-)  =any  ordinate^  c  and  t  representing 

semi-cofyugate  and  transverse  diameUrSy  and  x  distance  of  ordinate  from  centre  of 
figure. 

rTo   Compute   A.'bscissaB. 

Transverse  and  ConjugaJie  Diameters  and  Ordinait  being  given,  Rulr. — As  conju- 
gate diameter  is  to  transverse,  so  is  square  root  of  difference  of  squares  of  ordinate 
and  semi-conjugate  to  distance  between  ordinate  and  centre;  and  this  distance  be- 
ing added  to,  or  subtracted  from,  semi-transverse,  will  give  abscissas  required. 

ExAJii'LK.— Transverse  diameter,  a  b,  of  an  ellipse,  Fig.  10,  is  25;  conjugate,  cd, 
16;  and  ordinate,  t«,  7.184;  what  is  abscissa,  ibf 

y/^'  —  7. 184^  =  3. 519  943.    Hence,  as  16  :  25  : :  3. 52  :  5. 5. 

Then  25-4-2=  12.5,  and  12.5+5-5  =  18  =  6  i, )  ^^cissat. 
35-:r2=:ia.5,  and  12.5  —  5-5=  7  =  «*)i 

To    Coinpute    Transverse   Diameter. 

Coi^jugate,  Ordinate,  and  Abscissa  being  given.  Rulb. — ^To  or  f^om  serai-coi\Ja> 
gate,  according  as  great  or  less  abscissa  is  used,  add  or  subtract  square  root  of  dif- 
ference of  squares  of  ordinate  and  semi -conjugate.  Then,  as  this  sum  or  diflference 
is  to  abscissa,  so  is  conjugate  to  transverse. 

Example.  —  Conjugate  diameter,  cd,  of  an  ellipse.  Fig.  10,  is  16;  ordinate,  i  «, 
7.184;  and  abscissffi,  b  i,  t  a,  18  and  7;  what  is  fength  of  transverse  diameter? 

V(i6-^2)»— 7.184=*  =  3. 5«. 
i6 -H 2 -|- 3. 52  ;  18  ::  16  :  25;  16-5-2  —  3.52  :  7  ::  16  :  25  transverse  diameter. 

To   Compute   Conjugate   IDiameter. 

Transverse,  Ordinate,  and  Abscissa  being  given.  Rulk. — As  square  root  of  prod- 
uct of  abscissae  is  to  ordinate,  so  is  transverse  diameter  to  conjugate. 

Example. —Transverse  diameter,  a  b,  of  an  ellipse,  Fig.  10,  is  25;  ordinate,  t«, 
7. 184 ;  and  abscissae,  6 1  and  i  a,  18  and  7 ;  what  is  length  of  conjugate  d  anieter  ? 

Vx8  X  7  =  II  225-     Hence  11.225  •  7  ^84  ::  25  :  16  conjugate  diameter. 

To    Compute    Cirouxnfereiioe   of  aii    £^llipse. 

Rule.  — MuUiply  square  root  of  half  sum  of  the  squares  of  two  diameters  by 
3. 1 4 16. 

Example. ^Transverse  and  conjugate  diameters,  a  b  and  cd,  of  an  ellipse.  Fig.  xo, 
are  24  and  20;  what  is  its  circumference? 

24' "+-  20' 

=  488,  and  ^488  =  22.09.   Hence  22.09  X  3. 1416  =  69. 398  circumference. 

To   Compute   A.rea  of  an.   Slllipse. 

Rule.- Multiply  the  diameters  together,  and  the  product  by  .7854.  Or,  multiply 
one  diameter  by  .7854,  and  the  product  hy  the  other. 

Example.— The  transverse  diameter  of  an  ellipse,  a  ft,  Fig.  10,  is  12,  and  its  con- 
jugate, cd,  9;  what  is  its  area? 

12  X  9  X  -7854  =  84. 8232  area^ 

Hem.  —  Area  of  an  ellipse  is  a  mean  proportional  between  areas  of  two  circles, 
diameter  of  one  being  major  axis  and  of  the  other  minor  axis. 

Illustration.  —  Area  of  circle  of  40  =  1256. 64 ;  area  of  ellipse  ^o  x  20 = 628. 32 ; 
area  of  circle  of  90  =  314.16,  mean  of  the  two  circles  1256.64-}- 314. 16  =  785.4. 
Therefore  the  conjugate  diameter  of  an  ellipse  of  an  area  of  785.4  sq.  Ins.,  Us  XXW» 
Y«ne  being  40,  is  35  /«e<,  as  40  x  35  x  .7854  =  785.4  sq.  iiw. 


382 


COKIC  ^XCXIONS. 


Fig  II 


Sesxxient  or  an  Slllipse. 
1?o  Compute  ^rea  of  a   Segmei^t   of*  an.   BUipse. 

When  its  Base  is  paraUel  to  either  Axis,  as  e  if.  Rulk. — Divide  height  of  seg- 
ment, b  »,  by  diameter  or  axis,  a  b,  of  which  it  is  a  part,  and  find  in  Table  of  Areas 
of  Segments  of  a  Circle,  page  267,  a  segment  having  same  versed  sine  as  this  qoo- 

tient;  then  multiply  area  of  segment  thus  found  and  the 
axes  of  ellipse  together. 

Example.— Height,  frt,  Fig.  11,  is  5,  and  axes  of  ellipse  are 
30  and  20;  what  is  area  of  segment? 

5  -r-  30  =  .  1666  tabular  versed  tiney  the  area  0/  which 
(page  267)  «. 085 54. 

Hence  .085  54  x  30  x  ao=  51.394  area. 

rVo  A.8oertain  L^ength.  of  an  TClliptio  Cuirve  -vcrliioh  is  less 

111  ail   lialf  of  entire   Figure. 

Let  curve  of  which  length  is  required  be  A  b  C, 
Fig.  12. 

Extend  versed  sine  6  d  to  meet  centre  of  curve  in  e. 

Draw  line  e  C,  and  from  e,  with  distance  «  b,  describe 
b  h\  bisect  A  C  in  t,  and  from  «,  with  radius  «  »,  de- 
scribe k  t,  and  it  is  equal  to  half  arc  A  6  C. 

Xo  A.soertaixi  X^eiistU  '^vlien  Curve   is  greater  tlxaii  lialf 

entire   Figure. 

Ascertain  by  above  problem  curve  of  less  portion  of  figure;  subtract  it  flrom  cir. 
cumference  of  ellipse,  and  remainder  will  be  length  of  curve  required. 

FsLralyolsu 
To  I>esoril>e  a  Faral>ola.    (See  Geometiy,  page  229.) 

fFo  Compute  either  Ordinate  or  A-bsoissa  of  a  Parabola. 

When  the  other  Ordinate  and  Abscissas,  or  other  Abscissa  and  Ordinates  are 
given.  Rulk.  —As  either  abacissa  is  to  square  of  its  ordinate,  so  is  other  abscissa  to 
square  of  its  ordinate. 

Or,  as  square  of  any  ordinate  is  to  its  abscissa,  so  is  square  of  other  ordinate  to 

ExAMFLB  I.— Abscissa,  a  6,  of  parabola,  Fig.  13.  is  9;  its  ordi- 
nate, 6  c,  6;  what  is  ordinate,  d  e,  abscissa  of  which,  a  d,  is  16  ? 

Hence  9  :  6^  : :  16  *  64,  and  >/64  =  8  length. 

2.— Abscissae  of  a  parabola  are  9  and  16,  and  their  correspond- 
ing ordinates  6  and  8;  any  three  of  these  being  taken,  it  is  re- 
quired to  compute  the  fourth. 

I.  ^'^'^  =  8ord«nate. 
9 
«6X6a         ,        .     ._  9X8= 

3.  —^^—-gUssabsciSia.  4.      ^-^r-"~ 


,.  ^ — _z  =  6  ordinaU. 
10 

=  itahscisgCL 


8« 

I>ara"bolio  Curve. 

To  Compute  ILien^^tlx  of  Curve  of  a  Parabola  out  off  "by 

a  X>ouble   Ordinate.^^F'ig'.  13. 

RuLS.— To  square  of  ordinate  add  —  of  square  of  abscissa,  and  square  root  of 

this  sum,  multiplied  by  two,  will  give  length  of  carve  nearly. 

EzAMPUt.— Ordinate, d e,  Fig.  13,  is  8,  and  its  abscissa,  ad,  16;  what  is  length  of 
curve, /a  e? 

iX  16' 

5' + ' =  405-  333.  «»»<^  V405  333  X  2  =  40. 267  Im^h. 


CONIC  SECTIOKS.  383 

Fie.  14.  A  ^^  Compute  A.rea  of  a  £'aral>ola. 

RuLB.— Maltiply  base  by  height,  and  take  two  thirds  of  prodact 

Corollary.— h  parabola  is  two  thirds  of  its  circumscribing  par- 
allelogram. 

Example.— What  is  area  of  parabola,  a  6  c,  Fig.  14,  height,  de, 
being  16^  and  base,  or  double  ordinate,  a  c,  16  r 

2 
16  X  x6  =  356,  and  —  of2$t  =  X7a667  carea. 

To  Compute   Aj*ea  of*  a  Segment  of  a  Paral>ola. 

RuLK.— Multiply  difference  of  cubes  of  two  ends  of  segment,  a  c,  d/,  by  twice  its 
he^ht,  e  o,  and  divide  product  by  three  times  difference  of  sciaares  of  ends. 

ExAMPLK.— Ends  of  a  segment  of  a  parabola,  a  c  and  df.  Fig.  14,  are  10  and  6,  and 
beigbt,  e  o,  is  to;  what  is  its  area? 

10'  'V  6^  X  10X2  =  15  680,  and  -i-  id=*'v6*X  3  =  81.667  area. 

NoTK. — Any  parabolic  segment  is  equal  to  a  parabola  of  the  same  height,  the  hose 
of  which  is  equal  to  base  of  segment,  increased  by  a  third  proirartional  to  snm  of 
the  two  ends  and  lesser  end. 

Il3rper"bola. 
To  I>e8oribe  a  Hyperbola.    (See  Geometry,  page  33a) 

To   Compute   Ordinate   of*  a   Hyperbola, 

Traruverse  and  Covyugate  Diameters  and  AbscUscR  being  given.  Rulb.— As  trans- 
verse diameter  is  to  conjugate,  so  is  square  root  of  product  of  abscissae  to  ordinate 
required. 

Fig.  15.  ^        EXAXPLB.  —Hyperbola,  abc^  Fig.  15,  has  a  transverse 

diameter,  a  t,  of  120;  a  conjugate,  d/,  of  72 ;  and  abscissa, 
a  e,  40;  what  is  the  length  of  ordinate,  e  c? 

40  -|-  ISO  =  160  greater  abscissa^  and 
120  :  72  : :  y/Uo  X  (60) :  48  ordinate. 

Nora  I.— In  hyperbolas  lesser  abscissa,  added  to  axis 
(the  transverse  diameter),  gives  greater. 

3. — Difference  of  two  lines  drawn  nrom^bctof  any  hyperbola  to  any  point  in  curve 
Is  equal  to  its  tnuDSverse  diameter. 

To   Compute  .Absolssaey 

Trantwne  and  ComguifaU  Diameters  and  Ordinate  being  given.  Ruls.— As  con- 
Jugate  diameter  is  to  transverse,  so  is  square  root  of  sum  of  squares  of  ordinate  and 
semi-coi^jugate  to  distance  between  ordinate  and  centre,  or  half  snm  of  abscissae. 
Then  the  sum  of  this  distance  and  semi-transverse  will  give  greater  abscissa,  and 
their  difference  the  lesser  abscissa. 

EzjuiPLK.— Transverse  diameter,  a  t,  of  a  hyperbola,  Fig.  15,  is  120;  coi^ugate,  cf/ 
73 ;  and  ordinate,  <  c,  48 ;  what  are  lengths  of  abscissae,  t  e  and  aei 

73  :  180 : :  ViS'  +  (72  -i-  2)'  =  60 :  xoo  ha^sum  o/abtcissce,  and  100  -f-  (zso-j-  3)  = 
160  greater  abtciua^  and  100 — (i30-f-  3)  =  40  lesser  cU>scissa. 

To  Conapute   Conjugate  X>iameter, 

JYanstserse  Diameter^  Abscissa^  and  Ordinate  being  given.  Ritlb.— As  square  root 
of  product  of  abscissae  is  to  ordinate,  so  is  transverse  diameter  to  ceiyugate. 

Example.— Transverse  diameter,  at,  of  a  hyperbola,  Fig.  15,  is  120;  ordinate,  e«» 
48;  and  atacissflB,  te  and  a«,  160  and  40;  what  is  length  of  conjugate,  dfJ 

V40X  160=80 :  48 ::  I30  :  73  ofnyugale. 


384  CONIC  SECTIONS. 

To  Coxnp-ate  Transverse  Diameter, 

Contjugate^  OrdinaU^  aatd  an  Abscissa  being  given.  Rclb. — Add  square  of  ordinate 
to  square  of  seroi-coi^Jugate,  and  extract  square  root  of  their  sum. 

Take  sum  or  diflerence  of  semi-cotOngate  and  this  root,  according  as  greater  or 
lesser  abscissa  is  used.  Then,  as  square  of  ordinate  is  to  product  of  abscissa  and 
conjugate,  so  is  sum  or  difference  above  ascertained  to  transverse  diameter  required. 

NoTK.  —  When  the  greater  abecissa  is  used,  the  difference  is  taken,  and  con- 
trariwise. 

ExAMPLK.— Coi^ngate  diameter,  d/,  of  a  hyperbola.  Fig.  15,  is  72;  ordinate,  e  c, 
48;  and  lesser  abscissa,  a  e,  40;  wnat  is  length  of  transverse  diameter,  a  <? 

V'48*  +  (73  -7-  2)2  =  60,  and  60 -{- 7a -ir  2  =  q6  lesser  abscissa^  and  40X73=3880. 
Hence,  48^  :  3880  ::  96  :  120  transverse  diameter. 

To  Compute   Xjengtli  of  any  A.ro  of  a  Hyperbola,  com- 

menoin^;   at  "Vertex. 

RnLB.— To  19  times  transverse  diameter  add  21  times  parameter  of  axis. 

To  9  times  transverse  diameter  add  21  times  pamrauicr,  and  multiply  each  of 
these  sums  respectively  by  quotient  of  lesser  abscissa  divided  by  transverse  di- 
ameter. 

To  each  of  products  thus  ascertained  add  15  times  parameter,  and  divide  former 
by  latter;  then  this  quotient,  multiplied  by  ordinate, will  give  length  of  arc,  nearly. 

Note.— ro  ComptUe  Parameter^  divide  square  of  coiijugate  by  transverse  diam- 
eter. 

Fig.  16.^^  ExAXPLB.— In  hyperbola,  abc.  Fig.  x6,  transverse  diameter  is  120, 
conjugate.  72,  ordinate,  e  c,  48,  and  lesser  abscissa,  a  e,  40;  what  is 
length  of  arc,  a  6  ? 

^  =  43.2 parameter.    x3oX  19  +  432X21  X  -^  =  1063.4. 


40 


120x9  +  43.3X31  X --  =663.4.     Then  1062.4  +  43.3  X  IS -r- 662. 4 
120 


^  +  43.3  X  15  =  1.305.  which  X  48  =  62.64  length. 


Note — As  transverse  diameter  is  to  conjugate,  so  is  conjugate  to  parameter. 
(See  Rule,  page  380. ) 

To   Compute  .A.rea  of  a  Hyperbola, 

Transverse,  Conjugate,  and  Lesser  Abscissa  being  given.  Rdle. — ^To  product  of 
transverse  diameter  and  lesser  abscissa  add  five  sevenths  of  square  of  this  abscissa, 
and  multiply  square  root  of  sum  by  21. 

Add  4  times  square  root  of  product  of  transverse  diameter  and  lesser  abscissa  to 
product  last  ascertained,  and  divide  sum  by  75. 

Divide  4  times  product  of  coiuugate  diameter  and  lesser  abscissa  by  transverse 
diameter,  and  this  last  quotient,  multiplied  by  formor,  will  give  area,  nearly. 

Example.  — Transverse  diameter  of  a  hyperbola,  Fig.  16,  is  60,  conjugate  ^6,  and 
lesser  abscissa  or  height,  a«,  so;  what  is  area  of  tlgure  ? 

60  X  30+  —  of  30*  =  1485.7143,  and  y/i4Ss.7H3  X  si  =  809.43,  and  ^60X20  X 
7 

4 + 809. 43 = 901.02,  which  -r-  75  =  12.0136  and  ~ — ^- X  13.0136  =  576.653  arfOL 

Nbn.— For  ordiaatM  of  •  pvaboU  in  dlTiiioni  of  eigfaUu  and  tentba,  Me  pag«  229. 

X>elta   Aletal. 

Delta  Metal  is  an  improved  composition  of  Aluminium  and  its  alloyR ;  it  is 
non-corrosive,  capable  of  being  cast,  forged,  and  hot  roiled. 

Tensile  Strength  per  8q,  Inch, 


Cast  in  green  sand 48  380  lbs. 

Rolled,  hard 75260   ** 


I   Rolled,  annealed 60920  ]|>a 
Wire,  No.  33  WG 140000  " 


PLANS  TEIGONOMETBT.  385 

PLANE  TRIGONOMETRY. 

By  Plane  Trigonometry  is  ascertained  how  to  compute  or  determine 
four  of  the  seven  elemeuts  of  a  plane  or  rectilinear  triangle  from  the 
other  three,  for  when  any  three  of  them  are  given,  one  of  which  being 
a  side  or  the  area,  the  remaining  elements  may  be  determined ;  and 
this  operation  is  termed  Solving  the  7'riangle. 

The  determination  of  the  mutual  relation  of  the  Sines,  Tangents,  Secants, 
etc,  of  the  sums,  ditferences,  multiples,  etc.,  of  arcs  or  angles  is  also  classed 
luider  this  head. 

For  Diagram  and  Ejqplanation  of  Terms^  see  Oeometry^pp.  219-21. 

liiglit-angled.  HPriangles. 

For  Solution  hy  Lines  and  Areas^  see  Mensuration  of  Areas,  IdneSj 
and  Surfaces^  pp.  335-39. 

rPo   Compute   a   Side. 

When  a  Side  and  its  OpjKmle  Angle  is  given.  Rule. — As  sine  of  angle 
opposite  given  side  is  to  sine  of  angle  opposite  required  side,  so  is  given  side 
to  required  aide. 

To   Cotnprt'te   an   A.xigle. 

Rule. — As  side  opposite  to  given  angle  is  to  side  opposite  to  required 
angle,  so  is  sine  of  given  angle  to  sine  of  required  angle. 

To  Compute  Base   or  Perpendicular  in   a  Riglit-angled 

Xria,ixj$le. 

When  Angles  and  One  Side  next  Riykt  Awjile  are  given.  Rule. — As  ra- 
dius is  to  tangent  of  angle  adjacent  to  given  side,  so  is  this  side  to  other  side. 

To   Compute  tlie  otlxer   Side. 

When  Two  Sides  and  Included  An^le  are  given.    Rule. — As  sum  of  two 

given  sides  is  to  their  difference,  so  is  tangent  of  half  sum  of  their  opposite 

angles  to  tangent  of  half  their  difference ;  add  this  half  difference  to  half 

sum,  to  ascertain  greater  angle ;  and  subtract  half  difference  from  half  sum, 

to  ascertain  less  angle.    The  other  side  may  then  be  ascertained  by  Rule 

above. 

To   Compute   A.ngles. 

When  Sides  are  given.  Rule. — As  one  side  is  to  other  side,  so  is  radius 
to  tangent  of  angle  adjacent  to  first  side. 

To   Compute  an  Angle* 

When  Three  Sides  are  piven.  Rule  i. — Subtract  sum  of  logarithms  of 
sides  which  contain  required  angle,  from  20 ;  to  remainder  add  logarithm 
of  half  sum  of  three  sides,  and  tlmt  of  difference  between  this  half  sum  and 
Mide  opposite  to  required  angle.  Half  the  sum  of  these  three  logarithms  is 
logarithmic  cosine  of  half  required  angle.  The  other  angles  may  be  ascer- 
tained by  Rule  above. 

2.  —  Subtract  sum  of  logarithms  of  two  sides  which  contain  required 
angle,  from  ao,  and  to  remainder  add  logarithms  of  differences  between 
these  two  sides  and  half  sum  of  the  three  sides.  Half  result  is  logarithmic 
sine  of  tialf  required  angle. 

NoTK.^ — In  all  ordinary  cases  either  of  these  rules  will  give  suflBciently  accurate 
resulta  Rule  x  should  be  used  when  required  angle  exceeds  90°;  and  Rule  2  when 
It  18  less  than  90^ 

Kic 


386 


PLANE   TRIGONOMETRY. 


ExAMPLK  — The  Bides  of  a  trUngfle  are  3,  4,  amd  5;  viiat  are  the  fthgles  of  th* 
bypothenufie? 

20  —  (Log.  4  =  .60206  +  Log.  5  =  .69897)  =  18.69897;  Log.  3-f44-5-r-2  — 4  = 
.30103;  ftnd  Log.  3-f-4-H5-H2  — 5  =  0. 

Then  18. 698  97  + .  301 03  =  19,  which  -r-  2  =  9. 5  =  log.  sin.  of  half  angle  =  iS^  26', 
which  X  2  =  36°  52'  angle. 

Hence  90°  —  36°  52'  =  53**  8'  remaSnUig  angU. 

In  following  fignres,  z  and  a : 

A  =  90P,  8  =  450,0=450,  Radius  =  i,  Secant = i.  4142,  GoBine  =. 707*1  Sin.  45° 
=  .7071,  Taiigent  =  i,  Area=.25. 

By  Sin.,  Tan.,  Sec,  etc.,  A  B,  etc.,  is  expresaed  Blue,  Tangent,  Secant,  etc,  of 
angles,  A,  B,  etc 

To   Cotnpvite    Sides   A  C   and    B  C— Figs.  1   and   S. 

When  Hyp.^  Side  B  A,  and  Angles  B  and  C  are  given. 

Sin.  B  )«(  B  A 

Sin.C" 
B  A  X  Cot.  C  =  A  C. 
Hyp.  xCos.  C  =  AC. 
Hyp  X  Sin.  B  =  A  C. 
BA 


Fig.  I. 


=  AC. 


iff 

Goeine.      A  Vera. 


Sin.  C 

AC 

Sia.B 


=  BC. 
=  BC. 


To   Compute   Side   A  C   ajtid   Angles. 
When  Hyp.  and  Side  B  A  are  ^>eit.— Fig.  i  and  a. 


AC 
Hyp. 


=  Sin.  B. 


BA 


Hyp. 


=  SiB.C. 


B  Ax  Sin  B 
Sin.  C 


=  AC. 


B  C  X  Sin.  B  =  A  G 


AC 
BA 


To  Compute   Side   B  C  and   Hyp.  or   Angles. 
When  both  Sides  are  ^ren.— Fi|;.  a. 

=  Tan.  B.        J?r^;  =  BC.         Va  C^ 4. b~a^  =  B C.         ^  =  Tan.a 


Sin.C 
BA 
BC 


AC 


=  Sin.C. 


-  ?  =  Sin.  a 
B  C      °  "•  "■ 


«g3. 


To   Compnte    Sides.— Figs.  3    and   4. 

^  When  a  Side  and  an  Angle  are  vjg.  4. 

given. 

B  C  X  Cos.  B  =  B  A 
B  C  X  Sin.  B  =  A  C. 
A  B  X  Sec.  B  =  B  C. 
^    ACxTanC     „,      ACxSin.C     _.  .    . 

Bad.  Sin.  B 


i 


C       EadJuB.       A       ACxSec.  C      _-     A  C  x  Bad.      __     O 

—  Rad.—^^^     "~Sin  B~  =  ®^- 


Tan^rent.      A 


In  B  A  C,  Fig.  5,  a  ripfht-aiiffled  trianpfle,  C  A,  is  assumed  to  be  radius^ 

B  A  tangent  of  C,  and  B  C  secant  to  that  radius ;  Or,  dividlDg  each  of  these 

V  base,  there  is  obtaiued  the  taujient  and  secant  of  C  respectively  to  radius  z« 


FLANK   TBIGONOMBTBY. 


38; 


Radias       C  A  =  I 
Secant       €6  =  1.4x43 
Taogeot     A  B  =  I 
Co-secant  C  B  =  1.4143 
Co-tangent  06  =  1 

VA'ja-|-BA2  =  hyp.  B  C. 

AC-;- Cos.  C  =  hyp.  B C.  : 

/2  Area  _  .  Cos.  C  -  .  „ 
v/n  ^=Rad.  — — -  =  CoiC 
V  Tan.  C  Sm.  C 

B  = 


Sin.  C 
BAXSeo. 

B  A  X  Cot.  C  =  Kad. 

B  C  X  Sin.  C  =  B  A. 

1  -r-  Sin.  C  =  Cosec.  0. 

Cos.  C  -r-  Sin.  C  =  Cot  C. 


B  C  X  Cob.  C  =  Rai 
B  A  X  Tan.  B  =  Rad. 
BC-7-BA  =  Sec.  B. 
BCxCo&B=BA. 

Trigonometrical    I<iq.\iivaleiits, 


Sine  dg=s_.yoji 

Cosine  Cg or od=  .7071 
Versed  sine  gA=:  .2929 
Co- versed  sine  o  «  =  •29i9 
Angle  CAB=9o'' 

BA-^Sin.  C  =  hyp.  BC. 
i-^Tan.  C  =  Cot.C. 
B  C»  X  Sin.  a  C       ^ 

4 
BC. 

BCxSin.  B=Rad. 

A  C  X  Tan.  C  =  B  A. 

I  —  Sin.  C  =  Co-ver.  sia 

CBxSin.  B=rAG. 


Perp.  -t-hyp.  =Sln.  C. 
Base  -T-  hyp.  =  Coa  C. 
Base  -i-  hyp.  =  Sin.  B. 
Base  ~-  perp.  =  Cotan.  C. 


^      V  (I  — sin.  2)  =  Cos. 
^  Sin.  -T-  tan.    =  Cos. 

Sin.  X  cot.  =  Cos. 
Sin.  -i"  COS.  =  Tan. 
Cos.  -H  cot  =  Sin. 
Coa  -r-  sin.    :±:  Cot 


.  Hyp.  -f-  base  =  Sec.  C. 
Base  -r-  perp.  =  Tan.  B. 
Perp.  -f-  hyp.  =  Coa  B. 
Hyp.  —  Base  ==  Versln. 

Tan.  -r-  sin.  =  Sec. 
Tan.  -r-  sea  =  Sin. 
Tan.  X  cot    =  Rad. 

V(i--coa2)  =  Sin. 
I  -r-  cot  =  Tan. 
I      -r-  sin.     =  Cosec. 


Perp.  -r-  base  =  Tan.  C. 
Hyp.  -r-  perp.  =  Sec.  R 
Hyp.  -i-  perp.  =s  Cosea  0. 
Hyp.  —  Perp.  =  Cover,  sin.  C. 

-T-  coa  =  Sec 
-r*  cosec.  =  Sin. 
-T-sec.     s=Coa 

—  coa     =  Versin. 

—  sin.     =  Co-ver.sin. 
-T-  tan.     =  Cotan. 


Illustrations. —Assume  side  A  B  of  a  right-angled  triangle  is  100,  and  angle  C 
53°  8';  what  are  its  elements? 


Fig.  6 


Ol3liqi2e-ansled.  rFriansles. 

a?o   Compute    Sides    B  A   and    B  C. 
When  Side  A  C  and  Anyles  are  given. — Fig.  & 


Sin.  C  X  A  0 
Sin.  B 


=  BA. 

Sin.  A  X  A  C 
Sin  B 


Sin.  C  X  B  C 


Sin.  A 


=  B  A. 


=  BC. 


rFo   Compute    iVngled   and    Side   A  C. 
When  Sides  A  B,  B  C,  and  one  of  the  Angles  are  given. — Fig.  6, 


BCxSin.  B 
AG 


t-'ig  7- 


=  Sia.  A. 


Sin.  G  X  A  C 


BA 
Sin.  BxBC 

Sin.  A 


=  Sin.  B. 


A  B  X  Sin.  B 
AC 


=  Sin.  0. 


=  Aa 


To  Compute  Sides  B  A  and  B  C. 

Wfien  Side  A  C  and  Angles  are  given, — Fig,  7. 


Sin.  C  X  B  C 


=  BA. 


Sin.  A  X  A  G 


=fBG. 


Sin.  A  '  Sin.  B 

When  Side  B  C  and  Angles  are  given. — Fig,  7, 

Sin.  C  X  A  C 


B  C  X  Sin.  C 
Sin.  A 


=  BA. 


SiaB 


BA. 


Nom. — Sine  and  Cosine  t\f  an  arc  are  each  equal  to  sine  and  cosine  of  their  sup- 
plementi. 

Spherical  Triangles^  Right -angled  and  Oblipie,    For  full  formulas  Se« 
Moittvortlt  Lend,.  1878.  pp.  435-6. 


388  PLANS   TBIGONOMBTBT. 

To   Compute   Angles  and    Side  AOL 
When  Sides  A  B,  B  C,  and  Angle  B  <xre  given, — Fig.  7. 


Sip.  B  X  B  C 

SiD.  A 

ACxSin.  A 

BC 


=  AC. 


=  Sin.  B. 


B  C  X  Sip.  B 
AC 
B  A  X  Sin.  A 


Sin.  A 


=  Sin.  C. 


B  A  X  Sin.  B 

AC 
B  C  X  Sin.  C 


-Sin.  a 


=  SiiL  A. 


BC  AB 

To   Compute   all    tlie    A^ugles. 
When  all  the  Sides  are  given.  Figs.  6  and  7.     Rule. — Let  fa\\  a  perpeiH 
dicular,  B  r/,  opposite  to  required  angle.    Then,  as  A  C  :  sum  of  A  B,  B  C  :: 
their  difference  :  twice  d  g^  the  distance  of  perpendicular,  B  (i,  from  middle 
of  the  base. 

Hence  Xd^C  g  are  known,  and  triangle,  A  B  C,  is  divided  into  two  right- 
angled  triangles,  B  C  e2,  B  A  d ;  then,  by  rules  for  right-angled  triangles, 
ascertahi  angle  A  or  C. 

Ofkration.— AC,  Fig.  6,  .5014  :  A B+BC,  1.1174 +1.4142  =  2. 5316::  A  Boo  BC, 
1.4142  —  1. 1174  =  .2968  '.  ^'X,dg=i  4986. 


Hence  A<l=;dsr  — AC-t-2  = 


J.  4986      .5014 


=  .4986,  and  Cd  —  kd'{-kGr=:x. 


2  2 

Consequently,  triangle  BdC,  Fig.  6,  is  divided  into  two  triangles,  B  ACand  Bd  A 

To   Compute   Side   A  B   and    Angles. 

When  Ttoo  Sides  and  One  AngUy  or  One  Side  and  Two  Angles^  are  given,— 

Fig.  6. 


A  C  X  Sin.  C 
Sin.  B 
ACxSin.C 


=  AB. 


B  C  X  Sin.  B 
AC      ' 
A  B  X  Sin.  B 


=  Sin.  A. 
=  Sin.  C. 


ACxSia  A 
AB— (ACxCos.  A) 
ACxSin.C 


=  Tan.  B. 


rrr  TaU,  B. 


2  Area 


AC  BC— (ACxCosC) 

To   Compute  A.rea  of  a  Triangle. —T«Hk.  8. 
BAxBCxSin.  B    ACxBCxSin.  C    BAxAC  X  Sin.  A 

Sin.2C,BCa    AC'Tan.O       ^  BA'.CotC       ^ 

\ ! and : =  Area. 

42  2 

NoTR.  —For  other  rules,  see  Mensuration  of  Areas,  Lines,  and 
Surfaces,  page  335. 

To   Compute   Sides. 
When  Areas  and  Angles  are  given. — Figs.  6  and  7. 
2  Area 


=:AC. 


=  BA 


v^ 


BC,Sin.C  AC, Sin.  A 

To  A.soertain.  Distance  of*  Inaooes- 
sil>le  O'btjeots  on.  a  Xjevel  Plane.— 
Figs.  Q   and  lO. 


2  Area,  Sin.  A 
Sin.  C,  Sin.  (A  4- C) 


=  B0. 


Fig.  la 


Fig.  9 


OraRATiov.— Lay  oflT  perpendic- 
ulars to  line  A  B,  Fig.  9,  as  B  c,  d  e, 
on  line  A  d,  terminating  on  lino 
e  A. 
.    Tfaened— cB:  cB  ::B({:  B  A. 

Whm  there  are  T100  Tnacces- 

tihle  Objects,  cu  Fig,  10. 

Operation.  —  Measure  a  base 
line,  A  B.  Fig.  10,  and  angles  c  A  B, 
dBA, dAB, cBA,eto.  Then  pro- 
ceed by  formulas,  page  387,  to  deduce  cd. 

Note.— If  course  of  cd  is  required,  take  difference  of  angles 
<I  c  A  and  c  4  B  ()r9m  course  A  B. 


PLAKB  XBI60KOUETBT. 


389 


Fi0  iz. 


When  tkS  Objects  can  he  aiigned, — 
Fig.  II. 

Operation.— Align  c  B,  Fig.  u,  at  A, 
measure  a  base  line  at  any  angle  there- 
to, as  A  o,  and  angles  o  A  c,  c  o  A,  and 
B  o  A.  Then  proceed  as  per  formula, 
page  586,  to  deduce  c  B. 


To  Compute  IDistaiice  from 
a  Ghiveix  X'oiut  to  aii  In- 
8M3oeaBit>le  Ol^Jeot.  <^  £^ig. 
IS. 


i 


Fig.xft 


i\ 


\ 


Operation.— Measure  a  level  line,  A  e,  Fig.  12,  aud  ascertain  angles.  B  A  c,  B  c  A 
Hence,  having  side,  A  c,  and  two  angles,  proceed  as  per  formula,  page  386,  to  de- 
-termine  A  B. 


To   Compute   Ueiglit  of*  an.   Slevated.   I*oiiit.-»Fig.  13. 


Fig.  13. 


Opkration.  —  Measure 
distance  on  a  horizontal 
line,  A  c.  Fig.  13 ;  ascertain 
Angle  B  A  c.  Then  pro- 
ceed as  per  formulas,  pp. 
386-8,  to  ascertain  B  c. 

When  a  fforizorUcU 
Base  is  not  AUainable, 
—Fig.  14. 

■  Operation.— Measure  or 
compute  distance  Ac,  Fig. 
14  ;  ascertain  angle  of  depression  c  A  o  and  of  elevation      ^ 
B  A  c    Then  proceed  as  per  form  u  hi,  page  386,  to  ascertain  B  c 


Fig.  14. 


Fig.  IS 


When  a  Full  Base  Line  is  not  Attain' 
able, — Fig.  15. 

Operation.  —  Measure  a  base 
line,  A  c,  Fig.  15,  and  ascertain 
angles  A  c  B,  c  A  li. 

Then  proceed  as  per  for- 
mula, page  386,  to  ascer- 
tain d  Bj,  /" 

y 


Fig.  z6. 


Without  Use  of  an  Instrument. 
— Fig.  16. 

Opsbation. — Lay  off  any  suitable  and  level  distance,  d  d,  set  up  a  staff  at  each  ex- 
tremity at  like  elevation  from  base  line  d  (f,  and  note  distances  y  and  x.  at  which 
the  lines  of  sight  of  object  range  with  tops  of  the  staffs;  deduct  height  of  eye  from 
length  of  staffs,  and  ascertain  heights  h. 

and  D  Un(^  of  line  dd. 


390 


29 


NATUKAL   SIN£S  AND  COSIKES. 
Statural  Sines  «ad  Cosines. 


X 
2 
2 

3 

3 
4 
4 
5 
5 
6 
6 

7 

7 

8 

8 

9 

9 
10 

xo 

XI 
XI 
12 
X2 

"3 

»3 

X4 

14 

15 

15 

15 
16 

16 

*7 

>7 
x8 

x8 

«9 

*9 
20 

20 

21 

21 

22 

22 

23 
83 
24 
'4 
25 

«5 

26 
26 
27 

^ 

28 
29 
29 


3 
4 
5 
6 

7 

8 

9 
xo 

XI 
12 
13 

M 
IS 
16 

17 
x8 

»9 
20 
21 
22 
23 
24 
25 
26 

27 
28 
29 

30 
31 
32 

33 
34 
35 
36 

37 
38 

39 
40 

41 
42 
43 
44 
45 
46 

% 

49 
50 

51 
52 
53 
54 
5 

57 
58 

60 


00 


N.  line. 


00000 

00020 
00058 
00087 
00x16 

00145 
00175 

00204 

00233 

0026% 

00291 

0032 

00349 

00378 

00407 

00436 

00465 

00495 

00524 

00553 
00582 

00611 

0064 

00669 

00698 

00727 

00756 

00785 

00814 

00844 

00873 

00902 

00931 

0096 

00989 

oioio 

01047 

01076 

01 105 

01134 

01 164 

01 193 

01222 

01251 

0128 

01309 

01338 

01367 

01396 

01425 

01454 

01483 

01513 

01542 

01571 

016 

01620 

01658 

01687 

01716 

01745 


N.  CM. 


99999 
99999 

99999 

99999 

99999 

99999 

99999 

99999 
99998 

99998 
99998 
99998 
99998 
99998 
99997 
99997 
99997 

99997 
99996 

99996 

99996 

99996 

99995 

99995 

99995 

99995 

99994 

99994 

99994 

99993 

99993 

99993 
99992 

99992 

99991 

9999» 
99991 
9999 

.9 
99989 

9998 

99988 

99987 
99987 
99986 
99986 

99985 
99985 


N.  cot.  N.  sine. 
8Q0 


lo         2P 


N.  due. 


0x745 

01774 

01803 

01832 

01862 

0189X 

0x92 

01940 

01978 

02007 

02036 

02065 

02094 

02123 

02152 

02x81 

oAii 

0224 

02269 

02298 

02327 

02356 

02385 

02414 

02443 

02472 

0250X 

0253 

0256 

02589 

02618 

02647 

02676 

02705 

02734 

02763 

02792 

02821 

0285 

02879 

02908 

02938 

02967 

02996 

03025 

03054 
03083 
031 12 
03141 
0317 

03199 
03228 

03257 
03286 

03316 

03345 
03374 
03403 
03432 
03461 

0349 


N.  eo0.   N.  sine.  '  N.  cos. 


99985 
99984 
99984 
99983 
99983 
99982 
99982 
99981 
9998 

9998 

99979 

99979 

99978 

99977 

99977 

99976 

99976 

99975 
99974 
99974 
99973 
99972 
99972 
99971 

9997 
99969 

999^ 

99967 
99966 
99966 

99965 
99964 

99963 

99963 

99962 

99961 

9996 

99959 

99959 

99958 

99957 

99956 

99955 

99954 

99953 

99952 

99952 

99951 

9995 

99949 

99948 

99947 
99946 

99945 
99944 
99943 
99942 

99941 

9994 

99939 


N.  CM.  !  N.  line. 


0349 

03519 

03548 

03577 
03606 

03635 
03664 

03693 
03723 
03752 
03781 
0381 

03839 
03868 

03897 
03926 

03955 
03984 
04013 

04042 
04071 
041 
04x29 

04159 
04188 
04217 
04246 

04275 
04304 

04333 
04362 

04391 
0442 

04449 
04478 

04507 

04536 

04565 

04594 
04623 

04653 
0468a 

047x1 

0474 

04769 

04798 

04827 

04856 

04885 

049x4 

04943 

•04972 

.0500X 

.0503 

05050 

.05088 

.05117 

05146 

05175 
.05205 
•05234 


99939 
99938 
99937 
99936 
99935 
99934 
99933 
99932 
99931 

9993 
99929 

99927 
99926 

99925 
99924 

99923 
99922 

99921 
99919 
99918 

999»7 
99916 

99915 
99913 
99912 
99911 
9991 

99909 
99907 
99906 
99905 
99904 
99902 
99901 


99898 

99897 
99896 
99894 

99893 
99892 

9989 
9988 

99881 

99886 

99885 
99883 
99882 
99881 
99879 

99878 
99876 

99875 

99873 

99872 

9987 

99869 

99867 
99866 
99864 
99863 


N.  cot.  N.  tine. 
87° 


30 
N.  line.  N.  cot, 


05234 
05263 

05292 

05321 

0535 

05379 
05408 

05437 
05466 

05495 
05524 

05553 
05582 
05611 

0564 

05669 

05698 

05727 
05756 

05785 
05814 

05844 
05873 
05902 

05931 

0596 

05989 

06018 

06047 

00070 

06105 

06134 

06163 

06192 

06221 

0625 

06279 

06308 

06337 
06366 

06395 

No6424 

06453 

.06482 

.06511 

.0654 

06569 

06598 

06627 

.06656 

06685 

.06714 

•06743 

.06773 

.06802 

.06831 

.0686 

.06889 

.06918 

.06976 


lit 


99863 
99861 
9986 
99858 

99857 
99855 
99854 
99852 

99851 
99849 
99847 
99846 

99844 
99842 

99841 

99839 
99838 
99836 
99834 
99833 
99831 
99829 

99827 
99826 

99824 
99822 
99821 

99819 
99817 

99815 
99813 
99812 

9981 
99808 
99806 
99804  I 
99803, 
99801  I 

99799  1 
99797 

99795  , 

99793 
99792 

99788 
99786 

99784 
99782 

9978 

99778 

99776 

99774 
99772 

9977 
99768 

99766 

99764 

99762 

9976 

99758 

99756 


N.  cot.  N.  tint. 
86O 


60 

57 
56 
55 
54 
53 
52 
51 
50 
49 
48 
47 
46 
45 
44 
43 
42 
41 
40 

H 

37 
36 
35 
34 
33 
32 
3» 
30 

27 
26 

25 

24 

23 
22 

21 

20 

\t 

17 

16 

15 

14 

13 
12 

XX 

10 

t 

7 
6 

5 

4 
3 

2 

I 
o 


2 
2 
s 

2 
2 
2 
2 
2 
2 
2 
2 
2 

a 

2 
2 
2 


O 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 


HAXVUAh  nSXB  AND   COSINSS. 


391 


»9 


o 
I 

X 
2 
3 

3 
3 
4 
4 
5 
5 
6 
6 

7 

7 
8 

8 

9 

9 
10 

10 

[I 


13 
'3 
'4 
14 
'5 
'5 

'5 
[6 
16 

17 

17 
[8 

[8 

'9 

'9 
ao 

ao 

31 
3Z 
33 
33 

83 
23 

'4 

«4 
as 

as 
36 

36 

a7 
27 
38 
38 
S9 
a9 


I 
a 
3 
4 
5 
6 

7 
8 

9 
10 

II 

13 

«3 
»4 
»5 
16 

\l 

'9 

30 
3l 
33 
23 
84 

as 

36 
38 

89 

30 

3x 
3a 
33 
34 
35 
36 

3 

39 
40 

4x 
4a 
43 
44 

49 
50 

5" 
Sa 
53 
54 
55 
56 
57 
58 


N. 


06976 

070P5 

07034 

07063 

07093 

07131 

071S 

07170 

07208 

07237 
07266 
07295 
07324 

07353 
07382 
07411 

0744 
07460 

07498 

075a7 
07556 
07585 
076x4 

07643 
07672 
07701 

0773 

07759 
07788 

078x7 

07846 

07875 

07904 

07933 

07962 

07991 

0802 

08040 

08078 

08x07 

08x36 

08165 

08194 

08333 

08353 

08381 

0831 

^^ 

08397 
08426 

08455 
08484 

08513 

0854a 

08571 

086 

08639 

08658 

08687 

08716 


N.  CO*.  I  N.  siiMk 


«0 


99756 

99754 
9975a 
9975^ 
99748 
99746 
99744 
9974a 
9974^ 
99738 
99736 
99734 

99731 
99729 

99727 
99735 

99723 
99721 

99719 
99716 

99714 
997x2 

997«^ 
99708 

99705 
99703 
99701 
99690 
99696 
99694 


99687 
99685 
99683 

^^ 
99678 

99676 

99673 
99671 

99668 

99666 

99664 
99661 

99659 
99657 
99654 
9965a 
99649 
99647 
99644 
99642 

99639 
99637 
99635 
9963a 

9963 

99637 

99635 

99622 

9^6x9 


N.  00*.  M.  sin*. 


N.  cot. 


o87i6 
0874s 

<»774 
08803 

08831 

0886 

08889 

089x8 

08947 

08976 

09005 

09034 

09063 

09092 

09121 

0915 
09170 

09208 

09237 

09266 

09295 
09324 

09353 

09383  ; 
094x1 1 

0944  I 
09469 
09498, 
09537  ! 
09556! 

09585 
09614 

09642 

09671 

097 

09729 

09758 
09787 
098x6 

09845 
09874 

09903 
09932 
09901 

0999 
00x9 

0048 

0077 
0106 

0135 
0164 
0192 

022I 
025 
0270 
0308 

0366 

0395 
0424 

0453 


99619 
99617 
99614 
996x3 
99609 

99607 
99604 
99603 

99599 
99596 
99594 
99591 
99588 
99586 

99583 

9958 

99578 

99575 

99572 

9957 

99567 

99564 
99562 

99559 

99556 

99553 

99551 

99548 

99545 

99542 

9954 

99537 

99534 

99531 
99528 

99526 

99533 

995a 

99517 

99514 

99511 

99508 

99506 

99503 

995 

99497 

OOdOd. 

9949" 
99488 

99485 
99482 

99479 

99476 

99473 

9947 

99467 

99464 

99461 

99458 

99455 

9945a 


N.  CO*.  I  N. 
840 


6P 


N.iio*. 


0453 
0482 

05 IX 

0569 

0597 
0626 

0655 
0684 
0713 

0742 

0771 

08 

0839 

0858 

0887 

0916 

094s 

0973 
xoos 

X03I 

X06 

1080 
XII8 
1147 

XI76 
1205 

1234 
1363 
I29X 
132 

1349 

1378 

1407 
1436 
1465 
1494 
1523 
1552 

158 

1609 

1638 
1667 

1696 

1725 
1754 
1783 

I8I3 

184 


1927 
1956 
1985 

30x4 

2043 

207  X 

21 
2120 

2158 
2187 


N. 


99452 

99449 

99446 

99443 

9944 

99437 

99434 

99431 

99428 

99424 
99421 

994x8 

9941s 
99412 

99409 
99406 

99402 

99399 
99396 
99393 
9939 

99386 

99383 

9938 

99377 

99374 

9937 

99367 

99364 

9936 

99357 

99354 

99351 

99347 

99344 

99341 

99337 

99334 

99331 

99327 

99324 

9932 

99317 

99314 

9931 

99307 

99303 

993 
99297 

99293 

9929 

99286 

99283 

99279 

99276 

99272 
99269 

99265 
99262 

99258 

99255 


70 


N.  aiam.     N.  co*. 


2187 
22x6 

aa45 
2274 
3302 

3331 
236 

2380 

2418 

3447 
2476 

3504 

3533 
3562 

2591 
263 

2640 

2678 

2706 

373s 
2764 

2793 

2822 

2851 

288 

2908 

2937 

2966 

2995 
3024 

3053 
3o8x 
3x1 

3139 
3168 

3197 
3226 

3254 
3283 

331a 

3341 

337 

3399 

3427 

3456 

3485 

3514 

3S43 

3572 

3687 
3716 
3744 
3773 
3802 

3831 

386 

3889 

3917 


99255 
99351 
9924^ 
99244 
9934 

99237 

99333 

9933^ 
99226 

99222 

99219 
99315 
99211 

99308 

99304 
993 

99197 
99193 
99«89 
99186 
99x82 
99178 

99'75 

99171 

99167 

99163 

9916 

99156 

9915a 

99148 

99«44 
99141 

99137 
99133 
99129 
99x25 
99x22 
991x8 
991x4 

9911 
99x06 

99x02 

99098 

99094 
1 


n 


,.  7 
99083 
99079 
99075 
99071 
99067 

99063 
99059 
99055 
99051 

99047 
99043 
99039 
99035 
99031 
99037 


60 
5 

57 
56 

55 
54 
53 
53 

51 
50 

% 

47 
46 
45 
44 
43 
4a 
41 
40 

35 
34 
33 
3a 

31 
30 

^ 

27 
26 

35 

34 

33 
22 

21 
20 

19 
18 

17 

x6 

15 
14 
13 
12 

II 

10 

\ 
I 

5 

4 
3 

a 

I 
o 


4 
4 
4 
4 
4 
4 
4 
4 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 


o 

o 
o 
o 
o 
p 
o 
o 


N.  00*.  '  N.  tiD*.  '  N.  CO*.  '  N.  *{»*.   ' 

830    u    830    . 


HATrRAL  BINES  AUD  COSINEB. 


;;;;i 


:!3 


',B^ 


NATUBAL   BINB8  AND   COSINES. 


:3' 


i3 


S 


;ss 


:'f|^ 


i6L« 


:KS. 


m 


NAttTKAl  SINBS   AMD  HMIBIMfiS. 


11 

le 

'P 

190 

100 

ISP 

n 

2? 

0 

tr.  Bine. 

K.  C08. 

S.  sine.  N.  coi. 

K.Blne. 

N.cos. 

S.  slud.  N.  CM. 

60 

^ 

O 

.27564 

.96126 

•29237 

•9563 

.30902 

.95106 

•32557 

•94552 

9 

o 

I 

.27592 

.96118 

. 29265 

.95622 

.30929 

.95097 

• 3*584 

•94542 

li 

9 

I 

1 

.2762 

.9611 

.29293 

.95613 

.30957 

.95088 

.326x2 

■94533 

9 

I 

3 

.27648 

.96103 

■29321 

•95605 

•30985 

.95079 

.32639 

•94523 

57 

-  9 
i 

2 

4 

. 27676 

96086 

29348 

•95596 

.31012 

•9507 

.32667 

945x4 

56 

2 

.  5 

.27704 

.89376 

■95588 

•3«04 

.95061 

.32694 

•94504 

55 

8 

3 

6 

•27731 

.96078 

.29404 

•95579 

.31068 

•95052 

.32722 

•94495 

54 

8 

3 

1 

•27759 

.9607 

29432 

■95571 

•31095 

.95043 

.32749 

•94485 

53 

8 

4 

.27787 

.96062 

.2946 

.95562 

.31123 

•95033 

•32777 

■94476 

52 

8 

4 

9 

.27815 

.96054 

29487 

•95554 

•3"Si 

•95024 

•32904 

■94466 

5x 

8 

5 

10 

•27843 

.96046 

29515 

•95545 

.31x78 

•95015 

•32832 

•94457 

50 

8 

5 

II 

.27871 

.96037 

29543 

•95536 

.31206 

.95006 

•32^59 

•94447 

^2 

7 

5 

12 

.27899 

.96029 

29571  !  95528 

•31233 

•94997 
.94988 

•3?887 

•94438 

48 

7 

6 

13 

.27927 

.96021 

.29599   95519 

31261 

•329x4 

•94428 

47 

7 

6 

14 

•27955 

.96013 

.29626  j  95511 

.3*289 

•94979 

.32942 

•944x8 

46 

7 

7 

15 

27983 

.96005 

29654   95502 

•3x3*6 

•9497 

.32969 

•94409 

45 

7 

7 

16 

.28011 

•95997 

29682 

95493 

•3>344 

.94961 

•32997 

•94399 

44 

7 

8 

17 

.28039 

.95989 

2971 

•95485 

3x372 

'94952 

.33024 

•9439 
•9438 

43 

6 

8 

x8 

28067 

95981 

29737   954761 

•3x399 

•94943 

•3305X 

42 

6 

9 

19 

.28095 

95972 

29765 

95467 

.31427 

•94933 

•33079 

•9437 

4X 

6 

9 

20 

.28123 

95964 

29793 

•95459 

•3x454 

•94924 

.33x06 

■9486i 

40 

6 

9 

21 

.2815 

•95956 

39821 

•9545 

.3x482 

■949x5 

•33x34 

9435X 

U 

6 

lO 

22 

.28178 

.95948 

29849  1  .95441 

3x51 

.94W36 
•94897 

.33x61 

•94342 

6 

lO 

23 

.28206 

•9594 

29876  1  95433 

•3x537 

•33x89 

•94332 

37 

6 

ti 

24 

.26234 

•95931 

29904  95424 

3x565 

.94888 

.33216 

■943»2 

36 

5 

II 

25 

.28262 

95923 

29932  .954 J 5 

3*593 

.94878 

.33244 

*94ai3 

35 

5 

12 

26 

'?^9„ 

• 9591 5- 

2996   .95407 

.3162 

.94869 

•33*7x 

•94303 

34 

5 

T2 

27 

.2a3i8 

•95907 
•95898 

•29987  95398 
.30015  1  .95389 

.3x648 

.9486 

•33298 

•94893 
.94884 

33 

5 

*3 

38 

.28346 

•3x675 

.94851 

• 333*6 

32 

5 

'3 

29 

•28374 

•95?9 
.95882 

.30043  '  .9538 

•3x703 

•94842 

■33353 

.94SV4 

3X 

5 

»4 

30 

.28402 

.30071  :  .95372 

3x73 

•94832 

•333BX 

•94»64 

30 

5 

»4 

31 

28429 

•95874 

.30098  .95363 

•31738 

•94823 

■33408 

94054 

S 

4 

H 

32 

.28457 

•95865 

.30126  .95354 

.3x786 

.94814 

•33436 

•94345 

4 

»5 

33 

.28485 

•95857 

.30154  :  .95345 

.3x813 

.94805 

•33463 

•94235 

27 

4 

15 

34 

.28513 

95849 

30182  '  .95337 

.3x841 

•94795 

'3349 

•94325 

36 

4 

i6 

35 

.28541 

.95841 

30209  95328 

.31868 

•94786 

.33518 

-943X5 

«5 

4 

i6 

36 

.28569 

•95832 

•3«»37  -95319 

.3x896 

•94777 

•33545 

.94306 

34 

4 

»7 

38 

.28597 

.28625 

.95824 
95816 

.30265  1  .9531 
30292  1  .95301 

•3x9^3 
•3X95X 

•94768 
•94758 

•33573 
•336 

.94»6 

23 

32 

3 
3 

i8 

39 

.28652 

•95807 

.3032  1  .95293 
.30348  .95284 

•3x979 

•94749 

•33627 

.94*76 

2Z 

3 

i8 

40 

2868 

95799 

.32006 

•9474 

•33655 

•94*67 

20 

3 

z8 

41 

.28708 

•95791 

30376  ,  95275 

•32034 

•9473 

•33682 

'94*57 

.1 

3 

»9 

42 

.28736 

.95782 

30403  .95266 

.32061 

.94721 

•337X 

-94J47 

3 

>9 

43 

.28764 

95774 

.30431  .95257 

..3ao89 

•947x2 

•33737 

•94x37 

X7 

3 

20 

44 

.28792 

•95766 

30459  -95248 

.32x16 

•94702 

•33764 

.94127 

16 

? 

20 

^l 

.2882 

•95757 

.30486  .9524 

•32x44 

.94603 

•33792 

•942x8 

«5 

% 

21 

46 

.28847 

•95749 

.30514   95231 

.32171 

94684 

.338x9 

.94108 

X4 

2 

21 

H 

.'28875 

•9574 

36542  .95222 

•32x99 

.94674 

.33846 

:^ 

X3 

2 

22 

48 

.28903 

•95732 

•3057  1  95213 

.32227 

.94665 

•33674 

X3 

3 

22 

49 

.28931 

•95724 

•30597   95204 

•32254 

.94656 

•3390X 

.94078 

11 

2 

>3 

50 

.28959 

•95715 

30625 

•95195 

.33282 

.94646 

•33929 

.94068 

xo 

2 

.23 

51 

.28987 

•95707 

30653 

.95*86 

32309 

•94637 

.33956 

.94058 

t 

.23 

52 

.29015 

.95698 

3068 

•95177 

•32337 

.94697 

•33983 

.94049 

24 

53 

.29042 

•9569 

,30708 

.95»68 

•32364 

.94618 

.34011 

-94039 

7 

.24 

54 

.2907 

.95681 

•30736 

•95159 

.32392 

.94609 

•34038 

.94029 

.6 

25 

55 

.29098 

•95673 

30763 

•9515 

324x9 

•94599 

•34065 

•940x9 

5 

25 

56 

.29126 

-95664 

•3079' 

•95M2 

•32447 

•9459 
•9458 

•34093 

.94009 

4 

,  z 

26 

57 

.29154 

•95656 

.308x9 

•95133 

-32474 

•34W 

•93999 

3 

.0 

26 

58 

.29182 

•95647 

.30846 

•95'24 

.32502 

•9457X 

-34M7 

3 

0 

27 

|9 

.29209 

•95639 

•30874 

•95"5 

•32529 

•94561 

.34x75 

•93979 

X 

0 

27 

60 

.29237 

•9563 

.30902 

.95106 

•32557 
N.eM. 

•94552 

N.BHie. 

.34302 

•93969 

0 

0 

N.  CM. 

N.  tine. 

N.  cot.  1  N.  dae. 

N.  CO*. 

N.flac 

73 

0 

7J 

JO      » 

f>: 

LO 

7i 

|o 

' 

NATURAL   SINB6   AND 


395 


S  ■ 


34748 

3483 

SS  ; 


III  ■ 
|k  ; 

937*9     ■ 


93'^ 


SI  : 

■36053    . 


.3B1,.    . 


:p  I 


tss; 


■J9«oS 

:Sl! 


:|IS' 


fS  : 


^=|9 


■3JS6S    - 


■931i» 


:gg 


■38778  . 
.3M0S  - 
.3883-.    . 


39<i 


UBAL   SINES   AND   COSINES. 


ss; 


"% 


3S 


igS 


X 


.89S79 
Mm 


■89m 
.S976, 


B9363 

«935 


i   AMD  CO&lK£S. 


■  S0B04 


NATUBAL   BINBB   AMD   COSINES. 


3>=          1) 

N.dnt. 

N.c«.       h 

t 

1??7 

S4«=s 

l 

'sl^ 

847.1 

I 

.53.89 

as: 

H"4 

8,666 

:: 

ii 

ass 

j* 

:5 

!:s 

.6 

84537 

" 

-53484 

^4:r 
84464 

'1 

■53^ 

'It 

"5 

-844" 

36 

■5363' 

.B.*« 

-53656 

.8,386 

^ 

.55681 

.843J 

.84355 

30 

■84339 

3" 

ii 

P 

.538^ 

-84=77 

3S 

■53853 

.8,^. 

36 

■53877 

■84545 

3J 

-S39™ 

.«4=3 

38 

.84=14 

S 

:p; 

1' 

'■nZt 

.84,5, 
.84.35 

]J 

■mS? 

-t:i4 

46 

.84088 

4? 

■54146 

.840JJ 

4S 

.84=57 

-54195 

.8404. 

^; 

-54" 

■|4"5 
.8,009 

P 

:t^6j 

■54=93 

Ii 

il 

II 

» 

g 

m 

J°    .;«64 

.8,86, 

"■"g 

;■-" 

tr 


:£;i; 


11 

s 

i 

■^ 

8.865 

8,848 

s^ 

81831 

as 

IJ 

B.tSi 

i 

1^ 

as 

46 

IJ 

8.M4 

B,6,7 

as; 

43 

■■ 

as- 

V> 

" 

as 

8' S3 

9 

i 

1= 

iiS 

» 

8.461 

33 

! 

lUll 

3= 

f 

lii 

S 

5 

8,36, 

|;344 

S 

i 

1;^^ 

n 

• 

is 

1 

i 

iiii 

;• 

! 

8."S9 

l;^8 

i 

^ 

"s^ 

? 

8«), 

a«lS3 

8=936 

' 

:^ 

_: 

0 

N.'i. 

NATUBAL   SIKBS   AND   eOSIKBS. 


399 


III 

33' 


«  3 

»  4 

a  5 

9  6 

V    I 

3  I  <> 

3;  9 

4  lo 

4  1  " 

5 

5 

5 

6 

6 

i 

7 
7 


12 

»3 
»4 
15 
i6 

O   20 

8  21 

8;  22 

9  .  as 

9  84 

lo  25 

10  I  26 
10  I  27 

II  !  28 
II  39 

13  30 
12  31 
12   32 

»3  33 

»3  34 

«3  35 

14  36 
»4  37 

15  38 
»5  39 
15  40 
x6  .  41 
x6  42 
»6  43 
»7  44 

»7  45 
x8  46 

18  47 

18  48 

»9  49 

«9  50 

20  51 

20  52 
ao  53 

«»  54 

21  55 

21  56 

aa  5 


360 

N.  line.  I  N. 


I 


«2   5 

•3  59 
»3  60 


58779 
58802 
58826 
58849 

58873 
58896 

5893 

58943 
58967 

5899 
590*4 

59037 
59061 

59084 
59108 

591 31 
59*54 
59178 
5920X 
59225 
59248 
59272 

59295 
593»8 

59342 

S9365 

59389 
594" 

59436 

59459 
59482 
59506 

59529 
59552 
59576 

59599 
59622 

59646 
59669 

59693 
597*6 

59739 
59763 
59786 

59809 
59832 
59856 

59879 
59902 

59926 

59949 
59972 
59995, 
60019  . 
60042 
60065 
60089 
601 12 

60135 
60158 

60182 


80902 

80885 

80867 

8085 

80833 

80816 


I 


N.  CM.  K.  sine. 
630  _ 


370 

N.  alii«.  N.  fXM, 


60182 
60905 
60228 
60351 
60274 
60298 
60321 

60344 
60367 

6039 

60414 

60437 
6046 

60483 

60506 

60529 

60553 
60576 

60599 

60622 

6o6j5 

60668 

60691 

60714 

60738 

60761 

60784 

60807 

6083 

60853 

60876 

60899 

60922 

60945 

60968 

60991 

61015 

61038 

61061 

61084 

61x07 

6113 

61 176 
61 199 
61222 
61245 
61268 
61291 
61314 

61337 
6136 

61383 
61406 

61429 

61451 

61474 

61497 

6152 

6i^M 


79864 
79846 
79329 
7981 1 

79793 
79776 
79758 

79741 

79783 

79706 

79688 

79671 

79653 

79635 

79618 

796 

79583 

79565 

79547 

7953 
79513 

79494 

79477 

79459 

7944« 

794241 

79406 

79388 

79371 
79353 
79335 
79318 

793 
79282 

79264 
79247 
79229 
79211 

79*93 
79176 

79*58 

79*4 

79122 

79105 

79087 

79069 

79051 

79033 
79016 

78962 

78944 
78926 

78891 

78873 
78855 

78837 
78819 
''8801 


N.  COS.  N .  tlnfl. 


^ 


380 


N.iine. 


61566 
61589 
61613 
61635 
61658 
6i68z 
61704 
61726 
61749 
61772 

61795 
61818 
61841 
61864 
61887 
61909 
61932 

61955 
6x978 

6300X 

63024 

63046 

63069 

63093 

63115 

63138 

6316 

63183 

63306 

63329 

63351 

63374 

63397 

6333 

63348 

62365 

62388 

6241 1 

62433 
62456 

62479 

62502 

62524 

62547 

6257 

62592 

63615 

62638 

6266 

62683 

62706 

62728 

62751 

62774 
62796 

62819 

62842 

62864 

62887 

63909 

62932 


N. 


78801 

78783 

78765 

78747 
78729 

78711 

78694 

78676 

78658 

7864 

78633 

78604 

78586 

78568 

7855 

7853a 

78514 

7^96 
78478 

7846 

7844a 

78424 

78405 

78387 

78369 

78351 

78333 

783*5 

78297 

78279 

78261 

78243 

78225 

78206 

78188 

7817 

78152 

78134 
78116 

78098 

78079 

78061 

78043 

78025 

78007 

77988 

7797 
7795a 

77934 
77016 

77897 

77879 

77861 

77843 
77824 

77806 
77788 

77769 
7775* 
77733 
777*5 


N.  CO*.     X.  liiui. 
61® 


390 

N.aine. 

rl.  COS. 

•.6293a 

•777*5 

•62955 

■77696 

.62977 

.77678 

.63 

.7766 

.63022 

.77641 

■6304s 

.77623 

.63068 

•77605 

.6309 

.77586 

.631x3 

.77568 

.63135 

•7755 

.63158 

•7753* 

.6318 

•775*3 

■63203 

•77494 

.63225 

•77476 

.63248 

•77458 

.63271 

•77439 

.63393 

.77421 

.63316 

.7740? 

•63338 

.77384 

.63361 

.77366 

.63383 

•77347 

.63406 

•77329 

.63438 

■773* 

•63451 

.77292 

•63473 

•77273 

63496 

•77255 

.63518 

.77236 

.6354 

.77218 

•63563 

•77*99 

•6358s 

.77181 

.63608 

.77163 

•6363 

•77*44 

•63653 

.77135 

•63675 
.63698 

.77088 

.6373 

•7707 

.63742 

•7705* 

•63765 

•77033 

63787 

.77014 

6381 

.76996 

.63832 

•76977 

•63854 

•76959 

.63877 

•7694 

.63899 

.76931 

.63933 

.76903 

.63944 

.76884 

.63966 

.76866 

.63989 

.76847 
.76828 

.64011 

•64033 

.7681 

64056 

76791 

.64078 

.76772 

641 

•76754 

.64123 

•76735 

64*45 

.76717 

.64x67 

.76698 

.6419 

.76679 

64212 

.76661 

64a34 

.76642 

.64256 

.76623 

.64279 

.'_^-^>6o4 
N.  sin*. 

N.  c««. 

60 

0 

60 

II 

57 
56 
55 
54 
53 
5a 
5* 
50 

% 

47 
46 
45 
44 
43 
4a 
4* 
40 

3 

37 
36 
35 
34 
33 
32 
3* 
30 
29 
28 
27 
26 

25 
24 
23 
22 

21 

20 

li 

*7 
16 

*5 
*4 
*3 
12 

11 

10 

I 

7 
6 

5 

4 
3 

2 

X 

o 


18 
18 

x8 

*7 

*7 

*7 

*7 
x6 

16 
16 
*5 
*5 
*5 
*4 
*4 
*4 
*4 
'3 
*3 
>3 
12 

12 
12 
II 
II 

IX 

II 
10 
10 
10 

9 
9 


8 
8 
8 
7 
7 
7 
6 
6 
6 

5 
5 
5 
5 

4 
4 
4 
3 
3 

3 

2 

a 
2 
3 

E 
X 
X 

o 
o 


400 


NATDBAL   SINES   AND   COSINES. 


23 


I 
I 
3 

a 

3 

3 

3 

4 

4 

4 

5 

5 
6 

6 

6 

7 
7 

i 

8 
8 

9 
9 

lO 
lO 

xo 

XI 
IX 
XI 

xa 

12 

xa 
13 


40© 


N.  tine. 


3 
4 
5 
6 

7 
8 

9 

[O 

[I 

[2 

13 
t4 
15 
[6 

'7 

[8 

'9 

30 

ax 

23 
23 

24 
25 
26 

27 
28 

29 
30 
31 
32 

33 
34 
35 


13  '  36 

M  I  37 
14:  38 
M  '  39 
15  I  40 
15  41 

15  i  42 
>6  I  43 

16  44 


'7 
17 
'7 


45 
46 

47 


x8  I  48 

18  149 

x8  ,  50 

19  51 
>9  52 
»9  53 

20  54 

20  55 

21  56 
21  I  57 

21  58 

32   59 

22  60 


.64279 
.64301 

•64323 

■64346 

.64368 

.6439 

.64412 

•64435 

•64457 
.64479 

.64501 

.64524 

.64546 

.64568 

•6459 
.64612 

.64635 

.64657 

.64679 

.  64701 

•64723 
.64746 

.64768 

•6479 
.64812 

.64834 

.64856 

.64878 

.64901 

•64923 
.64945 
.64967 
.64989 
.650IX 

•65033 

•65055 

•65077 

.651 

.65122 

.65144 

.65166 

.65188 

.6521 

.65232 

•65254 
. 65276 

.65298 

•6532 
•65342 

•65364 
.65386 
.65408 

•6543 
•65452 
•65474 
.65496 

.65518 

•6554 
.65563 

65584 
.65606 


N.  CM. 


6604 

6586 
6567 

6548 

653 

65 1 1 

6492 
6473 
6455 
6436 
6417 

6398 
638 

6361 

6342 
6323 
6304 
6286 

6267 

6248 

6229 

621 

6192 

6x73 

6154 

6135 

61 16 

6097 

6078 

6059 

6041 

6022 

6003 

5984 
5965 
5946 
5927 
5908 
5889 

587 

585' 

5832 

5813 

5794 

5775 

5756 

5738 

57  «9 

57 

568 

5661 

5642 

5623 

5604 

5585 
5566 

5547 
5528 

5509 
549 
547 » 


41° 


N.  tine. 


N.  cot. 


N.  CM.  N .  sine. 
490 


65606 
65628 

6565 
65672 

65694 
65716 

65738 

65759 
65781 

65803 

65825 

65847 
65869 

65891 

65913 

65935 

65956 

65978 

66 

66022 

66044 

66066 

66088 

66x09 

66131 

66153 

66175 

66197 

66218 

6624 

66262 

66284 

66306 

66327 

66349 

66371 

66393 

^6414 

66436 
.66458 
.6648 
.66501 
.66523 
•66545 
.66566 
.66588 
.6661 
.66632 
.66653 
.66675 
.66697 
.66718 

.6674 
.66762 
.66783 
.66805 
.66827 
.66848 
.6687 
.66891 
66913   

N.  CM.  '  N.  tine. 
480 


75471 
75452 
75433 
75414 
75395 
7^375 
75356 

75337 
75318 

75209 

7528 

75261 

75241 
75222 
75203 
75184 
75165 

75146 

75126 

75107 

75088 

75069 

7505 

7503 

7501 X 

74992 
74973 
74953 
74934 
74915 
74896 
74876 

74857 
74838 
748x8 

74799 
7478 

7476 

74741 
74722 

74703 
74683 
74664 

74644 
74625 
74606 

74586 
74567 
74548 
74528 

74509 

74489 

7447 

7445» 

74431 
744x2 

74392 
74373 
74353 
74334 
74314 


42P 
N.  tine.  I  N.  coa. 


669x3 
66935 
66956 
66978 
66999 
6702  X 

67043 
67064 
67086 
67x07 
67x29 
6715X 
67172 
67194 
672x5 

67237 
67258 
6728 
67301 

67323 

67344 
67366 

67387 

67409 

6743 

67452 

67473 

67495 

675x6 

67538 

67559 
6758 
67602 
67623 

67645 
67666 

67688 

67709 

6773 
67752 

67773 

67795 

678x6 

67837 

67859 

6788 

6790X 

67923 

67944 

67965 

67987 

68008 

68029 

68051 

68072 

68093 

68x15 

68x36 

68157 
68179 
682 


N.  CM. 


74314 
74295 
74276 
74256 

74237 
742x7 
74x98 
74x78 

74159 

74139 
7412 

741 

7408 

74061 

74041 

74022 
74002 

73983 
73963 

73944 
73924 
73904 
73885 
73865 
73846 
73826 
73806 
73787 
73767 
73747 
73728 
73708 
73688 
73669 

73649 
73629 

7361 

7359 

7357 

73551 

73531 

735" 

73491 

73472 

73452 

73432 

734' 3 

73393 

73373 

73353 

73333 

73314 

73294 

73274 

73254 

7323 

73211 

73195 

73175 

73155 

73»35 


N.  sine. 


470 


430 

N.  sine. 

N.  CM. 

60 

.682 

•73135 

.68221 

.731x6 

5I 

.68242 

.73096 

.68264 

•73076 

57 

.68285 

•73056 

56 

.68306 

•73036 

55 

.68327 

.730x6 

54 

.68349 

•72996 

53 

.6837 

.72976 

52 

.68391 

■72957 

51 

.68412 

•72937 

50 

.68434 

.729x7 
.72897 

49 
48 

.68455 

.68476 

.72877 

47 

.68497 

.72857 

46 

.685x8 

•72837 

45 

.68539 

.728x7 

44 

.68561 

.72797 

43 

.68582 

.72777 

42 

.68603 

.72757 

41 

.68624 

.72737 

40 

.68645 

.72717 

It 

.68666 

.73697 

.68688 

72677 

37 

.68709 

.72657 

36 

.6873 

73637 

35 

.68751 

.726x7 

34 

.68772 

•72597 

33 

.68793 

.72577 

32 

.68814 

•72557 

3« 

.68835 

•72537 

30 

.68857 

• 7251 7 

2 

.68878 

.72497 

.68899 

.72477 

27 

.689? 

•72457 

26 

.68941 

72437 

25 

.68962 

.724x7 

24 

.68983 

72397 

23 

.69004 

•72377 

22 

.69025 

•72357 

21 

.69046 

•72337 

20 

•^z 

•72317 

:i 

.69088 

.72297 

.69x09 

.72277 

"7 

•6913 

•72257 

x6 

.69x51 

.72236 

15 

.69x72 

.72216 

»4 

.69193 

.72196 

13 

.69214 

.72x76 

12 

.69235 

72x56 

IX 

.69256 

.72x36 

XO 

•69277 

.72x16 

t 

.69298 

72095 

.69319 

72075 

7 

.6934 

•72055 

6 

•69361 

•72035 

5 

.69382 

•720x5 

4 

69403 

•71995 

3 

•69424 

•71974 

3 

1  69466 

•71954 
•7»934 

I 
0 

/ 

'  N.  CM. 

N.  sine. 

1    u 

50 

Oil 

19 


i 

8 
8 

7 
7 

7 
6 
6 
6 
6 


o 
o 
o 

9 
9 

1 

8 
8 

7 

7 

7 
6 

6 

6 

5 

5 

5 

4 
4 
4 
3 
3 
3 

3 

2 

3 
3 

X 
X 

I 
o 
o 


NA.TUBAX.   SINES    AND   COSINES. 


401 


440 

Prop, 
parte. 

Prop, 
parte. 

440 

n 

IZ 

0 

N.dna. 

N.eet. 

60 

>9 
19 

22 
II 

31 

N.aine. 

N.cos. 

29 

9 

0 

.69466 

.71934 

.701x2 

.71305 

9 

0 

I 

.69487 

.71Q14 

59 

19 

12 

32 

.70x32 

.71284 

28 

9 

I 

a 

.69508 

.71894 

58 

x8 

X3 

33 

.70153 

.71264 

27 

I 

I 

3 

.69529 

.71873 

H 

x8 

X2 

34 

.70174 

•71243 

26 

I 

4 

.69549 

.7»853 

56 

x8 

13 

35 

.70195 

.71223 

25 

8 

2 

5 

.6957 

•71833 

55 

17 

13 

36 

.70215 

.71203 

24 

8 

2 

6 

•69591 

.71813 

54 

17 

14 

37 

.70236 

.71182 

23 

7 

3 

7 

.69612 

.71792 

53 

*Z 

14 

38 

.70257 

.71162 

33 

7 

3 

8 

.69633 

.7x773 

52 

16 

14 

39 

.70277 

.7114X 

31 

7 

3 

9 

.69654 

.7x752 

5« 

x6 

15 

40 

.70298 

.7x131 

30 

6 

4 

xo 

.69675 

•71732 

50 

16 

15 

41 

.703»9 

•7"„ 

;i 

6 

4 

XX 

.69696 

.7171X 

^2 

x6 

15 

42 

•70339 

.7108 

6 

4 

X2 

.69717 

.7169X 

48 

15 

16 

43 

.7036 

•71059 

^l 

5 

5 

13 

.69737 

.71671 

47 

15 

16 

44 

.70381 

•71039 

x6' 

5 

5 

«4 

.69758 

.7*65 

46 

15 

17 

45 

.7040X 

.71019 
.70998 

»5 

5 

6 

15 

.69779 

.7163 

45 

14 

'7 

46 

.70422 

«4 

4 

6 

16 

-598 

.7x6x 

4* 

14 

17 

47 

.70443 

.70978 

13 

4 

6 

17 

.6982X 

•7159 

43 

14 

18 

48 

•70463 

•70957 

13 

4 

7 

18 

•^* 

.71569 

42 

13 

18 

49 

.70484 

•70937 

XI 

3 

7 

'9 

.69862 

•7»549 

41 

13 

18 

50 

•70505 

.70916 
.70896 

XO 

3 

7 

20 

.69883 

■71529 

40 

13 

19 

5> 

•7052s 

I 

3 

8 

91 

.69904 

.71508 

39 

X3 

>9 

52 

.70546 

.70875 

3 

8 

23 

.60925 

.7x488 

38 

X2 

»9 

53 

.70567 

•70855 

7 

3 

8 

83 

.69966 

.7x468 

37 

12 

20 

54 

.70587 

•70834 

6 

3 

9 

24 

.7x447 

36 

XI 

20 

55 

.70608 

.70813 

5 

3 

9 

25 

.69987 

.71427 

35 

XI 

21 

56 

.70628 

.70793 

4 

I 

JO 

s6 

.70008 

.71407 

34 

XI 

31 

57 

.70649 

.70772 

3 

X 

10 

27 

.70039 

.7x386 

33 

XO 

21 

58 

.7067 

.70752 

3 

I 

xo 

28 

.70049 

.71366 

32 

XO 

32 

59 

.7069 

•70731 

I 

0 

<I 

29 

.7007 

.71345 

31 

XO 

33 

60 

•70711 

.7071X 

0 

0 

<I 

30 

.70091 

•71325 

30 

10 

.  . 

* 

N.  COS. 

N.  tine. 

N.cos. 

N.  sine. 

4 

50 

4 

50 

Preceding  Table  contains  Natural  Sine  and  Cosine  for  every  minute 
of  the  Quadrant  to  Radius  i. 

If  Degrees  are  taken  at  head  of  columns,  Minutes,  Sine,  and  Cosine  must 
be  taken  from  head  also ;  and  if  they  are  taken  at  foot  of  column,  Minutes, 
etc.,  must  be  taken  from  foot  also. 

ILLUSTBATIOK — .3173  18  siue  of  x8o  30',  and  cosine  of  7x0  30'. 

To   CoimpTite   Sine   or   Cosine  tor   Seconds. 

When  Angle  is  less  than  45°.  Rule. — Ascertain  sine  or  cosine  of  angle 
for  degrees  and  minutes  from  Table;  take  difference  between  it  and  sine 
or  cosine  of  angle  next  below  it.  Look  for  this  difference  or  remainder,* 
if  Sine  is  i*equired,  at  head  of  column  of  Proportional  Parts^  on  left  side ; 
and  if  Cosine  is  required,  at  head  of  column  on  right  side;  and  in  these 
respective  columns,  opposite  to  number  of  seocMids  of  angle  in  column,  is 
number  or  correction  m  seconds  to  be  added  to  Sine,  or  subtracted  from 
Cosine  of  angle. 

Illust&atiok  I.— What  is  sine  of  80  9'  xo'^f 

Sine  of  8°  9',  per  Table  =  141 77 ; )  ,,^  „«  ahf^^^ 
Sine  of  8°  10';   •    "        =.1^205;}  •«^^^*•^*'^"^• 

In  led  side  column  of  proportional  parts,  under  28,  and  opposite  to  10',  is  5,  cor- 
rectioo  for  xo',  whicb,  being  added  to .  141 77  = .  141 83  Sine. 


*  Ths  Ubls  in  •oiD*  iattancss  will  givs  a  nait  too  much,  but  thi«.  la  geii«ral,  U  of  Uttb  imporUBcc 

L  L* 


402  NATURAL    SINES   AND   COBINBS. 

3.— What  is  cosine  of  8°  9'  10"? 

CosineofSo   9',  per  Table  =  .989  00;)  ^oo  oa  difFerence. 
Cosine  of  8°  10',        "        =  .999  86 ; )  '^^^^  aijerence. 

In  right-side  column  of  proportional  parte,  under  4,  and  opposite  to  to\  is  z,  thd 
correction  for  10',  which,  being  subtracted  ft'om  .989 90  =  .989  89  cosine. 

When  Angle  exceeds  45°.  Rule.— Ascertain  sine  or  cosine  for  angle  h* 
degrees  and  minutes  from  Table,  taking  degrees  at  the  foot  of  it ;  then  take 
difference  between  it  and  sine  or  cosine  of  angle  next  above  it.  Look  for  re- 
mainder, if  Sine  is  required,  at  head  of  column  of  Proportionat  Parts^  on  right 
side ;  and  if  Cosine  is  required,  at  head  of  coluum  oa  left  side ;  and  in  these 
respective  columns,  oi)posite  to  seconds  of  angle,  is  number  or  correction  in 
seconds  to  be  added  to  Sine,  or  subtracted  from  Cosine  of  angle. 

Illustration. — What  is  the  Sine  and  Cosine  of  81°  50'  50"? 

In  right-side  coluinn  ot  proportional  parts^  and  opposite  to  50',  is  3,  w^ich,  added 
to  .989  86  =  .989  89  Sine. 

r'li^^  nJ  K  ^''''  P^""  7^^^^  =  •  '^'  °5 ' }  .000  25  difference. 
Cosine  of  81°  51 ,        '*        = .  141 77 ;  j  ^     •«' 

In  left-side  column  of  proportional  pai-ts,  and  opposite  to  5p',  is  24,  Which,  sab- 
tracted  ftom  .  14205  = .  141 81  Cosine. 

To  Ascertain  or  Compute  Num'ber  of*  Degrees,  Alijxutes, 
and  Seconds  of  a  given   Sine  or  Cosine. 

When  Sine  is  given.  Rui.E. — If  given  sine  is  in  Table,  the  degrees  of  it 
will  be  at  top  or  bottom  of  page,  and  minutes  hi  marginal  column,  at  left  or 
right  side,  according  as  sine  corresponds  to  an  angle  less  or  greater  than  45°. 

If  given  sme  is  not  in  Table,  take  sine  in  Table  which  is  next  less  than  the 
one  for  which  degrees,  etc.,  are  required,  and  note  d^rees,  etc.,  for  it.  Sub- 
tract this  sine  from  next  greater  tabular  sine,  and  also  from  given  sine. 

Then,  as  tabular  difference  is  to  difference  between  given  sine  and  tabu- 
lar sine,  so  is  60  seconds  to  seconds  for  sine  given. 

Example. — What  are  the  degrees,  minutes,  and  seconds  for  sine  of  .75? 

Next  less  sine  is  .74092,  are  for  which  is  48°  35'.  Next  greater  sine  is  .75011, 
difference  between  tohiih  and  next  less  i«  .75011  — .74992  =  .00019.  Difference  be- 
tween less  tabular  sine  and  one  given  is  .  75  —  .749  92  :±:  ^ 

Then  19  :  8  ::  60  :  25-f ,  which,  added  to  480  35' =  48°  35'  25"; 

When  Cosine  is  given.  Rui.k. — If  given  cosine  is  found  in  Table,  degrees 
of  it  will  be  found  as  in  manner  specified  when  sine  is  given. 

If  given  cosine  is  not  in  Table,  take  cosine  in  Table  which  is  xnsxt  greater 
than  one  for  which  degrees,  etc.,  are  required,  and  note  degrees,  etc.,  for  it. 
Subtract  this  cosine  from  next  less  tabular  cosine,  and  also  from  given  cosine. 

Then,  as  tabular  difference  is  to  difference  between  given  cosine  and  tabu- 
lar cosine,  so  is  60  seconds  to  seconds  for  cosine  given. 

Example.— What  are  the  degrees,  minutes,  and  seconds  (br  cosine  of  .75? 

Next  greater  cosine  is  .750 1 1.  arcfhr  which  is  41°  24'.  Next  less  cosine  is  .74993, 
difference  between  which  and  next  greater  t<  . 750 1 i  —  .749  92  =  .000 19.  Difference 
between  greats  tabular  cosine  and  one  given  is  .750 11  —  .75000  =11. 

Then  19  :  n  : :  60 :  35  —,  which,  added  to  41©  24'  =  4i<>  24'  35". 

To   Compxite  "Versed    Sine   of  an   A-ngle. 
Subtract  cosine  of  angle  from  i. 
Illustration.— What  is  the  versed  sine  of  21®  30'? 

Cosine  of  3t°  30'  is  .930  42,  which,  —  i  =  .069  58  versed  tine. 

To   Compute   Co-versed   Sine  of  an  Ajckst\9» 

Subtract  sine  of  angle  from  i. 

Illustration.  — ^What  is  the  co-versed  sine  of  si^  30'  ? 

The  sine  of  21®  30  Is .  3665,  which,  —  i  =  .6335  co-versed  tim. 


NATURAL   SECANTS    AND   CO-SECANTS. 
T«3"atiiral   Secants   and   Co -secants. 


403 


o 

I 
a 

3 

4 
5 
6 


9 
10 

II 

12 

13 
«4 
«5 
16 

'7 
18 

'9 
20 

21 

22 

«3 

24 
as 
26 

27 
28 

39 

30 
3« 
32 
33 
34 
35 
36 

37 
38 

39 
40 

41 

42 
43 
44 
45 
46 

% 

49 
50 
5» 
52 

53 
54 
55 
56 
5 

h 


00 


0001 
.0001 

X.OOOI 

.0001 
.ooox 

.OOQI 

.0001 

I.OOOI 

.0001 
.aooi 
.0001 
.ooox 

X.OOOI 

ooox 

ooox 

.ooox 

.ooox 

X.OOOI 

.ooox 

ooox 

.ooox 

.ooox 

I.  ooox 


iDflnite. 

3437-7 
1718.9 

J45-9 
859-44 
687.55 
57296 
491. 11 

29.72 
381  97 
343-77 

12.52 
286.48 

64.44 

45^55 
229.18 

14.86 

02.23 
X00.99 

80.73 
X71.89 

637 
56.26 

49-47 
43-a4 
«37-5i 
33.22 
97.32 
32.78 

t8.54 

«i4-59 
xa9 

07-43 
04.  X7 

01.  IX 

98.223 

5-495 
a.914 

8-469 
88.149 
85.046 

3^849 
1-853 
79  95 

76.396 
4-736 
3-146 
X.622 
i.x6 

68.757 

7409 
6.113 

4.866 

3.664 

62.507 

1.391 
i3«4 

59-274 
8.27 

57- 299 


Co-MC*T.       SbgANT. 

890 


1       1 

'  SCCART. 

0 
C<KaBc'T. 

1,0001 

57299 

.0001 

6.359 

.0002 

5-45 

.0002 

4-57 

.0002 

3718 

X.0002 

52.891 

.0002 

2.09 

.0002 

i.3»3 

.0002 

0.558 

.0002 

49.826 

t.0002 

40.114 
8.422 

.0003 

.0003 

775 

.0002 

7.096 

0003 

6.46 

1.0002 

45^84 

.0002 

5237 

.0002 

4.65 

.0002 

4.077 

.0003 

352 

1.0003 

42.976 

•  0003 

2-445 

.0003 

1.938 

.0003 

>-423 

.0003 

4093 

X.OOO3 

40.'448 

.0003 

39978 

.0003 

9.518 

.0003 

9069 
i.631 

.0003 

1.0003 

38.301 

.0003 

7.782 

.0003 

7  37' 

.0004 

6.969 

.0004 

6.576 

X.OOO4 

36.i9» 

.0004 

5814 

.0004 

5-445 

.0004 

5084 

4-729 

X.OOO4 

34382 

.0004 

4.042 

.0004 

3.708 

U3O04 

3-381 

.0004 

3.06 

X.0005 

32-745 

.0005 

2-437 

.0005 

a.  134 

.0005 

1.836 

.0005 

'•544 

x.0005 

3i'257 

.0005 

30-976 

.0005 

a699 

.0005 

a  428 

0005 

ax6i 

x.0005 

29.899 

.0006 

9.641 

0006 

9388 

.0006 
.0006 

2-J39 
8.894 

X.0006 

28.654 

Co-BBC*T. 

Sbcant.  •' 

8C 

p          i 

20  i^ 


1.0006 
.0006 
.0006 
.0006 
.0006 

1.0007 
•0007 
.0007 
.0007 
.0007 

1.0007 

.0007 

.0007 

.0007 

0008 

1.0008 
0008 
.0008 
.0008 

.0008 
1.0008 
0008 
.0008 
.0009 
'.0009 
1.0009 
.0009 
.0009 
.0009 
.0009 
1.0009 
.001 
.001 
.oox 
.001 
1. 001 
.001 
.001 
.001 
.ootx 

X.OOII 

.0011 
.0011 
.0011 
.0011 

X.OOII 

.0012 
.0012 

001 3 

.0012 

X.OOI2 
.0012 
.0012 
.0013 
.0013 

X.OO13 

0013 

•  0013 

.0013 

0013 

1. 0014 


28.654 
8.417 
8.184 

7-955 

7-73 

27.508 

7.29 

7075 
6.864 

6.655 

26.45 
6.249 

6.05 

5-854 
5.661 

25.471 

5.284 

5-1 
4.918 

4  739 
24.562 

4-358 
4.216 
4.047 
3.88 
23.716 

.3  553 

3-393 

3235 

3079 
23.925 

2.774 
2.624 

2.476 

233 

22.  186 
2044 
1.904 

»  765 

1.629 

21.494 

1.36 
1.338 
1. 098 

2a  97 

20-843 
0.717 

0-593 
0.471 

0.35 
20.33 
O.IX2 

19-995 


'   9.88 

9.766 

19653 

9-54« 

9-431 

9.322 

9.214 

19.107 

Co-sic't.'  Skcakt 
870 


3 
Sbgant. 

0 

Co-bbc't. 

1.00x4 

19.107 

.0014 

9.002 
8.897 

.0014 

.0014 

8.794 

.0014 

8.693 

I.OOI4 

18.591 

.0015 

8.491 

.0015 

8.393 

.0015 

8.29s 

.0015 

8.198 

1. 0015 

18.103 

.0015 

8.008 

.0016 

7-9M 
7-821 

.0016 

.0016 

7-73 

1. 0016 

>7-639 

.0016 

7-549 

.0016 

7.46 

.0017 

7-372 

0017 

7285 

x.0017 

17-198 

.0017 

7-"3 

.0017 

7.028 

.0017 

6!  861 

ooi8 

1. 0018 

16.779 

.0018 

6.698 

.0018 

6.617 

.0018 

6.538 

.0018 

16. 3& 

1. 0019 

.0019 

6303 

0019 

6.326 

.0019 

6.15 

.0019 

6.075 

I  0019 

16 

.002 

X 

.002 

.002 

578 

.002 

5-708 

1.002 

'5637 

.0021 

5566 

.009I 

5496 

.003I 

5-427 

ooai 

5.358 

I.0O3I 

»S-29 

-0032 

5.222 

.0023 

5-«55 

.0032 

5.089 

.ooaa 

5.093 

I.0032 

14-958 

4.893 

.0033 

.0033 

4-829 

.0023 

4765 

.0033 

4.70a 

X.0033 

14.64 

.0034 

4-578 

.0024 

4-5>7 

0024 

4-456 

0024 

4  395 

1.0034 

M-335 

Co-«bc't.|  Sac  a  NT. 
.  86O 


60 

5' 

57 
56 
55 
54 
53 
52 
51 
50 
4 

47 
46 
45 

44 
43 

42 
41 

40 

3' 

i 

35 
34 
33 
32 

3« 
30 
2 


27 
26 

25 

24 
23 
22 

21 
20 

:i 

»7 

16 

IS 
14 
»3 
la 
II 
10 


7 
6 

5 

4 

3 

9 
I 
0 


404 


NATUBAL  SECANTS  AND   CO-SBCAKTS. 


40      I 

t 

Skcant. 
1.0024 

Co-BIC'T. 

o 

14-335 

I 

.0025 

4.276  j 

2 

.0025 

4.217  ' 

3 

.0025 

4^«59 

4 

.0025 

4.101 

5 

X.0025 

"4- 043 

6 

.0026 

3986 

7 

.0026, 

3-93 
3-874 

8 

.0020 

9 

.0026 

3.818 

xo 

X.0026 

13-763 

XI 

.0027 

3.708 

xa 

.0027 

3-654 

«3 

.0027 

3-6 

«4 

.0027 

3-547 

15 

Z.0027 

13-494 

i6 

.0028 

3-441 

«7 

.0028 

3389 

i8 

.0028 

3-337 

'9 

.0028 

3.286 

ao 

Z.0029 

13-235 

21 

.0029 

3.184 

22 

.0029 

3-134 

23 

.0029 

3-084 

24 

•0029 

3-034 

'1 

1.003 

12.985 

26 

.003 

2.037 
2.888 

27 

•003 

28 

.003 

2.84 

29 

.0031 

2-793 

30 

1.O031 

12.745 

3' 

.0031 

2.698 

32 

.0031 

2.652 

33 

.0032 

2.606 

34 

.0033 

2.56 

35 

1.0032 

"5X4 

36 

.0032 

2.469 

37 

•0039 

2.424 

38 

•0033 

2-379 

39 

•0033 

2-335 

40 

X.0033 

X2.291 

4« 

•0033 

2.248 

42 

•0034 

3.204 

43 

.0034 

2.  i6z 

44 

•0034 

2.x  18 

^§ 

1.0034 

13.076 

46 

•0035 

2-034 

47 

•0035 

1.992 

«8 

•0035 

x-95 

49 
50 

•0035 
1.0036  . 

ix.^ 

51 

.0036 

1.838 

52 

.0036 

X.787  . 

53 

.0036 

1.747  ' 

54 

•0037 

X.707 

55 

1.0037 

IX.  668 

56 

•0037 

X.628 

57 

.0037 

X.589 

58 

.0038 

1-55 

59 

.0038 

1.5x2 

60 

1.0038 

11.474  1 

# 

Co-SBC 't. 

Bl 

Sbcamt. 
50 

6°      1 

60      1 

Skcawt. 

Co-«ec't. 

Skcant. 

Co^sc't. 

X.0038 

"•474 

10055 

9.5668 

.0038 

1-436 

-0055 

•5404 

.0039 

X.398 

.0056 

•5i4« 

.0039 

X.36 

.0056 

.488 

.0039 

'-323 

.0056 

.463 

1.0039 

XI.  286 

1.0057 

9.4363 

.004 

1.249 

-0057 

•4105 

.004 

X.213 

.0057 

•385 

.004 

X.176 

•0057 

•3596 

.004 

1. 14 

.0058 

•3343 

X.004I 

1 1. 104 

X.0058 

9.3092 

.0041 

1.069 

.0058 

.2842 

.0041 

»-033 

.0059 

•2593 

.0041 

0.988 

•0059 

•2346 

.0042 

0.963 

.0059 

.21 

X.0042 

10.929 
o.§94 

X.006 

9-1855 

.0042 

.006 

.1612 

•0043 

0.86 

.006 

•137 

•0043 

0.826 

.0061 

.1x29 

.0043 

a  792 

.0061 

.089 

1.0043 

X0.758 

i.oo6x 

9-0651 

.0044 

0.725 

"  .0062 

.04x4 

.0044 

0.692 

.0063 

•0x79 

.0044 

0.659 

.0062 

8-9944 

.0044 

a  626 

.0063 

•97" 

1-0045 

10.593 

X.0063 

8.9479 
.9348 

•0045 

0.561 

.0063 

•0045 

0.529 

.0064 

.9018 

.0046 

0.497 

.0064 

.679 

.0046 

0.465 

.0064 

•8563 

1.0046 

10.433 

X.0065 

8.8337 

.0046 

0.402 

.0065 

.8X13 

•0047 

0^371 

.0065 

.7888 

•0047 

0.34 

.0066 

.7665 

.0047 

0.309 

.0066 

•7444 

1.0048 

xa278 

1.0066 

8.7333 

.0048 

a  348 

.0067 

.7004 

.0048 

a  317 

.0067 

.6786 

.0048 

a  187 

.0067 

.6569 

.0049 

•  0.157 

.0068 

•6353 

1. 0049 

10.127 

X.0068 

8.6x38 

.0049 

aooS 

.0068 

•S924 

.005 

0.068 

.0069 

•57" 

.005 

0.039 

.0069 

•5499 
.5385 

.005 

0.0X 

.0069 

1.005 

9.9812 

X.007 

8.5079 

.0051 

-9525 

.007 

.4871 

•0051 

•9239 
.8955 

.007 

.4663 

.0051 

.0071 

•4457 

.0053 

.8673 

.0071 

•425* 

X.0053 

9-8391 

1.007Z 

8.4046 

.005a 

.81x3 

.0073 

•3843 

•0053 

•7834 

.0073 

.3640 

.0053 

-7558 

•0073 

•3439 
•3238 

-0053 

•7283 

•0073 

10053 

9.70X 

X.0073 

8.3039 

.0054 

.6739 

-0074 

.2840 

•0054 

.6469 

.0074 

.2642 

•0054 

.62 

•0074 

.2446 

•0055 

•5933 

-0075 

.335 

10055 

9.5668 

1.0075 

8.3055 

Co-aic'T. 

Sbcaht. 

C0-«IC*T. 

Sbcamt. 

8 

40 

8: 

P 

70      1 

Sbcant. 

1  Co-8bc't. 

1.0075 

8.2055 

•0075 

.x86i 

.0076 

.1668 

.0076 

.1476 

.0076 

.1285 

1.0077 

8.1094 

.0077 

•0905 

.0078 

.07x7 

.0078 

•0529 

.0078 

o°342 

X.0079 

8.0x56 

.0079 

7-9971 

•0079 

.9787 

.008 

.9604 

.008 

•9421 

1.008 

7.924 

■  0081 
.0081 

.8879 

.0082 

.87 

0082 

.852a 

X.0082 

7-8344 

.0083 

.8x68 

.0083 

•7992 

.0084 

.7817 

.0084 

1.0084 

77469 

.0085 

.0085 

.7x24 

.0085 

.6953 

.0086 

•6783 

X.0086 

7.66x3 

.0087 

•6444 

.0087 

.6276 

.0087 

.6x08 

.0088 

.5942 

1.0088 

7.5776 

.0089 

.56x1 

.0089 

•5446 

.0089 

.5282 

.009 

.5"9 

Z.009 

7.4957 

.009 

•4795 

.0091 

•4634 

.0091 

•4474 

.0092 

•43"5 

1.0092 

7-4156 

.0092 

-3998 

•0093 

•0093 

•3683 

•0094 

-3527 

X.0094 

7-3372 

•0094 

•3257 

•0095 

•3063 

.0095 

.2909 

.0096 

•2757 

X.0096 

7.2604 

•0097 

•2453 

.0097 

.2302 

•0097 

.2x52 

.0098 

.2002 

.0098 

7.1853 

ComBC'T. 

SiCAirr. 

82 

|0 

60 

II 

57 
56 
55 
54 
53 
5a 
5« 
50 

ti 

47 

46 

45 


43 
4a 

4« 

40 

il 

37 
36 
35 
34 
33 
3« 
3« 

37 

36 
25 

»4 

23 
33 

3X 

ao 

\t 

*7 
16 

>5 
14 
"3 

13 
IZ 

10 

i 

7 
6 

5 

4 

3 

a 

I 
o 


NA.TUBAL   SECANTS   AND   CO-SECANTS. 


405 


80      1 

90      II      100 

110     1 

» 

Sboamt. 

1 

Co-«m't. 

SaOAHT. 

C<««c»i.' 

6.3924 
•3807 

I  Sbcakt. 

CO-SBO**.  ■ 

:  SacAar. 
1. 0187 

CO-M0*T. 

0 

1.0098 

71853 

X.OI35 

I.OI54 

5. 7588 

5.3408 

I 

.0099 

.1704 

.0135 

.0155 

•7493 

.0188 

■233 

a 

.0099 

•>5S7 

.0135 

•369 

.0155 

.7398 

.0188 

.3353 

3 

.0099 

.1409 

.0x36 

•3574 

.0156 

•7304 

.0189 

•2X74 

4 

.ox 

.1363 

.0x36 

.3458 

.0x56 

.72X 

.0x89 

•2097 

5 

I.  ox 

7.III7. 

X.OI37 

6.3343 

X.OI57 

5-7"7 

X.0X9 

5.3019 

6 

.oxox 

.0073 
.0837 

.0137 
.0x28 

.3228 

.0157 
.0x58 

•^3 

.0x91 

:IU? 

7 

.oxox 

•3"3 

!6l38 

.0191 

8 

.0x03 

.0683 

.0x38 

:3I? 

.0x58 

.0193 

.1788 

9 

.0X03 

•0539 

.0139 

.0159 

•6745 

.0x93 

.171a 

10 

X.0X03 

7.0396  . 

X.OI29 

6.2773 

1. 01 59 

56653 

X.OX93 

5.1636 

II 

•0x03 

.0354  ' 

.013 

.2659 

.016 

.6561 

.0x93 

.156 

13 

.0x03 

.OII3  1 

.013 

•8546 

.016 

.647 

.0194 

.1484 

'3 

.0x04 

6.997X  1 

.0x31 

.2434 

.oi6x 

:^SI 

•0x95 

.1409 

14 

.0x04 

•983  ! 

.OI3X 

.3322 

.0163 

.0195 

•»333 

15 

X.OI04 

6.969 

Z.OI33 

6.221X 

1.0x63 

5.6197 

X.0196 

5.1258 

16 

.0x05 

•955 

.0132 

.31 

.0x63 

.6107 

.0196 

.X183 

\l 

•0x05 

.9411 

•0133 

::?? 

.0163 

.6017 

.0197 

.1109 

.0106 

.9273 

.0133 

.0x64 

.5938 
.5838 

.0198 

•1034 

»9 

.0106 

•9>3S 

•0134 

•177 

.0x64 

.0198 

5!S?86 

30 

X.OI07 

6.8993 

I.OI34 

6.I66X 

X.0165 

55749 

1.0199 

31 

.0x07 

.8861 

•o«35 

•>55a 

.0165 

.566 

.0199 

.0812 

33 

.0x07 

.8725 

•013s 

•M43 

.0166 

•557a 

.03 

.0739 

33 

.0x08 

.8589 

.0136 

•1335 

.0166 

•5484 

.030X 

.0666 

34 

.0x08 

.8454 

.0136 

.X227 

.0167 

•5396 

.030X 

•0593 

as 

X.OX09 

6.833 

1.0136 

6. 1 13 

X.OX67 

S5308. 

X.0302 

505a 

36 

.0x09 

.8185 

•o"37 

•  X013 

.0168 

.5221 

.0202 

•0447 

'Z 

.oxx 

.8053 

.0137 
.0138 

.0906 

.0169 

•5134 

.0303 

•0375 

38 

.oxx 

.7919 

.08 

.0169 

.5047 

.0304 

.0303 

39 
30 

.oxxx 
x.oxxz 

6.7655 

.0x38 
1*0x39 

6.^5^8 

.017 
X.017 

54874 

.0204 
X.O205 

.033 
5.0x58 

3» 

.oxxx 

•7533 

.0139 

.0483 

.0X7X 

.4788 

.0305 

.0087 

33 

.OXX3 

•739a 

.0x4 

.0379 

.0x71 

•4702 

.O306 

.0015 

33 

.OXZ3 

.7263 

.014 

.0374 

.0173 

.4617 

.0307 

4-9944 
-9873 

34 

.oxx  3 

.7'3a 

.0x41 

.0x7 

.0x73 

•4532 

.0307 

35 

X.0XX3 

6.7003 

X.0X4X 

6.0066 

1.0x73 

54447 

X.O308 

4.9803 

36 

.0XX4 

.6874 

.0x43 

59963 

.0x74 

.4362 

.0208 

.9732 

37 

.0x14 

.6745 

.0143 

.986 

.0x74 

.4278 

.0209 

.9661 

38 

.0x15 

.6617 

•0143 

.9758 

•0175 

.4194 

.03X 

•959' 

39 

.0x15 

.649 

•o«43 

•9655 

.0175 

.411 

.031 

•9521 

40 

X.OXZ5 

6.6363 

X.OX44 

5-9554 

X.0176 

5.4026 

X.03IX 

4-9452 

4X 

.oxx6 

.6237 

.0144 

•9452 

.0x76 

•3943 
.386 

.02XX 

.9382 

4a 

.oxx6 

.6x11 

.0x45 

9351 

.0x77 

.0213 

.9313 

43 

.OXX7 

.5985 

.0145 

.925 

.0177 

•3777 

.0213 

.9343 

44 

.01x7 

.586 

.0x46 

.915 

.0x78 

•3695 

.0213 

•9»75 

^^ 

x.oxxS 

6.5736 

X.0146 

5-9049 

1.0x79 

5-3612 

1.0214 

4.9106 

46 

.oxx8 

'^11 

.0x47 

•§25 

.0x79 

•353 

.0215 

•9037 
.8969 

47 

.0x19 

.5488 

.0x47 

.  .885 

.018 

•3449 

.0315 

4B 

.01x9 

.5365 

.0148 

.8751 

.018 

3367 

.0316 

.890X 

ri3 

49 

.0x19 

.5343 

.0x48 

.8653 

.oi8x 

.3286 

.03X6 

50 

I.OX3 

6.513X 

X.0149 

S8554 

X.0181 

53205 

X.02I7 

4.876s 

5z 

.013 

^878 

.015 

.8456 

.ox  8a 

3124 

.0318 

•2597 

5a 

.OX3X 

.0x5 

.8358 

.0183 

•3044 

.03X8 

.863 

53 

.OZ3X 

•4757 

.015X 

.8361 

.0183 

.2963 

.03x9 

.8563 

54 

.0x33 

•4637 

.OX5X 

.8163 

.0184 

3883 

.022 

.8496 

55 

1.0X33 

6.4517 

X.0153 

58067 

X.0184 

5.2803 

X.023 

4.8429 

S6 

.0133 

.4398 

.0153 

•797 

.0185 

.2724 

.033 1 

.8362 

s 

•0x33 

.4379 

.0x53 

•7874 

.0185 

•2645 

.033I 

.8296 

.0x34 

.416 

.0153 

.7778 

.0186 

.3566 

.0322 

.8229 

59 

.0134 

.4043 

.0154 

.7683 

.0186 

-2487 

.0323 

.8163 

60 

X.OI35 

6.3934 

1.0x54 

57588 

X.0187 

5.3408 

SmCAMT. 

1.0223 

4.8097 

CO'Oe'r. 

Sbcamt. 

Co^mm't. 

Skcamt. 

Co-nc'T. 

Co-nc'T. 

SlCAMT. 

8] 

P 

8C 

P 

7S 

>o 

7( 

|o 

60 

5 

57 
56 
55 

54 
53 
52 
5« 
50 

:i 

47 
46 
45 
44 
43 
42 

4» 

40 

12 

37 
36 
35 
34 
33 
32 
31 
30 

25 

24 

23 

22 
2X 
30 

;s 

17 
it 

IS 

M 
13 

12 
XX 

xo 


I 


7 
6 

5 

4 

3 

3 

X 

o 


qu^ 

Li       njLxuj 
120     1 

130        1 

UP            \ 

f 

SaOAMT. 

C»«BC*r. 

Sbcamt. 

CO-C90*T. 

4-4454 

Sbcamt. 

Co-mo't. 

Bbcabt. 

Co4B0*r. 

9 

o 

1.0333 

4.8097 

1.0363 

1.0306 

4- 1336 

X.0353 

3-8637 

"fc 

I 

.0334 

.8033 

.0364 

•4398 

.0307 

.1287 

0353 

.8595 

% 

a 

.0235 

.7966 

.0364 

.4342 

.0308 

.1239 

.0354 

.8553 

3 

.oaas 

.7001 
.7835 

.0365 

.4287 

.0308 

.X191 

•0355 

.8513 

57 

4 

.0336 

.0266 

.4231 

.0309 

"44 

.0356 

.847 

56 

5 

X.0326 

4-777 

1.0266 

4.4176 

X.031 

4.1096 

x.o35jr 
.0358 

38438 

55 

6 

.0227 

.7706 

.0267 

4121 

.0311 

.X048 

.8387 

54 

7 

.0328 

.7641 

.0268 

•4065 

.0311 

.XOOI 

.0358 

.8346 

53 

8 

.0328 

.7576 

.0268 

-4011 

.0313 

•0953 

.0359 

.8304 

52 

9 

.0229 

•75"2 

.0369 

.3956 

.0313 

.0906 

4-0859 

.036 

.8263 

5x 

lO 

i'C»3 

47448 

1.037 

4-3901 

X.0314 

1.0361 

3.8233 

5» 

ZI 

.023 

.7384 

.0371 

■3847 

.0314 

.o8i3 

.0363 

.8181  . 

^ 

Z2 

.0231 

.732 

.0371 

.3792 

.0315 

.0765 

.0363 

.814 

13 

.0333 

.7257 

.0372 

■3738 

.0316 

.0718 

•0363 

.81 

47 

14 

.0332 

•7*93 

•0373 

.3684 

0317 

.0672 

.0364 

.8050 
3.80x8 

46 

15 

1.0333 

4-7»3 

1.0273 

4-363 

X.0317 

4.0625 

X.0365 

45 

i6 

.0334 

.7067 

•0374 

•3576 

.03x8 

.0579 

.0366 

•7978 

44 

'7 

•0234 

.7004 

.0375 

.3522 

.0319 

.0533 

.0367 

•7937 
.7897 

43 

i8 

0335 

.6542 
.6879 

.0376 

•3469 

.033 

.0486 

.0367 
.0368 

42 

»9 

0235 

.0376 

•3415 

.033 

.044 

7857 

4x 

20 

1.0336 

4.6817 

1.0377 

4-3362 

X.033X 

4-0394 

X.0369 

3.78x6 

40 

31 

.0337 

.6754 

.0278 

•3309 

.033a 

.0348 

•037 

.7776 

^ 

3a 

•0237 

.6692 

.0278 

•3256 

-0333 

.0303 

•037X 

•7736 

33 

.0238 

6631 

•0379 

•3203 

.0333 

.0356 

•037X 

.7697 

37 

»4 

.0339 

.6569 

.038 

•3»5 

.0334 

OSII 

.0373 

♦7657 

36 

25 

x.«*39 

4-6507 

Z.038 

4-3098 

1.0325 

4-0165 

X.0373 

3.76x7 

35 

a6 

.034 

.6446 

.0381 

•3045 

.0336 

.OX3 

•0374 

'7577 

34 

'2 

.0341 

.6385 

.0383 

.2993 

.x»337 

.0074 

-0375 

.7538 

r3 

38 

.0341 

.6324 

.0383 

.2041 
.2888 

.0337 

.0029 

•Q376 

.7498 

3a 

29 

.0342 

.6263 

.0383 

.0338 

3-9984 

•0376 

•7459 

3x 

30 

X.0343 

4.630a 

X.0384 

42836 

Z.0339 

3-9939 

X0377 

3-742 

30 

3« 

.0343 

6143 

0285 

.2785 

•033 

.9894 

.0378 

.738 

^ 

3a 

.0344 

6081 

.0385 

•2733 

•033 

•985 

.0379 
.038 

•734X 

33 

.0345 

-.6021 

.0286 

.3681 

•0331 

.9805 

.7303 

37 

J4 

•0245 

.5961 

■*^5z 

.363 

.0333 

.976 

.0381 

•7263 

36 

35 

Z.0246 

4- 5901 
•5841 

Z.0288 

4-2579 

10333 

3-97x6 

X.0383 

';JS 

25 

36 

.0347 

.0288 

•2527 

•0334 

•9672 

.0383 

24 

37 

•0247 

.5783 

.0389 

•2476 

•0334 

.9637 

.0383 

•7x47 

23 

38 

.0948 

•5723 

.039 

•2425 

•0335 

•9583 

.0384 

.7x08 

«3 

39 

.0349 

.5663 

.0391 

•2375 

.0336 

•9539 

•*»385 

.707 

2X 

40 

1.0249 

4-5604 

Z.0391 

4-2324 

«o337 

3-9495 

X.0386 

3-703X 

ao 

41 

.035 

•5545 

.0393 

•2373 

.0338 

•945X 

.0387 

•6993 

:s 

42 

.0351 

.5486 

.0293 

•3333 

.0338 

■9408 

■^A 

•6955 

43 

.Q351 

•5428 

.0293 

•«'73 

•0339 

.9364 

•^A 

X7 

44 

•0352 

•5369 

•0394 

.2X32 

•034 

.932 

.0389 

x6 

45 

1.0353 

4-53" 

Z.039S 

4.3073 

1.0341 

39277 

1.039 

3-S* 

X5 

46 

•0253 

•52S3 

.0396 

•  a033 

•0341 

.9934 

.0391 

.6803 

X4 

'^S 

•0254 

•5^95 

.0396 

.1973 

.0342 

•9x9 

.0393 

.6765 

X3 

48 

•0255 

•5137 

.0397 

.0398 

.X923 

.»873 

•0343 

•9x47 

•0393 

'^.V 

la 

49 

.0255 

.5079 

•0344 

♦9x04 

•0393 

.6689 

II 

50 

Z.0356 

4-502J 

I.0399 

4.1824 

>-o345 

3.9061 

X.0394 

3.665s 

10 

51 

.0257 

4964 

.0399 

•X774 

•0345 

.0018 
.8976 

•0395 

.6614 

1 

52 

•0257 

•4907 
.485 

•03 

•«7«5 

.0346 

.0396 

.6576 

53 

.0258 

.030X 

.1676 

•0347 

•8933 

.0397 
.0398 

•6539 

7 

54 

.0359 

•4793 
4-4736 

030a 

.1637 

.0348 

3-1^® 

.650a 

6 

55 

X.036 

Z.0303 

4-«578 

X0349 

X.0399 

3-6464 

5 

56 

.oa6 

.4679 

.0303 

.X529 

.0349 

.8805 

.0399 

.6497 

4 

^2 

.0961 

.4623 

•0304 

.1481 

•035 

.8763 

•04 

•639 

3 

58 

.0963 

.4566 

•0305 

.X432 

.1384 

4-X336 

.0351 

.8791 

.040X 

:§S 

a 

1? 

.096a 

•451 

.0305 

.0353 

.8679 

.0403 

I 

60 

1.0363 

4-4454 

1.0306 

X0353 

3-8637 

1.0403 

3.6979 

0 

« 

Co.«M'T. 

BSOAMT. 

Ce-wo*r. 

Swam*. 

C<H»c'r. 

8MAKT, 

Co^m't. 

SgoAiiv. 

9 

r 

ro 

7< 

f9 

7< 

P 

7< 

10^ 

1 

KATUAAYi  S:RCA^fT8 

AND 

CQ-8KCANTS. 

ji 

[O7 

I60     1 

170 

1     180 

190 

p 

SpCAMT. 
1.0403 

Co-s«c't.| 
3.6279 

Srcant. 

Co-«sc't. 

1  SSCANT. 

Co-8*C'T. 

Secant. 

Co-sec't. 

f 

»0457 

34203 

1.0515 

33361 

1.0576 

30715 

6» 

^ 

I   -0404 

•6343 

.0458 

.417 

.0516 

.2332 

•0577 

.U004 

!? 

a 

.0405 

.6206 

.0459 

.4138 

.0517 

.2303 

.0578 

3 

.0406 

.6169 

.046 

.4106 

.0518 

.2274 

.0579 

.0638 

57 

4 

.0406 

.•6133 

.0461 

•4073 

.0519 

,.2245 

.058 

.0612 

56 

1.0407 

llSf 

1. 0461 

3-4041 

1.052 

3.2216 

1.0^81 

3.0586 

55 

0 

.0408 

.0462 

.4009 

.0521 

.2188 

.0582 

.0561 

54 

1 

.0409 

.6034 

.0463 

•3977 

.0522 

•2159 

-0584 

.0535 

53 

•041 

.5987 

.0464 

•3945 

•0523 

.2131 

.0585 

.0509 

52 

9 

.0411 

«S95i 

.0465 

.3913 
3-3881 

.0524 

.2I02 

.0586 

-0484 

51 

• 

lO 

i.Orfia 

3-5915 

1.0466 

1.0525 

32074 

1.0587 

30458 

50 

II 

•04x3 

.5879 

.0467 

.3849 

.0526 

•2045 

.0588 

•0433 

Jl 

13 

•0413 

•5843 

.0468 

•3817 

.0527 

.2017 

.0589 

.0407 

ta 

.0414 

.5?07 

.0469 

•3785 

.0528 

.1989 

-059 

•0382 

47 

>4 

•0415 

.5772 

.047 

.3754 

•0529 

.196 

.0591 

•0357 

46 

«5 

1.0416 

3-5736 

1.0471 

33722 

1-053 

3-1932 

1.0592 

3-033X 

45 

i6 

.0417 

•57 

.0472 

.369 

-0531 

.1904 

-0593 

.0306 

44 

«7 

.0418 

.5665 

•0473 

.3659 

.0532 

.1876 

•0594 

.0281 

43 

i8 

.0419 

.5629 

.0474 

•3627 

•0533 

.1848 

•0595 

0256 

42 

»9 

.04a 

•5594 

-0475 

•3596 

3-3565 

•0534 

.182 

.0596 

.02^1 

4* 

ao 

1.043 

3-5559 

1.0476 

10535 

3- 1792 

X.0598 

30206 

40 

21 

.0431 

•5523 

.0477 

•3534 

.0536 

.1764 

•0599 

.0181 

P 

aa 

.0432 

.5488 

.0478 

•3S03 

•0537 

•1736 

.06 

.0156 

23 

.0423 

•5453 

,0478 

•3471 

•0538 

.1708 

.0601 

.0131 

37 

84 

.0434 

•5418 

.0479 

•344 

•0539 

.1681 

.0602 

.0106 

3^ 

'5 

1.0425 

3.5383 

1.048 

3-3409 
•3378 

"•054 

3.1653 

1.0603 

3.0081 

35 

a6 

.0436 

•5348 

.0481 

'O54I 

1625 

.0604 

.0056 

34 

»7 

.0437 

•5313 

.0482 

•3347 

•0542 

.1598 

.0605 

0031 

33 

38 

.0438 

•5379 

•0483 

.3316 

•0543 

157 

.0606 

.0067 

32 

39 

.0438 

•5244 

.0484 

.3386 

0544 

-1543 

.0607 

3.9982 

3» 

30 

1.0439 

3.5909 

1.048s 

3-3255 

I- 0545 

3- 1 51 5 

1.0608 

29957 

30 

3x 

•043 

•5175 

.0486 

•3224 

.0546 

.1488 

.0609 

9933 

^ 

3a 

•043" 

.514^ 

•^5z 

.3194 

•0547 

.1461 

.0611 

:9?84 

33 

.0433 

.5106 

.0488 

•3163 

•0548 

•1433 

.C6l2 

*z 

34 

•0433 

.5073 

.0489 

•3133 

•0549 

.1406 

.0613 

•9859 

36 

35 

«%0434 

3-5037 

1.049 

3.3103 

I- 055 

3- 1379 

1.0614 

2.9835 

25 

36 

•0435 

.5003 

.0491 

•3072 

•0551 

•X352 

.0615 

.981 

24 

37 

.0436 

•4969 

.0492 

•3042 

•0552 

•1325 

.0616 

.9786 

23 

38 

♦0437 

•4935 

.0493 

.3011 

•0553 

.1298 

.0617 

.9762 

32 

39 

.0438 

•'♦S^' 

.0494 

.3981 

•0554 

.1271 

.o6it^ 

•9738 

31 

40 

1.0438 

3-.4867 

1.049s 

3-2951 

I- 055s 

3.1244 

1. 0619 

2.9713 

SO 

41 

•0439 

•4*33 

.0496 

.2921 

'05«6 

1217 

062 

9689 

\t 

4a 

.044 

•4799 

.0497 

.2891 

•0557 

.119 

.0622 

.9665 

43 

.0441 

.4766 

.0498 

.3861 

.0558 

1163 

.0623 

.  .9641 

'I 

44 

.0443 

•4732 

.0499 

.3831 

0559 

"37 

.0624 

.9617 

t6 

45 

J.0443 

3-4698 

1.05 

3.3801 

1.056 

3- III 

1.0625 

2.9593 

X5 

46 

•<H44 

4665 

■  05«i 

.2773 

.0561 

.1083 

.0626 

•9569 

X4 

:i 

•0445 

.4632 

.0502 

•2742 

.0562 

1057 

.0627 

•9545 

x5 

.0446 

•0503 

■  2712 

.0563 

.103 

.0628 

.9521 

13 

49 

•0447 

.4565 

.0504 

.3683 

.0565 

.1004 

.0629 

•9497 

II 

50 

J.0448 

3-453* 

1,0505 

32653 

1.0566 

3-0977 

1.063 

2.9474 

10 

5» 

.0448 

.4498 

.0506 

.3634 

.0567 

•0951 

■  0632 

-945^ 

1 

sa 

.0449 

•4465 

.0507 

•2594 
•2565 

.0568 

.0925 
.0898  i 

.0633 

.9426 

53 

045 

.4432 

.0508 

.0569 

•0634 

-9402 

7 

54 

•<H5« 

•4399 

.0509 

•2535 

•057 

.0872 

•0635 

-9379 

6 

55 

1.045a 

34366 

1.051 

32506 

»o57.i 

3-0846 

1.0636 

2.9355 

5 

•<HS3 

•4334 

.0511 

.3477 

•0572 

082  1 

-0637 

9332 

4 

57 

•0454 

>430^ 

.0512 

-2448 

•0573 

•0793 

.0638 

•9308 

3 

58 

•0455 

.4368 

•0513 

.3419 

•0574 

.0767  1 

•0639 

.9285 

3 

59 

.0456 

4236 

•0514 

•  239 

•0575 

.0741 

.0641 

.9261 

I 

60 

1,0457 

3^4203 

1-0515 

3-2361 

1.0576 

30715 

1.0642 

3.9238 

0 

GO^MC'T.I 

8«C4«T. 

Co-fBC'T. 

SmcAvr. 

Co-beo't. 

Secant.  , 

;  CO-SEC'T. 

Secant. 

r 

75 

P      1 

li 

yy 

V 

.0      1 

1     7C 

)0 

4o8 


NATURAL   SECANTS  AND  CO-SECANTB. 


200      1 

f 

Skcaht. 

Co-sbc't 

o 

1.0642 

2.9238 

X 

.0643 

•9215  , 

3 

.0644 

.9191  1 

3 

.0645 

.9168 

4 

.0646 

•9M5 

5 

X.0647 

2.9122 

6 

.0648 

.9098 

\ 

.065 

•9075 

.0651 

.9052 

9 

.0653 

.9029 

lO 

X.0653 

3. 9006 

XX 

.0654 

.8983 

12 

•065s 

.896 

X3 

.0656 

•8937 

X4 

15 

.0658 
x.0659 

.8915 
2.8892 

16 

•u66 

.8869 

X7 

.0661 

.8846 

z8 

.0662 

.8824 

19 

.0663 

.8801 

10 

1.0664 

2.8778 

ax 

.0666 

.8756 

33 

.0667 

•8733 

as 

.0668 

.8711 

24 

.0669 

.8688 

?5 

X.067 

2.8666 

26 

.0671 

■8644 

27 

.0673 

8621 

28 

.0674 

.8599 

39 

.0675 

•8577 

30 

X.0676 

a.  8554  , 

3x 

.0677 

.8532 

3a 

.0678 

.851 

33 

.0679 

.8488 

34 

.0681 

.8466 

35 

1.0682 

a.8444 

36 

.0683 

.8422 

% 

.0684 

84 

.0685 

•8378 

39 

.0686 

.8356 

40 

1.0688 

2-8334 

4x 

.0689 

.8312 

4a 

.069 

.829 

43 

.0691 

.8269 

44 

.0692 

.8247 

45 

X.0694 

3.8225 

46 

.0695 

.8204 

47 

.0696 

.8182 

48 

.0697 

.816 

49 

.0698 

.8139 

50 

1.0699 

2.8117 

5x 

.0701 

.8096 

5a 

.0702 

.8074 

53 

.0703 

.8053 

54 

.0704 

.8032 

55 

1.0705 

2.801 

56 

.0707 

:J^ 

57 

.0708 

58 

.0709 

•7947 

59 

.071 

•7925 

60 

1.0711 

3.7904 

f 

Co-«bc't. 

Secant. 
)0 

210 

f 

220        1 

Secant.  ,  Co-«bc't. 

Secant. 

Co-sec't. 

1.0711   3 

7904 

X.0785 

2.6695 

.0713 

7883 

.0787 

.6675 

.0714 

7862 

.0788 

.6656 

.0715 

7841 

.0789 

•5S37 

.0716 

782 

.079 

.6618 

1.0717   2 
.0719 

7799 
.7778 

X.0792 
•0793 

'1^ 

.072 

7757 

.0794 

.6561 

.0721 

•7736 

.0795 

•6542 

.0722 

77x5 

.0797 

•6523 

1.0723   2 

7694 

X.0798 

3.6504- 

.0725 

7674 

.0799 

6485 

.0726 

7653 

.0801 

.6466 

.0727 

.7632 

.0802 

•5**2 

.0728 

7611 

•0803 

.6428 

1.0729   2 

7591 

1.0804 

2.641 

.0731 

757 

.0806 

.6391 

.0732 

755 

.0807 

6373 

•0733 

7529 

.0808 

•6353 

.0734 

?J^ 

.081 

6335 

1.0736   2 

1.0811 

3.6316 

•0737 

.7468 

.0812 

.6297 

0738 

•7447 

.0813 

•^2^ 

.0739 

7427 

.0815 

.636 

.074 

7406 

.0816 

.6242 

1.0742   3 

7386 

X.0817 

2.6223 

•0743 

.7366 

.0819 

.6205 

.0744 

7346 

.083 

.6186 

•0745 

7325 

.0831 

.6168 

.0747 

7305 

.0833 

•615 

1.0748   2 

7285 

X.0824 

3.613X 

.0749 

7265 

.0825 

.6113 

•075 

7245 

.0826 

.6095 

0751 

7225 

.0828 

.6076 

•0753 

7205 

.0839 

.6058 

1.0754   2 

7x85 

X.083 

3.604 

0755 

7165 

.0833 

.6022 

.0756 

7x45 

.0833 

.6003 

.0758 

7125 

•°2^i 

•5985 

.0759 

•7x05 

.0836 

.5967 

1.076    2 

7085 

X.0837 

a.  5949 

.0761 

7065 

.0838 

•593X 

.0763 

7045 

.084 

•5913 
•5895 

.0764 

7026 

.0841 

.0765 

7006 

.0843 

•5877 

1.0766   2 

6986 

1.0844 

a.  5859 

.0768 

6967 

•0845 

.^84x 

.0769 

6947 

.0846 

.5823 

.077 

6927 

.0847 

.5805 

.0771 

•52°f 

.0849 

•5787 

1.0773   2 

6888 

1.085 

3.577 

.0774 

.6869 

.0851 

•575a 

.0775 

.6849 

•0853 

•5734 
•57x0 

.0776 

.683 

•0854 

.0778 

.681 

•0855 

3^^ 

1.0779    3 

6791 

X.0857 

.078 

.6772 

.0858 

.5663 

.0781 

.6752 

.0859 

.5646 

.0783 

•6733 

.0861 

.5628 

.0784 

6714 

.0863 

.56X 

1.0785    3 

6695 

1.0864 

2-5593 

Co-iEC*T.  Si 

SCANT. 

Co-«bc't. 

SSCART. 

68° 

^i 

ro 

230 

Secant,  i  Co«ae'r. 


1.0864 
.0865 
.0866 
.0868 
.0869 

X.087 
.0873 
.0873 
.0874 
.0876 

X.0877 
.0878 
.088 
.o88x 
.0883 

X.0884 
.0885 
.0886 
.0888 
.0889 

X.089X 
.0893 

0893 
.0895 
.0896 
1.0897 
.0899 
.09 
.0903 

•0903 
1.0904 

.0906 
.0907 
.0908 
.09X 
X.091X 

•09»3 
.0914 

•09«5 
.0917 

X.09X8 
.093 
.093X 
.0933 
.0934 

X.0925 
.0927 
.0938 
.0939 

•093X 
X.0933 

•0934 

•0935 
.0936 

.0938 

«o939 
.0941 

.0943 

•0943 
•0945 
.0946 


a.  5593  60 
•5575  59 
•5558  58 
•554  57 
•5523   56 

a- 5506   55 

•5488   54 

•547"   53 

5453   5a 

.5436   5X 

a.  54x9  50 
•5402 
•5384 
•5367  1  47 
•535    46 

a.  5333  I  45 
•53«6  I  44 

•5299  t  43 

,5381  {  4a 

4X 

40 


.5264 
a.  5347 
•5a3 
•sax  3 
.5x96 

•5x79 
a.  5163 

.5x46 
•5X89 
.51x3 

•S095 
8.5078 

.5063 

5045 
.5oa8 
.50XX 
a- 4995 
•4978 
.4961 

•4945 
.4938 

3.4913 

•4895 

•4879 
.4863 

.4846 

3.4839 

•4813 
.4797 
.478 

•4764 
3.4748 

•473> 
•47x5 


a.  4666 
.465 

•4634 
.4618 

.4603 
3.4586 


Co.«bc't.    8MAir& 
60O 


% 


3« 
37 
36 
35 
34 
33 
3a 
3x 
30 

a? 
a6 

as 

a4 
as 
aa 
ai 


»7 

16 

15 
«4 
«3 
la 

XX 

10 

I 

7 
6 

5 
4 
3 


z 
o 


HATDBAL  SECANTS  AND   C0-SBCANT3. 


409 


240      1 

250      11 

aeo        ij 

270 

9 

SaCAMT. 

Co-ac*T. 

SiCAirT. 

Co<«bo't.  Si 

WAirr. 

CO.«BC*T.   SaCAMT. 

004I0*T. 

# 

0 

1.0946 

2.4586 

1.X034 

2. 3662   X 

XX26 

3.2813  j   I. 

1223 

2.2037 

60 

I 
3 

.0948 
.0949 

.457 
•4554 

•1035 
•J037 

.3647 
.3632 

XX27 
1x29 

::?!!!  : 

X225 
X226 

.20X4 
.2002 

li 

3 

.0951 

.4538 

.1038 

.3618    . 

.1x31 

.2771  i  , 

X228 

.1989. 

57 

4 

.0952 

.4522 

.X04 

•3^2 

1 132 

•2757  i    . 

123 

•1977 

56 

5 

X0953 

2.4506 

X.X041 

2.3588   I 

"34 

2.2744   X. 

X23X 

2.1964 

'55 

6 

•0955 

.449 

•«043 

.3574 

"35 

•273 

1233 

.1952 

54 

7 

.0956 

.4474 

.1044 

.3559 

'"37 

.2717 

1235 

.1939 

53 

8 

.0958 

.4458  1 

.X046 

•3544 

"39 

.2703 

1237 

.1927 

52 

9 

.0959 

.4442  1 

.X047 

•353 

"4 

•'^A 

1238 

.1914 

5' 

10  '  X.0961 

2.447.6 

1. 1049 

2.3515   « 

X142 

2.2676  1  I. 

124 

2.X902 

50 

II 

.0962 

•44"  ' 

.X05 

.3501 

•"43 

.2663 

1242 

.X889 

% 

12 

.0963 

•4395  ; 

.1052 

.3486  : 

"45 

.265  ,    . 

»243 

•'2f 

'3 

•0965 

"•4379 

•«053 

•3472  ,   . 

"47 

.2636 

»245 

.1865 

47 

14  1  .0966 

•4363  . 

'X055 

•3457  i   ■ 

.1x48 

.2623 

X247 

.1852 

46 

15  1  X.0968 

a- 4347  ' 

X.  1056 

23443  '  I 

"5 

2.261    X 

1248 

2.184 

45 

16  ,  .0969 

4332 

.1058 

.3428 

"5« 

.2596 

X25 

.1828 

44 

"7 

.0971 

.4316 

.1059 

•3414 

'"53 

.2583 

1252 

.1815 

43 

iS 

.0972 

•43 

.X061 

•3399  i 

"55 

.257 

«253 

•1803 

42 

19  I  '0973 

•4285  ; 

.1062 

•3385  i 

.1x56 

.3556 

1255 

.1791 

4' 

20  ;  1.0975 

2.4269 

Z.1064 

2.3371  ;   » 

"58 

3.2543     ' 

1257 

2.1778 

40 

21 

.0976 

•4254 

.X065 

3356  \ 

"59 

.253 

1258 

.1766 

39 

22 

.0978 

.4238 

•'°fz 

•3342  i   . 

.X161 

.2517 

.126 

>754 

38 

23 

.0979 

.4222 

.1068 

.3328  , 

>"63 

2503 

.X262 

•'742 

37 

24 

.0981 

.4207 

.107 

.33*3  1 

.XX64 

.249 

1264 

•173 

36 

25 

1.0982 

2.4191 

1. 1072 

2.3299   X 

xx66 

2.2477   i  » 

.1265 

2.X717 

35 

26 

.0984 

.4176 

'«o73 

•3285  1   . 

.X167 

.3464  ; 

1267 

•'705 

34 

27 

.0985 

.416 

•1075 

•3271 

XX69 

•245' 

.1269 

::^? 

33 

28 

.0986 

•4«45 

.X076 

•3256  ' 

.XX7X 

.2438  , 

.X27 

32 

39 

.0988 

•413 

.X078 

•3242  1 

>II72 

•2425 

1272 

.1669 

3' 

30 

X.0989 

2.4x14 

X.1079 

2.3228  1  X 

"74 

3. 341 1   X 

.1274 

2.1657 

30 

31  j   0991 

32  !  0992 

.4099 
.4083 

.io8x 
.X082 

.•32x4  1 
•32 

.1x76 
"77 

.3308 
.2385 

•1275 

.X277 

.1645 
•'633 

,1 

33  1   0994 

.4068 

.  .1084 

.3186  I 

•"79 

.2372  , 

.1279 

.162 

37 

34 

•0995 

•4053 

.X085 

•3«72 

.1x8 

•2359  ' 

.1281 

.x6o8 

36 

35 

10997 

2.4037 

1.X087 

2.3158   X 

.1x82 

2.3346  1  X 

.1282 

2.1596 

25 

36 

.0998 

.4022 

.X088 

•3143 

.XX84 

•2333 

.1284 

•1584 

24 

37 

.1 

.4007 

.109 

.3129 

XX85 

.233 

.X286 

•'572 

23 

38 

.XOOI 

•3992 

.1092 

•3"5 

.XX87 

.3307 

1287 

.156 

33 

39 

.X003 

•3976 

•«o93 

.3101 

.XX89 

.3304 

3.2282   X 

.X289 

•'548 

21 

40 

1. 1004 

2.3961 

X.X095 

2.3087   I 

"9 

X291 

2.1536 

so 

41 

.1005 

3946 

.XO96 

•3073 

.1x92 

.2269 

•1293 

•1525 

11 

42 

.1007 

.1008 

•3931 

1098 

•3059 

"93 

.2256 

X294 

•«5i3 

43 

.3916 

.X099 

.3046 

"95 

•2243 

X296 

.X50X 

'^ 

44 

■  xox 

2!3it86 : 

.XIOX 

.3032 

.X197 

.223 

X298 

•1489 

16 

»5 

Z.XOIZ 

X.XI02 

2.3018   X. 

XX98 

2.22x7   X 

1299 

2.X477 

15 

46 

•xox  3 

^  .3871  ! 

.1x04 

•3004 

•  X2 

.2204 

1 301 

•'46s 

'4 

47 

.XOZ4 

3856 

.ZI06 

•299,  1 

.X20t 

•2x93 

1303 

•1453 

13 

48 

.xox6 

.3841 

.1107 

.2976 

.X203 

.2179 

X305 

•'44' 

13 

49 

.XOX7 

.3826 

.XXO9 

.2962 

.?205 

.2166  1 

X306 

•'*3„ 

11 

50 

X.X019 

2.38II  1 

X.XXI 

2.2949   X 

.1307 

2.2153   »■ 

1308 

2.14x8 

XO 

51 

.Z03 

.3796  : 
.3781 

.1X12 

.2935 

.1:208 

.2x41  I 

«3i 

.X406 

% 

5a 

.xo3a 

.11X3 

.2921    1 

Z3X 

.3X88 

.1312 

•1394 

53 

.1023 

.3766 

.XXI5 

.2907 

13X3 

.2115 

»3i3 

.X383 

7 

54 

.1025 

•375'  1 

.xxx6 

^288    X. 

1313 

.2103 

'X.315 

•'37» 

6 

55 

X.X036 

2.3736  I 

z.zxx8 

X3X5 

3.309     ' 

1317 

2'359 

5 

56 

.X038 

•3721  1 

•ZX2 

.2866 

X3I7 
X2XB 

.3077 

1319 

•'347 

4 

57 

.X039 

.3706 

.XX2X 

.2853 

.3065 

132 

•'335 

3 

58 

.X03X 

.369' 

.1x23 

.2839     . 

123 

.2053 

1322 

•'324 

3 

59 

.X032 

.1134 

.2825 

X333 

•2039 

1324 

.13x2 

I 

to 

»io34 

2.3662 

I.XX26 

2.2813   I- 

1223 

2.2027    I 

1326 

2.13 

0 

» 

Co^w**.' 

Sbcajiv. 

Co<no*r. 

Sbcast.   Cc 

hsbc't. 

SlCAMT.  ,  Cc 

>-8BC'T. 

Smaot. 

tt 

P 

ti 

Mm 

6: 

v>         1 

6S 

to 

4IO 


NATURAL   SBCAKTS    AND   CO-&BCAI9TB. 


280     1 

290        1 

30O     1 

810 

1 

/ 

StCAMT. 

CO-IBC'T. 

S>e«wT. 

Co-b«c't. 
2.0627 

Saciinr. 

Co-tscf. 

StcAfT. 

C04M*». 

* 
"60 

o 

1.1326 

2.13 

I- 1433 

'•'547 

2 

1.1666 

1.94x6 

z 

•1327 

.1289 

.1435 

.0616 

.'549 

•:^ 

.1668 

9407  1  59 
•9397   58 

2 

.1329 

.1277 

•1437 

•0605 

•1551 

.167 

3 

.1331 

.1266  ! 

.1439 

.0504 
•0583 

•'553 

•997 

.1672 

9388  .  57 

4 

"333 

"54  1 

.1441 

.'555 

.996 

'^^i 

9378  I  56 

I 

H334 

2.1242 

i«443 

2.0573 

'•'557 

'•995 

I  X070 

I 

9369  1  55 

•1336 

.1231 

.1445 

.0562 

■'559 

•994 

'!2* 

936 

54 

I 

•1338 
•134 

.1219 
.1208 

.1446 
.1448 

•055' 
•054 

.1561 
.1562 

•993 
.992 

.x68x 
1683 

935 
934' 

53 

52 

9 

•1341 

.1196 

2.x  185 

■«45 

•053 

.'564 

.991 

.1685 

9332 

5« 

lO 

I- 1343 

1. 1452 

2.0519 

1.1566 

'•99 

1.1687 

I 

9322 

50 

II 

.'345 

x«73 

.'454 

•0508 

.1568 

•S 

.1689 

93'3 

49 

12 

.1347 

.1162 

.1456 

.0498 

•'57 

1691 

■9304 

48 

13 

•1349 

•"5 

.1458 

.0487 

•'572 

•^ 

.1693 

9295 
.9285 

47 

M 

•»35 

•"39 

•1459 

.0476 

•'574 

.986 

.1695 

46 

15 

1x352 

2.1127 

X.  1461 

2.0466 

1. 1576 

X.985 

X.X697 

1 

9276' 

45 

i6 

•»354 

.1x16 

.1463 

•0455 

•'578 

.984 

.1699 

9267 

44 

]l 

•1356 
•1357 

.XX04 
.1003 
.X082 

.1465 
.1467 

.0444 
.0434 

.'58 
.1582 

•983 

.982 

.1701 
•'703 

9358 
9248 

43 
42 

>9 

•1359 

.1469 

.0423 

•'5?4 

.9811 

•'705 

9*39 

4' 

20 

1.1361 

2.107 

1.1471 

2.0413 

1. 1586 

I.980I 

1. 1707 

I. 

923 

40 

2X 

•1363 

.X050 

•M73 

.0402 

.1588 

.9791 

.1709 

9321 

II 

22 

.1365 

.1048 

.1474 

.0302 

.0381 

.'59 

■978' 

.1712 

9212 

33 

.1366 

.1036 

1476 

•'592 

•977' 

•'7'4 

9203  1  3? 

^ 

.1368 

1025 

•1478 

•037 

•1594 

.9761 

.17x6 

9193   36 

"1 

i»37 

3. 1014 

X.148 

2.036 

x.'596 

'•9752 

1.17x8 

I 

9'84   35 

26 

•1372 

.1002 

.1482 

•0349 

.1598 

.9742 

.172 

9' 75   34 

'I 

•1373 

:SP' 

.1484 

•0339 

.16 

•9732 

.1733 

9166  1  33 

38 

•1375 

.i486 

.0329 

.0318 

.1602 

.9732 

.1724 

9' 57  j  32 

29 

•»377 

.0969 

.1488 

.1604 

•97»3 

.X726 

9148   31 

30 

I- 1379 

2.0957 

1.1489 

2.0308 

X.1606 

'•9703 

1. 1728 

I 

9139   30 

3» 
32 

•  X381 
.1382 

.0946 
•0935 

.1491 
•M93 

.0297 

.0287  1 

.1608 
.i6i 

•^l 

•'73 
•'732 

913  I  20 
9121  1  28 

33 

.1384 

.0924 

.'495 

.0276 

.1612 

.9674 

•'734 

.9x12   27 

34 

.1386 

.0913 

•'497 

.0266 

.1614 

.9664 

•'737 

9102   36 

35 

1. 1388 

2.0901 

'•'499 

2.0356 

1.16x6 

1.9654 

1. 1739  '  ' 

9093   3S 
9084  '  34 

36 

•»39 

.089 

.1501 

.0345 

.x6x8 

•9645 

•'74' 

37 

•139' 

.0870 
.0868 

•'503 

•0335 

.163 

•9635 

.1743 

9075   23 

38 

•1393 

•'505 

.0224 

.1622 

.9625 

,   '745 

9066   33 

39 

•1395 

•°!57 

•1507 

.0314 

.1624 

.96^ 

•'747 

9057    31 

40 

I- 1397 

2.0846 

X.X508 

2.0204 

1.1626 

1.9606 

'•'749 

I 

9048 

30 

41 

•1399 

0835 

•'5' 

.0194 
•0183 

.1628 

.9596 
•9587 

.^75' 

•9039 

\l 

42 

.140X 

.0824 

.15x2 

.163 

•'753 

903 

43 

.1402 

.0812 

•I5'4 

.0173 

.1633 

.9577 

.1756 

9021 

'7 

44 

.1404 

.0801 

.15x6 

.0163 

.'634 

.9568 

.'758 

9013 

x6 

45 

1. 1406 

2.079 

x.i5'8 

2.0152 

1. 1636 

'•9558 

X.176 

I. 

9004 

'5 

46 

.1406 

.0779 

•152 

.0142 

.1638 

•9549 

.1762 

8995 

'4 

47 

.141 

.0768 

.1522 

.0132 

.164 

■9539 

:;^ 

8906 

'3 

48 

.Z411 

.0757 

•'524 

.ox  22 

.1642 

•953 

8977 

13 

49 

•1413 

.0746 

.1526 

.01x1 

.1644 

•952 

.1768 

8968 

XI 

50 

1.1415 

20735 

X.X528 

2.0I0I 

1. 1646 

1.951 

'•'77 

X- 

8959 

10 

5« 

.1417 

•0725 

•153 

.0001 

.oo8x 

.1648 

.9501 

.1773 

2?5 

1 

52 

.1419 

.0714 

•'53' 

.165 

.9401 
.9489 

■'775 

8941 

53 

.1421 

.0703 

•'533 

.0071 

.1652 

.1777 

8932 

7 

54 

.1422 

.0692 
2.o68i 

•1535 

.0061 

.1654 

•9473 

.1779 

8934 

6 

55 

1. 1424 

'•'537 

2.005 

1. 1656. 

1.9463 

1. 1781 

X. 

89' 5 

5 

56 

.1426 

.067 

•1539 

.004 

.'658 

•9454 

•'783 

8906 

4 

57 

.1428 

::^^ 

.'54' 

.003 

.166 

•9444 

.'785 

8897 

3 

58 

•143 

•'543 

.002 

1662 

•9435 

.1787 

888« 

a 

f9 

•1432 

•0637 

•'545 

.001 

.1664 

•94«5 

•«79 

8879 

1 

60 

11433 

2.0627 

'•'547 

2 

x.x666 

1.9416 

1. 1792 

X 

8871 

0 

f 

Co<wc't. 

SCCANT. 

Co-MCt. 

Sbcamt. 

Co-nc'T. 

SCCAMT. 

C04BC*T. 

Sac  AST. 

T" 

c; 

I''        1 

6< 

)« 

6$ 

}<» 

« 

P 

1 

KATtTBAL   SBCANTS  ASt)  C0-6BCAKT8. 


411 


Sto     1 

3SO     1 

Smaxt. 

Co-«ae^. 

Sbcaht. 

Co^ae'T. 

0   X 

1792 

1.887 1 

1. 1924 

1.8361 

I 

>794 

.886a 

.1926 

.8352 

a 

.1796 

.8853 

.1928 

•8344 

3 

1798 

.8844 

•»93 

8336 

4 

18 

■  8836 

"933 

.8328 

5   I 

x8oa 

1.8837 

«'935 

«.833 

6 

1 80s 

.8818 

•1937 

.8311 

7 

1807 

.8809 

.1939 

•8303 

8 

1809 

.8801 

.1943 

.8a95 
.8387 

9 

x8ii 

.8703 
1.8783 

•»944 

10   X 

1813 

1.X946 

X.8379 

II 

.1815 

.8785 

.1948 

.8271 

xa 

1818 

.8766 

•i95« 

8263 

«3 

183 

.8757 

•»953 

•8255 

«4 

.x8aa 

.8749 

•»955 

.8246 

«5   X 

i8a4 
.1836 

1.874 

1. 1958 

1.8338 

x6 

.8731 

.196 

•823 

«7 

1838 

.8723 

.1963 

.8333 

x8 

1831 

.8714 

.1964 

.8314 

«9 

'833 

.8706 

.1967 

.8ao6 

ao   X 

1835 

1.8697 

1.1969 

1. 8198 

ax 

"837 

.8688 

.1971 

.819 

aa 

1839 

.868 

"974 

.8x83 

«3 

1841 

.8671 

.1976 

•8174 

«4 

'844 

.8663 

.1978 

.8166 

as   I 

1846 

I.86S4 

1. 198 

1.8158 

a6 

1848 

.8646 

.1983 

.815 

a7 

185 

.8637 

.1985 

.8143 

a8 

1852 

.8629 

'.1987 

•8134 

«9 

1855 

.862 

.199 

•8136 

30   X. 

1857 

1.8611 

1. 1992 

X.8118 

31 

1859 

.8603 

"994 

.811 

32 

x86i 

.8595 

.1997 

.8103 

33 

1863 

.8586 

.1999 

.8094 

34 

x866 

■8578 

.aooi 

.8086 

35   I 

1868 

1.8569 

1.2004 

X.8078 

36 

187 

.8561 

.S006 

.807 

37 

1873 

.8552 

.2008 

.8063 

38 

X874 

.8544 

.901 

.8054 

39 

1877 

.8535 

.2013 

.8047 

40   X 

1879 

1.8587 

i.aoi5 

1.8039 

4« 

x88i 

.8519 

.3017 

•  8031 

42 

1883 

.851 

.aoa 

.8023 

43 

x886 

.850a 

.3033 

.8015 

44 

.x888 

1.8485 

.3034 

.8007 

45   I 

•'?9 

x.ao87 

1.7999 

46 

.1893 

•8477 

.3029 

.7992 

47 

.1894 

.8468 

.3031 

.7984 

48 

.1897 

.846 

•2034 

.7976 

49 

.X899 

•8452 

.2036 

.7968 

50   I 

,1901 

«-8443 

X.2039 

1.796 

51 

.X903 

•8435 

.2041 

•7953 

Sa 

.1906 

.8427 

•2043 

•7945 

53  1 

X908 

.8418 

.2046 

•7937 

54 

X91 

.84X 

.2048 

.7939 

55   « 

19x3 

X.8403 

1.205 

x.79ax 

56 

«9'5 

ps 

.2053 

•79'4 

57  • 

X917 

•2055 

.7906 

58. 

1919 

.8377 

.2057 

.7898 

f 9  t 

X931 

.8369 

.2u6 

.7801 

60  :  I. 

1933 

1.8361 

X.3063 

1.7883 

"^  c« 

)-Me'T. 

SMAin. 

Co-ue'T. 

Sbcamt. 

. 

6^ 

ro 

M 

\o 

340        1 

SacAirr. 

Co^ac^T. 

1.2063 

1.7883 

.3064 

.7875 

.3067 

•7867 

.3069 

.786 

.3073 

•7853 

1.2074 

1-7844 

3076 

7837 

,2079 

.7829 

.3081 

.7831 

.3083 

.7814 

i.3o86 

1.7806 

.3o88 

.7798 

.3091 

.7791 
.7783 

•2093 

•2095 

'  ^7776 

X.3098 

X.7768 

•  31 

.776 

.3103 

•7753 

•  aio5 

■7745 

.3107 

•7738 

X.3II 

1773 

.3113 

•7733 

•aii5 

•7715 

.3x17 

.7708 

.3x19 

•77 

1.3X33 

1-7693 
.7685 

.3134 

.3x37 

.7678 

.3X39 

.767 

.2133 

.7663 

I- 2134 

17655 

.2x36 

.7648 

•2139 

.764 

.2X41 

-7633 

.2144 

.7635 

1.2x46 

1. 7618 

.3149 

.761 

•  ai5x 

•7603 

.2153 

.7596 

.3x56 

.7588 

1.3x58 

1.7581 

.ai6i 

•7573 

.3163 

.7566 

.3x66 

•7559 

.ax68 

•7551 

x.ax7x 

1-7544 

•2173 

•7537 

•3175 

•7539 

.3178 

•7583 

.318 

•7514 

13183 

1-7507 

.8185 

•75 

.ai88 

•7493 
7485 

.3x9 

•ai93 

.7478 

13195 

1.7471 

.3198 

-7463 

.33 

-7456 

.3203 

•7449 

.2205 

•7443 

x.2208 

1  7434 

Co-«Ee'T. 

SaCAMT. 

6^ 

50 

3fio 
SacART.     C<Hiio*r. 


1. 2208 

.331 
.3313 
3315 
.2218 

1.323 

.3333 

.3235 

.3338 

333 

1-3333 

•3235 

.3238 
.224 

•3343 
1  3345 

.3348 
.335 

•3353 
•2255 

xra258 

.336 
.2263 
.2265 
.2268 

X.227 
•2273 
.3276 
.2278 
.2281 

1.3383 
.3386 
.2288 
.229X 
.2293 

1.2296 
.2298 
•230X 
.2304 
•  3306 

1.3309 
.23x1 

-3314 
.3316 

-3319 
1.3333 

.2334 

.3337 

-3339 
•3333 

1-3335 
•3337 
•334 
-3343 
•2345 

1.2348 
-335 
•2353 
•«355 
•2358 

X.336X 


1-7434 
7427 

742 

7413 

7405 

7398 

7391 

7384 

7377 

7369 

736a 

7355 
7348 
7341 
7334 
7327 
7319 
7312 

7305 
7298 

7291 

7284 

7377 

737 

7263 

7356 

7349 
7242 

7«34 
7337 

733 


7144 

7137 

713 

7123 

71x6 

7x09 

7x03 

7095 
7088 
7081 

7075 
7068 

7061 
7054 
7047 
704 

7033 
7027 
703 

7013 


Co^bc't.  Sbcabt. 
640 


60 

5 

57 

56 

55- 

54 

53 

53 

51 

50 

:i 

47 
46 
45 
44 
43 
43 
41 
40 

3 

37 
36 
35 
34 
33 
33 
31 
30 


73x3  i  3' 
7206 

7199 
7192 
7185 
7x78 
7x71 
7164 

7157 
7151 


37 
36 

35 
34 

33 
22 
31 
30 

;i 

17 

x6 
15 
14 
13 

13 

XX 

xo 

I 

7 
6 

5 

4 
3 

a 
I 
o 


f 


402  NATUBAX   SINES   AND   COBINBS. 

a.— What  is  cosine  of  8°  9'  10"? 

Cosine  of  8°   9',  per  Table  =  . 08c 00;)   a-««.— - 

Cosine  of  80  10',        -        =.595?6;1  ^^^^  *#;mice. 

In  right-side  column  ot  proportional  parts,  under  4,  and  opposite  to  10',  is  z,  tbd 
correction  for  10',  which,  being  subtracted  fVom  .989  90  =  .989  89  cosine. 

When  Angle  exceeds  45*^.  Rule. — Ascertain  sine  or  cosine  for  angle  ip 
degrees  and  minutes  from  Table,  taking  degrees  at  the  foot  of  it ;  then  take 
difference  between  it  and  sine  or  cosine  <>f  angle  next  above  it.  Look  for  re- 
mainder, a  Sine  is  required,  at  head  of  Cdlumn  of  Proportionat  Paris,  on  right 
side;  and  if  Cosine  is  required, at  head  of  column  on  left  side;  and  in  these 
respective  columns,  opposite  to  seconds  of  aiigle,  is  number  or  correction  in 
seconds  to  be  added  to  8ine,  or  subtracted  from  Cosine  of  angle. 
Illustration. — What  is  the  Sine  and  Cosine  of  81°  50'  50"? 

Sine  of  81°  50',  per  Table  =  .989  86 ;  I  ^^^^^  ^,wr*^*«A- 
Sine  of  81°  51',        "        =..98^9;  J^^****-^^*^ 
In  right-side  column  ot  proportional  parts,  and  opposite  to  50',  is  3,  which,  added 
to  .989  86  =  .989  89  Sine. 

Cosine  of  81°  50',  per  Table  = .  142  05 ;  i  ,^^^^  mif^^^ 
Cosine  of  810  |i',        "        =.141  77;)  '°^^^  ^^ff^^^^e. 
In  left-side  column  of  proportional  parts,  and  opposite  to  50',  is  24,  Which,  sub- 
tracted f^om  .  142  05  = .  141 81  Cosine. 

1?o  ^Boertaiu  or  Compute  dumber  oriDegrees,  AlinuteSy 
and  Seconds  of  a  given   Sine  or  Cosine. 

When  Sine  is  given.  Rule. — If  given  sine  is  in  Table,  the  degrees  of  it 
will  be  at  top  or  bottom  of  page,  and  minutes  in  marginal  culunm,  at  left  or 
right  side,  according  as  sine  corresponds  to  an  angle  less  or  greater  than  45 '^. 

if  given  sine  is  not  in  Table,  take  sine  in  Table  which  is  next  less  than  the 
one  for  which  degrees,  etc.,  are  required,  and  note  d^rees,  etc.,  for  it.  Sub- 
tract this  sine  from  next  greater  tabular  sine,  and  also  from  given  sine. 

Then,  as  tabular  difference  is  to  difference  between  given  sine  and  tabu- 
lar sine,  so  is  60  seconds  to  seconds  for  sine  given. 

Example. —What  are  the  degrees,  minutes,  and  seconds  for  sine  of  .75? 

Next  less  sine  is  -74092,  arc  for  which  is  48°  35'.  Next  greater  sine  is  75011, 
difference  bettoeen  whiik  and  next  less  is  .75011  — .74992  =  .00019.  Difference  be- 
tween lest  tabular  sine  and  one  given  w  .  75  — .  749  92  ^  ^ 

Then  19  :  8  : :  60  :  25+,  which,  added  to  48©  35'  =r  48°  35'  as". 

Cosine  is  given.  Rule. — If  given  cosine  is  forind  in  Table,  degrees 
of  it  wiirtJfftsf^und  as  in  manner  specified  when  sine  is  given. 

If  given  cosii^e  is  not  in  Table,  take  cosine  in  Table  which  is  next^rfo^er 
than  one  for  whi^h  degrees,  etc.,  are  required,  and  note  degrees,  etc.,  for  it. 
Subtract  this  cosin^rom  next  less  tabular  cosine,  and  also  from  given  cosine. 

Then,  as  tabular  dflfference  is  to  difference  between  given  cosine  and  tabu- 
lar cosine,  so  is  60  secOTni^^a  to  seconds  for  cosine  given. 

E.xample.— What  are  the  degrees,  minutes,  and  seconds  for  cosine  of  .75? 

Next  greater  cosine  is  .750  iV^  arcfhr  which  is  41°  24'.  Next  less  cosine  is  .74993, 
difference  between  which  and  rirxt  greater  t*  . 750 1 1  —  .749 92  =  .000 19,  IHfference 
between  greater  tabular  cosine  ^And  one  given  is  .j so  it  — . 75000  =  1 1. 

Then  19  :  11  : :  60  :  35  — ,  wAich.  added  to  41O  24'  =  41©  24'  35". 

To   CoTxipxite  Verged    Sine   of  an  A.zisle. 
Subtract  cosine  of  angle  from  i.l 
Illustration.— What  is  the  versed  dine  of  2i<*  30' f 

Cosine  of  21^  30'  is  .930  42,  which,  —  1  =  .069  58  versed  sine. 

To  Compute   Go-vev,8ed   Sixxe  of  an  i^Lzisltt. 

Subtract  sine  of  angle  from  i. 

JJ.U8TIUT10N.— What  is  the  co-versed  ^ine  of  21®  30'? 

The  sine  of  21©  30  is .  3665,  wbfeh,  —  1  =  .6335  co-versed  tkne. 


NATniUX   BBCANTS  AKO  OO-SBCANTB. 


413 


40O     1 

410 

'   Si 

ECJkXT. 

C(h»c't. 

SlCAMT.   Cc 

>-sac'T. 

0   X. 

3054 

1-5557 

1.325     I 

5242 

X 

3057 

.5552 

•3253 

5237 

a 

306 

•5546 

•3257 

.5232 

3 

3064 

•5541 

.326 

5227 

4 

3067 

.5536 

.3263 

5222 

1   ' 

307 

1-553 

X.3267    I 

5217 

6 

3073 

•5525 

.327 

5212 

7 

'^ 

•552  1 

•3274 

5207 

8 

•5514 

•3277 

5202 

9 

3083 

•5509 

•328 

5197 

XO    X 

3086 

'•5503  ; 

1.3284-   X 

5192 

XX 

.3089 

•5498  I 

•3287     . 

5187 

12 

.3092 

•5493 

•329 

5182 

13 

.3096 

•5487 

-3294 

5»77 

«4 

3099 

■5482 

-3297 

5171 

15    ' 

3102 

1.5477  ; 

1. 3301   I 

5x66 

x6 

3105 

•  5471 

•3304 

5161 

'2 

'3I09 

.5466 

•3307 

5156 

x8 

3x12 

.5461  ! 

■33" 

5151 

*9 

3"5 

•5456 

.3314 

5m6 

30   X 

3118 

1-545  1 

X.3318   I 

5141 

3X 

.3121 

•5445  j 

.3321 

5136 

22 

■3"5 

•544 

-3324 

5131 

23 

.3128 

•5434 

•3328 

5126 

24 

■3131 

•5429 

•3331 

5121 

25    X 

■3134 

1-5424  1 

1.3335   I 

5116 

26 

■3138 

•54>9 

•3338 

5"! 

27 

3141 

•54"  3 

•3342 

5106 

38 

•3144 

.5408 

•3345 

5101 

39 

■3«48 

•5403 

•3348 

5096 

30    I 

•315X 

1-5398 

'-3352   X 

5092 

3» 

•3>54 

.5392 
.5387 

•3355 

5087 

32 

•3«57 

.3359 

5082 

33   • 

3161 

.5382 

•  3362 

5077 

34 

3164 

•5377 

.3366 

5072 

35  » 

3>67 

I-537I 

»-33^   « 

5067 

36, 

3»7 

•5366 

•3372 

5062 

37 

■3»74 

5361 

•3376 

5057 

38 

'3"77 

•5356 

•3379 

5052 

39  1 

.318 

.5351 

.3383 

5047 

40,  « 

3184 

1-5345 

X.3386   I 

5042 

1 

4x 

.3187 

•534 

•339 

5037 

4a 

319 

•5335 

•3393 

5032 

43 

.3193 

•533 

•3397 

5027 

44 

•3«97 

-5325 

•34 

5022 

*5   * 

.32 

i.53«9 

X.3404   X 

.5018 

46 

.3203 

.53M 

•3407 

■50x3 

^Z 

•32*07 

•5309 

•34" 

.5008 

48 

.32X 

•5304 

•34«4 

5003 

49 

•3213 

-5299 

.34«8 

.4998 

SO  X 

.3217 

>-5fl94 

X.342T   X 

•4993 

5> 

.322 

•5289 

•3425 

.4988 

Sa 

.3223 

•5283 

•3428 

•4983 

53 

.3227 

.5278 

-3432 

•4979 

54 

.323 

•5273 

•3435 

•4974 

55   > 

.3a33 

X.5368 

x-3439   « 

4969 

56 

•3237 

•5263 

•3442 

.4964 

li 

.324 

.5258 

•3446 

•4959 

.3243 

.5253 

•3449 

•4954 

59 

•3*47 

•5248 

•3453 

■4949 

60   X 

3*5 

X.5242 

x-3456   I 

4945 

'   Cc 

Skcant. 

Co-aBc**.  Si 
480 

ICANT. 

420 

430 

SSCAMT.   C< 

>-SSC*T.   Si 

tCANT.   Cc 

HiBC'T. 

1-3456    I 

•4945   I 

3673    1 

4663 

•346 

•494 

3677 

4658 

•3463 

•4935 

3681 

4654 

3467 

493 

3^?^ 

4649 

•347 

•4925 

3688 

4644 

I 

3474   > 

.4921   I 

3692   X 

464 

3477 

.4916 

3695 

4635 

•3481 

•49" 

3699 

•463  > 

•3485 

.4906 

3703 

4626 

■3488 

.4901 

3707 

4622 

X 

3492   1 

.4897   I 

37>    « 

4617 

3495 

.4892 

37'4 

46X3 

•3499 

.4887 

37'8 

4608 

•3502 

4882 

.3722 

4604 

•3506 

.4877 

3725 

4599 

I 

3509   I 

•4873   I 

3729   I 

4595 

3513 

4868 

3733 

Mte 

3517 

^^l 

3737 

•352 

•4858 

374 

4581 

3524 

•4854 

3744 

4577 

X 

3527   I 

•4849   « 

3748   X 

4572 

353' 

•4844 

3752 

4568 

3534 

4839 

3756 

4563 

•3538   . 

•4835 

3759 

•4559 

•3542 

.483 

3763 

•4554 

X 

3545   I 

.4825   X 

3767   X 

455 

3549 

.4821 

3771 

•4545 

3552 

4816 

3774 

4541 

3556 

.4811 

•3778 

•4536 

356 

.4806 

•3782 

4532 

X. 

3563   I 

4802   X 

3786   I 

4527 

3567 

•4797 

379 

4523 

3571 

•4788 

3794 

45«8 

3574 

3797 

45>4 

3578 
3581   I 

•4783 

3801 

•451 

X 

4778   I 

3805   X 

4505 

3585 

•4774 

3809 

4501 

3589 

4769 

3813 

4496 

3592 

.4764 

3816 

.4492 

3596 

476 

382 

•4487 

I 

36     X 

4755   > 

3824   I 

4483 

3603 

•475 

3828 

•4479 

3607 

4746 

3832 

•4474 

.3611 

•474' 

3836 

•447 

36x8   X 

4736 

•3839 

4465 

X 

■4732   1 

.3843   I 

4461 

.3633 

4727 

3847 

4457 

•3625 

•4723 

3851 

4452 

.3629 

.4718 

3855 

•4448 

.363^   X 

•4713 

•3859 

4443 

I 

4709   I 

3863   I 

4439 

364 

•4704 

•3867 

•4435 

3644 

.4699 

•387 

•443 

•3647 

■469s 

.3874 

.4426 

365X 

46^6    X 

•3?78 

•4422 

I 

3655  I 

3882   X 

44»7 

3658 

4681 

3886 

4413 

3662 

4676 

389 

4408 

3666 

4672 

3894    . 

4404 

3669 

3667    . 

3898 

44 

1.3673  I 

4663    X. 

3903   X. 

4395 

Co-bbc't.  Si 

ICANT.   Co 

•-■bc't.  Si 

(CANT. 

470 

460 

60 

59 
58 

57 
56 
55 

54 
53 
52 
51 
50 

49 
48 

47 
46 
45 
44 
43 
42 
4> 
40 

39 

38 

37 

36 

35 

34 

33 

32 

31 

30 

21 

2 

27 
26 

25 
24 
23 
22 
21 

24 

:i 

>7 
r6 

J5 

14 
13 
12 

IX 

10 

t 

7 
6 

5 

4 
3 

3 

X 

o 


Mm* 


414 


NATUKAL  SBCANTS  AND   CO-SKCAMTB. 


4i<»     1 

4io 

44 

^             1 

'  SmcAWt. 

Co4Bc«r. 

r 
60 

1 
21 

SscAir*.  ,  Co-ocV. 

t 

f 

4» 

Sbcast. 

Cb-oc^. 

• 

O  1  I. 

39<» 

"•4395 

'3^1 

1-4305 

H 

1.4065 

X.4231  I 

;i 

I  • 

3905 

439' 

59 

32 

3988 

.4301 

42 

•4<^ 

.43x7  . 

3 

3909 

-4387 

58 

«3 

3992 

•4297 

37 

43 

•4073 

.42x3 

17 

3 

39«3 

.4382 

57 

24 

3996 

42M 

36 

44 

•4077 

.4208 

x6 

4   . 

39>7 

•4378 

56 

25 

'•4 

1.4288 

35 

45 

1.4081 

'•4«H 

»5 

5   « 

3921 

'•4374 

55 

26 

.4004 

4284 

34 

46 

.4085 

.42 

14 

6 

39*5 

437 

54 

*z 

.4008 

428 

33 

^l 

.4089 

.4x96 

«3 

7 

39«9 

•4365 

53 

28 

.4012 

.4276 

32 

48 

•4093 

.4x93 
.4188 

xa 

8 

3933 

.4361 

52 

29 

.4016 

.4271 

31 

49 

•4097 

XX 

9 

3937 

•4357 

5-; 

30 

1.402 

14267 

dp 

50 

X.4101 

14183 

10 

lO    I 

394* 

14352 

50 1 

3» 

4024 

•4263 

29 

51 

.4105 

•4179 

1 

IX 

•3945 

•4348 

49 
48 

32 

.4028 

•4259 

28 

52 

.4109 

•4'75 

13 

3949 

•4344 

33 

.4032 

4254 

27 

53 

.4"3 

.4171 

7 

13 

•3953 

•4339 

^z 

34 

.4036 

.425 

26 

54 

.4117 

.4x67 

6 

'4 

•3957 

•4335 

46 

35 

1.404 

1.4246 

25 

55 

1.4x22 

X.4163 

5 

'5  1  > 

•396 

'•4331 

45 

36 

4044 

-4242 

24 

56 

.4126 

•4159 

4 

i6  1 

■^i 

4327 

44 

37 

.4048 

•4238 

23 

57 

•413 

•4'54 

3 

'^ 

.3968  ;  .4322 

43  ! 

38 

.4052 

4333 

22 

58 

-4»34 

.4'5^ 

a 

i8 

.3972    .4318 

42 

39 

.4056 

-4229 

21 

59 

.4x38 

.4x46 

X 

'9 

•3976  ■  .4314 

41 

40 

1.406 

1.4225 

20 

60 

X.4142 

1.4143 

0 

20    Z 

398  ,  I  43« 

40 

'  c< 

>«BC*T.  1  SbCANT. 

1 

> 

Co-««c't. 

Sbcant. 

» 

, 

Ckvnc^T. 

Sbcakt. 

• 

4^ 

50 

4. 

50 

450 

Preceding  Table  contains  Natural  Secants  and  Ck>-8ecant8  for  every 
minute  of  the  Quadrant  to  R;idiu8  i. 

If  Degrees  are  taken  at  head  of  column,  Minutes,  Secant,  and  Co-secant 
must  be  taken  from  head  also;  and  if  they  are  taken  at  foot  of  column, 
Minutes,  etc.,  mu.st  be  taken  from  foot  also, 

iLLrsTRATioN  — 1.05  is  secaot  of  17O  45'  and  co-secant  of  72°  xs'. 

To   Coxwpute   Secaxit  or   Co-secaxxt  of  any  Angle. 

RuLB.—Divide  i  by  Cosine  of  angle  for  Secant,  and  by  Sine  for  Co-secant. 
ExAVPLB  i.^Wbat  is  secant  of  25^  25'  ? 

Cosine  of  angle  =  .903  21.    Then  x  -r-  .903  3x  =  x.  X073,  Secant 
9. —What  is  CO  secant  of  64O  35'? 

Sine  of  angle  =  .903  21.    Then  i  -f-  .903  21  =  X.X079,  Co-secant 

To  Oomp-ute  Dffgrees,  :^f  inxxtes,  and  Seconds  of  a  Seoant 

or   Co-seoant. 

When  Secant  is  given, 

Proceed  as  by  Rule,  page  402,  for  Sines,  substituting  Secants  for  Sines. 

ExAMPLR.  — What  is  secant  for  x.1607? 

The  next  less  secant  is  i.  x6o6,  arc  far  which  =3  30°  30'. 

Kext  greater  secant  is  1.1608,  difference  between  which  and  next  less  is  z.x6o8— 
1. 1 606  =  ,0002. 

JHfference  between  less  tab.  secant  and  one  given  is  1. 1607  —  x.  1606 = .0001. 

Then  .000a  :  .0001 ::  60 :  30,  which,  added  to  3o<>  3o'=3o<'  30'  y/\ 

When  Cosecant  is  given^ 
^"ooeed  at  by  Rule^  page  400)  rubstitutiug  Co-secanta  for  CotlMi. 


KATtJEAL  TANGBNTS  AND  CO-TANCfBKTS. 


415 


TTatural  Tangents 

00  II        10 

Tang.  |  Co-tano.  |,  Tako.   Co^ano, 


0 

.00000 

z 

.00039 
.00058 
.00087 

.OQX  z6 

a 

3 

4 

5 
6 

.«>i45 
.00175 

i 

9 

.00004 
.00233 
.00262 

10 

.00291 

IX 

.0032 

X3 

13 

»4 
15 
16 

17 
j8 

19 
30 

31 
33 
33 
24 

«5 

36 

39 
30 

3« 
32 

33 
34 

35 

36 

37 

38 

39 

40 

4« 

42 

43 

44 

45 

46 

47 

48 

49 

50 

5« 

5« 

53 

S4 

55 
56 
57 
58 

£^ 


.00349 
.00378 
.00407 
.00436 
.00465 
.00495 
.00524 

•00553 

.00552 

.006 II 

.0064 

00669 

.00698 

.00727 

.00756 

.00785 

.008 14 

.00844 

.00873 

.00902 

.00931 

.0096 

.00980 

.010  to 
.0x047 
.0x076 
.01105 

•o»x  35 
.01x64 
.oix  93 
.oxa  32 
.0x251 
.oxa  8 
.01309 
.01338 
.01367 
.0x396 
.0x435 

0x455 
.014  84 
.0x5x3 
.0x543 

.0x571 

.0x6 

.0x639 

.0x658 

.01687 

.0x7 16 

.0x7  46 


lufiuite. 

3437f5 
X718.87 

X45.92 

859-436 
687.549 

572-957 

491.  X06 

29.718 

38X.97X 

343-774 
12.521 

286.478 
64.44X 

45-552 
329.182 

14.858 
02.219 

190.984 
8a  032 

X71.885 

637 
56.259 

49465 
43237 

137-507 
32.219 
27.32X 
22.774 

18.54 
X14.389 

XOL892 

07.426 

04.X7X 

01.107 

98.2179 

5-4895 
3.9085 

0.4633 
88.1436 

85.9398 

3-8435 

1.847 

79-9434 
8.X263 

76-39 
4-7292 

3- "39 
X.6131 

0-X533 

6&7SOX 

7-4019 
6.1055 
4.858 

3-6567 

63.4092 

X.3820 

0*3058 

5*2659 
8.36x2 

57-29 


J2 


CO-TAS*.  TaMQ. 

80O 


.01746 

.01775 

.01804 

.018  33 

.01862 

.01891 

.0192 

.0194 

.019 

.02007 

.02036 

.02066 

.02095 

.021  24 

.02153 

.021 82 

.022  II 

.0224 

.02269 

.02298 

.02328 

.02357 
•02386 
.02415 
.02444 

•02473 
•02502 

.02531 

.0256 

.02589 

.02610 

.02648 

.0^77 

.02706 

.02735 

.02764 

•03793 
.02822 

.03851 

.02881 

.029  X 

•03939 

.03968 

.03997 

.03026 

•03055 
.03084 
.03x14 

•031 43 
.03x72 
.032  ox 
.0323 
.03259 
.032  88 

•033  «  7 
.03346 

.03376 

•03405 
•03434 
•03463 
.03492 


and.   Co-tungents. 

20  30 


Tano.  !  Co.T*NO. 


TaMS.   I  CO-TANO. 


I: 


57.29 

6.3506 
5.44>5 

4.5613 
3.7086 

53.8821 

3.0807 

X.3032 

0.5485 

49.8157 
40. 1039 

8.4121 

7.7395 
7.0853 

6.4489 
45.8294 
5. 2261 
4-6386 
4.0661 
3- 5081 
42.964X 

2-4335 
X.9158 
X.4106 

0.9174 
40-4358 
399655 

6177 
38.1885 
7.7686 

7-3579 
6.956 

6.5627 

36.1776 

5.8006 

54313 
50695 

4-7151 
34.3678 

40273 
36935 
3-3662 

3-0452 
32.7303 
2.4313 
3.xx8z 
1.8205 

1.5284 

31-^16 

0.9599 

0.6833 
0.41 16 
O.X446 

39.8823 
9.6245 

9-37i« 

?<X22 
.877X 
38.6363 


.03492 
-035  21 

•0355 

.03579 
.03609 

.03638 
.03667 
.03696 
03725 
.03754 
.037  83 
.038  12 
.038  42 
.03871 
.039 
.039  20 
.03958 

•03987 
.040  16 

.04046 

•04075 
.04104 

.04133 
.04162 

04191 

0422 

0425 
•04279 
.04308 

.04337 
.04366 

•04395 
•04424 

•044  54 
•04483 
.045x2 

•04541 

0457 

.04599 
.04628 

.04658 

.046  S7 

.047x6 

.04745 

•04774 
.04603 

.04832 

.04862 

.04891 

0493 

•04949 
.04978 

.05007 
■05037 
.05066 
•05095 
.051  24 
•05X  53 
•  05x82 

.052  X2 

.052  4x 


28.636:) 

8.X664 

79372 

7.7X17 

27.4899 

7.2715 
7.0566 

6.84s 
6.6367 
26.4316 
6.2296 
6.0307 
5-8348 
5.6418 

254517 
5.2644 
5.0798 
4.8978 

4-7185 
24.5418 

43675 

4- 1957 
4-0263 

3-8593 
236945 
3-5321 
33718 
3-2137 
30577 
22. 9038 

2.7519 

3. 603 

2.4541 
3.3081 

32. 164 
2.0217 
X.8813 
Z.7426 
X.6056 

21.4704 
■1.3369 

<x.3049 

10747 
0.046 

aa8i88 

0.6932 

0.5691 

0.4465 

0.3253 
802056 

0.0872 

19. 0702 

9-8546 

9^7403 
X9.6373 

9.5156 

9-4051 
9.2059 

91879 
19.08x1 


Co^AiiB;      Tamo. 
88O 


Co-TARO.      Tamo. 

i  87° 


•05241 
.0527 

.05290 
.05338 

•053  57 
.05387 
.054  x6 

•05445 
•05474 
.05503 

•055  33 
.05562 

•055  9> 
.0562 
.05640 
.056  78 
.05708 

•057  37 
.05766 

.05795 
.05824 

.05854 
.05883 

.05912 

^5941 

.0597 

.05999 

.06029 

.06058 

.06087 

.061  i6 

•06145 

.06175 

.06204 

•06233 

.06262 

.062  91 

.06321 

.0635 

.06379 

.06408 

.06437 

.06467 

.06496 

•06525 

•06554 
.06584 

.06613 

.06642 

.06671 

.067 

•0673 

•0675 

.0678 

.068x7 

.06847 

.06876 

.06905 

•06934 

.06963 

.06993 


laoStx 

8.9755 
8. 87 IX 
8.7678 
8.6656 

18.5645 
8.4645 
8.3655 
8. 2677 
8.1708 

x8.075 
7.0802 
7.8863 
7-7934 
7-7016 

17.6106 

7-5205 
74314 
73432 
72558 

17. 1693 

7.0837 

6-999 
6-Q15 
6-8319 
X6.74Q6 
6.6681 

6.5874 
6-5075 
6.4283 

16-3499 
6.2722 

6. 1952 

6.x  19 

6-0435 

15.9687 

5-8945 
5.8211 

57483 

5-6762 

15.6048 

5-534 
5.4638 
5-3943 
5-3254 
152571 
51893 
5. 1222 

5-0557 
4.9898 

14.9344 

.48596 

4-7954 

4-7317 

4-6685 

14.6050 

4-5438 
4.4833 
4-42x2 
4.3607 
14-3007 


60 
5 

57 
56 
55 
54 
53 
52 
51 
50 

:? 

47 
46 
45 
44 

i43 
42 
41 
40 
3 

37 
36 
35 
34 
33 
32 
31 
30 
2 


27 
26 

25 

24 

23 
22 

21 
20 

\i 

17 

x6 
15 
14 
13 

X2 
XX 

10 


7 
6 

5 

4 
3 

3 
z 


Co-TAMO.   Tamo.  ■  ' 
86° 


NATUE&L  TANtiKNTS    AND   CO- 


4 

°C»T«.. 

a 

OT.-g. 

i 
J 

s 
\l 

il 

i 

JO 

i 
i 

i 

S' 

s 

& 

■=7373 

"749 
.0757* 

;Si 

■"76  m 
:077|3 

■Sir 

■07899 

;??? 

■07987 

:±;s 

■080  ?s 

:S:s 

■ji 
■ai 

,08485 

S" 

S! 

I3T»67 
36719 

11 

3-4039 

B 

.3.96, 
3.46. 

30958 

B 

■1:^8 
a.  3838 
'■339 

a.  59,6 

11 

■■99'3 

1.9J04 

.IS 

::§ 
iii 

if 
1 

.09071 
,09101 

ill 

.092  :;* 
,09147 
.09277 
.09306 
■09335 
.09365 

■z% 

,09s  ■■ 

1" 

,096=9 

Is 

■099 '3 

,TM,6 

:ii 

.10411 

::5' 

■■>789 

li: 

...3>6 

ii! 

0.8483 

0.67B3 
0.64s 

lit 

TOOjB 
0.0483 

'■^^ 
.96007 

|i 

.76009 

Si' 

»6493S 

ii 

9  5'<36 

o^*"- 

(40  '"■ 

898598 


'SKh 


JTATUAAL  TANGENTS  AND  CO-TANGENTS. 


417 


8© 
TAJr«.      C<vrAire. 


o 

I 
2 

3 
4 
5 
6 

7 

8 

9 
xo 

XX' 
X2 

13 
14 

X5 
x6 

17 

x8 

«9 

ao 

3X 

a3 

«3 
24 

25 
26 

27 

28 

30 

31 
32 

33 
34 
35 
36 
37 
38 
39 
40 

4» 
4a 
43 
44 
45 
46 

*2 

48 

49 

50  i 

52   ] 

53 
54 
55 

56 
57 
58 

12 


4054 
4084 

4H3 

4M3 

4' 73 
4203 

4232 
4262 

429" 
4321 

43  51 

43  8x 

441 

444 

447 

4499 
4529 

45  59 
4588 

46x8 
4648 
4678 
4707 
47  37 
4767 
4796 
4826 

4856 
4886 

49^5 
4945 

4975 
5005 

5034 
5064 

5094 
5124 

5153 
5183 
52x3 

5243 
5272 
5302 
5332 
5362 

5391 
5431 
545« 
5481 

55" 
554 

557 

56 

563 

566 

5689 

5719 
5749 
5779 
5«oo 

5838 


II 


90 
Tamo.      Co«avo. 


7- "5  37 
.10038 
.08546 
.07059 

•05s  79 
7.041 05 

.02637 

•oxx  74 
6.907  18 

.98268 
6.96823 

.95385 
•939  52 
.92525 
.91104 
6.89688 
.88278 
.86874 

.85475 

.84082 

6.82694 

.81312 

•79936 
.78564 

6.75838 
•74483 
•73«33 
.71789 

•7045 
6.691 16 

.67787 
.66463 
.65x44 
.63831 
d.625  23 
.612 19 

.59921 
.58627 

•573  39 
6.56055 

•547  77 
.53503 
•52234 

.5097 
6.497  I 

•484  56 
.47206 

•45961 

•4472 

643484 

'422  53 
.4x036 

•39804 

•38587 

6.37374 
.36165 

•34961 
.33761 
.32566 

6.31375 


CoHMir«.      Tamo. 
81 9 


5838 
5868 
5898 
5928 
5958 
5988 
6017 

6047 
6077 

6107 
6137 
6x67 
6196 
6226 
6256 
6286 
6316 

6346 
6376 
6405 
6435 
6465 
6495 
6525 
6555 
6585 
66x5 
6645 

6674 
6704 
6734 

6764 
6794 
6834 

^54 
6884 

69x4 
6944 

6974 
7004 

7033 
7063 

7093 
7123 

7153 
7183 
7213 
7243 
7273 
7303 

73  33 
7363 
7393 
7423 

74  53 
7483 
7513 
7543 

7573 
7603 

7633 


6.31375 
.30189 
.29007 
.27829 
.26655 

6.25486 
.24321 
.2316 
.22003 

.20§5I 

6.  X97  03 

.18559 

•17419 
.X6283 

•15151 
6.X4023 

.12899 
.11779 
.X0664 
•09552 
6.084  44 


TAIie.      I   Co-TA«G. 


•79944 
•789 


'75941 

•74949 

•7396 

•72974 

s  719  92 

•71013 

•70037 

.69064 

.68094 

5.67X  38 


Co.«AlfO.        TAMO. 

80O 


7633 
7663 

7693 
7723 
77  53 
7783 
7813 

7843 
7873 

7903 
7933 

7963 
7993 
8023 

8053 
8083 
8x13 
8143 
8173 
8203 

8233 
8263 
8293 
8323 
8353 
8383 
84x4 
8444 
8474 
8504 
8534 
8564 

8594 
8624 

8654 
8684 

87x4 

8745 
8775 
8805 

8835 
8865 
8895 
8925 

8955 
8986 

9016 
9046 
9076 
9106 
9136 

9x66 

9197 
9227 
9257 
9287 

9317 
9347 
9378 
9408 

9438 


67128 
66165 
65205 
64248 
63295 
62344 

61397 
60452 

59511 
58573 
57638 
56706 

557  77 
54851 

53927 
53007 

5209 

51176 
50264 

49356 

48451 

47548 
46648 

45751 

44857 
43966 

43077 
42192 

41309 

40429 

39552 

38677 

37805 

36936 

3607 

35206 

34345 
33487 
32631 
31778 
30928 

3008 

29235 

28393 

27553 
26715 

2588 

25048 

242x8 

23391 
22566 

21744 
20925 

20107 

19293 
184I 

X767I 

X6863 

16058 

15256 

14455 


110 
Tamo.  |  Co^amo. 


19438 
19468 
19498 
19529 

19559 

19589 

X9619 

19649 

1968 

1971 

1974 

1977 
X980X 

19831 
198  61 

19891 

19921 

19952 
19982 

200  X2 
20042 
20073 
30103 
20133 
30x64 
30x94 
SOS  34 

30354 
30385 
203x5 

20345 
30376 
304J06 
30436 
20466 

20497 
30537 

20557 
20588 
20618 
20648 
30679 
20709 

20739 

2077 
3o8 
2083 
30861 

30891 
30931 

30953 

30983 
310x3 
SX043 
21073 
31x04 

211  34 
3x164 

3x195 

313  25 
.31356 


C<HEAK».        XAMa. 
790 


514455 
.13058 
.12862 
.12069 
.11279 

5.1049 
.00704 
.08921 
.081  39 
•0736 

5-065  84 

.05809 

•05037 
.04267 

•03499 

5.Q27  34 
.019  71 

.012  X 
•00451 

499695 
4.9894 

.98x88 

97438 
.9669 

•95945 
4.95201 

•9446 

•93721 

.92984 

•92249 
4.915x6 

•90785 
.90056 

.88605 

4.87882 

.871  62 

•86444 

•85727 
.850x3 

4843 

•8359 
.82882 
.82175 
.81471 
4.80769 
.80068 

•793  7 
.78673 
•77978 
4.77286 

•76595 
•75906 
.752  X9 
•74534 
473851 

•7317 
.7249 

.71813 

•71137 
4- 704  63 


60 

59 
58 

57 

56 
55 
54 
53 
52 
51 
50 

47 
46 
45 
44 
43 
42 
41 
40 

39 

38 
37 
36 
35 
34 
33 
32 
31 
30 

«9 

38 

27 

36 

25 
24 
23 
33 

2X 
30 

:i 

17 
16 

15 
14 
13 
12 

XX 

10 

I 

7 
6 

5 

4 

3 

s 

I 

o 


Co.TAK«.    TaNO*- 

780 


418 


MATUBAI.  TAKafHTg  AJTD  CO-TANGKNTB. 


1 

120 

iy> 

14c 

lao 

!                                     O 

Ti««. 

C»<Ava. 

Ta>«. 

OWAVO. 

Tato. 

C»«Air«. 

Taim.      C»«a««. 

» 

.21256 

■ 

4.70463 

.23087 

4-33148 

.249  33 

4.01078 

•26795     3.73205 

"fo 

I 

.21286 

.69791 

.231 17 

.32573 

1  .24964 

.00562 

.96826 

.73771 

59 

2 

.2x316 

.69121 

.23148 

.39001 

.24995 

.00086 

.36857 

.72338   58 

1                               3 

•21347 

.68452 

.23179 

•3H3 

.25096 

3-99592 

.96888 

.71907     57 

4 

•2«377 

.67786 

.23209 

.3086 

.25056 

.99099 

.2699 

.71476  1  56 

:                          5 

.21408 

4.671  21 

.3324 

4.3029' 

•  25087 

3.98607 

.26951 

3.71046     55 

6 

.2x438 

.66458 

.83271 

.29724 

.«5>i8 

.981 17 

.26982 

.706x6  1  54 

\ 

.2x469 

.65797 

.83301 

.29159 
.38595 

•  25149 

.97637 

.97013 

.70X  88  V  53 

.81499 

.65138 

•23332 

.2518 

.971 39 

•  27044 

.69761     52 

9 

.21529 

.6448 

.23363 

.38032 

•259 II 

.96651 

.27076 

.69335     51 

lO 

.2156 

463825 

•23393 

4.27471 

.95342 

3.96165 

.27107 

3.68909 

50 

II 

.2x59 

.63171 

.234»4 

.369x1 

•25273 

.9568 

.27x38 

•68485 

% 

i                       '^ 

,2x621 

1    .62518 

.23455 

.96353 

•25304 

.95*96 

.87169 

.68061 

'3 

.3x651       -61868 

23485 

•25795 

•25335 

.947  «3 

.272Q1 

.67638 

47 

M 

.31682       .61219 

.235x6 

•25239 

•  85366 

•94232 

.27233 

.67317 

46 

"5 

.3x7x3    4.60572 

•23547 

4.34685 

.25397 

3937  5* 

.27363 

366796 

45 

i6' 

"7  43      -59927 

•23578 

.24132 

.95428 

•93271 

•27294 

.66376 

44 

17 

•21773      59283  ; 

23608 

.3358 

.254  59 

•92793 

.27326 

•65957 

43 

x8 

.3x804      .58641 

.33639 

•2303 

'2549 

.92316 

.27357  i    -65538 
.27388      .65x91 

43 

»9 

.01834        58001 

2367 

.22481 

.25531 

.91839 

41 

so 

.3x864    4.57363 

237 

4.2x933 

•255  5« 

3.91364 

.97419 

3-64705 

40 

SI 

.3x895  \    .56726 

23731 

.21387 
.30842 

.33583 

.9089 

•27451 

.64389 

P 

82 

.3x935       .56091 

•  33762 

.35614 

.90417 
.89945 

•  97489 

.63874 

*3 

■«>9  96 ;  .55458 

•23793 

.30998 

.35645 

•27513 

.63461 

V. 

»4 

.3x986  1    .54826 

23823 

.19756 

.85676 

•89474 

•87545       •63048 

36 

as 

.330x7    4.54196 

23854 

4.109x5 
.18675 

.25707 

3.89004 

•37576     3-62636 

35 

96  i 

aa047  1    .53568 

.23885 

.35738 

.88536 

.97607 

.62334 

34 

S 

.22078  1    ,52941 

■33916 

.18137 

•35769 

.88068 

.87638 

.6x8 14 

33 

,33x08  ,    .52316 

.33946 

.X76 

•358 

.87601 

.9767 

.61405 

33 

89 

.22x39 

•  51693 

•23977 

.17064 

•25831 

.871  36 

•  877  ox 

.60996 

3« 

30 

.22x69 

4- 510  71 

.24008 

4.1653 

.35863 

3.866  7x 

.27739  1  3.60588 

30 

3» 

.822 

•50451 

.34039 

.15997 

•25893 

.86308 

.97764  j    .601 8x 

3 

3« 

.22231 

.49832 

24069 

•15465 

.35924 

.85745 

'27795  1    '597  75 

33 

.22261 

.49215 

.341 

.14934 

•35955 

.85384 

.378961    .5937 
•37858;    .58966 

97 

1                           34 

.22292 

"^0. 

.241  31 

.14405 

.35986 

.84824 

a6 

I                           35 

.32332 

4.47986 

.241 62 

4.13877 

.860x7 

3.84364 

.37889    3.58562 

»$ 

36 

•22353 

•47374 

.«4«93 

1335 

.36046 

.83906 

3793        .58x6 

34 

32 

.22383 

.46764 

.243  23 

.12825 

.36079 

.83449 

.37953      .57758 

as 

3« 

.22414 

•"4^155 

•24254 

.X2301 

.36x1 

.89999 

.37983  i    .57357 

•• 

39 

.22444 

•45548 

.34285 

.X1778 

.961 41 

.82537 

.380x5      .56937 

3X 

40 

•22475 

444942 

.24316 

4.x  12  56 

.96173 

3.82083 

.38046 

3.56557 

ao 

4» 

•22505 

.44338 

.24347 

.X0736 

.36203 

.8163 

.88077 

.56159 

» 

4« 

•825  36 

•43735 

.24377 

.  X02  x6 

.96235 
.36366 

.81x77- 

.38109 

•557  6x 

43 

•23567 

•431 34 

.84408 

.09609 

.09182 

4.06666 

.80726 

.38x4 

•55364 

«T 

44 

.22597 

425  34 

•24439 

.36397 

.80276 

.38x73 

•54968 

i( 

*   *♦§ 

.326  28 

4.41936 

•2447 

.96398 

3.79827 

.38303 

3545  73 

«S 

46 

.32658 

.4«34 

.845  ox 

.08x52 

.26359 

•79378 
•78031 

.38234 

•54179 

«♦ 

*z 

.82689 

•40745 

.«4532 

.07639 

i3639 

.38366 

•537  85 

IS 

48 

227x9 

.40152 

.34563 

.07  X  37 

.36481 

.78485 

.38397 

•53393 

■• 

49 

.237  5 

4.38969 

.24593 

.066x6 

.36453 

•  7804 

.88399 

•530  ox 

II 

50 

.82781 

.34634 

4.06x07 

.36483 

3-77595 

.3836 

3.53609 

■0 

5' 

.928  XX 

.38381 

.34^55 

•05599 

••65x5 

»77i  53 

.38391 

•53319 

\ 

S2 

.33843 

.37793 

.84686 

^050  08 
.04586 

.36546 

.76709 
.76368 

.38433 

.5x839 

53 

.33873 

.37207 

.347  X7 

.26577 

.28454 

.5x441 

T 

54 

.88903 

.35623 

.34747 

.04081 

.26608 

.75898 

.38486 

•51053 
3.50666 

6 

*l 

.88934 

4.3604 

84778 

4-03578 

.36639 

3.75388 

.385  17 

S 

56 

.93964 

•354  59 

.84809 

•03075 

.3667 

•7495 

.36549 

•50;  79 

4 

*2 

.93995 

•  34879 

.2484 

•035  74 

.367  ox 

•745 12 

.28k8 
.266x2 

•49894 

S 

58 

.83036 

'343 

34871 

.09074 

.36764 

•74075 

.49509 

• 

f9 

.93056 

.337  23 

.34908 

.01576 

•7364 

.26643 

.49135 
3.48741 

t 

1 

.93087 

4.33148 

•34933 

4.0x078 

.26795 

3.73*05 

.38675 

0 

C0<«Alt«. 

Tam. 

C04AM9. 

Taiw. 

Co^AWB. 

Taw. 
69 

,  C<MrAK«. 

TAW.      1     • 

T 

TP 

T 

iO 

7 

1      f 

i»              1 

L 

HATDKAL  TANGENTS  AND  OO-TANGSinS. 


419 


r 

lfi*>             II 

170 

180           II 

190 

f 

TiJNk 

Co-tans. 
3487  4« 

Tans.      0 

0-TAN«. 

Tak«. 

Co.«Aiia. 

TA»a.      C 

D-TAira. 

0 

.28675 

•30573     3 

27085 

.32492 

3.07768 

•344  33     2 

90421 

I 

.28706 

•48359 

.30605       . 

26745 

.32524 

.07464 

.34465       . 

^^3 

a 

.28738 

.47977 

•30637       ■ 

26406 

•32556 

.0716 

.34498       . 

3 

.28769 

•47596 

.30669 

26067 

.32588 

.06857 

•345  3 

896 

4 

.288 

.47a  16 

.307 

25729 

.32621 

.06554 

•34563       . 

89327 

5 

.28832 

3.46837 

.30732     3- 

25392 

.32653 

3.06252 

.34596     2. 

89055' 

6 

.28864 

.46458 

.30764       . 

25055 

.32685 

•0595 

.34628       . 

88783 

7 

.28895 

.4608 

.30796       . 

24719 

.32717 

.05649 

.34661 

885x1 

8 

■x% 

.45703 

.30828 

24383 

•32749 

•053  49 

•34693       • 

8824 

9 

.45327 

.3086 

24049 

.327  82 

.05049 

.34726 

8797 

10 

.2899 

3449  5« 

.30891     3. 

237x4 

.328 14 

304749 

•34758     2. 

877 

IX 

.29021 

•44576 

.30923       . 

23381 

•3«?46 

.0445 

.34791 
.34824       . 

8743 

12 

•29053 

.4420a 

.30955       • 

23048 

.32878 

.04152 

87x61 ; 

13 

.29084 

.43829 

.30987       . 

227x5 

.32911 

.03854 

•34856 

86892 1 

14 

.291 16 

.43456 

.31019 

22384 

•32943 

.035  56 

.34889       . 

86624 

15 

.29147 

343084 

.31051     3. 

22053 

.32975 

3.0326 

.34922     2 

86356 

16 

.291  79 

•427  >3 

.31083       . 

2x7  22 

•33007 

.09963 

.34954       • 

86089 

17 

.2921 

.42343 

.31115       . 

2x392 

•3304 

.02667 

.34987 

85822  j 

18 

.29242 

.4«973 

•3"  47 

2x063 

•3307a 

.02372 

.350x9 

85555  1 

19 

•29274 

.4160A 
3.4x236 

.31178 

20734 

.33«04 

.02077 

•35052 

85289  1 

90 

.29305 

.3x21       3 

20406 

.33'  36 

301783 

.35085     2 

85023 

ax 

.29337 

.40869 

.31242 

.20079 

.33169 

.0x489 
.01x96 

•351 17 

847  58  1 

aa 

.29368 

.40502 

.312  7A 
.31306 

.X9752 

.33201 

•3515 

84494  1 

a3 

•294 

.40x36 

.  X94  26 

.33233 

.00903 

.35183 

84229 

24 

•29432 

•3977; 

•  31338 

.191 
•18775 

.33266 

.006  XX 

.35216 

83965 

as 

•29463 

339406 

.3137       3 

.33298 

3003 10 
.00028 

•35248     2 

83702 

96 

1 

•29495 

.*3p79 

.31409 

.18451 

.3333 

.35281 

•834  39 

a7 

.29526 

.31434 

.18x27 

•33363 

2.997  38 

•35314 

83176 

a8 

•29558 

•383  17 

.31466 

.X7804 

.33395 

.99447 

•35346 

.829x4 

89  ! 

.2959 

•379  55 

•31498 

.X7481 

.33427 

•^i§o 

•35379 

.82653 

3°l 

.29621 

3-37594 

•3153       3 

.X7X59 

.3346 

2.98868 

.35412     2 

•82391 

3M 

•29653 

•37234 

.31562 

.16838 

•33492 

.9858 

•354  45 

.82x3 

32  1 

.29685 

•36875 

.31594 

•165x7 

.33524 

.98292 

•35477 

.8x87 

33  1 

.29716 

.36516 

.31626 

.  x6x  97 

.33557 

.98004 

•3551 

.8x6  z 

34  , 

.29748 

.361  58 

.31658 

.15877 

•33589 

.977 17 

•35543 

•8135 

3S 

•2978 

3.358 

•3'69       3 

.15558 

.33621 

2974  3 

.35576     2 

.81091 

36 

.2981Z 

.35443 

.31722 

.1524 

.33654 

.96858 

.35608 

.80833 

37 

.29843 

.35087 

.31754 

.X4922 

.33686 

.35641 

.80574 

38 

•2987s 

.34732 

•3'7  86 

.  X46  05 

.33718 

•^573 

.35674 

.80316 

39 

•29906 

•34377 

.31818 

.X4288 

•337  SI 
•33783 

.96288 

•35707 

.80059 

40 

•29938 

3.34023 

.3«85       3 

•13972 

a.  960  04 

.3574       2 

.79802 

41 

•2997 

.3367 

.31882 

13656 

•33? 'S 

.95721 

.35772 

•79545 

42 

.30001 

.33317 

.3>9»4 
.3*940 

•»33  4i 

•3384® 

.95437 

•35?<>S 

.79289 

43 

•30033 

.32965 
.32614 

13027 

.33881 

•951  55 

.35838 

•79033 
.78778 

44 

.30065 

•31978 

"713 

•33913 

.94872 

.35871 

*5 

•30097 

3.32264 

.3201       3. 

"♦« 

.33945 

2.9459 

.35904     2 

•78523 

46 

.30128 

•3>9»4 

.3204a 

xao87 

•33978 

•94300 
.94028 

•35937 

.78269 

*Z 

.3016 

•3»565 

.32074 

"7  75 

•3401 

.35969 

■78014 

48 

.30192 

.31216 

.32x06 

X1464 

.34043 

.93748 

.36002 

.77761 

49 

.30224 

.30868 

.32139       • 

XIX  53 

•34075 

.93468 

.36035 

■77507 

50 

•30255 

3.30521 

.32171     3 

X0843 

.34108 

2.93X  89 

.36068      2 

.77254 

51 

.30287 

.30174 

.32203 

10533 

.3414 

.9991 
.926  32 

.361  OX 

.77002 

S2 

.30319 

.29829 

•32335 

10223 

•341  73 

.361  34 

•7675 

53; 

30351 

•29483 

.32267 

09914 

•34205 

.92354 

.  361 67 

.76498 

54  1 

.3038a 

.20139 
3.28795 

.32299 

09606 

•34238 

.92076 

•36199 

.76247 

iS  ' 

.30414 
•30446 

•32331     3 

.09298 
.08991 
08685 

.3427 

2.91799 

.36232     2 

•75996 

56 

.28452 

.32363 

•34303 

.91523 

.36265 

•75746 

57 

.30478 

.28109 

.32396 

•343  35 

.91246 

.36398 

.75496 

58 

.30509 

.27767 

.32428 

■08379 

.34368 

.90971 

.36331 

■75246 

59 

•30541 

.27426 

.3246 

.08073 

•344 

.90696 

.36364 

•74997 

60 

•30573 

3.27085 

.32492     3 

.07768 

•344  33 

2.904  21 

•36397     2 

•74748 

* 

C»TAa«. 

Taii«. 

CO^ANO. 

Ta>«. 

Corahs. 

Taha. 

CO^AVO. 

Taw«. 

7 

3© 

72© 

7 

i© 

700 

60 

5 

57 
56 
55 
54 
53 
52 
51 
50 

% 

47 
46 
45 
44 
43 
4a 
41 
40 

^ 

37 
36 
35 

34 
33 

3a 

31 
30 

3< 
2 

27 
26 

25 

24 
23 
22 
21 

20 

:i 

17 
x6 

15 
14 
13 

12 
XI 
XO 

I 

7 
6 

5 

4 
3 

2 
I 
o 


\ 


420 


NATUBAL  TANGBliTS  AND  CO-TANGENTS. 


200              1 

210 

f 

Tako. 

Co-TAMO. 

Tamo.      C 

0.TAM0. 

o 

36397 

2.74748 

.38386     2. 

60509 

1 

•3643 

•744  99 

.3842 

60283 

8 

.36463 

•742  5» 

•38453       ■ 

60057 

3 

.36496 

.74004 

.38487       . 

59831 

4 

36529 

•73756 

•3852 

59606 

5 

.36562 

2.73509 

•38553     2 

59381 

6 

•36595 

.73263 

•38587 

59>56 

7 

.3C628 

•73017 

.3862 

58932 

8 

.36661 

.72771 

.38654       . 

58708 

9 

.36694 

.72526 

.38687       . 

58484 

xo 

•36727 

2.72281 

.38721     2 

58261 

IX 

•3676 

.72036 

•38754 

58038 

12 

•36793 

.71792 

•38787 

57815 

»3 

.36826 

.71548 

.38821 

•57593 

»4 

•36859 

•7*305 

•38854 

57371 

«5 

•  368  92 

2.71062 

.38888     2 

5715 

i6 

•36925 

.70819 

.38921 

56928 

17 

•36958 

•70577 

.38955 

'56707 

18 

.36991 

•70335 

.38988 

56487 

>9 

•37024 

.70094 

.39022 

.56266 

20 

•37057 

2.69853 

.39055     2 

56046 

21 

•3709 

.69612 

.39089 

55827 

22 

•37124 

.69371 

.39122 

55608 

33 

•37157 

.60892 

•391 56       . 

55389 

«4 

•3719 

•39«9 

•5517 

25 

•37223 

2.68653 

.39223     2 

54952 

26 

•37256 

.684  14 

•39257 

•54734 

27 

•37289 

.681 75 

.3929 

545  »6 

28 

•37322 

•67937 

•39324 

54299 

29 

•373  55 

.677 

•393  57 

54082 

30 

•37388 

2.67462 

.39391     2 

53865 

31 

•37422 

.67225 

•39425 

•53648 

32 

•374  55 

.66989 

•39458 

•53432 

33 

•37488 

.66752 

.39492      . 

53217 

34 

•37521 

.66516 

•39526 

.53001 

35 

•375  54 

2.66281 

•395  59     2 

52786 

36 

•37588 

.66046 

•39593       • 

52571 

37 

.37621 

.65811 

.  396  26 

•52357 

38 

•37654 

•65576 

•  3966 

•52142 

39 

37687 

•65342 

.39694 

.51929 

40 

•3772 

2.65109 

.39727     2 

51715 

41 

•377  54 

.64875 

•397  6  J 

51502 

42 

•37787 

.64642 

.39795 

51289 

43 

.3782 

.6441 

.39829 

,51076 

44 

•37853 

.64177 

.39862 

50864 

45 

.37887 

2.63945 

.39896     2 

50652 

46 

•3792 

•637  14 

•3993 

5044 

47 

•379  53 

.63483 

•39963       • 

50229 

48 

.37986 

'632  52 

•39997       ■ 

50018 

49 

.3802 

.63021 

.40031 

49807 

50 

•38053 

2.627  91 

.40065     2 

49597 

51 

.38086 

.62561 

.40098 

49386 

52 

.3812 

.623  32 

.401 32      . 

49177 
48967 

53 

•38153 

.621 03 

.401 66 

54 

.38186 

.61874 

.402 

48758 

55 

.3822 

2.61646 

.40234     2. 

48549 

56 

■38253 

.61418 

.40267 

4834 

57 

.38286 

.6119 

.40301       . 

481  32 

58 

.3832 

.60963 

•40335       • 

47924 

§9 

■38353 

.60736 

.40369 

47716 

fio 

.38386 

Co-TAMO. 

2.60509 

.40403     2. 

47509 
Tamo. 

^ 

Tamo. 

Co-TAMO. 

0 

90 

680 

220 

Tamo.    |  Co-tamo. 


230 


40403 
40436 
4047 

40504 

40538 

40572 

406  0(3 

4064 

40674 

40707 

40741 

40775 
40809 

40843 
40877 
409 II 

40945 
40979 

410 13 

41047 

41081 

4" '5 
411 49 

4"  83 
41217 

412  51 
41285 

41319 
41353 
41387 
41421 

4>4  55 
4149 

41524 
4»5  58 
41592 
41626 
4166 
41694 
417  28 
41763 

4»797 
41831 

41865 

41899 

41933 
41968 

42002 

42036 

4207 

42105 

42139 
42173 
42207 

42242 

42276 

4231 

42345 

42379 
42413 

42447 


2.47509 
•47302 

•47095 
.  468  88 
.46682 

2. 464  76 
.4627 
.46065 
.4586 
•45655 

2-454  51 

•45246 

•45043 
.44839 

.44636 

2-444  33 
•4423 
.44027 

43825 

•43623 
2-43422 

-.432  2 
.43019 
.428 10 
.426 18 

2.42418 
.422  18 
.42019 
.41819 
.4162 

2.41421 

.41223 
.4>o25 
.40827 
.40629 
2.404  32 

•40235 
.40038 
.39841 

•39645 
2.39449 

•39253 
•39058 
.38862 
.38668 
2.38473 
.38279 
.38084 

3789* 

•37697 

2.37504 

•373" 
.371 18 

.36925 

•36733 
2.36541 

•36349 
.361  58 

•35967 

•35776 

2.35585 


Co-TAHO.      Tamo. 
670 


Tako. 

C0.TAM0. 

.42447 

2.35585 

.42482 

.35395 

.42516 

•  35205 

•42551 

•35015 

•42585 

•34825 

.426  19 

2.34636 

•42654 

•344  47 

.42688 

.34258 

.42722 

.34069 

•42757 

.33881 

.42791 

2.33693 

.42826 

•33505 

4286 

•33317 

.42894 

3313 

.42929 

•32943 

.42963 

2.327  56 

.42998 

•3257 

•43032 

•32383 

•43067 

•32197 

.43»oi 

.32012 

•431  36 

2.31826 

•4317 

.31641 

•43205 

•31456 

•43239 

•31271 

•43274 

.31086 

•43308 

2.30902 

•43343 

.30718 

43378 

■30534 

.43412 

•30351 

•434  47 

30167 

•43481 

2.29984 

435  >6 

29801 

•435  5 

.29619 

•4358s 

29437 

•4362 

•29254 

•436  54 

2.2Q073 
.28891 

43689 

•43724 

.2871 

•43758 

.28528 

•43793 

.28348 

.43828 

2. 281 67 

.43862 

•27987 
.27806 

43897 

•43932 

.27626 

.439^6 

27447 

.44001 

2.27267 

.44036 

.27088 

.44071 

.26909 

•44105 

.2673 

.4414 

26552 

•44»  75 

2.26374 

.4421 

.261  96 

•442  44 

26018 

44279 

2584 

•44314 

.25603 

443  49 

2.25486 

■44384 

•25309 

.444  i3 . 

.251  32 

444  53 

.24956 

.44488 

.2478 

•44523 

2.24604 

Co-TAMO. 

Tamo. 

6 

60 

60 

59 
58 

57 
56 
55 
54 
53 
52 
5> 
50 

49 
48 

47 
46 
45 
44 
43 
4a 
4» 
40 
3 

37 
36 

35 
34 
33 
3» 
31 
30 


27 
26 

25 
24 
23 

23 

21 
20 

»9 

x8 

17 
x6 

X5 

«4 

13 
xa 

XI 

xo 

I 

7 
6 

5 

4 
3 

M 
I 

a 


NATURAL'  TANGENTS  AND  CO-TANQKNTS. 


421 


o 

I 

9 

3 

4 
5 
6 

7 
8 

9 
10 

II 

13 

>3 
14 
15 
16 

17 
z8 

«9 
20 

31 
23 

83 
«4 
25 
36 
27 
28 
29 
30 

31 
32 

33 
34 
35 
36 
37 
38 
39 
40 

4« 
43 
43 
44 
45 
46 
47 
48 
49 
50 

S« 
52 

53 
54 
55 
56 
57 
58 

59 
60 


240 

Tamo.    |  Co-tan«. 


260 

Taito.      Co4ar«. 


44523 
44558 

44593 
44627 
44662 
44697 
44732 

44767 
44802 

44837 
44872 

44907 
44942 

44977 
45012 

45047 
45082 

45117 
45«52 
45187 
45222 

45257 
45292 

45327 
45362 

45397 
45432 
45467 
45502 

45537 
45573 
45608 

45643 
45678 

457 '3 
45748 
45784 
45819 

45854 
45889 

459  JH 
4596 

45995 

4603 

46065 

461 01 

46136 

461 71 

46206 

46242 

46277 

46312 
46348 
46381 
46418 

46454 

46489 
46595 
4656 

46595 
46631 


24604 
24428 
24252 
24077 
23903 
23727 

235  53 
23378 

23204 

2303 

22857 

22683 
2251 

22337 
22164 
21992 
218  19 
21647 

21475 
21304 

211  32 

30961 

2079 

20619 

20449 

30278 

20108 

9938 
9760 

95 .« 

943 

9261 

9092 

8923 

8755 
8587 
8419 

8251 

Bo  84 

79  «6 

7749 

7582 

7416 

7249 
7083 

6917 

6751 
6585 
642 

6255 
609 


2. 


5925 

576 

5596 

5432 

5268 

5104 

494 

47  77 
4614 

4451 


Co^AKo.;     Taxo. 
650 


46631 
46666 
46702 

46737 
46772 

46808 

46843 

46879 

46914 

4695 
46985 

47021 
47056 
47092 
47128 
47163 

47199 
47234 
4727 
47305 
473  41 

473  77 
474" 

47448 

47483 

47519 

475  55 

4759 
47626 

47663 
47698 

477  33 
47769 
47805 

4784 
47876 
47912 
47948 

47984 
48019 

48055 

48091 

48137 

48163 

48198 

48234 

4827 

48306 

48342 

48378 

48414 

4845 

48486 

48521 

48557 

48593 
48629 

48665 

48701 

48737 
48773 


144  51 
14388 
M'25 

"3963 
138  01 

13639 

>34  77 
13316 

13154 
12093 

12832 

126  71 
125 II 
1235 

121  9 

1203 

I1871 

117  II 

11552 

1 13  92 

"233 

1 10  75 

109  16 

10758 

106 

10442 

10284 

lOI  26 

09969 

098  1 1 

09654 

09498 

09341 

091  84 

09028 

08872 

087  16 

0856 

08405 

0825 

08094 

07939 

077  85 

0763 

07476 

07321 

07167 

07014 

0686 

06706 

06553 
064 

■06247 
06094 

05942 

057  9 

05637 

05485 

05333 
05182 

0503 


260 

Tamo.  |  Co-taiw. 


Co-tamo.   Tano. 
640 


48773 
48809 

48845 
48881 
48917 

48953 
48989 

49020 

49062 

49098 

49134 

4917 
49206 

49242 
49278 

49315 
49351 
49387 
49423 
494  59 
49495 

49532 
49568 
49604 
4964 

49677 

49713 

49749 
49786 

49823 
49858 

49894 
49931 
49967 

50004 
5004. 
50076 

50113 
50149 
50185 

503  22 
50258 
50295 

50331 
50368 

50404 

504  41 
50477 
50514 
5055 
50587 

50623 

5066 

50696 

50733 
50769 
50806 
50843 
50879 
50916 
50953 


0503 

04879 

04728 

04577 
04426 
04276 
0*135 

"39  75 
03825 

03675 
03526 

03376 

03227 

03078 

02929 

0278 

02631 

02483 

02335 
03187 
02039 


018 


91 


01743 
01596 
01449 

01302 

01155 
010  08 

00862 

007  IS 

00569 

00423 

00277 

001 31 

99986 

99841 

99695 

9955 

99406 

99261 

99' 16 

95272 
98828 
98684 

98s  4 

98396 

98253 

981 1 

97966 

97823 

9768 

97538 

9739s 

97253 

971 II 


96685 

96544 
96402 
96261 


CO-TAMO.I   XaNU. 
630 


270 

1 

Tamo.    |  Co-tano. 

•509 SS    I 

.96261 

.50989 

.961  2 

.51026 

■95979 

-51063 

.95838 

.51099 

.95698 

.51136     1 

95557 

.51173 

95417 

.51209 

95277 

•51246 

95137 

.51283 

94997 
94858 

.51319     I 

.51356 

94718 

.51393 

94579 

.5143 

9444 

•51467 

94301 

•51503     I 

94162 

•5154 

94023 

•51577       ' 

93885 

.51614       . 

93746 

.51651 

93608 

.51688     I. 

93^7 

•51724       ■ 

93332 

.51761       . 

93195 

.51798       • 
.51835       • 

93057 

9293    . 

.51873     I. 

92782 

.51909       . 

92645 

•S1946 

92508 

.51983 

92371 

.5302 

92235 

.52057     I 

92098 

•52094 

91962 
91026 

.53131 

.521 68 

9169 

.52205 

9'5  54 
914 18 

.52243     I 

•52279 

91282  1 

.52316 

91147 

•52353 

910 12 

•5239 

90876 

.52427     I 

90741 

.52464 

90607 

•52501 

90472  1 

.52538 

90337 

•52575 

90203 

.52613     I 
•5265 

Q0069 

29235 
89801 

.52687 

•52724 

.89667 

.52761 

89533 

.52798     1 

■894 

.52836 

.89266 

•52873 

89133 

.5291 
•52947 

'8i867 

•52984     1 

S23^ 

.53022 

.88602 

•53059 

.88469 

.53096 

•88337 

•53134 

88305 

■53171     1 

88073 

Co-TAMO.i 

Taao. 

6*0 

60 

59 
58 

57 
56 
55 
54 
S3 
52 
5" 
50 

Ji 

47 
46 
45 
44 
43 
42 
4« 
40 

3 

37 
36 

35 
34 
33 
32 
3x 
30 

31 

27 
36 

25 
24 
23 
33 
31 
30 

:i 

17 
16 

15 

14 

13 
12 

II 

10 

t 
I 

5 

4 
3 

a 
I 
o 


422 


NATtJBAL   TAKGENTS   AND   CO-TANGENTS. 


o 

I 

2 

3 

4 
5 
6 

7 
8 

9 

lO 

II 

12 

13 
M 

15 
i6 

>7 
i8 

19 
20 

31 
22 

a3 
24 

25 

36 

39 
30 
31 
32 

33 
34 
35 
36 
37 
38 

39 
40 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 


28© 
Taho.   Co-tak«. 


5317" 
53208 

53246 
53283 

5332 

53358 

53395 

53432 

5347 

53507 

53545 

53582 

5362 

53657 
53694 
53732 
53769 
53807 

53882 
5392 

53957 
53995 
54032 

5407 
54»o7 

54M5 
54183 

5422 

54258 
54296 

543  33 

543  7' 
54409 

54446 

54484 

54522 

5456 

54597 

54635 

54673 

547  « I 
54748 
54786 
54824 
54862 

549 
54938 

54975 
550x3 

55051 
55089 
55127 
55165 
55203 
55241 
55279 
553  >  7 

553  55 
5539? 

554  3' 


•  88073 
.87941 
.87809 

87677 

.87546 

1.874  15 

•  87283 
,871 52 
,87021 
.86891 

Z.8676 

.866 
.864 
863  _^ 
,86239 
X.861 

859 
.858 
.857. 

•8559' 
8546: 

13  33 
1204 


853 
,852«, 

85075 

?4r  -^ 


^99 
169 

39 
09 
79 
5 

2 


84S 


©46 
^48 18 
84689 
84561 

84433 
•84305 
,84177 

,84049 
.83922 

83794 
83667 

8354 

■834 '3 
.83286 

831  59 
•83033 
1.82906 

,8278 

■  82654 

.82528 

.82402 

1.82276 

8215 

82025 

81899 

81774 
z.  816  49 

81524 
81399 
81274 
.8115 

z. 81025 
,80901 
80777 
80653 
,80529 

X.  804  05 


COTAiia.      Tah«. 
610 


290 
Tako.      Co-tavo. 


55431 
55469 
55507 
555  45 
55583 
55631 

55659 
55697 
55736 

55774 
55812 

558  s 
55888 

55926 

55964 
56003 
56041 
56079 
561 17 
56156 
56194 

56232 

5627 

56309 

56347 
56385 
56424 
56462 

56539 
56577 
56616 
56654 
56693 

56769 
56808 
56846 
56885 

56962 

57 

57039 
57078 
57n6 

57*55 
57«93 
57232 
57271 
57300 
57348 
57386 
57425 
57464 
57503 
575  4« 
5758 

57619 
57657 
57696 
577  35 


80405 
8028^ 
8015s 
80034 

799" 
79788 

79665 
79542 

794x9 
79296 

79«74 


Co-TAire.      TAxa. 
I  000 


\ 


30O 
Tahs.      Co-tano. 


57735 

57774 

57813 

57851 

5789 

57929 

57968 

58007 

580  a6 

58085 

58124 

58162 

58201 

5824 

58270 

58318 

58357 
58396 
58435 
58474 
585x3 

58552 

58591 
586  3X 

5867 

58709 

58748 

58787 

58826 

58865 

58904 

58944 
58983 
59023 
59061 
59x01 

59M 

59»79 
592x8 

59258 
59297 
59336 
59376 
594x5 
59454 
59494 
59533 
59573 
596x2 

59651 

596  9z 

597  3 
597  7 
59809 

5988 

59928 

59967 
60007 

60046 

60086 


CO-TAMA. 


73205 
73089 
72073 
72857 
72741 
72625 
72509 

72393 
72278 

72163 
72047 


Taks. 


ago 


310  { 

Tak«.      Co-tako. 


60086 
601  26 
60165 
60205 
60345 
60284 
60324 
60364 
60403 

60443 
60483 

60533 
60563 
60602 
60642 
60681 
60721 
60761 
608  ox 
60841 
608  8r 

60921 

6096 

6x 

6x04 

6108 

6ll9 

6x1 6 
613 
6134 
6138 

6133 

6x44 

6148 

6153 

."61561 

.61601 

.616  41 

.61681 

.61721 
.61761 
61801 
61843 
61883 
61933 
61963 
.63003 
.63043 
.63003 

.631  34 
63164 
.63304 
.633  45 
63385 
.63335 
.63366 
.63406 
•  634  46 
.62487 


CO-TAlf«. 


1.66438 
.66318 
.66309 
.66099 
.6509 

X.65881 

•65772 
.65663 

•65554 

•65445 

1-65337 

.65328 
.6513 
.65OIZ 
.64903 
1.64795 
.64687 

•64579 
.64471 

.64363 

1.64356 

.641  48 

.64041 

•63934 

.63826 

X.637  19 

.636  Z3 

•63505 

.63398 

.63393 

X.631  85 

.63079 

.62973 

.62866 

6376 

X.  636  54 

.62548 

.63442 

62336 

6223 

1.62135 

.63019 

.6zoz4 
.61808 
.61703 

z. 61598 
•6x493 
.61388 
.61383 
.6zi  79 

z.  610  74 
.6007 
.60865 
.60761 
.60657 

«6os53 

•60449 
•6034s 
.6CK14X 
•60X  37 
1.60033 


Tami 


580 


60 

% 

57 
5<f 
55 
54 
53 
52 
5x 
50 

Ji 

47 
46 
45 
44 
43 
42 
4X 
40 

n 

37 
36 
35 
34 
33 
32 

3x 

30 


37 

36 
25 

24 

»3 
sa 

sx 
«o 

:i 

12 

«5 
X4 
X3 

X3 

ZX 
ZO 

I 

7 
6 

5 

4 
3 

t 


NATUBAL   TANSXNTS   AND  CO-TANOBNTS. 


423 


o 

I 

3 

4 


I 


I 

9 
10 

XI 
13 

13 

»4 

«o 

31 

a3 

as 

3: 
39 
30 

3» 
33 

33 

34 

3§ 
36 

3 

39 

40 

4" 
43 
43 
44 
45 
♦6 

49 
5« 
51 

53 
S4 

P 

57 
58 


320 

330             II 

340           II 

350              1 

Tano.        Co-TANa. 

Tana. 

d<VTAKO. 

Tano. 

Co^TANO. 

Tahs. 

CO-TAHO. 

.62487    I 

60033 

.64941 

,.53986 

•674  51 

1.482  56 

.70021 

1.42815 

.625  27 

S9826 

.64982 

.53888 

•67493 

.48163 

.70064 

.427  26 

.62568 

.65023 

•53791 

•675  36 

.4807 

.70107 

.42638 

.62608 

59723 

.65065 

.53693 

•67578 

•47977 
•47885 

.70151 

•4255 

.62649 

.5962 

.65106 

•53595 

.6762 

.70194 
.70238 

.42462 

.62689    < 

59517 

.65148 
.65189 

153497 

,67663 

1.47792 

1.42374 
.42286 

.6273 

.594 '4 

•534 

.67705 

•47699 

.70281 

.6277 

593" 

.65231 

•53304 

•67748 

.47607  1 

70325 

.421  98 

.628 II 

.59208 

•652  72 

.53205 

.6779. 

•47514 ! 

.70368 

.421  I 

.62852 

.59x05 

•653  14 

.53107 

.67832 

.47422 

.70412 

.420  22 

.62892    I 

.59002 

•65355 

1.5301 

.67875 

«4733     [ 

•70455 

"•41934 

.62933 

.589 

•65397 
.65438 

.52913 
.52816 

.679  ,7 

.47238  1 

•70499 

.41847 

.62973 

•58797 

.6796 
.68002 

.47146  1 

.70542 
.70586 

•417  59 

.630 14 

•58695 

.6548 

.52719 

.47053 

.41672 

•63055 

.58593 

.65521 

.52622 

.68045 

.46962 
1.4687 

.70629 

.41584 

.6^095     r 

t^%^ 

•65563 

1.52525 

.68088 

•70673 

1.41497 

.631  36 

.65604 

•52429 

.6813 

•46778 

.70717 

.41409 

.631  77 

.58286 

.65646 

.52332 

•S*  73 

.46686 

.7076 
.70804 

.41322 

.63217 
.63258 

.58184 

.65688 

.52235 

.682 15 

•46595 

.41235 

.58083 

•65729 

52139 

68258 

•46503 

.70848 

.41148 

•63299     I 

579  8 1 

•65771 

1.52043 

.68301 

1.464  11 

.70891 

X.41061  ' 

.6334 
•6338 

.57879 
•57778 

•55^3 

.51046 
.5185 

•?S3^3 

-4632 

•70935 

.:si? ! 

.65854 

.68386 

.46229 

.70979 

.6342* 

57676 

.65896 

.51754 

.68429 

•461  37 

.71023 

.408 

.63462 

•575  75 

.65938 

.51658 

.684  71 

.46046 

.71066 

.40714 

.63503     X 

574  74 

.6598 

1.51562 

.685 14 

14595s 
•45864 

.711 1 

X.  406  27 

•63544 

57372 

.00021 

.51466 

,.68557 

•7"  54 

•4054    i 

•63584 

5727' 

.66063 

•5137 

.686 

45773 
.45682 

.71198 

.40454  1 

.636  25 

5717 

.66105 

.51275 

.68642 

.71242 

.40367 

.63666 

.57069 

.66,47 

.51179 
1.5,084 

.68685 

•45592 

.71285 

.40281 

.63707    I 

56969 

.66189 

.68728 

'•45501 

71329 

1.40195 

.63748 

36868 

.6623 

.50088 
•  50893 

.68771 
.688 14 

•4541 

•71373 

.40109 

•63789 

56767 

.66272 

•4532 

.71417 

.40022 

•5383 

.63871 

56667 
56566 

.66314 
.66356 

.50797 
.50702 

.68857 

•45229 
•451  39 

.71461 
•71505 

.39936 
.3985 

.63912    I 

56466 

.66398 

1.50607 

.68942 
.68985 

1.45049 

•71549 

1.39764 

•63953     ' 

56366 

.664^ 
.66482 

.50512 

•44958 
44868 

•7'593 

•39679  1 

.63994 

56265 

.50417 

.69028 

•71637 

.39593  I 

•64035 

56165 

.66524 
.66566 
.66608 

.50322 

.69071 

•44778 

716  81 

•39507 

64076 

56065 

.50228 

.69114 

.44688 

•71725 

V  394  21 

641 17    1. 

55966 

I  50133 

69157 

1.44598 

.71769 

'•39336 

.641 58 

55866 

.6665 

.50038 

■692 

.44508 

.71813 

.3925 

.641 99       , 

55766 

.66692 

.49944 
.49849 

•69243 

•44418 

•71857 

.39165 

.6424 

55666 

.66818 

.69286 

•44329 

.71901 

.39079 
.38994 

.64281 

55567 

•49755 

.69329 

•44239 

.71946 

.643  22       I. 

55467 

1.496  61 

•69372 

1.441  49 

.7199 

1.38909 
.38824 

•64363 

55368 

.6686 

.49566 

.69416 

.4406 

•72034 

.64404         . 

55269 

.66902 

•49472 

69459 

•439  7 

.72078 

.38738 

.64446 

5517 

■^'^ 

.49378 

.69502 

.43881 

.72122 

.38653 

.64487         . 

55071 

.49284 

.69545 

•43792 

.72166 

.38568 

'64528       I 

54972 

.67028 

1.491 9 

.69588 

1-43703 

.722x1 

1.38484 

•64569 

54873 

.67071 

.49097 

.69631 

•436 14 

•72255 

•38399 

•6461 

54774 

.671 13 

.49003 

.69675 

•43525 

•72299 

.383  14 

.646  52 

54675 

.671  55 

.48900 
.48816 

.69718 

.43436 

.72388 

.38^29 

.64693 

54576 

.671 97 

.69761 

.43347 

.3?»  45 

.64734       '• 

54478 

.67239 
.67282 

1.48722 

.69804 

'•432 18 
.43169 

•72432 

X.3806 

•647  75       • 

S4379 
54281 

.48629 
.48536 

.69847 

•72477 

.37976 
.3789* 

.64817 

■%v^ 

.69891 

.4308 

.72521 

.64858 

54183 

•48442 

•69934 

.42992 

.72565 

.37807 

.64899       . 

54085 
53986 

.67409 

•48349 

.69977 

•42903 
1.42815 

.7261 

•37722 

•^494'     ' 

.67451 

1.48256 

.70021 

•72654 

'•37638 

Co4:Aa«. 

liAJia. 

Co-TAXA. 

Tamo. 

Co-TAN«. 

Tamo. 

CO-TAKO. 

Tans. 

«7o 

6 

60 

6 

6<5 

6 

40 

60 

5 

57 
56 
55 
54 
53 
52 
5« 
50 

% 

47. 
46 
45 
44 
43 
42 
41 
40 

3' 

37 
36 
35 
34 
33 
32 
31 
30 


I 


2 
2 

25 

24 
23 

22 

2Z 
20 

\% 

;i 

'5 
14 
13 
12 

xz 

10 

% 

7 
6 

5 
4 
3 

2 

z 
o 


414 


NATURAL   SECANTS   AND   CO-SSCANTS. 


440 

SiCAira.     Co-nc'T. 


I 


4A^             \ 

4« 

SCCANT. 

Co-ac*r. 

1.4065 

1.4221 

42 

.4069 

.4217 

43 

.4073 

.42x2 

44 

•4077 

.4208 

45 

1.4081 

1.4204 

46 

.4085 

•^'  . 

47 

.4089 

.4196 

48 

•4093 

•t:?s 

49 

.4097 

SO 

X.4IOZ 

1.4183 

51 

.4105 

•4»79 

52 

.4109 

•4»75 

53 

•4"3 

.4171 

54 

.4117 

.4167 

55 

1.4122 

1.4163 

56 

.4126 

•4«59 

57 

•413 

•4154 

58 

•4»34 

.415, 

?9 

.4«38 

.4146 

60 

1.4142 

1.4142 

Co-«BCt. 

Sbcamt. 

450    1 

II 

17 
16 

>s 

X4 

"3 
12 

II 

10 

I 

7 
6 

5 
4 

3 

2 
I 
o 


i 


Co-*kc't.  I  Secant. 
450 


Preceding  Table  contains  Natural  Secants  and  Co-secants  for  evei7 
minute  of  the  Quadrant  to  Radius  i. 

If  Degrees  are  taken  at  head  of  column,  Minutes,  Secant,  and  Co-seeant 
must  be  taken  from  head  also;  and  if  they  are  taken  at  foot  o(  column. 
Minutes,  etc.,  must  be  taken  from  foot  also, 

Illustration  —1.05  is  secant  of  17O  45'  and  cosecant  of  72°  15'. 

To   Compvite   Secant  or   Co-seoant  of*  Any  Angle. 
RuLB. — Divide  i  by  Cosine  of  angle  for  Secant,  and  by  Sine  for  Co-secant 
ExAMPLK  L— What  is  secant  of  25O  25'  ? 

Cosine  of  angle  =  .903  21.    Then  i  -r-  .903  21  =  1. 1072,  Secant 
2.— What  is  CO- secant  of  64O  35'? 

Sine  of  angle  =  .903  21.    Then  t  -?-  .903  21  =  1. 1072,  Co-gecant. 

To  Compute  D«*grees9  !Minntes,  and  Seconds  of*  a  Secant 

OP  Co-seoant. 

When  Secant  it  given, 

Proceed  as  by  Rule,  page  402,  for  Sines,  substituting  Secants  for  Sines. 

ExAMPLB.  — What  is  secant  for  1.1607? 

The  next  less  secant  Is  i.x6o6,  arc  for  wkxchrssyp  -y/. 

Next  greater  secant  is  1.1608,  differe^ncc  between  which  and  next  lest  it  1.1608— 
1.1606^.0002. 

Difference  betioeen  less  tab.  secant  and  one  given  is  1. 1607  —  x.  1606 = .0001. 

Then  .0002  :  .0001 ::  60 :  30,  which,  added  to  30O  y/ssyP  30'  30"^. 

When  Co-tecant  it  given^ 
Proceed  m  by  Rule^  page  40a,  srubstitutlng  Co-secants  for  Cosfamk 


»ATtraAL  TANGBNTS  AND  CO-TANGENTS. 


415 


IQ'atiiral  Xangexxts 

00 

1°               II 

f 

Taho. 

C0.TAN0.    1 

Tako. 

CO-TANO. 

0 

.00000 

Infinite. 

.01746 

57-29 

I 

.00030 
.00058 

3437-75 
1718.87 

•01775 

6.3506 

a 

.01804 

5-4415 

3 

.00087 

145-92 

•01833 

4.5613 

4 

.OQI  16 

859.436 

.01862 

3.7086 

5 

.00145 

687.549 

.01891 

53.8821 

6 

.00175 

57»-957 

.0192 

2.0807 

7 

.00304 

491. 106 

.01949 
.019  78 

1.  3032 

8 

.00233 

29.718 

0.5485 

9 

.00262 

381.971 

.02007 

498157 

10 

.00291 

343-774 

.02036 

40.1039 
8.412I 

II 

.0032 

12.521 

.02066 

13 

•00349 

386.478 

.02095 

7-7395 

13 

.00378 

64441 

.021  24 

7-0853 

14 

.00407 

45-552 

.021  53 

6.4489 

15 

.00436 

229. 182 

.021  82 

458294 

16 

.00465 

i4^858 

.022  11 

5.2261 

17 

.00495 

02.219 

.0224 

4.6386 

18 

.00524 

190.984 

.02260 
.02298 

4- 0661 

»9 

•00553 

8a  932 
r7»^885 

3.5081 

30 

.005^ 

.02328 

42.9641 

21 

.ooC  II 

637 

•02357 

2.4335 

32 

.0064 

56.259 

.02386 

1.9158 

23 

00669 

49465 

•02415 

1. 4106 

24 

.00698 

43-237 

•02444 

0.9174 

25 

.00727 

137-507 

•02473 

40.4358 

36 

.00756 

32.219 

.02502 

399655 

Ii 

.00785 
.008  14 

27.321 
22.774 

•02531 
.0256 

9-5059 
0.0568 

8.6177 

29 

.00844 

18.54 

.02589 

30 

.00873 

114.589 

.02619 
.02648 

38.1885 

3« 

.00902 

101892 

7.7686 

3a 

.00931 

07.436 

.03677 

7-3579 

33 

.0096 

04.171 

.02706 

6.956 

34 

.00980 
.010 1§ 

01.107 

•02735 

6.5627 

35 

98.2179 

.02764 

36.1776 

36 

.01047 

5-4895 
0.9085 

•03793 

5.8006 

3Z 

.01076 

.02822 

5.4313 

38 

.01105 

0.4633 

.03851 

5.0695 

39 

.011  35 

88.1436 

.03881 

4.7151 

40 

.01164 

85.9398 
3-8435 

.0391 

34.3678 

4« 

.01193 

.iwy39 
.03968 

40B73 

42 

.OI3  32 

1.847 

36935 

43 

.01251 

79-9434 
8.1263 

.03997 

3.3663 

44 

.oiaS 

.03036 

3.045a 

45 

.01309 
.01338 

76.39 

.03055 

32.7303 

46 

4.7293 

•03084 

3.4213 

47 

.01367 

3-539 

.031 14 

3.1l8l 

4« 

.01396 

1.6151 

.03143 

1.8205  . 

49 

.01435 

a  1533 

.03173 

1-5284 

50 

014  §5 
.014  84 

6&7SOI 

.032  01 

3I.SHI6 

SI 

7.4019 

.0333 

aQ599 

52 

.015 13 

6. 1055 

.03359 

a6833 

53 

.01543 

4.858 

.033  88 

a4ii6  1 

54 

.01571 

,3-6567 

•03317 

0.1446 

55 

.016 

63.4992 
1.3820 
0.3058 

.03346 

39.8823 

56 

.01620 
.01658 

.03376 
•03405 

9.6?4S 
9-37" 

9. 123 
8.8771   ,, 

58 

.01687 

\t^. 

-03434 

59 

.01716 

•03463 

60 

.017  46 

57-29 

.03493 

38.6363  Ii 

/ 

CO^VA**. 

Tabs. 

C0.TA11S; 

Tamo. 

fl 

I0O 

« 

50 

and.   Co-t^zisents. 


Tamo. 


20 

!  C0-TAN6. 


30 
Tans.      Co-tak«. 


03492 
03521 
0355 

035  79 
03609 

03638 
03667 
03696 
03725 
03754 
037  83 
03812 
03842 
03871 

039 
039  20 

03958 
03987 
04016 
04046 
04075 
04104 

04133 

04162 

04191 

0423 

0425 

04279 
04308 

04337 
.04366 

•0439s 
,04434 

04454 
04483 
04512 

045  4« 
0457 

04620 
04658 
04687 
04716 
04745 

04774 
04803 

04833 

.04863 

04891 

0493 

0494 

049 
05007 

05037 
05066 

05095 
05124 

051 53 
05183 
05213 
05241 


% 


28. 636 1) 

8.3994 
8.1664 
7.9372 
7.7x17 

274899 
7-2715 
7.0566 

6.845 
6.6367 
26.4316 
6.2296 
6.0307 

5.8348 
5.6418 

25.4517 
5.2644 

50798 

4.8978 

4-7185 

24.5418 

43675 
4-1957 
4.0263 

38593 
236945 

3-5321 
3-3718 

3.2137 

3-0577 
22.9038 

2.7519 
2.602 

2-4541 
2.3081 

33. 164 
3. 0217 
I.8813 
1.7426 
1.6056 

21.4704 

.1.3369 

1.3049 

1.0747 

a  946 

3a8i88 

0.6932 

0.5691 

0.4465 

0.3253 
30.2056 

a  0872 

19.9702 

9.8546 

9-7403 
19.6273 

9.5156 
9.4051 
9.2959 
9.1879 
19.0811 


CO-TAMO.        TaHO. 
87° 


05241 
0527 

05299 

05338 

05357 
05387 
05416 

05445 
05474 
05503 

055  33 
05562 

0559' 

0562 

05649 

05678 

05708 

05737 
05766 

05795 
05824 

058  54 
05883 
05912 
^59  4« 
0597 

05999 
06029 

06058 
06087 
061  i6 
06145 
06175 
06204 
06233 
06262 
06291 
06321 
0635 

06379 
06408 

06437 
06467 
06496 
06525 
06554 
06584 
06613 
06642 
06671 
067 

0673 
06759 

06788 

06817 

06847 

06876 

06905 

06934 
06963 

06993 


19.0811 

8.9755 
8.8711 

8.7678 

8.6656 

18.3645 

8.4645 

8.3655 
8. 2677 

8.1708 

18.075 

7.9802 

7-8863 

7-7934 

7-70'<5 

17.6106 

7-5205 
74314 
7-3432 
7-2558 

17.1693 
7.0837 
6.999 
6.015 
6.8319 

16.7406 
6.6681 

6.5874 
6-5075 
6.4283 

16.3499 
6.2722 
6. 1952 
6. 1 19 
6.0435 

15.0687 

5.8945 
5.8211 

5-7483 

5.6762 

15.6048 

5.534 
5.4638 

5.3943 

53254 

«5.a57i 

5-1893 

5.1222 

5.0557 

4.9898 

M-9244 

.4.8596 

47954 

4- 7317 

4-6685 

X4.6050 

4-5438 

448a3 
4.4312 

4.3607 
143007 


60 
5 

57 
56 
55 
54 
53 
52 
5* 
50 

% 

47 
46 
45 
44 
43 
42 
41 
40 
31 

37 
36 
35 
34 
33 
32 
31 
30 

20 


27 

26 

25 
24 

23 
22 
21 
20 

:i 

17 
16 

15 

14 

13 
12 

XI 

10 

\ 

7 
6 

5 
4 
3 

3 
X 

o 


Co-TAMo.   Tamo. 
86° 


4i6 


NATUBAL   TANGENTS    AND   CO-TANGKNTS. 


o 
I 

a 

3 

4 
5 
6 

7 
8 

9 
to 

XI 
12 

13 
M 
15 
i6 

17 
i8 

'9 

20 
21 
22 

23 
24 
25 
26 

27 
28 

29 
30 

3» 
32 

33 
34 
35 
36 
37 
38 

39 
40 

41 
42 

43 
44 
45 
46 
47 
48 

49 
50 

51 

52 
53 
54 
55 
56 

57 
58 


4 

0 

««>                   11 

<5«               II 

70 

Tano. 

Co-TAlf«. 

Tamo. 

Co-TANO. 

Tano. 

CO^AMO. 

Tans. 

Co-TANO. 

# 

.06993 

143007 

.08778 

11.4301 

.1051 

9.51436 
.48781 

.12278 

8.14435   ,   60 

.07022 

4.24IX 

1-39' 9 

.1054 

.12308 

.12481     59 

.07051 

4. 1 821 

.08807 

1.354 

.10569 

.46x41 

•12338 

•  105  36 

58 

.0708 

4- "35 

.08837 

1.3163 

:;ss 

.435  15 

.12367 

.086 

57 

.071  I 

40655 

.08866 

1.2789 

.40904 

•12397 

.06674 

56 

:ZU 

14.0079 

.08895 

IX.  241  7 

•10657 

9-38307 

.12426 

8.047  56 

55 

3-9507 
3894 

.08925 

1.2048 

.X0687 

•357  24 

•  124  56 

.02848 

54 

.07x97 

.08954 

x.t68x 

.  107 16 

•33154 

•12485 

8.00948 

S3 

.07227 

3.8378 

.08983 

1.1316 

.10746 

•30599 
.28058 

•12515 

7.99058 

52 

.07256 

3.7821 

.09013 

1.0954 

.10775 

•12544 

•971 76 

5x 

.07285 

13.7267 

.09042 

11.0594 

.10805 

9.2553 

•12574 

79530a 

50 

•073  >4 

3- 6719 

.0907X 

^•°iv 

.10834 

.230x6 

.12603 

•93438  49 

•07344 

3-0174 

.091  ox 

0.9882 

.10863 

.205x6 

.12633 

.0x582 

•29734 

48 

•07373 

3-5634 

•09x3 

0.9529 
aoi78 

la  882  9 

.10893 

.18028 

.12662 

47 

.07402 

35098 

.09x59 

.X0922 

•15554 

.12692 

•87895  i  46 

.07431 

13-4566 

.09x89 

.10952 

9- 130  93 

.12722 

7.86064    45 

.074  6x 

3-4039 

.092x8 

0.8483 

.X098X 

.10646 

.12751 

.84242    44 

•0749 

3-3515 

-09247 

0.8x39 

.IIOXX 

.082  IX 

.12781 

.82428 

43 

•075  '9 
.07548 

3.2906 
3-248 

.09277 

0.7797 

.1104 

.05789 

.1281 

.80622 

4a 

.09306 

0.7457 

.1107 

.033  79 

.1284 

.78825 

4» 

•07578 

13-1969 

-09335 

10.71x9 

.1x099 

9-00983 

.12869 

777035 

40 

.07607 

3.1461 

.09365 

0.6783 

.11128 

8.98598 

.12899 

•75254 

^ 

.07636 

30958 

•0939.4 

a645 

.11158 

.96227 

.12929 
•'*958 

.7348 

.07665 

3-0458 

.09423 

a6ix8 

.11187 

.93867 

•71715 

37 

.07695 

2.9967 

•09453 

0.5789 

.XI2I7 

«'2"5a 

.12988 

7.68208 

36 

.07724 

X2.0469 
2.8981 

.09482 

xo.5462 

.1x246 

8.89185 

•13017 

35 

.07753 

.09511 

0.5136 

.XX276 

.86862 

•13047 

.66466 

34 

.07782 
.07812 

2.8496 

•09541 

0.4813 

•11305 

.84551 

.13076 

•64732 

33 

2.8014 

.0957 

0.4491 

•11335 

.822  52 

.13x06 

.63005 

32 

.07841 

2-7536 

.096 

0.4172 

.11364 

•79964 

.13136 

.61287 

3« 

.0787 

12.7062 

.09629 

10.3854 

.11394 

8.77689 

.13165 

7-59575 

30 

.07899 

2.6591 

.09658 

0.3538 

•11423 

•75425 

.131 95 

.57872 

»9 

.07920 
.07958 

2.6124 

.09688 

0.3224 

.11452 

•731  72 

.13224 

.56176    28 

2.566 

.09717 

0.2913 

.1x482 

•70931 

.  132  54 

.54487 

27 

.07987 
.08017 

2-5199 

.09746 

02602 

.1x511 

.687  ox 

.13284 

.52806 

26 

12.4742 

.09776 

10.2294 

•11541 

8.66482 

•13313 

7.51132 

25 

.08046 

2.4288 

.09805 

0. 198  8 

"57 

•642  75 

.13343 

•49465 

24 

.08075 

2.3838 

•09834 

0.1683 

.1x6 

.62078 

.13372 

.47806 

23 

.08104 

2-339, 

.09864 

ai38x 

.X1629 

•59893 

.13402 

•461 54 

2a 

.08134 

2. 2946 

.09893 

a  108 

.11659 
.1x688 

•577  x8 

.13432 

•44509 

2t 

.08163 

12.2505 

.09923 

10.078 

8.55555 

•13461 

7.42871 

ao 

.o8x  92 

2.2067 

.09952 

0.048  3 

.117x8 

•53402 

•i349» 

.4124 

^1 

.082  2X 

2. 1632 

.09981 

0.0187 

'"747 

•51259 
.491  28 

•13521 

.39616 

.08251 

2. 1 201 

.100x1 

9.9893 

.1X7  77 

.1355 

.37999     17 
•36389     16 

.0828 

2.0772 

.X004 

.96007 

.X1806 

.47007 

•1358 

.08309 

12.0346 

.10069 

9.93101 

.11836 

8.44896 

.13609 

734786 

15 

.08339 

'-9923 

.X009Q 
.  lOX  28 

.902x1 
.87338 

.11865 

•42795 

•13639 

•3319 

«4 

08368 

J.9504 

.11895 

•40705 

.13669 
.13698 

.316 

13 

.08397 

..0087 
18673 

.  lOI  58 

.84482 

.1x924 

.38625 

.30018 

12 

.08427 

.  xoi  87 

.81641 

."954 

•36555 

.13728 

•28442  1  11 

.08456 

11.8262 

.10216 

9.788,7 

.X1983 

8.34496 

•13758 

7.26873  1  10 

.08485 

1.7853 

.X0246 

.76009 

.120x3 

•32446 

•'3787 

•953  « 

2 

■08514 

1.7448 

.10275 

•73217 

.12042 

.30406 

•13817 

•237  54 

.08544 

1-7045 

.10305 

.70441 

.12072 

.28376 

.13846 

.22204 

7 

•08573 

1.6645 

10334 

.6768 

.121  ox 

.26355 

.13876 

.30661  j    6 

.08602 

X  1.6248 

.  X03  63 

964935 

.12X31 

8.24345 

.13906 

7.19x25      5 

.08632 

1-5853 

-10393 

.62205 

.12X6 

•22344 

•13935 

•«7594  !    4 

.08661 

X.5461 

.X0422 

•5949 

.1219 

.20352 

.13965 

.16071 

3 

.0869 

1.5072 

.10452 

•5679" 

.122  19 

•1837 

•13995 

•145  53 

a 

.0872 

1.4685 

.10481 

•54106 

.12240 
.  122  78 

.  163  98 

•14024 

.13042 

t 

.08749 

".4301 

•  »05  I 

951436 
Tana. 

8.144  35 

.14054 

7.11537 

0 

CO-TAHS. 

Tana. 

CO-TANO. 

CO^AHO. 

Tan«. 

Co-TAMO. 

Tako. 

# 

Bl 

50 

i 

J40 

8 

30 

8 

ao 

ICAXirXUX   TAJ!76BNTS  AND  OO-TANGXKTS. 


417 


80             II 

9P            f 

• 

Tako. 

Co-TAire.    1 

TAire. 

CofAVe. 

0 

•  14054 

7- "5  37 

.15838 

6.31375 

«  1 

.14084 

.10038 

.15868 

.301  89 

1 

2 

•14113 

.08546 

.15898 

.29007 

3 

•141  43 

.07059 

.15928 

.27829 

4 

•14' 73 

•055  79 

•'5958 

.26655 

5 

.14202 

7.041  05  , 

.15988 

6.25486 

6 

•  14332 

.02637 ; 

.16017 

.24321 

7 

.14262 

.01174 

.16047 

.2316 

8 

.14291 

6.997 18 

.16077 

.22003 

9 

.14321 

.98268 

.16107 

.20§5I 

xo 

14351 

6.96823 

.16137 

6.19703 

11* 

.14381 

.95385 

.16167 

•18559 

X2 

•1441 

•939  52 

.16196 

•174 19 

13 

•1444 

•92525 

.  162  26 

.16283 

14 

1447 

.91 1 04 

.162  56 

•15151 

15 

•14499 

6.89688 

.16286 

6.14023 

16 

.14539 

.88278 

.16316 

.12899 

17 

•«45  59 

.86874 

.16346 

.11779 

18 

.14588 

•85475 

.  163  76 

.X0664 

«9 

.14618 

.84082 

.16405 

•09552 

ao 

.14648 

6.82694 

•16435 

6.08444 

31 

.14678 

.81312 

•16465 

•0734 

22 

.14707 

•79936 

•16495 

.0624 

«3 

•»47  37 

.78564 

.16525 

.051 43 

24 

.14767 

6.75838 , 

•'6555 

.04051 

25 

.14796 

.16585 

6.02962 
.01878 

26 

.14826 

.74483 : 

,166x5 

27 

.14856 

.731 33 

.16645 

.00797 

28 

.14886 

.71789 

.16674 

5-997  2 

ap 

•»49>S 

.'V^^. 

.16704 

30 

•'4945 

6.691 16 

•"6734 

5.975  76 

31 

•M975 

.67787 

•  167  64 

.9651 

32 

.15005 

.66463 

.16794 

•95448 

33 

•15034 

.65144 

.16824 

•9439 

34 

.15064 

.63831 

.16854 

•933  35 

35 

.15094 

6.625  23 

.16884 

5.92283 

36 

.15124 

.612 19 

.16914 

•9"  35 

37 

•15153 

.59921 

.16944 

.90191 

38 

.15183 

.58627 

.16974 

.89151 

39 

.15213 

.57339 

.17004 

.881 14 

40 

•15243 

6.56055 

•17033 

5.8708 

41 

.15272 

'SAT  77 

.17063 

.86051 

4a 

.15302 

•53503 

.17093 

.85024 

43 

•15332 

.52234 

.17123 

.84001 

44 

.15362 

.5097 

•»7i53 

.82982 

45 

•15391 

6.4971 

.17183 

5,81966 

46 

.15421 

.48456 

.17213 

.80953 

47 

.15451 

.47206 

•  17243 

•79944 

48 

.15481 

•45961 

•17273 

.78938 

49 

.15511 

•4472 

•«7303 

•77936 

50 

.1554 

6.43484 

.17333 

576937 

51    . 

•»557 

•43253 

.17363 

•75941 

5a      156 

.4x026 

•«7393 

.74949 

53 

1563 
1566 

•39804 

•17423 

•7396 

54 

•38587 

•174  53 

•72974 

55 

.15680 

6.37374 

.17483 

s  719  92 

56     ,15719 

.36165 

•175 13 

.71013 

57     .15749 

.34961 

•17543 

.70037 

58 

•X5779 

•33761 

•«7573 

.69064 
.68094 

59 

.15809 
.15838 

.32566 

.17603 

6b 

6.31375 

•17633 

5.671 28 

> 

C»«MI«. 

Tamo. 

Co-iAjra. 

Tamo. 

8 

J» 

8 

00 

100 

Tamo.    I  Co^tano. 


17633 
17663 

17693 
17723 
"77  53 
17783 
17813 

17843 
17873 
17903 
17933 

17963 
17993 
18023 

18053 
18083 

181 13 

18143 
18173 

18203 
18233 
18263 
18293 
18323 
18353 
18383 
18414 
18444 
18474 
18504 
18534 
18564 

18594 
18624 

18654 
18684 
18714 

18745 
18775 
18805 

18835 
18865 
18895 
18925 

18955 
18986 
19016 
19046 
19076 
19106 
191  36 
19166 
19197 
19227 

19257 
19287 

19317 
19347 
19378 
19408 

19438 


671  28 
66165 
65205 
64248 
63295 

62344 
61397 

60452 
59511 
58573 
57638 
56706 

557  77 
54851 

53927 
53007 

5209 

51176 

50264 

49356 

48451 

47548 
46648 

45751 
44857 
43966 

43077 
42192 

41309 
40429 

39552 

38677 

37805 

36936 

3607 

35206 

34345 
33+87 
32631 

31778 
30928 

3008 

29235 

283  93 

27553 
26715 

2588 

25048 

24218 

23391 
22566 

21744 
20925 

20107 

19293 

184.8 

176  71 

16863 

16058 

15256 

14455 


11° 
Tamo.  I  Co-tako. 


19438 
19468 
19498 
19529 

19559 

19589 

196  19 

19649 

1968 

1971 

1974 

1977 

19801 

19831 

19861 

198  91 

19921 

19952 
19982 
20012 
20042 
20073 
20103 
20133 
20164 
20194 
20234 
20254 
20285 
20315 

20345 
20376 
20406 
20436 
20466 
20497 
20527 

20557 
20588 

20618 

20648 

20679 

20709 

20739 
2077 

208 

2083 

20861 

20891 

20921 

20952 

20982 
21013 
21043 
21073 
21104 
21134 
211  64 

211 95 

21225 

.212  56 


CO^AITff.        TaII«. 


5- 144  55 
.13658 
.12862 
.12069 
.11279 

5.1049 
.09704 
.08921 
.08139 
.0736 

5.065  84 

.05809 

•05037 
.04267 

•03499 
5-Q2734 

.01971 

.012  I 

.00451 

4.99695 
4.9894 

.98x88 

•97438 
.9669 

•95945 
4.95201 
.9446 
•93721 
.92984 
.92249 
4.91516 

•90785 
.90056 

•  8033 
.88605 
4.87882 
.  871 62 
•86444 

.85727 
.85013 

4843 

•8359 
.82882 
.821 75 
.81471 
4.80769 
.80068 

•793  7 
.78673 

.77978 

4.77286 

•76595 
•75906 
•752 19 
•74534 
473851 

•7317 
.7249 

.718 13 

•71137 
470463 


CO^TAKO.         TAIfOk- 
790 


60 

5 

57 
56 
55 
54 
53 
52 
51 
50 

Jl 

47 
46 
45 
44 
43 
42 
41 
40 

P 

37 
36 
35 
34 
33 
32 
31 
30 
so 
20 

27 

26 

25 
24 
23 

22 
21 
20 

:s 

17 

16 

15 
14 
13 
12 

II 
10 

I 

7 

6 
5 

4 
3 

8 

'  I 

O 


418 


NATURAL   TANGSNTft  A^TD  CO-TANGSKTB. 


o 

I 

3 

3 

4 
5 
6 

7 
6 

9 

lO 

II 

Z2 

13 
«4 

>5 
x6 

"7 
i8 

»9 
ao 

31 

d2 

«3 

«4 
«5 

»9 
30 

3» 
32 
33 
34 
35 
36 

32 
38 

39 
40 

4» 

48 
43 
44 
45 
46 
47 
48 
49 
50 

5» 
52 
53 
54 

'I 
56 


120 
Tams.   Gs-*AMa. 


21256 
21286 
21316 

21347 
21377 
2x408 

2x438 
21469 

21499 
21529 

2156 

2«5  9 
21621 

216  51 
3x682 
917x2 
2*743 

21773 
2x804 

31834 
9x864 

3x895 
81925 
31956 
3x986 
32017 

93Q47 
22078 
331  p8 
22x39 
231  69 

233 

22231 
22261 
32292 
22322 

223  53 
32383 

22414 

33444 

23475 

33505 

32536 

22567 

22597 

32628 

32658 

33689 

32719 

227  s 

32781 

938x1 

33843 

3287a 

33903 

22934 
32964 
33995 
33036 
33056 

230  «7 


4- 704  63 
.69791 
.69x21 
.68452 
.67786 

4.671  21 
.66458 
.65797 

.65138 
.6448 
4- 638  25 

•^3171 
.62518 

.61868 

.61219 

4.60572 

.59927 
.59283 

.58641 

5800X 

4.57363 
.56726 
.56091 
•55458 
.54836 

4.541 96 
.53568 

,52941 

.52316 

.51693 

4.51071 

•50451 
.49832 
.492  15 
.486 
4.47986 

•47374 
.46764 

•4^155 
•45548 

4-44942 

.44338 

.43735 

.43*34 

425  34 

4.41936 
•4«34 
•4074s 
.40152 

4.38969 

.38381 

.37793 
.37207 
.36633 

4.3604 
.35459 
•34879 
•343 
33723 

4-33148 


130 

TA3«.        C04AV0. 


COi«AMS.        TaH». 

7f9 


.23087 
.231 17 
.231 48 

•23«  79 
.23209 

-2324 

.2327* 
.23301 

•23332 

23363 

•23393 

•234«4 
.23455 
•23485 
.235x6 

•23547 
•23578 
23608 
.33639 
.2367 

237 

23731 
■  33763 

•23793 
23823 
23854 

.33885 
239x6 

23946 

•23977 
.24008 

.34039 
24069 

.341 
.34131 
.241 63 

.24193 
.343  33 
.242  54 
•24285 
.343x6 

•24347 
.24377 
.34408 

•24439 
.2447 

.345  ox 

.44532 
.34563 

•*4593 
.34634 

.a4^55 
.34686 
.347x7 

.24747 
.34778 

.34809 

•2484 
34871 
.84903 

'24933 


4-33M8 

•32573 
.33001 

•3*43 
.3086 

4^  302  91 
.29724 

•29*59 
•28595 
.3803s 

42747* 

.369x1 

.96353 

.25795 

•25239 
4.34685 

.34x32 
.2358 
•2303 
.  324  81 

4-2*933 
.3x387 
.90843 
.20298 
.19756 

4.X9215 

.*8675 
.18137 

.X76 
.17064 

4.»65  3 
.*5997 
•*5465 
.*4934 
.*4405 

4'*3877 

*33S 

.12825 

.123  01 

.1x778 

4.11256 
.10736 
.10216 
.09609 
.09183 

4.0B666 
.08x53 
.07639 
.07x37 
.066x6 

4.06x07 

•05599 
.05093 

.04586 

.04081 

4.03578 

•03075 

.03574 

.02074 

.0x576 

4.0x078 


14« 

Taita.      Co.«aiio. 


C04AM9.        TaM«. 

7»o 


24933 
24964 

24995 
25026 

25056 

25087 

251 18 

25*49 
2518 

359x1 

25342 

25273 
25304 
25335 
85366 

25397 

95428 

25459 
2549 
2552* 
25558 

23583 

256*4 

25645 
25676 

23707 

25738 

35769 

358 

35831 

35863 

25893 

85924 

859  55 

35986 

360x7 

36048 

36079 

261  X 

26x41 

26172 

36303 
363^5 
36306 
36997 
36338 

26359 

•639 

36431 

86452 

36483 

265*5 
36546 

26577 
36608 

26639 

2667 

367  QX 

26733 
36764 

26795 


4.010  78 
.00562 
.00086 

399592 
.99099 

3.98607 
.981  17 
.97697 

•97*  39 
.96651 

3.96165 
.9568 
•95' 96 
•947*3 
•942  32 

3-937  5* 
•9327' 
•92793 
.92316 

.9*839 
3.9«364 

•9089 
.904*7 
.89945 
.89474 
3.89004 

.88536 
.88068 
,87601 
.871  36 
3,86671 
.86908 

.85745 
.85284 
.84824 

3.84364 
.83906 

•83449 
,83993 

.82537 

3.83083 

.8163 

.81177 
.80726 
.80276 
3.79827 
.79378 
.7803* 
.78485 
.7804 

3.77595 

.77*  52 
•76700 
.76868 
.75828 

3.75388 
.7495 
•745  *2 
.74075 
.7364 

373205 


Co4Aan».      Taiw. 
7«» 


150 

TAW*.     I  04AVG. 


26795 

96826 

26857 

96888 

2692 

26951 

96982 

970x3 

27044 
27076 

27107 
27138 
97*69 
272  OX 

27239 
27963 
97294 
97326 

87357 
27388 

974*9 

2745* 
97483 

275*3 

27545 

87576 

2760 

8763 

3767 

877  ox 

27733 

27764 

27795 

37836 

37858 

37889 

3793 

27952 

27983 
280x5 
38046 

28077 

96109 

3814 

38x73 

38303 

38234 

38366 

38397 

38339 

3836 

88391 

98433 

28454 
98486 

385x7 

28549 
2858 

386X2 

28643 

38675 


373905 
.73771 
.72338 
.7*907 
•7*476 

3.7x046 

.706x6 
.70  J  88 
.69761 

.69335 
3.68909 

.68485 
.68061 
.67638 
.673 17 
3.66796 
.66376 

.65957 
.65538 

.651  31 
3.64705 

.64389 

.63874 
.63461 

.63048 

3.63636 

.63334 

.618  X4 
.61405 
.60996 
3^60588 
.6ox8x 
•597  75 

.5937 
.58966 

3.58563 
.5816 

.577  58 

.57357 

-56937 

3- 565  57 

.56159 
•5576* 
•55364 
.54968 

3-54573 

.54*79 
.53785 

•53393 

.53001 

3.53609 

•52919 
.5x839 

.5144* 

•5*053 
3.50666 

.50979 

•49894 

•49509 
•49*85 

3- 487  4* 


Co«Air«.      T. 
74* 


60 

5 

57 
56 
55 
54 

53 
52 

5* 
50 

^ 

47 
46 
45 
44 
43 
42 
4* 
40 

fi 

37 
36 

35 
34 
33 
38 
3* 
30 

3 

87 

96 
«5 
24 
«S 

88 
81 


\t 

\l 
n 

«4 
«S 

18 
II 

to 

I 

f 

6 
$ 

4 
9 


8 

o 


KATUBAL  TAKGENTS  Ain>  OO-TANaSMTS. 


419 


1«<»              II 

170              II 

180        II 

ido         I 

# 

Tav«« 

Co-TAM«. 
3-48741 

Tams. 
•30573 

Co-TAira. 

Tak*. 

Co-TAva. 

Tams. 

Co-TAN«. 

0 

0 

.28675 

3-27085 

•32492 

3.07768 

•34433 

2.90421 

To 

1 

.28706 

•48359 

.30605 

-26745 

•32524 

•07464 

•34465 

i^n 

% 

a 

.28738 

•47977 

•30637 

.26406 

•3^556 

.0716 

•34498 

3 

.28760 

.47596 

.30669 

26067 

.32588 

.06857 

•3453 

.896 

57 

4 

.288 

.47316 

•307 

.25729 

.33631 

•06554 

•34563 

•89327 

56 

5 

.28832 

346837 

.30732 

3-25392 

•32653 

3.06252 

•34596 

2.80055 

55 

6 

.38864 

.46458 

•30764 

•25055 

.32685 

.0595 

.34628 

.88783 

54 

7 

.28895 

.4608 

•30796 

.247  19 

.32717 

.05649 

.34661 

.88511 

53 

8 

■x% 

•45703 

.30838 

•24383 

.32749 

•05349 

•34693 

.8824 

52 

9 

.45327 

.3086 

.24049 

.327  83 

.05049 

•34726 

.8797 

SI 

10 

.2899 

3449  5« 

.30891 

3.237  14 

.32814 

3047  49 

•34758 

2.877 

SO 

II 

.29031 

•44576 

•30923 

.23381 

.32846 

.0445 

•34791 
•34824 

•5743 

% 

12 

•29053 

.44202 

.30955 

.23048 

.32878 

.04152 

.87161 

13 

.29084 

•43829 

•30987 

.227  15 

.32911 

.038  54 

•34856 

.86892 

47 

«4 

.291 16 

•43456 

.3>oi9 

.23384 

•32943 

•03s  56 

•34889 

.86624 

46 

n 

.291  47 

3-43084 

.31051 

3.32053 

•32975 

3.0336 

•34922 

2.863  56 

45 

16 

.291  79 

.42713 

.31083 

.31732 

•33007 

.03963 

.34954 

.86089     44 

»7 

.2921 

•42343 

3"  15 

.21392 
.21063 

•3304 

.02667 

•34987 

.85822  .  43 

18 

.2924a 

.4«9  73 

•3"  47 
.31178 

•33072 

.03373 

•35019 

•85555  1  42 

«9 

•29274 

.4160A 
3- 4*236 

•20734 

•33»04 

.oao77 

•35052 

.85289  1  41 

30 

•29305 

.31a  1 

3.20406 

.33136 

3.01783 

•35085 

2.85023     40 

ai 

•29337 

.40869 

.31243 

.20079 

•  33169 

.01480 
.01190 

•351 17 

•84758     39 
•84494     38 

aa 

.29368 

•40502 

.31274 

.1975a 

.33201 

•3515 

a3 

.294 

.40136 

.31306 

.19426 

.33233 

.00903 

•35183 

.84229     37 

24 

•29432 

•397  7" 

•  31338 

.101 
3' 187  75 

.33266 

.00611 

.35216 

•83965  ,  36 

as 

.29463 

339406 

•3'37 

•33298 

3- 003 10 
.00038 

•35248 

2.83702     35 

a6 

•29495 

•3p79 

.31403 

.18451 

•333  3 

•35281 

•83439     34 

a7  , 

.29526 

•3M34 
.31466 

.181  27 

•33363 

3.997  38 

•35314 

•83176     33 

a8 

•29558 

•38317 

.17804 

.33395 

.99447 

•35346 

.82914     3a 

89 

•2959 

•379  55 

.31498 

.17481 

•33427 

•98i|? 

•35379 

.82653     31 

30 

.39621 

337594 

•3153 

3.17' 59 

•3346 

3.98868 

•35412 

2.82391 

30 

3«  1 

•29653 

.37234 

.31562 

.16838 

•33492 

.9858 

•35445 

.8213 

3 

32 

.29685 

.36875 

.31636 

.16517 

.33524 

.98293 

•35477 

.8187 

33 

.29716 

.36516 

.  161  97 

•335  57 

.98004 

•3551 

.8161 

27 

34 

.29748 

.361  58 

-31658 

.15877 

•33589 

•977  17 

•35543 

•8135 

36 

35 

•2978 

3-358 

.3169 

3-15558 

.33621 

2. 974  3 

•35576 

2.81091 

25 

36 

.29811 

.35443 

.3*723 

•1524 

.33654 

%t 

.35608 

.80833 

24 

37 

-29843 

.35087 

•3«7  54 

.  149  22 

.33686 

•35641 

.80574 

23 

38 

•2987s 

•34732 

.31818 

.  146  05 

•337  18 

:?^y 

•35674 

.80316 

32 

39 

.29906 

•34377 

.14288 

•33751 
•33783 

•35707 

.80059 

21 

40 

•29938 

3-34023 

•3'85 

3.13972 

2.96004 

•3574 

2.79802 

20 

41 

.2997 

.3367 

.31883 

.13656 

.33816 

•957  21 

•35772 

•795  45 

:i 

42 

.30001 

•33317 

.319  «4 
.31946 

•13341 

•33^^ 

•95437 

•35805 

.79289 

43 

•30033 

•32965 
•32614 

.13027 

.33881 

•951  55 

•35838 

•79033 
.78778 

17 

44 

.30065 

•3«978 

.12713 

•339  >3 

•94872 

•35871 

16 

45 

.30097 

3.32264 

-3201 

3124^ 

•33945 

29459 

•35904 

2.78523 

15 

46 

.30138 

.319  >4 

.32042 

.12087 

•33978 

•943  OQ 
.94028 

•35937 

.78269 

14 

47 

.3016 

•3'565 

•32074 

.11775 

•3401 

•35969 

.78014 

13 

48 

.3019a 

.312  16 

.33106 

.11464 

•34043 

•93748 
•93468 

.36002 

•77761 

12 

49 

.30a  34 

.30868 

•32139 

.11153 

•34075 

•35°  35 

•77507 

11 

50 

•30355 

330521 

.33171 

3.10842 

•34108 

2.931  89 

.36068 

2.772  54 

10 

5« 

.30287 

•30174 

.32303 

-1053a 

•341 4 

•9291 
.92632 

.36101 

.77003 

% 

52 

.30319 

.29839 

•32235 

.10223 

•34173 

•361  34 

•7675 

53 

.30351 

•29483 

.32267 

.09914 

•34205 

•92354 

.36167 

.76498 

7 

54 

.3038a 

.20139 
3-28795 

•32299 

.09606 

•34238 

.92076 

•36199 

•76247 

6 

55 

.30414 

•32331 

3.09398 
.08991 

•3427 

2-91799 

.36233 

2.75996 

5 

56 

.30446 

.28453 

.32363 

•34303 

•91523 

.36365 

•757  46 

4 

57 

.30478 

.38109 

•32396 

.08685 

•343  35 

.91246 

.36298 

•75496 

3 

58 

.30509 

.87767 

.32428 

.08379 

.34368 

.90071 

•36331 

.75346 

3 

59 

•3054" 

.37426 

.3246 

.08073 

•344 

.90696 

•36364 

•74997 

I 

fio 

•30573 
C<VTAaa. 

3-37085 

.32492 

3.07768 

•344  33 

2.904  21 
Tama. 

•36397 

2.74748 

0 

0 

Tava. 

Co-TAJia. 

Tams. 

Co-TAna. 

CO^AVO. 

Tamo. 

* 

7 

30 

7 

ao        iJ 

7 

10 

7 

00 

420 


NATUfiAL  TANGENTS   AND  CO*TANOENTS. 


20O 
Tamo.   Co-taro. 


o 
1 

2 

3 

4 
5 
6 

7 
8 

9 

20 

XI 
12 

»3 
14 
IS 
i6 

«7 
i8 

19 

20 

21 
22 

23 
24 
25 
26 

27 
28 
29 
30 

31 

32 

33 
34 
35 
36 
37 
38 
39 
40 

41 
42 

43 
44 
45 
46 
47 
48 
49 
50 

5' 
52 

53 
54 
55 
56 
57 
58 

59 
60 


36397 

3643 

36463 

36496 

36529 

36562 

36595 
36628 
36661 
36694 

36727 
3676 

36793 
36826 

36859 
36892 

36925 

36958 

36991 

37024 

37057 

3709 

37124 

37157 

3719 
37223 

37256 
37289 
37322 

373  55 
37388 

37422 

374  55 
37488 

37521 

375  54 
37588 
37621 

37654 
37687 

3772 

377  54 
37787 
3782 

37853 
37887 

3792 
37953 
37986 
3802 

38053 
38086 
3812 

38153 
38186 
3822 

38253 
38286 

3832 

38353 

38386 


2.74748 

.74499 

.74251 
.74004 

•73756 

2.73509 

.73263 

•73017 
.72771 

•  72526 

2.72281 

.72036 
.71792 
•71548 
•7»305 
2.71062 
.70819 

•70577 

•70335 
.70094 

2.69853 

.696  12 

•69371 
.691  31 

.68892 

2.68653 

.684  14 

.68f  75 

•67937 
.677 

2.67462 
.67225 
.66989 
.667  52 
.665 16 

2.66281 
.66046 
.65811 
•65576 
•65342 

2.65109 

•64875 
.64642 

.6441 

.641  77 

2-63945 

•637  14 
.63483 

•632  52 

.63021 

2.62791 
.62561 
.62332 
.62103 
.61874 

2.61646 
.61418 
.6119 
.60963 
.60736 

2.60509 


210 

TaKO.  I  CO^AMO. 


Co-TAMO.   Tamo. 
690 


38386 
3842 

38453 
38487 
3852 

38553 
38587 
3862 

38654 
38687 

38721 

38754 
38787 

38821 

38854 
38888 

38921 

38955 
38988 
39022 

39055 

39089 

39122 

39156 

3919 
39223 

39257 
3929 
39324 
393  57 
39391 

39425 
39458 
39492 
39526 

395  59 

395  93 
39626 

3966 

39694 
39727 
39761 

397  95 
39829 
39862 
39896 

3993 

39963 

39997 

40031 

40065 

40098 

40132 
401  66 
402 

40234 
40267 
40301 

40335 
40369 

40403 


2.60509 
60283 
60057 

59831 
59606 

59381 
59156 
58932 
58708 

58484 
58261 

58038 

57815 

57593 

57371 

5715 

56928 

56707 

56487 
56266 
56046 
55827 
55608 
55389 

5517 

54952 

54734 
54516 

54299 
54082 

53865 

53648 

53432 

53217 
53001 

52786 

52571 
52357 
52142 
51929 
51715 
51502 
51289 
51076 
50864 
50652 

5044 
50229 

50018 

49807 

495  97 
49386 

49177 
48967 

48758 
48549 
4834 
48132 

47924 
47716 
47509 


Cu-TAMo.   Tamo. 
680 


220 

Tamo.  I  Co-tano. 


230 
Tano.  I  Co-tamo. 


.40403 

2.47509 

.404  36 

.47302 

.4047 

•47095  , 

.40504 

.46888  1 

•405  38 

.46682 

■405  72 

2. 464  76 

.406  00 

.4627 

.4064 

.46065 

•40674 

.4586 

.40707 

•45655 

.40741 

2.45451 

•40775 

.45246 

.40809 

•45043 

•40843 

.44839 

.40877 

.44636 

.40911 

2-444  33 

•40945 

•4423 

.40979 

•44027 

.41013 

43825 

41047 

.43623 

.41081 

2.43422 

.41115 

■4322 

.41149 

.430 19 

.41183 

.42618 

.41217 

.41251 

2.42418 

.41285 

.422  18 

•41319 

.42019 

.41353 

•41819 

.41387 

.4162 

.41421 

2.41421 

•41455 

.41223 

.4149 

.41025 

.41524 

.40827 

•41558 

.40629 

41592 

2.40432 

.41626 

•40235 

.4166 

.40038 

.41694 

•39841 

41728 

.39645 

•4»763 

2^39449 

•41797 

-39253 

.41831 

.39058 

.41865 

.38862 

.41899 

.38668 

•41933 

2.38473 

.41968 

.38279 

.42002 

.38084 

.42036 

37891 

•4207 

•37697 

.42105 

237504 

•42139 

•37311 

•42173 

.37118 

.42207 

•  36925 

.42242 

.367  33 

.422  76 

2.36541 

.4231 

•36349 
.36158 

■42345 

■42379 

.35967 

•42413 

•35776 

42447 

235585 

CO-TAKO. 

Tamo. 

6 

70 

.42447 

235585 

.42482 

•35395 

.425 16 

•  35205 

•425  51 

•35015 

-42585 

•  34825 

.426  19 

2.34636 

.42654 

•34447 

.42688 

•34258 

.42722 

.34069 

•42757 

.33881 

.42791 

2.33693 

.42826 

.33505 

4286 

•33317 

.42894 

3313 

.42929 

•32943 

.42963 

2.32756 

.42998 

•3257 
•32383 

•43032 

.43067 

•32197 

.43101 

.32012 

■431  36 

2.3x826 

•4317 

.31641 

.43205 

•31456 

-43239 

.31271 

•43274 

.31086 

•43308 

2.30902 

•43343 

.30718 

43378 

■30534 

.43412 

-30351 

•434  47 

30167 

.43481 

2.29984 

435  i6 

298  01 

.4355 

.29619 

.43585 

29437 

•4362 

-29254 

•43654 

2.29073 
.28891 

43689 

•43724 

.2871 

•43758 

.28528 

.43793 

.28348 

-43828 

2.28x67 

.43862 

•27987 
.27806 

43897 

•43932 

.27626 

•439^6 

27447 

.44001 

2.27267 

.44036 

.27088 

•44071 

.26909 

.44105 

•2673 

•4414 

26552 

.441  75 

2.26374 

.4421 

.261  96 

•44244 

26018 

44279 

2584 

•44314 

.25603 

443 '59 

2.25486 

■44384 

.25309 

.444  i3 . 

.25132 

444  53 

.24956 

44488 

.2478 

•44523 

2. 246  04 

Co-TAMO. 

Tawq. 

60 

5 

57 
56 

55 
54 
53 
Sa 
51 
50 

:i 

47 
46 
45 
44 
43 
42 
41 
40 

3' 

37 
36 

35 
34 
33 
32 
31 
30 
29 
28 
27 
26 
25 
24 
23 

23 

21 
20 

19 
18 

>7 

16 

15 
«4 
13 
12 

XI 

10 


7 
6 

S 

4 
3 

a 
t 
a 


66© 


NATtlRAL'  TANGENTS  AND  CO-TANGBNTS. 


421 


o 

I 

3 

3 

4 
5 
6 

7 
8 

9 
xo 

II 

13 

'3 
»4 
15 
16 

17 
x8 

«9 

so 

31 
33 
23 

«4 
25 
36 
37 
38 

39 
30 

3' 
33 

33 
34 
35 
36 
37 
38 
39 
40 

4x 
42 
43 
44 
45 
46 
47 
48 
49 
50 

5X 
52 

53 
54 
55 

56 

57 

58 

59 
60 


240 
Tamo.      Co-tamo. 


44523 
44558 

44593 
44627 

44662 

44697 
44732 
44767 
44802 

44837 
44872 

44907 
44942 

44977 
45012 

45047 
45082 

4b*  >7 
45152 
45«87 
45222 

45257 
45292 
45327 
45363 

45397 
45432 
45467 
455  o3 

45537 
45573 
45608 

45643 
45678 

45713 
45748 
45784 
45819 
45854 
45889 

45924 
4596 

45995 

4603 

46065 

461 01 

46136 

461 71 

46306 

46243 

46277 

46313 
46348 
46383 
46418 

46454 
46489 
46525 
4656 

46595 
46631 


24604 
24428 
24252 

24077 
23902 

23727 

23553 

23378 

23204 

2303 

22857 

33683 
2251 

22337 
32164 
21992 
218  19 
21647 
21475 
21304 
211 32 

20961 
2079 
30619 
30440 
30378 
30108 
9938 
9760 

95  V9 
943 
9361 
9092 

8923 
8755 
8587 
8419 

8351 
8084 
7916 

7749 
7582 
7416 
7349 
7083 
6917 
6751 

6585 
643 

6255 
609 

5925 

576 

5596 

5432 

5268 

5104 

494 

47  77 
4614 

4451 


260 

Tamo.      Cotamo. 


CkKTAMo.i     Tamo. 
65° 


46631 
46666 
46702 

46737 
46772 

46808 

46843 
46879 
46914 

4695 
46985 

47021 

47056 
47092 
47x28 
47163 

47199 

47234 

4727 

47305 

47341 

47377 
47412 

47448 

47483 

47519 

47555 

4759 
47626 

47662 

47698 

477  33 
47769 
47805 

4784 
47876 
47912 
47948 

47984 
48019 

48055 
48091 
48x27 
48163 
48198 

48234 
4827 

48306 

48342 

48378 

484x4 

4845 
48486 

48521 
48557 

48593 
48629 

48665 
48701 

48737 
48773 


4451 
4288 
4125 

3963 
3801 

3639 
34  77 
3316 

3154 

2993 
2832 

2671 
25 II 

235 
21  9 

203 

1871 

1711 

1552 
1392 

1233 

1075 
0916 
0758 
06 

0442 
0284 
0x26 
09069 
098 II 
09654 
09498 

09341 
09 1  84 

09028 

00872 

08716 

0856 

08405 

0825 

08094 

07939 

07785 

0763 

07476 

07321 

071  67 

07014 

0686 

06706 

06553 
064 
06247 
06094 

05942 
0579 

05637 

054  85 

05333 
05182 

0503 


Co-XAKo.      Tamo, 
640 


260 
Tamo.    |  Co-TAMe. 


48773  i  2.0503 

48809  I  .04879 

48845  .04728 

48881  .04577 

48917  .04426 

48953  2.04276 

48989  .04x35 

49026  .03975 

49062  .03825 

49098  .03675 

49134  2.03526 

4917  .03376 

49206  .03227 

49242  .03078 

49278  .02929 

49315  2.0278 

49351  .02631 

49387  .02483 

49423  .02335 

49459  .02187 

49495  2.02039 

49532  .01891 

49568  .01743 

49604  .01596 

4964  .0x449 

49677  2.0x302 

497x3  .0x155 

49749  .01008 

497  86  .008  62 

49822  .00715 

49858  3.00569 

49894  .00423 

499  31  .00277 

49967  .00x3, 

50004  1.99986 

5004.  1. 99841 

50076  .99695 

501 13  -9955 
50x49        99406 

50185  .99261 

50222  X.99116 

50258  .980  72 

50295  .98828 

50331  .98684 

50368  .9854 

50404  X.98396 

504  41  .98253 

504  77  .981 1 

50514  -97966 

505  5  -978  23 
50587  X.9768 

50623  .97538 

5066  .9739s 

50696  .97353 

50733  -97111 

50769  X. 969  69 

50806  .96827 

50843  .96685 
50879        96544 

50916  .96402 

50953  1.962  61 

CO-XAMO.I  T>no. 

630 


270 

Tamo.    I  Co-tano. 


50953 
50989 
51026 
51063 
51099 
51136 

51173 
51209 
51246 
51283 

51319 

51356 

51393 

5143 

51467 

51503 

5154 

51577 

516x4 

51651 

51688 

51724 
51761 

51798 

51835 
51872 
51909 
51946 

51983 

5202 

52057 

52094 

52131 
52168 

52205 
52243 
52279 
52316 
52353 

5239 
52427 

52464 
52501 
52538 

52575 

526x3 

5265 

52687 

52724 

52761 

52798 
52836 
52873 

5291 

52947 
52984 
53022 

53059 
53096 

53134 
53171 


96261 
961  2 

95979 
95838 
95698 

95557 
95417 
95277 
95137 
94997 
94858 

94718 

945  79 

944  4 

94301 

94162 

94023 

93885 

93746 

93608 

9347 

93332 

93195 

93057 
9292 

92782 

92645 
92508 

92371 
92235 
92098 

9x962 
91826 
9169 

91554 
91418 

91282 

91147 
910x2 

90876 

90741 
90607 
90472 

90337 
90203 

90069 

89935 
89801 

89667 

89533 

894 

89266 

89133 

88867 

88734 
88602 

88469 

88337 
88205 

88073 


Co-TA^o.l  Tako. 

1 1     62° 


60 

5 

57 
56 
55 
54 
53 
52 
51 
50 

:i 

47 
46 
45 
44 
43 
42 
41 
40 

li 

37 
36 
35 
34 
33 
32 
31 
30 

2 

27 
26 

25 
24 
23 
22 

21 
20 

\t 

17 

16 

15 
14 

13 
12 

IX 

10 

t 
I 

5 

4 

3 

a 
I 


natdbal  takqbhts  and  (. 


«,il 


>'i!! 


li:;i 


|,.„ 


;!3  ;; 

X-' 
s  ;; 


NATUBAL  TANGENTS   AND  CO-TANGENTS. 


423 


320 

TaNO.  I  Co-VLItQ, 


I 


o 

z 

3 

4 

i 

9 
10 

fi 

12 

X3 

»4 

31 

a3 
"4 

as 

^ 

3: 

39 

30 

3« 
33 
33 
34 
35 
36 

li 

39 

40 

41 
43 
43 
44 
45 

49 

5« 

53 
54 
55 

56 

II 
59 


63487 

62527 

62568 

62608 

62649 

63689 

6273 

6277 

628  II 

62852 

62893 

63933 

62973 

63014 

63055 

63136 

63»  77 
63217 

63258 
63399 

6334 
6338 
63431 
63462 
63s  03 

63544 
63584 
636  25 
63666 
63707 

63748 

63789 

6383 

63871 

63912 

•63953 
63994 
64035 
64076 
641 17 

641  58 
64199 
6434 
64381 
643  22 

64363 
64404 
64446 
64487 
64538 

64569 

6461 

64652 

64693 

64734 

64775 
64817 

64858 

64899 
^494' 


CO-VAMA. 


60033 

5993^ 
59826 

59723 
5962 

59517 
594  »4 
593" 
59208 

59105 
59002 

589 

58797 
58695 

58593 

5849 
58388 

58286 

58184 

58083 

579  81 

57879 

57778 

57676 

57575 

57474 

57372 

5727* 

5717 

57069 

56969 

56868 
56767 
56667 
56566 
56466 
56366 
56265 
56165 
56065 
55966 

55766 
55666 

55567 
55467 
55368 
55269 

5517 

55071 

54972 

54^73 
54774 
54675 
54576 
54478 

i43  79 
54281 

54' 83 
54085 
53986 


570 


IAMB. 


330 


Tama. 


.64941 
.64982 
.65023 
.65065 
.65106 
•  65148 
.651  89 
.65231 
.652  72 

•653 14 
•65355 

•65397 
•65438 
.6548 
.65531 

•65563 
.65604 
.65646 
.65688 
.65729 
.65771 

.65854 
.65896 

.65938 

.6598 

.66021 
.66063 
.661  05 
.661  47 
.66189 

.6623 

.66272 

.66314 

.66356 

.66398 

.6644 

.66482 

.66534 

.66566 

.66608 

.6665 

.66693 

•667  3A 

.66776 

.66818 

.6686 

.66903 

!669^ 
.67038 
.67071 
.671  X3 

-671  55 
.67x97 
.67339 
.67282 

tin 

.67409 
•6745' 


CO-TANO. 


53986 
53888 

537  9» 

53693 

53595 

53497 

534 

53302 

53205 

53107 

5301 

52913 
52816 

52719 
52622 

52525 
52429 
52332 
52235 
52139 
52043 

51046 

S185 

51754 

51658 

51562 

51466 

5137 
51275 

511  79 
51084 

50988 

50893 

50797 
50702 
50607 
50512 

504x7 
50333 
50228 
50x33 
50038 
49944 
49849 

49661 
49566 
49472 
49378 
49284 
4919 


Co.TAJi«.       Tamo. 

660 


340 


Tamo. 


67451 

67493 

67536 

67578 

6762 

67663 

67705 

67748 

6779- 
67832 

67875 

67917 

6796 

60002 

68045 

68088 

6813 

68173 

68215 

68258 

68301 

68343 
68386 

68429 
68471 
68514 

68557 

686 

68642 

68685 

68728 

68771 

68814 

68857 

689 

68942 

68985 

69028 

69071 

69x14 

69157 

692 

69243 

69286 

69329 
69372 
69416 

69459 
69503 

69588 

69631 

6967s 
69718 

69761 
69804 
69847 
69891 

69934 

69977 
70031 


Co-TAHtt. 


48256 
48163 
4807 

47977 
47885 

47792 
47699 
47607 

475  M 
47422 

4733 

47238 
47146 

47053 
46962 

4687 

46778 

46686 

46595 
46503 
464  II 

,4632 
46229 

46137 
46046 

459  55 
45864 

45773 
45682 

45592 
45501 

4541 
453  a 
45229 

45139 
45049 
44958 
44868 

44778 
44688 

44598 

44508 

444x8 

44329 

44239 

44M9 
4406 

439  7 
4.-)88i 

43792 
43703 

43614 
43525 
43436 

433  47 
43258 

43169 

4308 

42992 
42003 

428x5 


Co-TAM«.        TaNQ. 

660 


350 


Tam«. 


0021 
0064 
0107 
0151 
0194 
0238 
0281 

0325 
0368 
0413 
0455 

0499 
0542 
0586 
0629 
0673 
0717 
076 
0804 
0848 
70891 

0935 
0979 

1023 

1066 

II 1 

"54 
1198 
1242 
1285 
1329 

1373 
14x7 
X461 

15  OS 
1549 
1593 
1637 

16  81 

1725 
1769 

18  13 
1857 

19  01 
1946 
199 
2034 
2078 

21  22 
2X66 

22  1 1 

2255 

2299 

2344 
2388 

2432 
2477 
2521 

2565 
261 

2654 


Co-TANO. 


42815 
42726 
42638 

4255 
42463 

42374 
42286 

42198 

421  1 

42022 

41934 
41847 

41759 
41672 

41584 

414  97 
41409 

41322 

41235 
41148 

410  61 

40887 
408 
40714 
40627 

4054 
40454 
40367 
40281 

40195 

40109 

40022 

39936 

398  5 

39764 

39679 

395  93 

39507 

39421 

39336 

3925 

39165 

30079 

38994 
38Q09 
38824 
38738 

38653 
38568 

38484 

38399 
383*4 
38^29 

38145 

3806 

37976 

37891 

37807 

37722 

37638 


Ck>-TAM«.      Tamo. 
640 


60 

5 

57 
56 
55 
54 
53 
52 
51 
50 

J? 

45 
44 
43 
42 
41 
40 

3' 

37 
36 

35 
34 
33 
32 

31 
30 


25 

24 
23 
22 
21 
20 

15 

«4 
13 

13 
XI 

10 

i 

7 
6 

5 

4 

3 

3 

I 
o 


424 


NATURAL   TANGENTS    AND   CO-TANGENTS. 


o 

I 

2 

3 

4 
5 
6 

7 

8 

9 

lO 

II 

12 

13 

»5 
i6 

»7 
i8 

»9 

20 
21 
23 
23 

24 
25 
26 

37 
28 

29 
30 

31 
32 

33 
34 

35 
36 

37 
38 
39 
40 

41 
43 

43 
44 
45 
46 

\l 
49 
50 

51 

53 
53 
54 
55 
56 

57 
58 


«6o 

370 

Tano.   C 

O-TANO. 

Taro.   G 

O-TAHO. 

•72654   > 

•37638 

•753  55  I 

•32704 

.72699 

375  54 

.75401 

•32624 

•7^7^12 

•374  7 

•754  47 

•32544 

.72788 

■37386 

•75492 

•32464 

.72832 

•373  o3 

•75538 

•32384 

.72877  I 

.37218 

.75584  J 

.32304 

.72921 

•37134 

•75629 

.32224 

.  729  66 

3705 

•75675 

33144 

7301 

36067 
36883 

•757  21 

32064 

7305s 

•75767 

31984 

•731    ' 

368 

.75812  I 

31904 

•73' 44 

367  16 

.75858   . 

31835 

•73189 

.36633 

•75904 

31745 

•73334 

36549 

•759  5, 

31666 

.73278  X 

36466 

.75996 

3x586 

•73333 

36383 

.76042  I 

31507 

•73368 

363 

.76088 

3X427 

•73413 

36317 

.76134   . 

3x348 

•734  57 

36133 

.7618 

3x269 

•73503 

36051 

.76226 

3x19 

•735  47  I 

35968 

.76272  I 

311  I 

•73592 

35885 

.76318 

3X031 

•73637 

35802 

.76364   . 

30953 
30873 

.73681 

35719 

.7641 

•73736 

35637 

.76456 

30795 

•73771  I 
.73816   . 

355  54 

.76502  I. 

307x6 

35472 

.76548 

30637 

.73861 

35389 

•76594   • 

30558 

.73906 

35307 

•7^5  L     • 

3048 

•73951  • 

35234 

.76686 

30401 

.73996  I 

35M2 

•76733  »• 

30333 

74041 

3506 

•76779   • 

30344 

.74086 

34978 
34896 

.76825   . 

30166 

•741  31 

.76871   . 

30087 

.74176 

34814 

.76918   . 

30009 

.74221  I 

34732 

.76964  I. 

39853 

-74267 

3465 

.7701 

•743X3 

34568 

•77057   • 

39775 

•743  57 

34487 

.77103   . 

29696 

•744  OS' 

34405 

.77149   . 

29618 

•74447  ' 

34323 

.77196  I. 

395  4x 

•74492 

34343 

.77242 

39463 

•74538; 

3416 

.77289!  . 

39385 

•74583, 
.74638 

34079  } 
33998 

'77335   • 
•77383 

29307 
29229 

.74674  1 

33916 
•33835 

.77428  I 

39152 

•74719 

•774  75  1 

29074 
28997 

•74764 

•337  54  1 

•77521  1 

.7481 

■33673  1 

•77568  1 

289  19 

•74855 

•33592  1 

■77615  ' 

28842 

•749    » 

335" 

.77661  I 

28764  • 

•74946 

334  3 

.77708 

28687 

•74991 

33349 
33268 

•777  54 

2861 

•75037 

.77801 

28533 

.75083 

33187 

.77848  1 

•284  56 

.75128  I 

33107 

•77895  I 

283  79  1 

•75173 

33036  1 

•7794'   - 
•77988 

38302  1 

.75219 

l^tt 

28225  1 

•75364 

•78035 

281  48  ' 

•7531 

33785 

.78082 

28071 

•753  55  I 

33704 

.78129  I 

.27994 

Co-Tijra. 

Tamo. 

CO-TAMO. 

Tax0. 

530 

029 

380 
Tano.   Co-tah«. 


781  29 

78175 
78222 
78269 
783x6 

78363 
7841 

78457 
78504 

7855/ 
78598 

78645 
78692 

78739 
78786 

78834 
78881 
78928 

78975 
79022 
7907 

79117 
79164 
79212 

79259 
79306 

79354 
79401 

79449 
79496 

79544 

795  9x 

79639 
79686 

797  34 
79781 

79829 

79877 
79924 
79973 
8oo2 

80067 
801 15 
80163 

802  II 

80258 

80306 

80354 

80402 

8045 

80498 

80546 
80594 

80642 

8069 

80738 

80786 

80834 

80882 

8093 

80978 


27994 
27917 

27841 

27764 
27688 

27611 

375  35 
27458 

27382 

37306 

2723 

27x53 
27077 
27001 
26925 
26849 
26774 
26698 
26622 
26546 
26471 

26395 
26319 

26244 

261 69 

26093 

26018 

25943 
25867 

35793 

25717 

25642 

35567 

35492 
35417 

35343 
25268 

35x93 
251 18 

35044 
24969 

34895 
2482 

34746 
34672 

34597 
34533 
34449 
34375 
24301 
24227 

24x53 
34079 

34005 

339  3  X 
33858 
33784 
337  X 

33637 
33563 

3349 


3go 

Tano.   Co^amo. 


Co-TAHO.   Tano. 
51© 


80978 

81027 

81075 

811  23 

81271 

8122 

81268 

81316 

81364 

8x4x3 
81461 

815 1 

81558 

81606 

8x655 

81703 

81752 

818 

81841 

8189 

81946 

8«995 
82044 

82092 

821 41 

821  9 

82238 

82287 

82336 

82385 

82434 

82483 

82531 

8258 

82620 

82678 

82727 

82776 

82825 

82874 

82923 

82972 

83022 

83071 

83x2 

83160 

83218 

83268 

833x7 
83366 

834x5 
83465 
835x4 
83564 
83613 
83662 
83712 
83761 
838x1 
8386 

839' 


CO-YANO. 


2349 
234  16 

23343 
2327 

23196 

23123 

2305 
22977 

22904 

22831 

22758 

22685 
32612 
22539 
22467 
22394 
22321 
22249 
221  70 
22104 
22031 

3x059 

21886 

918x4 

21742 

2167 

21598 

21526 

2x454 

21382 

3x31 

2x238 

21166 

21094 

21023 

20051 

20879 

30808 

20736 

20665 

20593 

20522 

20451 
20370 

20308 

30237 

20166 

20095 

20024 


198x1 

X974 
196  69 

X9599 
X9528 

X9457 
19387 

193x6 

192  46 

19x75 


6a 

^ 

57 
56 
55 

54 
53 
52 
5x 
50 

47 
46 

45 
44 
43 
43 
4X 
40 

P 

37 
36 
35 
34 
33 
33 
31 
30 


a? 
26 

25 

34 
33 

32 

21 
20 

15 

»4 
»3 
xa 
zi 
zo 

I 
I 

5 

4 
3 

a 

z 
o 


Tamo. 


000 


irATUBAL  TAN6BNTS   AND  CO'TAliaBNTS. 


425 


40O 

410 

420            II 

43P 

/ 

Taxs.      C 

ovAira. 

Tamo.       C 

O-VAV0. 

Tamo. 

Co^TAna. 

Taho. 

Co-tAim. 

* 

0 

.8391        I 

19175 

.86939     1 

15037 

.9004 

1.11061 

•932  5» 

107237 

"6^ 

X 

.8396 

19105 

.8698 

14969 

.90093 

•10996 

•93306 

.07174 

n 

3 

.84009 

1Q035 
18964 

.870  3X 
.87082 

14003 
14834 

.90146 

:;3i; 

•9336 

.071x3 

3 

:i:°s  . 

.90199 

•93415 

.07049 
.06987 

57 

4 

'??94 

•87133       • 

14767 

•90251 

.10803 

•93469 

56 

5 

.841 58     X. 

18834 

.871 84     X 

14699 

•90304 

1.10737 

.93524 
•93578 

1.06935 
.06863 

55 

6 

.84308 

18754 

.87336 
.87387       . 

X4633 

•90357 

.10673 

54 

7 

.84358      . 

18684 

14565 

.904  X 

.10607 

•93633 

.068 

53 

8 

.84307      . 

186x4 

.87338       . 

14498 

.90463 

.10543 
.10478 

.93688 

.06738 

5« 

9 

•84357      - 

'8544 

•87389       < 

1443 

.905x6 

•93742 

.06676 

51 

10 

.84407     1 

18474 

.874  4x     X. 

14363 

•90569 

1104x4 

•937  97 

1.066x3 

50 

zx 

•84457 

18404 

.87493 

14296 

.90621 

.10349 

.93852 

•065  sx 

» 

Z3 

.84507      . 

'?3§^ 

.87543 

14229 

.90674 

.10385 

.93906 

.06489 

X3 

.84556      . 

18364 

•87595       - 

14x63 

.90737 

.xo3a 

.93961 

.06437 

47 

»4 

.84606 

X8194 

.87646 

X4095 

.907  8x 
•90834 

.10x56 

.94016 

.06365 

46 

X5 

.84656     X. 

X8135 

.87698     X 

14038 

X.X009X 

94071 

X.06303 

45 

x6 

.84706 

'^§1 

.87749 

.878  ox 

.X396X 
.X3838 

.90887 

.10037 

.941  25 

.06341 

44 

«7 

S^zsf    . 

17986 

•9094 

•09963 
.09899 

.9418 

.06179 

43 

z8 

.84806 

17016 
X7846 

.87853 

•90993 
.9x046 

•94235 

.o6x  X7 

4» 

»9 

.848  56 

.87904 

137  6x 

•09834 

.9439 

.06056 

41 

30 

.84906     X 

17777 

.87955    > 

•13694 

•91099 

1.0977 

•94345 

105994 

40 

31 

.84956 

X7708 

.88007 

.13637 

.91153 

.09706 

•944 

.05932 
■0587 

? 

33 

.85006 

17638 

.88059 

.13561 

.91306 

.09643 

.94455 

23 

•85057       • 

17569 

.88xx 

•13494 
.13438 

•91259 

•09578 

•9451 

.05809 

37 

24 

.85x07 

X75 

.88x63 

.913 13 

•09514 

•94565 

•05747 

36 

as 

.85x57      X. 

«743 

.883x4     1 

.  13361 

.91366 

X.0945 

.9462 

X.  056  85 

35 

36 

.85307 

.X736X 

.88365 

•13295 
.13338 

•914 19 

.09386 

.94676 

.056  34 

34 

37 

.85257 

.  Z73  93 

.88317 

•91473 

.09333 

•94731 

.055  62 

33 

s8 

•  55307 

.X7333 

.88369 

.X3x68 

.91526 

.09358 

•94786 
•94841 

.055  ox 

3a 

29 

•!5358 

>7i54 

.884  3X 

.13096 

.9158 

.09x95 

•05439 
105378 

3> 

30 

.85408     X 

.17085 

•88473       » 

.13039 

.9x633 

X.0913X 

.94896 

30 

3» 

.85458 

.X7016 

•S5524 

13963 
.X3897 

.91687 

.09067 

•94952 

•053x7 

H 

32 

•85509 

tdjl 

.88576 

.9174 

.00003 

•95007 

.052  55 

33 

•85559 

.88638 

.X383X 

•91794 
.91847 

•**!2* 

.95063 

•05194 

27 

34 

■85609 

.16809 

.8868 

.X3765 

.08876 

.951 18 

•051 33 

36 

35 

.8566       I 

.X674X 

.88733     X 
.88888 

12699 

.91901 

1.088x3 

.951  73 

1.05073 

25 

36 

.8571 

X6673 

12633 

•91955 

:^ll 

.95229 

.0501 

24 

37 

.857  6x 

.858  XX 

X6603 

13567 

.92008 

.95284 

■.^m 

23 

38 

.X6535 

135  ox 

.93062 

.08633 

•9534 

33 

39 

.85863 

.X6466 

•8894 

12435 

.931 16 

•08559 

•95395 

.04837 

3X 

40 

.85913     X 

16398 

.88993     X 

13369 

•9217 

X.08496 

•95451 

X.047  66 

30 

4x 

•85963 

.16339 

.89045      . 

12303 

.932  33 

.08433 

.95506 

•04705 

:i 

42 

.86014 

16361 

.89097 

12238 

.93277 

.08369 
.08308 

•95562 

.046  44 

43 

.86064 

16193 

.89149 

X2X  72 

•92331 

.956 18 

•04583 

17 

44 

.86115 

16134 
16050 

.89201 

13106 

•92385 

.08243 

•95673 

.045  32 

16 

45 

.86166     X 

.892  53     « 

12041 

•9*439 

x.o8z  79 

•957  29 

X.O446X 

15 

46 

.86316 

15987 

.89306       . 

11975 

•92493 

.o8xx6 

•95785 

.04401 

14 

47 

•?5*^ 

15919 

158  5x 

.89358       . 

11009 
11844 
11778 

•92547 

•08053 

.95841 

•0434 

13 

48 

.86318 

.8941 

.92601 

•0799 

•95897 

.042  70 
.04318 

13 

49 

.86368 

15783 

.89463       . 

•92655 

•07927 
X.07864 

•95952 

XX 

50 

.864  Z9     X. 

>57«5 

.895 15     1. 

117x3 

.92709 

.96008 

X.O4X  58 

xo 

51 

•SS^7 

15647 

.89567       . 

11648 

.92763 

.078  ox 

.96064 

•04097 

i 

52 

.865  3X 

X5579 

.8963        . 

11583 

.92817 

.07738 

.96x8 

.04036 

53 

•K|72      . 

155" 

.89673      . 

11517 

.928  73 

.07676 

.96176 

.03976 

7 

54 

.86633 

15443 

.89725      ■ 

"452 

.92926 

.07613 

.96333 
.96288 

•039  15 
103855 

6 

55 

.86674       I 

15375 

.89777     X 

11387 

.9298 

10755 

5 

56 

157  »5 

15308 

.'89813   . 

11321 

.93088 

•07487 

•96344 

•03794 

■4 

57 

•J527^ 

1524 

11356 

.07435 

•964 

•03734 

3 

58 

•!S*2    ■ 

15x72 

Zu  ■ 

XXX  9x 

•931 43 

.07363 

•96457 

•03674 

a 

^ 

.86878 

151 04 

XIX  26 

.93197 

.07399 

•96513 

.036  13 

X 

60 

.86929  I 

15037 

.9004     1, 

xxo6x 

.932  53 

1.07337 

.96569 

1.035  53 
Taro. 

0 

/ 

Co^TAM*. 

Tang. 

CivTAiia. 

Tans. 

Co-TAao. 

Tanq. 

CO-TANO. 

^ 

490 

480 

4 

70 

4 

CO 

Nh» 


42a 


NJLTUBAX  TAN6BNTS  AND  CO-TANGBSTTS, 


o 

z 
a 
3 
4 
5 
6 

7 
8 

9 
lo 

IX 

19 

»3 
»4 
«5 

i6 

»7 
i8 

«9 
4o 


4«o 


Takv. 


.96569 
.96625 
.96681 

•96738 

.96794 

.9685 

.96907 

.96963 

.9703 

.97076 

•971 33 
.97x89 
.97246 
•97309 

•973  59 
.974 16 

•97472 

975  89 
•97586 

•97643 
•977 


Co^TAHS. 


CkHTAHO. 


1035  S3 
103493 
103433 
X.  033  72 

X.O33  Z2 

X.  033  52 
I  03X  92 
I.03I  32 
z. 030  72 

X.  030  12 
X.OI952 

X.O2892 
1.03832 
X.O2772 
1.02713 

z.  036  53 

X09593 

109533 
X.02474 

X.094 14 
«-093  55 


TaI«9. 


450 


60 

57 
56 
55 
54 
53 
58 
51 
50 

% 

47 
46 
45 
44 
43 
42 
4» 
¥> 


31 
93 

23 
24 

25 
36 

27 
28 

99 

30 

31 
32 

33 
34 

35 
36 
37 
38 

39 
40 


440 

TaII«.  I  CkHTABC. 


97756 

97813 
^787 

97937 

97984 
98041 
98098 

98»55 
98313 

9827 

98397 
98384 
J98441 

98499 
98556 
98613 

98671 
98798 

98786 
98843 


'    I  Oo-TANe. 


1.03395 

I.033  36 
I.03I  76 
I.02X  17 
X.03057 
X.OX998 
1. 019  39 
1.0x879 

x.oxSs 
X.OI76I 

X.OX709 
Z.0I6  42 
1-01583 
Z.OZ594 
Z.OI465 
I.OI406 

101347 
X.OI388 

X.OI339 

X.OXX  7 


Tama. 


460 


44«              1 

» 

» 
41 

Tah*. 

C04AII». 

12 

.9890Z 

I.OIX  X3 

42 

•98958 

1.01053 

37 

43 

.990x6 

100994 

36 

44 

•99073 

1.00035 

X.  008  76 

35 

45 

.99131 
.991 8^/ 

34 

46 

x.oq8x8 

33 

% 

•99247 

100759 

32 

•99304 

X.0070X 

31 

49 

.99363 

X.  006  43 
X.005  83 

30 

50 

•994a 

39 

51 

,99478 

x,oo5  35 

38 

52 

.99536 

z. 004  67 

27 

53 

•99594 

Z.00408 

36 

54 

•99652 

X.O03  5 

25 

55 

•997  «„ 

X. 003  91 

24 

S6 

.99768 

X. 003  33 

23 

57 

.99836 

z.ooi  75 

29 

58 

.998  84 

z.ooi  x6 

3X 

59 

•99942 

1.00058 

ao 

60 

X 

z 

f 

CO-TARO. 

TAxe. 

450                     1 

*7 
z6 

15 
»4 
»3 

13 

iz 
xo 

I 
\ 

5 
4 

3 

9 

z 
o 


Preceding  Table  contains  Natural  Tangents  and  Oo-tangenta  for  every 
minute  of  the  quadrant,  to  the  radius  of  i. 

If  Degrees  are  taken  at  head  of  columns,  Minutes,  Tangents,  and  Co-tan- 
gents must  be  taken  from  head  also  \  and  if  they  are  taken  at  foot  of  ool- 
ftmns,  Minutes,  etc.,  must  be  taken  from  foot  alsa 

Illustration.— .1974  te  tangent  tor  n©  j©',  and  co-tangent  for  78®  50'. 

a?o  Compute  T»UKe*^ts  »nd  Co-taixgents  fbr  Seconds. 
Ascertain  tangent  or  co-tangent  of  angle  for  degrees  and  minutes  from 
Table ;  take  difference  between  it  and  tangent  or  co-tangent  next  below  it. 

ITjen  as  60  seconds  is  to  difference,  so  are  seconds  given  to  rfesult  required, 

which  is  to  be  added  to  tangent  and  subtracted  from  co-tangent 

lLLUSTRATios.<^What  \%  the  tangent  and  co-tangent  of  54O  40'  49"? 

Tangent  of  540  40',  per  Table  =^  z. 4x0  61 )  ,^«   dur^nm^ 

Tangent  of  54O  41',        "        =?  z.4zx  48 }  "^  ^7  dxffermct. 

Then  60  :  .00087  :*•  40 :  .00058,  which,  added  to  z.41061  =?  1.411x9  tangent 

Coungentur54^4o'  perTftble=.7o8  9i  J    ^^.^aiffere^io' 
Co  tangent  of  54041',        '■       =.708^8  / '^^^'^  3  <"il^«^ '«*«<' 

Then  (xP :  .00043  : :  40 :  .00039,  which,  subt'd  nrom  .70891  =  .70863  co-tangeitL 

70   Compute   rPang^xit  or  Co^taiigent  of*   any   A.nele    in 
Degpees,  ^iiztites,  and   Seconds. 

Divide  Sine  by  Cosine  for  Tangent,  and  Cosine  by  Sine  for  Co-tangent. 
ExAJtfUE.>^What  is  tangent  of  95^^  x8'f 


Sine  =  .497  36;  cosine  :=  .904  08.     Then 


•42736 


=3.4727  tangmt 


.90408 

rro  Compute  ^umt>er  of  Degrees,  ^dinutee,  and  Seoonda 
of  a  grivez\   Taitg:ent  or  Co-tangent. 

When  Tangent  w  o&cn.— Proceed  as  by  Bule,  page  402,  for  Sines,  substi- 
tuting Tangents  for  Sines. 
ExAi(PLB.^What  is  tangent  for  Z.41Z  z9t 

Next  less  tangent  is  z.41061,  cm: y^  which  it  54°  Ao^    Next  greatest  tangent  is 
z.  41 1  48,  difference  between  which  and  nesst  less  it  .ooo8v. 
inference  between  U*$  tabtUar  temgeiU  and  one  given  t$  z.41061—- Z.41Z  19S.00058. 
Then  .000  87  :  .ooq  58  : :  60 :  40,  whid),  added  to  54O  40  =  54°  40'  40". 

When  Otk-tangent  is  given* — Proceed  as  by  Rule,  page  403,  for  CosineSi 
ibstituting  Co-tangents  for  Cosinesi  . 


AEROSTATICS.  42/ 

AEROSTATICS. 

Atmospheric  Air  consists,  by  volume,  of  Oxygen  21,  and  Nitrogen  79 
parts ;  and  in  10  000  parts  there  are  4.9  parts  of  Carbonic  acid  gas. 
by  weight,  it  consists  of  23  parts  of  Oxygen,  and  77  of  Nitrogen. 

One  cube  foot  of  Atmospheric  Air  at  surface  of  Earth,  when  barome- 
ter is  at  30  ins.,  and  at  a  temperature  of  32^,  weighs  565.0964  grains  s= 
x)8o728  lbs.  avoirdupois,  being  773.19  times  lighter  than  water. 

Specific  gravity  compared  with  water ,  at  62.418  =s  .001  293  345. 

Mean  weight  ot  a  column  of  air  a  foot  square,  and  of  an  altitude 
equal  to  height  of  atmosphere  (barometer  30  ins.),  is  2124.6875  lbs.  = 
14. 7548  lbs.  per  sq.  inch  =  support  of  34.0393  feet  of  water. 

Standard  pound  is  computed  with  a  mercurial  barometer  at  30  ins. ;  hence, 
as  a  cube  inch  of  mercuiy  at  60°  weighs  .490  776  9  lbs.,  pressure  of  atmos- 
phere at  60°=  14.723307  lbs.  per  square  inch. 

12.3873  cube  feet  of  air  weigh  a  pound,  and  its  weight  varies  about 
I  gr.  for  each  degree  of  heat. 

Extreme  hxk^i  of  barometer  in  latitude  30°  to  35<>  N.^3a2i  ins. 

Rate  of  expansion  of  Air,  and  all  other  Ehttic  Fluids  for  all  temperatures, 
is  essentially  uniform.     From  32°  to  212°  they  expand  from  1  to  1.3665 

volumes  =  .002036  or  yirirra^^  P*'*  "^  '^^''*  *^"^^  ^^^  every  degree  of  heat 
From  212°  to  680°  they  expand  from  1.3665  to  2.3192  =  .002036  for  each 
degree  of  heat. 

Thus,  if  volume  of  air  at  132°  is  required,  132°  —  32°  3=  xoo,  and  i  ^ 

100  X  xx>2  036  =  1. 2036  volumes. 

Height,  at  Equator  is  estimated  at  300  feet  greater  than  at  Poles,  its 
mean  height  at  45°  latitude. 

In  like  latitudes,  air  loses  1°  for  every  340  feet  in  height  abpve  level' 
of  sea. 
Below  surface  of  Earth,  temperature  increases. 

Elasticity  of  air  is  inversely  as  space  it  occupies,  and  directly  as  its  density. 

When  altitude  of  air  is  taken  in  arithmetical  proportion,  its  Rarity  will  be 
in  geometric  proportion.  Thus,  at  7  miles  above  surface  of  Earth,  air  is  4 
times  rarer  or  lighter  than  at  Earth's  surface;  at  14  miles,  16  times;  at  21 
miles,  64  times,  and  so  on. 

Density  of  an  aeriform  fluid  mass  at  32°  and  at  <°  will  be  to  each  other 
as  I  +  .002088  (<°  —  32°)  is  to  I. 

For  Volume,  Pressure,  and  Density  of  Air,  see  Heat,  page  521. 

Altitude  of  Atmosphere  at  ordinary  density  is  =  a  column  of  mercury  30 
ins.  in  height,  divided  bv  specific  gravity  of  air  compared  with  mercury. 

Hence  30  ins.  =  2.5  feet,  which,  divided  by  .0000949871  specific  gravity 
of  air  compared  with  mercury,  =  26  z^gfeet  =  4.985  miles. 

Gay  Lussac,  Humboldt,  and  Boussingault  estimated  it  at  a  minimum  of 
30  miles.  Sir  John  Herschell  83,  Bravais  66  to  100,  Dalton  102,  and  Liais  at 
x8o  or  204  miles. 

The  aqueous  vapor  always  existing  in  air,  in  a  greater  or  less  quantity, 
being  lighter  than  air,  diminishes  its  weight  in  mixing  with  it ;  and  as,  other 
things  equal,  its  quantity  is  greater  the  higher  the  temperature  of  the  air,  its 
effect  is  to  be  considered  by  increasing  the  multiplier  of  t  by  raising  it  to 
.00222. 

Glaisber  and  Ooxwell,  in  1862,  ascended  in  a  balloon  to  a  height  of  3700^ 
feet 


428 


ASBOSTATICS. 


At  temperature  of  32^,  mean  velocity  of  sound  is  1089  feet  per  second.  It 
is  increased  or  diminished  about  one  foot  for  each  degree  of  temperature 
below  or  above  32°. 

Velocity  of  sound  in  water  is  estimated  at  4750  feet  per  second. 

Velocitjf  of  Sound  cU  Various  Temperatures. 

O  PwSMond.  o  Per  Second. 


5 
23 


Feet. 
1056 
1070 

»079 


32 

50 

59 


0 

Per  Second. 

68 

77 
86 

Feet. 
1 122 
X132 
1142 

1    0 

Per  Second. 

Feet. 

95 

1 152 

104 

1161 

"3 

1171 

Motions  of  air  and  all  gases^  by  force  of  gravity^  are  precisely  alike  to 
those  offtuids. 

Sensation  of  hearing,  or  sound,  cannot  exist  in  an  absolute  vacuum.     The 
human  voice  can  be  heard  a  distance  of  3300  feet. 

Echo. — At  a  less  distance  than  100  feet  there  is  not  a  sufficient  interval 
between  the  delivery  of  a  sound  and  its  reflection  to  render  one  perceptible. 

Xo   Compute  Distaxioes  \>y^  Velooitjr  of  Sound  in   Aiv, 

1089  X  T  V  Y  +  [•  002  088  (J—  32°)]  =  dutance  in  feet  per  second^  T  repruenUng  tipge 
Off  ore  report  was  heard,  and  t  temperature  of  air. 

Illustration. — Flash  of  a  cannoD  from  a  vessel  was  observed  13  seconds  before 
report  was  beard;  temperature  of  air  60°;  what  was  distance  to  vessel? 

1089  X  i3>/x + [. 002 088  (60° — 32°)]  =  1089  X  13  X  1.029  =  '4  567.55/««*=^-  76m<te». 

The<Mretical  velocity  with  which  air  will  flow  into  a  vacuum,  if  wholly  vm- 

obstructed,  is  V^gh=i  1347.4 yec<  per  second.    In  operation,  however,  it  is 
1347.4  X  .707= 952.61  ycc<. 

Xo  Compixte  Velocity  of*  Air   Flowing  into   a  Vacuoim. 
y/zgh  X  c  =  r  in  feet  per  second,  c  representing  coefficient  ofefflvx. 
Coefficients  for  openings  are  as  follows : 

Circular  aperture  in  a  tbui  plate 65  to  .7 

Cylindrical  adjutage 92    |    Conical  aciyutage 93 


Velocity   of  Sonnd   in    Several    Solids. 

Velocity  in  Air^=i. 

\jeaA ,.  3.0  I  Zluc 9.8  I  Pine 12.5  I  Glass 

...  5.6    Oak 9.9  I  Copper . . 


Gold 


11.2 


Pine. 


II. 9 
"•5 


steeL . . . 
Iron . . . 


«4-3 
15.  X 


To 


Compute   Slevations   l>y   a   Barometer. 

Approximately*  60000  (log.  B  — log.  6)  C  =  fieight  in  feet;  B  and  b  representing 
heights  of  barometer  at  lower  and  upper  stations,  and  C  correction  due  to  T  -{- 1  or 
temperatures  qfUnoer  and  upper  stations. 


Values   of  C 


or  T-t-e. 


0 

C 

40 

•973 

42 

.976 

44 

.978 

46 

.98 

48 

.982 

50 

.984 

52 

.987 

54 

.989 

56 

.991 

58 

•993 

0 

60 
62 

64 
66 

C 

.996 
.998 

I 

1.002 

68 

1.004 

70 

1.007 

7a 

1.009 

74 
78 

I. on 
1. 013 
1. 016 

0 

c 

1.0x8 

82 

1.02 

84 
86 
88 

1.02a 
1.024 
1.027 

90 

1.029 

92 

I.03X 

98 

»-033 
1.036 

1.038 

0 

C 

100 

X.04 

102 

1.042 

104 

106 
X08 

1.044 
1.047 
1.049 

110 

1.051 

1X2 

VA 

".053 
1.056 
1.058 
1.06 

0 

c 

0 

140 

<=  1 

0 
160 

X20 

X.062 

X.084 

122 

1.064 

142 

087 

162 

124 

1.067 

144 

080 

164 

126 

1.069 

146 

091 

166 

128 

1.071 

148 

093 

168 

130 

'•073 

«50 

096 

170 

132 

1.076 

152 

.098 

172 

134 

1.078 

"54 

.1 

174 

136   1.08 

156 

.102 

176 

138 

1.082 1 

>58 

104 

178 

I.X06 

I.X08 

I. XXX 

1.1x3 

I.XI5 

X.IX7 

x.ia 

X.  12a 

1.X24 

x.ia6 


*  For  more  «s»ct  forinulM,  ••«  TtM^  And  FormuUs,  by  Captt  T-  3<  I'««i  U.  S.  Top.  Eng .,  1S53. 


ABB08TATICS. 


429 


Their  vakies  vary  approximately  .001 1  per  degree. 

Upper  Station.       Lower  StetiOB. 

Illustratio.x.— Thermometer  70.4  77.6 

Barometer  23.66  30.05 

0  =  77.6  +  70.4  =  1.093,    log.  8  =  1.4778,    log.  6  =  1.374. 

Then  60000  x  (1.4778  —  1.374)  x  1.093 =6807. 2 /at 

To  Conapu.te    Klevations  "by    a  Th.eriiaometer. 

520  B  -|-  B"  X  C  =  fieight  in  feet    B  rlpi'etenting  temperature  of  water  bmling  at 
ttevated  station  deducted  from  212°. 

Correction  for  temperatures  of  air  at  lower  and  npper  stations,  or  T  -f  <,  to  be  taken 
firom  table,  page  428,  as  before. 

Illustratiox.— Temperature  of  water  boiling'at  upper  station  192^;  temperatare 

of  air  50°  and  32°,    C  =  1.02. 

a 

Then  520X212  — 192 -|- 212  — 192  x  i.oa=  xq&o&JuL 

To  Compute  Capacity  of  a  BaUoon,  etc.y  see  page  218. 


Barometer. 
Elevations  by   Baroixieter  Readiugs* 

Mean  Temperature  of  Air  soP. 
For  correction  for  temperature,  see  note  at  foot 

Height. 

-Feet. 
4000 

4250 
4500 

47SO 
5000 

5250 
5500 
5750 
6000 
6250 
6500 
6750 


(AHronomer  SoyaL ) 


Height. 

Berom. 

Height. 

Barom. 

Height. 

Barom. 

Feet. 

Ins. 

Feet. 

Ins. 

Feet. 

Ins. 

0 

31 

600 

30-325 

1500 

29.34 

50 

^ill 

650 

30.269 

1600 

29.233 

100 

700 

30-214  . 

1750 

29.072 

«50 

30^83 

750 

30.159 

1800 

29.019 
28.807 

200 

3<^773 

800 

30.103 

2000 

250 

30"7«7 

850 

30.048 

2250 

*5-514 

300 

3a  661 

900 

29993 
29.883 

2500 

28.283 

350 

30.604 

1000 

2750 

28.025 

400 

30.548 

1100 

29774 

3000 

27.769 

450 

3p.ig2 

1200 

29.665 

3250 

27-5'5  ; 

500 

30.436 

1300 

29-556 

3500 

27.264  i 

550 

30.381 

1400 

29.448 

3750 

27.015  i 

Barom. 


Ins. 
26.769 
26.524 
26.282 
26  042 
25.804 
25-569 

25335 
25.104 

24-875 
24.648 

24423 
24.2 


Height. 

Barom. 

Feet. 

Ins. 

7000 

23.979 

7SOO 

23-543 

.    8000 

23- "5 

8500 

22.695 
22.282 

9000 

9500 

21.877 

10000 

21.479 

10500 

21.089 

IIOOO 

2a  706 

II 500 

20.329 

12000 

19.959 

12500 

19.952 

Saroxneter. 

CwrredHonfoT  CapUlary  Attraction  to  be  added  in  Indus, 


Diameter  of  tube. . . . 
Correction,  unboiled. 
Correction,  boiled  . . . 


.6 

.55 

•5 

.45 

•4 

•55 

•3 

•25 

.9 

.004 

005 

.007 

.01 

.014 

.02 

025 

04 

059 

002 

.003 

UU4 

005 

.007 

ox 

.0x4 

.02 

029 

.1 
087 

044 

To  Compute  Height. 

RuLK.— Subtract  reading  at  lower  station  ftvm  reading  at  upper  station,  difference 
is  height  in  feet. 

Table  assumes  mean  temperature  of  atmosphere  to  be  50O  F.  or  iqO  C.  ,  For  other 
'temperatures  following  correction  must  be  applied. 

Add  together  temperatures  at  upper  and  lower  station  If  this  sum,  in  degrees 
in  F.,  is  greater  than  xoo^,  increase  height  by  |  A>  part  for  every  degree  of  excess 


by  ^^  part  for  every  degree  of  defect  from  aoP. 

Saroxneter    Iiidioations. 

Increasing  storm.— If  mercury  falls  during  a  high  wind  Arom  S.  W.,  S.  S.  W.,  W., 
orS. 

Violent  but  short  ~If  fall  be  rapid. 

IjCss  violent  but  of  longer  continuance.— If  fkll  be  slow. 

Snow. — If  mercury  iklls  when  thermometer  is  low. 

Improved  weather.— When  a  gradual  continuous  rise  Of  mercury  occurs  with  a 
fklling  thermometer. 


430  ABBOSTATICS. 

Heavy  gales  fh>m  V.—Soon  kUbt  first  rise  of  tnercnry  fh>m  a  very  low  point. 
Unsettled  weather. — ^With  a  rapid  rise  of  mercury. 
Settled  weather. — With  a  How  rise  of  mercury. 

Very  fine  weather.— With  a  continued  steadiness  of  mercury  with  dry  air. 
Stormy  weather  with  rain  (or  snow). — With  a  rapid  and  considerable  fall  of  mer 
cury. 
Threatening,  unsettled  weather. — With  an  alternate  rising  and  falling  of  mercury 
Lightning  only. — When  mercury  is  low,  storm  being  beyond  horizon. . 
Fine  weather. — With  a  rosy  sky  at  sun^t. 
Wind  and  rain.— When  sky  has  a  sickly  greenish  hue. 
Bain. — When  clouds  are  of  a  dark  Indian  red. 
Foul  weather  or  much  wind. —When  sky  is  red  in  morning. 

"WeatJgier   Grlasses. 

£:xplana.tor3r   Card.     Vice-AdmirtU  Fitzroy,  F.  R.  S. 

Barometer  Rises  for  Northerly  wind  (including  from  N.  W.  by  N.  to  E.),  for  dry, 
or  less  wet  weather,  for  less  wind,  or  for  more  than  one  of  these  changes — 
Except  on  a  few  occasions  when  rain,  hail,  or  snow  comes  from  N.  with  strong  wind. 

Barometer  Falls  for  Southerly  wind  (including  from  S.  E.  by  S.  to  W.),  for  wet 
weather,  for  stronger  wind,  or  for  more  than  one  of  these  changes — 
Exc^t  on  a  few  occasions  when  moderate  wind  with  rain  (or  snow)  comes  from  N. 

For  change  of  wind  toward  Northerly  directions,  a  Thermometer /(Ms. 

For  change  of  wind  toward  Southerly  directions,  a  Thermometer  rises. 

Moisture  or  dampness  in  air  (shown  by  a  Hygrometer)  increases  If^fbre  rain,  fog, 
or  dew. 

Add  one  tenth  of  an  inch  to  observed  height  for  each  hundred  feet  Barometer  is 
above  half-tide  level. 

Average  height  of  Barometer,  in  England,  at  sea-level,  is  about  20.94  inches;  and 
average  temperature  of  air  is  nearly  50  degrees  (latitude  of  London). 

Thermometer  fklls  about  one  degree  for  each  300  feet  of  elevation  from  ground, 
but  varies  with  wind. 

**  When  the  wind  shifts  against  the  sun, 
Trust  it  not,  for  back  it  will  run.'' 

First  rise  after  very  low  I  Long  foretold— long  last, 

Indicates  a  stronger  blow.  |  Short  notice— soon  past. 

Rare/cu^^ion  of  Air, 

In  consequence  of  rarefaction  of  ait,  g^  loses  of  its  illuminating  power  x  cube 
Inch  for  each  2.69  feet  of  elevation  above  the  sea.    {M  Bretnond.) 

Clo-ads. 
Classification. — i.  CiVrwa— Like  to  a  feather,  commonly  termed  Mare'*s 
tails.    2*  Oirro-aqmdus  —  Small  round  eloudfi,  termed  mackerd  sky. 
3.  Cirro-strattis — Concave  or  undulated  stratus.    4.  Cumtilus — Conical, 
round  clusters,  termed  wool-packs  and  cot(on  balls,     5,  Cumulo^ratus — 
Two  latter  mixed.    6.  Ninums — ^A  icumulus  spreading  out  in  anns,  and 
precipitating  rain  beneath  it.     7.  Stratus — ^A  level  sheet. 
NoTS. — Cirrus  is  most  elevated. 
Height, — Clouds  have  been  seen  at  a  greater  height  than  37000  feet. 

Velocity. — At  an  apparent  moderate  speed,  they  attain  a  velocity  of  80 
miles  per  hour. 

Xii^h.tn.iiig. 
Classification. — i  Striped  or  Zigzag — Developed  with  great  rapidity. 
2.  Sheet — Covering  a  large  surface.  3.  Olobtdar — When  the  electric 
fluid  appears  condensed,  and  it  is  developed  at  a  comparatively  lower 
Telocity.  4.  P^ufsphanC'-^Wh&i  the  flash  appears  to  rest  upon  the 
edges  of  the  clouds. 


/ 

ABBOSTATICS. — ATMOSI 

WEATHBB  Iin>ICA1 

Weather. 

Fioe  and 

Fair. 

CUmdt. 
Soft  or  delicate-looking  and  in- 
definite outlines. 

WiDd. 

Hard  -  edged,  oily  -  loolcing,  and 
tawny  or  copper-colored,  and  the 
more  bard,  '"greasy,"  and  ragged, 
the  more  wind. 

Wind  only. 

Light  scud  alone. 

Rain. 

'  Small  and  inky 

Wind  and 
Ratn. 

Light  scud  driving  across  heavy 
masses. 

Rain  and 
Wind. 

Hard  defined  outlinea 

Change  of 
Wind. 

High  upper,  cross  lower  in  a  di- 
rection different  to  their  course  or 

43J 


Sky. 
Grav  in  morning  and  light^ 
dellc&le  tints  and  low  dawn. 

High  dawn,  and  sunset  of  ft 
bright  yellow. 


Sunset  of  a  pale  yellow. 
Orange  or  copper  color. 

Gaudy  unusual  bnea 


that  of  wind. 

Fair. — When  sea-birds  fly  early  and  far  out,  when  d^w  is  deposited,  and  when  a 
leeoh,  confined  in  a  bottle  of  water,  will  curl  up  at  the  bottom. 

Rain.— Clear  atmosphere  near  to  horizon  and  light  atmospheric  pressure,  or  a 
good  ''hearing  day,"  as  it  is  termed. 

Storm.— When  sea-birds  remain  near  to  'Shore  or  fly  inland! 

Rain,  Snow^  or  Wittd.^When  a  leech,  confined  in  a  bottld  of  water,  will  rise  ex- 
citedly to  the  surface 

'Thunder.— When  a  leech,  confined  as  above,  will  be  much  excited  and  leave  the 
water. 

Value  of  Indications  of*  Fair  Weather,  in  T^aym^  Ooxo*. 

pared   to  one  of  Rain. 

From  an  extended  series  of  observations.    {Loufe.y 


Proflise  Dew. 4.5 

White  Stratus  in  a  valley 7. 2 

Colored  Clouds  at  sunset a.9 

Solar  Halo 1.9 

Sun  red  and  rayless. 10.3 

Sun  pale  and  sparkling. i 

White  Frost 4.2 

Lunar  Halo. i 

Lunar  burr,  or  rough-edged 2.8 

Moon  dim a 

Moon  rising  red. 7 


Mock  Sun  or  Moon. .«...■..,.«....  3.3 

Stars  falling  abundant. 3.21 

Stars  bright 3.4 

Stars  dim 1.5 

Stars  scintillated 6 

Aurora  borealis z.8 

Toads  in  evening. 2.4 

Landrails  noisy..   13 

Ducks  And  Geese  noisy 2.3 

Fish  rising .* 1.5 

Smpke  rising  vertically 5 


For  weather-foretelling  plants,  see  page  185. 


ATU08PHKBIG   AIB. 

Very  pure  air  contains  Oxygen  20.96,  Nitrogen  79,  and  Carbonic  Acid  .04. 

Air  respired  by  a  human  being  in  one  hour  is  about  15  cube  feet,  produc- 
ing 500  grains  of  carbonic  aci<^  corresponding  to  137  grains  carbon,  and 
during  this  time  about  200  grains  of  water  will  be  exhaled  by  the  lungs. 

Daring  this  period  there  would  be  consumed  about  415  grains  of  oxygen. 

In  one  hour,  then,  there  would  be  vitiated  73  cube  feet  pure  air. 

A  man,  weighing  150  lbs.,  requires  930  cube  feet  of  air  per  honr^  in' order 
that  the  air  he  breatbei  mav  itot<sontain  more  than  i  per  1000  of  cavbonic 
acid  (at  which  proportion  its  imparity  becomes  sensible  to  the  nose)-;  he 
ought,  ^eref ore,  to  have  Soo  cube  feet  of  well  ventilated  space. 


432 


ATMOSPHEBIC   AIE. — ANIMAL   POWER. 


An  adult  human  being  consumes  in  food  from  145  to  165  grains  of  carbon 
per  hour,  and  gives  off  from  12  to  16  cube  feet  of  carbonic  acid  gas. 

An  assemblage  of  1000  persons  will  give  off  in  two  hours,  in  vapor,  8.5 
gallons  water,  and  nearly  as  much  carbon  as  there  is  in  56  lbs.  of  bitumi- 
nous coaL 

Proportion   of  Oxygen   and.  Carloonio  A.oid  at  fbllovtrin^; 

Xuooations. 

Pure  Air  represented  by  Oxygen  20.96. 


Street  in  Glasgow saSQs 

Regent  Street,  Ijondon 20.865 

Centre  Hyde  Park 21.005 


Metropolitan  Railway  (underground) . .  sae 

Pi  t  of  a  Theatre •  •  ao.  74 

Gallery  of  a  Theatre aa63 


Carbonic  Acid  .04  Per  cent 


Open  field,  Manchester 0383 

Churchyard. ...» 0323 

Market,  Smithfield 0446 

Factory  mills 283 

School-rooms 097 

Pitt  of  theatre,  zi  P.  M 32 

Boxes     "        12    *'    218 

Gallery   "        10    "    .... 


XOI 


Top  of  Monument,  London 0398 

Hyde  Park 0334 

Metropolitan  Railway  (underground)..  .338 

Lake  of  Geneva 046 

Boys'  school 31* 

Girls'      "      723t 

Horse  stable 7 

Convict  prison 045 

t  PeltenhoflSBT*' 


Consumption   of  A.tmo8ph.erio  ^ir.    {Coathupe.) 

One  wax  candle  (three  in  a  lb.)  destroys,  during  its  combustion,  as  much 
oxygen  per  hour  as  respiration  of  one  adult. 

A  lighted  taper,  when  confined  within  a  given  volume  of  atmospheric  air, 
will  become  extinguished  as  soon  as  it  has  converted  3  per  cent,  of  given 
volume  of  air  into  carbonic  acid. 

Carbonic  Acid  Exhaled  per  Minute  by  a  Man.     (Dr.  Smith.) 

During  sleep  4.99  per  cent,  lying  down  5.91,  walking  at  rate  of  2  miles 
per  hour  18.  i,  at  3  miles  25.83,  tiard  labor  44.97. 


ANIMAL   POWEB. 


'Worls. 

Work  is  measured  by  product  of  the  resistance  and  distance  through 
which  its  point  of  application  is  moved.  In  performance  of  work  by 
means  of  mechanism,  work  done  upon  weight  is  equal  to  work  done  by 
power. 

Unit  of  Work  is  the  moment  or  effect  of  i  pound  through  a  distance 
of  I  foot,  and  it  is  termed  a  foot-pound. 

In  France  a  kilogrammetre  is  the  expression,  or  the  pressure  of  a 

kilogramme  through  a  distance  of  i  meter  =r  7.233  foot-pounds. 

Result  of  observation  upon  animal  power  furnishes  the  following  as  maximum 
daily  eiibct: 

z.  When  effect  produced  varied  fh)m  .2  to  .33  of  that  which  could  be  produced 
without  velocity  during  a  brief  interval. 

2.  When  the  velocity  varied  fh>m  .16  to  .25  for  a  man,  and  firom  .08  to  .066  for  a 
horse,  of  the  velocity  which  they  were  capable  for  a  brief  interval,  and  not  involv- 
ing aay  effort. 

3.  When  duration  of  the  daily  work  varied  from  .33  to  .5  for  a  brief  interval, 
during  which  tixe  work  could  be  constantly  sustained  without  prejudice  to  healtb 
of  man  or  animal;  the  time  not  extending  beyond  18  hours  per  day,  however  lim- 
ited may  be  the  daily  task,  so  long  as  it  involved  a  constant  attendance. 


ANIMAL  POWBB.  433 

Mien.. 

Mean  effect  of  power  of  men  working  to  best  practicable  advantage,  is 
raising  of  70  lbs.  i  foot  high  in  a  second,  for  10  hours  per  da,y:=  4300  jfoot- 
pounSa  per  minute. 

Windlass. — Two  men,  working  at  a  windlass  at  right  angles  to  each  other, 
can  raise  70  lbs.  more  easily  than  one  man  can  30  lbs. 

Labor. — A  man  of  ordinary  strength  can  exert  a  force  of  30  lbs.  for  10 
hours  in  a  day,  with  a  velocity  of  2.5  feet  in  a  second  ^4500  lbs.  raised  one 
foot  in  a  minute  ^  .2  of  work  of  a  horse. 

A  man  can  travel,  without  a  load,  on  level  ground,  during  8.5  hours  a  day, 
at  rate  of  3^7  miles  an  hour,  or  31.45  miles  a  day.  He  can  carry  11 1  lbs. 
II  mUes  in  a  day.  Daily  allowance  of  water,  i  gallon  for  all  purposes ;  and 
he  requires  from  220  to  240  cube  feet  of  fresh  air  |)er  hour. 

A  porter  going  short  distances,  and  returning  unloaded,  can  carry  135  lbs. 
7  miles  a  day,  or  he  can  transport,  in  a  wheelbarrow,  150  lbs.  10  miles  in  a  ' 
day. 

0*ane. — The  maximum  power  of  a  man  at  a  crane,  as  determined  by  Mr. 
Field,  for  constant  operation,  is  15  lbs.,  exclusive  of  frictional  resistance, 
which,  at  a  velocity  of  220  feet  per  minute  =  3300  foot-pounds,  and  when 
exerted  for  a  period  of  2.5  minutes  was  17.329  foot-pounds  per  minute. 

PUe^rimng.-^-G.  B.  Bruce  states  that,  in  average  work  at  a  pile-driver,  a 
laborer,  for  10  hours,  exerts  a  force  of  16  lbs.,  plus  resistance  of  gearing,  and 
at  a  velocity  of  270  feet  per  minute,  making  one  blow  every  four  minutes. 

Rowing. — A  man  rowing  a  boat  i  mile  in  7  minutes,  performs  the  labor 
of  6  fuUy-worked  laborers  at  ordinary  occupations  of  10  hours  per  day. 

Drawing  or  Pushing. — A  man  drawing  a  boat  in  a  canal  can  transport 
1 10  000  lbs.  for  a  distance  of  7  miles,  and  produce  156  times  the  effect  of  a 
man  weighing  154  lbs.,  and  walking  31.25  miles  in  a  day ;  and  he  can  push 
on  a  horizontal  plane  20  lbs.  with  a  velocity  of  2  feet  per  second  for  10  hours 
per  day. 

TVeadrmill. — A  man  either  inside  or  outside  of  a  tread-mill  can  raise  30 
lbs.  at  a  velocity^of  1.3  feet  per  second  for  10  hours,  :=  1 404  000  foot-pounds. 

PuUeif»—A  man  can  raise  by  a  single  piUley  36  lbs.,  with  a  velocity  of  .8 
of  a  foot  per  second,  for  10  hours. 

Walking.— A  man  can  pass  over  12.5  times  the  space  horizontally  that  he 
can  vertically,  and,  according  to  J.  Robison,  by  walking  in  alternate  directions 
ui)on  a  platform  supported  on  a  fulcrum  in  its  centre,  he  can,  weighing  165 
lbs.,  produce  an  effect  of  3984000  foot-pounds,  for  10  hours  per  day. 

Pump,  Crank,  Bell,  and  2iatcing.—Mr.  Buchanan  ascertained  that,  in  work- 
ing a  pump,  turning  a  crank,  ringing  a  bell,  and  rowing  a  boat,  the  effective 
power  of  a  man  is  as  the  numbers  100, 167,  227,  and  248. 

Pumping.— A  practised  laborer  can  raise,  during  10  hours,  1000  000  IbSc 
water  i  foot  in  height,  with  a  properly  designed  and  constructed  pump. 

Crank, — A  man  can  exert  on  the  handle  of  a  screw-jack  of  11  inches  ra- 
dius for  a  short  period  a  force  of  25  lbs.,  and  continuously  15  lbs.,  a  net 
power  of  20  lbs.  Mr.  J.  Field's  tests  gave  11. 5  lbs.  as  easUy  attained,  17.3  ai 
difficult,  and  27.6  with  great  difficulty. 

Mowing. — A  man  can  mow  an  acre  of  grass  in  i  day. 
Reaping. — A  man  can  reap  an  acre  of  wheat  in  2  days. 
Ploughing, — ^A  man  and  horse  .8  of  an  acre  per  day. 

Oo 


434 


ANIMAL   POWSB. 


Day's   "Work.    (D.  K.  Clark.) 

iSa&orer.— Carrying  bricks  or  tiles,  net  load  io6  Ibs.=:6cx>  lbs.  i  milai 

Carrying  coal  in  a  mine,  net  load  95  to  115  lbs.  :^  342  lbs.  x  mile. 

Loading  coke  into  a  wagon,  net  load  100  lbs.  =2270  lbs.  t  mile. 

Loading  a  boat  with  coal,  net  load  190  lbs.=  1230  lbs.  i  mile,  or  &o  cube  yardfl  ot 
earth  in  a  wagon. 

Digging  stubble  land  .055  of  an  acre  per  day,  or  ^000  cube  feet  of  superficial  earth. 

Breaking  1.5  cube  yards  hard  stone  into  2  inch  oabes. 

Quarrying.— A.  man  can  quarry  tvom  5  to  8  tons  of  rock  per  day. 

A  foot-soldier  travels  in  i  minute,  in  common  time,  oo  steps  £=;  70  yards. 

tie  occupies  in  ranks  a  ft'ont  of  20  inches,  and  a  depth  of  13,  without  a  knapsack: 
interval  between  the  ranks  is  13  inches. 

Average  weight  of  men,  150  lb&  each,  and  five  men  can  stand  in  a  space  of  i 
square  yard. 

SjfFeotivd   Po-wei*  of  Afexi   fbr  a   Sliort   Period* 


Manner  of  AppUtMiolk. 


Bench-vice  or  Chisel. . . . 
Drawing-knife  or  Auger. 

Uand-pUme 

Hand  saw 


form. 


Lbs. 

73 

100 

50 
36 


Manner  of  ApfpUcatioii. 


Screw-driver,  one  hand 

Small  screVt-  driver 

Thumb  and  fingers 

Windlass  or  Pincers  . . . 


ionw. 


Lbs. 
84 
14 
14 
60 


The  muscles  of  the  human  jaw  exert  a  force  of  534  lbs. 

Mr.  Smeaton  estimated  power  of  an  ordinary  laborer  at  ordinary  work  was  equiv- 
alent to  3763  foot-pounds  per  minute.  But,  accordiDg  to  a  particular  case  made  by 
him  in  the  pumping  of  water  4  feet  high,  by  good  English  laborers,  their  power  was 
equivalent  to  3904  foot-pounds  per  minute;  and  this  be  assigned  as  twice  that  of 
ordinary  |>er8on8  promiscuously  operated  with. 

Mr.  J.  Walker  deduced  from  experiments  that  the  power  of  an  ordinary  laborer,  in 
turniug  a  crank,  was  13  lbs.,  at  a  velocity  of  320  feet  per  minute  forS  hours  per  day. 

A.movmt  of  l^aV>or   prod  voiced,  "by  a   ]&£axi>    (Morin.) 

For  10  hours  per  day. 


MANNER  OF  APPUGATION. 


Throwing  earth  with  a  shovel,  a  height  of  5  feet. . 

Wheeling  a  loaded  barrow  up  an  inclined  plane, 
I  to  la. 

Raising  and  pitching  earth  in  a  shovel  13  feet 
horizontally 

Pushing  and  drawing  alternately  in  a  vertical 
dirpction 

Transporting  weight  upon  a  barrow,  and  return- 
ing unloaded. 

For  8  HorRS  per  DaY. 

Asceuding  a  slight  elevation,  unloaded 

Walking,  and  pushing  or  drawing  in  ahoriiontal 

dinnUion 

Turning  a  crank 

I'lwu  a  tread  mill* 

Ku  w  I  ng 

For  7  Hours  pbr  Dat. 
Walking  with  a  load  upon  his  lx\ck 

For  6  Horaa  per  Day. 
Trausportinff  a  weight  upon  his  back,  and  return- 
ing unloaded 


Trun8p<)rtiug  a  weight  U{M>n  his  back  up  a  slight 

olovailon.  and  returning  unloaded 

Raialng  a  woight  by  his  hands 


Power. 

Vel«dty 
per 

Second. 

Lbe. 

Feet. 

6 

1-33 

132 

.625 

6 

2.85 

13 

2-5 

132 

X 

143 

•5 

26 

2 

18 

2-5 

140 
26 

•5 
5 

88 

2-5 

140 

>-75 

140 

.2 

44 

•5 

Weight 

miaed. 

Feet  per 

Bf^inute. 


Lbs. 
480 

4950 
810 

1950 
7920 

4290 

3120 
2790 
4200 
7800 

13200 
14700 


fS»r 
Period 
((iven. 


No. 

90 
«4-7 
35-5 
144 

6a 

45.  a 

61.  X 
113 

x6ow5 
X60.5 


•Morin  fflvM  aiN«>NMl  »>r  Uln^r  of  a  m»n  upon  trMMt-mill,  io  an 
iMtly  of  .5  ^i  per  «Kxu»d  for  8  lK>ttn  fer  day  :x  ;o  Ite.  at  x  Ibofc 


1680  19 

X  320  14.4 

aa  Individoal  case,  at  140  Iba.,  At  a  're> 
pcrMMBdt  heaea  70 -i- 1.3  fc«t  m 


ANUf  AL  POWBB. 


435 


<ro  Compute  Number  of*  M.en.  to  Ferfbrm  WotIs.  upon 

a   Xread-mill  or   Pile-cl  river. 

Rule. — To  product  of  weight  to  be  raised  and  radius  of  crank,  add  fric- 
tion of  wheel,  and  divide  sum  by  product  of  power  and  radius  of  wheel. 

ExAMPLK. — How  many  men  are  required  upon  a  tread-mill,  20  feet  in  diameter, 
to  raise  a  weight  of  9233.33  lbs.,  crank  9  inches  in  length,  weight  of  wheel  and  its 
load  estimated  at  5cmx>  lbs.,  and  friction  at  .015. 

Weight  of  a  man  assumed  at  25  lbs.     Radius  of  crank  .75  feet 

Eflbct  of  a  man  on  a  tread^mill,  page  433,  30  Iba  at  a  velocity  of  i.  3  feet  per  second, 
=  1.3  X  60  =  jS  feet  per  mintUe. 

9233.33  X  .75-I-5CXX3  X  .oi5  =  7cxx>  lbs.  resistance  of  load  and  wheels  and  7000-^ 

^  X  10  X  30  =  7000 = load  and  weight  -i-prodaci  of  power  inoretued  by  its 


20  X  3-i4'6 


vdocity  over  loadj  raditu  of  wheel  and  power  =  7000  ^  1.241  X  xo  X  30  =  18.8  men. 

Horse. 

Amount  of  I^abor  pro<ix\cecl  t>y  a  Horse  under  dififereut 

.    OirouxustaiiceH.     {Morin.) 

For  10  how'i  per  day. 


lUMIflB  OF  AFPUOATIOII. 


Drawing  a  4-wheeled  carriage  at  a  walk 

With  load  upon  his  back  at  a  walk 

Transporting  a  louded  wagon,  and  returning  un- 
loaded at  a  walk 

Drawing  a  loaded  wagon  at  a  walk 


For  8  Hodbs  pkr  Dat. 
Upon  a  revolving  platform  at  a  walk 

For  4.5  HorRs  per  Dat. 

Upon  a  revolving  platform  at  a  trot 

Drawing  an  unloaded  4  wheeled  carriage  at  a  trut. 
Drawing  a  loaded  4-wheeled  carriage  at  a  Irut 


Power. 


154 
364 

1540 
1540 


100 

66 

97 
770 


Velocity 

per 
Second. 


WeiKht 
drawn. 
Feet  per 
Minute. 


H» 

for 
Period 
i;iven. 


Feet. 

3 

3-75 

t 
3-75 


6.75 
7-35 

7- 25 


Lbe. 
27  720 

59400 

184800 
346500 

18000 


26730 

43>95 

334  950 


No. 

504 
1080 

3360 
6300 


260.8 


218.7 

353-5 
2741 


If  traction  power  of  a  horse,  when  continuously  at  a  walk,  Is  equal  to  120  lbs., 
and  grade  of  road  i  in  30,  resistance  on  a  level  being  one  thirtieth  of  load,  be  can 
draw  a  load  of  I30  X  30 -f- •  2=  1500  iba 

Street  Raila  or  TrauiAways,     {Henry  Hughes.) 
Cars,  26  lbs.  per  ton,  or  i  to  86  as  a  mean. 

Perfbrmaiioe   of  Horses   in    ITreuiioe.     {M.  Charii-Marsaims.) 


•BASOH. 


Winter. . , 
Sammer . 


Road. 

WoiRht 
Horte. 

Speed 

per 

Hour. 

Pavement 
Macadam 
Pavement 
Macadam 

Toot. 

1.306 

.851 

I-39S 
X.14X 

Mile*. 
2.05 
1.91 
».i7 
2.16 

Work  per 

Hour,  drawn 

One  Mile. 

Ton-mile*. 
2.677) 
1.625  J 

a.  464) 


Ratio  of 

Pavement  to 

Macadam. 


1.644  ^  I 
1.229  ^  ' 


Average  daily  woric  of  a  Flemish  horse  in  North  of  France,  where  country  is  flat 
and  loads  heavy,  is,  on  same  authority,  as  follows: 


Klven  In  example  k  S3'8  Iba.,  from  which  a  dcdnetion  U  to  be  made  for  exeeea  of  amount  t>f  labor  that 
can  be  performed  In  Slioon  over  10.    Or,  at  10  :  8  : .'  53.8  :  43-04  ibt.,  which  doaa not  etaentiaH^  dift- 
fr«n  amct  of  30  Iba.  for  that  of  an  average  performaaoo. 


43^  ANIMAL   POWBS. 

Greatest  mechanical  effect  of  an  ordinary  horse  is  produced  in  operating  a 
gin  or  drawing  a  load  on  a  railroad,  when  traveilin^^  at  rate  of  2.5  miles  per 
hour,  where  he  can  exerl  a  tractive  force  of  150  lbs.  fur  8  hours  per  day. 

Horse  upon  Turnpike  Hood, 

At  a  speed  of  10  miles  per  hour,  a  horse  will  perform  13  miles  per  day  tor 
3  years.    In  ordinary  staging,  a  horse  will  perform  15  miles  per  day. 

To  Compute  Tractive  Power  of  a  Horse  Team^  see  Traction^  page  848. 

Assuming  maximum  load  that  a  horse  can  draw  on  a  gravel  road  as  a 
standard,  he  can  draw, 

On  best-broken  stone  road a  to  3  times. 

On  a  well-made  stone  pavement 3  to   5     '"■ 

On  a  stone  trackway 7  to  8     '• 

On  plank  road 4  to  12     " 

On  a  railway 181020     " 

NoTB.— Track  of  an  iron  railway  compared  with  a  plank-road  is  as  27  to'^a 

To  Compxite  Power  of  Draught  of  a  Horse  at  IDifierent 

S^levatioxis. 

Let  ABC  represent  an  inclined  plane,  o  weight 
of  a  horse  which,  being  resolved  into  two  com- 
ponent forces,  one  of  w^ch,  n,  is  perpendicular  to 
plane  of  inclination,  and  other,  r,  is  parallel  to  it. 

Hence,  r  represents  force  which  horse  must  over- 
come to  move  his  own  weight. 

Then,  by  similar  triangles,  A  B  or  /  :  B  C  or  A  : :  o  :  r.    Or,  '7^  =  r. 

Ifnepresents  tractive  power  of  horse,  upon  a  level,  of  100  lbs.,  t  tractive 
power  upon  a  plane  of  inclination,  and  r  that  part  of  force  exerted  by  hurse 

which  is  expended  upon  his  own  body,  then  f  =  «  —  r,  or  <  -  ^  =  <'  in  Ws. 

Illustration.— If  inclination  is  i  in  50. 

Assume  t  =  100,  weight  of  horse  900  lbs.,  and  I  =  50.01. 

Then,  100  —  ^~^  =  100  — 17.99  =  82.01  lbs. 

Assuming  load  that  a  horse  can  draw  on  a  level  at  100,  he  can  draw  upon 
loclinations  as  follows : 

I  in  100.....  91 
I  "  90. ....  90 
I  "    80 89 

On  his  back  a  horse  can  carry  from  220  to  300  lbs.,  or  about  27.5  \mr  cent, 
of  his  weight 

Z,a5o»\--The  work  of  a  horse  as  assigned  bv  Boulton  A  Watt,  Tredgold, 
Reniiie,  Beardmore,  and  others,  ranges  from  20600  to  39320  foot-pounds  per 
minute  for  8  hours,  a  mean  of  27  750  lbs.  r  r 

A  horse  can  travel,  at  a  walk,  400  yards  in  4.5  minutes ;  at  a  trot,  in  a 
minutes ;  and  at  a  gallop,  in  i  mmute.  He  occupies  m  ranks,  a  front  of  40 
uis.,  and  a  depth  of  10  feet;  in  a  staU,  from  3.5  to  4.5  feet  front;  and  at  a 
picket,  3  feet  by  9 ;  and  his  average  weight  =  1000  lbs. 

Carrying  a  soldier  and  his  equipments  (225  lbs.)  he  can  travel  25  miles 
\\\  a  day  of  8  hours.  ^    ^       ^  j 

cli;de*d  *"^^'"^**"^  *^  ^^*^  ^^^  ^^^'  ^^  ^^^^  *  ^*^'  ^^^**^  °^  carriage  in- 


I  in  75 88 

I  "  70 87 

I  '•  60 85 


X  in  50 82 

I  "  45 80 

'  "  40 77 


'10  35 74 

X  "  30 70 

«  ••  25 64 


I  in  20 55 

I  "  x5 40 

I  '*  10 10 


AmUAL  POWBB. 


437 


Ordinary  work  of  a  horse  may  be  stated  at  aa  500  lbs.,  raised  x  foot  in  u 
minute,  for  8  liours  per  day. 

In  a  mill,  be  moves  at  rate  of  3  feet  in  a  second.  Diameter  of  track  should  not 
be  less  tban  25  feet 

Reiinie  ascertained  that  a  horse  weighing  1233  lbs.  could  draw  a  canal-boat 
at  a  speed  of  2.5  miles  per  hour,  with  a  power  of  108  lbs.,  20  miles  per  day. 
This  is  equivalent  to  a  work  of  23  760  foot-lbs.  per  minute,  He  estimated 
that  the  average  work  of  horses,  strong  and  weak,  is  at  the  rate  of  22  000 
foot-lbs.  per  minute. 

From  results  of  trials  upon  strength  and  endurance  of  horses  at  Bedford,  Eng.,  it 
was  determined  that  average  worlr  of  a  horse  =:  20000  foot-lbs.  per  minute.  A  good 
horse  can  .draw  i  ton  at  rate  of  3.5  miles  per  hour,  fVom  10  to  12  hours  per  day. 

Expense  of  convoying  goods  at  3  miles  per  hour,  per  horse  teams  being  i,  expense 
at  4.33  miles  will  be  1.33,  and  so  on,  expense  being  doubled  when  speed  is  5.135  miles 
I)er  hour. 

Strength  of  a  horse  is  equivalent  to  that  of  5  men,  and  his  dally  allowance  of 
water  should  be  4  gallons. 

A^xnount  of*  "Lteibov  a  Horse  of  average  StrexxKtb.  is  capa- 
ble of  peribrxning,  at  difiereut  Velooities,  oix  Canal, 
Railroad,  and   Xumpike. 


Veloei- 
typer 
Hoar. 

MUee. 
2-5 
3 
4 
5 


Dara- 

UW9IO 

1  bneci,  ara 

tion  of 

Ona 

On  a  Rail- 

Work. 

Canal. 

road. 

Hoor*. 

Toot. 

Tona. 

11.5 

520 

"5 

8 

243 

93 

45 

103 

73 

2.9 

52 

57 

Traction  atimaUd  at  83.3  Ibt. 

irn  I  Mile. 

On  a  Tarn- 
pike. 


Tona. 
14 

13 

9 

7.8 


Veloci- 
ty per 
Hour. 

Dnra- 

tion  of 
Work. 

uteiui 

Ona 
Canal. 

cncct,  ara 

On  a  Rail- 
road. 

Miiee. 
6 

Hoan. 

3 

Tona. 
30 

Tona. 

48 

I 

ID 

15 
1.125 

•75 

13.8 

6.6 

4« 

36 
28.8 

On  a  Turn- 
pike. 


Tona. 
6 

5-» 

4-5 
3-6 


Actual  labor  performed  by  horses  is  greater,  but  they  are  injured  by  it. 


Tractive  Power  of  a  horse  decreases  as  his  speed  is  increased,  and  within  limits 
of  low  speed,  or  up  to  4  miles  per  hour,  it  decreases  nearly  in  an  inverse  ratio. 


For  10  Hourt  per  Day. 


Milea. 

Traction. 

Mllea. 

Traction. 

Per  Hoar. 
75 

X 

'^5     . 

Lbe. 

330 
250 

200 

Per  Hoar. 
«-5 
'•75 

3 

Lba. 
165 
140 

X35 

Milea. 

Traction. 

Per  Hour. 

Lba. 

2.35 

no 

2-5 

100 

3.75 

90 

Mil«e. 


Per  Hour. 
3 
3-5 

4 


f^r  Ordinary  or  Short  Periodt.    (MoUsworth.) 

Miles  per  hour 3  3  3*5  4 

Power  in  lbs z66  135  104  83 


4-5 
63 


Traction. 

Lba. 
82 
70 
62 


5 
41 


Miule.    (D.K.  Clark.) 

Load  on  hack,  170  to  220  lbs.  day's  work = 6400  lbs.  i  mile ;  400  lbs.  at  2.9 
miles  per  hour  =:  5300  lbs.  i  mile,  and  330  lbs.  at  2  miles  per  hour = 5000  lbs. 
I  mile. 

Upon  a  revolving  platform,  at  a  velocity  of  3  feet  per  second,  =  n  880  lbs.  raised 
one  foot  per  minute,  or  172.2  H*  for  8  hours  per  duy 

Load  on  back,  176  lbs.  carried  19  miles  day's  work  =  3300  lbs.  1  mile. 

In  Syria  an  ass  carries  450  to  550  lbs.  grain. 

Upon  a  revolving  platform,  at  a  velocity  of  3.75  feet  per  second, = 5280  lbs.  raised 
one  foot  per  mlnaie,  or  76.5  ff  for  8  hours  per  day. 

Oo* 


438 


ANIMAL   POWBB. 


Ox.  I 

An  Ox,  walking  at  a  velocity  of  2  feet  in  a  second  (1.36  mfles  per  honrX 
eOLerts  a  power  of  154  lbs.,  =  18480  lbs.  raised  one  foot  per  minute,  or 
a68.8  W  for  8  hours  per  day. 

A  pair  of  well-condilioaed  bullocks  in  India  have  performed  work  =s  8000  foot-Ib& 
per  minute. 

Camel. 

Load  on  back^  550  lbs.  carried  30  miles  per  day  for  4  days,  4  daya^  work 
165CX)  lbs.  I  mile,  fur  5  days  130CX}  lbs.  i  mile  =  44  H*  for  xo  hours  per  day 

Load  of  a  Dromedary,  770  lbs. 

Xjlaxxxa. 
Load  on  hach^  no  lbs.,  day's  work  2000  to  3000  lbs.  i  mile = .5  to  .75  H* 

for  10  hours  per  day. 

Birds   and    Insects. 

Area  of  their  wing  surface  is  in  an  inverse  ratio  to  their  weight. 

Assuming  weight  of  each  of  the  folIowiDg  IMrds  to  be  one  pound,  and  each  Insect 
one  ounce,  the  relative  area  of  their  wing  surface  proportionate  to  that  of  their  act- 
ual weight  would  be  as  follows  (if.  2>«  Lucy) : 


Sq.ft. 

Swallow  ....  4.85 
Sparrow ....  2. 7 
Turtle-dova .  2. 13 


Sq.ft. 

Pigeon 1.27 

Vulture 82 

Crane,  Australia,  .41 


Sq.ft. 

Gnat 3.05 

Dragon -fly,  sm'U,  1.83 
Lady-bird 1.66 


Sq.fL 
Cockchafer..  .33 

Bee 33 

Meatfly 35 


Crooodile   and   X>os. 
The  direct  power  of  their  jaws  is  estimated  at  120  lbs.  for  the  former  and 
44  for  the  latter,  which,  with  the  leverage,  will  give  respectively  6000  and 
1500  lbs. 

PERFORMANCES   OP   MEN,  HORSES,  ETC. 

Following  are  designed  to  furnish  an  authentic  summary  of  the  fastest  or 
most  successful  recorded  performances  in  each  of  the  feats,  etc.,  given. 

MAN.      'Wallrine. 

1874,  Wm.  Perkins,  London,  Eng.,  .5  mile,  in  2  min,  56  ««c.;  x,  in  6  mxn.  23  «ec; 
1877,  20,  in  2  hourz  39  min.  57  sec 

1881,  C.  A.  Harriman,  Chicago,  111.,  530  miles,  in  5  days  20  hours  47  mm. 

1878,  W.  Huwes^  London,  Eng..  50  miles,  in  7  hours  57  min.  44  see.;  1880,  57  miles, 
in  13  htturs  7  min.  27  sec,  and  100,  in  18  hours  8  min.  15  sac, 

i8oi,  Capt.  R.  Barclay,  Eng.,  country  road,  90  miles,  in  20  hours  22  min.  4  «c.,  in- 
cluding rests;  1803,  .25  mile,  in  56  sec,  and  Charing  Cross  to  Newmarket,  64,  in  lo 
hours,  including  rests;  1806,  100,  in  lO  hours,  including  i  hour  ^omin.  in  rests,  1809, 
1000,  in  1000  consecutive  hours,  walking  a  mile  only  at  commencement  of  each  hour. 

1877,  D.  O'Leary,  liOudon,  Eng.,  200  mijes,  in  45  /tours  21  min.  33  sec 

1818,  Jos.  Eaton,  Stowmarket,  Eng.,  4032  quarter  miles,  in  4032  consecutive  quar- 
ter hours. 

1877,  Wm.  OaU,  London,  Eng.,  1500  miles,  in  1000  consecutive  hours,  1.5  miles 
each  hour;  and  4000  quarter  miles,  in  4000  consecutive  periods  of  10  minutes. 

1882,  Chas.  RoweU,  New  York,  N.  Y.,  and  running,  80  miles  1640 yards,  in  lahours. 

1882,  Geo.  Hazad,  New  York,  N.  Y.,  and  running,  ^  miles  220  yards,  in  6  days. 

1883,  J.  W.  Raby,  London,  Eng.,  2  miles  in  13  min.  14  sec;  3,  in  20  mxn.  21.5  tee.; 
4,  in  27  min.  38  sec  ;  5,  in  35  min.  10  sec;  and  10,  in  1  hour  14  min.  45  sec 

1882,  John  Meagher,  New  York,  N.  Y.,  8  miles  in  58  min.  37  sec 
W.  Franks,  London,  Eng.,  2$  miles  in  3  hours  55  min.  14  sec 

1885,  W.  Cummings,  Ix)ndon,  Eng.,  10  miles  in  51  min.  6.6  sec 

1884,  J.  E.  Dixon,  Birmingham,  Eng.,  40  miles  in  a  hours  46  min.  54  sec 

1883,  Peter  Golden,  Brooklyn,  N.  Y.,  50  miles  in  7  hours  29  min.  47  sec 

"Rxxxtrtixxg, 
1844,  Geo.  Seward,  of  U.  S.,  Manchester,  Eng.,  flying  start,  100  yards,  in  5.25  aea 
1864,  Jas.  NutaXl,  Manchester,  Eng.,  600  yards,  in  i  min.  13  sec. 
1881,  L.  E.  Myers,  New  York,  N.  Y.,  1000  yards,  in  a  min.  13  sec. 
1863,  Wm.  Lang,  Newmarket,  Eng.,  1  mile,  in  4  lat'li.  2  sec,  descending  giound} 
Manchester,  a,  In  9  min,  11. 5  sec;  1865, 11  miles  x66o7ardB,  iQ  «  ho/ur  a  min.  a.5 


AifriM Ai.  ^owBB.  439 

mMs^Wm.  Howta,  "  AnMrioan  D«er,*'  f.andon,  {Sng.,  15  mltos  In  i  how  aa  vUm. 
1863,  L.  Bennett,  "  Deerfoot,"  Hackney  Wick^  Eng. ,  12  m. ,  in  i  hour  a  min.  9-  5  M& 

1879,  Patrick  Bymes,  Haliikx,  N.  S.,  ao  miles,  in  i  Aour  54  min. 

1880,  Z>.  I>(movan,  Providence,  R.  I.,  40  miles,  in  4  hows  48  min.  23  sec 
17—,  j1  Oourter,  fSast  Indies,  loa  miles,  in  34  hour: 

1889,  H.  if.  Johnson,  Denver,  CoL,  50  yards,  in  5  sec 

1884,  if.  JBT.  KitUemany  Oakland,  Cal.,  150  yards  (twice),  in  14  min.  6  tee. 

1890,  James  Grant,  Cambridge,  ICaas.,  5  miles  in  35  min.  32.35  see. 

JvLvapir^jg^  X^eaping,  oto. 

1854,  J.  Howard,  Chester,  Eng.,  i  jump,  board  raised  4  ins.  in  front,  running  start, 
^ivh  dumb-bells,  5  lbs.,  zgfeet  7  ins, 

1868,  Geo.  M.  KeUey,  Corinth,  Mass.,  running,  and  from  a  spring  board,  leaped 
ovur  17  horses  standing  side  by  side. 

1879,  G.  W.  HamiUon,  Romeo,  Mich.,  dumb-bells,  23  lbs.,  standing  jump,  14  feet 
5.5  ins. 

1886,/.  PurceU,  Dublin,  running  long  jump,  z^feet  11. 5  ins. 

1889,  J.  Darby,  Ashton- under- Lyne,  Eng.,  two  standing  jumps,  wMth  weights,  26 
^«^8.5»«8. 

H.  M.  Johnson,  St.  Louis,  Mo. ,  without  weights,  22  feet  6. 75  ins.  10  standing  long 
Jnmps,  without  weights,  114/eet  8.5  ins. 

J.  F.  Kearny,  Walpole,  Mass.,  3  standing  long  jumps,  with  weights,  42  feet  3  trw.; 
without  weights,  at  Boston,  Mass- ,  35  feet  6  ins.  Boston,  Mass. ,  running  high  jump, 
with  weights^  6jfeet  5.25  ins,;  backward  jump,  with  weights,  heel  to  toe,  lafeet  1.35 
ins.    Oak  Island,  Mass.,  standing  high  leap,  with  weights,  sj^ef  9.5  ins. 

Uiftixig*. 
1825,  Thomas  Gardner,  of  New  Brunswick,  N.  S.,  a  barrel  of  pork,  320  lbs.,  under 
each  arm;  also  transported  across  a  pier  an  anchor,  1200  lbs. 

1868,  Wm.  B.  Curtis^  New  York,  N.  Y.,  3239  Ws.,  in  harness. 
1883,  D.  L.  Dotod,  Springfield,  Mass.,  by  hands,  1442.25  lbs. 

1870,  JDL  JHnnie,  New  York,  N.  Y.,  light  stone,  18  lbs.,  43 /<^;  heavy  stone,  24  lbs., 
34ye«f  6  ins.;  heavy  hammer,  24  llis.,  B^/eet  6  ins.;  iSjz^  Aberdeen,  Scotland,  l^il 
hammer,  ijfifeet;  mn,  x6  IbSL,  162,^. 

1887,  Fet0'  Mey,  Milwaukee,  Wis.,  56  lbs.,  wHbout  foHow,  y/eet  5  int. 

S 'vvizxi  xn  i  n  §:• 
1835,  S.  Bruck,  15  miles.  In  rough  sea,  in  7  hxturs  30  min. 

1846,  A  Native,  off  Sftndwjch  Islands,  7  miles  at  sea,  with  a  live  pig  under  one  arm. 
1870,  Patdine  JRohn,  Milwaukee,  Wis-,  ^50  fpet,  still  water,  in  2  min.  4  \  .ncc. 
1872,  J.  B.  Johnson,  lx)ndon,  Eng. ,  remained  under  water  3  min.  35  sec. 
1875,  Capt  M.  Webb,  Dover,  Kng.,  to  Calais,  France,  23  miles,  crossing  two  ftiU 
tod  two  half  tides  ^  35  miles,  in  21  hov>rs  45  min.     1880,  Afloat  60  hours. 

x886,  J.  Haggerty,  Blackburn  Baths,  Eng.,  100  yards,  4  turns,  in  i  min.  5.5  teo. 
1800,  J.  NuUally  London,  Eog.,  jooo  yards,  23  turns,  in  13  min.  54.5  sec 
1885,  J.  J.  ColHerf  London,  Eng.,  i  mile  in  26  min.  52  sec 

Skating. 
1877,  John  Ennis,  Chicago,  111.,  9  laps  to  a  mile,  100  miles,  in  n  hours  37  min.  45 
tec;  and  145  inside  of  19  houra 

1887,  T.  Donoghue,  Jun.,  Newbargh,  N.  Y.,  1  mile,  with  wind,  in  2  min.  12.375  sec 
i88a,  S.  J.  Montgomery,  New  York,  N.  Y.,  50  miles,  in  4  haurt  14  mxa.  36  sec 

Nora. — The  Sporting  Magazine,  London,  toI.  fx.,  pafr«  135,  reporU  11  mao  in  1767  to  have  akatod  a 
iniio  upon  th«  Serponune,  Hyde  Park,  London,  in  57  eeconds. 

HCmSB.      Trotting. 

2814,  "Boston  Bine,"  Lynn  turnpike,  one  mile,  sulky,  in  2  mn.  54  sec 

1875,  "Steftl  tiwjy,"  Yorkshire,  Eng.,  lo  m'les,  saddle,  in  27  min.  56.5  sec. 

1867,  ''John  Stewart,"  Boston,  Mass.,  half-mile  track,  20  miles,  harness,  in  58 
min.  5-75  sec,  and  2a5  miles  in  59  min.  31  see. 

>830,  "Top  Gallant,"  Philadelphia,  Penn.,  12  miles,  harness,  in  38  min. 

1829,  "Tom  Thnmb,"  Sunbury  Common,  Eng.,  16.5  miles,  harness,  248  lbs.,  ih  56 
min.  45  tec;  and  100  miles,  in  10  hours  7  min.,  including  37  min.  in  rests. 

1869,  "Morning  Star,"  Doncaster,  Eng.,  18  miles,  harness  (sulky  100  lbs.),  in  57 
min.  27  tec 

1835,  " Black  Jok«,"  Providence,  R  L,  50  mites,  saddle,  175  lbs.,  in  3 hourt  57  min. 


440  ANIMAL   POWJBB, 

1855,  "Spangle,"  LoDg  Island,  N.  Y.,  50  miles,  wagon  and  driver  400  lbs.,  in  3 
hour$  59  min.  4  sec. 

1837,  "Mischief,"  Jersey  City,  N.  J.,  to  Philadelphia,  Penn.,  84.35  miles,  harness, 
very  hot  day  and  sandy  road,  in  8  hours  30  min. 

1853,  ''Conqueror,"  Long  Island,  N.  Y.,  100  miles,  harness,  in  8  houn  55  min,  53 
<ec.,  including  15  short  rests. 

1873,  M.  Delaney''s  mare,  St.  Paul's,  Minn.,  200  miles,  race  track,  harness,  in  44 
hours  20  min.^  including  15  hours  49  min.  in  rests. 

1834,  ''Master  Burke"  and  ''  Robin,"  Long  Inland,  N.  Y.,  100  miles,  wagon,  in  10 
hours^  17  min.  22  «ec.,  including  28  min.  34  sec.  in  rests. 

Stage-coaoliiMg. 

1750,  By  the  Duke  of  Queensberry,  Newmarket,  Eng.,  19  miles,  in  53  min.  24  sec 
1830,  London  to  Birmingham^  Eng.^  "Tally-ho,"  109  miles,  in  7  hours  50  min.. 
including  stop  for  breakfast  of  passengers. 

J^eapiixg.* 

1821,  A  horse  of  Mr.  Mane,  at  Loughborough,  Leicestershire,  Eu^.,  173  lbs.,  over  a 
hedge  6  feet  in  height,  -isfeet. 

1821,  A  horse  of  Lieut.  Green,  Third  Dragoon  Guards,  at  Inchinnan,  Eng.,  ridden 
by  a  heavy  dragoon,  over  a  wall  6/«*'<  in  height  and  ijfbot  in  width  at  top. 

1847,  "Chandler,"  Warwick,  Eng.,  over  water,  yjfeet. 

1901,  '•  Heather  bloom,"  Chicago,  111.,  over  a  bar,  jfeet  4-5  ins. 

NoTB. — The  maximum  stride  of  a  horse  is  estimated  to  be  28  ftet  9  %n». ;  "  Eclipse  "  haa  oovarad  ac 
fttt.    The  maximum  stride  of  an  ellc  is  34  fttt,  and  of  an  elephant  14  feet. 

X701,  Mr.  Sinclair,  on  the  Swift  at  Carlisle,  a  gelding,  1000  miles,  in  1000  consecu- 
tive hours. 

1731,  Geo.  OsbdUleston,  Newmarket,  156  lb&,  100  miles,  by  16  horses,  in  4  hours  xg 
min.  40  sec,  and  200.  by  28  horses,  in  8  hours  3^  min.,  including  i  hour  2  min.  56  sec 
in  rests;  i  horse,  "Tranby,"  16  miles,  in  33  twtn.  15  sec 

1752,  Spedding^s  mare,  100  miles,  in  12  hours  30  min.,  for  2  consecutive  days. 

1754,  A  Galloway  mare  of  Daniel  Corker's,  Newmarket,  300  miles,  by  one  rider, 
67  lbs.,  in  64  hours  20  min. 

1761,  John  Woodcock,  Newmarket,  100  miles  per  day,  by  14  horses,  one  each  day, 
for  29  consecutive  days. 

1814,  An  Officer  of  14^  Dragoons,  Blackwater,  12  miles,  i  horse,  in  25  min.  n  sec 

1868,  N.  H.  Movrry,  San  Francisco,  Cal.,  race  track,  x6o  lbs.,  300  miles,  by  30  horses 
^Mexican),  in  14  hours  9  min.,  including  40  minutes  for  rests;  the  first  200,  in  8 
hours  2  min.  48  sec,  and  the  fastest  mile  in  2  min.  8  sec. 

1869,  Nell  Coher,  San  Pedro,  Texas,  61  miles,  in  2  hours  55  min.  15  sec,  including 
rests. 

1870,  John  Faylor,  Carson  City,  Nevada,  50  miles,  by  18  horses,  in  i  hour  58  min, 
33  sec;  and  Omaha,  Neb.,  56  miles,  in  2  hours  26  witn.,  including  rosta      ' 

1876,  John  Murphy,  New  York,  N.  Y.,  155  miles,  by  20  horses,  in  6  hours  45  min. 

7  sec 
1878,  Caf*t.  SaJvi,  Bergamo  to  Naples,  Italy,  580  miles,  in  10  days. 
x88o,  "  Mr.  Brown,"  Rancocas,  N.  J.,  aged,  160  lb&,  xo  miles,  in  26  min.  18  sec 
1828,  "Chapeau  de  Paillc"  (Arabian),  India,  1.5  miles,  xx5  lbs.,  in  2  min.  53  sec 
1 83-,  Capt.  Home  (Arabians),  Madras  to  Bunga^ore,  India,  200  miles,  in  less  than 

xo  hours. 

DOOS.      Coursixis   and.   CHaeing. 

A  Greyhound  and  Hare  ran  12  miles  in  30  min. 

1794,  A  Fox,  at  Brende.  Eng.,  ran  50  miles  in  6.5  hours. 

A  Greyhound,  at  Bushy  Park,  Kng.,  leaped  over  a  brook  y^feet  6  ins. 

BIRDS.       Flying. 

Jn  Miles  per  hour:  Swailow.  65;  Marten,  60,  Carrier  Pigeon  and  fiScoZ  DueXe, 
50;  Wild  QotK^e,  45;  Quail,  38;  Crow.  25. 

1870,  Carrier  Pigeons,  I'esth  to  Cologne,  Germany,  600  iu  8  hours.  1875.  Dundee 
Lake  to  I'aterson,  N.  J.,  3  in  3  7iiin.  24  sec. 

Non.— At  so  miles  the  prassur*  on  a  pinne  surfitce  ia  12.1;  lbs.  per  sq.  foot;  and  at  •00,  50  lbs. 
*  A  Salmon  can  leap  a  dam  i^/tet  in  htlghU— Sporting  Jfo^ostiM,  London,  Tol.  sti.,  paf*  79. 


HOB8E-POWKS. — BELTS   AND   BELTING. 


441 


HORSE -POWER. 

Horge-power, — ^H*  is  the  principal  measure  of  rate  at  which  work  is  per- 
firmed.  One  horse-power  is  computed  to  be  equivalent  to  raising  of  53000 
lbs.  one  foot  high  per  minute,  or  550  lbs.  per  second.  Or,  33  000  foot-lbs.  of 
work,  and  it  is  designated  as  being  Nonimal,  Indicated,  or  Actual. 

A  ^  in  work  la  estimated  at  73  000  Iba ,  raised  i  foot  in  a  minute ;  bat  as  a  horse 
can  exert  tliat  rorce  for  only  6  Hours  per  day,  one  work  W  is  equivalent  to  that  of 
4.5  horses,  at  a  rate  of  3  miles  per  hour. 

C^eval-vapeur  of  France  is  computed  to  be  equivalent'  to  75  kilogram- 
meters  of  work  per  second,  or  7.233  foot-lbs.,  or  75  x  7.233  =  542.5  foot-lbs.^ 
which  is  1.37  per  cent,  less  than  American  or  English  value. 


BELTS  AND  BELTING. 

Capacity  of  belts  to  transmit  power  is  determined  by  extent  of  their 
adhesion  to  surface  of  pulley,  and  it  is  very  limited  in  comparison  with 
tensile  strength  of  belt. 

Resistance  of  a  belt  to  slipping  depends  essentially  upon  character 
uf  surface  of  pulley,  its  degree  of  tension,  and  width,  and  as  adhesion 
i.s  in  proportion  to  pressure  on  surface  of  pulley,  long  belts,  by  having 
greater  weight,  give  greater  adhesion. 

TJltiinate   Tensile    Strengtlx    of  Seltiug    per    Sq,.    Inch. 

of*    Section. 

Merchantable  Oak-tanned,  of  first  quality.    Belts,  6  ins.  in  width. 

Single,  .2  inch  in  thickness,  gi8  lbs.  per  lineal  inch,  and  4536  lbs.  per  sq.  inch  of 
section.     Double,  .35  inch,  1396  lbs.  per  lineal  inch,  and  4101  per  sq.  inch. 

Ratio  of  8in(?Ie  to  double/giB  -=-1396  =  .658. 
Elongation  in  two  Inches  of  length  and  four  in  width  for  a  load  of  2000  lbs.    Sin- 
gle, 9.09;  double,  5.79. 

The  resistance  and  elongation  of  double  belting  is  roorc  uniform  than  that  of  sin- 
gle, f^om  the  irregularities  in  each  layer  cuuuteructiug  each  other. 


Belt 

Dwtnictive 

Streu. 


Jointing. 

Stress 
per  sq.  inch  of 
Mction. 


Lbs. 

3940 
3000 

3545 
1792 

5560 


per  lineal  inch 
of  width. 


Lbs. 
709 
611 
762 

.407 
1112 


Elongation. 


Per  cent 
75 
7-5 
75 
7-5 
7 


Riveted  Joints  failed  at  rivet  holes.  Riveting  of  dohble  belts  was  shown  to  be 
objectionable.  Riveted  Joints  of  single  belts  have  one-third  less  strength  than  the 
average  of  different  manners  of  hieing. 

A  double  staggered  laced  Joint,  i  strand  only  in  each  hole  (5  of.  1875  inch  punched), 
broke  in  belt  at  a  stress  equal  to  that  of  resistance  of  it  per  area  of  section. 

Transzniasion    of  Po-v^er. 

A  single  belt,  4  ina  in  width  and  .2  inch  in  thickness,  over  drums  3  feet  in  di- 
ameter, running  at  a  speed  of  868  feet  per  minute,  with  a  tension  of  88  lbs.  per  lineal 
inch  of  width  on  the  driving  face,  and  29  Iba,  or  one-fourth,  on  the  driven,  devel- 
oped an  average  of  7  horse-power,  with  a  slip  of  but  s  feet  per  minute  =  .0058  per 
cent.  Co  efficient  of  friction. .  14,  and  number  of  sq.  feet  of  surface  of  belt,  per  IP 
per  minute,  41.8,  and  factor  of  safety  assumed  at  10. 

Hence,  one  lineal  inch  of  belt  of  sutflcient  strength  (3000  to  4  000  lbs.  per  sq.  inch) 
at  a  velocity  of  1000  feet  per  "minute,  less  slip,  with  a  power  of  50  lbs.  per  sq.  inch, 
will  give  X.3  net  IP,  inclusive  of  co-efficient  of  friction  of  .14.  The  power  in  this 
case,  including  friction,  was  3a 6  lbs.  per  sq.  inch. 

— Prom  Eletnents  of  Prof.  Chas.  H.  Benjamin. 


44^  BKLTS    AND   BELTING. 

Commutation  ttfW. 

<^(S~*)_;g^868(88X4-aaX4)_g       fl. 
33000  33000 

V  reprezenting  velocity  of  bdt  in  feet  per  minrUe,  S  on  «  stress  on  belt  per  lineal 
inch  of  width  on  upper  or  driving  side  and  underneath  or  returning  side. 

To    Compute    Widtti   of  a    JJeather    :Belt. 

Assiiniin<;  a  well-defined  case  (where  limit  of  adhesion  was  ascertained), 
a  belt  of  ordinary  construction  Haced).  and  9  inches  in  width,  transniitt^ 
the  power  of  15  horses  over  a  pulley  ^  feet  in  diameter,  at  a  velocity  of  1800 
feet  pr  miiitite,  with  &n  arc  of  adliesion  of  210°,  or  oi  .6  or  7.54  fw^  of  cir- 
cumference, and  with  an  area  of  95  square  feet  of  belt  {ter  Ip. 

Hence, p szw{  to  represenfinff  vndth  of  belt  in  inches,  d  di- 
ameter ofpuUey  in  feet,  and  v  velocity  of  belt  in  feet  per  minuttt 

NoTK.— Tliirkness  of  belt  should  be  added  to  dimneter  of  palley.  Applying  thefie 
eleineuts  10  the  formulas  of  13  difl'ereot  authors,  the  result  varies  from  7.85  to  13.5 
ius.,  mean  of  which  is  10  675.     For  double  belting  width  =  .66  to. 

iLLCSTRATiovs.— If  H*  25,  afid  vc'loclty  of  belt^^so  feet  per  minute,  what 
should  bo  width  of  belt^  diameter  of  pulley  4  feet? 

-—  I2.S  ins.  for  ordinary  thickness  of  lijti  in. 

4X2250  :>         -f  9  J       /:> 

Xo    Cottipiite    IClem«kats    oV  ^tf^lting. 
vw  H»  33000      „     33  006  IP      _-_    Wrir  ^      a     ^      . 

1000*  vw  V  33000  t  a 

1'  1000  laeedf  550  riveted  (fbr  a  thickness  of .  1875  inch),  with  variations  according 
to  the  character  and  condition  of  the  belt,  diameter  of  pulley,  and  arc  of  adhesion 
of  belt.  P  representing  power  traniferred,  W  loeight  or  stress  in  Ws.,  t  thickness  of 
belt  in  ins.,  v  velocity  cfit  in  feet  per  minute,  and  S  stress  on  belt  per  lineal  inch  of 
width  w,  in  lbs. 

Single  belts  at  their  relative  thickness  with  double,  of  ,2  to  .35  Inch,  will  sustain 
oue-tenth  more  stress  per  sq.  inch  of  belt. 

To  Compute  tb.e  A.iigle  of  tlie  A.ro  of  Cout^aot  of  a  Belt. 

Sin^  (R  — r-r-d)  X  2  +  180°  for  large  pulley  or  driver  and  — 180°  for  small. 

R  and  r  representing  radii  of  pulleys,  d  distance  between  their  centres — a/2  in  feet 
or  inches. 

iLLrsTRATiox. — Assumo  pulleys  11.2  feeit  and  4  feet  in  diameter  find  distance 
apart  15  feet. 

Sin/./*-' '~"^-r- 15  J X  2-f- 180°  =  207°  A^'for  large  pulley  and  152°  ia' for  smail. 

India    H.ubber    Belting:.    {Vutcanixed.) 

EstuUs  <tf  JBsqaeriments  upon  Adhesion  of  India  Rubber  and  Leather  Belting,"^ 

{J.  H.  Cheever). 

LtM. 

Rubber  belt  slipped  on  iron  pulley  at  90 
»»  "  leather     "      128 


Leather  belt  slipped  on  iron  pulley  at  48 
"  "  leather    "       64 


Hence  it  appears  that  a  Rubber  Belt  for  equal  resistances  with  a  I.eather  Belt 
may  be  reduced  respectively  46,  50,  and  30  per  cent. 

/ran  Wire,^^A  wire  rope  .375  inch  in  diameter,  over  a  pulley  4  feet  in  di- 
ameter, running  at  a  velocity  of  1250  feet  t^er  minute,  will  transmit  4.5  H*. 

tn  order  to  avoid  undue  bending  of  Wires,  diameter  of  pulley  should  not  be  less 
than  140  times  diameter  of  rope. 

Bff  Expei'imeiitH  of  H.  R.  Towne  ami  Afr.  Kirkaldy.     {England.) 
Tensile  utreuffth  of  Single  leather  belting  per  square  inch  0/ section. 
Laced,  960  Uts*  =  i.    Rivete<l,  1740  lbs,  s=  1.8.    Solid,  3080  lbs. 


BELTS   AND  BBLTIKO. — BLASTING.  443 

By  the  experiments  ofF  W  Taylor,  M,R,the  tmuOe  strength  o/bdia 

JPer  Square  Inch  of  Section. 
Oak-tanned 192  to  329  lbs.    Raw  hide 353  to  284  Ibt. 

Leather  Bdis— Are  best  when  oak- tanned,  should  be  frequently  oiled,*  and  when 
run  with  hair  side  over  pulley  will  give  greatest  adhesion. 

Ordinary  thickness  .1875  inch,  and  weight  60  lbs.  per  cube  Toot. 
Relative  effect  of  different  puileyn  and  belts: 
I^eather  surface.,  i.    Rough  iron. ... 41    Turned  iron...    64    Turned  wood. ..  .7 

Morin  assigned  50  lbs.  as  a  proper  stress  per  inch.of  width  of  good  belting. 

Presence  of  small  holes  io  a  belt  will  prevent  its  slipping  or  squealing. 

To  increase  adhesion,  coat  driving  surface  with  boiled  oil  or  cold  tallow,  and  then 
apply  powdered  chalk. 

When  new,  cut  them  .1875  inch  short  for  each  foot  in  length  required,  to  admit 
of  the  stretch  that  occurs  in  their  early  operation. 

Helbs  should  be  set  as  nearly  horizontal  as  practicable,  in  order  that  the  sag  may 
increase  adhesion  on  pulley,  and  hence  power  should  be  communicated  through 
under  side. 

The  ''creeping"  or  lost  speed  by  belts  is  about  .006  per  cent.,  hence,  to  maintain 
a  uniform  or  required  speed,  driver  must  be  Increased  in  diameter  pro  rata  with  slip. 
A  double  belt,  75  ins.  in  width  and  153.5  feet  in  length,  transmitted  650  IIP. 

{See  page  989). 


BLASTING. 

In  Blasting^  rock  requires  from  .25  to  1.5  lbs.  gunpowder  per  cube 
yard,  according  to  its  degree  of  hardness  and  position.  In  small  blasts 
2  cube  yards  have  been  rent  and  loosened,  and  in  very  large  blasts  2  to 
4  cube  yards  have  been  rent  and  loosened,  by  i  lb.  of  powder. 

TuMids  and  tha/U  require  1.5  to  2  lbs.  per  cube  yard  of  rock. 

Q-vxii  powder  has  an  explosive  force  varying  from  40000  to  90000 
fbs.  per  sq.  inch.  That  used  for  blasting  is  much  inferior  to  that  used  for 
projectiles,  the  proportion  being  fully  one  third  less. 

N'itro-slyoerine  is  an  unctuous  liquid,  which  explodes  bj  concussion, 
an  extreme  pressure  (aooo  lbs.  per  sq.  inch),  or  a  temperature  exceeding  600° 
if  quickly  applied  to  it^  it  will  inflame,  however,  and  bum  gradually. 

At  a  temperature  below  40®  it  solidifies  in  crystals. 

Its  explosion  is  so  instantaneous  that  in  rock-blastlng  tamping  is  not  nec- 
essanr ;  its  explosive  power  by  weight  is  from  4  to  5  times  raat  of  gun- 
powder. 

i:)3ri&axnite  is  nitro-dycerme  75  parts,  absorbed  in  25  parts  of  a  sili- 
ceous earth  termed  kieselguhr;  it  also  explodes  so  instantaneously  as  to 
render  tamping  in  blasting  quite  unnecessary. 

It  is  insoluble  in  water,  and  may  be  used  m  wet  holes ;  it  congeals  at  40°, 
is  rendered  ineffective  at  212°,  and  has  an  explosive  force  by  weight  of  3 
times  that  of  gunpowder,  and  by  bulk  4.25  times. 

<3-xm  -  oottoix  is  insoluble  in  water,  and  has  an  explosive  force  by 
weight  of  from  2.75  to  3  times  that  of  gun|)0wder,  and  by  bulk  2.5  times. 
It  may  be  detonated  in  a  wet  state  with  a  small  quantity  of  dry  material. 

Tonite  is  nitrated  gnn-cotton,  and  is  known  also  as  eoUon  powder.  It 
is  produced  in  a  granulated  form. 

J^itho-fVetoteiir  is  a  nitro-glycerine  compound  in  which  a  portion  of 
the  base  or  absorbent  material  is  made  explosive  by  the  admixture  therein 
of  nitrate  of  baryta  and  charcoal. 

•  Sm  CemenU,  «te.,  fgb  871,  for  compMitioM,  eU 


444 


BLASTING. 


Cellulose  Dsrziaxnite  is  when  gan-cotton  is  used  as  tlie  absorbeni 
for  nitro-glycerine ;  it  will  explode  frozen  dynamite,  and  is  more  sensitive  tc 
percussion  than  it. 

To  Coxnptite  Cb.arge  of  Ounpowder  fbr  Roolz  Blasting:. 

Rule. — Divide  cube  of  line  of  least  resistance  by  25,  as  for  limestone,  tc 
32  for  granite,  and  quotient  will  give  charge  of  iwwder  in  lbs. 

Or,  L3  -1-  32  =  lbs. 
Example. — When  line  of  least  resistance  is  6  feet,  what  is  charge  required? 

6^-7-32  =  6.75  lbs. 
Line  of  least  resistance  should  not  exceed  .5  depth  of  hole.  * 

Tamping. — Dried  clay  is  the  most  effective  of  all  materials  for  tamping;  Broker. 
Brick  toe  next,  and  Loose  Sand  the  least. 

Relative  Costs  of  a  Tunnel  and  Shaft  in  England,    {Sir  John  Burgoyne.) 


Iron  find  steel 8.98 

Smiths  and  coal 6 

Fuses 7. 18 


Powder ^9*^4 

Labor 4o-8 


100 


Diam. 


Weight  of  Eirplosive  Materials  in  Holes  of  Dijei'enl  Diameters. 

Per  Inch  of  Length. 

Powder 

or  Gun-      Dynamite.      Diam.       or  Gun-      Dynamite.     Diam. 

cotton.  ~~" — 


Ins. 

I 

1.25 

1-5 


Oi. 
.419 

•654 
.942 


Oz. 

.67 
1.046 
1-507 


Ins. 

'•75 

2 

2.25 


Oz. 

1.283 

1-675 

2. 12 


Oz. 

2053 

2.68 

3393 


Ins. 
2-5 
2-75 
3      • 


Powder 
or  Gun- 
cotton. 


Dynamite 


Boring  Holes  in  Granite. 


Diam. 

of 

Jamper. 

Depth 

of 
Hole. 

Men. 

Ins. 

I 

1-75 

2 

Ins. 

I        t02 

2.5  to  6 
4     to  7 

No. 

I 

3 
3 

Depth  bored 
per  Day. 

Ham- 
mer. 

Diam. 

of 

Juniper. 

Depth 
Hole. 

Men. 

Feet. 
8 
12 

8 

Lbs. 
6 

14 
14 

Ins. 
2.25 
2.5 
3 

Ins. 
5  to  10 
9  to  Z2 
9tOx5 

No. 
3 
3 
3 

Oz. 

2.618 
3.166 

3769 


Depth  bor«d 
per  Day. 

Feet. 
6 

5 

4 


Oz. 

4.189 
5.066 
6.03 


Ham- 
mer. 


Lbs. 
x6 
x6 
18 


Drt^-^Width  of  bit  compared  to  stock  .625. 


Charges   of  Fowder, 

Usual  practice  of  charging  to  one  third  depth  of  hole  is  erroneous,  inasmuch  as 
volume  of  charge  increases  as  square  of  diameter  of  hole.  Hence  holes  of  1.5  and 
2  inches,  although  of  equal  depths,  would  require  charges  in  proportion  of  2.25  and  4. 


Line  of 
least  re- 
sistance. 


Feet. 
I 

2 


Powder. 


Oz. 

•75 


Line  of 
least  re- 
sistance. 

Powder. 

Line  of 
least  re- 
sistance. 

Powder. 

Feet. 
3 

4 

Lbs.    Oz. 

13- 5 

a 

Feet. 

5 
6 

Lbs.    Oz. 

3     145 
6     12 

Line  of 
least  re- 
sistance. 


Feet. 

7 

8 


Powder. 


Lbs.     Oa. 
xo     it.5 
16 


Effects. 

Gunpowder.  — '  From  its  gradual  combustion,  rends  and  projects  rather  than 
sb  a  Iters. 

A  hole  5.5  ins.  in  diameter  and  ig  feet  7  ina  in  depth,  filled  to  8  feet  10  ins.  with 
75  lbs.  powder,  has  removed  and  rent  1200  cube  yards,  equal  to  2400  tons.  The 
labor  expended  was  that  of  3  men  for  14  days. 

Temj)erature  of  gases  of  explosion  4000°. 

Gun-cotton.— From  the  rapidity  of  its  combustion,  shatters. 

Di/namile.— from  the  greater  rapidity  of  its  combustion  over  gun  cotton,  i«  morf 
shuttering  in  its  explosion. 


BLASTING. — BLOWING   ENGINES.  445 

Drilling. 

Chum-drilling.— A  churn-driller  will  drill,  In  ordinary  hard  rock,  from  8  to  ja 
^eet.  2  inch  holes  of  2.5  feet  depth,  per  day,  and  at  a  cost  of  from  12  to  18  cents  per 
foot,  on  a  basib  of  ordinary  labor  at  $1  per  day.    Drillers  receiving  $2. 5a 

One  man  can  bore,  with  a  bit  i  inch  in  diameter,  fVom  50  to  100  inches  per  day 
of  xo  hours  in  granite,  or  300  to  400  inches  per  day  in  l>mo8tone< 

Tamping.— Two  strikers  and  a  holder  can  bore,  with  a  bit  2  mnhcs  in  diameter, 
10  feet  in  a  day  in  rock  of  medium  hardness. 

Composition  for  watmproof  charger  or  fuse  consists  by  weight  of  Pitch,  8  parts, 
Beeswax  and  FuUow  each  i  part. 

A£iiiin{i;.    (Lefioy''s  Handbook.) 

In  demolition  of  walls  line  bf  least  resistance  L  =  half  thickness,  and  C  is  a  co- 
efficient depending  on  structure. 

Charge  in  lbs.  =  C  x  L^. 

In  a  wall  without  counterforts,  where  interval  between  the  charge  is  2  L,  0  =  .15. 

In  a  wall  with  counterforts  the  charge  to  be  placed  in  centre  of  each  counterfort 
at  junction  with  wall,  G  = .  2. 

Where  the  charge  is  placed  under  a  foundation,  haviug  equal  support  on  both 
sides,  C  =  .4. 

A  leather  bag,  containing  50  to  60  lbs.  powder,  hung  or  supported  against  a  gate 
or  like  barrier,  will  demolish  it 

For  ordinary  mines  in  average  rock  charge  in  ounces  =rL3 -h  j6a 


BLOWING  ENGINES. 

For  Smelting. 

Volume  of  oxygen  in  air  is  different  at  different  temperatures.  Thus, 
dry  air  at  85°  contains  10  per  cent,  less  oxygen  than  when  it  is  at  tem- 
perature of  32°;  and  when  it  is  saturated  with  vapor,  it  contains  12 
per  cent.  less.  If  an  average  supply  of  1500  cube  feet  per  minute  is 
required  in  winter,  1650  feet  will  be  required  in  summer. 

Smelting  of  Iron  Ore. 

Cohe  or  Anlhracite  Coal, — 18  to  20  tons  of  air  are  required  for  each  ton 
of  Pig  Iron,  and  with  Charcoal  17  to  18  tons  are  required. 

(i  ton  of  air  at  34^  =  29  751,  and  at  60°  ^  31 366  cube  feeL) 

Pressure. — Pressiure  ordinarily  required  for  smeltinj?  purposes  is  equal  to 
a  column  of  mercury  from  3  to  10  inches,  or  a  pressure  of  1.5  to  5  lbs.  per 
8quar»  inch. 

i&»crw»V.— Capacity  of  it,  if  dry,  should  be  15  to  20  times  that  of  cylin- 
der if  single  acting,  and  10  times  if  double  acting. 

Pipes, — Their  area,  leading  to  reservoir,  should  be  .2  that  of  blasi  cylinder, 
and  velocity  of  the  air  should  not  exceed  35  feet  per  second. 

A  smith's  forge  requires  150  cube  feet  of  air  per  minute.  Pressure  of 
blast  .25  to  2  lbs.  per  square  inch.  A  ton  of  iron  melted  per  hour  in  a  cu- 
pola requires  3500  cube  feet  of  air  per  minute.  A  finery  forge  requires 
100  000  cube  feet  of  air  for  each  ton  of  iron  refined.  A  blast  furnace  re- 
quires ao  cube  feet  per  minute  for  each  cube  yard  capacity  of  ftiruace. 

A  Ton  of  Pig  Ircm  requires  for  its  reduction  from  the  ore  310000  cube 
feet  of  air,  or  5.3  cube  feet  of  air  for  each  pound  of  carbon  cou:iumed. 
Pressure,  .7  lb.  per  square  inch. 

P  P 


^5  BLOWING   EKOINES. 

To  Compute    Po-wer    Iie<iuir«d.    to   IDrlvo   a  Blo'wlx^ 


.0000509 


^Ki  +  3^0^^33ooo=». 


d'=z\  / .    V  representing  velocity  of  air  in  fret  per  <«©- 

V  .01  X  .78S4  XV 


ond,  d  and  d  diameUrs  of  pipe  and  of  nozzle  infeet^  =yj  ^ 


35 


.7854  X  500 
=  .309. 

Illustration.— What  should  be  power  of  a  steam  engine  to  drive  35  cube  feet  of 
air  at  a  velocity  of  500  feet  per  second,  through  a  pipe  i  foot  in  diameter  and  30c 
feet  in  length  ? 

c  =  ratio  between  power  employed  and  effect  produced  by  it=zin  a  wellconttrudcd 
engine  .  5,  and  C  =  .93.    d  — .  2974,  assumed  at .  3. 

:^??1^5£9  ^  333 /^+ 4^\  60-- 330cx>  =  2263i.625  X  60^33000 ;t.4X.i5  IP. 

To  Compute  Req.uired   Po-wer  of*  a  Bloxvii&s  finsine. 

— ^^ i=zW.    P  representing  pressure  of  blast  in  Ws,  per  sq.  inck; 

33.000 
a  area  of  cylinder  in  sq.  itis. ;  v  velocity  ofpi^on  inj'eetper  minute ;  ffric^ 
tion  of  piston  and  from  curvaturesy  etc,^  estimated  at  1.25  per  sq.  inch  of 
piston. 

NoTK.— If  cylinder  is  single  acting,  divide  result  by  2. 

Illustration. — Assume  area  of  blast  cylinder  5600  sq.  in&,  pressure  of  blast  2.25 
lbs.  per  sq.  inch,  and  velocity  of  oi^ton  96  feet  per  second. 

2.25 -|- 1.25  X  5600X96      i88t6oo  ,  ^,  .  J      »       J 

~— ^  — ^ 2_=3 =:  57  horses,  the  exact  power  developed  in 

33000  33000 

this  case. 

To  Compute  Dimensions  of  a  Driving   Sngine. 

Rule  i. — Divide  power  in  lbs.  by  product  of  mean  effective  pressure  upon 
piston  of  steam  cylinder  in  lbs.  per  sq.  inch,  and  velocity  of  piston  in  feet 
per  minute,  and  quotient  will  give  area  of  cylinder  in  sq.  ins. 

2.— Divide  velocity  of  piston  by  twice  number  of  revolutions,  and  quotient 
wiU  give  stroke  of  piston  in  feet. 

Volume  of  air  at  atmospherio  density  delivered  into  reservoir,  in  oonsequeDce  of 
escape  through  valves,  and  partial  vacuum  necessary  to  produce  a  current,  will  b« 
about  .2  less  than  caiMicity  of  cylinder. 

Example.— Assume  elements  of  preceding  case,  with  a  pressure  of  50  lbs  ste&m. 
cut  off  at  .375,  and  with  12  revolutions  of  engine  per  minute,  what  should  he  area 
of  cylinder  of  a  non^condensing  engine? 

Mean  effective  pressure  of  steam  with  5  per  cent  clearanoe  =  50  lbs.,  and  50  — 
/♦  -f-  '4-  7  =  50  —  9-  5  4-  3-33  +  «4-7  —  29-47  W»».,  and  velocity  of  piston  =s  1^2/eet 

56ooX2.25-|-i.25X9€      1881600  .192         o  .*  *   *_  1. 

— — ' — ^ ' — ^  =  — r-5—  =  332-5  *9'  »»»»•.  and  — ^ —  *=  B/eet  siroke. 

29.47  X  192  5658  33    :>   ^         .  12  X  2         "^ 

Area  of  cylinder  in  this  case  was  324  sq.  ins. 

For  Volame,  Preamre,  and  Density  of  Air,  see  Heat,  page  s-ji. 


•  8m  formqU  ud  not*  for  pow«r  of  ooi»-eond«Britig  wgtao,  pift  7^ 


BLOWING  EKGINEg.  44^ 

To  Compute  Slements  ot  a  Slo-vring  Kn^ne* 

Single  Stroke. 


930  33000  3  4Pa        ' 


D'sn 


-«!       ^=V^       5^  =  V,«.d34P  +  3»=fc 


40  r  *       P-f/  9a 

y  repreaenting  wjiume  of  air  in  wbe  feet  per  minuU^  Ppresflirs  of  air  and 
f  frictional  resistance  in  lbs.  per  sq,  tnchy  A  area  of  cylinder  and  a  area 
of  its  valves  in  sq.  ins..,  s  stioke  ofpision  infset^  n  number  of  single  strokes 
of  piston  p^  minute^  L  length  of  air-ftipefrom  reservoir  to  discharge  infeet^ 
a  aiameUr  of  air  or  blast  pipe  and  I)  diameter  qf  cylinder  in  ins..,  v  veiucitg 
of  blast  in  feet  per  second,  and  t  temperaiwe  of  bUist  consequent  upon  eontr- 
pression  in  degrees^ 

iLLrsTRATiONs.  — Assume  blowing  cylinder  50  ins.  in  diam.,  stroke  of  piston  10 
feet,  number  of  single  strokes  10  per  minute,  pressure  by  mercarial  manometer 
6.12  iB&,  frictloiuil  resistanos  .4  lb.,  leDgih  of  pipe  35.85  feet,  and  areaof  vaivea 

^5  sq.  iji& 

V=  1363.54  ett&e/e0t,         P=3  3  26«.,        As  1963.5  iqf^tni. 

The„336i5lXi±5««^,6ff,  Wd    x963.5XioXioxIT;;^^ 
230  33000 

3  40X95  40X65-8       ' 

T*o  Compute  Volume  of*  A.ir  transmitted  tty  an  Sngine* 
When  Pressure,  Temperature,  etc.,  are  given. 


1^.  ^  W  h  (    A  i^H     )  C  =  IT.    Then  avx6o  ^  V  in  cube  feet  per  minute, 

(\  and  h  representing  height  of  barometer  and  pressure  of  blast  in  ins,  of 
vtercttry  f  t  uinperature  of  Uast ;  and  v  vfiocit^  in  feet  per  second. 

Illustbation.— A  ftimace  having  3  ftayeres  of  s  in&  diameter,  pressure  and  tem- 
perature of  blast  3  ins.  aiui  350O,  f^^  barometer  30  ins. ;  what  is  volume  of  air  trans- 
mitted per  minute T 

C  for  a  oonieal  opening  •=  .94. 

■■Ill     »^i  i^m    ^    |i>i-T      .  ^^^^^^ 

34-5V  3  (^^^"1,^  X  -94  =  34-5 ^3  (^)  =p  34-5  X  .467  X  .94  ;=*  «5.i4 

f^H  vsUmty  ptr  st99n$, 

Then,  area  5  in8.=  19.635,  which  X  »  =? 39«»7  *«*!  "P**  39-27  X  i5'  14  X  60-J- 144.^ 
^47. 73  cube  feet, 

Xo  Compnte  Pressure  of  Hiast  from  "Water  or  Mercurial 

C>-aug;e. 

RuLB. — Divide  Water  and  MereuriAl  Gauge  in  ina.  by  37.67  and  a.04  re- 
spectively, and  quotient  will  give  prtes^re  in  lbs.  per  aq.  inch. 

Fan-l>lowers, 

Proportions  of  Parts,  B^m.— Theff  width  sod  kngtb  should  be  ^t  least 
equal  to  .4  pr  .5  radiua  of  ian, 

Openings. — Inlet  should  be  equal  to  radius  of  fan ;  and  opttet,  or  dia* 
ehar|>e,  sBooid  be  in  depth  not  less  than  .135  diameter,  its  width  being  aqua) 
to  width  of  fan. 

Eccentrici^, — .1  of  diameter  of  fan.    Journals,  4  diameters  of  shafts 


44B  BLOWING    ENGINES. 

By  the  experiments  ci  MnBncMO)  he  deduoed 

1.  That  velocity  of  periphery  of  blades  should  be  .9  that  of  their  tkeoreticcd 
velocity ;  that  is,  velocity  a  body  would  acquire  in  falling  height  of  a  homo- 
geneous column  of  air  equivalent  to  required  density. 

2.  That  a  diminution  of  inlet  from  proportions  here  given  involved  a 
greater  expenditure  of  power  to  produce  same  density. 

3.  That  greater  the  depth  of  blade,  greater  the  density  of  air  produced 
with  same  number  of  revolutions. 


To  Coxnpute  XCleznents  o£  a  Fan^'blower. 

a  V  60      .rr  ^  d  a  V 

400  i 


(^:;o)    ^93945  =  ^;      244Vrf=»;      ~— --  =  V;     and  =  IH». 

\0.02/  100  400  _ 

V  represenfinff  velocity  of  periphery  of  fan  in  feet  per  second^  d  inches  of 
mercury  ^Y  volume  of  air  in  cube  feet  ^  and  a  area  of  discharge  in  sq,  ins. 

Illustration.— Assume  velocity  of  periphery  of  fan  123  feet  per  second,  density 
of  blast  .25  inch,  volume  of  air  1845  cube  feet^  and  area  of  discharge  40  sq.  ina 

i23-T-5.o2-7-939.454  =  .25inc*.     244Vl25=i22/5e«.      lS2Li|l2i52  — ,845  cuft.yt 

242  X  40  X  12^  ____ 

—  =  2.g7lW,  independent  ofJrictionqfbUut  in  pipes  cMd  tuyeres. 


400 

.  To  Compute  I^o-wer  of*  a  Centrifugal  Fan. 

V*  -f-  97  300  =  P.    V  representing  velocity  of  tips  of  fan  in  feet  per  second. 

(See  also  p.  iQi 8. 1 
JMemoranda. 

Operation  of  a  blower  requires  about  2.5  per  cent  of  power  of  attached 
boiler. 

An  increase  in  number  of  blades  renders  operation  of  fan  smoother,  but 
does  not  increase  its  capacity. 

Pressure  or  density  of  a  blast  is  usually  measured  in  ins.  of  mercury,  a 
pressure  of  1  lb.  per  sq.  inch  at  60°  ^  2.0376  ins. 

When  water  is  used,  a  pressure  of  i  lb.  1=27.671  ins. 

Cupola  blast  .8  lbs.,  and  Smithes  forge  .25  to  .3  lbs.  per  sq.  inch. 

An  ordinary  Eccentric  Fan,  4  feet  in  diameter,  with  5  blades  10  ins.  wide 
and  14  in  length,  set  1.5  ins.  eccentric,  with  an  inlet  opening  of  17.5  ins.  in 
diameter,  and  an  outlet  of  12  ins.  square,  making  870  revolutions  per  min- 
ute, will  supply  air  to  40  tuyeres,  each  of  1.625  ^"s*  ^^  diameter,  and  at  a 
pressure  per  sq.  inch  of  .5  inch  of  mercury. 

An  ordinary  cccEntric  fan-blower,  50  ina  in  diameter,  running  at  1000  revoluiioDB 
per  minutCj  will  give  a  pressure  of  15  ins.  of  water,  and  require  for  its  operation  a 
power  of  12  horsea    Area  of  tuyere  discharge  500  sq.  ins. 

A  non -condensing  engine,  diameter  of  cylinder  8  ins.,  stroke  of  piston  i  foot,  press- 
ure of  steam  18  Iba  (mercurial  gauge),  and  making  loo  revoFufions  per  minute,  will 
drive  a  fan,  4  feet  1^  2,  opening  2  feet  by  2*,  500  revelations  per  minute. 

Such  a  blower  was  applied  as  an  exhausting  draught  to  smoke-pipe  of  steamer 
Keystone  Slate^  cylinder  80  ina  by  8  feet,  and  eva])oration  was  doubled  over  that 
of  when  wind  was  calm. 

In  French  blowing  engines,  volume  of  air  discharged  75  per  cent  that  of 
volume  of  piston  space  in  cylinder,  stroke  equal  diameter  of  cylinder,  and 
velocity  of  piston  'h'om  100  to  200  feet  per  minute. 

Area  of  admission  valves  from  .066  to  .0S3  of  that  of  cylinder  for  apeeds 
of  100  to  150  feet  |)er  minute,  and  from  ,\  to  .111  for  higher  speed&  ArBt 
of  exit  viUves  from  .066  to  .05  of  cylinder,    (if.  C^cmieL) 


BLOWING  ENGINES. — CENTBAL  FOBCES.  443 

By  some  experiments  lately  concluded  in  England  with  boilers  of  two 
•teamers,  to  determine  relative  effects  of  natural  and  forced  draught  furnaces, 
the  results  were  as  follows  {R,  J,  Butter)  i 

Per  Sq.  Foot  of  Grate  Surface, — NvUural  Draughty  10  to  ia87  IIP;  Steam 
Blasts  12.5  to  13 ;  Forced  or  Blast  DraugfUj  15  to  16. 

Heating  Surface  per  IH*. — Natural  Draught;  2.44  to  2.61 ;  Steam  Blasty 
1. 71  to  2,86;  Forced  or  Blast  Draughty  1.56  to  2.5. 

Tube  Swfa^eper  IH*  in  Sq.  Feet. — Natural  Draught.^  2.03  to  2.18;  Steam 
Blasts  2.02  to  2.08;  Forced  or  Blast  Draught,  1.3  to  2.8. 

IH?  per  Sq,  Foot  of  Grate  in  the^e  Trials.  —  Natural  Draughty  10.15  to 
10.87 »  Steam  Bla^f,  12.76  to  13.1 ;  Forced  or  Blast  Draught,  10.6  to  16.9. 

Booths  Rotarg  Blower — Is  constructed  from  .125  to  14  nominal  IP,  supplying 
from  1 50  to  10  800  cube  feet  of  air  per  minute.  Delivery  pipe  2.5  to  19  ins. 
jn  diameter.     Efficiency  65  to  80  per  cent,  of  power. 

For  VentUatiow  of  Mines — From  40  to  280  revolutions  per  minute,  equal 
to  discharge  of  12  500  to  200000  cube  feet  of  air  per  minute.    15.5  to  189  IP. 

Steam  cylinder  from  14  x  i3  ins.  to  28  x  48  ins. 

For  other  details  of  Blowing  Engines  see  page  898L 


CENTRAL  FORCES. 

All  bodies  moving  around  a  centre  or  fixed  point  have  a  tendency  to 
fly  off  in  a  straight  line:  this  is  termed  Ceidiifugal  Force;  it  is  op- 
posed to  a  CentHpetal  Force^  or  that  power  which  maintains  a  body  in 
*ts  curvilineal  path. 

CenJtrifngal  Force  of  a  body,  moving  with  different  velocities  in  same 
eircle,  is  proportional  to  square  of  velocity.  Thus,  centrifugal  force  of 
a  body  making  10  revolutions  in  a  minute  is  4  times  as  great  as  centrif- 
ugal force  of  same  body  making  5  revolutions  in  a  minute.  Hence,  in 
equal  circles,  the  forces  are  inversely  as  squares  of  times  of  revolution. 

If  times  are  equal,  velocities  and  forceg  are  as  radii  of  circle  of  revolution. 

The  squares  of  times  are  as  cubes  of  distances  of  centrifugal  force  from 
axis  of  revolution. 

Centrifugal  forces  of  two  unequal  bodies,  having  same  velocity,  and  at  same  dia. 
Uince  from  central  body,  are  to  one  another  as  the  respective  quantities  ol  matter 
*&  the  two  bodies. 

Centrifugal  forces  of  two  bodies,  w^hicb  perform  their  revolutions  in  same  time, 
the  quantities  of  matter  of  which  are  inversely  as  their  distances  from  centre,  are 
equal  to  one  another. 

Centrifugal  forces  of  two  equal  bodies,  moving  with  equal  velocities  at  different 
distances  firom  centre,  are  inversely  as  their  distances  from  centre. 

Centrifugal  forces  of  two  unequal  bodies,  moving  with  equal  velocities  at  different 
distances  from  centre,  are  to  one  another  as  their  quantities  of  matter,  multiplied  by 
their  respective  distances  from  centre. 

Centrifugal  forces  of  two  unequal  bod'cs.  having  unequal  velocities,  and  at  differ- 
ent distances  from  their  axes  are  in  compound  ratio  of  their  quantities  of  matter, 
■l|oares  of  their  velocities,  and  their  distances  from  centre. 

Ceotrifiigal  force  is  to  weight  of  body,  as  double  height  due  to  velocity  is  to  radiu? 
of  rotation. 

A  Badius  Vector  is  a  line  drawn  fh>ra  centre  of  force  to  moving  body. 

Pp* 


45©  CENTBAL  FOBCBS. 

To   Compute  CentrifVieal   Foroe  of  azi^r  Body. 

Rule  i. — Divide  its  velocity  in  feet  per  second  by  4.01,  also  square  of 

auotient  by  diameter  of  circle ;  this  quotient  is  centrifugal  force,  assuming 
le  weight  of  body  as  1.     Then  this  quotient,  multiplied  by  weight  of  body, 
will  give  centrifugal  force  required. 

ExAMFLfL — What  is  the  ceotrit'ugal  force  of  the  rim  of  a  fly-wbpel  having  a  diam- 
eter of  10  feet,  and  runumg  with  a  velocity  of  30  feet  per  second? 

30^-4.01  =  7.48,  and  7.48^-7-10  =  5.59,  or  timts  weight  o/rim. 

W  n'  VR^  +  t' 

Or, ■■ =  C.    rrq»r€ientingr(iuiituo/iiiHerdiamtterofrkui. 

4100  ^       w 

NoTK.— Diameter  of  a  fly-wheel  should  be  measured  fVom  centres  of  gravity  of  rim. 

When  great  accuracy  is  required,  ascertain  centre  of  g}Tation  of  body,  and 
take  twice  distance  of  it  from  axis  for  dianieter. 

Rule  2. — Multiply  square  of  number  of  revolutions  in  a  minute  by  diam- 
eter of  circle  of  centre  of  gyration  in  feut,  and  divide  product  by  constant 
number  5217 ;  quotient  is  centrifugal  force  when  weight  of  body  is  i.  Then, 
as  in  previous  Rule,  this  quotient,  njultiplie4  by  weight  of  body,  is  centrif- 
ugal force  required. 

n'd 
Or,  —  -  X  W.    n  repretenting  number  of  rtwAy^ioM  pet  n^ni^  d  du^fuUr  of 

circle  of  gyration  infict,  and  W  weight  of  revolving  body  in  lbs. 

ExAMPLB.— What  is  centriftigal  force  of  a  griodstone  weighing  1200  lbs.,  42  inches 
in  diameter,  and  turning  with  a  velocity  of  400  revolutions  in  a  minute? 

Centre  of  gyration  =  rad.  (42 -H  2)  x  .7071  =  14.85  int.,  which  -4-12  and  X  2  = 

a.475/e«<  at  diameter  of  circle  of  gyration.    Then  — ?^^  x  1200  =  91 080  Ibi. 

5217 

Formulas   to  I>eterxuiiie   Various   K|en&en.ts« 


Wv^             WRn^  wT,    ,  _      0  32.166  R 

C*  = rr-o;  = ;    =WRij'i.225;    W  =  — ^ 


32.166  tt'  ""    2925     '    —  "'        ""        »"         ' 

2930C.      _     Wv'     ,  /2930C.  /CR  32166.     _.    ««'Il: 

*-w^'    -^2:1660'    "-yiTR"'    ''-v — w — '  •~6»8«'«- 

C  repreienting  centrifugal  farce,  W  mo**  or  weight  (^revolving  body^  both  in  Ibs.^ 
R  radius  of  circle  of  revolving  body  in  feet,  n  number  of  revolutions  per  minuley  and 
V  and  v'  linear  or  circumferential  and  angular  velocities  of  body  in  feet  per  second. 

iLLUfTTRATioN.— Wbai  is  centrifugftl  force  of  a  sphere  weighing  30  Ibe.,  rievolTlng 
around  a  centre  at  a  distance  of  5  feet,  at  30  revolutions  i>er  secondT 

60  ^    I        ->  32.166X5 

CeniriJug<U  forces  of  two  bodies  are  as  radii  qf  circles  of  revolviion  directly^  and 
as  squares  of  times  inversely. 

Illustration. — If  a  fly-wheel,  12  feet  in  diameter  and  3  tons  in  weight,  revolves 
in  8  seconds,  and  another  of  like  weight  revolves  in  6,  what  should  be  the  diameter 
of  the  second  when  their  centrifugal  forces  are  equal  ? 

12       sv  12  X  6' 

Then  3  :  3  ::  ^3  :  -r^]  or  xz=  —  - —  =6.75.^,  x  =  unknown  element 

o*        O*  o* 

CenirijSigal  forces  of  two  bodies,  when  weights  are  unequalj  are  direcliy  at  squares 
of  times. 

Illustration.— What  should  be  the  ratio  of  the  weights  of  the  wheels  in  the  pre- 
ceding case,  their  forces  being  equal? 

Then  3  :  * ::  6»  :  8»,  or  »  =  5-^=  ^-^  =  5.333  «»«»• 
Moletworth  gives  .000  34  W  R  n^  =  G. 


*  This  k  t«mi«d  th«  rU  TtVa,  or  IlTing  fore*. 


CENTRAL  FOBGSS. — FLT-WHBBI*.         4^1 

FLY-WHBBL. 

A  Flt-whbxl  by  its  inertia  becomes  a  reservoir  as  well  as  a  regulator 
of  force,  and,  to  be  fully  effective,  it  should  have  high  velocity,  and  its  diam- 
eter be  from  3  to  4  times  that  of  stroke  of  driving  engine. 

Coefficient  of  fluctuation  of  its  energy  ranges  from  .015  to  .035. 

Weight  of  a  fly-wheel  in  engines  that  are  subjecte<l  to  irregular  mo- 
tion, as  in  a  cotton-press,  rolling-mill,  etc.,  must  be  greater  than  in  others 
where  so  sudden  a  check  is  not  experienced,  and  its  diameter  should  range 
from  3.5  to  5  times  length  of  the  stroke  of  the  piston. 

A  single-acting  engihe  requires  a  weight  of  wheel  about  2.5  times  greater 
than  that  for  a  double-acting,  and  5  times  for  doable  engines  of  double  action. 

To  Compute   "WeigUt  of  R.im  of  a  Fljr-iKrheel. 

RuLB.-^Multiply  mean  effective  pressure  upon  piston  in  lbs.  by  its  stroke 
in  feet,  and  divide' product  by  product  of  square  of  number  of  revolutions, 
diameter  of  wheel,  and  .000  33. 

KoTK.— If  a  light  wheel,  multiply  by  .ocx>3  ;  and  if  a  heavy  one,  by  .ocx>  16. 

Example  l— A  non-condensing  engine  (double-acting),  having  a  diameter  ofcyl. 
inder  of  14  ins.,  and  a  stroke  or  piston  of  4  feet,  working  full  stroke,  at  a  pressure 
of  65  lbs.  mercurial  gauge,  and  making  40  revolutions  per  minute,  develops  about 
65  £P  ;  what  should  be  the  weight  of  its  flywheel  when  adapted  to  ordinary  work  t 

Area  qf  cylinder  154  sq.  ins.  Mean  pressure  assumed  50  Ws.  per  sq.  inch.  Diam- 
eter o/imeel  =  4  /^  stroke  of  piston  X  35,  assumed  as  above,  =  i^Jedt. 

so  X  154  X  4  =  30  8<»»  which  -r-  40'  X  14  X  .000  23  =  5978  lbs. 

3. ^If  a  fly-wheel,  16  feet  in  diameter  and  4  tons  in  weight,  is  sufficient  to  regulate 

an  engine  (double-acting),  it  revolving  in  4  seconds,  what  should  be  the  weight  of  a 
wheel  of  12  feet,  revolving  in  2  seconds,  so  that  it  may  have  like  centrifugal  force? 

NoTR.— The  centrifugal  forces  of  two  bodies  are  as  the  radii  of  the  circles  of  revo- 
lution directly,  and  as  squares  of  times  inversely. 

Thenl2<L6  =  ^2^    Or,  «^  4  X  .6x2^^4  X  16X4  ^,,333,0^. 
4»  a'  12  X  4'        '  la  X 16  *'*'^"* 

7o  Coraptite   IDim^tiAions  of  R.ixn. 

Rule. — ^Multiply  weight  of  wheel  in  lbs.  by  .1,  and  divide  product  by 
mean  diameter  of  rim  in  feet ;  quotient  will  give  sectional  area  of  rim  in 
square  inches  of  cast  iron. 

Assume  elements  of  example  x.    5978  X  •  x  -r*  13.25  =  45. 13  tg.  ivu. 

PS  W 

Or,  — —  =  W,  and  — —  =  A.    I*  represefUing  pressure  oti  piston  and  ?f  tdeight  of 

ufkeel  iM  <6ff.,  d  Hrohe  of  pistm,  and  D  mean  diameter  ofwhtel^  both  in  feet,  tmd  A 
area  ofse<Uion  ojrim  in  sq.  ins. 

Or,  — — — — —  =  W.    C  coefficient,  varying  frofm  3  to  4  ordinarily,  increasing 

to  6  tnth  great  regularity  of  speed  and  n  numher  of  revolutions  per  minute. 

N0T8. — Maximum  safe  velocity  for  cast  iron  is  assumed  at  80  feet  per  second. 

For  engines  at  high  expansion  of  steam,  or  with  irregular  loads,  as  with  a  rolling- 
mill,  mufltply  W  by  1. 5,  or  pat  W  100  lbs.  for  each  W.    iMolesworth.) 

In  com  or  like  mills,  the  velocitv  of  periphery  of  fly-wheel  should  exceed  that  «f 
tb«  atones,  to  arrest  backlash. 


452   CENTRAL  FOBC£S. — GOVEENOJJS. — PENDULUMS* 

GOVERNORS. 

A  60YBRNOR  or  Conical  Pendulum  in  its  operation  depends  upon  the 
principles  of  Central  Forces. 

When  in  a  Ball  Governor  the  balls  diverge,  the  ring  on  tertical  shaft 
raises,  and  in  proportion  to  the  increase  of  velocity  of  the  balls  squared, 
or  the  square  roots  of  distances  of  ring  from  fixed  point  of  arms,  cor- 
responding to  two  velocities,  will  be  as  these  velocities. 

Thus,  if  a  governor  makes  6  revolutions  in  a  second  when  ring  is  16 
ins.  from  fixed  point  or  top,  the  distance  of  ring  wil[  be  5.76  ins.  when 
speed  is  increased  to  10  revolutions  in  same  time. 

For  10  :  6  : :  \^  16  :  2.4,  which^  squared  =.  5.76  tw«.,  duUance  of  nna 
from  top.     Or,  6'  ;  10*  : :  5.76  :  16  im. 

A  governor  performs  in  one  minute  half  as  many  revolutions  as  a 
pendulum  vibrates,  the  length  of  which  is  perpendicular  distance  be- 
tween plane  in  which  the  balls  move  and  the  fi.xed  point  or  centre  of 
suspension. 

ITo  Compvite  ^vim'ber  ot  Re-volutioiis  of*  a  Ball  Ghovernor 
per  Alinute  to  maintain   3alls  at  any  given  HeigUt. 

188  -H  y/H  =  revoltUiom.  H  I'epresmtir^  verticai  height  between  plane  of  beUl* 
and  points  of  their  napension  in  int. 

Illustration. —If  the  rise  of  the  balls  of  a  centrifugal  governor  is  32  in&,  what 
are  the  number  of  revolutions  i)er  minute  ? 

1 88  -r-  v'za  =  40.09  revolutions. 

To    Compute   Vertical   Height  between   Flane    of  Sails 
and.   tlieir   "Points   of  Suspension. 

(188  -^  r)  a  =  vertical  height  in  ins.   r  representing  number  of  revolutions  per  minute. 

Illustratiox.— If  number  of  revolutions  of  a  centrifugal  governor  is  100,  what 
will  be  rise  of  balls  ? 

188  -7- 190=  i.88«  =  3.53  in*. 

To  Compute  A.ngle   of  A^rms    or    Plane    of    Balls    Mritli 

Centi-e   ©haft. 

r-i-l  =  8in.  ^.  r  representing  distance  of  bails  Jrom  plane  of  centre  shaji^  an4  I 
distance  between  balls  and  point  of  suspension  measured  in  plane  of  shaft 

iLLtTSTRATiON.— Distance  of  balls  ftom  plane  of  centre  shaft  is  10  inches,  and 
their  distance  from  point  of  suspension  is  25;  what  is  the  angle? 

10  -^  25  =  .4,  and  sin.  .4  =  23©  35'. 
When  Number  of  Revolutiona  are  given,       ^~~r —  *^-  ^• 

Illustration. —Revolutions  of  a  governor  per  minute  are  50,  and  length  of  its 
arms  a  feet;  what  is  their  angle  with  plane  of  shaft? 

(54.16-7-50)*      1. 173         „^  n  ,, 

i^2 Z_L  =  — LI  =  .5865  =  co#.  54O  6'. 

a  2 

PENDULUMS. 

Pendulums  are  Simple  or  Compound^  the  former  being  a  material 
point,  or  single  weight  suspended  from  a  fixed  point,  about  which  it 
oscillates,  or  vibrates,  by  a  connection  void  of  weight ;  and  the  latter, 
a  like  body  or  number  of  bodies  suspended  by  a  rod  or  connection. 
Any  such  body  will  have  as  many  centres  of  oscillation  as  there  are 
given  points  of  suspension  to  it,  and  when  any  one  of  these  centres  are 
determined  the  others  are  readily  ascertaine\L 


I 


OBNTBAL   FORCES. — PENDULUMS.  453 


Thus,  *  o  y  »  ^  =  a  corutant  product,,  and  *  r  =  V«  o  x  sff^  s  g  o  and  r 
represfintiwj  jmnts  ofauspetmon,  grcanty^  mciUation,,  and  gyration. 

Or,  any  body,  as  a  cone,  a  cylinder,  or  of  any  form,  regular  or  irregular, 
80  suspended  as  to  be  capable  of  vibrating,  is  a  compound  pendulum,  and 
distance  of  its  centre  of  oscillation  from  any  assumed  point  of  suspension  is 
considered  as  the  length  of  an  equivalent  simple  pendulum. 

The  Amplitude  of  a  simple  pendulum  is  the  distance  through  which  it 
passes  from  its  lowest  position  to  its  farthest  on  either  side. 

Conu^eie  Period  of  a  pendulum  in  motion  is  the  time  it  occupies  in  making 
two  vibrations. 

All  vibrations  of  same  pendulum,  whether  great  or  small,  are  performed 
very  nearly  in  same  time. 

Number  of  Oscillations  of  two  different  pendulums  in  same  time  and  at 
same  place  are  in  inverse  ratio  of  square  roots  of  their  lengths. 

Length  of  a  Pewlulum  vibrating  seconds  is  in  a  constant  ratio  to  force  of 
gravity. 

Time,  of  Vibration  is  half  of  a  complete  period,  and  it  is  proportional  to 
square  root  of  length  of  pendulum.  Consequently,  lengths  of  pendulums  for 
different  vibrations  arc — 

Latitude  of  Washington. 

39.0958  ins.  for  one  secuud.  |  4- 344    for  third  of  a  second. 

9.774   ins.  for  half  a  second.  |  2.4435  for  quarter  of  a  second. 

JLtexkgtlxa  of  ir^encLixltixxis  vil^rettins   Seconds  at   X..evel  of 

tlxe   Sect  iu   several   flaoes. 


Ins. 

Ekinator 39-0152 

Washington 39*0958 


Ina. 

New  York.......  39.1017 

Lttt.  45O. 39*  127 


Puris 391284 

London 39«393 


1?o  Compute  I^eugth.  of  a  Simple  Pendulum  for  a  givetx 

Uatitude. 

39. 127  —  .099  82  coa  2  L  =  ^    L  representing  latitude. 

Illubtration. — Required  the  length  of  a  simple  pendulum  vibrating  seconds  in 
the  latitude  of  50^'  31'. 

L  =  50°  3rcos.  2  li  =  2  X  50°  31*  =  cos.  180O  —  5o0  3i'X3=:  cos.  78°  58'  = .  191  38 
—  39. 127  -|- .  191 38  X  099  82  {two  —  or  negative  =  an  affirmative  or-f )  =  39. 1461  ins. 

ITo  Coiupute  L«cngtli  or  a  Simple  Feudiilum  Tor  a  g;iven 

Nvitiiber  of*  Vibrations. 

ljt'  =  l.     L  representing  length  Jor  latitude,  I  time  in  seconds,  and  I  length  of  pen- 
dulum in  ins. 

Illustration.— Required  vibrations  of  a  pendulum  in  a  minute  at  New  York,  an 
60;  what  should  be  its  length? 

39.  loi  7  X I ' = 39- 101 7.  Or,  -^  =  I.   n  representing  number  o/vibratums  per  seeond. 

To  Compute  dumber  of  Vibrations  of*  a  Simple  Pendu- 
lum in   a  griven   rTime. 

—,j-  =  w,  -  rqtresenting  time  of  one  vibration  in  seconds. 

To  Compute  Centre  of  Q-ravity  of  a  Compound  Pendu* 
luxn   of  'P-wo   "^^eiglits   connected   in  a   Higlxt   I^ine. 

When  Weights  are  both  on  one  Side  of  Point  of  Suspension. 


WW-u> 


o=:distance  oj  centre  of  gravity /irom  point  of  suspension. 


454  UlCNTBAL   FORCES. — PENDULUMS. 

When  Weighty  are  on  Opponte  Sides  qf  Point  of  Suspension, 

=  c = distance  qf  centre  of  gravity  qf  greater  weight  from  jmrU  qfsuS' 

W  •»]—  w 

peruioH. 

Note.— To  obtain  strictly  isochronous  Tibrations,  the  circular  arc  must  be  sub- 
stituted for  the  cycloid  curve,  which  possesses  the  property  of  having  an  inclinar 
tion,  the  sine  of  which  is  simply  proportional  to  distance  measured  on  the  curve 
from  its  lowest  point. 

For  construction  of  a  Cycloidal  pendulum,  see  Deschaniers  Phy^ics^  Part  I. ,  pp. 
71-a. 

To  Compute  Xjength,  of  a  Sin)ple  Pendulum 9 'Vibration a 
or  "wrliich.  -will  be  same  in  Number  as  Xncliies  in  ita 
Xjengtb. 

^(^L  X  60)*  =  /  in  inches. 

Illustration. — What  will  be  length  of  a  pendulum  in  New  York,  vibrations  oi 
which  will  be  same  number  as  the  in&  in  its  length? 

V  (>/39.ioi7  X  60)'  =  7.21X*  =  52  ins. 

To  Compute  Time  of  Vibration  of  a  Simple  Penduluzn, 

Uength.   being  given. 


Vi  -^  L  =  <  in  seconds. 

iLLUSTRATioir. --Length  of  a  pendulum  is  156.4  ins. :  what  is  the  time  of  its  vibiBr 
tion  in  New  York? 

156.4 


A 


ssateoonds. 


39.XOX7 

Or,  ^—  X  3. 1416  =  t    I  representing  length  of  a  pendtUum  vibrating  seconds  i« 
ins.  J  g  measure  offeree  of  gravity^  and  t  timt  of  one  oscillation. 

Illustration — Length  of  a  simple  pendulum  vibrating  seconds,  and  measure  of 
force  of  gravity  at  Washington,  are  39.0958  ins.,  and  32. 155  feet. 

/    39-^953 
3Mi6^  ^^^^  ^  ^-  =  3.1416  X  V'oi3  =  3*416  X  .3183  =  I  second. 


/ 


To   Compute   Number  of  Vibrations   of  a   Simple  Pen- 
dulum  in   a  given   Time. 

y  X  i  = »».    n  represevUing  number  of  vibrations. 

Illustration.— The  length  of  a  pendulum  in  New  York  is  156.4  Ins.,  and  time  of 
its  vibration  is  2  seconds;  what  are  number  of  its  vibrations? 

)3Q.IOI7  /6.2S'?  ^  60 

./^^^— X2  =  .  / — ^X2  =  .sX2  =  i  vibration.     Hence,  i  X— =  30  vi- 
V    '50.4  V  »«-5o6  a       ^ 

brationsper  minuie. 

To  Cotnputa  Measure  of  Ghravity,  Length  of  Pendulum 
and  X umber  of  its  Vibrations  Deing  given. 

.82846  In' 

^a =g.    g  representing  measure  of  gravity  in  feet 

To  Compute  TQ'umber  of  Revolutions  of  a  Conioal  Pen. 

dulum   per   Alinute. 


y^ 


933-5 


~j^ —  =  *•    *  representing  distance  betvoeen  point  of  suspension  amd  plane  qf 

revolutions  in  ins. 

NoTB.— Number  of  revolntions  per  minate  are  constant  for  any  given  heigbk  and 
Che  time  of  a  revolution  is  directly  as  square  root  of  height 


CBAITBS. 


455 


VVlieil    Post    is 


Fig. 
r. — 


o^- 


CRANEa 

Usual  foim  of  a  Crane  is  that  of  a  right-angled  triangle,  tbe  sides 
being  post  or  jib,  and  stay  or  strut,  which  is  hypothenuse  of  triangle. 

When  jib  and  post  are  equal  in  length,  and  stay  is  diagonal  of  a  sqUare, 
this  form  is  theoretically  strongest,  as  the  whole  stress  or  weight  is  borne  by 
stay,  tending  to  compress  it  in  direction  of  its  length ;  stress  upon  it,  com> 
pared  to  weight  supported,  being  as  diagonal  to  side  <^  square,  or  as  1^143 
to  I.  Consequently,  if  weight  borne  by  crane  is  1000  lbs.,  thrust  or  com- 
pression upon  stay  will  be  1414.2  lbs.,  or  as  a  6  to  e  W,  Fig.  i. 

Supported,    at  laotlx    Head  and    Foot^  A» 
B'igf*  1. 

Weight  W  is  sustained  by  a  rope  or  chain, 
and  tension  is  equal  upon  botii  parts  of  it ;  that 
is,  on  two  sides  o|  square,  i  a  and  e  W.  Conse- 
quently jib,  i  a,  has  no  stress  upon  it,  and  serves 
merely  to  retain  stay,  a  e. 

If  foot  of  stay  is  set  at  n,  thrust  upon  it,  as 
compared  with  weight,  will  be  as  an  to  aw; 
and  if  chain  or  rope  from  i  to  a  is  removed,  au^ 
weight  is  suspended  from  a,  tension  on  jib  will 
be  as  t  a  to  a  W. 

If  foot  of  stay  is  raised  to  o,  thrust,  as  compared  with  weight,  will  be  as 
line  a  o  is  to  a  W,  ahd  tension  on  jib  will  be  as  line  ar. 

By  dividing  line  representing  weight,  as  a  W  or  a  u^,  into  equal  parts,  to 
r^resent  ton^  or  potmds,  atid  using  it  as  a  scale,  stress  upon  any  other  part 
may  be  measured  upon  described  parallelogram. 

Thus,  as  length  of  a  W,  compared  to  a  «,  is  as  1  to  1.4143 :  if  a  W  is  di- 
vided into  10  parts  representing  tons,  a  e  would  measure  14.142  parts  or  tons. 

Wlxeii  Post  is  Supported  at  IToot  only. 
If  post  !«  wholly  nnsuppnrted  at  head,  and  its  foot  is  secured  up  to  line 
o  W,  then  W,  acting  with  leverage,  e  W,  will  tend  to  rupture  post  at  c,  with 
dame  effect  as  if  twice  that  weight  was  laid  uiwn  middle  ef  a  beam  equal  to 
twice  kn^h  of  e  W,  e  being  at  middle  of  beam,  which  is  assumed  to  be  sup- 
ported at  both  ends,  and  of  like  dimensions  to  those  of  post. 

Or,  force  exerted  to  rupture  post  will  be  represented  by  stress,  W,  multi- 
plied by  4  times  length  of  lever,  e  W,  divided  by  depth  of  post  in  line  of 
stress,  squared,  and  multiplied  by  breadth  of  it  and  Valve*  of  its  material 

Post  of  such  a  crane  is  in  condition  of  half  a  beam  supported  at  one  end, 
weight  suspended  from  other;  consequentlv,  it  must  be  estimated  as  a  beam 
of  twice  the  length  supiK)rted  at  botli  ends,'  stress  applied  in  middle. 

To  Compute  Stress  6\\  Jitj^  and  on  Stay  or  Strut—ITig.  S. 

^^fr  *•  -^K»       On  diaffrahi  of  crane,  Fig.  2,  mark  off  6rt  line  of 

chain,  fl  W,  a  distance,  a  b,  representing  weijifht  on 
chain  \  from  point  b  draw  a  line,  b  c,  parallel  to  jib, 
a  «,  and  where  this  intersects  stay  or  strut,  draw  a 
vertical  line,  e  o,  extending  to  jib,  and  distances 
from  a  to  points  b  c  and  o  c,  measured  upon  a  scale 
of  equal  parts,  will  represent  proportional  strain. 

iLLtJSTRATioir.— In  figure,  weight  being  10  tons,  stress 
on  stay  or  strnt  compressing,  a  c,  will  be  31  tons,  and 
on  Jib  or  teDalon-rods,  a  0, 26  tons. 


*  For  Value  of  MatoriaU,  we  p«f«  j^ 


456 


CBANES. 


To  Compnte   Diuiexisions  of  I*08t  of  et  Craxie. 

When  Post  is  Supported  at  Feet  only.  Rule. — Multiply  weight  or  stress 
to  be  borne  in  lbs.  by  length  of  jib  in  feet  measured  upon  a  horizontal 
plane ;  divide  product  by  Value  of  material  t^  '^  used,  and  product,  divided 
by  breadth  in  ins.,  will  give  square  of  depth,  aiso  in  ins. 

ExAMPLR.— Stress  upon  a  crnne  is  to  bo  22400  lbs.,  and  distance  of  it  ttom  centie 
of  post  20  feet;  what  should  be  dimonsiou  of  post  if  of  American  white  oak? 

Vcdtie  of  American  white  oak  5a    Assumed  breadth 


ms. 


22  400  X  20 

50 


^8960,  and 


8960 
12 


746.67.    Then  V746-67  =  27.32  tn». 


When  Post  is  Supported  at  both  Ends.  Rule. — ^Multiply  weight  or  stress 
to  be  borne  in  lbs.  by  twice  length  of  jib  in  feet  measured  upon  a  horizontal 
plane ;  divide  product  by  Valtie  of  material  to  be  used,  and  product,  divided 
by  four  times  breadth  in  Ins.,  will  give  square  of  depth,  also  in  ins. 

Example.— Take  same  elements  as  in  preceding  case.    Assumed  breadth  zo  iua 


Then 


22  400  X  20  X  2 

50 


=  17920, 


17920 
4  X  10 


448,  and  V448  =  21. 166  in*. 


In  Fig. 3,  angle  abe  and  ebc  being  equal,  chain  or  rope  is  represented 
^     by  ab  c,  and  weight  by  W ;  stress  upon  stay  b  u,  as 
^*fr  3-  ^^      compared  with  weight,  is  as  6  (i  to  a  6  or  6  c. 

In  practice,  however,  it  is  not  prudent  to  consider 
chain  as  supporting  stay ;  but  it  is  proper  to  disreP^.d 
cliain  or  ro|)e  as  forming  part  of  system,  and  crane 
should  be  designed  to  support  load  independent  of  it. 
It  is  also  proper  that  angles  on  each  side  of  diagonal 
stay,  in  this  ease,  should  not  be  equaL  If  side  a  6  is 
fr)rnied  of  tension-rods  of  wrought  iron,  point  a  should 
be  depressed,  «o  as  to  lengthen  that  side,  and  decrease 
angle  abe;  but  if  it  is  of  timber,  point  a  should  be 
laise  I,  and  angle  abe  increased. 

Fig.  4.  g     Fig.  4  shows  a  form  of  crane  very  generally  used; 

angles  are  same  as  in  Fig.  3,  and  weight  suspended  nrom 
it,  being  attached  to  point  t(,  is  represented  by  line  bd. 
The  tension,  which  is  equal  to  weight,  is  shown  by  length 
of  line  6  c,  and  thrust  by  length  of  line  6  a,  measured  by 
a  scale  of  equal  parts,  into  which  line  6  d,  repi  esenting 
weight,  is  supposed  to  be  divided. 

But  if  b  e  be  direction  of  jib,  then  b  g  will  show  ten- 
sion, and  bf  the  thrust  {df  being  taken  parallel  to  b  e). 
both  of  them  being  now  greater  than  before;  line  b  a 
representing  weight,  and  being  same  in  both  casea 

To  Ascertain   Stress  on  Jit),  021  Strut 
of  a  Crane. ^TTig.  5, 

Through  a  draw  a  a,  parallel  to  jib  or  tension-rod 
o  r,  and  also  s  u  parallel  to  strut  a  r ;  then  r  «  is  a 
diagonal  of  parallelogram,  sides  of  which  are  equal  to  r  a  and  r  u, 

Pig  -^  ^--^'*      ^^  ^^^  ^  *  represents  a  stress  of  20  lbs., 

^^"^  the  two  forces  into  which  it  is  decoin- 
posed  are  shown  by  r u  and  ra;  or  ia 
equal  to  r  u,  as  each  of  them  is  equal  to 
a  «,  and  r  «  is  equal  to  o  a.  Hence,  20 
represented  by  a  o,  stress  on  jib  will  be 
represented  by  o  r,  tind  that  on  strut  by 
ra. 

Assuming  then  o  r  3  feet,  a  r  3.5,  and 
o  a  I,  stress  on  jib  will  be  60  lbs.,  and  on  strut  70. 


CB^NBS. 


457 


Thus,  in  all  cases,  stress  on  jib  or  tension-rod  and  on  strut  can  be  deter- 
ramocl  by  relative  proportiomj  of  sides  of  triangle  formed. 

VCo   Compute   Stress   upon   Strut  of*  a   Crane. 

Rule. — Multiply  length  of  strut  in  feet  by  weight  to  be  borne  in  lbs. ;  di> 
vide  product  by  height  of  jib  from  point  of  bearing  of  strut  in  fee%  and 
quotient  will  give  stress  or  thrust  iu  lbs. 

ExAMPLK. — Length  of  strut  of  a  crane  is  28.284  ^t,  height  of  post  is  26.457  feet, 
and  weight  to  be  borne  is  22  400  lbs. ;  what  is  stress? 

28.284X23400     633561.6  _^ 

"*     -  ""^  =  23947  Iftf. 


26.457 


26.457 


Ciiains  and  Ropes. 

Chains  for  Cranes  should  be  made  of  short  oval  links,  and  should  not  ex* 
ceed  I  inch  in  diameter. 

Short -linked  Crane  Cl&ains  and  Ropes  sho-wiug  I^i- 
niensions  and  '%Veigh,t  of  eaoli,  and  Proof*  or  Chain 
in   rTons. 


Dlmm. 

Weight 

Circamr. 

WeijthtJ 

Diam. 

Weight 

of 

per 

Proof 

of 

of  Rope 

of 

per 

Proof 

Chains. 

Fathom. 

Straio. 

Rope. 

per  Path. 

ChaiBi. 

Fathom. 

Strain. 

iDB. 

Lba. 

Tod*. 

In*. 

Lto. 

loa. 

Lbe. 

Tom. 

•3«25 

6 

•75 

2.5 

1-5 

.6875 

28 

6-5 

•375 

8.5 

x-5 

3-35 

3-5 

.8125 

32 

7-75 

•4375 

11 

a- 5 

4 

3-75 

36 

9.35 

•5^ 

«4 

3-5 

4-75 

5 

•875 

44 

»o-75 

.5625 

18 

4-5 

5-5 

7 

•9375 

5? 

13.5 

.625 

34 

5-35 

6.25 

8.7 

I 

56 

«4 

Circamf. 

Weight 

of 

of  Rope 

Rope. 

per  Fath. 

Int. 

Lbe. 

7 

las 

Z-5 

12 

8.25 

15 

9 

>7-5 

9-5 

19s 

10 

22 

Ropes  of  circumferences  given  are  considered  to  be  of  equal  strength  with 
the  chains,  which,  being  short-lmked,  are  made  without  studs. 
A  crane  chain  will  stretch,  under  a  proof  of  15  tons,  half  an  inch  per  fathom. 

Alaohinery  of  Cranes. 

To  attain  greater  effect  of  application  of  power  to  a  crane,  the  wheel-work 
must  be  properly  designed  and  executed. 

If  manual  labor  is  employed,  it  should  be  exerted  at~a  speed  of  220  feet 
per  minute. 

Proportioru.—Cnpaciftf  of  Crane^  5  tons. 

Radius  of  winch  or  handle  15  to  18  ins.    Height  of  axle  from  flook  36  to  39. 

iBt  pinion,  11  teeth,  1.25  ina  pitch.       I       2d  pinion,  12  teeth,  1.5  ina  pitch, 
ist  wheel,  89     '•     1.25   "       "  |       2d  wheel,  96     "       "     "      " 

Barrel  8  ins.  x  n  teeth  x  12  teeth  X  11  200  ?6*.  =  30800  ,^  .... 

-        - — -...-_.___._ "i =  20.35  '6««  =  statical  re- 

Winch  17  %tu.  X  80  teeth  X  96  teeth  x  4  men  =  1513  ^' 

B'.stance  to  each  of  ine  4  men  at  winches. 

An  expenment  upon  capacity  of  a  crane,  geared  i  to  105,  dcvelo|:  2d  that 
a  strong  man  for  a  period  of  3.5  minutes  exerted  a  power  of  27  562  foot- 
pounds per  minute,  wnich,  when  friclion  of  crane  is  considered,  is  fiilly  equal 
to  the  power  of  a  horse  for  one  minute. 

'  In  practice  an  ordinary  man  can  de>'elop  a  power  of  15  lbs.  upon  a  crane, 
handle  moved  at  a  velocity  of  220  feet  per  minute,  which  is  equivalent  to 
3300  foot-pounds. 

For  Treatise  on  Cranes,  see  Weales^  Scries,  No.  33. 


458 


COMBUSTION. 


CJOMBUSTION. 

Combustion  is  one  of  the  many  sources  of  heat,  and  denotes  combi- 
nation of  a  body  with  any  of  the  substances  termed  Supporters  of  Com- 
bustion ;  with  reference  to  generation  of  steam,  we  are  restricted  to  but 
one  of  these  combinations^  and  that  is  Oxygen. 

All  bodies,  when  intensely  heated,  become. luminouB.  When  this  heat 
is  produced  by  oombination  with  oxygen,  they  are  said  to  be  ignited ; 
and  when  the  body  heated  is  in  a  gaseous  state,  it  forms  what  is  termed 
Flame. 

Carbon  exists  in  nearly  a  pure  state  in  charcoal  and  in  soot.  It  com- 
bines with  no  more  than  2.66  of  its  weight  of  oxygen.  In  its  combus- 
tion, I  lb.  of  it  produces  suificient  heat  to  increafie  temperature  of  14  500 
lbs.  of  water  1°. 

Hydrogen  exists  in  a  gaseous  state,  and  combines  with  8  times  its 
weight  of  oxygen,  and  i  lb.  of  it,  in  burning,  raises  heat  of  50  cxx>  lbs. 
of  water  1°.* 

An  increase  in  the  rapidity  of  combustion  is  accompanied  bj  a  dimi- 
nution in  the  evaporative  efficiency  of  the  combustible. 

Mr.  0.  K.  Clark  Aimishes  the  fbllowing:  When  coal  is  exposed  to  beat  in  a  Air- 
nace,  the  carbon  and  hydrogen,  associated  in  various  chemical  unions,  as  hydrocar- 
bons, are  volatilized  and  pass  off.  At  lowest  temtterature,  napbthalioe,  resins,  aod 
fluids  with  high  boiling-points  are  disengaged;  at  a  higher  teuiperature,  votetile 
fluids  are  dJseugagcd;  and  still  higher,  oTetiunt  gas,  followed  by  light  carbaretted 
hydrogen,  which  continues  to  be  given  off  after  the  coal  has  rea<died  a  low  red  beat 
As  teuiperature  rises,  pure  hydrogen  is  also  given  off,  until  flnally,  in  the  fifth  or 
highest  stage  of  temperature  for  distillation,  aydrogen  alone  Is  discharged.  What 
remains  after  distillatory  process  is  over,  is  coke,  which  is  tbe^xed  or  solid  carbon 
of  ooal,  with  earthy  matter  or  ash  of  the  coaL    . 

The  hydrocarbons,  especially  those  which  are  given  off  at  lowest  temperatures, 
being  richest  in  carbon,  constitute  the  flame-making  and  amoke-makiog  part  of  th« 
coal.  When  subjected  to  beat  much  above  the  temperatures  required  to  vaporize 
them,  they  become  decomposed,  and  pass  successively  into  more  and  more  perma- 
nent forms  by  precipitating  portions  of  their  carbon.  At  temperature  of  low  red- 
ness none  of  them  are  to  be  found,  and  the  oleQant  gas  is  the  densest  type  that 
remains,  mixed  with  carburetted  and  f^ee  hydrogen.  It  is  during  these  trans- 
formations that  the  great  volume  of  smoke  is  ms^i/e,  consisting  of  precipitated  car- 
bon passing  off  uucotubined.  Even  defiant  gas,  at  a  bright  red  heat,  deposits  half 
its  carbon,  changing  into  carburetted  hydrogen;  and  this  gas,  in  its  tarn,  may 
deposit  the  last  remaining  equivalent  of  carbon  at  highest  furnace  heata^  a^d  be 
converted  into  pure  hydrogen. 

Throughout  all  this  distillation  and  transformation,  tho  element  of  hydrogen 
maintains  a  prior  claim  to  the  oxygen  present  above  the  fuel;  and  until  it  is  satis- 
fled»  the  precipitated  carbon  remains  unburned. 

Svimixiary  of  Products  of  IDeconapoeitioii  in  the  Furnaoe. 

Reverting  to  statement  of  average  composition  of  coal,  page  485,  it  ap- 
pears that  the  fixed  carbon  or  coke  reniaming  in  a  furnace  after  volatile 
portions  of  coal  are  driven  off,  averages  61  per  cent,  of  jp-oss  weight  of  the 
coal.  Ttiking  it  at  60  per  cent,  proportion  of  carbon  volatilbed -in  com- 
bination with  hydrogen  will  be  20  per  cent.,  making  total  of  80  per  cent,  of 
constituent  carbon  in  average  coal. 

Of  the  5  per  cent,  of  constituent  hydrogen,  i  part  is  united  to  the  8  per 
cent,  of  oxygen,  in  the  combinlfig  pro()ortious  to  form  wat^r,  and  r^maimne 
4  parts  of  hydrogen  are  found  partly  united  to  the  volatilized  carbon,  ana 
pjutly  free. 

*  Mmui  sffKt. 


coMBusTioir.  459 

These  particulars  are  embodied  ki  following  snmmary  of  condition  of 
elements  of  loo  lbs.  of  average  coal,  after  having  been  decomposed,  and  prior 
to  entering  into  combustion-^ 

loo  Lbs,  of  Average  Coal  in  a  Furnace. 

Composition  Lbft.  Lb*.  DecompMitioD. 


n.riw>n  ( Fixed 60 

caroon  j  volatilized. . . .  ao 

Hydrogen 5 

Sulphur t.BS 

Oxygen 8 

Nitrogen 1.3 

Ash,  etc 4-55 

100 


forming 


60      fixed  carbon. 

24      hydrociirfoons  and  f^ee  hydrogen 
1.25  Bulphar. 

9      water  or  steam. 
I. a   nitrogen. 
4-55  "sh,  etc 
*•  100 


showing  a  total  useful  combustible  of  85.25  per  cent.,  of  which  25.25  per 
cent  is  volatilized.  While  the  decomposition  proceeds,  combustion  proceeds, 
and  the  25.25  per  cenL  of  volatilized  portions,  and  the  60  per  cent  of  fixed 
carb(m,  successively,  are  burned. 

It  may  be  added  that  the  sulphur  and  a  portion  of  the  nitrrgen  are  dis- 
engaged in  combination  with  hydrogen,  as  sulphuretted  hydrogen  and  am- 
monia. But  these  compounds  are  small  in  quantity,  and,  for  the  sake  of 
simplicity,  they  have  not  been  indicated  in  the  synopsis. 

Vohtme  0/ Air  chemtcalUf  consumed  in  complete  Combustion  qfCocU. 
Assume  100  H>8.  of  average  coal.    Then,  by  following 

80  +  3  (s  ~~o)  +'4  X  '"S  ^  152  =  1^060  cube  feet  of  air  at  62°  for  100  lbs.  co(U. 

For  volatilized  portion,  Hydrogen  (H),  4      lbs.  X  457  =  1 828  cube  feet 

Carbon  (C),     20       "   Xi52=  3040 
Sulphur  (S),      1.25  "  X   57=       71 


4939 
For  fixed  portion,  Carbon,  60      Ib6.Xi53=  9120 


ii      t( 

i(      (I 
ii      it 


Total  ttsefol  combustible,  85.25  *'  14059    "      *^  for  con- 

plete  eomlmstion  of  100  lbs.  coal  of  averts  composition  at  62°. 

To  Comprtte  Volume  of  A.ir  at  6S3°,  under  One  A.t* 
xxiosplielTe,  ctxemioally  conBuxned  in.  Complete  Com* 
l>-u8tion  of*  1   J-Aim  of*  a  given   iCr'uel. 

Rule. — Express  constituent  carbon,  hydrogen,  oxygen,  and  sulphur,  as 
percentages  of  whole  weight  of  ftiel ;  divide  oxygen  by  8,  deduct  quotient 
from  hydrogen,  and  multiidy  remainder  bv  3 ;  multiply  sulphur  by  .4 ;  add 
pro<lucts  to  the  carbon,  ana  multiply  sum  by  1.52.  Final  product  is  volume 
of  air  in  cube  feet 

To  compute  foeight  of  air  chemicaUy  conttimed. — Divide  vcrfume  thus  fbund 
by  13.14 ;  quotient  ia  weight  of  air  in  lbs. 

Or,x.5a(C  +  3  (H — -)+.4S)^Air.     O  Oxygen, 

Non.— In  ordinary  or  approximate  computations,  sulphur  may  be  neglected. 

Example.— Assume  x  lb.  Newcastle  ooaL  0  =  82.24,  H  =  5. 42,  0^=6.44,  and 
8  =  1.35- 

-^  =r  .805,  5.42— .805  =4.615  X  3  =  i3-845»  x-35  X  .4  =  -54i  i3-845  +  -54+8*ai 
^  96.635,  and  96.635  X  1-53  =  146.87  cube  feet 

Then  146.87 -r  13. 14  s  II.  x8  Oft 


460 


COMBUSTION. 


To  Compute  Total  AVeiglit  ofO-aseous  Products  of*  Coxn- 
plete   Cotnbustioix   of*  1   X^b.  of*  a  given,   Fuel. 

Rule. — Express  the  elements  as  per-ceiitages  of  fuel ;  multiply  carbon  bv 
.126,  hydrogen  by  .358,  sulphur  by  .055,  and  nitrogen  by  .01,  an^  add  prod- 
ucts together.    Sum  is  total  weight  of  gases  in  lbs. 

Or,  .ia6C-|-.358H-|-.o53S  +  .oi  ii  =  WeighL 
ExAMPLS.  — AssQme  as  preceding  case.    N  =  j.6i.  - 

82.24  X  -"6+5  42  X.  358  +  1- 35  X  0534-1.61  X  01  =  12.39  lbs. 

To  Compute  Total  "Volume,  at  6S%  of  Ghaseouf*  Pi'oduota 
of*  Complete  Comloustioii   of*  1    I  j1>.  oT  g^iveu    It^uel. 

Rule. — Express  elements  as  per-centages ;  nmltiply  carbon  by  1.52,  hy- 
drogen by  5.52,  sulphur  by  .567,  and  nitrogen  by  .1*35,  and  add  products 
together.    Sum  is  total  volume,  at  62°  F.,  of  gases,  in  cube  feet. 
Or,  1.52  C  +  5.52  H  -f-  .567  S  + .  135  N  =  Volume. 

To   Compute   Volume    of  tlie    several   Gl-aseii    separately 
fVom   their   Respective  Quantities. 

Rule. — Multiply  weight  of  each  gaseous  product  by  volume  of  1  lb.  in 
cube  feet  at  62°,  as  below. 

Volume  of  I  Lb,  0/  Gases  al  62°  undei-  a  Pressure  of  i^.'j  Lhs, 

Cube  f«et.  Cube  feet.  Cube  feet- 

Aqueous  Vapor  or  J  I  Oxygen 11.887  I  Nitrogen 13-501 

Gaseous  Steam  .)'■  "5  I  Hydrogen 190        |  Carbonic  Acid 8.594 

Air 13  141  cube  feet. 

For  a  lb.  of  oxygen  io  combustion,  4. 35  lbs.  air  are  consumed;  or,  by  volume,  for 
a  cube  fuoi  of  o.xygen  4.76  cube  feet  of  air  are  consumed. 

I  lb.  Hydrogen  consumes 34.8  lb&,  or  457  cube  feet,  at  62^. 

I  *' Carbon, completely  burned, consumes....  11.6    "       "  152 

1   "        ''      partially  "  "        5.8    "       "    76 

I   '^  Sulphur  consumes 4-35**      "    57 


1; 
It 


I. 


Composition 


GASES. 


and    Equivalents  of*  Oases,  oonibined   in 
Combustion   of*  IT'uel. 


KLKMKNTS. 

Oxygen 

Hydrogen 

Carbon 

Sulphur 

Nitrogen 


COMPOUNDS 

^Atmospheric  Air 
(mech.  mixture) 

Aqueous    Vapor    or 
Water. 


..{ 


Element*. 

By 
Weight. 

Eqniv- 

Hleote. 

0.  1 

8 

H.  I 

I 

C.  1 

6 

S.  I 

16 

N.  I 

«4 

0.23 

26.8} 

N.77 

0.    1 

?} 

H.  I 

OASES. 


COMPOUNDS. 

Light  Carbaretted 
Hydrogen 

Carbonic  Oxide. . . . 

Carbonic  Acid 

01efiantna8(Bi-car-\ 
bu  retted  Uyd. .. 

Sulphurous  Acid. . 


Eleaaeole. 


EqniT- 
•leate. 

C.2 

H.4 
O.  1 
C.  I 
O.  2 
C.  I 

S^ 
H.4 

0.  2 

a  I 


By 

WeiKht 


"I 

I! 
1! 


Weights  of  products  in  combustion  of  i  lb.  of  given  fbel,  are— 

C  =  .o366.     H=:.09.     S  =  .o2.     N  =  .o893  C-I-.268  H-f.0335  S+.oi  N. 


Cubt  FtH. 

.0366  X     8.59=     .315  volume  carbonic 

acid. 
.09     X190     =17.1  *'      steam. 


Oubt  Feet. 

.02  X  5.85  =  .117  volume  sulph.  acid. 
.0893  4-  268 +  .03354- .01  X  X3-50I  = 
5.409  volume  nitrogen. 


Volume  of  Air  or  Oases  at  higher  temperatures  than  here  given  (62°)  is  ascer- 
tained by,    V  ^  ^W  =  v.    V  representing  volume  of  air  or  gas  at  temperature  <, 


e-f-461 
and  V  at  tempercUure  V. 


*  By  Volume  i  OzygeD,  3.769  Nitrofen. 


COMBUSTION. 


461 


Cliexnlcal 


Composition,    of*   sotxie 
bustibles. 


CO)fBU>nBLB. 


Carbonic  oxide. 

Light  carburetted  hydrogen . . . 
OleQant  gas,  Bicarburetted  hyd. 

Sulphuric  ether. 

^Icoliol 

Turpentine 

Wax 

OI'veoil 

Tailow 


Compound    Com* 


Oxy. 

Per  Cent. 
57- » 


CombiniDK  equivalenta.      < 

In  xoo 

parte  by  -n 

Car. 

Hyd. 

Oxy. 

Car. 

Hyd. 

Per  Cent. 

Per  Cent. 

I 

— 

z 

42.9 

— 

a 

4 

— 

75 

as 

4 

4 

— 

857 

«4-3 

4 

5 

I 

64.8 

J3-5 

4 

6 

a 

52.3 

'3« 

ao 

16 

— 

88.3 

11.8 

— 

— 

— 

81.6 

'3-9 

— 

— 

— 

77.3 

»3-4 

— 

— 

— 

79 

11.7 

21.7 
34^8 

4-5 
9-4 
9-3 

Heating  powers  of  compound  bodies  are  approximately  equal  to  sum  of 
heating  powers  of  their  elements. 

Thus,  carburetted  hydrogen,  which  consists  of  two  equivalents  of  carbon  and  four 
of  hydrogen,  weighing  respectively  2X6  =  13  and  1  x  4  =  4,  in  proportion  of  3  to  i, 
or  .75  lb.  of  carbon  and  .35  lb.  of  hydrogen  in  one  lb.  of  gas.    Elements  of  heat  of 
combostiou  of  one  lb.  are,  then- 
Unite  of  heat. 

For  carbon 14  544  X  -75  =  10908 

For  hydrogen *.  63  033  X  .35  =  15508 

Total  heat  of  combustion,  as  computed 26  4x6 

Total  heat,  by  direct  trial 335x3 

£Ceatiiie  I*o"wers   of  Coxxxbustiloles* 
(MM.  Favre  and  SUbermann,  D.  K.  Clark  aand  others) 


1  Lb.  ov 
CouBOvnsLB. 


Hydrogen 

Carbon,    making  1 

cartx>uic  oxida  ) 
Carbon,    making  i 

carbonic  acid . . ) 

Carbonic  oxide 

Light  carburetted  \ 

hydrogen ) 

Oleflant  gas 

Sulphuric  ether. . . . 

Alcohol 

Turpentine 

Sulphnr 

Tallow 

Petroleum. ........ 

Coal  (average) 

Coke,  desiccated. . . 
VTood,  desiccated . . 
VTood  -  charcoal,  ) 

desiccated ) 

Peat,  desiccated. . . . 
peat-charcoal,  de- ) 

siocaied ) 

Lignite. 

Asphalt 


Oxygen 
coneuraed 
par  lb.  of 

Com- 
bnetible. 


8 

«-33 

3.66 

•57 

4 

3-43 
a.  6 

3.78 

329 

1 

2-95 
4.12 

3.46 

2-5 

«-4 
3.35 

«-75 
3.38 

3.03 
2.73 


Weiftht  and  Volnme 

of  A  ir  cooeumed  per 

lb.  of  Coiiibuatible. 


Lba. 

34-8 

5-8 

XI.6 
3.48 

«7-4 

»5 

"3 
12. 1 

14-3 
4-35 
13.83 

«7-93 

10.7 

10.9 

6.1 

9.8 

7.6 

9.9 

8.85 
11.87 


C'ai>f  Feet 
«i6a*. 

457 
76 

153 

33 
339 
196 
'49 

188 

57 
169 

235 

'4' 

>43 

80 

X39 

zoo 

Z39 

ZI6 

156 


Total  Heat 
of  Combua- 
tioii  of  z  lb. 
of  Combtu- 
tible. 

EquivHient  evaporative 

Power  of  I  lb.  of  Coni- 

bualiltlc,  uiider  one  At' 

uiuepbere. 

Unlta. 
63033 

1.ha.  ofwa- 
tar  at  (a*. 
55.6 

Lbe.  of  wa- 
ter at  312*. 
64.3 

4452 

4 

4-6i 

14500 

»3 

15 

4325 

3.88 

448 

23513 

3Z.07 

2434 

21343 
16249 
12929 

19534 

4032 
Z8028 

Z9.Z9 

M-56 
1Z.76 

3-6i 
Z6.15 

22.09 

16.83 
1338 
20.23 

4  »7 

18.66 

27531 

i4«33 

13550 
7792 

Z3.67 

Z3.I4 

6.98 

28.5 
14.6a 
14.03 
8.07 

'3309 

xi.93 

«3.«3 

9951 

8.91 

za3 

12325 

ZX.04 

X3.76 

1x678 
16655 

— 

Z3.Z 
X7.24 

When  carbon  is  not  completely  burned,  and  becomes  carbonic  oxide,  it  prodacet 
less  than  a  third  of  heat  yielded  when  it  is  completely  bH.med.  For  heating  powei 
of  carbon  an  average  of  X4500  units  is  adooted. 


402 


COMBUSTION. 


To  Compute  J^eatin^  J*o'wer  of*  1  ZjIj,  of  a  8fi"^e»^  Coxn- 

l>u8tible. 

When  proportions  of  Carbon,  Hydrogen,  Oxygen^  and  Sidphur  are  given. 
Rule. — Ascertain  ditt'erence  between  hydn.gen  and  .125  of  oxygen ;  multi- 
ply remainder  by  4.28 ;  multiply  sulphur  by  .28,  add  products  to  the  carbon, 
multiply  sum  by  14  500,  divide  by  100,  aud  product  is  total  heating  power 
in  units  of  heat. 

Or,  145(0-1-4.28  H— Ox.i25-i-.28S)  =  »«afc 

Illustration.— Assume  as  preceding  case. 


5.42  'V82.28  X  -125  X  4-28-|-  1.35  X  .28 -{-82.28  X  14 500-T- 100 ■«  15005. 

To   Concipute   Svaporative   Power  of*  1   JJXim  of  a   GS-iveii 

Combustible. 

When  Proportions  of  Carbon^  Hydrogen,  Oxygen,  and  Sulphur  are  given. 
Rule. — Ascertain  dilFerence  between  hydrogen  and  .125  of  oxygen,  multiply 
remainder  by  4.28 ;  multiply  sulphur  by  ,28,  add  products  tu  the  caxbon,  and 
multiply  sum  by  .13,  when  water  is  supplied  at  62Siuid  ,i$  when  at  913°; 
product  is  evaporative  power  in  lbs.  of  water  at  212*^. 

Or,  When  total  heating  power  is  known,  divide  it  by  11 16  when  water  u 
at  62*^,  or  996  when  at  212  . 
Txa.C8THATiu.v.— .By  table,  heating  power  of  Tallow  is  18028  unita 

Hence,  18 028  ^  i xi6  =  16. 15  U>9.  wcUer  evaportUed  at  62^. 

Temperature   of  Coiii"biistion. 

Temperature  of  combustion  is  determined  by  product  of  volumes. and 
specific  heats  of  products  of  combustion. 

Illustration.—  i  lb.  carbon,  when  completely  burned,  yields  3.66  lb&  carbonic 
acid  and  8.94  of  nitrogen.    SpeciQc  heats . 2164  and  .244. 

3.66  X  .2164    =     .792  units  of  heat  for  1°. 


8.94  X  -244      = 

12.6 


2.181 


(I 


t( 


(( 


it 


2.973 *  • 

Consequently,  products  or  combustion  of  i  lb.  carbon  absorbs  2.973  nnlta  of  heal 
in  producing  1°  temperature. 

VC^eigb-t  and   Specifio   Heat  of  Frodiiots  of  Combustion, 
and   Xemperature   of  Combustion.     {D.  K.  CUtrh.) 


I  Lb.  Of  COHBUSTIBLK. 


Hydrogen « 

Sulphuric  ether. . . . , 

Oletiant  gas  (Bi  carburetted  hyd.) 

Tal  lo  w 

Coal  (average) 

Carbon,  or  pure  poke. 

Wax 

Alcohol 

Light  carburetted  hydrogen 

Sulphur 

Turpentine 

Coal,  with  double  supply  of  air.. 


Qui 

Weight. 

wous  Produc 

Menn 

sp«ciiie 

Heat. 

Lbs. 

Water  =  x. 

35-8 
11.97 

.302 
.256 

150 
»3-84 

•257 
.256 

11.94 

12.6 

.246 
.236 

15.21 

.257 

10.09 
18.4 

•27 
.268 

5-35 

.211 

12.18 
22.64 

•257 
.242 

Hent  to  raise 

tiie  Tempnra- 

ture  1  . 


Units. 
10.814 
3.063 
4.089 

3  54 

2.935 

2.973 

2.68 

4-933 
1. 128 

3.127 
5.478 


Tmperatort  o| 
CoinbusUfl*. 


O 
5744 

5305 
5219 

5093 
4879 

4J77 
4836 

482s 
4766 

3575 
3470 
2614 


Rati*. 

100 

93 

§8.7 
85 
85 
84 

83 

62 
60 

45 


Whence  it  appears,  that  mean  specific  heat  of  products  of  combustion,  omitting 
hydrogen  .302  and  sulphur  .211,  is  about  .25. 

Hence.  To  Ascertain  Temperature  of  Comhustion. — Divide  total  heat  of 
combustion  in  units  by  anit3  of  heat  for  i^,  and  quotient  will  give  tem^ 
^erature. 


COMBUSTION.  463 


Illustration.- ^  What  is  tempentart  of  combuetiou  of  coal  of  aventse  oompoei- 

tiont 

Gaseous  products  as  per  preceding  table  xx.94,  which  X  .246  specific  heat  =  2^935 
units  of  heat  at  i^. 

Hence,  14 133  units  of  combustion  (fh>m  table,  page  461)  -r-  2.935  =  4812^  temper- 
ature of  ccfmhAttion  uf  average  coal. 

If  surplus  air  is  mixed  with  products  of  combustion  equal  to  volume  of  air  chem- 
ically combined,  total  weight  of  gases  fur  one  lb.  of  this  coal  is  increased  to  22.64. 
See  following  table,  having  a  mean  specific  heat  ot  .24a. 

Then  22.64  X  -242  =  5-478  uniUfor  1°. 

Hence,  14 133  total  heat  of  combustion -4-  5.478  zrasBo^^  temperature  of  combOB- 
tiou.  or  a  little  more  than  half  that  of  undiluted  products. 

Taking  averaffeSf  it  is  seen  that  the  evaporative  efficiency  of  coal  varies 
directly  with  vwume  of  eonstituent  carbon,  and  inversely  with  volume  of 
constituent  oxyg<en :  and  that  it  varies,  not  so  much  because  there  is  more  or 
lew  carbon,  as,*  chictiy,  because  there  is  less  or  more  oxj^^en.  The  per-cent- 
ages  of  constituent  hydrogen,  nitro^iY,  sidphur,  and  ash,  taking  averages, 
■i.e  nearly  oimstant,  though  there  are  individual  exceptioiis,  and  their  united 
eti'ect,  as  a  whole,  appears  tu  be  nearly  constant  also. 

Meat   of  Conibiiation. 

Or,  number  of  times  in  combustum  of  a  substance^  its  equivalent  weight  of  water 
wou.d  be  raised  1°,  by  heat  evolved  in  combustion  of  substance. 

Alcohol 12  930  I  Ether 16  246  I  Olefiant  gas 21 340 

Charcoal 14545  I  Ohveoil 17750  |  Hydrogen 62030 

CorobuBtion   of  ITuel. 

Constituents  of  coal  are  Carbon^  Hydrogen,  Azote,  and  Oxygen. 

Volatile  products  of  combustion  of  coal  are  hydrogen  and  carbon,  the 
unions  of  whicli  (relating  to  combustion  in  a  furnaee)  are  Carburetted 
hgd)'ogen  and  Bi-carbtiretted  hydrogen  or  Olefiant  ga^^  which,  upon  com- 
bining with  atmosplieric  air,  becomes  Carbonic  acid  or  Carbofiic  oxide^ 
Steamy  and  uncombined  Nitrogen. 

Carbonic  oxide  is  result  of  imperfect  combustion,  and  Carbonic  acid 
that  of  perfect  combustion. 

Perfect  combustion  of  carbon  evolves  heat  as  15  to  4.55  compared 
with  imperfect  combustion  of  it,  as  when  carbonic  oxide  ia  produced. 

I  lb.  carbon  combines  with  2.66  lbs.  of  oxygen,  and  produces  3.66  lbs. 
of  carbonic  acid. 

Smeke  is  the  combustible  and  incombustible  products  evolved  in  combustion  of 
AmI,  which  pass  off  by  flues  of  a  fUraace,  and  it  is  composed  of  sueh  fiortions  of 
hydrogen  and  carbon  of  the  Aiel  gas  as  have  not  been  supplied  or  combined  with 
oxygen,  and  contequently  have  not  been  converted  either  into  steam  or  carl)onic 
acid;  the  hydrogen  so  passing  away  is  invisible,  but  the  carbon,  upon  being  sepa- 
rated  firom  the  hydrogen,  loses  its  gaseous  character,  and  returns  to  its  elementary 
atate  of  a  black  pulverulent  body,  and  as  such  it  becomes  visible. 

BKomfnous  portion  of  coal  is  converted  into  gaseous  state  alone,  carbonaceous 
portion  only  into  solid  state.    It  is  partly  combustible  and  partly  Incombustible. 

To  effect  oombnstlon  of  i  cube  foot  of  coal  gas,  2  cube  feet  of  oxygen  are  required; 
and,  as  locotM  feet  of  atmospheric  air  are  necessary  ta  supply  this  volume  of  oxy- 
gen, I  cube  foot  of  gus  requires  oxygen  of  10  cube  feet  of  a.r. 

In  fnmaces  with  a  natural  draught,  volume  of  air  required  exceeds  that 
when  the  draught  is  produced  artificially. 

An  insufficient  supply  of  air  causes  imperfect  combustiop ;  an  excessive 
auppl^f  a  waste  of  heat. 


464 


COMBUSTION. 


Volame  of  atmospheric  air  that  is  chemically  required  for  combnstioii  of 
1  lb.  of  bituminous  coal  is  150.35  cube  feet.  Of  this,  44.64^^  cube  feet  com- 
bine with  the  gases  evolved  from  the  coal,  and  remaining  105.71  cube  feet 
combine  with  the  carbon  of  the  coaL 

€k)mbi  nation  of  gases  evolved  by  combustion  gives  a  resulting  volume 
proportionate  to  volume  of  atmospheric  air  required  to  furnish  the  oxygen, 
as  II  to  10.  Hence  the  44.64  cube  feet  must  be  increased  in  this  proportion, 
and  it  becomes  44.64  +  4146^49.1. 

Gases  resulting  from  combustion  of  the  carbon  -of  coal  and  oxygen  of  the 
atmosphere,  are  of  same  bulk  as  that  of  atmospheric  air  requiretl  to  furnish 
the  oxvgen,  viz.,  105.71  cube  feet.  Total  volume,  then,  of  the  atmospheric 
air  and  gases  at  bridge  wall,  flues,  or  tubes,  becomes  105.71  4-  49.1  ^  154.81 
cube  feet,  assuming  temperature  to  be  that  of  the  external  air.  Conse- 
quently, augmentation  of  volume  due  to  increase  of  temperature  of  a  fur- 
nace is  to  be  considered  and  added  to  this  volume,  in  the  consideration  of  the 
ca|)acity  of  flue  or  calorimeter  of  a  furnace. 

There  is  required,  then,  to  be  admitted  through  the  grates  of  a  furnace  for 
combustion  of  i  lb.  of  bituminous  coal  as  follows : 

Coal  containing  80  per  cent.  0/ carbon,  or  .7047  per  cent  of  coke. 

I  lb.  coal  X  44-64  cube  feet  of  gas =   44.64 

7047  lb.  carbon  x  150  cube  feet  of  air  . . .  =  10S71 

150.35  cube  feet. 

For  anthracite,  by  observations  of  W.  R.  Johnston,  an  increase  of  30  per 
cent,  over  that  for  bituminous  coal  is  required  =  195.45  cubefcet» 

Coke  does  not  require  as  much  air  as  coal,  usually  not  to  exceed  108  cube 
feet,  depending  upon  its  purity. 

Heat  of  an  ordinary  furnace  may  be  safely  considered  at  1000^ ;  hence  air 
entering  ash-pit  and  gases  evolved  in  furnace  under  general  law  of  ejLpan- 
sion  of  i)ermanently  elastic  fluids  of  ^^^^ths  of  its  volume  (or  .002087)  ^^^ 
each  degree  of  heat  imparted  to  it,  the  154.81  is  increased  in  volume  from 
100°  (assumed  ordinary  temperature  of  air  at  ash-pit)  to  1000°  ^  900^ ;  then 

900  X  .002087  =  1.8783  times,  or  154.81 +154.81  X  1.8783  =  445.59  cvbtfeet. 

If  the  combustion  of  the  gases  evolved  from  coal  and  air  was  complete, 
there  would  be  required  to  give  passage  to  volume  of  but  445.59  cube  feet 
over  bridge  wall  or  through  flues  of  a  furnace ;  but  by  experiments  it  ap- 
pears tliat  about  one  half  of  the  oxygen  admitted  beneath  grates  of  a  furnace 
passes  off  uncombined ;  the  area  of  the  bridge  wall,  or  flues  or  tubes,  must  ctm- 
sequcntly  be  increased  in  this  proi)ortion,  hence  the  445.59  becomes  891.18. 

Velocity  of  the  gases  passing  from  furnace  of  a  proper^proportioned  boiler 

maj'  be  estimated  at  from  30  to  36  feet  per  second.    Then  zr-—,  ~ 7  = 

•^  001-  60x60x36 

.00687  sq.  feet,  or  .99  sq.  ins.,  of  area  at  bridge  wall  for  each  lb.  of  coal  con- 
sui^ied  ))er  hour. 

A  limit,  then,  is  here  obtained  for  area  at  the  bridge  wall,  or  of  flues  or 
tubes  immediately  behind  it,  below  which  it  must  not  be  decreased,  or  com- 
bustion will  be  ini|)erfect.  In  orduiary  practice  it  will  be  found  advan- 
tagiH)us  to  make  this  area  .014  sq.  feet,  or  2  sq.  ins.  for  every  lb.  of  bitu- 
minous coal  consumed  per  sq.  foot  of  grate  per  hour,  and  so  on  in  propcfftioo 
for  any  otlier  quantity. 

Volumes  of  heat  evolved  are  very  nearly  same  for  same  substance,  what- 
ever temperature  of  combustible. 

*  ^•>P*rim«Bt,  4.464  c«b«  «Mt  of  gu  art  •ToWad  from  i  Ih.  of  bUambioai  coal,  raqslilBf  44.64 


COMBUSTION. 


465 


BdoHve  Volumes  of  Air  required  Jbr  Oombu^ion  ofFuds. 

Lb*.    !  Lbs. 

Vi^arlich^s  patent...  13.1    !  ADtbraclte  Coal . . . .  12.13 

Charcoal 11. 16    Bituminous**    ....  10.98 

Coke 11.28    Bitum.Coal,  average  10.7 


Bitum.  Coal,  lowest. .  5.92 

Peat,  dry 7.08 

Wood,  dry 6 

Perfect  combustion  ci  1  lb.  of  carbon  i;eauires  11. 18  lbs.  air  at  62°,  and 
total  wei^^ht^  J2.jg38.  Total  heat  of  combustion  of  i  lb.  carbon  or  char- 
coal is  14  500  thennal  units ;  mean  specitic  heat  of  products  of  combustion 
is  .25,  which,  multiplied  by  12.39  ^^  above  =  3.0975,  and  14  500*  -r-  3.0975  = 
4681°  temperature  of  a  liiniace,  assuming  every  atom  of  oxygen  that  was 
ignited  in  it  entered  into  combination. 

1^  however,  as  in  ordinary  furnaces,  twice  volume  of  air  enters,  then 
products  of  combustion  of  i  lb.  of  cual  will  be  12.39-}-  ii*i8  =  23.57,  which, 
multiplied  by  its  specific  heat  of  .25  as  before,  and  if  divided  into  14  500^ 
quotient  will  be  2461°,  which  is  temperature  of  an  ordinary  furnace. 

Ratio  of  Oombustum. — Quantity  of  fuel  burned  per  hour  per  sq.  foot  of 
grate  varies  very  much  in  different  classes  of  boilers.  In  Cornish  boilers  it 
is  3.5  lbs.  ijer  so.  foot ;  in  ordinary  Liand  boilers,  10  to  20  lbs. ;  (Itlnglish)  13 
to  14  lbs. ;  in  Marine  boilers  (natural  draught),  10  to  24  lbs. ;  (blast)  30  to 
60  lbs. ;  and  in  Locomotive  boilers,  80  to  120  Ib^, 

Volumes  of  air  and  smoke  for  each  culie  foot  of  water  converted  into 
steam,  is  for  coal  and  coke  aooo  cube  feet,  for  wood  4000  cube  feet ;  and  for 
each  lb.  of  fuel  as  follows : 
Coal 307  I  Cannel  coal...  315  |  Coke.........  216  |  Wood 173 

Calorific  power  or  1  lb.  good  coal  =  14  000  X  772  =  10808000  lbs. 

Relative  Evaporation  of  Several  Combustibles  in  X^ba. 
of  "Water,  Keated   1°   by   1   Lb.  of  Miaterial. 


Comboitible. 


Alcohol.....    .813 

BitaminoQS  coal. . . 

Carbon 

Coke  

Hydrogen  (mean). . 

Oak  wood,  dry .... 


(t 


u 


green. 


Compmttion. 


Hyd. 
Carb. 

Hyd.    04 ) 
Carb.  .75  J 


•45  J 


Carb.  .84 

(Hyd.  .06) 
I  Carb.  .53} 
(Hyd.  .08) 
{Carb.  .37f 


Water. 

Lb*. 
8120 

9830 

14220 

9028 

SO  854 

6018 
5662 


Combuatible. 


Olive  Oil 

Peat,  moist 

"    dry 

Pine  wood,  dry.... 

Sulphuric  ether.. 7 
Tallow 


Composition. 


IHyd. 
( Carb. 
(Hyd. 
( Carb. 
iHyd. 
( Carb. 
(Hyd. 
\  Carb. 
(Hyd. 
(Carb. 


•*3 

•77 
.04 

•43) 
.06 

.58 
.06 

•7 

•13 

.6 


W»t«r. 

14560 

3481 

3900 
36>8 

8680 
14560 


I  lb.  Hydrogen  will  evaporate  62.6  lbs.  water  ftom  212°  =  60.509  lbs.  heated  t^. 
I  lb.  Carbon  ''  14.6  lb&  ^'         212°,  or  raise  12  lbs.  water  at 

5o^  to  steam  at  120  lbs.  pressure. 

I  lb.  of  Oxygon  will  generate  same  quantity  of  beat  whether  in  combustion  with 
bydrogen,  carbon,  alcohol,  or  other  combustible. 

Relative  Volumes  of  Gases  or  Products  of  Combustion  per  Lb,  of  FwL 


T«mp. 
Air. 

Supply  e 
xalbt. 
Volnm* 
per  lb. 

0 

CateFMt 

II 

150 
i6x 

104 
313 
393 

173 
ao5 
3S9 

18  lb*. 
Volome 
p«r  Ih. 

Cnlie  IVft. 
225 
241 
258 

389 


of  Fael. 

24lb«. 

Temp. 

Vol  nine 

Air. 

p«r  lb. 

Cub«  Feet. 

0 

300  ^ 

572 

322 

752 

344 

ZXZ3 

409 

1472 

5'9 

2500 

Sapply  of  Air  per  lb.  of  Fad. 
X3  tbe. 
Volume 
per  lb. 

Cube  Feet. 

3>4 

369 

479 
588 

906 


tSlbe. 

34lba. 

Volume 

Volume 

per  lb. 

per  lb. 

Cube  Feet. 

Cube  Feet. 

471 

628 

553 

738 

718 

957 

883 

1 176 

1359 

x8z2 

*  Mean  0/  all  ezperimenti  13964. 


466      COMBUSTION. — EXCAVATION   AND   EMBANKMENT. 

To  Compute  Conauxnption  of*  I^uel  to  Keat  Air* 

Rule. — Divide  volume  of  air  to  be  heated  by  volume  of  i  lb.  of  it,  at  ita 
temperature  of  supply ;  multiply  result  by  number  of  heat-units  ne^^essary 
to  raise  i  lb.  air  through  the  range  of  tem|)erature  to  which  it  is  to  be  heated, 
and  product,  divided  by  nuuiber  of  heat-taiits  of  fuel  used,  will  give  result 
in  lbs.  per  hour. 

ExAMPLK.— What  is  required  congumption  per  hour  of  cool  of  an  average  compo- 
sition to  beat  776400  cube  feet  of  air  at  54^^  to  ii4<'? 

Coal  of  an  average  composition  (Table,  page  461)  =  14 133  heat-units.  Volume  ol 
I  lb.  air  at  54°  (see  formula,  page  522)  =  li-'tSi  ^  ,^.94  cube  feet    i  X114--54 

X  •''S??  (specific  beat  of  air)  =  14.262  heat-uniU. 

776400 

^^—  —  X  14.262  -5- 14 133  =s  6a55  »». 

12.94  -r      -/^  .in* 

Loss  of  heat  by  conduction  of  it  to  walls  of  apartment  is  to  be  added  to  ttila 


EXCAVATION   AND   EMBANKMENT. 

JLiabor  and  "Work  upon  Kxoavatioii  and  B^mbankmenb 

Elements  of  Estimate  of  Work  and  Cost, 

Pier  Day  of  10  Hours. 

Cart. — One  horse.  Distance  or  lead  assumed  at  100  feet,  or  200 feet  f» 
a  tripf  at  a  speed  of  200  feet  per  mnute. 

Earths. — Of  gravelly,  loam,  and  sandy,  a  laborer  will  load  per  day  hito  a 
cart  respectively  10, 12,  and  14  cube  yards  as  measured  in  embankment,  and 
if  measured  in  excavation,  .11  more  is  to  be  added,  in  consequence  of  tho 
greater  density  of  earth  when  placed  in  embankment  than  in  excavation. 

Note. — Earth,  when  first  loosened,  increases  in  volume  about  .2.  but  when  settled 
in  embankment  it  has  less  volume  than  when  in  bank  or  excavation. 

Carting. — Descending,  load  .33  cube  yard.  Level,  .28,  and  Ascending  .25, 
measured  in  embankment ;  and  number  of  cart-loads  in  9,  cube  yard  of  em* 
bankment  are,  Gravelly  earth  3,  Loam  3.5,  and  Sandy  earth  4. 

Lnosening  — Loam,  a  three-horsed  plough  will  loosen  from  250  to  800  cube 
yards  |»er  day. 

Tnmming. — Cost  of  trimming  and  superintendence  i  to  2  cents  per  cubt. 
yard. 

•  Scoopmff,  —  A  scoop  load  measures  about  .1  cube  yard  in  excavation ; 
time  lost  in  loading,  unloading,  and  tummg,  1.125  minutes  per  load;  in 
double  scoopinff  it  is  i  minute.  Time  occupied  for  every  ico  feet  of  dis- 
tance from  excavation  to  embankment,  1.43  minutes. 

Time. — Time  occupied  in  loading,  unloading,  awaitmg,  etc.,  4  minutes  pei 
load. 

To  Compute  Nnm1>«r  of  X^ocula  or  Trips  in  Cube  Yard* 

per   Cart   per  Day. 

f =;—     — ; — I  jk  -f"  y  =  n.    E  repi-esenting  average  distance  of  carting  from  em- 

\E-!-  1004-4/ 
batiicmeni  in  stations  of  100  feel  each,  y  number  of  cartloads  to  cuhe  yard  ofetcona^ 
tion,  and  n  number  of  cube  yards  in  embankment,  hauled  by  a  cart  per  day  to  di» 
tonoeE. 


SXCAVATION   AND   EMBAKKMKNT,  467 

Illustration.  —What  is  number  of  cube  yards  of  loam  that  can  be  removed  by 
one  cart  ft-om  an  embankment  on  level  ground  for  an  average  distance  of  950  feet? 

E  =  250  -r-  joo  =  2.5,  and  y  =  3.5. 

; — X  io-i-3.5  =  -— X  lorT- 3.5  =  26.37  cube  yards, 

2.5  +  4  °'5 

Substituting  for  3,  3.5,  and  4  number  of  cart-loads  in  a  cube  yard  of  embank 
meai,  30, 17.14,  and  15,= 60  minutes,  divided  respecMvely  by  these  numbers. 

*  X  20  .     ,         -.  ,.  17.14  X  A  .     ,     ,        J  'SXfe 

-="1 —  =f^tn  descending  carting;    - '-. =  n,  m  level,  and  -5-. —  ^  n,  m 

"•■T4  *'  +  4  «'  +  4 

ascending,    h  representing  number  of  hours  actuaUy  at  work. 

To   Compute  Cost  of*  Hixoavatins  enid.  ^vatyantaing  per 

Cube  Yard. 
L       e 

1 (-/-|-'  =  'V.    L  rq>resenting  pay  0/  laborers,  v  tJcUue  or  result  of  loading 

V  WW  t 

in  different  earths,  OJ  10, 12,  and  14,  c  0/  one  cart  and  driver  per  day,  l  cost  of  loosen- 
tng  material  per  cube  yard,  and  s  cost  <\f  trimming  and  superintendence,  both  per 
cube  yard,  and  aU  in  cents. 

Illustration.— Volume  of  excavation  in  loam  30000  cube  yards.  Level  carting 
650  feet  &=  6. 5  trips  or  courses.  Loosening  by  plough  1.7  cents  per  pube  yard, 
laborers  xo6  cents  per  day,  carts  160,  and  trimming  and  superintendence  1.5  cents 
per  cube  yard. 

c  =  i2,    and  -^ — -r- — =^i6.3^numberof  loads  per  da}f  by  preceding  formula 
Then 1- -^ |-i-7  +  i-5  — 8.833  +  9.707  + J-7  +  «-5  =  2i-83  cents  per  cube 

12  10.33 

yard. 

Earth^v^ork . 

By  Carts.— A  laborer  can  load  a  cart  with  one  third  of  a  cube  yard  of  sandy 
earth  in  5  minutes,  of  loam  in  6,  and  of  heavy  soil  in  7.  This  will  give  a  result,  fbr 
a  day  of  10  hours,  of  24,  20,  and  17.2  cube  yards  of  the  respective  earths,  after  de- 
ducting the  necessary  and  indispensable  losses  of  time,  which  is  estimated  at  .4. 

^  It  is  not  customary  to  alter  the  volume  of  a  cart- load  in  consequence  of  any  dif- 
TCreoce  in  density  of  the  earths,  or  to  modify  it  in  consequence  of  a  slight  inclina- 
tion in  the  grade  of  the  lead. 

In  a  lead  of  ordinary  length  one  driver  can  operate  4  carts.  With  labor  at  $1 
per  day,  the  expense  of  a  horse  and  cart,  including  harness,  repairs,  etc.,  is  $1.25 
per  day. 

A  laborer  will  spread  flrom  50  to  100  cube  yards  of  earth  per  day. 

The  removal  of  stones  requires  more  time  than  earth. 

The  cost  of  maintaining  the  lead  in  good  order,  the  wear  of  tools,  superintend- 
ence, trimming,  etc.,  is  fiiHy  a>5  cents  per  cube  yard. 

By  Wheel-barrows. — A  laborer  in  wheeling  travels  at  the  rate  of  200  feet  per  mih- 
ot«.  and  the  time  occupied  in  loading,  emptying,  eta.,  is  about  1.25  minutes,  with- 
ont  including  lead.  The  actual  time  of  a  man  in  wheeling  in  a  day  of  10  hours  is  .9 
or  t.35  minutes  per  lead  of  100  fl3et    Hence, 

To   Compute  Ntxxnber  of*  Bapro-w-Loads  rexnoved.  by  a 

X^aboper  per  J^&y. 

— "^  =  n.    n'  r^esenting  number  of  leads  of  100  feet 

A  barrow-load  is  ali^oat  .04  of  a  cube  yard. 

Roolc. 

By  Carte.— Quarried  rock  will  weigh  upon  an  average  4250  lbs.  per  cube  yard, 
and  a  load  may  be  estimated  at  .2  cube  yard,  and  weighing  a  very  little  more  than 
a  load  of  average  earth. 

Hence,  the  comparative  cost  of  carting  earth  and  rock  is  to  be  computed  on  the 
basis  of  a  cube  yard  of  earth  averaging  3.5  loads  and  one  of  rock  5  loads,  with  the 
addition  of  an  increase  in  time  of  loading,  and  wear  of  cart. 


4e>b 


EXCAVATION    AND   EMBANKMENT. 


Ijat»or. 

For  labor  ofa  man,  see  Animal  FoWer,  pp.  433-34. 

By  Wheel-barrow.— A  barrow-load  may  be  assumed  at  175  Iba  —  2  cube  feci  of 
space. 

Bleating.  — Wben  labor  is  $1  per  day,  bard  rock  in  ordinary  position  may  bd 
blasted  and  loaded  for  45  cents  per  cuoe  yard. 

The  cost,  however,  in  consequence  of  condition,  position,  etc.,  may  vary  ft-om  ao 
cents  to  $  I 

See  Blasting  page  443. 

17  cube  yards  of  hard  rock  may  be  carted  per  day  over  a  lead  of  100  feet,  at  a  cost 
of  7.29  cents  per  yard. 

The  preceding  elements  are  esMTitiaUy  deduced  from  notes  Jurnished  by  Bflwood 
Morris,  C.E.,  and  tlie  valuable  treatise  of  John  C.  TrautwinCj  C.E.,  Phila.,  1873. 

Stone. 

Hauling  Stone. — A  cart  drawn  by  horses  over  an  ordinary  road  will  travel  1.15 
miles  per  hour  of  trip  =  2.3  miles  per  hour. 

A  four-horse  team  will  haul  from  25  to  36  cube  feet  of  stone  at  each  load. 

Time  expended  in  loading^  unloading,  etc.,  including  delays,  averages  35  minutes 
per  trip.  Cost  of  loading  and  unloading  a  cart,  using  a  horse-crane  at  the  quarry, 
and  unloading  by  hand,  when  labor  is  $  i  25  per  day,  and  a  horse  75  cents,  is  af 
cents  per  perch  =  24.75  cube  feet=  i  cent  per  cube  foot 

Work  done  by  an  animal  is  greatest  when  velocity  with  which  he  moves  is  .125 
of  greatest  with  which  he  can  move  when  not  impeded,  &nd  force  then  exerted  .4>r 
of  utmost  force  the  animal  can  exert  at  a  dead  puU. 

XGartli-work.    {Moletuforth.) 

Proportion  of  Getters^  Fillers^  and  Wheelers  in  different  mlSy  Wheekrt  being  oal- 
culated  at  50  yards  run. 


In  loose  earth,  sand,  etc. 

"  Compact 

"Marl 


6«U'i. 

Fill's. 

Wheel's. 

G«tt's. 

FUl's. 

Wheel's. 

z 

X 

z 

z 

3 
2 

z 

3 
2 

In  Hard  clay 

''  Cknnpact  gravel 
"  Rock,  flrom . . . . 

z 
z 

3 

z 
z 

z.as 

A.verage  'Weigh.t  o€  Sartlis,  H.ool&Sf  etc. 

Per  cube  yard. 


Lbs. 

Sand 3360 

Gravel 3360 

Mud 3800 


Lbs.  I  Lbs. 

Marl 29Z2    Sandstone . . .  4368 

Clay 3472    Shale. 4480 

Chalk 4033  I  Quartz. 4492 


Lbi. 
Granite......  4700 

Trap... 4700 

Slate. 47Z0 


Sulk   of*  R,ock,  S^arth-worlc,  etc.,  Origizial  Kxoavatlou 

aatsuxned    at    1. 

When  in  En^>ankment. 


Rock,  large z.5  z.6  z.7 

Medium z.25  to  z.7 

Metal 4...  X.2    to  Z.8 


Sand  and  gravel z.07 

Clay  and  earth  after  subsidence . . .  1.08 


ti 


(t 


before 


t( 


z.a 


In  small  stones,  per  cent  of  interstices  to  total  volume  is  44  to  48,  which  is  an 
increase  in  volume  of  solid  rock  to  fragments  of  79  and  92  per  cent 

The  relative  proportions  of  Earth  in  Bank  and  Embankments,  as  given  by  differ- 
ent  authorities,  are  so  varied  and  so  opposite  that  it  is  evident  the  difference  is  acci- 
dental, depending,  primarily,  u|ion  the  season,  location,  and  character  or  condition 
of  the  earth,  and  then  upon  the  height  of  the  embankment,  the  manner  and  durar 
lion  of  time  of  raising  it 

Thus,  Eilwood  Morris,  ante  p.  466,  makes  the  embankment  less,  and  Mole8wor(l^ 
B8  above,  gives  It  greater 


FRICTION.  469 

FRICTION. 

Friction  is  the  force  that  resists  the  bearing  or  movement  of  one  sur- 
face over  another,  and  it  is  termed  Stidhig  when  one  surface  moves 
over  another,  as  on  a  slide  or  over  a  pin ;  and  Rolling  when  a  body  ro- 
tates upon  the  surface  of  some  other,  as  a  wheel  upon  a  plane,  so  that 
new  parts  of  both  surfaces  are  continually  being  brought  in  contact  with 
each  other. 

The  force  necessary  to  abrade  the  fibres  or  particles  of  a  body  is 
termed  Meature  of  friction  ;  this  is  detcimined  by  ascertaining  what 
portion  of  the  weight  of  a  moving  body  must  be  exerted  to  overcome 
the  resistance  arising  from  this  cause. 

CoffficierU  of  Friction  expresses  ratio  between  pressure  and  resistance  of 
one  surface  over  or  upon  another,  or  of  surfaces  upon  each  other. 

Angle  of  Repose  is  the  greatest  angle  of  obliquity  of  pressure  between 
two  planes,  consistent  with  stability,  the  tangent  of  which  is  the  coefficient 
of  friction. 

Erperiments  and  Invesfigations  have  adduced  the  following  observations 
and  results : 

1.  Amount  of  friction  in  surfaces  of  like  material  is  very  nearly  propor- 
tioned to  pressure  perpendicularly  exerted  on  such  surfaces. 

2.  With  equal  pressure  and  similar  surfaces,  friction  increases  as  dimen* 
sions  of  surfaces  are  increased. 

3.  A  regular  velocity  has  no  considerable  influence  on  friction ;  if  velocity 
is  increased  friction  may  be  greater,  but  this  depends  on  secondary  or  inci- 
dental causes,  as  generation  of  heat  and  resistance  of  the  air. 

M.  Morin'&«xperiments  afford  the  principal  available  data  for  use.  Though  con- 
stancy of  lyictioD  holds  good  for  velocities  not  exceeding  15  or  16  feet  per  second, 
yet,  for  greater  velocities,  resistance  of  friction  appears,  fbom  ex^ieriraenls  of  M. 
Poir^,  in  1851,  to  be  diminished  in  same  proportion  as  velocity  is  increased. 

4.  Similar  substances  excite  a  greater  degree  of  friction  than  dissimilar. 
If  pressures  are  light,  the  hardest  bodies  excite  least  friction. 

5.  In  the  choice  of  unguents,  those  of  a  viscous  nature  are  best  adapted  for 
rough  or  porous  sur&ces,  as  tar  and  tallow  are  suitable  fur  surfaces  ot  woods, 
and  oils  best  adapted  for  surfaces  of  metals. 

6.  A  rolling  motion  produces  much  less  friction  tlian  a  sliding  one. 

7.  Hard  metals  and  woods  have  less  friction  than  soft. 

8.  Without  unguents  or  lubrication,  and  within  the  limits  of  33  lbs.  press" 
ore  per  sq.  inch,  the  friction  of  hard  metals  upon  each  other  may  be  esti- 
mated generally  at  about  one  sixth  the  pressure. 

9.  Within  limits  of  abrasion  friction  of  metals  is  nearly  alike. 

10.  With  greatly  increased  pressures  friction  increases  in  a  very  sensible 
ratio,  being  greatest  with  steel  or  cast  iron,  and  least  with  brass  or  wrought 
iron. 

IT.  With  woods  and  metals,  without  lubrication,  velocity  has  very  little 
influence  in  augmenting  friction,  except  under  peculiar  circumstances. 

12.  When  no  unguent  is  interposed,  the  amount  of  the  friction  is,  in  every 
case,  independent  of  extent  of  surfaces  of  contact ;  so  that,  the  force  with 
which  two  surfaces  are  pressed  together  being  the  same,  their  friction  is  the 
Mune,  whatever  may  be  the  extent  of  their  surfaces  of  contact 

13.  Friction  of  a  body  sliding  upon  another  will  be  the  same,  whether  the 
body  moves  upon  ite  face  or  upon  its  edge, 

Rr 


470 


PBICTION. 


14.  When  fibres  of  materials  cross  each  other,  firiction  is  less  than  when 
they  run  in  the  same  direction. 

15.  Friction  is  greater  between  surfaces  of  the  same  character  than  be- 
tween those  of  different  characters. 

16.  With  hard  substances,  and  within  limits  of  abrasion,  friction  is  as 
pressure,  without  regard  to  surfaces,  time,  or  velocity. 

17.  The  influence  of  duration  of  contact  (friction  of  rest)  varies  with  the 
nature  of  substances ;  thus,  with  hard  bodies  resting  upon  each  other,  the 
effect  reaches  a  maximum  very  quickly ;  witli  soft  bodies,  vety  slowly ;  with 
wood  upon  wood,  the  limit  is  attained  in  a  few  minutes;  and  with  metal  (m 
wood,  the  greatest  effect  is  not  attained  for  some  days< 

Coefficients    of  F'riction    and    A^ngles    of   Repose. 

The  CoefflcieDt  of  Friction  is  the  tangent  of  the  augte  of  repose  Arom  a  borixontal 
plane. 


MatikiaL. 


Belt  on  wood,  dry 

Clay,  damp 

"    wet 

Earth 

"     dry 

*'     wet  clay 

Gravel. , 

Hemp  on  dry  oak 

"       wet    "    

Sand,  fine 

Timber  on  stone 

"       "  timber,  dry 

"       "        "       soaped. 

Metal  on  Metal,  wet, 

dry 

lubricated. 

Wood  on  wood,  dry. 

"     ♦'  stone 


ti 


(( 


CoeflliilenL 


•47 

I 

.25  to. 31 

.X    to  .25 

.81 

323 

.81  to  I. II 

•53 

•33 
.6 

•4 
.25  to. 5 

.04   to  .2 

•3 

.15  to  .2 

,08 

.4  to  .6 
•4 


Anfcle. 


45" 

14O  to  17O 

14O  to  43O 
17^ 


i?o 

t0  48O 

180 

30' 

3'"; 

22" 

140 

t0  260 

1^0' 

20 

to  11° 

30' 

160 

30' 

8°  to  iio 

30' 

4° 

9" 

to  22° 

22° 

1025° 

Cotangent  of  Angle. 

Exponent  of 

Stability. 


Surpacbs. 


Oak  on  oak 

Wrought  iron  on  oak, 


Cast  iron  on  oak. 

(t  H  il 


Pressure  =  t. 
Lubrication. 


Soap 

Wet 

Sojip 

Wet 

.Soap 

lny 


3.23  to  4 

1  to  4 

'•«3 
•3« 
9  to  z.  23 

t.§9 

3 
1.67 

25 

2  t04 

2.8  to  4.9 

3^3-3 
49*07 
•«4 
a  5  to  6 

21  to  3-5 
CMflldeot. 


.16 
.26 
.21 
»2a 
.19 
.27 


Leather  belt  on  oak 

Wheel  Gearing.  Grooves  of  wheel,  V  angle  scfi.  Compared  with  leather  belts, 
under  a  pressure  equal  to  the  tension  of  the  belts,  kiis  proved  to  have  greater  ad- 
hesion, equal  to  30  per  cent,  in  one  instance. 

Leather  belts  over  wood  drums  .47  of  pressure,  and  over  turned  cast-iron  pulleys 
28  of  pressure. 

Coefficients  of*  ITriction   of  Alotion. 


SawatAXOt*. 


Hemp  cord^  etc {^j;^ 

Metal  upon  wood Mean... 

Sole-leather,  smooth,  upon  wood  (Raw 

or  metcU t  I'T 

Wood  upon  metal Mean . . . 

Wood  upon  wood ,,,.,,,,,.... 


Q 

Conditi 

1 

on  ofS 

• 

1 

0 

nrfiwea 

and  Ui 

ipienta 

1 

•45 

•33 

— 

— 

— 

— 

— 

— 

•15 

— 

.19 

— 

.18 

'^1 

.07 

.09 

.09 

.9 

•54 

•3<> 

.16 

— 

.2 

-^ 

•34 

•31 

■in 

— 

•'i 

— 

.42 

.24 

.07 

.ott 

.a 

.36 

•25 

— 

,07 

.07 

•«5 

■»3 


«4 


PSICTION. 


47 1 


Hel»tive  Value 

Wood 


of*  XJnsuexit^   to   fieduoe   I^riction,. 


UMGtTBNTS. 


Dry  mmp 

Lard 

Lard  and  plumbago. 


upon 
Wood. 


•4 

.82 


Wood 

upon 

Metala. 


3» 

•8s 
.67 


MatoU 

upon 

Mctola. 


•«7 

•7 
.96 


UnociNTs. 

Wood 

tipOB 

Wood. 

Olivaoil 

Tallow 

I 

Water 

.sa 

Wood 

upon 

MeUb, 


•93 
•34 


M«taU 
upon 


.8 
.18 


rPo  JDeterzxiiiie   CoeffloieAtt  of*  F'riotioii  of  Bodies. 


Place  them  upon  a  horizontal  plane,  attach  a  cord  to  them,  and  lead  it  in 
a  direction  parallel  to  the  plane  over  a  pulley,  and  suspend  from  it  a  scale  in 
which  weignts  are  to  be  placed  until  body  moves. 

Then  weight  that  moves  the  body  is  numerator,  and  weight  of  body  moved 
is  denominator  of  a  fraction,  which  represents  coefficient  required. 

lLLU8TRATioif.— If;  by  a  pressure  of  320  lbs.  fHelion  amounts  to  80  lbs.,  its  coeffi- 
cient of  fViction  in  this  case  would  be  80  -r-  320  = .  95. 

Hence,  if  coefficient  of  friction  of  a  wagon  over  a  gravel  road  was .  25,  and  the  load 
8400  lbs.,  the  power  required  to  draw  it  would  be  B400  x  .25  =  2100  lbs. 

Coefficients  of*  ^xle  Friction.    {M.  Mwrim.) 


ScanAKCBs. 


Condition  of  Surfaces  and  UngnenU. 


Dry  and 
a  little 
Greaay. 


Bell  metal  upon  bell  metal.. . 
Cast  iron  upon  bell  metal. . . . 
Oist  iron  upon  cast  iron. .... 

Cast  iron  upon  lignum  vit«e 

Wrought  iron  upon  bell  metal. . 
Wrought  iron  upon  cast  iron. . . 
Wrought  iron  upon  lignuiu-vitn 


•••«•« 


,194 

»  •  •  • 

.185 
.251 

»  •  a   • 

.188 


Greasy 
and  wet 

with 
Water. 


.161 
.079 

•  ■  •   • 

.189 


Oil,  Tallow,  or  Lard. 


In  usual 

Continu- 

way. 

ously. 

.097 

•  •  •  • 

.075 

.054 

•075 

.054 

.1 

.092 

.07s 

•054 

•075 

•054 

•J25 

■  •  •  « 

Very  soft 
and  puri- 
fied Car- 

riane 
Grease. 


.065 

•  •  ■  • 

.109 
.09 


Friction  of  a  journal  of  an  axle  which  presses  on  one  side  only,  as  in  a 
worn  bearing,  is  less  than  whea  it  [Hreases  at  all  points^  the  difference  being 
about  .005. 

Friction  o/ArUg. — With  axles,  friction  of  motion  has  alone  been  experi- 
mented upon.  When  weight  upon  axle  and  radius  of  its  journal  is  given, 
mechanicai  eject  oi  friction  may  be  readily  determined. 

The  mechaniceU  e£ftct  absorbed  by,  or  of  friction,  increases  with  pressure 
or  weight  upon  journal  of  axle  and  number  of  revolutions.. 

Frictidh  of  an  axle  is  greater  the  deeper  it  lies  in  its  bearing. 

If  journal  of  an  axle  lies  in  a  prismatic  bearing,  as  in  a  triangle,  etc., 
friction  is  greater,  as  there  is  more  pressure  on,  and  consequently  greater 
friction  in  contact :  in  a  trianguZar  baring  it  ia  about  double  that  of  a  cyl- 
indrical bearing. 

To  Compute  Aleclxanical  Bffeot  of  IT'riction  on-  Journal 

of  an  A^xle. 

P.^^    .  **  —  f*.    n  rejfre^nting  number  of  revolutions^  and  r  radius  of  journal 

infeeL 

ImtiTBATKUir.— Weight  of  a  wheel,  with  its  axle  or  shaft  resting  00  its  journals, 
is  360  Iba ;  diameter  of  Journals  2  insj  and  number  of  revolutions  30;  what  Is  me* 
ffhan*^^  effect  of  the  flriction,  the  coefficient  of  it  being  .x6t 

3.I4<^  X  30  X  .»6  X  360  X  I H-  I?  _  452.4  ^  ^         ^^ 
?o  30 


472  FBICTION. 

By  application  of  friction-wheels  (rollers^  friction  is  much  rednced,  and 
medbanical  ^ect  then  becomes,  when  weignts  of  friction-wheels  are  disre- 
gardedf 

i- — X =  =  F-    ^  representing  radii  of  axles  of  JruMom-vohedM^ 

30  a'  COS.  a  -T-  2 

a'  radii  of /rietion-wheeli^  and  a  angle  ofUnes  of  direction  between  aans  of  roller 
and  axis  offridion-wkeels. 

When  a  single  frictum-vOuel  is  used,  -'^—  X  /  W  =  F,  and  -737-7  =  F'.    F 

r^presentkig  mechanical  effect 

iLLUSTRATioir.— A  Wheel  and  its  shaft,  makiDg  5  revolalions  per  minute,  weighs 
3ocxx>  Iba  ;  its  diameter  and  that  of  its  Journals  are  32  feet  and  10  ins.  The  joumate 
rest  upon  a  ft-iction-wheel,  the  radius  of  which  is  5  times  greater  thaa  its  axle. 

I.  What  is  the  power  at  circumference  of  wheel  necessary  to  overcome  friction  f 
2.  What  is  mechanical  effect^ of  the  friction  ?  3.  What  is  reduction  of  friction  by 
use  of  the  flriction-wheel  ? 


^2  "T—  2X12 

=  38. 4,  ctrcttm.  qf  wiieel  —  38. 4  times  thai  of  axU. 


IO-r-2 


Coefficient  of  friction  assumed  at  .075.     Hence  ^°°°° — '^^  =  58. 59  lbs. = power 

38.4 

at  circum.  to  overcome  friction  at  axle.     2.  — — ^''^'   =z  2.6iBfeet  =  distance  passed 

by  friction. 

Consequently,  ^^-^- — -  =  .2181  feet  =  distance  passed  by  friction  in  one  second. 
00 

Hence,  .2181  X  2250  (30000  X  .075)  =  490.725.  3.  i  -^  5  =  .2  •=  radius  offricHon- 
axle-i-by  radius  offrUAion-wked,  and  38.4  X  .2  =  7.68  ^fi-UAion  referred  to  ctrcum. 

of  wheel,  and  *^^'^  =  98.145  =  mechanical  effect  by  application  offriction-wheei 

=  a  reduction  offourfflhs. 

P'rlotion   of  Pivots. 

Friction  on  Pivots  is  independent  of  their  velocity,  increases  in  a  greater 
degree  than  their  pressures,  and  approximates  very  near  to  that  of  sliding 
and  axle  friction. 

Friction  on  Conical  Bearings  is  greater  than  with  like  elements  on  plane 
surfaces. 

Figure  of  point  of  a  pivot,  as  to  its  acnteness,  affects  friction :  with  great 
pressure  the  most  advantageous  angle  for  the  figure  ranges  firom  30°  to  45° ; 
with  less  pressure  it  may  1^  reduced  to  10°  and  ia°. 

Relative  Value   of  A^ngles   of  Pivots. 
6° X    I    is<> 66    I    450 39 

Relative  Values  of  difTereiit  ^laterials  fbr  use  as  Pivots. 

Agate 83  I  Granite i       I  Tempered  steel 44 

Glass 55  I  Kock  crystal 76  | 

BViction.  and   Rigidity  of  Corda«ce. 

Experiments  by  Amonton  and  Coulomb,  with  an  apparatus  of  Amonton*8, 
furnish  the  following  deductions : 

1.  That  resistance  caused  by  stiffness  of  cords  about  the  same  or  like  pot 
leys  varies  directly  as  the  suspended  weight. 

2.  That  resistance  caused  by  stiffness  of  cords  increases  not  only  in  direcf 
proportion  of  suspended  weights,  but  also  in  direct  proportion  oC  diametei 
of  the  cords. 


FBICnON. 


473 


Consequently,  that  resistance  to  motion  over  the  same  or  like  pulleys, 
arising  from  stiffness  of  cords,  Is  in  direct  compound  proportion  of  suspend- 
ed weight  and  diameter  of  cords. 

3.  That  resistance  to  beudiug  vai  ied  inversely  as  diameter  of  sheave  or 

drum. 

g_i_C  T 

4.  That  complete  resistance  is  represented  by  expression  — ^ — .    S  rep- 

resaUing  conatani  for  each  rope  and  sheave^  expresiing  ttiffnesa  of  rope ;  T 
tension  of  rope  which  is  being  bent^  expressed  (^  C  T;  C  constant  for  each 
rope  ani  sheave ;  and  d  diameter  of  sheave^  inciuding  diameter  of  rope, 

5.  That  stiffuess  of  tarred  ropes  is  sensibly  greater  than  that  of  white  ropes. 

lilxtending  results  obtained  by  Coulomb,  Morin  furnishes  following  for' 
fnuias : 

For  White  Ropes:  12  n-r-d  (.00915+001  77  n 4- .0012  W)  =  R.  For  Tarred 
Ropes :  12  n  -^  d  (.010  54  -f-  .0025  n  -f-  -0014  W)  =  R.  K  representing  rigidity  in  llu. , 
n  number  of  yams,  d  diameter  0/ sheave  in  ins.  and  rope  cmnirined^  and  W  weight 
in  lbs. 

Illustration.— What  is  valuer  of  stiffhess  or  resistance  of  a  dry  white  rope  bav- 
iug  a  diameter  of  60  yams,  which  runs  over  a  sheave  6  ins.  in  diameter  in  the 
iproove,  with  an  attached  weight  of  1000  lbs.  ? 

12  X  60 

Assume  diameter  for  60  yarns  to  be  7.2  ins.    Then  (.002 15  +  .001 77  x 

7.2 

60  +  -0012  X  1000)  =  100  X  1*308  35  =  130.835  lbs. 

Value  of  natural  stiffness  of  ropes  increases  as  the  square  of  number  of 
threatls  nearly,  and  value  of  stiffness  proportional  to  tension  is  directly  as 
number  of  threads,  being  a  coustant  number.  Hence,  having  the  rigidity  f(»r 
any  number  of  threads,  the  rigidity  for  a  greater  or  lesser  number  is  readily 
ascertained. 

Wire  Ropes, 

Weisbac|i  deduced  from  his  experiments  on  wire  ropes  that  their  rigidity 
for  diameters  capable  of  supporting  equal  strains  with  hemp  ropes  is  con- 
siderably less. 

Wire  ropes,  newly  tarred  or  greased,  have  about  40  per  cent  less  rigidity 
tban  untaried  ropes. 

Railing  FHcOon. 

Rolling  Friction  increases  with  pressure,  and  is  inversely  as  diameter  of 
rolling  liody. 

For  rolling  upon  compressed  wood,/=  .019  to  .031. 

When  a  Body  is  moved  upon  Rollers  and  I*ower  applied  at  the  Base  of  the  Body, 

t/-f-/')  —  =c  p.  fandf  representing  atefficients  of  friction  of  two  surfaces  upon 

•which  roUers  act. 

When  Power  is  applied  at  Circumference  of  Roller,  /  W  -r-  r  =  F. 

When  Power  is  applied  at  Axis  ofRoUer,f\f-^r-7-a  =  P. 

Beariuffs  ibr  Propeller   Shaft.    {Mr.  John  Penn.) 


BlARtllOS. 


Babbit's  metal  on  iron*. . . 

Box  00  brass 

Box  on  troD 

Brass  on  brass 

Biaas  on  Iron 

•  Rolled  oot. 


PreMurtf 

Tlm« 

per 

ofOi>- 

Sq.  Tnch.'eratlon. 

Lbs. 

Min. 

1600 

8 

4480 

5 

448 

30 

448 

30 

448 

30 

Biasings. 


Brass  oh  Iron! 

Brass  on  iron  t 

I.ignnm-vitsB  on  brass  . . 
Snalce*wood  on  brass . . . 
Lignumvit»  on  iron  . . . 


Preasare 

Time 

I»«r 
Sq.  Inch. 

of  Op. 
eretioa 

Lbt. 

Min. 

675 
4480 

60 

4000 

5 

4000 
1250 

2z6o 

t  Abrmded. 
BJ4* 


tSetful. 


474 


FEICnON. 


Heault  of  Bxperixnents  upon  F'riotioxi  ofSeVer&l  In«tra« 

xxxents,    (B.  S.  BcUl) 

iNSTHUmNT. 


Pulley,  single 

"       3  sheaves 

"       iliflerential 

Screw 

Inclined  plane,  angle  17O  2'. . . . 

Screw  Jack 

Wheel  and  Axle 

"       "    Barrel 

"       "    Pinion 

Crane 


Friction. 

Velocity  ratio. 

Mscbaoical 

eiBcieacy. 

UmAiI 
effsct. 

F               L 

Per  C«at. 

2.21    - 

-•5453 

2 

>.8 

90 

a.  36  - 

-.238 

6 

4 

64 

3.87  --.151 

16 

6.Z 

38 

.0     - 

h.014 

»93 

70 

36 

.09  - 

-•55 

3^4 

1.72 

5« 

.66  - 

-.007 

414 

1x6 

28 

.204 --.043 

3» 

22 

70 

•5     - 

-.169 

5-95 

5-55 

93 

2-46   - 

-.21 

8 

^r 

51 

.0     - 

-.056 

23 

ll 

.185- 

-.008 

137 

87 

F  representing  fridion^  and  L  Zoodl. 

Illustration  i.--If  it  is  required  to  ascertain  power  necessary  to  raise  200  lbs. 
2  feet,  by  a  single  movable  pulley,  200  x  .5453  +  2.21  =  111.27  W>».,  which  must  be 
applied  as  power  to  raise  200  lbs.  2  feet.  1 11.27  X  2  ^c  222. 54  lot. '  Henoe,  for  appli- 
cation of  222.54  '^s^t  200  or  89.87  per  cent  are  tt$^ftUly  or  effectively  employed. 

2.— If  it  is  re<)uired  to  raise  100  lbs.  by  a  three-sheave  pulley,  then  100  X  -2384- 
2.36  =  26.16  lbs,  which  most  be  applied  as  power  to  raise  100  lbs.  6  feet  (3X2  =  6). 
26. 16  X  6  =  156.96  lbs.  Hence,  ibr  application  of  156.96  lbs.,  100  or  63.71  per  cent 
are  effectively  employed. 

3. — ^The  velocity  ratio  of  a  crane  being  137,  and  Its  mechanical  efflciency  87,  a 
man  applying  26  il>s.  to  it  can  raise  87  x  26  =  2262  lbs. 


^Application,   or  preoeding   Results. 

•  Illustration.  — Tf  a  vessel,  including  onidle,  weighing  1000  tons,  is  to  be  drawn 
upon  an  inclined  plane  having  a  risd  of  10  feet  in  100  of  its  length,  what  will  be  the 
resistance  to  bd  overcome,  the  cradle  being  supported  on  wrotight^lron  axles  in  ca^t- 
iron  rollers,  running  on  cast-iron  raild? 

=  100  tons  ■=  power  required  to  draw  vessel  independent  oj  friction. 

100 

Ratio  of  ft-iction  to  pressure  ef  wrought  iron  on  cast,  in  an  axle  and  its  bearing, 
.075.     Ratio  of  ditto  of  cast  iron  upon  cast^  say  .005. 

Hence  .075  -)-  .005  =  .08  of  1000  tons = 80  tons,  which,  added  to  100  tons  before  de- 
ducted, gives  180  twts,  or  resistance  fn  h^  overcome. 

Power  or  effect  lost  by  friction  in  axles  and  their  bearing  may  be  ex- 
pressed by  formula 
W/dr 


230 


=  P.    /  repre6enting  coefficient  of  friction^  d  diameter  of  axk  in  ins. ,  and 


r  nuniber  of  revolutions  per  minute. 

Illustration.— PressHre  on  piston  of  a  steam-engine  Is  20000  tbs.,  namber  of 
revolutions  20,  and  diameter  of  driving  shaft  of  wrought  iron  in  a  brass  Journal  Is 
8  ins. ;  what  is  ihe  etl'cct  of  (Viction  ? 

20000 X  .07  X  8X20 


230 


=  973- Qi  lbs. 


Hence  P  »  -5-  33  000  =  IP.    v  representing  circumference  of  shaft  in  feet  X  by  revo- 
lutions per  minute. 

The  power  or  effect  lost  by  friction  in  guides  or  slides  may  be  expressed 
by- following  formula: 

W  fs  r 

jf-— :a  P.    t  representing  stroke  of  cnm-head,  and  I  length  of  eof^ 

60  X  v(5  '•  — *  ) 
nsciing  rod  infect* 


FBICTIOK. 


475 


SViotional  I^esistances. 

I^riotion   of  Steam-engines. 
JETriotion  oi*  Condensing   E^ngiiies   in   Xjbs.  per   Sq..  Inoh 


of  Piston. 


OwillaUsg 

B«ain 

Direct- 

Diameter 

OacUlating 

Beam 

and 

and 

actinff  and 
Vertical. 

7 

of 

and 

and 

Trunk. 

Geared. 

Cylinder. 

Tmnk. 

Geared. 

5 

6 

50 

a- 5 

a.  7 

4 

5 

6 

60 

2-4 

a.6 

3-5 

4    - 

5 

^ 

2.3 

2-5 

3 

3.6 

4-5 

a 

a.  3 

3^ 

35 

4 

100 

1.6 

a.  a 

a.6 

3 

35 

no 

1-5 

a 

Direct- 

actinfc  and 

Vertical. 

3-3 
3 

a.  7 
2.6 

a- 5 
a- 1 


DUuneter 

of 
Cylinder. 

10 

15 

ao 

25 
30 
35 

Experiments  upon  different  steam-engines  have  determined  that  friction, 
when  pressure  on  piston  is  about  12  lbs.  per  sq.  incti,  does  not  exceed  1.5  lbs., 
or  about  one  tenth  of  power  exerted. 

Friction  of  double  cylinder  (50-inch  diam.)  direct-acting  condensing  pro- 
peller engine  is  1.25  lbs.  per  sq.  inch  of  piston  =  10.3  per  cent,  of  total  power 
developed ;  friction  of  load  is  .9  lbs.  per  sq.  inch  of  piston  =  7.5  per  cent,  of 
total  pressure;  and  friction  of  propdier  is  1.3  lbs.  per  sq.  inch  of  piston  = 
10.8  per  cent  of  total  power  =s  28.6  per  cent 

Friction  of  double  cylinder  (70-inch  diam.)  inclined  condensing  water- 
wheel  engine  with  its  load  is  15  per  cent,  of  total  power  developed. 

In  general,  when  engines  are  in  good  order,  their  efficiency  ranges  from  80 
per  cent,  for  small  enginca  tc  93  per  cent,  for  large. 

Power  required  to  work  air-pumps  is  5  per  cent,  and  to  work  feed-pumps 
I  per  cent. 

Results   of  Kxpex^ixnents   iipon   Kriotion    of  Alaolilnerjr. 

{Davison. ) 

Sfeam-engine^  vertical  beam,  one  tenth  its  power ;  190  feet  horizontal,  and 
180  feet  vertical  shafting,  with  34  bearings,  having  an  area  of  3300  sq.  ins., 
with  II  pair  of  spur  and  bevel  wheels;  7.65  H*. 

Set  ()f  ihree-Uirow  Pumpg,  6  ins.  in  diara.,  delivering  5000  gallons  per  hour ' 
at  an  elevation  of  165  feet ;  4.7  £P,  or  about  13  per  cent. 

Two  pair  iron  Roiiers  and  an  elevator,  grinding  and  raising  320  bushels 
malt  per  hour ;  8.5  IP. 

AUrmaahing  Machine,  800  bushels  malt  at  a  time ;  5.68  H*. 

A  rchimedes  Screw  (ninety-five  feet),  15  ins.  in  diameter,  and  an  elevator 
conveying  320  bushels  malt  per  hour  to  a  height  of  65  feet;  3.13  Ip. 

Friction  dutch. — Driven  by  a  leather  belt  14  ins.  in  width ;  tace  of  clutch 
5  ins.  deep ;  broke  a  cast-iron  shaft  6.5  ins.  in  diameter. 

Flax  Mill  (i/.  Otrnut,  1872). — Two  condensing  engines,  cylinders,  12.9 
ins.  X  44.3  ins.  stroke,  and  22  ins.  x  59.8  ins.  stroke.  Pressure  of  steam, 
50  lbs.  per  sq.  inch ;  revolutions,  25  per  minute.  Friction  of  entire  machin- 
erj*,  20  i^er  cent 

With  ve;^table  oil  and  hand  oiling  a  steam  pressure  of  62  lbs.  per  sq. 
inch  was  required,  and  with  mineral  oil  and  continuous  oiling  a  pressure  of 
50  lbs.  only  was  required. 

By  continuous  oUing,  a  saving  of  44  per  cent  was  effected  oyer  hand 
ofliiiig. 


476 


FBICTION. 


T^spL  Mill. 

Power  required   to   Drive  ICngiite,  Shafting,  and  entire 

M!aoliinery.    {M.  ComtU.) 


Parts. 


Engines,  shafting,  and  belts 

4  cards. 

14  drawing  frames  (29  heads  or  156 

slivers) \ 

4  combing  machines '. 

6  roving  frames  (330  spindles) 

20  spinning  frames. 

Dry  (1480  spindles) 

Wet  (2080       "      ) 

ToUl  1 5a  1 1  IP. 


Total. 

30.41 

8.42 

7.19 

2.22 
7.78 

47-5 
46.59 


Indieatfld  Hon»-pow«r. 
One  Machine 


at  work. 

empty. 

_ 

__ 

2.105 

'•423 

.0934 

.0794 

•555 
.02627* 

•151 
2-434 

.032 1* 
0224* 

2-515 
1.613 

Effect  of 
Mnchine«i 


32 

15 

78 
7-3 

ai.6 
19 


*  Per  100  spindle*. 


Estimate  of  Morsels  Power.— 20S0  8pmd\iX,     wet,     34.4  per  ff,  long  flbra 

640       "  dry,     20.1    "     "      "       »' 

840       '*  "       14.  s  "     "   tow. 


}±1 

average,  23.7  " 


3560       " 
The  IP  per  100  spindles  varies  inversely  as  sq.  root  of  their  number. 

Winding    Kngine  {O.  H.  DaglUh). 

Shafts  738  to  ij^o  feet  in  depth;  cylinder  65  X  84  ins.  stroke;  pressure  of  steam 
19  Mm.  per  sq.  ind^;  revolutions  11.  i  per  minule;  mean  diameter  of  drum^  26  feet 
H*  313.4;  effect  235  =  75  per  cent 

Tools.    {Dr.  Bartig). 

n  t' 
Single  ehiearing,   i  •}- -r—  =W  to  drive  tool,    n  represenlting  nwmher  of 


a¥ 


13?  to  shear,     a  representing 


26.7 

cuts  per  minute,  t  thickness  of  plate,  and 

1980000 

area  of  surface  cut  or  punched  per  hour  in  sq.  ins.,  and  F  (ii66-f  1691 1)  a  factor  ex- 
pressing work  requir^  to  cut  or  shear  a  surface  of  i  inch  square. 

•  Illustratiox.— A  shearing  machine  cutting  4648  sq.  ins.  of  surface  per  hour,  in 
plates  .4  inch  thick,  required  .68  IP  to  run  and  4.3  to  operate  it,  equal  to  5  horses. 

▼             -r^i    ^      1         J-             85  000  6  <*  I                   ,j    ,  .           ,  ri-^oobni 
Iron    r»late-l>endiiig.     =  Vfor  cold  pUUes^  and  — > 

=  Pfor  red-hot  plates,    b,  t,  and  I  representing  breadth,  thickness^  and  length  of  plate, 
r  radius  of  curvature,  all  in  ins.,  and  P  net  power  of  bending. 

Power  for  large  rolls  when  running  only  .5  to  6  IP. 

Ordinary    Cutting   Tools,  in    ^letal. 

Materials  of  a  brittle  nnture.  as  cast  iron,  are  reduced  must  economically  in  power 
consumed,  by  heavy  cuts;  while  materials  which  yield  tough  curling  shavings  are 
more  economically  reduced  by  thinner  cuttings.  Following  formulas  apply  to  light 
cutting  work : 

Power  required  to  plune  cast  iron  is— 

Planing  Cast  iron,  W  (.0155  H — |  =  H*.    W  representing  weight  of  east 

\  II 000  «/ 

iron  removed  per  hour,  in  lbs.,  and  s  average  sectional  area  of  shavings,  in  sq.  ins. 

Steel,  Wrought  iron,  and  Gun-metal,  with  cuts  of  an  average  character- 
Steel 112  W  =  IP  I  Wrought  iron,  .052  W  =  :ff  I  Gun-metal,   .0127  W  =  EP 

Planing  and   Iblolding.  —  Run  without  cutting. =  ff.     N  rep 

3000 

reseiUing  sum  of  revolutions  of  all  tite  shafts  per  minute. 


FRICTION.  477 

Molding.  —  P*ne,  0566  -|-  '.3^^^  and  Red  Beech,  088  95  +  -^^^  =  ff.    hrep- 
resenting  depth  of  wood  ad  doion  to  form  molding. 
Turning.  —Steel,  .047  W  =  ff;   Wrought  Iron,  .0327  W  =  ff:   Cast  Iron, 

0314  \y  =  w. 

For  turning  off  metals,  power  required  is  less  than  for  planing,  and  it  is  ascer- 
tained that  greater  power  is  required  for  small  diameters  than  large. 

Light  LatheSj  .05 -|-  .0005  n  =  IP;  1  or  2  shafts,  .05 -)- .0012  n  =  IP;  3  or  4  shafts, 
. 35 -f- .05  n  =  H?.    Heavy  LcUhes,  .025 -|- .0031  n ;  .025  +  .053  n ;  .025  -f-.iS  n. 

n  rqvresmting  number  ofrevoluiions  of  spindle  per  minute. 

Drillinfi;.— Power  required  to  remove  a  given  weight  of  metal  is  greater  than 
in  planing.     X'olume  being  taken  in  place  of  weight. 

Hi^from  .4  to  2  ins.  in  diameter, 
Ca8tiron,dry.  V /.oi684-~^)=H».    Wrought  iron,  oil.  V  (.ox68  +  l^\=H». 

V  representing  wdume  removed  in  cube  ins.  per  hour^  and  d  diameter  of  hole. 

Witbont  gearing,  .0006  n-f-  .0005  n';  with  gearing,  .0006  n  -f  .001  n';  radial 
drills  without  gearing,  .0006  n  -f  -004  n';  radial  drills  with  gearing,  .04  -4-  .0006  n  -f 
.004  n'.     n  representing  number  of  revolutions  per  minute  of  gearing  shaft,  and  n' 

of  drill. 

n  s 

Slotting.—Stroke  8  ins.    .045  -\ =  H*.   n  rqaresenting  number  of  strokes 

4000 

per  minute,  and  s  stroke  in  ins. 

'WoodHsa'wiiig,  Circular— A  cube  foot  of  soft  wood  and  half  a  cube 
foot  uf  bard,  reduced  to  sawdust,  requires  i  IP. 

Hard  wood,  —  =  ff '.  Soft  wood,  —  =  EP'.  A  representing  area  in  sq.  feet 
and  W  horse-power  per  sq  foot^  both  cut  per  hour,  and  e  width  of  cut  in  ins. 

From  .4  to  4  ins.  in  diameter.— Vine.    V  (  000 125  -f      ^  J  =  H*. 

S  c 
Dry  pine  timber.    .004  28  4-0065  ^  =  IP'.    S  representing  stroke  of  saw  in  feet, 

and  ffeed  per  cut  in  ins. 

n  d 

-  =^Wfor  horse-power  to  run  only  without  cutting,    d  representing  diam,^er 


32000 
qfsaw  in  ins.,  and  n  number  of  revolutions  per  minute. 

Net  power  required  to  cut  with  a  circular  saw  is  pro|H)rtional  to  volume  of  ma- 
terial removed.  For  a  saw  cutting  hot  iron,  at  a  circumferential  speed  of  7875  feet 
per  minute,  and  making  a  cut  .14  inch  wide,  power  is  expressed  by  formulas— 

.709  A  =  ff,  for  red-hot  iron.    1.013  A  =  H*.  for  reo  hot  pteel. 

A  rq^esenting  sectional  area  of  surf  a: :  3ut  through,  in  sq.  feet. 

'Vertical   Sa^w.    .c»4  284- .0065  -^  =  ff  in  dry  pine  timber  per  sq.  foot 

per  hour.    S  representing  stroke  of  saw  in  feet,  c  wi^Uh  of  cut  in  ins.,  and  ffeed  of 
cut  in  ins. 

Sand  Saw.     0034 +  1^*-^=H»' in  i\n«.    .oo483-f^5L^=H>'tnOaJfc. 

10000/  ^  "'      10000/ 

.005  76  +  — — - — J  =  W*  in  Beech,    v  representing  velocity  of  saw,  and  f  rate  of  feed, 
10000/ 

In  feet  per  mmule. 

Kld3  2(23 

Screw  Cutting.    Screws,  =-2 —  =  H*.     Taps,  —  =  H*.    d  rqpresenHng 

64  29 

diameter  in  ins. ,  and  I  lengtfi  cut  in  feet  per  hour. 
Machine  of  medium  dimensions,  .2  W- 


478 


FBICTION. 


#fe  C^  tv 

G^rindstones.     — —  =  W.   p  representing  pressu^  upon  itone^  v  drcum 
Jerential  velocity  ofstorte  in  feet  per  minute^  and  C  coefficient  cf friction. 

Coefficients  of  Ft'iction  between  Grindstones  and  Metals, 

Cast  iron,  .22  at  high  speed,  .72  at  low  speedy  Wrought  iron,  .44  at  high  speed, 
X  at  low;  Steel,  .29  at  high  speed,  .94  at  low. 

Power  required  to  run  them  alone. 

Large 0000409^^  =  1?    I   Small 16 -f. 0000895  dv  =  H* 

or oooiaSd^n  r=IP   |         or. 16-)- .000 28^^11    =IP 

G^raiIl   Conveyers. 

Conveyert  of  Grain  horizontally  by  Screws  and  Bands. — A  12-inch  screw,  having 
4  ins.  pitch,  turning  in  a  trough,  with  a  clearance  of  .25  inch,  revolving  with  a 
speed  of  maximum  effect,  60  turns  per  minute,  will  discharge  6.75  tons  of  grain 
per  hour,  expending  .04  H*  per  foot  run.  Sectional  area  of  body  of  grain  moved 
49  per  cent,  of  that  of  screw.  At  speeds  above  60  turns  per  minute,  the  grain  nrill 
not  advance,  but  will  revolve  with  screw. 

Steatxi-engines. 

Friction  of  a  Steam-engine  varies  as  its  principal  dimensions,  and  increases 
slightly  with  the  load. 

Besults  q/' re«te.— Engine,  cylinder  4  in.,  57  per  cent.;  cylinder  9  In.,  13  tu 
22  percent.  Corliss  engine,  cylinders  18  and  24  in.,  xo  percent,  worthington 
large  pumping  engine,  9  per  cent.  Compound  engine,  first  cylinders  of  from  12  u> 
21  ins.,  80  to  89  per  cent.     [O.  K.  Clark.) 

Engine^  Unloaded,     -^-pr  =  pressure  of  steam  in  lbs.  per  sq.  inch,  and  D  diame- 

V  *^ 
ter  of  cylinder  in  ins.  . 

jMariiie   B^iij^iue.     Vertical  Beam.     {J.V.Merrick.)    In  Pressure  of  Steam. 


Air-pump .585  to  .7      lb 

Cylinder  packing 15    ".3       " 

Valves,  etc ».     .169  "  .258   ' 


Weight  of  parts. 51b. 

Air-pump  packiug 046  to  .092  lb. 

Average  of  all 165  lb. 


If  journals  are  kept  constantly  lubricated,  friction  of  weight  will  be  reduced  to 
.33,  and  pressure  from  1.65  —  .33  to  1.32  lbs.  per  sq.  inch  of  piston  to  operate  en- 
gine without  loud.     Friction  of  load,  from  2  to  5  per  cent 

Sore-w    Steamer.     {Vice- Admiral  C.  R.  Moorsom^  R.  N.) 

Hull  moving 07   |  Hotation  of  screw. .    .09    I  Hull  resistance. 606 

Load 063  I  Slip  of  screw 171  |  Total x 

Locomotives  and  Railway  Trains*    See  Railways,  page  68a. 

Friction,   developed,   in   Xjaunoliing    of  "Vessels. 

Experiments  made  by  a  committee  of  Franklin  Institute  on  fViction  of  launching 
vessels  gave,  when  pressure  or  weight  was  fVom  2280  to  3560  per  sq.  foot,  a  co- 
efficient of  .0335. 

Marine  Railway.— To  draw  3000  tons  upon  greased  slides  a  power  of  250  tons  was 
necessary  to  move  it,  but  when  started  150  tons  would  draw  it. 

Woollen  Machinery.    {Dr.  Hartig.)    When  running  empty  8. 15  IW^  and  at  work 
32- 97- 
The  efficiency  of  the  various  machines  averaging  60.5  per  cent. 

Friction   of*  a   T<^on-oonden8iixg   Steam-ensiiie. 

Friction  of  an  Engine.  Diameter  of  cylinder  20  ins.  by  40  ins.  stroke  of  pistoik 
Revolutions,  15  to  70  per  minute. 

Engine,  unloaded,  2  lb&  per  sq.  inch =  x.86  to   8.69  H*. 

Stiafling,  uuloaded,  2. 5  to  45  lbs.  per  sq.  inch =  2.36  to  io.6x  " 

Total  4.5  to  6.5  lbs.  per  sq.  inch =  4.2a  to  88<3    ** 


FUBL.  479 

FUEL. 

With  equal  weights,  where  each  kind  is  exposed  under  like  advas- 
tageous  circumstances,  that  which  contains  most  hydrogen  ought,  in  its 
combustion,  to  produce  greatest  volume  of  flame.  Thus,  pine  wood  is 
preferable  to  hard,  and  bituminous  to  anthracite  coal. 

When  wood  is  used  as  a  fuel,  it  should  be  as  dry  as  practicable. 
To  produce  greatest  quantity  of  heat,  it  should  be  dried  by  direct  ap- 
plication of  heat ;  usually  it  has  about  25  per  cent,  of  water  combined 
with  it,  heat  necessary  for  evaporation  of  which  is  lost. 

Different  fuels  require  different  volumes  of  oxygen;  for  different 
kinds  of  eoal  it  varies  from  1.87  to  3  lbs.  for  each  lb.  of  coal.  60  cube 
feet  of  air  is  necessary  to  furnish  i  lb.  of  oxygen;  and,  making  a  due 
allowance  for  loss,  nearly  90  cube  feet  of  air  are  required  in  furnace  of 
a  boiler  for  each  lb.  of  oxygen  applied  to  combustion. 


Clamfica- 

lion 

ofOoaL 


Seml-bltumlii.. .  {^f}"^* 

!  Caking. 
Cherry. 
Splint 


(betni  or  gaseous. 

Situmin.ou.8   Coal. 

Lignite.  Brown  CoiU  or  Bituminous  Wood. — Presents  a  (Jistinct  woody 
structure ;  is  brittle,  and  bums  readily,  leaving  a  white  ash,  and  cuntains 
and  absorbs  moisture  in  some  cases  fully  40  per  cent. 

Caking. — Fractures  uneven,  and  when  heated  breaks  into  small  pieces, 
which  afterwards  agglomerate  and  form  a  compact  body.  When  the  pro- 
portion of  bitumen  is  great,  it  fuses  into  a  pasty  mass.  This  coal  is  unsuit- 
ed  where  great  heat  is  reouired,  as  the  draught  of  a  furnace  is  impeded  by 
its  caking.    It  is  applicable  for  production  of  gas  and  coke. 

Splint  or  Hard. — Color  black  or  brown-black,  lustre  resinous  and  glisten- 
ing. It  kindles  less  readily  than  caking  coal,  but  when  ignited  produces  a 
clear  and  hot  fire. 

Ckerry  or  Soft. — Alike  to  splint  coal  in  fracture,  but  its  lustre  is  more 
splendent.  Does  not  fuse  when  heated,  is  very  brittle,  ignites  readily,  and 
pn'oduces  a  bright  fire  with  a  yellow  flame,  but  consumes  rapidly, 

Cannel. — Color  iet,  or  gray  or  brown-black,  coni|iact  and  even  texture,  a 
shining,  resinous  lustre.  Fractures  smooth  or  flat,  conchoidal  in  every  di- 
rection, and  polishes  readily. 

Experiments  upon  practical  burning  of  this  description  of  coal  in  Airnace  of  a 
Bteam-boiler  give  an  evaporation  of  from  6  to  10  lbs.  of  fVesh  water,  under  a  pressure 
of  30  lb&  per  sq.  inch  per  lb.  of  coal;  Cumberland  (Hd.,  U.  S.)  coal  being  most  ef- 
fective, and  Scotch  least. 

Limit  of  evaporation  from  9ia°  for  i  lb.  of  best  coal,  assuming  all  of  heat 
evolved  from  it  to  be  absorbed,  would  be  14.9  lbs. 

Coals  that  contain  sulphur,  and  are  iq  proipress  of  decay,  are  liable  to  spootaneoas 
combustion. 

There  are  very  great  variations  in  the  chemical  composition  and  proper- 
ties of  coals. 


AfMTtcdn. 
Carbon,  ttora  75  to  80  per  cent 
Hydrogen,  tcom  5  to  6. 
Oxygen,  fi-om  4  to  la 
Nitrogen,  fh>m  z  to  2. 
Sulphur,  flrom  .4  to  3. 
Ash,  fliQin  3  to  la 
Coke,  from  48.5  to  79.5. 


Brititk. 
Carbon,  from  70  to  91  per  eeni. 
Hydrogen^  from  3.5  to  nearly  7. 
Oxygen,  flrom  about .  5  to  2a 
Kitrogen,  from  a  mere  trace  to  a.s. 
Salphur,  (h>m  o  to  5. 
Ash,  from  .3  to  15. 
Coke,  flrom  49  to  93. 


For  Volume  of  Air,  etc^  see  Combustion,  page  465. 


48o 


FUBI.. 


Goal* 
AntlxrsMjite. 

Anthraciie  or  Glance  CoaL,  or  Culm — Is  hard,  compact,  lustrous,  and  some- 
times iridescent,  most  perfect  being  entirely  free  from  bitumen ;  it  ignites 
with  difficulty,  and  breaks  into  fragments  when  heated. 

Evaporative  power,  in  furnace  of  a  steam-boiler  and  under  pressure,  is 
from  7.5  to  9.5  lbs.  of  fresh  water  per  lb.  of  coal. 

Coal  from  one  pit  will  sometimes  vary  6  per  cent,  in  evaporative  value. 
i^metUs  of  Various  A  merican  Coals. 

Earthy 
Matter. 

Pm- 
C«ai. 
—  _  ^         5.a 


Illinois,  Warren  Co. 

Bureau    '* 

Mercer    " 

Indiana,  Clay       '^ 

Cooprlders 

Pennsyl-  \  Connellsville 

vania  )  Yongliiogliciiy . . . 

Fayette  Co 

Kentucky,  Sardric 

Mud  River 

Ohio,  NelsoDville 

Colorado.  Carbon  City 

Washington  Territory 


Specific 

Fixed 

Volatile 

Moiat- 

» ..   ' 

Gravity. 

Carbon. 

MHtter. 

Water. 

nre. 

Aih. 

Per 

Per 

Per 

Per 

Per 

Cent. 

Cent. 

CenL 

Cent. 

Cent. 

1.23 

51-7 

*Ii 

— 

— 

— 

1.32 

57-6 

— 

XI. 2 

2-4 

1.26 

54.8 

31-3 

— 

8.4 

56 

1.38 

56. 5 

32-5 

8.5 

2-5 

Z.38 

50.5 

435 

3 

— 

4 

1.28 

65 

24 

4-5 

— 

6.5 

«-3 

55-* 

35 

X 

5.6 

1.29 

5« 

34 

3 

— 

5 

1.32 

51 

42.5 

2 

— 

4-5 

1.38 

57 

37 

3-5 

— 

as 

1.27 

^H 

33-05 

6.65 

— 

X.9 

X.2Z 

56.8 

34-2 

4-5 

— 

4-5 

X.33 

58.25 

3J-7S 

7 

— 

3 

Coke. 

Coke. — Coking  in  a  close  oven  will  give  an  increase  of  yield  of  40  per  cent, 
over  cokiiiff  in  heaps,  gain  in  bulk  beiug  22  per  cent.  Coals  when  coked  in 
heaps  will  lose  in  bulk. 

Cannel  and  Welsh  (Cardiff)  coals  when  coked  in  retorts  will  gain  from  10 
to  30  per  cent,  in  bulk  and  lose  36.5  per  cent,  in  weight. 

Relative  costs  of  coal  and  coke  for  like  results,  as  developed  by  an  ex- 
periment in  a  locomotive  boiler,  are  as  1  to  2.4. 

Evaporative  power  in  furnace  of  a  steam-boiler  and  under  pressure,  is 
from  7.5  to  8.5  lbs.  of  fresh  water  per  lb. 

Bituminous  coal  will  vicld  from  60  to  80  per  cent,  of  coke.  Averaging 
66  ])cr  cent.    It  is  capable  of  absorbing  15  to  20  per  cent,  of  moisture. 

Heat  of  combustion  lost  in  cokuig  of  bituminous  coal  40  per  cent 

Clxarooal. 

Charcoal^  properly  termed,  is  not  made  below  a  temperature  of  536°*  The 
best  quality  is  made  from  Oak,  Mafde,  Beech,  and  Chestnut. 

Wood  will  furnish,  when  properly  burned,  about  23  per  cent  of  coal. 

Charcoal  absorbs,  upon  an  avera^  of  the  various  kinds,  from  .8  per  cent. 
of  water  for  Beech,  to  16.3  for  Black  Poplar,  Oak  absorbing  about  4.28,  and 
I'ine  8.9. 

Evaporative  power,  in  furnace  of  a  boiler  and  under  pressure,  is  5.5  lbs. 
of  fr^  water  per  lb.  of  coal. 

Volume  of  air  chemically  required  for  combustion  of  i  lb«  of  charcoal  is, 
when  it  consists  of  79  carbon,  129  cube  feet  at  62^. 

138  bushels  charcoal  and  432  lbs.  limestone,  with  2612  lbs.  of  ore,  will  piro- 
duce  I  ton  of  pig  iron. 


FUEL. 


481 


Wood. 


Cork 

Oak 

Beech. 

Pine 

Poplar  roots. 


Wood. 

Weight. 

Larch 

Per  Cent. 

40-31 
36.06 

34-69 
34-59 
34-17 

CheBtnat 

A  pple 

Elm «..: 

Birch 

Wood. 


produce  of  Charcoal  from  Various  Woods  dried  at  300^  and  Carbonized 

at  572^.    {M.  VioletU.) 

Weight. 

Per  Cent. 
33-75 
33-74 
33- 61 
33.28 
3x88 


Weight. 

Per  Ce^t. 
62.8 
46.09 

44-25 
41.48 
4a  9 


Maple 

Willow 

Black  elder. 

Ash 

Pear 


Poplar 3Z.X2  per  cent 

In  a  Grem  or  Ordinary  State.    ( Weight  per  cent. ) 


Apple 23.8 

Ash 26.7 

Beech 21.  i 


Birch 24.1 

Elm 25.1 

Maple........  22.9 


Oak 22.85 

*'  young...  33.3 
Poplar. 2C.S 


Red  Pine 23 

White  Pine...  23.5 
Willow i8.6 


It  appears  from  this  that  cork,  the  lightest  of  woods,  yields  largest  percentage 
of  charcoal,  about  63  per  cent. ;  and  that  poplar  yields  lowest,  about  31  per  cent. 
There  does  not  appear  to  be  any  definite  relation  between  density  of  wood  and 
volume  of  yield. 

Produce  by  a  slow  process  of  charring  is  very  nearly  50  per  cent,  greater  than  by 
a  quick  process. 

Xjig-iiite. 

Lignite  is  an  imperfect  mineral  coaL  It  is  distinguished  from  coal  by 
its  .large  proportion  of  oxygen,  being  from  13  to  29  per  cent  Its  specific 
gravity  ranges  from  1.12  to  1.35. 

Elements  of  Various  A  merican  Lignites,    ( W.  M.  Barr.) 


LocAnoN. 


Kentucky 

Blandville . . . 
Washington  Terr'y . . . . 
Vancouver's  Island. . . . 
Colorado,  Carbon  City . . 

Canon  City . . 

Arkansas...  1 

Tesuis,  Robertson  Co.  . . 


Spec. 

Flzed 

Volatile 

Total 

Grav. 

Carbon. 

Matter. 

Water. 

Ash. 

Volatile. 

Percent. 

Percent 

Per  Cent. 

Per  Cent. 

Per  Cent. 

X.2 

40 

23 

30 

7 

53 

1. 17 

31 

48 

xi-5 

9-5 

59-5 
38.75 

— - 

58.25 

3«-75 

7 

3 

— 

62 

35 

4 

3 

35 

X.27 

^I'l^ 

46 

3-5 

9-25 

38.7 

x.a8 

56.8 

34-2 

4-5 

4-5 

— 

34-5 

28.5 

32 

5 

60.5 

1.23 

45 

39-5 

XX 

4-5 

S0.5 

Coke. 

Per  Ceut. 
47 
405 
61.25 

65 

50-5 
61.3 

39-5 
4^5 


A.  s  p  li  al  t  U.ZX1 . 
A^haUum  contains  1.65  to  10.09  P^^  <^^^  ^^  oxygen. 

Wood. 

Woodj  as  a  combustible,  is  divided  into  two  classes,  the  bard,  as  Oak,  Ash, 
Elm,  Beech,  Maple,  and  Hickory,  and  soft,  as  Pine,  Cotton,  Birch,  Sycamore, 
and  Chestnut 

Green  wood  subjected  to  a  temperature  ranging  from  340°  to  440°  will 
lose  30  to  45  per  cent,  of  its  weight. 

At  a  temperature  of  300°,  Oak,  Ash,  Elm,  and  Walnut,  in  a  comparatively 
seasoned  state,  lost  from  16  to  18  per  cent. 

Woods  contain  an  average  of  56  per  cent,  of  combustible  matter. 

From  an  analysis  of  M.  Violette  it  appears  that  composition  of  wood  is  about 
same  throughout  the  tree,  and  that  of  the  bark  also;  that  wood  and  bark  have  about 
same  proportion  of  carbon  (49  per  cent.),  but  that  bark  has  more  ash  than  wood. 
Xieaves  and  small  roots  have  less  carbon  than  wood  (45  per  cent.),  and  more  ash, 
5  and  7  per  cent 

Leaves  when  dried  at  2x2^  lost  60 per  cent  of  water,  and  branches  45  per  cent 

Ss 


482 


FUJBL. 


Evaporative  power  of  i  cube  foot  of  pine  wood  is  equal  to  that  of  x  cabe 
foot  of  fresh  water ;  or,  in  the  furnace  of  a  steam-boiler  aud  under  pressure, 
it  is  4.75  lbs.  fresh  water  for  1  lb.  of  wood. 

Northern  Wood. — One  cord  of  hard  wood  and  one  cord  of  90ft  wood,  such 
as  is  used  upon  Lakes  Ontario  and  Erie,  is  equal  in  evaporative  effects  to 
sooo  lbs.  of  anthracite  coal. 

WesUifi  Wood.'— Out  cord  of  the  description  used  by  the  river  steamboats 
is  equal  in  evaporative  qualities  to  12  bushels  (960  lbs.)  of  Pittsburgh  coaL 
9  cords  cotton,  ash,  and  cypress  wood  are  equal  to  7  cords  of  yellow  pine. 

Solid  portion  (lignin)  of  all  woods,  wherever  and  under  whatever  circum- 
stances of  growth,  are  nearly  similar,  specific  gravity  being  as  i^^6  to  1.53. 

Densest  woods  give  greatest  heat,  as  charcoal  produces  greater  heat  than 
flame. 

For  everv  14  parts  of  an  ordinary  pile  of  wood  there  are  11  parts  of  space ; 
or  a  cord  of  wood  in  pile  has  71.68  feet  of  solid  wood  and  56.32  feet  of  voids. 

Trees  in  the  early  part  of  April  contain  so  per  cent  more  water  than  they 
do  in  the  end  of  January. 

Proportion  of  Ash  in  100  Lbs.  0/ several  Woods. 
Woons.  Wood.       Lmves.  Woods.  Wood.       Lmtc*. 


Ash. . . 
Beech. 
Birch . 


P«r  Cent 
.5 
•35 
•34 


PerCant. 


5-4 
5 


Elm , 

Oiik. , 

Pitcb  PineL 


Percent. 
Z.88 

.91 

as 


Per  Cent. 
1X.8 

4 
3«5 


Peat. 


Peat  is  the  organic  matter,  or  soil,  of  bogs,  swamps,  and  marshes— decayed 
moss,  sedge,  coarse  grass,  etc. — in  beds  varying  from  i  to  40  feet  in  depth. 
That  near  the  surface,  and  less  advanced  in  transformation,  is  light,  spongy, 
and  fibrous,  of  reddish-brown  color ;  lower  down,  it  is  more  compa<^  of  a 
darker  brown  color ;  and,  in  lowest  strata,  it  is  of  a  blackish  brown,  or  almost 
black,  of  a  pitchy  or  unctuous  surface,  the  fibrous  texture  nearly  or  alto- 
gether transformed. 

Peat,  in  its  natural  condition,  contains  from  75  to  80  per  cent,  of  water. 
Occasionally  its  constituent  water  amounts  to  85  or  90  per  cent.,  In  which 
case  peat  is  of  the  consistency  of  mire.  It  slirinks  very  nmch  in  drying ; 
and  its  specific  gravity  varies  from  .22  to  j.o6^  surface  peat  being  lignteat, 
and  deepest  peat  densest. 

When  peat  is  milled,  so  that  its  fibre  is  broken  up,  its  contraction  in  dry- 
ing is  much  increased,  and  in  this  condition  it  is  termed  condemf-d. 

When  ordinarily  air  dried,  it  will  contain  20  to  30  per  cent  of  moisture, 
and  when  effectively  dried  at  least  15  per  cent 

Products  of  Distillation  of  P^at, 

Water  31. 4.    Tar  2.8*    Gas  36.6.    Charcoal  29.2. 

The  distillation  of  the  tar  will  yield  parafiine,  oil,  gas,  water,  and  chai^ 
coal,  and  the  water  acetic  acid,  wood  spint,  and  chloride  of  ammonia. 

Evaporative  power,  in  furnace  of  a  steam-boiler  and  under  prtasurei  ia 
from  3.5  tc  5  lbs.  of  fresh  water  per  lb.  of  fuel. 

Tan. 
Tan,  oak  or  hemlock  bark,  after  having  been  used  in  the  prooeaa  of  tan- 
ning, is  combustible  as  a  fuel.  It  consists  of  the  fibre  oS.  the  bark,  and, 
aocordhig  to  M.  Peclet,  5  parts  of  bark  produce  4  parts  of  dry  tan ;  and 
heating  power  of  it  when  perfectly  dry,  or  containing  but  15  per  cent  of 
ash,  is  6100  units ;  while  that  oC  tan  in  an  ordinary  state  of  dryness,  con- 
toiiiing  30  per  cent  of  water,  is  4284.  Weight  of  water  evaporated  at  21a* 
W  I  lb.,  equivalent  to  these  ooits,  is  6w3x  Iba.  for  dry,  and  4^4  for  moist 


VtTBL. 


483 


Relative  V^ues  of  difibrent   'P'xielm. 
Dmemunom.  J^uS        '^^^       "£> 


Peach  Mountain,  Pa. 
Beaver  Meadow  . . . . 

Bituminous. 

Newcastle 

Pictou 

Liverpool 

Canneltou,  lud 

Scotch 

Pine  wood,  dry 


t^i 

CO  h^ 

•si** 

-^.^ 

•S^r 

5 

PS 

ia7 

z 

9.88 

.923 

8.66 

.809 

8.48 

.792 

7.84 

.733 

7-34 

.686 

6.95 

.649 

4.69 

.436 

.982 
.776 

.738 
.663 
.616 

.625 

175 


=^g 

§ 

■^50 

It 

.505 

.633 

.725 

•945 

.207 

.748 

.6 

X 

.595 
588 

.887 
.418 

.346 

I 

!i^6 

.581 

z 

.333 

.852 

X 

.984 

'578 

.848 

.52X 

•499 

•649 

.909 

— 

16.4x7 

-*. 

— 

AVeislitSy  K-vaporative    Po^vtrers    per  Weietlit  and    Hulk 
etc.,  of*  difiereixt   Fuels.    (TT.  R.  Johnion  and  others.) 


FVIIm 


BlTmUNOUB. 

Camberland,  naximum 

*'  minimum 

DaflVyn 

Cannel,  Wigan 

BlossburKh 

Midlothian,  screened 

average 

Newcastle,  Hartley 

Pictoa i 

Pi  t  tabu  rgh 

Sy  d  ney • 

Carr'8  Hartley 

Clover  Hill,  Ya 

Canneltou,  Ind 

Scotch,  Dalkeith 

Chill   

Japan 

AHTHBACITS. 

Peach  Moantatn 

Forest  Improvement 

Beaver  Meadow 

Lackawanna 

Beaver  Meadow,  No.  3 

Lehigh 

Cork. 

Natural  Virginia 

Midlothian    

Cumberland    

MiSOBLLANBOUS. 

Charcoal,  Oak... 

Peat 

Warlich'sftiel 

Wylam's     '^    

Pine  wood,  dry '. 


Specifle 
Gravity. 


I-3>3 
'•337 
1.326 
X.23 

x.3a4 
1.283 

1.494 
X.257 
X.318 
X.252 

1.338 
X.362 
X.28S 

1.273 
«.5»9 

X.231 

X.464 

«'477 

1.554 

X.42X 

x.6x 

X.S9 

1-323 


x-5 
•53 
1. 15 


Weight 

Steam  from 
Water  at 

per 
Cbba  Foot. 

SIS*  by  1  lb. 
of  Fuel. 

Lbt. 

Lb*. 

52.92 

xa7 

54-29 

9-44 

53-22 

10.14 

48.3 

7-7 

53-05 

0.72 
8.94 

43.72 

54-04 

8.39 

50.82 

8.76 

49-25 

8.41 

46.81 

8.2 

47.44 

7-99 

7.84 

47.88 

45-49 

7.67 

47-65 

7'H 

51.09 

7.08 

— 

572 

48.3 

53-79 

xaxi 

53.66 

iao6 

56.19 

9.88 

•48.89 

9-79 

54-93 

0.3I 
8.93 

55.32 

46.64 

S-*' 

32.7 

8.63 

31.6 

8.99 

«4 

5.5 

09.x 

5 

'0.4 

65 

8.9 

»i 

4-7 

Clinker 

Cube  Feet 

from  100  Ibe. 

iu  a  Ton. 

Lbt. 

No. 

2.13 

42.3 

4  53 

41.2 

— 

42.09 

— 

46.37 

3-4 

42.3 

3.33 

49 

8.82 

41  4 

3-14 

44 

6.13 

^5„ 

.94 

47-8 

2.35 

47.2 

1.86 

46.7 

3.86 

49- 2 

x.64 

^7« 

5-63 

43-8 

— 

*— 

— 

■"~ 

303 

41-6 

81 

398 

.6 

1.24* 

45-8 

X.OI 

40.7 

X.08 

40.5 

5-31 

48.3 

10.51 

68.5 

3  55 

70^9 

A«h. 

3.06 

104 

— 

75 

2.91 

3244 

— 

— f 

•31 

X06.6 

484 


FUEL. 


Weiyhta  and  ComparcUive  Values  of  different  Woods, 


Woods. 


Sbell-bark  Hickory . 
Red-heart  Hickory  . 

White  Oak 

Red  Oak 

Virginia  Pine 

Southern  Pine 

Hard  Maple 


Cord. 

Value.    1 

Lba. 

1 

4469 

I 

3705 

.81 

3821 

.81    ; 

3254 

.69 

2689 

.61 

3375 

•73 

2878 

.6 

Woods. 


New  Jersey  Pine. 

Yellow  Pine 

White  Pine 

Beech 

Spruce  

Hemlock 

Cottonwood 


Cn.4     t    Vain*. 


Lbs 

2»37' 
1904 

1868 


•54 

•43 

•42 

•7 

.52 

•44 

•33 


Xiiquid.    IFuels. 

Petroleixxxi. 

Petroleum  ia  a  hydro-carbon  liquid  which  is  found  in  America  and  Europe. 
According  to  analysis  of  M.  Sainte-CIaire  Deville,  composition  of  15  ))etro- 
leums  from  different  sources  was  found  to  be  practically  constant.  Average 
specific  gravity  was  .87.  Extreme  and  average  elementary  composition  was 
as  follows : 


Carbon 82    to  87.  i  per  cent.       Average,  84.7  pei-  c^uk. 

Hydrogen 1121014.8       "  "       13.1       '^ 

Oxygen 5  to   5.7       "  "     ^.2       " 

•  100 

Its  heat  of  combustion  is  20^40,  and  its  evaporative  power  at  212^  20.33. 

Petroleum  Oils — Are  obtained  by  distillation  from  petroleum,  and  are  com* 
pounds  of  carbon  and  hydrogen,  in  average  proportioti  of  72.6  and  27.4. 

Boiling-point  ranges  from  86*^  to  495°. 

Schist  CH7— Consists  of  carbon  80.3  parts,  hydrogen  11.5,  and  oxygen  8.2. 

Pins  Wood  Oil — Consists  of  carbon  87.1  per  cent,,  hydrogen  10.4,  and 
oxygen  2.5. 

Coal-gas. 

Coal  Gas — As  furnished  by  Chartered  Gas  Co.  of  London  is  composed  as 
follows : 


Oleflant  Gas,     ) 
Bi-carb.hyd.  {  " 

Marsh  gas,     ) 
Carb.  hyd.  J  *  *  *  * 

Carbonic  oxide.... 


Carbon.  ,Hydro(i^n. 


3.096 

26.445 
3.84 


•434 
8.81S 
5-" 


Hydrogen . . . 

Oxygen 

Nitrogen..... 


Oxygen. 

Hydrogen. 

.08 

51-8 

Nitrogen. 


.38 


Total xooparta 

Heat  of  combustion  at  212°  52  961  units,  and  evaporative  power  47.51  lbs. 


Coal-gas.     [V.  Harcourt.) 


Oleflant  gas 

Marsh  gas 

Carbonic  oxide. . 
Carbonic  dioxide 


Cftfb. 

Hyd. 
Per  ct. 

Oxy. 

Nit. 

Per  ct. 

Per  ct. 

Per  ct. 

IO-5 

'•7 

— 

— 

39-7 

13-2 

— 

5-9 

— 

7-9 

— 

1.9 

^■" 

5 

^■^ 

Carb. 
Per  ct. 

58 

Hyd. 

Oxy. 

Hydrogen 

Nitrogen 

Oxygen 

Perct. 
8.1 

Perct. 
•3 

Total 

23 

13-a 

Nit 

Perct. 

5~8 

"78~ 


One  lb.  of  this  gas  had  a  volume  of  30  cube  feet  at  62° ;  heat  of  combn»- 
tion  22684  units;  and  of  one  cube  foot  756  units,  which  is  equivalent  to 
evaporation  of  .68  lb.  of  water  from  62°.  or  of  .78  lb.  from  ii2°  per  cube  foot. 


wmu 


485 


Average   Composition,   of  Fuels, 


BITUMTNOU8  Ck)AL& 


Aaetralian 

Borneo 

British,  lowest 

Boghead,  dry,  average 

Chili,  Conception  Bay 

"     Chiriqai 

Cannel,  Wigan 

Cumberland,  Md 

Coke,  Garesfield 

*'     Durham 

''     Average 

Dofifryn 

Formosa  Island 

French,  hard 

"      caking 

*'      k>ng  &ime 

**      average* 

Indian^  average 

"      Kotbec 

Patagonia. 

Russian,  Miouchif 

Sydney,  &  W 

Splint,  Wylam 

Glasgow 

Cannel,  Lancashire . 
"  Edinburgh. 
Cherry,  Newcastle. . 
Caking,  Garesfield . . 
Ebbro  Vale,  Welsh.. 
IJangcnneck  *'  .. 
Vancouver's  Island 


t( 

tc 
(I 
t( 
ii 
I< 


Anthragitbs. 

Anthracite 

French 

Russian 


Woods. 


Beech.... 

Birch , 

Oak , 

White  Pine , 

Woods,  average. , 

Charcoal. 

Oak , 

Pine , 

If  aple 


M1SCBLLANK0U& 

Asphalt 

Lignite,  perfect. 

imperfect 

bituminous . . . . 

Colorado 

Kentucky 

Arkansas 

Peat^  dense ~ 

*^    Irish,  average 

Patent,  Warlich 

"      Wylam's 


4i 
(I 
i( 
t( 
it 


Specific 
Grav- 
ity. 

Carbon. 

Hydro- 
gen. 

Nitro- 
Ken. 

Oxygen. 

Sal- 
pbiir. 

Per  ct. 

Per  ct. 

Per  ct. 

Per  ct. 

Per  ct. 

I- 31 

— 

— 

— 

— 

•5 

1.28 

64.52 

4.76 

.8 

20.75 

1-45 

— 

68.72 

— 

18.63 

1-35 

1.18 

6394 

8.86 

.96 

4-7 

•32 

1.29 

70.55 

5.76 

•95 

13-24 

X.98 

38.98 

4.  ox 

.58 

13-38 

6. 14 

1.23 

7923 

6.08 

1. 18 

7.24 

1-43 

x-3« 

93.81 

1.83 

— 

2.77 

— 

— 

97.6 

— 

— 

— 

■85 

— 

89.5 

— 

— 

— 

X.25 

— 

93-44 

— 

•^ 

— 

X.2» 

1-33 

88.26 

4.66 

1-45 

.6 

1.77 

1.24 

78.26 

5-7 

.64 

10.95 

•49 

1.32 

88.56 

4.88 

(   4.38) 

1.29 

87.73 

5.08 

(    565) 

— 

1-3 

82.94 

5-35 

(    8.63) 

— 

1.31 

«S 

4.5 

(    7       ) 

— 

~"~ 

47-3 
62.25 

—" 

~"~ 

•■" 

"^ 

— 

5.05 

.63 

17-54 

i->3 

— 

01.45 
82.39 

4.5 

(    405) 

— 

— 

532 

1.27   1    8.33 

.07 

— 

74.83 

6.18 

(    5-09) 

— 

— 

83.92 

5.49 

(10.46) 

— 

— 

8375 

5.66 

(    8.04) 

— 

— 

67.6 

5-4 

(12.43) 

— 

— 

84.85 

505 

(    8.43) 

— 

— 

8795 

5-24 

(    5.42) 

— 

— 

89.78 

5. 15 

3.16 

•39 

X.03 

— 

84.97 

4.36 

1-45 

V7 

.43 

""^ 

66.93 

5.32 

X.03 

3.2 

x-5 

88.54 

_„ 

___ 

_^ 

•52 

«-5 

86.17 

2.67 

(   2.8s) 

96.66 

X.35 

(   I 

99) 

^^ 

.^ 

50.17 

6.13 

X.05 

40.38 

— _ 

— 

48.13 

6-37 

'^5 

43-95 

— 

— 

48.13 

5-25 

.83 

445 

— 

— 

49.95 

6.41 

— 

43-65 

— 

—^ 

49-7 

6.06 

x.05 

41-3 

_ 

87.68 

2.83 

_ 

6.43 

— 

71-36 

5-95 

— 

22.19! 

..^ 

"~" 

70.07 

4.61 

~~ 

24. 89! 

"^ 

X.06 

79.18 

9-3 

(   8.72) 

-> 

x.2q 

69.02 

5.05 

(8ai3) 

— 

1.25 

60.  x8 

5.29 

( 29.03 ) 

— 

1.18 

74.82 

7.36 

(13-38) 

— 

1.28 

56.8 

— 

— 

— 

X.2 

40 

— 

— 

— 

— 



345 

— 

— 

— 

— 

— 

6x.o2 

5-77 

.8z 

32.4 

— 

.528 

58.18 

5.96 

X.23 

3I.2X 

— 

IIS 

9a  02 

556 

— - 

— 

X.62 

X.I 

79.91 

569 

X.68 

6.63 

X.25 

Aih. 


Per  ct. 
8.38 

7-74 

21.22 

7-52 

36.  OX 

4,84 

X.6 

1-55 

9-25 

5-34 

336 

396 
3.19 

1-54 
3.08 

3-5 
32.9 

4 
13-4 

3.04 

13-91 
I- 13 

2.55 

14-57 
X.67 

1-39 

1-5 

5-4 

15-83 

8.67 
8.56 


1-77 
•48 

1-3 
•31 

X.8 

3.06 

•4 
•43 

2.8 
5.83 

5-57 

4-45 

4*5 

7 

5 

3-43„ 
2.91I 

4-84 


*  He«t  of  Combostion  of  x  Lb.  14  733. 
X  laelndlng  Nitrogen. 


Ss* 


t  Heat  of  Combtutlon  of  x  Lb.  15651. 
I  Inciadiog  Ozygeo* 


486 


FUEL. 


Average  Oompoiiition  of*  Coals  and  Fuels,  Heat  of  Com< 

l^iastioxi,  and   Kvaporative   Povp^er. 
Deduced  from  analytU  and  fxperimnUs  o/Jietsrt.  De  La  Biche,  Plaffairy  cmd  Peetet 


COAW  A«D  I^ILS. 


cOg 


Coi(P06inoif. 


Carbon. 


I  29 

1.27 
1.26 
1.26 

1.28 


Derbysbire    and) 
Yorksbire  . . . .  j 

Tiftnoasbire 

Neweaatle 

Scotob 

Welsh 

Ayerage  of  British. 

Patent  fbels. '  1.17 

Van  Diemen's  Land 

Chili 

Lignite,  Trinidad.. 
"  French  Alps 
"  Bitnm.,Ciiba 
♦'    Wasb.Ter*. 

Asphalt 

Petroleum 

•'        olla.... 

Oak  bark  Tan,  dry. 
♦*         •*  moist 

Charcoal  at  302*3. . . 


(1 


ti 


57a' 


810°. 
Peat,  dry,  average. 

"    moist,  t 
Coal-gas.... 


It 


1.28 
1.2 

I  06 
.87 

•75 


«-5 
14 
1.71 

•53 
42 


Per  et. 
79.68 

77-9 
82.12 

78.53 
83.78 

80.4 
83.4 
65.8 

63.56 
65.2 
70.02 
75-85 

67 

79.18 

84.7 


475' 

7324 
81.64 

58.18 

43  « 
3338 


Hydro- 
Ren. 


Peret. 

4-94 

539 
5-31 
5.61 

4-79 
5-19 
4  97 
3-5 
5-43 
4.25 
5- a 
7-25 
4-55 
9-3 
i3^« 


6.  IS 

4-«5 
4.96 

59* 
66!  16 


Nitro- 
gen. 


Per  ct. 
1.41 

x-3 
I- 35 

X 

.98 
X.21 
1.08 

«-3 
.82 

'•33 


Sul- 
plinr. 


Per  ct. 
l.ox 

«-44 
1.24 

x.ix 

'•43 
'•as 
X.26 

X.I 

2.5 
.69 


Oxy- 
gen. 


Pepct 
ia28 

9-53 
5.69 
9.69 

4->5 
7.87 

2.70 

5.58 
14.84 
21.69 


2.2         ^^ 


(OandN  46.29) 
(Oand  N  21.96) 
(OandN  15.34) 
1,23  I  —  |3'-2» 
( 0  and  N  21.4  ) 
.38  I    —    I     .08 

^  Muistnre  27.8. 


±   M 

9^ 

SH 

Aeh. 

0  0 

OS 

1^- 

Peret. 

UBlt*. 

Lbs. 

2.65 

X3860 

«4-34 

4.88 

13  018 
14890 

X4.56 

3-77 

«5-3a 

4-03 

'♦i^ 

"4-77 

4.9X 

14858 

"5-52 

4-Q5 

l43«o 

14.82 

S-93 

150Q0 

15-66 

22.71 

1x320 

XX.  83 
IX.68 

13-31 

1x030 

6.84 

X0438 

ia87 

30X 

H790 

X2.X 

3-94 

14568 

14.96 

3-1 

"9538 

xa.9x 

2.8 

»66s5 

17.24 

^^ 

20240 

90-33 

^— 

»7  530 
610Q 

.8.5 

15 

6.3* 

'S 

4284 

t»* 

.8 

*ir 

8.4 

•57 

xt86x 

12.27 

1. 61 

14  916 

'S43 

3-43 

995« 
8917 

10.3 

33 

9.22 

— 

529*' 

4751 

8a1iihup  .a. 


*  Water  7.    Oxygen  and  Nitrogen  17.36. 
Klexxxexits  o£  ITuels  not  included  in  Preceding  Xal>Ies. 


Bitumintnu  CoaL 

Welsh , 

Newcastle 

Lancashire 

Scotch. , 

Boghead 

British,  average 

Irish,  lowest 

Cumberland,  Md. , 

American,  average  . . . . . 

French,  average. 

Aastrallan 


AfUhracUe. 


Americar. 
French . . . 


Miscellaneoui.    ' 

Warlicb's  (\jel , 

Coke Mickley 

Virginia,  ftvenige 

Charcoal. 

Lignite,  perfect ,,... 

**       imperfect 

'*       Russian 

Asphalt 

Woods,  dry,  average 


Heat  of 

Combustion 

off  lb 


UniU. 

14858 

14820 

X3918 

1416^ 

14478 

»4«33 


14723 


i4  5<» 
14038 


16495 
X5600 

X3550 

11678 

9834 
'5837 
16555 

179? 


Evaporatire 
Power  of  I 
lb.  at  312*, 


Lba. 

9-05 
8.01 

794 

7-7 

7.87 

8.13 
9-85 


14.03 
xa.x 

XQ^xS 

X7.24 
8.07 


Coke  pro- 
duced. 

Weight 

of  I 

Cub.  Foot 

Per  cent. 

IM. 

58 
54 

82 
78.3 

in 

30-94 
6x 

79.8 

64.2 
68.27 

09.6 

84-93 

8754 

K 

93. 78 

— 

73-5 

— 

45 

47 

— 

37-5 

^~ 

9 

—. 

— 

•^ 

Volmneol 
X  Ton, 


Cube  Feet 

43-7 
45-3 
45- a 
4a 

44-52 
35-7 
424 
43-49 
40 


49-35 


69.8 
12.7^ 


-  114 


FUEL. — GRAVITATION.  487 

!]M[isoellan.eou.0» 

Experiment  undertaken  by  Baltimore  and  Oliio  R.  R.  Co.  determined 
evai)oratiug  effect  of  i  ton  of  Cumberland  coal  equal  to  1.25  tons  of  anthra- 
cite, and  I  ton  of  anthracite  to  be  equal  to  1.75  cords  of  pine  wood;  aUo 
that  2000  lbs.  of  lAckawanna  coal  were  equal  to  4500  lbs.  b<Mt  pine  wood. 

One  n>.  Of  anthmclte  coal  in  a  cupola  niraaee  will  men  (Vom  5  to  to  lbs.  of  cast 
iron;  8  bushels  bttumluoua  coal  in  an  air  fVimace  will  melt  t  ton  of  cast  iron. 

Small  coal  produces  lUMUt  ^75  effect  of  large  coal  of  same  description. 

Experiments  by  Messrs.  Stevens,  at  Bordentown,  N.  J.,  gave  following  results: 

Undkr  a  pVKimfe  ofyt  lbs.,  t  lb.  pine  wood  evaporated  3.5  to  4.75  lbs.  of  water. 
I  lb.  Lehigb  coal,  7.S5  to  8.75  lbs« 

Bituminous  coal  is  13  per  cent,  more  effective  than  coke  for  equal  weights;  and 
in  England  effects  are  alike  for  equal  costs. 

RadiatUmfrom  JvVi«2.— Proportion  which  heat  radiated  ttom  Incandescent  f\iel 
bears  to  total  heat  of  combustion  is, 

From  Wood..... 4.....  .09  |  From  Charcoal  and  Peat... 5 

I.east  consumption  of  coal  yet  attained  is  x.5  lbs.  per  Iff.  It  usually  varies  in 
diflbrent  engines  from  9  to  8  lbs. 

Volume  of  pine  wood  is  about  5.5  times  as  great  as  its  equivalent  of  bituminous 
coal. 


GRAVITATION. 


Grayity  is  an  attraction  common  to  all  material  substances,  and 
they  are  affected  by  it  directly^  in  exact  proportion  to  their  mass,  and 
inversely,  as  square  of  their  distance  apart. 

This  attraction  is  termed  terrestrial  gravity^  and  force  with  which  a 
body  is  drawn  toward  centre  of  Barth  is  termed  the  weight  of  that  body. 

Force  of  gravity  differs  a  little  at  different  latitudes :  the  Uiw  of  variation, 
however,  is  not  accurately  ascertained ;  but  following  theorems  represent  it 
very  nearly : 

2^}!Z'^ll,^''2?'th^^les     l-a        ff'represeniing  farce  of  gravity  at  lati. 
i  V^IZ^k  S  Ihe  ^uatori  '-^'    ^  45°,  ar^ gforc.  at  otker places, 

—   /  2H\ 

Or,  3x171  (lat  45°)  (i  +  •«>5  i33  sin.  L)  1 1 —\  =  g.    L  representing  latitude^ 

H  height  ofeUtntUrti  ab&o^  letel  qfsea,  and  R  radius  oftkirth,  both  in  feet. 

NoTS. — If  3  L  exceeds  90°,  put  cos.  180 — 2  L,  and  R  at  Equator  =  20936063,  at 
Poles  so  853  439,  and  mean  30  889  746. 

Illustration.— What  is  force  of  gravity  at  latitude  45°,  at  an  elevation  of  309 
feet,  and  radius  =  20900000  feetf 

/  aH     \ 

3a.  171  (I +  .005 133  sin.  45°)  ^i————j  =  32.171  X  1.00363 X  .99998  =  32.387. 

Gravity  at  Various  LoetHiaru  at  Level  of  Sea, 

Equator. 33.088  I  New  York 32. 161  I  I/)ndon 32.  ^89 

Washington 33. 155  I  Lat.  45° 33. 171  |  Poles 32.253 

In  bodies  descending  freely  by  their  own  weight,  their  t^locities  are  as 
times  of  their  descent,  and  tpdcei  pAsaed  tiirough  as  square  of  the  times. 

TVmM,  then,  being  t,  9, 3^  4,  etc.,  Velocities  will  be  i,  2, 3, 4,  etc. 

Spaces  passed  through  will  be  as  square  of  the  velocities  acquired  at  end 
of  those  times,  as  i,  4, 9, 16^  etc. ;  and  spaces  to:  ^acb  time  as  i,  3, 3, 7, 9,  et^ 


488 


GRAVITATION. 


A  body  falling  freely  will  descend  through  16.0833  ^^^  ^^  first  second  of 
time,  and  will  then  have  acquired  a  velocity  which  will  carry  it  through 
32.166  feet  in  next  second. 

If  a  body  descends  in  a  curved  line,  it  suffers  no  loss  of  velocity,  and  the 
curve  of  a  cycloid  is  that  of  quickest  descent. 

Motion  of  a  falling  body  being  uniformly  accelerated  by  gravity,  motion 
of  a  body  projected  vertically  upwards  is  uniformly  retarded  in  same  manner. 

A  body  projected  perpendicularly  upwards  with  a  velocity  equal  to  that 
which  it  would  have  acquired  by  falling  from  any  height,  will  ascend  to 
the  same  height  before  it  loses  its  velocity.  Hence,  a  body  projected  up- 
wards is  ascending  for  one  half  of  time  it  is  in  motion,  and  descendiag  the 
other  half. 

Varioiu  Formtdas  here  given  are  for  Bodies  Projected  Upwards  or 

Falling  Fredy,  in  Va,cuo. 

When^  "however^  weight  of  a  body  i»  grecU  compared  vnth  Us  volume,  cmd  velocity 
of  it  is  loWy  deductions  given  are  si^cienUy  accurate  far  ordinary  purposes. 

In  considering  action  of  gravitation  on  bodies  not  far  distant  from  surfkce  of  the 
Earth,  it  is  assumed,  without  sensible  error,  that  the  directions  in  which  it  acta  are 
parallel,  or  perpendicular  to  the  horizontal  plane. 

A  distance  of  one  mile  only  produces  a  deviation  Arom  parallelism  less  than  one 
minute,  or  the  60th  part  of  a  degree. 


Relation  of*  Tixiae, 

Space,  axid 

Velocities. 

Time  from 

Velocity  acqaUred 

Squares 

Space  fallen 

Soaces 

Spaoe  fkllen 

Beeinuhig  of 
D«went. 

at  End  of  that 

of 

through  in  that 
Time. 

%t 

thronrii  in  last 
Second  of  Falk 

Urn*. 

Time. 

this  Time. 

Seconds. 

Feet. 

Seconds. 

Feet. 

No. 

Feet. 

z 

32.166 

X 

16.083 

z 

16.08 

2 

64333 

4 

64333 

3 

48.25 

3 

965 

9 

»44-75 

5 

80.41 

4 

128.665 

16 

257-33 

7 

112.58 

5 

160.832 

25 

402.08 

9 

'44-75 

6 

193 

36 

579 
788.08 

zz 

176.9Z 

I 

225. 166 

19 

13 

209.08 

257-333 

^ 

1029.33 

>5 

241.25 

9 

289.5 

8z 

1302.75 

17 

273-42 

10 

321.666 

100 

1608.33 

19 

30558 

and  in  same  manner  this  Table  may  be  continued  to  any  extent 

"Velocity  acquired.  d.\xe  to  given  !II!eigb.t  of  B^all  and 
Xi;eigh.t   due  to  given  Velocity. 


S.o4y/h  =  t> ;       32.2  <  =  i> ; 


64.4 


=  A;    and  16.083  <2  —  A* 


h  representing  height  offdIX  in  feet^  v  velocity  acquired  in  feet  per  second^  and  t 
time  of  fail  in  seconds. 

To   Compute  -Auction  of  GJ-ravity. 

Time. 

When  Space  is  given.    Rule.— Divide  s^iace  by  16.083,  ^^^  square  root 
o£  quotient  will  give  time. 
ExAMPLB.— How  long  will  a  body  be  in  falling  through  402.08  feet? 

V402.o8  -r- 16.083  =r  5  seconds. 

When  Velocity  is  given.    Rule.  —  Divide  given  velocity  by  32.166,  i»ad 
quotient  will  p:ive  time. 

F.XAMPLB.— How  long  must  a  body  be  in  fulling  to  acquire  a  velocity  of  800  feet 
"^r  second  ?  800  -;-  32. 166  =  24. 87  seconds. 


GBAVITATION.  489 

When  Space  u  given.    Rule.  —  Multiply  space  in  feet  by  64.533,  and 
square  root  of  product  will  give  velocity. 
Example. —Required  velocity  a  body  acquires  in  descending  through  579  feet 

V579  X  64. 333  =  193/eet 
Vehcity  acquired  at  amy  period  is  equal  to  twice  the  mean  velocity  during 
thai  period. 

Illustration.— If  a  ball  fkll  through  2316  feet  in  12  seconds,  with  what  velocity 
wiU  it  striker 

2316  -^  12  =  X93,  mean  velocity^  which  X  a  =  386/^  =  vdocUy. 

When  Time  is  given,    Hule. — Multiply  time  in  seconds  by  32.166,  and 
product  wiU  give  velocity. 
ExAicPLB.— What  is  velocity  acquired  by  a  foiling  body  in  6  seconds? 

32.166  X  6  =  i92.996ye«t 

Bpaoe. 
When  Velocity  is  given.    RuiJS.— Divide  velocity  by  8.04,  and  square  of 
quotient  win  g^ve  distance  fallen  through  to  acquire  tluit  velocity. 

Or,  Divide  square  of  velocity  by  64.33. 

Example.— If  the  velocity  of  a  cannon-ball  is  579  feet  per  second,  ttom  what 
height  most  a  body  foil  to  acquire  the  same  velocity? 

579  -4-  8.04  =:  72-014,  and  72.014'  =  5186. 02  ^«t 

When  TVme  is  given.    Rule. — Multiply  square  of  time  in  seconds  by 
16.083,  and  it  wiU  give  space  in  feet. 
ExAMPLK. — ^Required  space  follen  through  in  5  seconds. 

53  =  25,  and  25  X  16.083  =  M^-oSJeeL 

Distance  follen  through  in  feet  is  very  nearly  equal  to  square  of  time  in  fonrtiis 
of  a  second. 

Illustration  l— A  bullet  dropped  ftom  the  spire  of  a  church  was  4  seconds  in 
reaching  the  ground;  what  was  height  of  the  spire? 

4  X  4  — 16,  and  j6'  =  256/^ 

By  Rule,  4  X  4  X  16.0833  =  2S7.33/e<f. 

2.— A  bullet  dropped  into  a  well  was  2  seconds  in  reaching  bottom;  what  is  the 
depthof  the  well? 

Then  2X4  =  8,  and  8^  =  64/eet 

By  Rule,  2  X  a  X  16.0833  =  64.33  fut 

Bjf  Iwoertion—ltk  what  time  will  a  bullet  foil  through  256  feet? 

-^256  =  16,  and  164-4  =  4  seconds. 

Spaoe  fbllen  tlxroutflx  in  last   Second  of*  IHall. 

When  Time  is  given.    Rule. — Subtract  half  of  a  second  from  time,  and 
multiply  remainder  by  32.166. 

ExAMPLN.— What  is  QMUse  foUen  through  in  last  second  of  time,  of  a  body  foiling 
for  loaeoonds? 

10  —.5  X  3«'  «66  =  305. 58  feel 

Proxnisouous   Bxamples. 
z.  If  a  ball  is  i  minute  in  foiling,  how  for  will  it  foil  in  last  second? 
Space  foUen  through  =  square  of  time,  and  x  minute  =  60  seconds. 

60'  X  16.083  =  57  S6&/eet  for  60  seconds. . 
S9«X  16.083  =  55 9»4   "     **  S9      " 
1 914  I 

s.  Compute  time  of  genenting  a  velocity  of  193  feet  per  second,  and  whole  space 
detcended. 

193-^32-166  =  6  jecondt;  6' x  16.083  =  579 ^ixt 


>/ 


49©  GRAVITATION. 

3.  If  a  body  was  to  fiiU  579  feet)  what  time  would  it  be  in  foiling,  and  how  fhi 
i^Qld  it  foU  in  the  last  fieooad  ? 

^Z2^  = -^3$  -  6  ie«m<(»,  and  6 — .5  X  33. 166  ^  5, 5  X  33- 166  =  I76.9X /«t 
B^OFxn.'alas  to  determine  tlie  various   Kleznexits. 

„      /  V  \«  V«  VT  gT9  _,  .       «.        . 

"    ^  =  (lj^)    '    =1^*    =T'    =V'    =^    -^^^  3    ft=(T^.S)» 

T  refyreienftn^  Mm«  of  falling  in  seconds^  V  velocity  aegtitlmt  <n  /;«<  jp^y  ««OMidL 
8  ipace  or  veri%«s^  heigJU  tn/oe^  h  ipacejuUm  tkr^ugh  in  latt  «9Mnd,  039.166 and 
.  5  g  and  .  35  g  representing  16.083  and  8.04. 

Retarded   Sk^otion* 

.  A  body  projected  vertically  upward  is  affected  inyersely  to  ita  motion 
when  falling  freely  and  direc^y  downward,  inasmuch  as  a  lute  cause  rotarda 
it  in  one  case  and  accelerates  it  in  the  other. 

In  air  a  ball  will  not  retqm  with  same  velocity  with  which  it  started.  In 
V(icu6  it  would.  Effect  of  the  air  is  to  lessen  its  velocity  both  ascendiug  and 
descending.  Difference  of  velocities  wiU  depend  upon  relative  specific  grav- 
ity of  ball  and  density  of  medium  through  which  it  passes.  Thus,  greater 
weight  ci  ball,  greater  its  velocity* 

To  Compnte  Motion  of  Q-ravity  "by  a  Bocly  prcdeoted 
XJp"warcl  or  .I>o"WT»."ward.  vritb-  a  given  "Velocity. 

Spevoe. 

When  projected  Uptoard.  Rule. — From  the  product  of  the  given  veloei^ 
and  the  time  in  seconds  snbtraet  the  product  of  3s.  166,  and  half  the  square 
of  the  time,  and  the  remainder  will  give  the  space  itl  feet. 

Or,  Square  velocity,  divide  result  by  64.33,  and  quotient  will  give  space 
in  feet. 

ExAMPLB.~If  a  body  te  projected  upward  with  a  vdocity  (^96.5  feet  per  second, 
through  what  space  will  it  ascend  before  it  stops? 

96. 5  -r-  32. 166  =  3  seconds  =  time  to  acquire  this  velocity. 

Then,  96.5  X  3-^  ua-J^e  X^j  »  889.5  -* X44'75  =«  ^AA-fSfstL 

Time. 
Rnij|,-^Divide  velocity  in  feet  by  32.1^^  and  quotient  will  giy^.time  in 
i^condjs* 
ExAMPLi.— Velocity  as  in  preceding  exampla 

^  5 -^  38*  106  sa  3  ie«oilda 

"Velocity. 
Rule. — Multiply  time  in  seconds  by  32.166,  and  product  will  ^ve  velodtf 
In  feet  per  second. 

EzAXPLi.— Time  as  in  preceding  example. 

3  X  32.  x66  =  96. 5  fset  vehcttg. 

Space  fallen  through   in  la9t  Second. 
Rule. — Subtract  .5  from  time,  multiply  remainder  by  32.166,  and  prodnol 
will  give  space  in  feet  per  second, 
EzutPUL— Time  as  in  preceding  example. 

3  —  •  5  X  3a.  x66  =  a. 5  X  3«.  166  =  8o.4i6/«t 


GKAVITATION.  49I 

When  projected  Downward. 

Space. 

Rule. — Proceed  as  for  projectioii  upwards  and  take  sum  of  products. 

ExAHPLB  I.— If  a  body  is  projected  downward  with  a  velocity  of  96.5  feet  per  see* 
end,  through  what  space  will  it  fall  in  3  seconds? 

965  X  3+  (32166  X  y)  =  «89.s+  144.7s  =  434.a5>fcrf. 

Or, ««  X  16.083  +  t>X<  =  *. 

3.  — If  a  body  is  projected  downward  with  a  velocity  of  96.5  feet  per  second, 
throagh  what  space  must  it  descend  to  acquire  a  velocity  of  193  feet  per  second^ 

96.5  -f-  33.166  =  3  secondgy  time  to  acquire  this  velocity. 
193  -^  32. 166  =  6  seconds  J  time  to  acquire  this  velocity. 

Hence  6^3  =  3  seeonds^time  of  body  f ailing. 

Then  96.5  X  3  =  389.5  z=.prod%ict  of  velocity  of  projection  and  time. 

16.083  X  3'=  144-75  =  product  0^33.166,  and  half  square  oftimt. 

Therefore  989. 5  -|- 144. 75  =  434. 35  feet 

Time« 

Rule. — Subtract  space  for  velocity  of  projection  from  space  giren,  and 

remainder^  divided  by  yelocity  of  pTojection,  will  giv»  time. 

ExAMPLB.— In  what  time  will  a  body  fall  throagh  434.35  feet  of  space,  when  pro- 
jected with  a  velocity  of  96. 5  feet  ? 

Space  for  velocity  of  96.5= 244.75/^ 

Then,  434.35  — 144.75-i- 96.ssra89.5-i- 96.5=3  Mcoiidl. 

Velocity . 

Rule. — Divide  twice  space  fallen  through  in  feet  by  time  in  seconds. 

EatAMPLB. — Elements  as  in  preceding  example. 

Space  fallen  through  when  prqjeeled  ai  velocity  of  96.  sfeet  ^^  144. 75  fe^,  and  434. 35 
feet = space  faUen  throi^fh  in  3  eeoonds. 

Then,  144.75 +  434'a5  =3  579  feet  space  (iUlen  through,  and  V579  ^16.083  3:6 
seconds.   . 

Hence,  579X3^6  =  tr58't-6=ri93/erf. 

Space'  S^allexi   tlirough  in  last  Second. 

Rule. — Subtract  .5  flrom  time,  multiply  remainder  by  33.166,  and  product 
will  give  space  in  feet  per  second. 
ExAMPLB.— Elements  as  in  preceding  example. 

6— .5  X  3a->^=  5-5  X  33.166  =  176.91  feet 

Ascending  bodies,  as  before  stated,  are  retarded  in  same  ratio  that  descending 
bodies  are  accelerated.  Hence,  a  body  projected  upward  is  ascending  for  one  hair 
of  the  time  It  is  In  motion,  and  desoendtog  the  other  halt 

Illustration  i.— If  a  body  projected  vertically  upwards  return  to  earth  in  13 
seconds,  how  high  did  it  ascend  ? 

The  body  is  half  time  In  ascondiDg.    la  -^  3  2  6. 

Henoa,  by  Bttle,.p.  489,  6'X  16.083=579  feetasprodstet  i^f  square  of  time  and 
16.083. 

X— If  a  body  is  projected  upward  with  a  velooity  of  96.5  feet  per  second,  it  is 
required  to  ascertain  point  of  body  at  end  of  zo  seconda 

96.5-^-38.166=: 3  teconds.  time  to  acquire  thie  velocity t  and  s'X  16.083  =  144.75 
feet,  height  body  reached  with  its  initial  veloeity. 

Then  10— 3= 7  seconds  left  for  body  to  fall  in. 

Hence,  by  Rule,  as  in  preceding  example,  7*  X  16.083=788.07,  and  788.07— 
144.75 = 643. 3s  feet  3s disUmwe  below  point  ofpri^eetion. 

Or,  10'  X  16.083  ^  t6o8.3/«e^  space  faUni  through  w^dier  the  ej^set  ofgraM^.  an'' 
g6.5  X  io=965>W,  jpooe  \f  gravity  did  not  act,     He»ce  1608.3  --965  =  643.3/ff 


49^  GRAVITATION. 

?.— A  body  is  prq|ecte<l  vertically  with  a  velocity  of  135  foet:  what  velocity  win 
iaveat6ofeet? 

i35«-r-64.33  =  283.3/<^  'P<tce  projected  at  that  vdocUy^  135 -r- 33. 16  =54. 197  tee- 
ondsz=.tiine  of  prqjeclion,  and  283.3  — 60  =  223. 3  =  apace  to  be  passed  through  ajier 

aUainnunt  of  60  feeL    Hence,  V233.3X  64.33  =  x  »9- 85  fset  vdoeUy,  and  233. 3  -f  60 
=  283.3/«;«t 

By  Inversion.— Velocity  1x9.85.    Hence,  ''^  ^  =  223.3  fi^  muse,  and  283.3  — 

04.33 
223.3  =  6oyfee<. 

ForxAulas  to  X>eterxnine  IClexnents  of  Retarded  Af  otlon. 

X.  »  =  V-p7  2.  V=-|-— .  3-  y^v-^gl 

t       2 

4.  <'=^^.  5.  8  =  V«-i^.  6.  »="T-7:^'-.s». 

2  ^  ^        g     N  9^^     g 

V  representing  velocity  at  expiration  of  time,  t  amy  less  time  than  T,  f  less  time  than 
t,  s  space  th  rough  which  a  body  ascends  in  Hme  ^  Y,  T,  S,  and  ha^in  previous  formu- 
las, page  49a 

iLLusTRATioir.— A  body  projected  upwards  with  a  velocity  of  193  feet  per  Deoond, 

was  arrested  in  5  seconds.  _  , 

T=:o,  c  =x. 

X.  What  was  its  velocity  when  arrested?    (i.) 

2.  What  was  the  time  of  its  passing  through  562. 92  feet  of  space  ?    (8. ) 

3.  What  space  had  It  passed  through  ?    (5. ) 

4.  What  was  the  time  of  its  projection,  when  it  had  a  velocity  of  96. 5  feet  ?    (4. ) 

5.  What  was  the  height  it  was  projected  in  the  last  second  of  time?    (6.) 

I.  i93-»-  32. 166  X  5  =  32- 17  feet  3.  32.17  -f  32.166  X  5  =  193  velocHy. 

56l9?^3»j6«2<5  =  „3«to«sr.  4  2213^  = -^^  =  3  ««»<&. 

5^2  yj  jr  t    22,56       32.X66      ^ 

5.  ,93  X  5-32:i51±i!=:56a.92>ket  6.  e-jp^-.s  x''32.x66  =  48.25 

2  jettt 

7.  S  =  «i>  +  flf<»-r-2  =  562. 93 feet  a  '93 ^ 32- '7  —  g seconds. 

3x  166 


7- 


193 


^,/_i23! l>^J^?^^6-y/^6:::r^=:KseeondL 

V32.x66»        32.X66         °     ^3^     35 -5  *«»!««. 


32.166 

G^ravity  and  ]\Cotion  at  axi  Ixiolination* 
If  a  body  freely  descend  at  an  inclination^  as  upon  an  inclined  plane,  by 
force  of  gravity  alone,  the  velocity  acquired  by  it  when  it  arrives  at  ter- 
mination of  incllnaticm  is  that  which  it  would  acquire  by  falling  fr^y 
Uirough  vertical  height  thereof.  Or,  velocity  is  that  due  to  heiglU  of  in- 
clination of  the  plane. 

Time  occupied  in  making  descent  is  greater  than  that  due  to  height,  in 
ratio  of  lengtn  of  its  inclination,  or  distance  passed,  to  its  height. 

Consequently,  times  of  descending  different  inclinations  or  phines  of  like 
heights  are  to  one  another  as  lengths  of  the  inclinations  or  planes. 

Space  which  a  body  descends  upon  an  inclination,  when  descending  by 
gravity,  is  to  space  it  would  freely  nill  in  same  time  as  height  of  inclination 
IS  to  its  length ;  and  spaces  being  same,  times  will  be  inversely  in  this  pro- 
portion. 

If  a  body  descend  in  a  curve,  it  suffers  no  loss  of  velocity. 

If  two  bodies  b^in  to  descend  from  rest,  from  same  point,  one  upon  an  in- 
clined plane,  and  the  other  falling  freely,  their  velocities  at  all  eqiud  heighta 
''>w  point  of  starting  will  be  equal, 


GBAYITATION.  493 

tLLiTsnunoir— What  distance  will  a  body  roll  down  an  inclined  plane  300  feet 
long  and  35  feet  high  in  one  second,  by  force  of  gravity  alone? 

As  300 :  35  ::  16.083  :  1.34035 yaet 

Hence,  if  proportion  of  height  to  length  of  above  plane  is  reduced  firom  35  to  300 
to  25  to  600,  the  time  required  for  body  to  foil  1.34035  feet  would  be  determined  as 
follows: 

As  35  :  600  ::  1.44035  :  33.166,  and  33.166=16.083  X  2  =  twice  time  or  space  in 
which  it  would /aujre^y  required  Jmr  one  ha{f  proportion  ofhei^t  to  UngHk. 

Or,  as  —  :  —  ::  1.34035  :  33.166,  at  above. 
'        35       35         ^     -^    ■» 

Impelling  or  accelerating  force  by  gravitation  acting  in  a  direction  paral* 
lei  to  an  inclination,  is  less  than  weight  of  body,  in  ratio  of  heicht  of  in- 
clination to  its  length.  It  is,  therefore,  inversely  in  proportion  to  length  of 
inclination,  when  height  is  the  same. 

Time  of  descent,  under  this  condition,  is  inversely  in  proportion  to  accel* 
crating  force. 

If,  for  instance,  len^h  of  inclination  is  five  times  height,  time  of  making 
freely  descent  at  inchnation  by  gravitation  is  five  times  that  in  whiefa  a 
body  would  freely  fall  vertically  through  height ;  and  impelling  force  down 
mclination  is  .a  of  weight  of  body. 

When  bodies  move  down  inclined  planes,  the  accelerating  force  is  ex- 
pressed hjh-T-l,  quotient  of  height  -t-  length  of  plane ;  or,  what  is  equivalent 
thereto,  sme  of  inclination  of  plane,  i.  e.,  sin.  a. 

Illustration.— An  inclined  plane  having  a  height  of  one  half  it^  length,  the  space 
fallen  through  in  any  time  would  be  one  half  qf  that  which  it  would  faUjireely. 

Velocity  which  a  body  rolling  down  such  a  plane  would  acquire  in  5  seconds  is 
80.416  feetk 

Thus,  33.166  X  5  =  160.833  ftet,  and  an  inclined  plane,  having  a  height  one  half 
of  its  length,  has  an  angle  or  sine  of  zcP.  Hence,  sin.  30^  =  .5,  and  x6a833  X  -5  = 
8a4i6/«et. 

WoTxaxdaM  to  Deterxnine  vario-as  £lexnexits  of  G-ravita* 

tioii  on  an  Inclined  Plane. 

V«  

I.    S  =  .5^T'ctn.a;    =  ^     ^^  ^ ;    =.5TV.        4.    y=;«:p^T»'ii.  & 

a.    Vs^TjAta;    s=  V(a P S lin.  a) ;    =—.  6.    H=---^. 


5.    S  =  VT:f  .5^T»n».o.        Or, 


V« 


3  g  t%n.  a 

V  representing  velocity  o/prqjeetion  in  feet  per  second^  S  space  or  vertical  height 
of  velocity  and  projection,  a  an^  of  inclination  ofj^ne,  I  lengthy  and  H  height  of 
plane. 

Illustratioh.  —  Assume  elements  of  preceding  illustration.  V = 8a4i6,  T = 5, 
andH^aox.04. 

I.    sX3a-»66XS'X.5  =  aoX'<H/««*-  a-  sai^^X  5  X  .5  =  8oL4i6/Mt 

^    .5  X*6!X  X  5«  "^  aoio4 /<?<<-  7-    4  X  SX  V^^o4  =  293.42  feet 

If  projected  downward  with  an  initial  velocity  of  16.083  f^^  P^^  second.    V-f-ni 
4.     16.083 +  33. 166  X  5  X  .5  =  ^5/^' 


5.     8a4«6  4-i6.o83X5  — •'iX3a«66X5'X.5  =  a8i.46/«l 


494  GBAVITATIOir. 

Illustration.— What  lime  will  it  take  for  a  ball  to  roll  38  fset  down  an  inclined 
plane,  the  angle  a  =  la^  so',  and  what  velocity  will  it  attain  at  38  feet  flrom  its  itart- 
ing-point? 

'=\/^^=N/irSS  =  *»'*°*^  V  =  »T»1B.«=3*.66X3..3 
X  •  2136  =  22. 88  feet  per  second. 

When  a  body  is  projected  upwftfd  it  iB  retarded  in  the  same  ratio  that  a 
descending  body  is  accelerated. 

Illustration.— If  a  body  is  projected  up  an  inclined  plane  having  a  length  of 
twice  its  height,  at  a  velocity  of  96.5  feet  per  second, 

Then,  1=96. 5 -5-32.166  =  3  «ec<md»'  S  =  .5  32. 166X3' X.5  =  72375 /««*•  »  = 
32.166  X  3  X  .5  =  48-  25  feet 

Inclined   Plane. 

Problems  on  descent  of  bodies  on  inclined  planes  are  soluble  by  formulas 
I  to  9,  page  495,  for  relations  of  accelerating  forces.  Ah  a  ]  n  liniinary  step, 
however,  acceleratinflf  force  is  to  be  determined  by  multiplying  weiglit  of 
descending  body  by  height  of  plane,  and  dividing  product  by  length  of  plane. 

Illustration. — If  a  body  of  15  lbs.  weight  gravitate  fVcely  down  an  inclined 

{)lane,  length  of  which  is  live  times  height,  accelerating  force  is  i5-}-5  =  3  Iba  If 
ength  of  plane  is  xoo  feet  and  height  20,  velocity  acquired  in  lUliog  firoely  (torn  top 
to  bottom  of  plane  would  be 


'5 
Time  oocapied  in  making  descent, 


«  =  8\A^  =  8  >/20  =  3S-776/««t 


t  =  .2SyJ =  .25  y/soo  =  s.S9MComi», 

Whereas,  for  a  finee  vertical  fall  through  height  of  20  feet,  time  would  be^ 

tz=2Ul-z=i.ijZ  seconds^ 
32. 160 

which  is  .2  of  time  of  making  descent  on  inclined  plane. 

Velocities  acquired  by  bodies  in  falling  down  planes  of  like  height  will  all  be 
equal  when  arriving  at  base  of  plane. 

When  Length  <tf  an  Inclined  Plane  and  Time  qf  Free  Deaceni  art  given. 

Rule. — Divide  square  of  length  by  square  of  time  in  seconds  and  by  16 ; 
the  quotient  is  height  of  inclined  plane. 

EzAXPLB.— Length  of  plane  is  100  feet,  and  time  of  descent  is  5.59  seconds;  then 
Tertical  height  of  descent  is 

——-—^^vffed. 

Aooelerated  and  Itetarded   Alotion. 

If  an  Accelerating  or  Retarding  force  is  greater  than  gravity,  that  is, 
weight  Qf  the  body,  the  constant,  g^  or  33.166,  is  to  be  varied  in  proportion 
thereto,  and  to  do  this  it  is  to  be  multiplied  by  the  accelerating  force,  and 
product  divided  by  weight  of  body. 

Thus,  Letf  represent  acederoHng  farce,  and  10  weigM  of  body. 

Then,  _ii33/    ^^  3^__/    ^^  >_j — 3/  become  the  constanta 

The  Rflme  rules  and  formulas  that  have  been  given  for  action  of  gravity  alone 
are  applicable  to  the  action  of  any  other  uniformly  accelerating  or  retarding  force, 
'\e  numerical  constants  above  given  being  adapted  to  the  foroei 


GRAYITATIOK.  495 

A.vera||pe  Velocity  oi*  a  Miovine  Sody  xxxxifbrxxily  A.oo.el- 

erated  or  HetArded. 

Avenge  velocity  of  a  moving  body  unifonnly  acceleiated  or  retiurded, 
during  a  given  time  or  in  a  given  space,  is  equal  to  half  sum  of  initial  and 
final  velocities ;  and  if  body  begin  from  a  state  of  rest  or  arrive  at  a  state  of 
rest,  its  average  speed  is  half  the  final  or  initial  velocity,  as  the  case  may  be. 

Thus,  in  example  of  a  ball  rolling,  initial  speed  or  velocity  ifl^  in  either 
case,  60  feet  per  second,  and  terminal  speed  is  nothing ;  average  speed  10 

therefore  — ^,  namely,  one  half  of  that,  or  30  feet  per  second. 

When  a  cannon-tMill  is  proj^oted  at  an  angld  to  horiion,  there  are  two  forces  act- 
ing on  It  at  flame  tlme^vix.,  force  of  charge,  which  propels  it  unifonnly  in  a  right 
line,  and  force  of  gravity^  wbtch  eaases  it  to  fall  from  a  right  line  with  an  acoel- 
erated  motion :  these  two  motions  (nnirorm  and  accelerated)  cause  the  ball  to  move 
In  the  cnrred  line  of  a  Parabola 

Formulas  for  Flight  of  a  Cannon-ball, 

V  =  28oo,/-;   P=s-5 ; 

V^  7840000' 

-      V>8ln.a,coaa      ^     Vein,  a      .      V«8ln."a 
(s — ;    t  = :    h=: . 

w  repretenHng  ibetg^t  ofbaU  and  P  ofprndir  in  tbs, ;  t  Hme  ofJligJU  in  tecondt; 
b  horizontal  range^  and  h  vertical  height  of  range  ofprqjection  qfbcUl  in  feet 

Illustration. — A  cannon  loaded  to  give  a  ball  a  velocity  of  900  feet  per  second, 
the  angle  azs4s**\  what  is  horizontal  range,  the  time  t  and  height  of  range  hf 

«=?2i>l^  =  .„8««wdi,   *=.y°'^W?'i=  6.195 Jtot 
32.166  ^*  2X32.166  "■'•' 

Note.— As  distance  b  will  be  greatest  when  angle  0  =  45°,  product  of  tine  and 
cosine  is  greatest  for  that  angles    Sia  45<'  x  voa  45°=  S' 

•4  lb.  ball  with  a  velocity  of  2000  feet  per  second  at  45O  range  7300  feet 

G^eneral    IToAuulas    for   iVcoeleratlns    and    Retarding 

Foroes. 

W  10  fff  2gf 


V   w 


2(^8  632.2  ^  V 

NoTS  I.— When  accelerating  or  retarding  force  bears  a  simple  ratio  to  weight  of 
body,  the  ratio  may,  for  facility  of  calculation,  be  substituted  in  the  quantities  rep- 
resenting modified  constants,  for  force  and  weigbt.    Thus,  if  accelerating  force  Is  a 

tenth  part  of  weight,  then  ratio  is  i  to  10,  and  ^^ —  =  3. 3x66  \  or,  ^ — ^  s=  i.^v 

10  *  10 

and  .±333  _  g  ^^^^ .  ^^  ij^gg^  quotients  may  be  sabstttated  for  16.083, 32. 166,  and 

64.333  respectively,  In  formulas  for  action  of  gravity  i  to  9,  to  fit  them  for  computa- 
tion ih  an  accelerating  or  retarding  force  one-tenth  of  gravity 

2.— Table,  page  488,  giving  relations  of  velocity  and  height  of  falling  bodies,'  may 
be  employed  in  solving  questions  of  accelerating  force  general. 

EzAMPLB.— A  ball  weighing  xo  lbs.  is  projected  with  an  initial  velocity  of  60  feel 

Cr  second  on  a  level  plane,  and  firictional  resistance  to  its  motion  is  i  lb.    What  dis- 
Ace  will  it  traverse  before  It  comes  to  a  state  of  rest  ?    By  formula  4 : 

10  lbs.  X  60'  ^  , 

64.333 X.  lb. °»»»-^ 


496  GBAYTTATION. 

Again,  same  restitt  ma^  be  arrived  at,  according  to  Note  i,  by  multiplying  con- 
stant 64.333,  in  Rule,  page  494,  for  gravity,  by  ratio  of  force  and  weight,  which  in 
this  case  is  ^,  and  64. 333  X  t'fr  =  6.4333-  Substituting  6.4333  ^^^  64. 333  in  that 
rule,  formula  becomes 

V»  60* 

The  question  may  be  answered  more  directly  by  aid  of  table  for  fiUling  bodies, 
page  488.  Height  due  to  a  velocity  of  60  feet  per  second,  is  55.9  feet;  which  is  to 
be  multiplied  by  inverse  ratio  of  accelerating  force  and  weight  of  body,  or  -^j  or  10; 

'**"'  '^  55-9  X  10  =  5S9/««*- 

If  tlie  question  is  put  otherwise— What  spaoe  will  a  weight  move  over  before  it 
comes  to  a  state  of  rest,  with  an  initial  velocity  of  60  feet  per  second,  allowing  fac- 
tion to  be  one  tenth  weight?  The  answer  is  that  flriction,  which  is  retarding  force, 
being  one  tenth  of  weight,  or  of  gravity,  space  described  will  be  10  times  as  great  as 
is  necessary  for  gravity,  supposing  the  weight  to  be  projected  vertically  upwards  to 
bring  it  to  a  state  of  rest    The  height  due  to  velocity  being  55.9  feet;  then 

55-9  X  10  =ss9  feet. 

Average  velocity  of  a  moving  body,  uniformly  accelerated  or  retarded  during  a 
given  period  or  space,  is  equal  to  half  sum  of  Initial  and  final  velocities. 

T*o  Compute  Velocity  of  a  Falling  Streazxi  of  Water  per 
Second  at  Iiixid  of  any  given  Xixne. 

When  Perpendicular  Distance  is  given. 

Example. — What  is  the  distance  a  stream  of  water  will  descend  on  an  inclined 
plane  10  feet  high,  and  100  feet  long  at  base,  in  5  seconds  f 

5*  X  16.083  =  402.08.^  =  space  a  body  will  freely  fail  in  this  Hme. 

Then,  as  100 :  10 ::  402.08  :  40.21  feet = proportionate  velocity  on  a  jUane  qf  these 
dimensions  to  velocity  token  falling  jreeiy. 

I^isoellaneouB  Illustrations. 

s.^What  is  the  space  descended  vertically  by  a  foiling  body  In  7  SflOOOda 
S=.5yx<'.    Then  16.083  X  7' =  788.067 /»«. 

9.— What  is  the  time  of  a  fitUing  body  descending  400  feet,  and  velocity  acquired 
at  end  of  that  time? 

t=z-.    Then -^ — ^=z4.d&see.     v^VTgxS.    Then  V64.333 x 400=  160.4 feeL 
g  32^  100 

3.— If  a  drop  of  rain  (kll  through  176  feet  in  last  second  of  its  QUI,  how  high  was 
the  cloud  (h)m  which  it  fell? 

S  =  — .    Then  2^^^  =482. 75 /eee. 
9g  64.166     ^     '^'' 

4.— If  two  weights,  one  of  5  lbs.  and  one  of  3,  hanging  flreely  over  a  sheave,  are 
■M  free,  how  fhr  will  heavier  one  descend  or  lighter  one  rise  in  4  seconda 

f^  X  16.083  X  4»=^l  X  357.3a8  =  64-33/«<- 
5  +  3  8 

5.— If  length  of  an  inclined  plane  is  zoo  feet,  and  time  of  descent  of  a  body  is  6 
■econds,  what  is  vertical  height  of  plane  or  space  foUen  through? 


100'        10  000 


6'X.5^        579 


=  x'j.vjfeeL 


6.—\t  a  bullet  )8  projected  vertically  with  a  velocity  of  235  (bet  per  second,  what 
velocity  wiU  it  have  at  60  foet? 

»        .  "35  /  »35'       2X60  ^5. 

Formal. 9,  p.«.49»      ^M-\/^,6^—^M=*^^ 


6UN^£BY.  497 

GUNNERY. 

A  heavy  body  impelled  by  a  force  of  projection  describes  in  its  flight 
or  track  a  parabola,  parameter  of  which  is  four  times  height  due  to 
velocity  of  projection. 

Velocity  of  a  shot  projected  from  a  gun  varies  as  square  root  of 
charge  directly,  and  as  square  root  of  weight  of  shot  reciprocally. 

1?o  Compute  'Velocity  of*  a  Shot  or  Shiell. 
Rule. — Multiply  square  root  of  triple  weight  of  powder  in  lbs.  by  1600  j 
divide  product  by  square  root  of  weight  of  shot ;  and  quotient  will  give  ve- 
locity in  feet  per  second. 

ExAXPLX.— Wbat  is  velocity  of  a  shot  of  196  lbs.,  projected  with  a  charge  of  9  lbs 
of  powder?  

V9X  3X  1600 -i-v^i96  =  8320 -7-14  =  594. 3  feet. 

To  Compute  Range  fbr  a  Charge,  or  Charge  for  a  Range. 

When  Ba$igefor  a  Charge  ia  giren.^Eangea  have  same  proportion  as 

charges  of  powder;  that  is,  as  one  range  is  to  its  charge,  so  is  any  other 

range  to  its  charge,  elevation  of  gun  being  same  in  both  cases.    Consequently, 

To  Compute   Range. 
Rule. — Multiply  range  determined  b}'  charge  in  lbs.  for  range  required, 
divide  product  by  given  cfaar^  and  quotient  will  give  range  required. 

ExAXPLK.  —If,  with  a  charge  of  9  lbs.  of  powder,  a  shot  ranges  4000  feet,  bow  for 
wiU  a  charge  of  6. 75  lbs.  prqject  same  shot  at  same  elevation  ? 

4000  X  6.75 -^9  =  3000  .^t 

To  Compute  Charge. 
Rule. — Multiply  given  range  by  charge  in  lbs.  for  range  determined, 
divide  product  by  range  determine^  and  quotient  will  give  charge  required. 

EzAMPLK.— If  required  range  of  a  shot  is  3000  feet,  and  charge  for  a  range  of  4000 
feet  has  been  determined  to  be  9  lbs.  of  powder,  what  is  charge  required  to  project 
same  shot  at  same  elevation  ? 

3000X9-5-4000=6.7516*. 

To  Compute  Range  at  one  Slevation,  when  Range  for 

another  is  given. 

Rule. — As  sine  of  double  first  elevation  in  degrees  is  to  its  range,  so  is 
sine  of  double  another  elevation  to  its  range. 

ExAXPLR.— If  a  shot  range  1000  yards  when  projected  at  an  elevation  of  45O,  how 
Our  will  it  range  when  elevation  is  yP  16',  charge  of  powder  being  same? 
Sine  of  45°  X  a  =  100000;  sine  of  yP  16'  X  2=87064. 

Then,  as  100 000  :  1000  ::  87064  :  670.64  feet. 

To  Compute  Klevation   at  one   Range,  -wrhen   Slevation 

fbr  another  le  given. 

Rule. — As  range  for  first  elevation  is  to  sine  of  double  its  elevation,  so 
is  range  for  elevation  required  to  sine  for  double  its  elevati(Mi. 

ExAMPUL— If  range  of  a  shell  at  45O  elevation  is  ^750  feet,  at  what  elevation 
must  a  gun  be  set  for  a  shell  to  range .aSio  feet  with  a  like  chaiige  of  powder? 

Sine  of  45<^  X  3  =  100  000. 

Then,  as  3750 :  looooo : :  38x0 :  74  933  =  rinefor  dmMe  devotion  =  34^  x6'. 

Approximate  Bute  for  Time  of  Flight 

Under  4000  yards,  velocity  of  projectile  900  feet  in  one  second ;  under 
6000  yards,  velocity  800  feet ;  and  over  6000  yards,  velocity  700  feet. 

Gum  and  Howitzert  take  their  denomination  from  weights  of  their  solid 
shot  in  round  numbers,  up  to  the  42-pounder ;  larger  pieces,  rifled  guns,  and 
mortars,  from  diameter  of  their  bore. 

Tt» 


498 


GUNNERY. 


Initial  'Velocity  and   H.feingrBS  of  Sliot   and   Shells. 

Tbe  Range  of  a  shot  or  shell  \b  the  distance  of  its  flrat  gmee  upon  a  horiaontal 
plane,  the  piece  mounted  upon  its  proper  carriage. 

le. 
WeiKht. 


Abmh  and  OanNANCB. 

rrujeck 

DeKription. 

Rifle  Musket. 

Elongated. 

Musket,  1841 

Round. 

6-Ponnd6r. .  < 

t( 

la         »*       4. 

i( 

24        "       

(t 

02         " 

it 

42    "   :..:::::.. 

tk 

8  inch  Coluinbiad... 

i« 

10    ''            " 

t« 

10    "     Mortar. 

Shell. 

13    '*         *'     

15    "'     Columbiad. . . 

(( 

t( 

,  .    ((            t( 

n 

15                          •  •  • 

RIFLBD. 

zo-pouDder  Parrott. . 

n 

20       "           "      .. 

(t 

JO 

i( 

iOO            "                 »'         .. 

Elongated. 

100           "                 "         .. 

Shell. 

200           '\                "         .. 

11 

12- inch  Rodman 

t( 

Hairs  Rockets 

3-inch. 

Graios. 
5«o 
412 
Lbs. 
6.13 
U.3 
2425 
323 
42.5 
65 

200 
30a 

3*5 


9-75 

19 
29 

100 

xoi 
150 


Powder. 

Initial 
Velocity. 

Tline  uf 

Fiigiit. 

Eleva- 
tion. 

R«Bg«. 

Grains. 

VeeU 

SecAndl. 

a       t 

Yarda. 

60 

963 

-♦ 

— 

-^ 

no 

1500 



— 

Lbs. 

( 

1.35 

*-. 

*♦• 

$ 

»S«3 

2.5 

X826 

X.75 

X 

575 

6 

X870 

a 

X147 

8 

X640 

— 

z 

7»3 

10.5 

— 

— 

5 

«955 

10 

— 

X4.19 

15 

3224 

«5 

•— 

^•'' 

IS 

3281 

10 

— 

45 

4350 

20 

— 

■*- 

45   • 

43»5 

40 

•— 

— * 

7 

2948 

50 

~~ 

33.39 

as 

4680 

I 

— 

31 

ao 

5000 

2 

— 

17.25 

15 

4400 

3.95 

— • 

27 

as 

670D 

xo 

— 

S 

as 

9^** 

10 

1250 

25 

68ao 

16 

— 

— 

4 

3200 

50 

"54 

55 

40 



— 

— 

— 

47 

1720 

16 

Penetration  of*  tShot  and   Shell. 

Experiments  at  Fort  Monroe,  1839,  and  at  West  Point,  X853. 


0 

Mean 

PBaetral 

,lon. 

OUONAMCS. 

1 

0 

1 

Yds. 

13 

1 
Ins. 

Lbs. 

Int. 

Ins. 

32  Lbs.  Shot. 

8 

880 

— 

i5-«5 

3.5 

33     "       " 

IZ 

100 

60 

— 

42     "       «' 

X0.5 

100 

54-75 

18 

4 

42    "  Shell. 

7 

100 

40-75 

— 

Osdnaucb. 


8-inch  Howitz  * 

8    "  Columb.>t 

10    "         "      t 

10    "         '«      * 


I 


Lba 


6 

IB 

18 
18 


e 


Yds. 
880 
aoo 
114 
100 


Mean  PMMinttoo. 


1^ 


Ins. 


|-5 
0.75 


VM 


Ins. 

8^5 

44 


I 

o 
Ills. 

X 

7-75 


*  34  ioa.  of  Concrete. 


•  Shell. 


t  Shot 


Solid  shot  broke  against  granite,  but  not  against  flreestone  or  brick,  and  geneml 
effect  is  less  upon  brick  than  upon  granite. 

Shells  broke  into  small  fVagments  against  each  of  the  three  materiala 

Penetration  in  earth  of  shell  from  a  xo-incb  Columbiad  was  33  ins. 


Earpeiiments —  England.    (HotUy. ) 


Obdnanci. 


xi-inch  U.  S.  Navy. 
x5-lnch  Rodman... 

RIFLED. 

7-lnclt  Whitworth.. 
xo.s-inch  Armstrong 
x3-inch  *' 


diar^e. 


Lbs. 
30 

60 


•5 

45 
90 


Projectile. 

Weight. 

Velocity. 

Range. 

Target  and  Kflhoto. 

Shot 

Lbs. 
X69 

400 

Feet. 
1400 

X480 

Yards. 

50 

SO 

Iron  plates,  X4  ina 

—loosened, 
iron  plates,  6  loft.— 

destroyed. 

Shot 

4i 

150 
307 
344-5 

1341 
1338 
X760 

300- 

soo 

300 

IngUs^et— dflstr'd. 

Solid  plates,  n  ins 
thick— destr'd. 

*  Steel.  t  8-inch  yertical  and  5-lnch  horizontal  slabs,  and  7-inch  vertical  and  <-tn.  bortsontal 

"^,9  X  5  ins.  ribs  and  3-inch  ribs- 


OUNNBBT. 


499 


JSUmmtt  of  Rywri  of  Board  of  Engineers,  far  FortifieationSy  U.  S.  A, 
ProfMional  Papers  No.  25.    {Brev.  Maj.-Gtn.  Z.  B.  Towei:) 

Experimental  firings  for  penetration  during  the  past  twenty  years  have 
detennined  that  wrought  iron  and  cast  iron,  unless  chilled,  are  unsuitable  for 
projectiles  to  be  used  against  iron  armor;  that  the  best  material  for  that 
purpose  is  hammered  steel  or  Whitworth's  compressed  steeL 

3.  That  caat'iron  and  cast-steel  armor-plates  will  break  up  under  the  im- 
pact of  the  heaviest  projectiles  now  in  service,  unless  made  so  thick  as  to 
exclude  their  use  in  ship-protection. 

3.  That  wrought-iron  plates  have  been  so  perfected  that  they  do  not  break 
upf  but  are  penetrated  by  displacement  or  crowding  aside  of  the  material  in 
the  path  ot  the  shot,  the  rate  of  penetration  bearing  an  approximately  deter- 
mined ratio  to  the  striking  energy  of  the  projectile,  measured  per  inch  of 
shot's  circumference,  as  expressed  by  the  following  formula : 


yap 


— —  =^  penetraiion  in  ins,    V  rqaresenting  velocity  in 
9gX2rirX  2240  X  .86     -"^  *^  »  * 

Jbctper  aecondj  P  weight  of  shot  in  Ws.,  and  r  radius  of  shot  in  ins. 

That  such  plates  can  therefore  be  safely  used  in  ship  construction,  their 
thickness  being  det«rmiaed  by  the  timit  of  flot$ition  and  the  protection 
needed. 

4.  That,  though  experiments  with  wrought-iron  plates,  faced  with  steel, 
have  not  been  sufficiently  extended  to  de^mine  Uie  beiBt  combination  of 
these  two  materiajs,  we  may  nevertheless  assume  that  they  give  a  resistance 
of  about  one  fourth  greater  thau  those  of  homogenous  iron. 

5.  That  hammered  steel  in  the  late  Spezaia  trials  proved  superior  to  any 
other  material  hitherto  tested  for  armor-plates.  The  19-inch  plate  resisted 
penetration,  and  was  only  partially  broken  up  by  4  shots,  three  of  which  had 
a  striking  energy  of  between  33  000  and  34  000  foot-tons  each.  Not  one  shot 
penetrat^  the  plate.  Those  of  chilled  iron  were  broken  up,  and  the  steel 
projectile,  though  of  excellent  quality,  Was  set  up  to  about  two  thirds  of  its 
length. 

Velocity  aixd.  iHangee  of  Sb.ot,    {Kmpp's  Ballistic  Tables.) 
Penetiration.  iii   "Wrought   Iron. 


*vr^ 


Vap 


— —7^ = penetration  in  ins.    C  =  2. 53. 

gX^rnX  2240  X  C      ^  ^^ 


QVK. 


Tona. 

Armstrong,  100. 


« 


ti 
81.. 


Woolwich, 

Kmpp,  71.. 

»'  18.. 

U.S.*  8-inch.... 


Velocity 

Penetrattoo 

Cali- 
ber. 

Powder. 

Shot. 

at 
Muzzle 

Range. 

at 

Range 

per  Sec. 

3000 
Yds. 

6000 

Mazzle 

Coo 

3fxx> 

Int. 

Lbs. 

Lbs. 

Feet. 

Yds. 

Ids. 

ins. 

Ids 

1 7- 7*5 

550 

2022 

1715 

1424 

1 191 

34-76 

33-2 

27-55 

>7-75 

776 

2000 

1832 

1518 

1259 

37-52 

35- 81 

29.66 

16 

445 

1760 

1657 

'393 

xi8x 

32.6 

31-23 

26.04 

1575 

4«S 

I715 

1703 

1434 

1 211 

3352 

32.12 

27.04 

r« 

165 

474 

1688 

1351 

IU3 

20.48 

"9-31 

15-46 

35 

180 

»450 

1036 

840 

10.23 

9.22 

6.72 

60QO 

Ins. 
22.04 

23-47 
2»-35 
21.89 
12. 14 
5- 17 


*  Uncbanibered. 


Target.— For  loo-ton  gun,  steel  plate  22  ins.  thick,  backed  with  28.8  ins.  of  wood, 
2  wrought-iron  plates  1.5  ins.  thick,  and  the  fhime  of  a  vessel. 

J^ect.~Tota1  destruction  of  steel  plate,  and  backing  entered  to  a  depth  of  22  in&, 
bat  not  perforated. 


500 


GUKKBBY. 


Suxninary  of  Record  of*  Practice  in  Burope  'writli  IXdittV^ 
A-rmstrong,  Wool^violi,  and.   Krtipp   Gt-tius. 

Board  of  Engineers  Jbr  FortificcUionSy  U.  S.  A.jProfsmonal  Papers  ZVb.  25. 


Gum. 


Armstroxo, 

100  Tons,  caliber 

17  ins.,  bore  30.5 

feet. 

Woolwich,  81 
Tons,  caliber  14.5 
iqa ,  bore  24  feet. 

caliber  16  ins. . . 

38  Tons, 
caliber  12.5  ins. 
bore  16.5  feet 

Krupp,  71  Tons, 

caliber  15.75  in&, 

bore  28.58  feet 

18  Tons, 

caliber  9.45  lbs., 

boro  17.5  feet 


! 

■■} 


Powder. 


1. 5- inch  cubes, 
Wttltham  Abbey 
Fossano 

.75-inch  cubes. 
1.5     "       " 

1.5     '*       " 

1.5  "  " 
1.5  "  " 
1.5  "  *' 
Prism  A 

"     H 

"     2  inch. . . 

"     xhole... 
**     3  inch. . . 


^ 

Bneruy 

Projectile. 

^i 

•Si 

1  VelodI 
Second. 
V. 

5> 

• 

ills 

i 

k 

Lb«. 

Lbe. 

il 

Feet. 

£ft. 

ei 

peril 

eircon 

of  a 

P 

N 

n 

1 

Ft.-tOD». 

Fooi-ioiu. 

'shot.... 

330 

2000 

f446 

38990 

54405 

375 

2000 

«S43 

33000 

633 

400 

2000 

1502 

3128a 

585-74 

776 

aooo 

1832 

46580 

83532 

170 

1258 

»393 

x6q22 

20843 

371-5 

220 

1450 

1440 

457-57 

250 

1260 

1523 

20259 

34508 

444- 7« 

310 

1466 

1553 

520.4 

Pall,  shell 

130 

800 

M5> 

II 668 

207.64 
285.4 

n 

200 

800 

1421 

II  210 

(( 

t8o 

80a 

1504 

"545 

3«9-4 

Plain  . . . 

t 

1707 

1x84 

16602 

335-4* 

Shrapnel 

1725 

«703 

34503 

697.91 

Shell . . . 

441 

1419 

1761 

30484 

616. 14 

Plain  . . . 

132 

300 

1873 

7298 

246^03 

Shrapnel 

145 

474 

1688 

8344 

315.66 

Shell . . . 

165 

300 

1991 

277.6. 

9 

Penetration  in  Ball  Cartridge  Paper,  No,  i. 

Musket,  with  134  grains,  at  13.3  yards. 653  sheeta 

Common  rifle,  92  grains,  at  13.3  yards. 500  sheeta 


X*exietration  of  Uead  Sails  in   Small  A.rzns. 

Experiments  cU  Washington  Arsenal  in  1839,  and  at  West  Paint  in  1837. 


AXM. 


Musket 

Common  Rifle. 


Hairs  rifle. 


Hairs  carbine,  musket 
Galil)er. 


Pistol 

Rifle  musket 

Altered  musket 

Rifle,  Harper's  Ferry.. 

Pistol  carbine 

Sharpe's  carbine 
Bumside^B 


IMsmeter  I   Charge 
of  Bull.    I  Powder. 


(( 


Inch. 
.64 

•64 


5775 


•5775 
.685 

•5775 
•5775 
•55 
•55 


Graina. 
«34 
>44 
100 

92 
100 

70 

70 

80 

90* 

lOO* 

5" 

60 
70 

40 
60 

55 


Weight 

Penetration. 

Distance. 

of  Bull. 

White  Oak. 

WUtePla*. 

Yaida. 

Gnina. 

loa. 

lu. 

9 

397-5  • 

1.6 

— 

5 

397-5 

3 

— 

5 

219 

2.05 

— 

9 

— 

X.8 

— 

5 

219 

2 

^ 

9 

219 

.6 

— 

5 

— 

'Z 

— 

5 

2x9 

.8 

— 

5 

— 

x.x 

— 

5 

• 

1.2 

— 

5 

S19 

.725 

— 

300 

500 

— 

Zl 

200 

730 

— 

10.5 

200 

500 

— 

9-33 

200 

450 

— 

5-75 

30 

463 

— 

7.17 

30 

350 

^ 

6.15 

*  Chargea  too  great  for  aervice. 


Mosket  discharged  at  9  yards  distance,  with  a  charge  of  134  grains,  x  ball  and  js 
buckshot,  gave  for  ball  a  penetration  of  1. 15  ins.,  bn&luhot,  41  inch. 


GUNNEBT. 


501 


XjOms  cr  F'oroe  \>y  "Windagre. 

A  oomparison  of  resalts  shows  that  4  lbs.  of  powder  give  to  a  ball  without  wind- 
Btgfi  nearly  as  great  a  velocity  as  is  given  by  6  lbs.  having .  14  inch  windage,  which 
i»  true  windage  of  a  24-lb.  ball;  or,  in  other  words,  this  windage  causes  a  loss  of 
nearly  one  tlard  of  force  of  charge. 

Venta. — ExperimenCs  show  that  loss  of  force  by  escape  of  gas  from  vent 
of  a  gun  is  altogether  mconsiderable  when  compared  with  whole  force  of 
charge. 

Diameter  of  Vmi  in  U.  S.  Ordnance  is  in  all  cases  .2  inch. 


Effect  of  different  Waddings  with  a  Charyeofii  Grains  o/Poioder, 


Wad. 


Ball  wrapped  in  cartridge  paper  and  crumpled. 

1  felt  wad  upon  powder  and  1  upon  ball 

2  felt  wads  upon  powder  and  i  upon  ball 

1  elastic  wad  upon  powder  and  i  upon  ball . . . . 

2  pasteboard  wads  upon  powder. 

2  elastic  wads  upon  powder. 


Velocit 
per 


of  Ball 
ond. 


Feet. 

1377 

1346 

1482 

II32- 

1200 

HOC 


Felt  wads  cat  from  body  of  a  hat,  weight  3  grains 

Pasteboard  vxtds  .1  of  an  inch  thick,  weight  8  grains. 

Cartridge  paper  3  X  4-5  ina,  weight  12.82  grains. 

Elastic  toadSy  *' Baldwin's  indented,"  a  little  more  than  .x  of  an  inch  thick, 
weight  5.127  graina 

Most  advantageous  wads  are  those  made  of  thick  pasteboard,  or  of  or- 
dinary cartridge  paper. 

In  service  of  eannon,  heavy  wads  over  ball  are  in  all  respects  injurious. 

For  purpose  of  retaining  the  ball  in  its  place,  light  grommets  should  be  used. 

On  the  other  hand,  it  is  of  great  importance,  and  especially  so  in  use  of  small 
arms,  that  there  should  be  a  good  wad  over  powder  for  developing  fUU  force  of 
charge,  unless,  as  in  the  rifle,  the  ball  has  but  very  little  windage.   {Capt.  JUordecai.) 

Weij$Iit.  aiid.   IDimexisioiis   or  X^ead   Balls. 
Number  of  BaUs  in  a  Lh^^frotn  1.67  to  .237  of  an  Inch  Diameter, 


Ins. 
1.67 
1. 3*6 

1.IS7 
X.051 

•977 
.919 

.873 
.835 
.802 

•775 


No. 

DlMD. 

No. 

DUm. 

No. 

Dtam. 

No. 

IncDe 

Inch. 

loeh. 

X 

•75 

XX 

•57 

as 

.388 

80 

2 

•73 

12 

•537 

30 

•375 

88 

3 

r 

13 

•51 

II 

.37a 

90 

4 

.693 

«4 

•55JS 

.359 
.348 

xoo 

5 

.677 

15 

.488 

40 

XIO 

6 

.662 

x6 

.469 

45 

•338 

X20 

I 

.65 

»7 

•453 

50 

.329 

130 

.637 

x8 

.426 

60 

.321 

140 

9 

.625 

«9 

.405 

70 

•314 

X50 

xo 

.6x5 

ao 

.395 

75 

.307 

x6o 

Diam. 

No. 

Diam. 

No. 

Inch. 

Inch. 

.301 

170 

•259 

270 

.295 

x8o 

256 

280 

:.% 

190 

.252 

290 

200 

249 

300 

.281 

210 

.247 

310 

.276 

220 

244 

320 

.272 

230 

.242 

330 

.268 

240 

•239 

340 

.265 

250 

.237 

350 

.262 

260 

Heated  shot  do  not  return  to  their  original  dimensions  upon  cooling,  but  retaio 
a  permanent  enlargement  of  about  .02  per  cent  in  volume. 


A  A. 

A. 


Number  of  Pellets  in  an  Ounce  of  Lead  Shot  of  the  different  Sizes', 

No.  6 280 


40 
50 
58 


B. 

No.x. 

9. 


75 
82 


IZ2 


No.  3. 

4- 
5- 


»35 
X77 
218 


7- 
8. 


34» 
600 


Naz4. 


No.  9. 
10. 

Z2. 


984 
Z726 
2140 


3x50 


502 


GUNNSBT. 


Proportion  of  Po-wd«r  to  Sliot  fbr  fblloT«rinK  M^uxnber* 

of  Slxot. 

Shot. 


No. 

Shot. 

Powder. 

No. 

a 
3 

Oi. 

3 

«-7S 

Druo*. 

1-5 
1.625 

4 
5 

Powder. 

No. 

Shot 

Rowder. 

I>num. 

i«75 
2.125 

6 
7 

1. 125 

DraiiM. 

"•375 

2.625 

Oi. 

1-5 
1-375 
NoTS.— 3  oz.  of  No.  2  shot,  with  1.5  drams  of  powder,  proiduced  greatest  eflPect. 

Increase  of  powder  for  greater  number  of  pellets  is  in  consequence  of  increased 
friction  of  their  projection. 


Numbers  o/Brcumon  Capt  cotrespotiding  mHth  Birmingham  Ntmhen. 


Eley's. 


Qirmiugbam. 


5 

6 

7 

46 

8 

"48 

9 
49 

24 

50 

43 

44 

xo 


IX 


53  and  54 


x8 


55  and  56 


13 


57 


>3 

58 


»4 
58* 


51  and  52 

Where  there  are  two  numbers  of  Birmingham  sizes  corresponding  with  only  one 
of  Eley's,  it  is  in  consequence  of  two  numbers  being  of  same  sue,  varying  only  in 
length  of  capa 


Comparison  of  S^oroe  of*  a 

Lock. 


Ordinary  rifle... 
tt         it 

Hall's  rifle...*.!! 
Hall's  carbine. . , 
Jenks's  carbine, 
Cadet's  musket , 
Pistol , 


Cliarge  iu.  'variotifii  Arms. 

Vslocity. 


Percussion. 

Flint. 

Percussion, 
ti 

Flint 
Percussion. 


Powd«r« 
As. 

WiiuUge. 

Weight 
oTBaII. 

Graint. 

Inch. 

GniuB. 

100 

.015 

219 

7P 

.015 

319 

70 

.0 

319 

70 

0 

319 

70 

.0 

3x9 

70 

.045 

310 

ax6.5 

35 

.015 

Fort. 

2018 

«755 
1490 
1340 
1687 
1690 
947 


Rangetfor  Smcdl  Arms* 

Musket— With  a  ball  of  17  to  pound,  and  a  charge  of  no  grainii  of  powder,  eto., 
an  elevation  of  36'  is  required  for  a  range  of  soo  yards;  and  for  a  range  of  500 
yards,  an  elevation  oTj,^  30'  is  necessary,  and  at  this  distance  a  ball  will  pass  through 
a  pine  board  x  inch  in  thickness. 

At/I«.— With  a  charge  of  70  grains,  an  effective  range  of  flrom  300  to  350  yards  is 
obtained;  but  as  75  grains  can  be  used  without  stripping  the  ball,  it  is  deemed  bettor 
to  use  it,  to  allow  for  accidental  loss,  deterioration  of  powder,  etc 

Pistol— W\ih  a  charge  of  30  grains,  the  ball  is  projected  through  a  pine  board 
X  inch  in  thickness  at  a  distance  of  80  yard& 


GhMipo-wd.er. 

Gunpowder  is  distinguished  as  Musket^  Mortar,  Cctntum,  Mammothf  and 
Sportina  powder ;  it  is  all  made  in  same  manner,  of  same  proporttons  of 
materials,  and  differs  only  in  size  of  its  grain.' 

Bursting  or  Explosiw  3n«rgy.— By  the  experiments  of  Captain  Rodman,  U.  S. 
Ordnance  Corps,  a  pressure  of  45  000  lbs.  per  square  inch  was  obtained  with  xo  lbs. 
of  powder,  and  a  ball  of  43  lbs. 

Also,  a  pressure  of  185000  lbs.  per  sq.  inoh  was  obtained  *ohen  the  powder  was 
Immed  in  iU  own  volume,  in  a  cast-iron  shell  having  diameters  of  3.85  and  xs  ins. 

Proof  of  Powder.    {U.  S.  Ordnance  Maaiial) 
Powder  in  magazines  that  does  not  range  over  x8o  yards  is  held  to  be  unservice- 
able. 
Oood  powder  averages  from  280  to  300  yards;  smaU  grxUn,  flrom  300  to  330  yards. 

Restoring  UmerviceaMe  Powder.  —  When  powder  has  been  damaged  by  being 
stored  in  damp  places,  it  loses  its  strength,  and  requires  to  be  worked  over.  If 
quantity  of  moisture  absorbed  does  not  exceed  7  per  cent.,  it  Is  sufllcient  to  dry  It 
to  restore  it  for  servioe.    This  is  done  by  exposing  it  to  the  sun. 

When  powder  has  absorbed  more  than  7  per  cent,  of  water  it  should  be  SQlltlOtt 
powder  mill  to  be  worked  over. 


UUNNSBT. 


503 


Properties  and   Itesults  of  O-unpo-wder,  deterxnixied  t>y 
ICxperixxiexits.    {Ca^in  A.  Mordecai,  U.  S.  A.) 

^USKST  PBMOULVM. 

Weight  of  ball 397.5  gnini- 

*'       «'  powder. i«o.      " 

Windage  of  ball..  ^.. o9lflch. 


a4-P0ITirDBB  CrOM. 

Weight  of  ball  and  wad. ...  34.25  lbs. 

"       ♦'  powder 6        " 

Windage  of  ball....... 135  inoh. 


<bunc 


Cannon,  large. . . 

"       small . . 

Masket 

Rifle..... 

Rifle...... 

Musket.'. 

Rifle 

Cannonruneven. 

"       large . . . 

Sporting 

Blasting,  uneven 

Rifle. 

Sporting , 

Rifle 


C«mpo«it!on. 


Salt, 
petre. 

I  HI      11 


75 

77 
70 


75 
•Glaied. 


Ciutr, 
coal. 


14 


H.5 

«3 
"5 

15 


15 


Sul- 
phur. 


12.5 

Is} 

'} 

.0 


Ifanafifictur*. 


Where  from. 


•^wvif^ 


.*^i^wi*»-^**»*. 


*  Dupont's  M-ills, 
Del. 


t  Dupont'a  Mill?, 

Del. 
•  Dupont's  Mills, 

Del. 
Loomis,  Hazard, 

&;Ca,  Conn.* 
Waltham  Abbey, 

England.* 


Is® 

Per  c't. 

77 

«75 

2.77 

569 

314 

3-35 

i»34 

214 

— 

6174 

14a 

— 

5  344 

a83 

3-^ 

1642 

— 

— 

«3i5« 

— 

• — 

,66 

"53 

3.09 

loq 
72808 

183 
100 

1. 91 
4.42 

395 

aia 

— 

2378 

204 

iz6oo 

— 

— 

I 


677 
72 
808 
907 

728 

834 

943 
788 
756 


.82 
.888 

-        -        .865 


t  Rough. 


Manufacture  of  Powder.— TovrdeiT  of  greatest  force,  whether  for  cannon  or  small 
arms,  is  produced  by  incorporation  in  the  "cylinder  milla" 

Efffd  ofSiz6  of  Chain.  —Within  limits  of  difference  in  size  of  grain,  which  occurs 
in  ordinary  cannon  powder,  the  granulatioQ  appears  to  exercise  but  U^Ue  influence 
upon  force  of  it,  unless  grain  be  e^eeedingly  dense  and  bard. 

Effect  of  Glazing.  —  Xllazing  is  favorable  to  production  Of  greatest  force,  and  to 
quick  combustion  of  grams,  by  affording  a  rapid  transmission  of  flam^  through 
mass  of  the  powder. 

'  JBffM  €f'Mtvng  P^cMtitm-  I¥inier».  —  Inoi^ease  of  force  by  use  of  primers,  ^ich 
ntarly  <ilo»*$  wit,\a  ooastant  and  appreciable  in,  ameunt,  yet  not  of  su£Bcient  Talat 
to  authoriM  a  reduQtiw  of  chai)t9. 

Jfiafio  of  Relative  Strength  of  different  Powd&'sfor  use  under  water  dijfkr 
hut  little  from  the  reciprocal  of  the  ratio  between  the  sizes  of  the  grains^ 
ahowmg  that  the  strength  is  nearig  invers^  proportional  thereto,* 

Mammothf  .08;  -OliTer,  .09;  -Cannon,  .18;  Mortar,  t;  Mtnket,  1.57; 
Sporting  a.6if  and  SaHety  Compound  30.63. 

I>ualizx  is  nitro-glycerine  absorbed  by  Schultze's  powder. 

For  other  powders  and  explosive  materials  see  Blasting,  p.  443. 

Heat  and   B^jscplosive  Po'wer.    {Capt.  Noble  an4  F-  A.  Abel.) 

One  gram  of  fired  powder  evolves  a  mean  temperature  of  730®.  Temper- 
•tnrt  of  exptosioD  3970^.  Valume  ol  permanent  gas  (irhich  is  in  an  in- 
verse ratio  to  units  of  heat  evolved)  at  32°  =250. 

The  explosive  power  of  powder,  as  tested  in  Ordnance,  ranges,  for  volames 
of  expansion  of  1.5  to  50  times,  from  36  to  ijofooMons  per  lb.  burned. 

.  A  charge  of  jq  Ibd.  gave  to  an  180  lbs,  shot  a  velocity  of  1694  feet  per 
•econd,  eooal  to  a  total  energy  of  3637  /oo^-toiu,  and  a  charge  of  100  lbs. 
gave  a  vdocity  of  2^189 f^  and  an  energy  of  S9^of<totnton8* 

*  Report  of  Enertmente  and  Inveetlgatloiui  to  deiwlop  a  tyttem  of  •vhnarioe  mloM.    profeaaiopaJ 
Fqiani,  U.  8.  E.,  No.  33. 


504  HEAT. 

HEAT. 

Ifeaty  alike  to  gravity,  is  a  universal  force,  and  is  referred  to  both  as 
cause  and  effect. 

Caloric  is  usually  treated  of  as  a  material  substance,  though  its  claima 
to  this  distinction  are  not  decided ;  the  strongest  argument  in  favor  of 
this  position  is  that  of  its  power  of  radiation.  Upon  touching  a  body 
having  a  higher  temperature  than  our  own,  caloric  passes  from  it,  and 
excites  the  feeling  of  warmth ;  and  when  we  touch  a  body  having  a 
lower  temperature  than  our  own,  caloric  passes  from  our  body  to  it,  and 
thus  arises  the  sensation  of  cold. 

To  avoid  any  ambiguity  that  may  arise  from  use  of  the  same  expres- 
sion, it  is  usual  and  proper  to  employ  the  word  (Mloric  to  signify  the 
principle  or  cause  of  sensation  of  heat. 

ffeat  Unit. — For  purpose  of  expressing  and  comparing  quantities  of 
heat,  it  is  convenient  and  customary  to  adopt  a  Unit  of  heat  or  ITiermal 
unity  being  that  quantity  of  heat  which  is  raised  or  lost  in  a  defined 
period  of  temperature  in  a  defined  weight  of  a  particular  substance. 

Tbas,  a  Thermal  unit.  Is  quantity  of  heat  which  eorrespmds  to  an  interval  ofi^in 
temperature  of  i  lb.  of  pure  liquid  waier^  at  and  near  it*  temperature  of  grecUett 
dcnrity,  39.1° 

Thermal  unit  in  France,  termed  Caloric,  Is  quantity  of  heeU  which  oorreffNmdt 
to  an  interval  ofi°  C.  in  temperature  ofx  kilogramme  of  pure  liquid  watery  at  and 
near  its  temperature  of  greatest  density. 

Thermal  unit  to  Caloric,  3.96833;  Caloric  to  Thermal  unit,  .351 996. 

One  Thermal  unit  or  i®  in  i  lb.  of  water,  773  foot-lba. 

One  Caloric  or  lO  C.  in  i  kilogramme  of  water,  433.55  kilogrammetrea 

lO  C.  in  I  lb.  water,  1389.6  fbot-lbe. 

Ratio  of  Fahrenheit  to  Centigrade,  1.8;  of  Centigrade  to  Fahrenheit,  .555. 

Absolute  Temperature,  Is  a  temperature  assigned  by  deduction,  as  an 
opportunity  of  observing  it  cannot  occur,  it  being  the  temperature  corre- 
sponding to  entire  absence  of  gaseous  elasticity,  or  when  pressure  and  vol- 
ume =0.  By  Fahrenheit  it  is — ^461.2°,  by  Reaumur — 229.2%  and  by  Cen- 
tigrade—274®. 

Heat  is  termed  Sensible  when  it  diffuses  itself  to  all  surrounding 
bodies ;  hence  it  is  free  and  uncombined,  passing  from  one  substance 
to  another,  affecting  the  senses  in  its  passage,  determining  the  height 
of  the  thermometer,  etc. 

Tenyterature  of  a  body,  is  the  quantity  of  sensible  heat  in  it,  present 
at  any  moment. 

Heat  is  developed  by  water  when  it  is  violently  agitated. 

Heat  is  developed  by  percussion  of  a  metal,  and  it  is  greatest  at  the  fitit 
blow. 

Quantities  of  heat  evolved  are  nearlv  the  same  for  same  substance,  with- 
out  reference  to  temperature  of  its  combustion. 

Mechanical  power  may  be  expended  in  production  of  heat  either  by  fric- 
tion or  compression,  and  quantity  of  heat  produced  bears  the  same  propor- 
tion to  quantity  of  medumical  power  expended,  beinpr  i  unit  for  power 
necessary  to  raise  i  lb.  772  feet  in  height  This  number  of  772  is  termed 
the  mechamccU  equivcU^  of  heal  (Joules). 


HEAT.  505 

Specific  !Keat. 

Specific  Heat  of  a  body  signifies  its  capacity  for  heat,  or  quantity  re- 
quired to  raise  temperature  of  a  body  i^,  or  it  is  that  which  is  ab- 
sorbed by  different  bodies  of  equal  weights  or  volumes  when  their 
temperature  is  equal,  based  upon  the  law,  That  aimilar  quantities  of 
different  bodies  require  unequal  quantities  of  heat  at  any  given  tempera- 
ture. It  is  also  the  qitantity  of  heat  requisite  to  change  the  tempera- 
ture of  a  body  any  stated  number  of  degrees  compared  with  that  which 
would  produce  same  effect  upon  water  at  32°. 

Quantity  of  heat^  therefore,  is  the  quantity  necessary  to  change  the  tem-^ 
perature  of  a  body  by  any  given  amount  (as  1°),  divided  by  rmantity  ol 
heat  necessary  to  change  an  equal  weight  or  volume  of  water  at  32^  by  same 
amount. 

KoTB.— Water  has  greater  specific  beat  than  any  known  body. 

Every  substance  has  a  specific  heat  peculiar  to  itself,  whence  a  change  of 
composition  will  be  attended  by  a  change  of  its  capacity  for  heat. 

Specific  heat  of  a  body  varies  with  its  form.  A  solid  has  a  less  capacity 
for  heat  than  same  substance  when  in  state  of  a  liquid;  specific  heat  of 
water,  for  instance,  bemg  .5  in  solid  state  (ice),  .622  in  gaseous  (steam), 
and  I  in  liquid. 

Specific  heat  of  equal  weights  of  same  gas  increases  as  density  decreases ; 
exact  rate  of  increase  is  not  known,  but  ratio  is  less  rapid  thim  diminution 
in  density. 

Change  of  capacity  for  heat  always  occasions  a  change  of  temperature. 
Increase  in  former  is  attended  by  diminution  of  latter,  and  contrariwise. 

Specific  heat  multiplied  by  atomic  weight  of  a  substance  will  give 
the  constant  37.5  as  an  average,  which  shows  that  the  atoms  of  all 
substances  have  equal  capacity  for  heat.  This  is  a  result  for  which  at 
yet  no  reason  has  been  assigned. 

Thus:  atomic  weights  of  lead  and  copper  are  respectively  1294.5  and  305.7,  and 
their  ^speciflc  beats  are  .031  and  .095.  Hence  1294.5  X  •031  =  4a  129,  and  395.7  x 
.095  =  37.591. 

It  is  important  to  know  the  relative  Specific  Heat  of  bodies.  The  most  conve- 
nient method  of  discovering  it  is  by  mixing  different  substances  together  at  dif- 
ferent temperatures,  and  noting  temperature  of  mixture;  and  by  experiments  it 
appears  that  the  same  quantity  of  heat  imparts  twice  as  high  a  temperature  to 
mercury  as  to  an  equal  quantity  of  water;  thus,  when  water  at  loo^  and  mercury 
at  40°  are  mixed  together,  the  mixture  will  be  at  80°,  the  20^  lost  by  the  water 
causing  a  rise  of  40^^  in  the  mercury;  and  when  weights  are  substituted  for  meas- 
ures, the  f^t  is  strikingly  illustrated;  for  instance,  on  mixing  a  pound  of  mercury 
at  4o<'  with  a  pound  of  water  at  160°,  a  thermometer  placed  in  it  will  fall  to  155O 
Thus  it  appears  that  same  quantity  of  heat  imparts  twice  as  high  a  temperature  to 
mercury  as  to  an  equal  volume  of  water,  and  that  the  heat  which  gives  ^°  to  water 
will  raise  an  equal  weight  of  mercury  1150,  being  the  ratio  of  i  to  23.  Hence,  if 
equal  quantities  of  heat  be  added  to  equal  weights  of  water  and  mercury,  their 
temperatures  will  be  expressed  in  relation  to  each  other  by  numbers  i  and  23;  or, 
in  order  to  increase  the  temperature  of  equal  weights  of  those  substances  to  the 
same  extent,  the  water  will  require  23  times  as  much  heat  as  the  mercury. 

Capacity  for  Heat  is  relative  power  of  a  body  in  receiving  and  re- 
taining heat  in  being  raised  to  any  given  temperature ;  while  Specific 
applies  to  actual  quantity  of  heat  so  received  and  retained. 

Bpeoiilo  Keat  of*  A.ir  and  other  Gt-ases. 
Specific  heat,  or  capacity  for  heat,  of  permanent  gases  is  sensibly  constant 
for  all  temperatures,  and  for  all  densities.    Capacity  for  heat  of  each  gas  i^ 


5o6 


HSAT. 


same  for  each  degree  of  temperature.  M.  Kegnaolt  proved  that  capacity 
for  heat  for  air  was  uniform  for  temperatures  varying  from  —22°  to 
+437° ;  consequently,  specitic  heat  for  equal  weights  of  air,  at  donttant 
pressure,  averaged  .2377. 


Metals  Jirom  33°  to 

Antimony...  .0508 

Bismuth 0308 

Brass 0939 

Copper 092 

Cust  iron 1298 

Gold 0324 

Lead •0314 

Mercury 0333 

Nickel 1086 

Platinum 0324 


Speoillo   Ueat.     Water  at  33° 
Silver . » 056    :  Woods. 


z. 


Steel. 1165 

Tin 0562 

Wrought  iron  .1138 
Zinc 0955 

Stmei. 

Chalk 2149 

Limestone...  .2174 

Masonry 2 

Marble,  gray.  .2694 
*'     white.  2158 


Oak. 
Pear 
Pine 


•57 
.65 


MinH  Stibstances. 

Charcoal .2415 

Coal 2411 

Coke ,.  .eo3 

Glass 1977 

Gypsum. 1966 

Phosphorus..   2503 


Sulphur 3036 

Liquids. 

Alcohol. 658S 

Ether 4554 

Linseed  oil  ..  .31 

Olive  oil 3096 

Steam 365 

Turpentine . .  .416 
Vin^ar 9a 

Solid. 
Ice 504 


Oases. 

3377  I  Hydrogen.* »...* 2356 

3308 


Air .....       - 

Oxygen 2412  I  Carbonic  Acid 

ForSquai  Weights. 
Air. 1688    I   Hydrogen 2.4096 


Oxygen..... 1559   \  Carbonic  Acid.; 1714 

Metals  have  least,  ranging  fVom  Bismuth  .0308  to  Cast  Iron  .1298.    Stones  and 
Mineral  Substances  have    2  that  of  wa tor.  and  Woods  about  .5.     Liquids,  with  e.x 
ce^tion  of  Bromine,  are  less  than  water,  Olive  oil  being  lowest  and  Vinegar  highest. 

Illcstratios.  — It  1  lb  of  co^l  will  heal  i  lb.  of  water  to  100°, of  a  lb.  will 

.033 


of  lilte   k^ub*. 


heat  I  lb.  of  mercury  to  100°. 

a?o  Compute  'Peznperature    o^  A  :Ml3etui>« 

stauoeb. 

W  +  w    -*'       T-f   -^'  W      +^  =^-    ^  repressing  weight 

or  volume  of  a  substance  of  temperature  T,  w  weight  or  volume  of  a  like  substance  of 
temperature  t,  and  t'  temperature  of  mixture  Vf-^w. 

Illustration  i.  —When  5  cube  feet  of  water  (W)  at  a  temperature  Of  150°  (T)  Is 
mixed  with  7.5  cube  feet  (w)  at  50^  (f),  what  is  the  resultant  temperature  of  the 
mixture? 

5X150° +  7- 5.x  50°      1125 


5  +  7  5 


12.5        ^ 


2.— How  much  water  at  (T)  ioo<>  should  be  mixed  with  30  gallons  (w)  at  60*^,  fbr 
a  required  temperature  of  8o<^? 

30(800-^600)     600 

To  Compute  Texupei^atiire  of  a  AliJttur^  of  TJnlllK« 

Subtitanoes. 

WST4-wst      ^,         ws{t—f)      ^        If  lWS4-ws)<\jwst     „     „       ^ 

W-a-T =  ' ;       s^ — :r=»W:       — ^ — '    \^  J' • — «=T.     W  and  w 
8-l-w*           '        S(T  — f)           '                    WS 

r^esenting  weights^  and  S  and  s  specific  heeU  of  substances. 

Illustration.— To  what  temperature  should  20  lbs.  cast  iron  (W)  be  heated  to 
raise  150  lbs.  {w)  of  water  to  a  temp«ratar«  (t)  of  50^  to  600  f 

'  MX  .1.911  ..jje      *^ 


HBJlT. 


5P? 


To  Compute   Speoifi.o  Heat  at  Constant  Voluxne. 

Whin  Spee\fie  ffeat  ai  OomtatU  Presture  is  htovm,     'ir  =^  '■     ^  r^oretent- 

%ng  specif  hecU  at  constant  pressure,  p  pr<ip(»rtion  of  heal  absorbed  at  constant  vol- 
ume^ H  iiotal  heat  absoHted  at  constarU  pressure^  and  s  specifio  heat  at  constant  volume. 


Or, 


a<r— 0—2.742  (v—D) 


t'—t 


=  «.    t  and  t'  represefnJting  initial  andjinal  tempera- 


twre  qfthe  gas  and  that  to  which  it  is  raised,  and  V  and  v  initial  and  Jinal  volumes 
o/ths  gat  under  14.7  <6«.  per  sq.  tnoA,  and  of  it  hetUed  under  constant  pressure  in 
cvMfeet, 

Iu.u8TRATioN,-^AasainQ  I  lb.  air  at  atmoepheric  pressure  and  at  33*^,  doubled  in 
ToluYne  by  heat  8  =«:.  2377  *,*--«'  5=  32^  «x,  525°  =  493°  and  V  —  t;  =  j  2. 387  *  ctOie 
feet. 

•^377  X493-(2. 742  X. 2.387)  ^  ^^gg  ^^^  ^^ 

493 
For  comparative  volumes  of  other  gases,  see  Table,  page  506. 

To   Compute   Speoifio   Heat  for    Kq.ual  Volume  of  O-as 

and  A.ir. 

Rule. — Multiply  specific  heat  of  the  gas  for  equal  weights  of  gas  and  air 
by  specific  gravity  of  gas,  and  product  is  specific  heat  for  equal  volume. 
Example  —What  is  specific  heat  of  air  at  equal  volume  with  hydrogen  ? 

Specific  heat  of  hydrogen  for  equal  weigh ta  at  conslant  volume,  2.4096,  and  speci- 
fic gravity  of  the  gas,  .0692.    (See  Table,  page  506.) 

Then,  2. 4096  X  '0692  =  ■  1667  specific  heaJtfor  equal  volumes  at  constant  volume. 

Specific  heat  of  steam,  air  at  unity  — 1.381. 

Capaoity  fbr  Heat. 

When  a  body  has  its  density  increased,  its  capacity  for  beat  is  di- 
minished. The  rapid  redaction  of  air  to  .2  of  its  volume  evolves  beat 
sufficient  to  inflame  tinder,  wbicb  requires  550^. 

Relative  Copacityfor  Heat  of  Various  Bodies.    ( Waier  a<  32°  =  i.) 

Eqaal 
Volumes. 


■oDtSS. 

Eaval 
NVefichU. 

Eqiwl 

Volnmw. 

BODIU. 

Equal 

wlfghu. 

Equal 
Volainet. 

Bodies. 

Equal 
WeiRbto. 

Water.. 
Brasa.. 
('opper. 
Glass. . . 

I 
X16 
114 
187 

I 

.971 
1.027 

.448 

Gold. . . . 

Ice 

Iron.... 
Lead... 

.05 

.126 
.043 

.966 

.993 
.487 

Mercury 
Silver . . 

Tin 

Zinc. . . . 

036 
.082 
.06 
.102 

•833 


To  Asoevtaln.  Relative   Capacities  of  Different   Hodiea, 

ooml>ined  witlx  experiment, 

RuL.B.-^Multiply  weight  of  each  body  bv  number  of  degrees  of  heat  lost 
or  gained  by  mixture,  and  capacities  of  bodies  will  be  inversely  as  products. 

Or,  if  bodies  be  mingled  in  unequal  quantities,  capacities  of  the  bodies 
will  be  reciprocally  as  quantities  of  matter,  multiplied  into  their  respective 
changes  of  temperature. 

Illustration.— If  i  lb.  of  water  at  156°  is  mixed  with  x  lb.  of  mercury  at  40°, 
resultant  temperature  is  152°. 

Thus,  t  X 1 56** — I  s**?  =  40,  and  i  x  40O  -x^  1 52°  =  1 1 2°.  Hence  capacity  of  water 
for  beat  is  to  capacity  of  mercury  as  112°  to  4C>,  or  as  28  to  i. 

Sensible   }^eat. 

Sensible  heat  or  temperature  to  raise  water  from  32°  to  2i2°r=  i8a9^,  or 
beat  onits. 


•  See  T«blM,  pagta  906  aad  sao-sx. 


5o8 


BEAT. 


Xiatent  Heat. 

Latent  Heat  is  that  which  is  insensible  to  the  touch  of  our  bodies, 
and  is  incapable  of  being  detected  by  a  thermometer. 

When  a  solid  body  is  exposed  to  heat,  and  ultimately  passes  into  the 
liquid  state  wider  its  influence,  its  temperature  rises  until  it  attains  the 
point  of  fusion,  or  melting  point.  The  temperature  of  the  body  at  this 
point  remains  stationary  until  the  whole  of  it  is  melted ;  and  the  heat  mean- 
time absorbed,  without*  affecting  the  temperature  or  being  sensible  to  the 
touch  or  to  the  indications  of  a  thermometer,  is  said  to  become  latent.  It  is, 
in  fact,  ike  latent  heat  of  fusion^  or  the  latent  heat  of  liquiditify  and  its  func- 
tion is  to  separate  the  particles  of  the  body,  hitherto  soUd,  and  change  their 
condition  into  that  of  a  liquid.  When,  on  the  contrary,  a  liquid  is  solidified, 
the  latent  heat  is  disengaged. 

If  to  a  pound  of  newly-fallen  snow  were  added  a  pound  of  water  at  172°, 
the  snow  would  be  melted,  and  32°  would  be  resulting  temperature. 

When  a  body  is  fusing,  no  rise  in  its  temperature  occurs,  however  great 
the  additional  quantity  of  heat  may  be  imparted  to  it,  as  the  increased  heat 
is  absorbed  in  the  operation  of  fusion.  The  quantity  of  heat  thus  made 
latent  varies  in  different  bodies. 

A  pound  of  water,  in  passing  from  a  liquid  at  212^  to  steam  at  212°,  re- 
ceives as  much  heat  as  would  be  sufficient  to  raise  it  through  966.6  thcr- 
mometric  degrees,  if  that  heat,  instead  of  becoming  latent,  had  been  sensibU. 

If  5.5  lbs.  of  water,  at  temperature  of  32°,  be  placed  in  a  vessel,  communicating 
with  another  one  (in  which  water  is  kept  constantly  boiling  at  temperature  of  212°), 
until  former  reaches  temperature  of  latter  quantity,  theu  let  it  be  weighed,  and 
it  will  be  found  to  weigh  6.5  lbs.,  showing  that  one  lb.  of  water  has  been  received 
In  form  of  steam  through  communication,  and  reconverted  into  water  by  lower 
temperature  in  vessel.  Now  this  pound  of  water,  received  in  the  form  of  steam, 
bad,  when  in  that  form,  a  temperature  of  212^.  It  is  now  converted  into  liquid 
form,  and  still  retains  same  temperature  of  212°;  but  it  has  caused  5. 5  Ibs^of  water 
to  rise  from  the  temperature  of  32°  to  212°,  and  this  without  losing  any  tempera- 
ture of  itself  Now  this  heat  was  combined  with  the  steam,  but  as  it  is  not  sensible 
to  a  thermometer,  it  is  termed  Latent. 

Quantity  of  heat  necessary  to  enable  ice  to  resume  the  fluid  state  is  euual 
to  that  which  would  raise  temperature  of  same  weight  of  water  140° ;  ana  an 
equal  quantity  of  heat  is  set  free  from  water  when  it  assumes  the  solid  form. 

Su-xxx   of*  Sensible  and   I-iatexit  jtleats. 
From  Water  ai  32°. 


Fren- 

ure. 

Latent. 

Sum. 

Prasa- 

are. 

Latent. 

Sam. 

Preu- 
ure. 

Utent. 

Sura. 

LlM. 

0 

0 

Lbs. 

0 

0 

Lba. 

0 

0 

M-7 

964.3 

1x46.1 

26 

943-7 

"55-3 

55 

912 

1169 

16 

962.x 

1 147- 4 

27 

942.2 

"55.8 

60 

908 

117a  7 

«7 

959-8 

1148.3 

28 

940.8 

X156.4 

65 

904.2 

1172.3 

18 

957-7 

1 149. 2 

29 

939-4 

"57-1 

70 

900.8 

1173.8 

>9 

955.7 

1150.1 

30 

937-9 

"578 

Z5 

897-5 

1175,2 

20 

952.8 

1150.9 

32 

935-3 

1158.9 

80 

894.3 

1176.5 

21 

951-3 

1151.7 

35 

931.6 

1160.5 

85 

801.4 
888.5 

1177.9 

22 

949.9 

"52-5 

37 

9293 

1161.5 

90 

1179.1 

23 

948.5 

1153.2 

40 

920 

1 162. 9 

95 

885.8 

1180.3 

24 

946.9 

"53-9 

45 

920.9 

1 164.6 

100 

883.1 

1181.4 

»5 

945-3 

1154.6 

50 

916.3 

1167. 1 

110 

878.3 

1183.5 

Latent. 

Sam. 

0 

0 

873-7 

"85.4 

869.4 

1187.3 

865.4 

X189 

861.5 

1190.7 

857.9 

1 192. 2 

854.5 

"93? 

851.3 

ii95.£ 

848 

1196.5 

845 

1 197. 8 

829.2 

1200.  ■? 

831.2 

1203. 7 

Latent  Heat  of  Vaporizaiionj  or  Number  of  Degrees  of  Heat  required  to  con- 
vert foUoioing  Substances  from  their  Liquidities  to  Vapor  at  Pressure 
of  Atmo^here. 


Alcohol 364° 

Ammonia 860*^ 

Ether  (Sulph.) 163O 


Ice 142.60 

Mercury 157O 

Carbonic  Acid agB9 


Water 966.6a 


Zinc 


493: 


Oil  of  Turpentine. .  134O 


HEAT. 


509 


SobtUncM. 


Xjatent  Keat  of  Fusion,  of  Solids. 

Melt- 

Substancen.  J»K 

Point. 


Tin 

Bismuth. . 

liead 

Zinc 

Silver  . . . . 
Mercury. . 
Cast  iron. . 


Melt- 

iDg 

Specifl< 

:Heat. 

In  Heat- 
unitu  of 

Point. 

Liquid. 

Soiid. 

lib. 

0 

0 

0 

44a 

•0637 

.0562 

25.6 

507 

.0363 

.0308 

'*L 

617 

.0402 

•0314 

9.86 

773 
1873 

— 

.0956 

5a  6 

— 

•057 

37-9 

39 

•0333 

.0319 

5 

3400 

— 

.129 

233 

Ice. 

Phosphorus  . . . . 
Spermaceti...;. 

Wax 

Sulphur 

Nitrate  of  soda. . 
Nit  of  potassia . 


c 
32 

113 
120 
143 

239 

591 
643 


{Person.) 


IJquid. 


•2045 


•234 
•413 
•3319 


cHeat. 

TnHeai- 
unita  of 

Solid. 

zlifc 

0 

.504 

142.85 

.1788 

mI 

— 

— 

"75 

.3026 

17 

.2782 

"3 

.2388 

85 

To  Compute  I^ateut  Heat  of  Fvisiou.  of  a  ^on-metallio 

Bu.l>staxioe. 
C'\^c{t-\-  256°)  =  L.    G  and  c  rqpregenling  specific  heals  of 'substance  in  solid  a^^ 
liquid  stalCf  t  temperature  of  fusion^  and  L  kUent  heat. 

Illustration.— What  is  latent  beat  of  fusion  of  ice  ? 

C  =  .504;    c  =  i;    and<  =  32°. 

.504  A,  I  X  33  4-  256  =  142.85°  units. 

KoTB. — For  Latent  Heat  of  Fusion  of  some  substances,  see  Deschanel's,  New  York, 
1872,  Heat,  part  3. 

Radiation   of  Heat. 

Radiation  of  Heat  is  diffusion  of  heat  by  projection  of  it  in  diverffing  right 
lines  into  space,  from  a  body  having  a  h'igner  temperature  than  space  3iir- 
rounding  it,  or  body  or  bodies  enveloping  it. 

Radiation  is  affected  by  nature  of  surface  of  body ;  thus,  black  and  rough 
surfaces  radiate  and  absorb  more  heat  than  light  and  poli:shed  surfaces. 
Bodies  which  radiate  heat  best  absorb  it  best. 

Radiant  heat  passes  through  moderate  thicknesses  of  air  and  gas  without 
snffecing  any  appreciable  loss  or  heating  them.  When  a  polislicd  surface 
receives  a  ray  of  heat,  it  absorbs  a  portion  of  it  and  reflects  the  rest.  The 
quantity  of  heat  absorbed  by  the  body  from  its  surface  is  the  measure  of 
its  ahsavbing  power^  and  the  heat  reflected,  that  of  its  reflectinff  prnwr. 

When  temperature  of  a  body  remains  constant  it  is  in  conso4|uence  of 
quantity  of  heat  emitted  being  equal  to  quantity  of  heat  absori)e(l  by  body. 
Keflecting  power  of  a  body  is  complement  of  its  absorbing  power ;  or,  sum 
of  absorbing  and  reflecting  powers  of  all  bodies  is  tlie  same. 

Thus,  if  quantity  of  heat  which  strilces  a  body  =  100,  and  radiating  and  reflecting 
powers  each  90,  the  absorbent  would  be  zo. 


Ttadlatins  or   iVbsor'ben.t    and    Ftefleoting    !Po"wers 

6uT3stanoes. 

Radiating 
or  Ab- 
■erbing. 


So 


ANCK8. 


I^mp  Black. 

Water. 

O.rbonate  of  Lead 

T<ead,  white 

Writing  Paper 

Ivory,  Jet,  Marble 

Resin 

Glasa 

India  Tnk 

Ice 

Shellac 

Lead 

Cast  Iron, bright  polished 
Platinum,  a  little  polisb'd 
Mercury 


RadiatioR 

or  Ab- 

•orbinir. 

Reflect- 
ing. 

zoo 

— 

100 

— 

zoo 

— 

100 

— 

98 

93  to  98 
96 

3 

7  to  2 
4 

fs 

85 
73 

zo 

15 

IS 
28 

45 

55 

25 

2* 

75 
76 

23 

77 

SCBBTANCBS. 


IT  u* 


Wrought  Iron,  polished.. 

Lead,  polished ,* 

Zinc,  polished '. 

Steel,  polished 

Platinum,  in  sheet 

Tin 

Copper,  varnished 

Brass,  dead  polished. . . . 

"      bright  polished. . . 

Copper,  ham'ered  or  aist 

"      deposited  on  iron 

Gold,  plated 

polished 

Silver,  polished 

cast,  polished . . . 


i( 


23 
19 
«9 
17 
17 
X5 
14 
zz 

7 
7 
7 
5 
3 
3 
3 


of 


Reflect* 
ing. 


77 
8z 
8z 
83 
83 
85 
86 
89 
93 
93 
93 
95 
97 
97 
97 


510 


HBAT* 


H-adiatinur  and.  A-IObOrloing  Poi^or  of  varioxis  Sodies,  in 
Units  of*  Heat  per  Sq..  f^oot  per  Hour  for  a  IDiffbrenoe 
of  1°.    {Pedet) 

UuiU 

Iron,  ordinary 5663 

Glass 5948 

Iron,  cast 648 

Wood  sawdust 7335 

Stone,  Brick,  etc 7358 


Dolt. 

Silver,  polished. 0366 

Copper 0337 

Tin 0439 

Brass,  polished 0491 

Ironj  sheet 093 


Unit. 

Woollen  stuff 7533 

Oil  paint .7583 

Paper 7706 

Lamp-black 8196 

Water X0853 


To  Compute  JUoaa  of  Heat  lay  Radiation  i>er  Bq..  IToot. 

'"^    !  ~  '  =  R    T  repraenUng  temperature  ofpipe^  which  is  anumed  tobe  .0$ 

Itn  tMn  that  ofHeam;  t  temperature  of  air;  I  length  ofpipt^  and  v  «eIoc%  of  heat 
in  feet  per  second;  d  diameter  in  tnt.,  and  R  radieUion  in  degrees  per  second. 

Illustration.— Assume  temperatures  of  a  steam-pipe,  steam,  313*,  too**,  and  air 
60°  length  of  pipe  30  feet,  velocity  of  heat  (steam)  15  feet  per  second,  and  diameter 
of  pipe  16  in& ;  what  will  be  loss  of  heat  by  radiation? 

,.7X20(300-60)^ 
x6  X  IS 

Hefieotion. 
Reflection  of  Heat  is  passage  of  heat  from  surface  of  one  substance 
to  another  or  into  space,  and  it  is  the  converse  of  radiation. 

Heat  is  reflected  from  surface  upon  which  its  rays  fall  in  same  nuuuier  ai 
light,  angle  of  reflection  being  opposite  and  equal  to  that  of  incidence.  Met- 
als are  the  strongest  reflectors. 

RfjUcting  Power  of  various  Subsfancet, 


Silver. 97 

Gold 95 

Brass 93 


Specular  metal 86 

Tin 85 

Steel 83 


Zinc. 
Iron  . 
Lead. 


.81 

•77 
.6 


Coznzn-unioation  and  Tranennission  of*  Heat. 
Communication  of  Heat  is  passage  of  heat  through  different  bodied 
with  different  degrees  of  velocity.  This  has  led  to  division  of  bodies 
into  Conditctora  and  Kon-condtictors  ;  former  includes  such  as  metals, 
which  allow  caloric  to  pass  freely  through  their  substance,  and  latter 
comprise  those  that  do  not  give  an  easy  passage  to  it,  such  as  stones, 
glass,  wood,  charcoal,  etc. 

Velocity  of  cooling,  other  things  being  equal,  increases  with  extent  of  toi^ 
face  conipared  with  volume  of  substance ;  and  of  two  bodies  of  same  mate- 
rial, temperature,  and  form,  but  differing  in  volume. 

Transmimon  of  Heat  is  passage  of  heat  through  different  bodies  with  dif- 
ferent degrees  of  intensity.  Gaseous  bodies  and  a  vacuum  are  highest  in 
•rder  of  transmittents. 

Relative  Power  of  various  Substances  to  TYansmit  Heat, 

All  bodies  capable  of  transmitting  heat  are  more  or.  less  translucent, 
though  their  powers  of  transmitting  heat  and  light  are  not  in  same  rel*' 
tive  proportions. 


Air I 

Alcohol 15 

Crown-glass. .    .49 


Flint-glass 67 

Oypsum 9 

Ice 06 


Nitric  acid .... 
Rock-crystal . . 
Rape  seed  oil.. 


•15 
63 


Sulphuric  acid.  .17 

Turpentine 31 

Water n 


Heat  which  passes  through  one  plate  of  glass  is  lest  subject  to  absorptioi» 
in  passing  through  a  second  and  a  third  plate.  Of  1000  rays,  451  were  in^ 
teroepted  by  4  pUtes  as  follows : 

lit.  3i8x.  2d.  43.  3d.  x8.  4th.  9. 


BK4.T. 


S" 


Result*  ot  Heatinc  And  K-vaporatlmc  '^^atev  by 
Steam  in  Copper  Pipes  and  Soilers.    {D.  K.  Otark.) 

StaMii  «m4«M«l  HmI  tnuMiBitt«d 

P«r  iq.  foot  for  i*  diflttaaet  per  hoar. 


Cast-iron  plate  surface. , 
Copper- pUte  surrace...< 
Oopper-pipe  sarface. . . , 


HMting. 

.077 
.348 
.391 


Evcporating. 

.105 

•483 
1.07 


HMtinf(. 


UoiU. 

83 
376 
313 


EvaporatiDK 


Unita. 
xoo 

534 
X034 


Whence. — Efficiency  of  copper-plate  surface  for  evaporation  of  water  is 
double  its  efficiency  for  heating ;  for  copper-pipe  surface  efficiency  is  more 
than  three  times  as  much ;  and  for  cast-iron-plate  surface,  a  fourth  more. 

Efficiency  of  pipe  surfitice  is  a  fifth  more  than  that  of  plate  surface  for 
heating,  and  more  than  twice  as  much  for  evaporation. 

Generally,  copper -plate  surface  condenses  .5  lb.  of  steam,  copper-pipe 
I  lb.,  and  cast-iron-plate  surface  .1  lb.  per  sq.  foot  per  1°  of  temperature  pier 
hour,  for  evaporation. 

Quantity  of  heat  transmitted  is  at  rate  of  about  1000  units  per  lb.  of  steam 
condensed. 

Trantmimou  qfffeat  through  Glass  of  different  Colors. 

Direct  =  loa 


Plate 65.5 

Window 53 

Violet,  deep. 53 


Blue,  deep 19 

"    light 42 

Green 36 


Yellow 40 

Orange 44 

Red 53 


M.  Peclet  defines  law  of  transmission  of  heat  as :  The  flow  of  heat  which 
traverses  an  element  of  a  body  in  a  unit  of  time  is  proportional  to  its  sur- 
face, and  to  difterenoe  of  temperature  of  the  two  faces  perpoidicular  to  direc- 
tion of  flow,  and  is  in  inverse  of  thickness  of  element. 


0r,(<^O^ 


H.    I  amd  f  reprtumHng  Umperatures  of  mrfkeM^  C  wmiant  for 


meUerial  1  ineh  thiek^  or  quantity  of  heat  transmitted  per  hour  for  i^  difference  of 
tempercUure  through  1  unit  ftf  thtckneti^  T  thicknesi^  and  H  quantity  of  heal  in  units 
pasted  through  plate  per  sq.  Jm^  per  hour. 

Quantities  of  Heat  transmitted  iVom  Water  to  "V^ater 
thtougli  Plates  or  Beds  of*  Aletals  and.  otlier  Solid 
Bodies,  1   Inoli   thiols,  per  Sq,.  IToot. 

Far  z®  Difflerenfis  of  Temperature  between  the  two  Faces  per  Hour, 
Selected  firom  M,  Pwlet^s  tables.    {D.  K.  Clark.) 


BvMrARcs. 


Oold 

Platinum 
Silver . . . 
Copper . . 


C  or 
QuMtlty 

OfHMt. 


DaiU. 
630 

555 


80: 


And. 


Iron. 
Zinc. 
Tin.. 
Lead. 


C  or 
QuaoUty 
ofHMk 


UatU. 
335 
335 
177 


BUBCTAKCB. 


Marble. 
Plaster. 
Glass.. 
Sand... 


Cor 
QuAnllty 
ofHMi. 


Units. 

84 
3.6 
6.56 
3.z6 


The  conditions  are,  that  the  surfaces  of  conducting  material  must  be  per- 
fectly dean,  that  they  be  in  contact  with  water  at  both  faces  of  different 
temperatni^  and  that  the  water  in  contact  with  surfaces  be  thoroughly  and 
constantly  changed.  M.  Peclet  found  that  when  metallic  surfaces  became 
dull,  rate  of  transmission  of  heat  through  all  metals  became  very  nearly 
the  same. 

To  Compute  Units  o<*  Heat  Transmitted. 

Illustration  l  — If  aooo  lbs.  taeet  root  jnica  at  4o<>  are  contained  in  a  copper 
boiler  with  a  double  bottom,  and  heated  to  2i2<',  with  a  beating  sarface  of  35  sq.  feet, 
and  subjected  to  steam  at  a  temperature  of  375°,  for  a  period  of  15  minutes,  what 
will  be  the  total  heat,  and  heat  per  degree  of  difference  transmitted  per  sq.  foot  per 
hsiirv 


512 


HBAT. 


ai20— 40®  X  60-5- 15  =688o per  hour^  and  2000 X  688-4-asi=  55040  tmiit per  9q. 
foot  per  hour. 

(212°  -f  40°)  -f-  2  =  126"^  mean  temperature  ofjuict,  and  275°  — 1260  =  149®  m^ean 
difference  of  temperature. 

Hence,  55  040  -r- 1 49  =  369. 4  uniU  per  sq.  foot  per  degree  of  difference  per  hour. 

2.— If  48.2  sq.  feetof  iron  pipe  1.36  ins.  in  diameter,  is  supplied  with  steam  at  275^, 
and  it  raises  temperature  of  882  lbs.  water  fk*om  46^'  to  212^  in  a, minutes,  what  will 
bo  total  heat  per  sq.  foot  per  hour,  total  heat  per  sq.  foot  per  degree,  and  quantity 
condensed  per  sq.  foot  per  degree  per  hour  ? 

212®  —  46° X 60-?- 4  =  2490°  in  an  hour:  46°  +  212° -r- 2  =  129°  mean  temper- 
ature, and  275O  —  129O  =  146°  difference  oftempercUure. 

=  45  563  units  per  sq.foot  per  hour,  45  563  -4- 146  =  31a.  i  units  per  sq. 

40.2 

foot  per  degree,  and  total  heat  of  steam  above  Z29<'  =  xo68<'. 
Hence       '    =  .292  lbs.  steam  condensed  per  sq.foot  per  degree  per  hour. 

lOOO 

lE^vaporatioxi. 

^Evaporation  or  Vaporization  is  conversion  of  a  fluid  into  vapor,  and 
it  produces  cold  in  consequence  of  heat  being  absorbed  to  form  vapor. 

It  proceeds  only  from  surface  of  fluids,  and  therefore,  other  t/iings  equaij 
must  depend  upon  extent  of  surface  exposed. 

When  a  liquid  is  covered  by  a  stratum  of  dry  air,  evaporation  is  rapid, 
even  when  temperature  is  low. 

As  a  large  quantity  of  heat  passes  from  a  sensible  to  a  latent  state  during 
formation  of  vapor,  it  follows  that  cold  is  generated  by  evaporation. 
Fluids  evaporate  in  vacuo  at  from  120°  to  125°  below  their  boiling-point 

Heat  required,  to  Kvaporate  1  l"b.  "NVater  at  Teinperatures 


IdeloMT  S1S°  Ironx 


a  Vessel  iii 
{Thomas  Box.) 


open  air  at  33^. 


H  s  a 

is' 

Water  evapo 

per  sq  foot 

sarfacep'rho 

0 

Lba. 

32 

.027 

42 

.04 

Sa 

.058 

62 

.083 

72 

.117 

82 

.162 

92 

.223 

X02 

•303 

X12 

.406 

122 

.528 

HEAT 

1 

^Vfe 

1 

HEAT 

lost  by  radia- 
tion from 

ti 

a 

i 

Unite. 

Total  lost 
per  hour. 

5c  &I 

lost  by  radia- 
tion fW>in 
surface. 

a 

s 

to  evaporate 
X  lb.  of  wa- 
ter. 

UniU. 

Units. 

Unite. 

0 

Lbs. 

Unite. 

Unite. 

Unlta. 

— 

— 

109 1 

29 

13a 

.706 

x8a 

ao2 

XS06 

270 

424 

2788 

71 

142 

.916 

158 

x62 

1445 

375 

581 

2052 

119 

153 

1. 178 

'37 

127 

X392 

405 

605 

2110 

»74 

162 

1-505 

X18 

97 

1346 

386 

566 

205s 

239 

172 

1895 

106 

72 

13x2 

358 

504 

1968 

319 

182 

a.373 

r. 

50 

"79 

3»9 

434 

1862 

415 

192 

2.947 

32 

1253 

280 

366 

1758 

533 

202 

3-633 

V 

»4 

X228 

24s 

304 

1664 

t^' 

212 

4-471 

63 

— 

X209 

211 

250 

1580 

849 

— 

— 

— 

— 

.2  a 
o 


Units. 
X068 
1326 

»637 
2039 

2475 
3<H5 
3685 
4465 
5397 


To   Compute   Surfttoe   of*  a   RefVigrerator. 

Illustration  of  Table.  —  If  it  is  required  to  cool  20  barrels,  of  42  gallons  each,  of 
beer,  from  202°  to  82"^  in  an  hour. 

Result  to  be  attained  is  to  dissipate  42  X  8.33  (Ib&  U.  S.  gallons)  X  20  X  202  — •  82 
=  840000  units  of  heat  per  hour. 

At  202°,  4465  units  are  lost,  and  at  82^,  319,  hence,  average  loss  for  each  temper- 
ature between  extremes  =  1850  units  per  sq.foot  per  hour. 

_,       840000  ,  ^  .        ..... 

Then  —- —  =  454  sq.feet  »n  a  sttU  air. 

X850 

The  volume  of  air  required  per  hour  in  this  case  would  be  about  xooooo  cube  fteU 


HEAT.  513 

To  Oompute  Area  of_0-rate  and  Consuxn^tion  of*  Fuel 

jfor    ICvapo ration. 

UkutraUon  of  Table.— It  it  is  required  to  evaporate  6  Beer  gallons  (282  cabe  ins.} 
of  liquid  per  hour,  at  a  temperature  not  exceediug  152^'. 

6  gallons  =  50  lbs.     At  152°,  water  evaporated  as  per  table  =  1. 178  lbs.  per  hour. 
^    =  43  gq.feet.    Heat  required  to  effect  this  =  1392  x  S©  =  69  600  uniU. 

Assuming  6000  units  as  average  economic  value  of  coals,  then  -^— •  =  »»-6  U>t. 
waly  on  a  grate  of  x  sq.foot 

When  it  is  practicable  to  evaporate  at  a  high  temperature,  as  at  or  above  212^,  it 
Is  most  economical 

Thus,  water  requires  only  1209  units  per  lb.  if  sur£BM;e  is  exposed,  but  if  enclosed, 
heat  is  reduced  (1209 — 63)  to  1146  unit& 

EvaporaUve  Power$  of  Different  Tubes  per  Degree  ofHeaJt^per  Sq.  Foot  of 

Surface. — In  Units. 
Vertical  tube,  230;  Double-bottomed  vessel,  330;  Horizontal  tube  or  Worm,  43a 

To   Compute  "Volutne  of  "Water  Evaporated  in  a  g^iven 

Tixne. 

Illustratiow.— What  is  volume  evaporated  at  212°,  In  15  minutes  per  sq.  foot  of 
surface,  in  a  double- bottomed  vessel  having  an  area  of  heating  surface  of  17  feet, 
and  subjected  to  steam  at  a  pressure  of  25  lbs.  ? 

Temperature  of  steam  at  25  + 14.7  Iba  =  96g^.  269°  —  2x2°  =  57°,  and  latent 
beat  =  927. 

Then  ?3£><lI^il2<Jl  =  86.a  «»  BOfcr. 
927  X  60 

When  Water  is  at  a  Lower  Temperature  than  212°. 

If  120  gallons  or  iocx>  lbs.  of  water  were  to  be  evaporated  from  42^  in  an 
hour,  from  same  vessel  and  under  like  pressure  as  preceding : 

There  would  be  required  1000  x  (2x2°  —  42^)  170000  units ofheai.    Mean  tempera- 

tare  of  water  while  being  heated  =  ^^ — =  127°. 

2 

Difference  between  temperature  of  steam  and  water = 267*'  — 127<'  =  i4o<'. 

Then, J- :; —  =:.2x6  lioar^ztime  to  raise  water  to  212°;  hence  i  —  .2x6 rx 

330  X  140  X  17 

.784  hour  left  for  evaporation,  and  quantity  evaporated  =  330X57X  17  X -7  4 ^ 

927 
970.4  Ibs.^  or  32.44  gaUons.' 

IDessiooatioxi. 

Demecaiion,  or  the  drying  of  a  substance,  is  best  effected  in  a  drying 
chamber,  and  it  is  imperative  that  to  attain  greatest  effect  the  hot  air 
should  be  admitted  at  highest  point  of  exposed  substance  and  dis- 
charged at  its  lowest. 

Wood,  submitted  to  an  average  temperature  of  300°  in  an  enclosed  space 
for  a  period  of  2.5  days,  will  lose  jts  moisture  at  a  consumption  of  i  lb.  of 
wootl  for  10.5  lbs.  of  wood  dried,  and  evaporating  4  lbs.  of  water,  equal  to 
3.66  lbs.  of  water  per  lb.  of  undried  wood. 

Limit  of  temperature  for  drying  of  wood  is  340^. 


514 


HEAT. 


Evaporation  of  "Water  per  Sq.-  Foot  of  StiriCkoe  p#r  HotiA 

{Dr.  Dalton.) 


rempei 
of  Wi 


ater. 


33 
40 

50 
60 
70 

80 


ETaporation 
Calm.          Air. 

Brisk 

Wind. 

Lbs. 

Lba. 

Lbs. 

•0349 

•0459 
•065s 

.0448 
.0589 
.0841 

.055 

.0723 

.1032 

.0917 

1257 
1746 

.1616 
.2241 

.1441 

•1983 
•2751 

Texaperatare 
of  Water. 

O 
100 

125 

150 

175 
2CO 
2X2 


Evaporation. 

Calm. 

LicM 
Air. 

Lbs. 

Lbs. 

.3248 

.4169 

.6619 

.8494 

1.296 

1.663 

2.378 

3'053 

4.128 

5.298 

5239 

6.724 

BrUc 
Wind. 

Lbs. 
•  5"6 

X.043 
2.043 

3-74« 
6.502 
8.252 


The  rates  of  evaporation  for  these  conditions  of  the  air  when  petfsctly  dry  are  as 
I,  1.28,  and  1.57. 

To  Compute  Quantity  of  Water  eitposed  to  Air  that  vooudd  be  evap&rated  at 
above, — Subtract  tabulated  weight  of  water  corresponding  to  dew-jwint  from 
weight  of  water  corresponding  to  temperature  of  dry  air,  and  remainder  is 
weight  of  water  that  would  be  evaporated  per  sq.  foot  of  surface  p^  hour. 

IDistillation. 

Distillation  is  depriving  vapor  of  its  latent  heat,  and,  though  it  may 
be  effected  in  a  vacuum  with  very  little  heat,  no  advantage  in  regard  to 
a  saving  of  lael  is  gained,  as  latent  heat  of  vapor  is  increased  propor- 
tionately to  diminution  of  sensible  heat. 

A  temperature  of  70°  is  sufficient  for  distillation  of  water  in  a  vessel  ex- 
hausted of  air. 

Conduotion  or  Convection.  o£  Heat. 

Air  and  gases  are  very  imperfect  conductors.  Heat  appears  to  be 
transmitted  through  them  almost  entirely  by  conveyance,  the  heated 
portions  of  air  becoming  lighter,  and  diffusing  the  heat  through  the 
mass  in  their  ascent.  Hence,  in  heating  a  room  with  air,  the  hot  aii* 
should  be  introduced  at  lowest  part.  The  advantage  of  double  win- 
dows for  retention  of  heat  depends,  in  a  great  measure,  upon  sheet  of  ait 
confined  between  them,  through  which  heat  is  very  slowly  transmitted. 

Convection  of  heat  refers  to  transfer  and  diffusion  of  heat  in  a  fiuid  Biass> 
by  means  of  the  motion  of  the  particles  of  the  mass. 

Relative  Internal  Conducting   I^owers  of  Varioxis 

Sul^stanoes. 

MeUOs. 


Brass 76 

Cast  Iron 517 

Copper 89 

Cement 21 

Chalk 6 

Charcoal. .07 

Slate... 


Gold 

Lead........ 

Platinum .... 


.z8 
.98 

Minerals. 


Porcelain 012 

Silver 97 

Terra  Cotta..    .011 


Tin. 3 

Wrought  Iron  .44 
Zinc 36 


Coal,  anth'cite  1.92 

"     bitnmin.  1.68 

Ooke 1.98 


Gypsum 3 

Lime 34 

Marble  ..k..,.  1.33 
*  .t.  .08 


Apple 
Ash.. 


.68 
•73 


Cotton 55 

f^Mer  down. . .    .44 

Alcohol 


Firebrick 61 

fireclay 76 

Glass.... .96 

......  X  VTood  ash 

Woodi  with  Birch  =  .41  voUh  Silver. 

Birch I       I  Ebony. 5 

Chestnut 7    |  Elm 73 

Hair  cmd  Pur  toith  Air  s  z. 

Flannel 2.44  |  Hair a      |  Silk 43 

HempCanvaa    .28}  Hare*«  fur 43  |  Wool 5 

Liquids  with  Water. 


Oak. 
Pine. 


73 
73 


Aiconoi 93  I  Proof  spirit. ,85  I  Turpentine ^t 

Mercury 2.8   |  Sulphxiric  acid ..'z.7    (Water. a 


BEAT. 


515 


Practical  Deductions  from  preceding  Results^ 


Asphalt  compositions  are  best  for  resisting  moisture  and  insuring  dryness. 
Being  a  slow  conductor  of  heat,  it  will  help  to  exclude  or  retain  heat  as  de- 
sired. 

8laU  is  a  very  dry^  material,  but,  from  its  quick  conducting  power,  it  is 
not  adapted  for  retention  of  heat. 

Cemenfg.  —  Plaster  of  Parte  and  Woods  are  well  adapted  for  Iming  of 
rooms,  having  low  conductive  powers,  while  Hair  amd  Lime^  being  a  quick 
conductor,  is  one  of  the  coldest  compositions. 

Fire-brick  absorbs  much  heat,  and  is  well  adapted  for  lining  of  fire-places, 
etc, ;  while  //on,  being  a  hij^h  conductor  of  heat,  is  one  of  the  worst  of  sub- 
stances for  this  purpose.    Comtnon  brick  is  not  a  very  slow  conductor  of  heat. 

Steam  Pipe, — A  wrought-iron  pipe,  4  ins.  in  internal  diameter,  conveying 
steam  at  a  pressure  of  35  lbs.  per  sq.  inch  (280°)  and  xoo  feet  in  length, 
will  lose  .84  W, 

^  Casing  to  Pipes. — A  like  pipe  with  the  aljove,  cased  with  following  mate- 
rials and  covered  with  canvas,  to  give  like  radiating  power  to  the  outer 
surface,  gave  loss  of  heat  in  units  per  hour,  and  for  t£e  thickness  given,  as 
follows : 


Caiino. 

.5  Inch. 

Woollen  Felt 

71 
100 

173 

Sawdust 

Coal-asbes 

I  Iceh. 

3  InchM. 

4  InehM. 

6  Inches. 

36 

55 
no 

16 

26 
60 

7 
II 

27 

4-3 
7 
16.6 

CozidenBation. 

Tredgold  ascertained  by  experiment  that  steam  at  pressure  (absolute) 
of  17.5  lbs.  per  sq.  inch,  221°,  produced  i  cube  foot  of  water  per  hour 
by  condensation  in  182  sq.  feet  of  cast-iron  pipe,  at  a  uniform  and  qui- 
escent temperature  of  60°.  Hence,  condensation  .352  lb.  water  per 
hour,  or  .0022  lbs.  per  degree  of  diflPerence  of  temperature  (221—60). 

From  experiments  of  Mr.  B.  G.  Nichol  in  England,  1875,  it  was  deduced: 

That  rates  of  transmission  of  heat,  between  temperature  of  steam  and 
that  of  water  of  condensation  at  its  exit,  at  the  rate  of  150  feet  per  minute, 
may  be  taken  as  380  units  for  vertical  tubes  and  520  for  horizontal. 


Oondensation   of*  Steaxn   in   Cast-iron    Pipes.    (M.  BumaJt.) 


Av«r«fri 
Pr«H.  par 
Sq. Inch. 


23 


Temperatara. 


Stfl«m. 


o 
333 


Air. 


o 
365 


Dtffereaee. 


o 
196.5 


CoQdenMtioR  p«r  aq.  foot  of  •ztemal  HirfMe  of  pip* 
per  hour. 


Bara. 


Lb. 

.581 


Straw. 


Lb. 

.2 


Pipe. 


Lb. 
.239 


Waste. 


Lb. 
386 


Plaater. 


Lb. 

•324 


From  these  data,  following  constants  are  deduced  for  an  absolute  iiressure  of 
23  Iba  per  sq.  inch  of  steam  coDdcnsed,  and  heat  passed  off  per  sq.  foot  of  external 
surface  of  pipe  per  hour  of  i^  difference  or  temperature. 


SUBFACK  or  PiFS. 


Bare  pipe 

Straw  coat   

Cased  with  clay  pipe. . . 


steam 

condensed 

per  Sq.  Foot. 


Lb. 
.003 
.00103 
.001  15 


Heat 

paeaed 

off. 


Unite. 

2.8l2 

.968 
f.106 


SuRFACB  Of  Pipe. 


Cotton  wute  i  inch. , 

Earth  and  hair , 

While  paint *.. 


steam 

condensed 

per  Sq.  Foot. 


Lb. 
.00146 
.00165 
.00156 


Heat 

pasted 
off. 


Onils. 
1.384 
1.568 
1.^ 


5i6 


USAT. 


Pipes  wer*  4.7a  Ini.  dlain«tor,  .as  iDcb  thick,  and  had  area  of  58.5  aq.  feet 
Bare — rough  surface  as  cast  Straw  cool— laid  lengthwise  .6  inch  thick  and  bound. 
i'tyj«— laid  in  clay  pipe  with  an  air  space  between  them,  the  whole  covered  with 
loam  and  straw.  Waste  cotton — i  inch  thick  and  bound  with  twine.  Platter— 
laid  in  clay  and  hair  2.36  ins.  thick. 

A  wrought- iron  pipe  3.75  ins.  in  external  diameter,  .as  inch  thick,  and  lagged 
with  felt  and  spun  yarn  .5  inch  thick,  condensed  steam  at  345O  at  rate  of  .262  lb. 
per  sq.  foot  per  hour,  in  an  external  temt)erature  of  6o<^. 


Steazn.  Condensed  per  Sq..  F'oot  and  per  Degree  per  Ko-ur. 

Mean  Results  of  severed  Erperiments  with  bare  Ca^-iron  Pipes,  with  Steam 
at  Absolute  Pressure  0/20  lbs.  per  Sq.  Inch. 

.4  lb.  per  sq.  foot,  and  .002  39  lb.  per  degree. 

Hence,  to  ascertain  quantity  of  heat  lost  by  condensation  of  .002  39  lb.  =  —  of  a  Ik 

Difference  of  total  and  sensible  heats  of  i  lb.  steam  at  20  Ib&  absolute  pressure  = 
"51° +  32°  —  2280  =  955  units,  and  955-7-420  =  2.274  un\ts  =  heat  (xmdensed. 

The  loss  of  heat  fVom  a  naked  boiler  in  air  at  62^,  under  an  absolute  pressure  of  50 
lbs.  per  sq.  inch,  was  5.8  units. 

Congelation  and  Xjiquefkotion. 

Freezing  water  gives  out  140°  of  heat.    All  solids  absorb  heat  when 
becoming  fluid. 

Particular  quantity  of  heat  which  renders  a  substance  fluid  is  termed 
Hs  caloric  of  fluidity,  or  latent  heat. 

Temperature  of  Solidification  of  Several  Gases.    (Faraday. ) 

Cyanogen 31O  I  Ammonia 103^  I  Sulphuretted  Hydrogen,  1230 

Carbonic  Acid 72®  |  Sulphurous  Acid. . .  105O  |  Protoxide  of  Nitrogen. .  148O 


Frigoriilo   IMixtures. 


MiXTOBXS. 


Sea  salt 

Nitrate  of  ammonia . . . 
Snow,  or  pounded  ice. . 

Muriate  of  ammonia  ) 
Nitrate  of  potash  ) 
Snow,  or  pounded  ice. . 

Phosphate  of  soda 

Nitrate  of  ammonia . . . 
Dilute  mixed  acids . . . . 

Snow 

Crystallized  muriate  ) 
of  lime ) 

Snow 

Dilute  sulphuric  acid . . 

Phosphate  of  soda 

Nitrate  of  ammonia . . . 
Dilute  nitrieacid 

Snow 

Dilute  nitri«  acid 


Parta. 


12; 
5 

\ 

X 


8] 
10] 

3 

a 


K 


Fall  of 
Temp«rBture. 

0 

0 

—18  to 

—25 

-Sto 

—18 

-34  to 

-so 

—40  to 

—73 

-68  to 

-9> 

otO 

—34 

otO 

-46 

MiXTCBKS. 


Nitrate  of  ammonia. 
Water 

Snow 

Dilute  sulphuric  acid 

Sulphate  of  soda. . . . 
Diluted  nitric  acid . . 

Nitrate  of  ammonia. 
Carbonate  of  soda . . . 
Water 

Sulphate  of  soda .... 
Muriate  of  ammonia. 
Nitrate  of  potash.... 
Dilute  nitric  acid . . . 

Phosphate  of  soda. . . 
Dilute  nitric  acid . . . 

Snow. 

Muriate  of  lime 

Potash 

Snow. 


Parts. 


:! 

6' 

4  . 

2 

4. 

J} 

w 


Fan  of 
Tempcratar*. 


+50  to  +4 
— xoto— 60 
+50  to  —3 

+3otO   -7 

4-50  to  —10 

-f-soto — I  a 
-f  ao  to  —48 
+32  to  — sx 


A  Mixlure  of  Solid  Carbonic  Acid  and  Salphuric  Ether,  under  reoeiver  of  an  air- 
pump,  under  pressures  of  .6  lbs.  to  14  lb&,  exhibited  a  temperature  ranging  Hrom 
•^107®  to  -^%W*i  wl^ich  is  t))e  mOPt  iQlpQS^  QPld  «s .vet  known.    {Faraday.) 


HBAT. 


SI7 


^Melting-points. 


Mbtals. 


Aluminum.,.. ••••• 

Antimony 

Arsenic 

Bismuth 

Bronza 

Calcium  at  red  heat. 
Ck>pper 

Gold,  pure 

standard 


i( 


Iron,  cast 


2d  melting. 


It 


Wrought. 


"     malleable  forge 

Lead 

Lithium 

Mercury , 

Platinum 

Nickel,  highest  forge  heat. 
Potassium , 


Silver. 


Sodium, 
Steel... 
Tin...., 
Zinc..., 


Allots. 
Lead  2,  Tin  3,  Bismuth  5. 
"     I,  "    3,       "       5. 


1400 

810 

365 

476 

1692 

1996 
(2282 
12590 

2156 

!2000 
2250 
3479* 
!2aoo 
2450 
3700* 
12700 
2912 
3509* 

608 

356 

—39 
3200 

136 
(1250 

(1873 

194 

2500 

446 
680 


212 

8IO 


Allots. 


Lead  i,  Tin  4,  Bismuth  5 


(C 

ii 

C( 

Tin 

ti 

it 


3t 
3. 
2, 


n 
(t 
(( 
ti 
t( 
(( 
(( 


3 »••••■ 

2,  Bismuth  5.. 

I. 

1  (solder) 

2  (sod  solder). 
I 


2, 

8, 
Zinc  I 


Bismuth 
ti 

ii 


Tin 


Bism.  4, 

I 

I 

I 


Cadm.  I 


FuRible   Plugs. 


Lead  2,  Tin  2. 


it 
it 
it 


6, 
7. 
8, 


ii 
it 
tt 


Various  Su'bstanoes. 

Ambergris 

Beeswax 

Carbonic  acid 

Glass 

Ice 

Lard 

Nitro-Glycerine. 

Phosphorus 

Pitch 

Saltpetre 

Spermaceti 

Stearine 

Sulphur 

Tallow 

Wax,  white. 


*  Ranklne. 


240 

334 
199 

552 

475 
360 
368 

155 

286 

336 
39a 
399 


372 

38i 
410 


MS 

151 

—108 

2377 

32 

95 

45 

X12 

9Jt 
606 

112 
"4 

239 
92 

143 


Volume  of  Water,  Antimony,  and  Cast  iron,  in  the  solid  state,  exceeds 
that  of  the  liquid,  as  evidenced  by  the  floating  of  ice  on  water,  and  of  cold 
iron  on  iron  in  a  liquid  state. 


Soiling-points.    (Under  One  Atmosphere.) 

LiouiiM.  o  Liquids. 


Alcohol,  B.  g.  813 

Ammonia 

Benzine. 

Chloroform 

Ether 

Linseed  oil 

Mercury 

Milk 

Nitric  acid,  s.  g.  1.42 

ii  It  **!<.. 

Oil  of  Turpentine 

Petroleum,  rectified 

PbospboruB 

Sea  water,  average 

Sulphur 

Sulphuric  acid,  s.  g.  1.848. 

it      it    -  . 

I.J... 

'Hher 


173 
140 

146 
100 

597 
648 

213 
248 
210 

315 

316 

554 
213. 

570 

590 
240 

100 


Turpentine 

Water 

"     in  vacuo 

Whale  oil 

Saturated  Solutions. 

Acetate  of  Soda. 

"       "  Potash 

Brine 

Carbonate  of  Soda 

"         "  Potash 

Nitrate  of  Soda 

"       "  Potash 

Salt,  common 


Various  SuBSTAh'CBa 

Coal  Tar 

Naphtha 


315 

212 

630 


255.8 

336 
226 
220.3 

275 
250 

240.6 

227.3 


335 

>86 


5i8 


H}32A1\ 


Pareaaixre  oi   Saturated.  Vapors   ixnder  Various  temper- 
atures.    {RegnauU  \ 

Tamper- 
atnr*. 


o 
32 
50 
68 
86 
104 

183 

X40 

176 

»94 


Water. 

Alcohol. 

Eth«r. 

Lb*. 

Lb*. 

Lbs. 

.089 

.346 

3-53 

.178 

.466 

5-54 

•337 

.851 

8.6 

.609 

1-52 

12.33 

.    1.06 

8.59 

17.67 

t.78 

4.36 

24-53 

3.88 

6.77 

33-47 

1§' 

10.43 

44.67 

6.86 

«5-72 

57-01 

xo.z6 

23.03 

75-41 

Chloro- 

Tetnpmr- 

Chloro- 

form. 

•tore. 

Water. 

Alcohol. 

Ether. 

form. 

Lba. 

0 

Lbt. 

Lb*. 

Lbe. 

LU. 

— 

313 

'4-7 

33.6 

95- >  7 

45-54 

2.53 

230 

20.8 

45-5 

130.9 

58-42 

3.68 

340.8 

25-37 

— 

'37 

Tttrp'line 

5-34 

348 

39.88 

63.05 

4-97 

7.04 

366 

39-27 

83.8 

— 

6.71 

10.14 

B76.8 

46.87 

— 

— 

'ISZ 

384 

52.56 

109. 1 

— 

8.94 

18.88 

303 

69.37 

140.4 

— 

11.7 

26.46 

305.6 

73-07 

1473 

— 

— 

35.03 

330 

89.97 

— 

— 

«3-» 

Boiling-points  of  Water  corresponding  to  Altitudes  ofBaromeier  between 

(a  and  31  Ins» 


Barom. 

BoiliTiR-point. 

Barmn. 

Boiling-point. 

Baroin. 

Boiling-point. 

Barom. 

Boiling-point 

36 

36.5 

37 

0 
304.91 

»8S 

0 

207-55 
208.43 
209.31 

29 

29-5 

30 

0 
2iai9 
311.07 

313 

30-5 
32 

0 
313.88 
213.76 

Boiling-point  of  Salt  water,  2i3»2°.  Water  may  be  heated  in  a  Digestei 
to  400°  without  boiling. 

Fluids  boil  in  a  vacuum  with  less  heat  than  under  pressure  of  atmosphere. 
On  Mont  Blanc  water  boils  at  187°  ;  and  in  a  vacuum  water  boils  at  98°  to 
100°,  according  as  it  is  more  or  less  perfect 

Water  may  be  reduced  to  50  If  confined  in  tubes  of  from  .003  to  .005  inch  !n  dtam- 
eter:  this  is  in  consequence  of  adhesion  of  water  to  surfkce  of  tube,  interfering  with 
a  change  In  its  state.  It  may  also  be  reduced  in  its  temperature  below  390  if  it  ia 
kept  perfectly  quiescent 

Kfibot   upon   Various   Bodies    "b^r   Heat. 

Wedgewood's  zero  is  1077°  (Fahrenheit),  and  each  degree  =  130°. 

In  designation  of  degrees  of  temperature,  symbol  -|-  is  omitted  when  temperature 
Is  above  o;  but  when  below  it,  symbol  —  must  be  prefixed. 


Degrees. 

Acetiflcation  ends ....    88 

Acetous  fermen-)  » 

tationbegins..}  •••    'O 

Air  Furnace 3300 

Ammonia  (liq.)  freezes  — 46 
Blood  (hum.),  heat  of.    98 

"  freezes.    35 

Brandy  f^ezea — 7 

Charcoal  burns 800 

Cold,  greatest  artifia  — 166 
"         "       natural  —56 

Common  fire 790 

Fire  brick. . .  .4000  to  5000 
Gutta-percha  soflena .  145 

Heat,  cherry  red 1500 

"    (Daniell)  1141 

bright  red i860 

red,  visible  by  I    _ 
day .P°77 

white 3900 


14 


It 


Deg 


-} 


117 


293 


Highest  natural  tem- 
perature, Egypt 
India-rubber  and 
Gutta-percha  vul- 
canize  

Iron,  bright  red  in) 

the  dark }  752 

Iron,  red  hot  in  twi- )  qq 

light }  ^4 

Iron,  wrought,  welda  .3700 

Ignition  of  bodies ....  750 

Combustion  of  do. . .  800 

Mercury  volatilizes...  680 

Milk  n^ezes 30 

Nitric  Acid  (sp.gra v. ) 

1.434)  freezes....  J  ^ 
Nitrous  Oxide  freezes  —150 

Olive-oil  freezes 36 

Petroleum  boils 306 

Proof  Spirit  freezes. . .  — 7 


Degrees. 

Sea- water  ft'eezes....    38 
Snow  and  Salt,  equal ) 

parts I       ^ 

Spirits  Turpen.  (feezes  14 
Steel,  faint  yellow. . . .  430 
"     Aill        "      ....  470 

purple 530 

blue 550 

fbll  blue 560 

dark  ''    600 

polished,  blue ..  580 
'*  straw  color  460 
Strong  Wines  freeze. .  ao 
Sulph.  Acid  (sp.  grav.  \ 

1.641)  flreezes.... )      *5 
Sulph.  Ether  fVeezes.  .—46 

Vinegar  ft'eezes 38 

Vinous  ferment  ..60  to    77 

Zinc  boila 1873 

Wood,  dried. 340 


(t 
(t 


Volume  of  Several 


Uiq.uid.8 

ftttam  I  Steam.  I 

I  Water 1700 1  x  AloohoL sb8  |  x  £Uier 398  \  x  Tiurpentint . .  X93 


at   their   8oilixis*poixit» 

Steam.  I  Steun. 


HEAT. 


SI9 


STeitflxt  ooirrespoiidizie  to  Soiliii^-polixt  of  Pizva  Inciter. 

Boiling-poifU  at  Level  of  S€a  =  2^12°, 


DogFM. 

Feet. 

IHlif 

Feet. 

Decree. 

Feet.     1 

Degree. 

197 
X96 

Feet. 

Dagref. 

211 

a  10 

521 
1569 

2625 

3689 
4224 

203 

202 
20X 
200 

4761 

5300 
5841 
6384 

6929 
7476 

^5 

8576 

19s 
194 

193 

192 

Feet. 


9129 

9684 
X024Y 

10800 


Correction  for  temperature  of  air  same  as  given  at  page  428  for  Elevation 
by  a  Barometer  by  multiplying  by  C. 

Illustration.— If  water  boils  at  a  temperature  of  xkP  and  0  =  1360, 

Then  6384  x  108  =  6894. 72  ^t 

TJndergrovxnd   Temperature. 

Mean  increase  of  underground  temperature  per  foot,  from  observations  in 
36  mines  in  various  and  extended  localities,  is  .01565°^  1°  in  64  feet. 

Uiuear   ISxpansion  or  IDilatatio^  of*  a   Bar  or  Priam  "by 

Keat. 

For  I*  in  a  Length  of  100  Feet, 

Metals,  Minerals,  etc. 

Inch. 


Antiorany. .007  22 

Bismuth 009  28 

Brass ,  .oia  5 

*^     yellow 0126 

Brick 001 44 

Cast  Iron 0074 

Cement : 009  56 

Copper  flrom  o^  to  212° on  5 

"     trova  32°  to  572° 004 18 

Fire  brick 003  3 

Glass 005  74 

*'    flint 00541 

"    tube 0612 

Gold— Paris  standard  annealed..  .0x0 x 

"         "  *'        unannealed  .0103 

Granite 005  25 

Gun  Metal— x6  copper 4- x  tin...  .0x27 

"        "         8  copper -}- I  tin . . .  .0121 

Ice 033  3 

Iron,  Ibrged 008 14 

"     ft-om  o®  to  212O 007  88 


Inch. 

Iron,  fl*om  32°  to  572° 003  a6 

Iron  wire ooS  23 

Lead .019 

Marble 00566 

Palladium 00667 

Platinum 00571 

"       from  32°  to  572" octtof 

Sandstone 013 

"        00814 

Silver 012  7 

Speculum  metal .013 

Steel,  rod 007  63 

cast .007  a 

tempered 008  26 

not  tempered .007 19 

Tin 014  5 

Water 000  222  9 

White  Solder — tin  i  -\-  2  lead. .  .016  7 

Zinc,  forged ,  .0207 

sheet 019  6 

8-|-itin 0179 


u 

(« 


It 


To  Compute  Xjinear  B^xpansion  of  a  Sulsstanoe. 

Multiply  difference  of  the  temperatures  by  the  decimal  in  the  above  table.  Or, 
Divide  x  by  it,  and  quotient  will  give  proportion. 

Superjicial  expcamon  is  twice  linear^  and  cubical  is  three  times  linear. 

Illustration  x.— A  rod  of  copper  100  feet  In  length  will  expand  between  tem- 
peratures of  33O  and  2X2°.    2x2  —  32  =  180  X  -ox  15  =  2.07  ins. 

a.— A  cube  of  cast  iron  of  x  foot  will  expand  in  volume  between  temperatures  ol 
6aO  and  2x2°.  2x2—63  =  150,  and  150X  . 0074  =  1. xi,  which -r- 100  for  x  foot  = 
«oixx  foot,  and  .oxxi  X  3  =  -0333  foot. 

Some  solids,  as  Ice,  Cast  iron,  etc.,  have  more  volume  when  near  to  thefr  melting- 
point  than  when  melted.  This  is  illustrated  in  the  floating  of  solid  metal  In  a  liquid. 

filxpansion   of  AVater. 

Water  expands  from  temperature  of  maximum  density  (see  page  520), 
39.1°,  to  46°,  at  which  degree  it  regains  its  initial  volume  of  33°,  and  from 
tbonce  it  expands  under  one  atmosphere  to  212° ;  and  its  cubical  expansion 
is  .0466.  that  is,  its  volume  is  dilated  from  z  at  32^  to  1.0466  at  ai2°. 

Its  expansion  increases  in  a  greater  ratio  thtn  that  of  its  temperature* 


520 


HEAT. 


-Xo  Coxnp-ate  "Dexiaity  of^'Water  at  a  sivexx  Texxiperatixre. 

62.5  X  2 

=  approziincUe  density,  t  repraenting  temperature  of  water. 


t-\-46i         500 
500      '  <  +  461 

Illustration. —What  is  density 
»f  pure  water  at  298°  f 


62.5X2 


298  -\-  461 


500 


+ 


500 


298  +  461 


=  57.43  lb*,  or  wetght  0/ 
I  cube  foot 


Expansion   of  Water.     (DaUon.) 


Tamp. 

Rrpansionr 

Temp. 

Expansion. 

Temp. 

0 
22 

♦46 

X.OO09 

X 

I 

0 

52 
72 
92 

I  00021 
I.ooz  8 
1.00477 

0 
112 
132 
152 

Expansion. 

Temp. 

EzpADaiOB. 

1.0088 

I.01367 

1.01934 

0 

172 
192 
212 

1025  75 
1.03265 

1.0466 

Hence,  at  72°,  water  expands 


*  Greatest  density  39.1°. 
I 


.0018 


=  555-  55^b  P^ft  of  its  original  bulk. 


Expansion    of  Liq.uids   from   3fi°  to   812°. 

Liquids.  Volume  at  212*.  Liqciob. 


Alcohol.... » 

Linseed  oil 

Mercury 

212°  to  392°. 
392°  to  572°. 
Nitric  acid 


I. II 
X.08 
I.OIS4 
1.018  433 1 
1.0188679 

I.  IX 


Volume  at  32°  =  i. 
Volume  at  axa*. 


Olive  oil 

Sulphuric  acid 

"        ether. 

Turpentine 

Water. 

Water  sat.  with  salt 


1.08 

1.06 

1.07 

1.07 

X.0466 

1.05 


Expansion  of  G  ases  fVo«a   38°  to  818°.    Volume  at  32°  =  x. 


Gasbs. 


Air 


Hydrogen . . . .  i 

3.35 

Carbonic  acid,  i 

3-32 


..  I  Atmosphere.'. 

3'45        " 


Volume 
at  312°. 


1.36706 
1.36964 
1.366  13 
X.  366  16 
1.37099 
1-38455 


Gases. 


Nitrous  oxide  . . .  i  Atmosphere 

Sulphurous  acid,  x 

X.  16 

Carbonic  oxide  . .  x 

Cyanogen i 


(t 

C( 


Volara* 
at  2ia*. 


1.317? 
X.3903 
X.398 

X.3669 
'•3877 


Expansion  of  Gases  is  uniform  for  all  temperatures. 
Volume  of  One  Pound  of  Vaiioiu  Gases  at  32°  under  one  Atmosphere. 


Cube  feet. 

Air 12.387 

Carbonic  acid 8.  zoi 

Ether,  vapor 4. 777 

JPCxpansion   of  A.ir.    {DaUon.) 


Cube  iSset. 

Hydrogen 178.83 

Nitrogen 12.753 

defiant 12.58 


Cobefeet 

Oxygen 12.205 

Mercury 1.776 

Steam 19-913 


EzpftD' 

ston. 


Temp. 

Expan- 
sion. 

Temp. 

Elxpan- 
sion. 

Temp. 

Expan- 
sion. 

Tempb 

Expan- 
sion. 

Temp. 

Expan- 
sion. 

Temp. 

0 

0 

0 

0 

0 

0 

32 

X 

40 

X.021 

60 

1.066 

80 

1. 1 10 

100 

I<X52 

392 

33 

X.002 

45 

1.032 

65 

1.077 

85 

X.X2I 

200 

1.354 

482 

34 

X.004 

50 

1043 

70 

1.089 

90 

I>X32 

212 

1-376 

680 

35 

1.007 

55 

»-o55 

75 

1.099 

95 

X  X42 

302 

1.558 

772 

1.739 

1.912 
2.028 

2.JI2 


To   Compute   Volunne   of  a   Constant   Mi^'eight  of  .A.ir  or 
i*enmanent   Gl-as   for   any    Pressure. 

When  volume  at  a  given  pressure  is  knaum^  temperature  remaining  con- 
ttant.  RuLU. — Multiply  given  volume  by  given  pressure  and  divide  by 
new  pressure. 

ExAKPLB.— Pressure  at  312°=:  18.92  lbs.  per  sq.  inch,  and  volume  X6.9X  cube  feel; 
what  is  volume  at  pressure  of  13.86  lbs. 

X6.9X  X  x3.86n-x8.93  :=  xa.39  o/^feet 


HSAT. 


521 


ReUUitfe  Densities  of  some  Vapors. 
Water  X.    Alcohol  a. 59.    Ether  4.16.    Spirits  of  Turpentine  8.06.    Sulphur  3.59. 


Volume,  Pressure,  and  Density  of*  A.ir  at  Various  Tezn* 

peratures. 


Volume  and  Atmospheric  Pressure  at  63^  = 

I. 

Yolnine  of 
z  lb.  of  air  at 

Preesnre 
ofairiven 
weiffht  of 

Density,  or 
weight  of  one 

Volume  of 
I  lb.  of  air  at 

Pressure 
ofairiven 
wcipit  of 

a.\r. 

Density,  or 
weisrht  of  one 

Temper- 
atnre. 

atmoapberie 
preasureof 

cube  foot 
ofi^rat 

Temper* 
atore. 

atmospheric 
pressure  of 

cube  foot 
of  air  at 

::4.7  »»>•• 

14.7  lbs. 

14.7  lbs. 

itti . 

14  7  lbs. 

0 

Cube  feet. 

Ltie.  per 
Sq. Inch. 

Lbs. 

0 

Cube  feet. 

Lbs.  per 
Sq.  Inch. 

Lbs. 

0 

".583 

13.06 
13-86 

.086  331 

360 

20.63 

23.08 

.048  476 

32 

12.387 

.080738 

380 

21. 131 

23.64 

•047  323 

40 

12.586 

14.08 

.079439 

400 

21.634 

34.3 

.046  223 

50 

13.84 

'4.36 

.077  884 

425 

32.263 

34.9 

•04492 

63 

13-14X 

«4-7 

.076097 

450 

32.89 

35.61 

.043  686 

^ 

13-342 

14.93 

•07495 

475 

23.5»8 

36.31 

.042  52 

13.593 

1S2I 

•073565 

500 

24.146 

37.01 

.041414 

90 

13.845 

1549 

.07223 

525 

24-775 

37.71 

.040364 

xoo 

14.096 

15.77 

.070942 

550 

25-403 

38.42 

•039365 
.038415 

X30 

14.592 

16.33 

.0685 

575 

26.031 

39.12 

140 

«5.» 

16.89 

.066221 

600 

36.659 

29.82  . 

-037  5« 

160 

15603 

»7.5 

.064088 

650 

27.9»5 

31-23 

.035  822 

180 

16.106 

18.02 

.06209 

700 

29.171 

32.635 

.03428 

300 

16.606 

18.58 

.06021 

750 

30.428 

3404 

.032865 

210 

16.86 

18.86 

.059313 

800 

31.684 

35-445 

.031  561 

313 

16.91 

xa93 

.059135 
.058443 

850 

32.941 

36.85 

.030358 

220 

17.111 

19.14 

900 

34-197 

38-255 

.029  242 

340 

17.613 

19.7 

.056774 

950 

35.454 

39-66 

.028206 

360 

18.116 

3a  37 

•0552 

1000 

36.811 

41-065 

.027241 

380 

18.631 

30.83 

•0537* 

1500 

49-375 

55-115 

.020295 

300 

19.  I3X 

21.39 

.052297 

2000 

61.94 

69.165 

.016172 

320 

19. 634 

21-95 

•050959 

2500 

74-565 

83.215 

013441 

340 

3ai36 

33.51 

.049686 

3000 

87-13 

97-265 

.011499 

To  Compute  Volume  of  a  Constant  'Weight  of  Air  or 
other  Permanent  G}-as  for  any  otlier  Pressure  and 
Temperature. 

Wken  volume  is  htoton  at  a  given  pressure  and  temperature.  Rule. — Mul- 
tiply given  volume  by  given  pressure,  and  by  new  absolute  temperature, 
and  divide  by  new  pressure,  and  by  given  absolute  temperature. 

ExAMFLB.'— Given  volume  16.91  cube  feet,  pressure  13.86  lbs.,  and  temperature 
32O;  what  is  volume  at  this  temperature? 

Temperature  fbr  volume  16.91  =  212O. 

16.91  X  13.86  X  32  4"  461 -^  13.86  X  212  +  461  =  13.39  cutfeJuL 

To  Compute  Pressure  of  a  Constant  "^VeigHt  of  A.ir  or 
other  Perxnanent  G^as  ibr  any  other  Volume  and, 
Temperature. 

IVhen  pressure  is  known  Jor  a  given  volume  and  temperature.  Rule. — 
Multiply  given  pressure  by  new  absolute  temperature,  and  divide  by  given 
absolute  temperature. 

NoTK.— Absolute  temperature  is  found  by  adding  461O  to  temperature. 

EX4MPX.B.— Given  pressure  13.86  lbs.,  and  temperature  at  this  volume  33O;  what 
is  pressure  at  temperature  of  212O? 

13.86  X  813 +461-?- 32 +  461  :?=  18.93  lbs. 
Xx* 


522  HEAT. 

To  Compnt©  "Volume  of  a  Constant  "Weiglit  of  Air  ov 
otlner   Permanent  O-as   at  any   Temperature. 

When  volume  at  a  given  temperature  is  kmnon^  pnsswre  being  contfmu. 
Rule. — Multiply  given  volume  by  uew  absolute  temperature,  and  divide 
by  given  absdute  temperature. 

Absolute  zero-point  by  different  thermometrical  scales  is:  Fahrenheit  —461.2^; 
Reaumur  — 319.2°;  Centigrade  —374°. 

EZAMPLK.— Volume  of  i  lb.  air  at  32®  =  12.387  cube  feet;  what  is  its  volume  at 

•120? 

12.387  X  212 -1-461-4-32 +  461  =  16.91  cube  feet 

To   Compute   Increased   Volume   of  a  Constant   "Woifflit 

of  A.ir. 

When  initial  volume  at  62®  =  i  under  1  atmosphere.    Rule. — To  givea 
temperature  add  461,  and  divide  sum  by  523  (62  +  461). 
Example. —Assume  elements  of  preceding  case. 

212^-1-461  -;-  533  =  1.287  cow^arctitive  volume  to  x. 

To  Compute  Pressure  of  a  Constant  Weiglit  of  Air  or 
other  Oas  at  OS®,  and  at  l^.'T  lbs.  I»res8ure  per  Sq..  In., 
witli  Coixatant  Volume,  for  a  given  Temperature. 

Rule.— Add  461  to  given  temperature,  and  divide  sum  by  35.5S. 
Example. —Temperature  is  212^';  what  is  pressure? 

212  +  461-7-35.58  =  18.92  Ws. 

To    Compute   Volume,  Fressnre,  Temperature,  and 

IDensity   of  A.ir. 

«  +  46i      ^  <  +  46i      «  '+46X  „  ^        »         A 

^     -  =  V;  p    =V;  J^-^     =p;       V  3.7074 p— 461  = «;  and 

|>  2.71  39.8  V2.7I  #    *-rr         -r 

3. 71  .F,  =  D.    i  rqfraenting  temperature,  p  pressure  in  lbs.  per  sq.  tncft,  V  wJ- 
ume  in  cubefeet^  and  D  voeiglU  of  x  ctibeftyot  at  14.7  lbs.  per  sq.  inch. 

Product  of  volume  and  pressure  of  a  constant  weight  of  air,  or  any  other 
permanent  gas,  is  equal  to  product  of  absolute  temperature  and  a  coefficient, 
determined  for  each  gas  by  its  density. 

Or,Vjp  =  C«  +  46i. 
Coefficients,  as  determined  by  volumes  and  oonseqaent  densitieB.* 


Air 2.71 

Carbonic  acid 4. 14 

Ether,  vapor 7.02 


Hydrogen 1875 

Nitrogen 2.63 

Oleflant 2.67 


Oxygen 3. 

Mercury 18. 

Steam x.68 


•  Sm  D.  K.  Clark,  Londoo,  1877,  paga  349. 
Deorease  of  Teniperature  by  A.ltitude8. 

In  eUar  «hf.  Wttk  doudf  tkf. 

From  X  to   xooofeet i°in  130  net.. x^' in  222  feel 


X  "  xoooo    "   lO  "  a8§    *♦   jO  " 


33« 


ti 


X  "  20000   "  xO  *♦  365    "   lO"  468   " 

To  Compute  Temperature  to  wliloh.  a  Stibstanoe  of  a 
given  UenstH  or  Diinexision  must  be  Submitted  or 
Reduced,  to  give  it  a  G^reater  or  Uess  Uength  or  Vol- 
ume by  £2xpaxksion  or  Contraction. 

Lineai. — TTAen  Length  is  to  be  increased.    ~^^ — \-t=iT   L  and  { nprusnk 

ing  lengths  of  increased  and  primitive  substance  in  like  denominations^  T  astd  t  tern 
peratures  ofL  andl^  and  G  expansion  <(f  substance  fbr  eaeh  degree  qfhtaX. 


HSAT.  523 

Iiujsnu.TiON.— A  copper  rod  at  39^  Is  100  feet  In  length;  to  what  temperature 
maat  it  be  subjected  to  increase  its  length  1.1633  ins.  ? 

Expansion  for  a  length  of  100  feet  of  copper  for  z^  =  .0115. 

.CO  X  »  +  ..  .633  -ro^X  "  ^  Lig33  ^  fl., 

.0115  .01X5  ^^ 

Illustration.-- Take  elements  of  preceding  case. 
iaoi.x633  —  laoo 


.0115 


133. 16°  =  loi.  16  — 133. 16  =  3a9. 


7o  Recluoe  Degrees  of*  Falirenlieit  to  Reauxnur  and  Cexi«* 

tiisrade,  aaxd    Contrari-wise. 

irabrenlieit  to  Reaumur.     If  above  zero.  —  Multiply  difference 
between  number  of  degrees  and  32  by  4,  and  divide  product  by  9. 
Thus,  ai20  —  320  =  180°,  and  180O  y^^^^  —  ^o^ 

If  hdow  zero.— Add  32  to  number  of  degrees ;  multiply  sum  by  4,  and 
divide  product  by  9. 
Thus,  — 400  -I-  32O  =  72O  and  72°  x  4  -^  9  =  —32°. 

Reaumur  to   Falirenlieit.     If  above  freezinff-poinl,  —  Multiply 
number  of  degrees  by  9,  divide  by  4,  and  add  32  to  quotient. 
.  Thus,  8c^  X  9^'4  ^ «8oO,  and  180° -f  32  =  2120. 

If  below  freezinff-point. — Multiply  ntuuber  of  degrees  by  9,  divide  by  4, 
and  subtract  32  from  product. 
Thus,  —32°  X  9  -i-  4  =  72°,  and  72°  —  32  =  — 40O. 

Falirenlieit  to  Centigrade.     If  above  zero. — Multiply  difference 
between  nnmber  of  degrees  and  32  by  5,  and  divide  product  by  9^ 
Thus,  ai20— 32OX  5-5-9  =  180^X5-5-9=1000. 

//*  behw  zero, — Add  32  to  number  of  degrees,  multiply  sum  by  5,  and 
divide  product  by  9. 

Thus,  —400-1-320  X  5-^9  =  72°  X  S-i-9=  —40®. 

Centigrade  to  Falirenlieit.     If  above  freezing-point. — Multiply 
nmnber  of  degrees  by  9,  divide  product  by  5,  and  add  32  to  quotient 
Thus,  looPx  9-5-5=  180O,  and  1800-^-32=2120. 

Ifbehwfreeeinff-poini' — Multiply  number  of  degrees  by  9,  divide  product 
by  5,  and  take  difference  between  32  and  quotient. 
Thus,  — loO  X  9  -T-  5  =  180,  and  180  rv  32  =  14O. 

Reaumur  to  Centigrade.— Divide  by  4,  and  add  product 
Thus,  80O -^  4  =  aoP,  and  20O  4- 80O  =  looo. 

Centigrade  to  Reaumur. — Divide  by  5,  and  subtract  product 
Thus,  jooo  -5-  5  =  «oO,  and  xooo — 20 = 80O. 

Corretponding  Degrees  upon  the  Three  Scales. 
Fakr.    I    Cmi.     I  R«nun.        F«hr.  Cent.        Bcmri.        Fthr.         Cent.         R«Mm.. 


Renun. 

F«hr. 

Cent. 

Reaam. 

Fthr. 

Cent. 

80 

3a 

0 

0 

—40 

—40 

aza     \     lOQ     J      00  3a  o  o  — 40        — 40         — 3a 

T*o   Compute   Bxpansion   of  ITluids  in   Volume. 

RuLB. — Proceed  bv  preceding  formulas  for  computing  length  of  a  sub- 
stance.   Substitute  V  and  v  for  volume,  instead  of  L  and  /,  the  lengths. 


524 


HEAT,   VENTILATION,   BUILDINGS,   ETC. 


Illustration. — A  closed  vessel  contains  6  cube  feet  of  water  at  a  temperature  of 
40^;  to  what  height  will  a  column  of  it  rise  in  a  pipe  1.152  ins.  in  area,  when  it  is 
elposod  to  a  temperature  of  130^^? 

X.  152  in&  =  .008  sq.  Jbot.    C  for  water  =  .000  222  9. 

6  (i -f" 'Ooo  222  9  (130  — 40))  =  6. 120366.  and  ~ ^-— =  15.047  Hnealfeet 

.008 

Temperature  "by   .Agitation.. 

RaulU  of  Experiments  wWi  Water  enclused  in  a  Vessel  cuid  violenUy  AgiUiML 
Temperature  of  Air,  60. 5° ;  of  Water,  59. 5°. 


Duration 
of  Agitation. 


Hour. 

•5 

I 


Incnaie 
ofTemperatare. 


O 
10 
J4-5 


Duration 
of  AKiUtion. 


Honn. 

2 

3 


IncnuiM 
ofTemperatare. 

O 

19s 
29.5 


J>oration 
of  Afcitiition. 


Hours. 

S 
6 


IncreaM 
of  Temperatart. 


o 
39-5 
4*5 


VENTILATION. 
Suildinss,  ^pax^znents,  eto. 

/«  Ventilation  of  AparimenU, — From  3.5  to  5  cube  feet  of  air  are  required 
per  minute  in  winter,  and  5  to  10  feet  in  summer  for  each  occupant  In 
Hospitals,  this  rate  must  be  materially  increased. 

Ventilation  is  attained  by  both  natural  draught  and  artificial  means.  In 
first  case  the  ascensional  force  is  measured  by  difference  in  weight  of  two 
columns  of  air  of  same  height,  the  height  beingdetermined  by  total  difference 
of  level  between  entrance  for  warm  air  and  its  escape  into  the  atmosphere, 
llie  difference  of  weight  is  ascertained  from  dif)*erence  of  temperatures  of 
ascending  warm  air  and  the  external  atmosphere,  as  by  Table,  page  521,  or 
by  formula,  page  522. 

Volumes  of  Air  T)iBoUarged  tlirough.  a  Ventilator  One 
Koot  Square  of  Opening,  at  Various  Heights  and 
Temperatures. 


Height  of 
VenUlator 

from 
Base-line. 


Feet. 
10 

»5 
90 

30 


Ezceu  of  Temperature  of  Apartment 
above  that  of  External  Air. 

Height  of 
VenUlator 

EZCM 

a 

5° 

loO 

Cft. 
164 

15° 

C.ft 
200 

20O 

Cft. 

235 

25« 

Cft. 
260 

300 

C.ft. 

284 

Baae-iine. 

50 

C.ft. 
218 

C.ft. 
116 

Feet. 
35 

142 

184 

202 
232 
260 

285 
318 

284 

330 
368 

3i« 
368 
410 

34a 
404 

450 

40 
45 
50 

235 
248 
260 

201 

284 

347 

403 

450 

493 

55 

270 

Ezceet  of  Temperature  of  Apartment 
above  that  of  Eitemal  Air. 


loP 

Cft. 
306 

^41 
367 

385 


15^ 


Cft. 

376 

403 
427 

450 
472 


200 

a5*> 

3o<» 

Cft. 

C.ft 

Cft. 

436 

486 

53« 

1  46s  !  518 

570 

493 

55« 

60s 

518 

579 

635 

54» 

ftos 

66, 

Velocity  of  draft  bavine  been  ascertained  Ibr  any  particular  case,  together  with 
volume  of  air  to  be  suppl^  per  minute,  sectional  area  of  both  air  passages  may  be 
computed  from  these  data. 

KeatixMS  "by  I9Cot  "Water. 

One  sq.  foot  of  plate  or  pipe  surface  at  200^  will  heat  from  40  to  100  cube 
feet  of  enclosed  space  to  70°  where  extreme  depression  of  temperature  is 
-10°. 

The  range  from  40  to  100  is  to  meet  conditions  of  exposed  or  corner 
buildings,  of  buildings  less  exposed,  as  intermediate  ones  of  a  cluster  or 
block,  and  of  rooms  intermediate  between  the  front  and  rear. 

When  the  air  is  in  constant  course  of  change,  as  required  for  ventilation 
or  occupation  of  space,  these  proportions  are  to  be  very  raftterially  increased 
""s  per  following  rules. 


HEAT,  YEKTILATIOK,  AND   HEATING.  $2$ 

In  detenniniDg  length  of  pipe  for  any  given  space  it  is  proper  to  include 
in  Uie  computation  die  character  and  occupancy  of  the  space.  Thus,  a 
church,  during  hours  of  service,  or  a  dwelling-room,  will  require  less  service 
of  plate  or  length  of  pipe  than  a  hallway  or  a  public  building. 

Reduction  of  Heat  by  Surfaces  of  Glass  or  Metal.— In  addition  to  the 
volume  of  air  to  be  heated  per  minute  for  each  occupant,  1.25  cube  feet  for 
each  sq.  foot  of  glass  or  metal  the  space  is  enclosed  with  nkust  be  added. 
The  communicating  power  ot<he  glass  and  metal  being  directly'  proportion- 
ate to  difterence  of  external  and  internal  temperature  of  the  air.  Thus,  80 
feet  of  glass  will  reduce  100  feet  of  air  per  minute. 

When  Pipes  are  laid  in  Trenches  in  the  Earth, — The  loss  of  heat  is  es- 
timated by  Mr.  Hood  at  from  5  to  7  per  cent. 

Circulation  of  Water  in  Pipes. — In  consequence  of  the  complex  forms  of 
heating-pipes  and  the  roughness  of  their  internal  surface,  it  is  impracticable 
to  apply  a  rule  to  detennme  the  velocity'  of  circulation,  as  consequent  upon 
difference  of  weights  of  ascending  and  descending  columns  of  the  water. 

For  a  difference  of  temperature  in  the  two  columns  of  30°  (190°  —  160°) 
and  a  height  of  ao  feet,  the  velocity  due  to  the  height  would  be  3.74  feet 
In  practice,  not  .3,  and  in  some  cases  but  .1,  would  be  attained. 

In  Churches  and  I^r^e  Public  Rooms,  with  ordinary  area  of  doors  aod  windows 
and  moderate  veutilation,  a  large  amount  of  heat  is  generated  by  the  respiration 
of  the  persons  assembled  therein.  / 

In  these  cases  it  is  not  necessary  to  heat  the  air  above  55°,  and  a  rule  that  will 
meet  the  ordinary  ranges  of  temperature  (Tom  lo^  is  to  divide  volume  in  cube 
feet  by  200,  and  quotient  will  give  area  of  plate  in  sq.  feet  or  length  of  4- inch  pipe 
in  lineal  feet 

Volume  of  Air  required  pei'  Hour  for  each  Occupant  in  an  Enclosed  Space- 

{GenercU  Morin.) 

CabeFMt. 
Hospitals. . . .  3IOO  to  3700 
Workshops . .  2100  "  3500 


Lecture-rooms  1000  to  2100 
Theatres. 1400  ''  1800 


Ctabe  Feet    I  Cabe  Feet. 


Prisons x8oc 

Schools 424  to  1060 


To  Coxxxpute  Xjensth  of  Iron  Pipe  req.uired  to  Keat  A.lr 

in  axx  l£xicloaed  Space. 

By  Hot  Water. 

RuLR»— -Multiply  volume  of  air  to  be  heated  per  minute  in  cube  feet  by 
difference  of  temperatures  in  space  and  external  air,  divide  product  by  differ- 
ence ci  temperatures  of  surface  of  pipe  and  space,  multiply  result  by  follow- 
ing coefficients,  and  product  will  give  length  of  pipe  m  feet 

For  diameter  of  4  ins.  multiply  by  .5  to  .55,  for  3  ins.  by  .7  to  .75,  and  for 
a  ins.  by  i  to  i.i. 

A  pipe  4  ins.  in  diameter,  .375  inch  thick,  and  i  foot  in  length  has  an 
area  of  internal  surface  of  ix>5  sq.feei, 

EzAMFUi — ^Volume  of  a  room  of  a  protected  dwelling  is  4000  cube  feet;  what 
length  of  4  Ina  pipe,  at  200O,  is  necessary  to  maintain  a  temperature  of  jcP,  when 
•xtemal  air  is  at  o^*  f 

42222<5E2x.4  =  862^rf. 

200  —  70 

In  oomptitin^  lenffth  of  pipe  or  surface  of  plate  it  is  to  be  borne  in  mind 
that  the  coefficients  here  given  and  computation  in  f  dlowing  table  are  based 
upon  a  ventilation  or  change  of  air  ordinarily  of  3.5  to  5  cube  feet  per 
person,  and  from  5  to  10  cube  feet  in  summer  per  minute.  Hence,  whoi 
the  ventilation  U  restrictad  the  coefficient  may  be  correspondingly  in- 
creased. 


526 


HEAT   AND   HBATING. 


Uenstlis  of  XTour-Inoli  IPipe  to  Heat  lOOO  Cube  ITeet 

of*  ^ir  per  Adlixxute.    {Ckas.  Hood.) 

Temperature  of  Pipe  soo**. 


Tempentnre 

of 
External  Air. 


lo 
i6 
20 
26 
30 
36 
40 
50 


Temperatara  af  Baildiog. 

45^ 

50° 

55° 

60° 
Feet. 

650 

70O 

75° 

80O 

Ss'^ 

Feet. 

Feet. 

Feet. 

Feet. 

Feet. 

F^t. 

Feet 

Feet. 

136 

150 

«74 

BOO 

339 

259 

293 

338 

367 

«05 

127 

X51 

176 

204 

323 

265 

300 

337 
3J5 

9' 

XI2 

135 

160 

187 

216 

347 

281 

69 

90 

113 

136 

162 

190 

320 

253 

288 

54 

75 

97 

ISO 

145 

173 

303 

234 

2O9 

35 

52 

73 

58 

t 

1 30 

147 

«75 

306 

239 

18 

37 

104 

'g? 

>57 

187 

220 

— 

— 

«9 

40 

62 

ZZ3 

140 

171 

90C 


Proper  Texxiperat-ares  of  ESnolosecl   Spaces. 


SPACia. 

Temper- 

atare 
required. 

SrAcn. 

Work-rooms  manufactories,  etc. 

0 

55 
55 

% 

60 
65 

Dwelling- rooms 

Churches  and  like  spaces 

Greenhouses       v 

GraDcries 

Hot-houses 

Schools.  lecture- rooms. 

Drying  rooms,  when  filled 

*'          ''       for  curing  paper.. 

Halls,  shops,  waiting  rooms,  etc. 
Dwelling-  rooms 

Feet. 

t^ 
358 
327 

3<7 
376 

25s 
204 


TeInpa^ 

atara 
required. 

o 
70 

80 
70 

I30 


JBoiler. 


Boiler  for  steam-heating  should  be  capable  of  evaporatin^ic  as  much  water 
as  the  pipes  or  surfaces  will  condense  in  equal  times.  Mr.  Hood  recom- 
mends that  6  sq.  feet  of  direct  heating-surfisice  of  boiler  should  be  provided 
to  evaporate  a  cube  foot  per  hour.  Adopt  mean  weight  of  steam  of  5  lbs. 
above  pressure  of  atmosphere,  or  ao  Ibe.  absolute  pressure,  condensed  per  sq. 
foot  of  pipe  per  degree  of  difference  of  temperature  per  hour,  viz.,  .002  35  lb. 
(as  given  by  D.  K.  Clark),  the  quantity  of  pipe  or  {)late  surface  that  would 
form  a  cube  foot  of  condensed  water  per  hour,  weight  of  like  volume  of 
water  62.4  lbs.,  would  be,  per  1°  difference  of  temperature, 

62. 4 -i-. 002 35  =  26 550  sq.feelj  and  for  differences  of  168°,  158°,  148°,  and  108**, 
required  surface  would  be  respectively  (36550-^168  =  158)  158,  x68,  179,  and  246 
tq.Jwt, 

Henoe,  assuming,  as  previously  stated,  that  4  sq.  feet  of  direct  and  effec- 
tive heating  boiler-surface,  or  its  equivalent  flue  or  tube  sur&ce,  will  evap- 
orate 1  cube  foot  of  water  per  hour,  158  sq.  feet  of  8tean>-pipe  or  plate  will 
require  4  sq.  feet  of  direct  surface,  etc,  for  a  temperature  dt  60^,  and  cor- 
respondingly for  other  temperatores. 

Boiler-power. — One  sq.  foot  of  boiler-surface  exposed  to  direct  action  of 
fire,  or  3  sq.  feet  of  flue-surfiice,  will  suffice,  with  good  coal,  for  heating  50 
sq.  feet  of  4-inch,  66  of  3-inch,  and  xoo  of  2-inch  pipe.  Mr.  Hood  assigns  the 
proportion  at  40  feet  of  4-inch  pipe  for  all  purposes.  Usual  rate  of  com- 
bustion of  coal  is  10  or  II  lbs.  per  sq.  foot  of  grate-surface,  and  at  this  rate, 
ao  sq.  ins.  of  grate  suffice  for  heating  40  feet  of  4-inch  pipe. 

Four  sq.  feet  of  direct  heating  boiler-surface,  or  equivalent  flue  or  tnbe 
surface,  exposed  to  direct  action  of  a  good  fire,  are  capable  of  eraporating 
t  cube  ifoot  of  water  per  hour. 

According  to  M.  Grouvelle,  x  sq.  meter  of  pipe-snrfkce  (ia76  sq.  feet),  heated  to 
6eP  an  otriinary  room  alike  to  a  libniry  or  office,  of  ftom  90  to  koo  cube  meteis 
(3178  to  3^31  cube  feet). 


HEAT,  WABUINO  BUILDINGS,  BTC. 


527 


If  a  worinhop  to  be  heated  to  a  bif^  temperatiiTe,  x  sq.  meter  (11x76  iq.  feet)  of 
Burfifcce  is  assigned  to  70  cube  meters.  (3473  cube  feet)  =  4. 35  sq.  feet  or  5. 11  lineal 
feet  of  4-iQch  pipe  per  1000  cube  feet. 

For  beating  workshops,  having  a  transverse  section  of  260  sq.  feet,  with  a  window- 
surface  of  one  sixth  total  surface,  it  is  customary  in  France  to  assign  1.33  sq.  feet 
of  iron  pipe  surface  per  lineal  foot  of  shop  =  5.3  sq.  feet  per  1000  cube  feet. 

lUusircUiiHts  of  extensive  Heating  by  Steam.    (R-  Briffgsy  M.  J.-  O.  & ) 

X.  Total  number  of  rooms,  including  halls  and  vaults 286 

"     Area  of  floor  surface 137  370  sq.  feet. 

"     Volume  of  rooms 1 923  500  cube  feet 

•*     Number  of  occupants 650 

Maximum  average  of  occupants  at  any  time - 1300 

Volume  per  occupant,  excludmg  vaults 1443  cube  feet 

Boilers. — 8  with  X73  sq.  feet  of  grate  surfiu^e  and  8000  sq.  feet  of  heating  surface. 
Furnishing  steam  in  addition  to  the  above,  to  operate  the  elevators  and  electric 
dynamos,  elevating  wator,  and  supplying  steam  to  heat  a  distant  building,  requiring 
one  third  of  their  capacity. 

Sy   Steam. 

To  Ooraptite  I^ensth.  of  Iron  I*ipe  reqLnired.  to  Keat  A.iv 
in  an.  SSnoloaed.  Space,  with.  Steam  at  S  1138.  per  Sq. 
Inolx  alcove  Pressure  of*  A^tmosphere. 

Rule. — Multiply  volume  of  air  in  cube  feet  to  be  heated  per  minute,  by 
difference  of  temperature  in  space  and  external  air,  divide  product  by  coeffi- 
cients in  preceding  table,  and  quotient  will  give  length  of  4-inch  pipe  in 
lineal  feet,  or  area  of  plate-surface  iu  sq,  feet 

Temperature  of  steam  at  5  lbs.-f  pressure  =  228°.  Hence,  if  temperature  of  space 
required  is  60®,  70°,  80®,  or  120**,  the  differences  will  be  168°,  158°,  148*^,  and  108**, 
which  for  a  coefficient  of  .5,  as  given  in  rule  for  hot  water,  would  be  336,  316,  296, 
and  2i6,  for  a  pipe  4  ins.  in  diameter,  and  for 

3-inch  pii>e 252 

2    "       "    168 

I     "       "    84 

iLtrsTRATTOW.— Volume  of  combined  spaces  of  a  fectory  is  socxjo  cube  feet;  what 
surface  of  wrought  iron  plate  at  200°  is  necessary  to  maintain  a  temperature  of  50** 
when  external  air  is  at  0°  f 


70" 

8o» 

120" 

237 

222 

163 

158 

148 

108 

79 

74 

54 

50000  X  50  —  o 


200  • 


50 


X  .4  =  6666  square  feet 


Coal  Consunied.  per  'H.oxit'  to  Heat  IQO  Feet  of  X^ipe, 

{Chas.  Hood.) 

1^^^  ^  DifliBreDee  of  Teapentnre  of  Pipe  and  A  ir  In  Spwe,  In  DofpnaM. 

PilM. 


150 

>45 

140 

135 

Lb*. 

LU. 

Lbs. 

Lbs. 

l.l 

I.I 

I.I 

I 

2-3 

2.2 

2.2 

3.X 

3  5 

3-4 

3-3 

3> 

4-7 

4-5 

4-4 

4-2 

130 

"5 

Lbs. 

Lbs. 

I 

•9 

a 

1.9 

3 

2.9 

4.1 

3-9 

120 

US 

XXO 

>o5 

100 

95 

90 

85 

80 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

LU. 

Lbs. 

•9 

•9 

.8 

.8 

•7 

•7 

■7 

:6 

.6 

1.8 

X.8 

1-7 

1.6 

1-5 

1.4 

"•4 

1-3 

1.2 

2.8 

2.7 

2.5 

2.4 

2-3 

2.2 

2.1 

2 

1.8 

3-7 

3.6 

3-4 

3-2 

31 

2.9 

2.8 

2.6 

2.5 

Ins. 

I 

2 

3 

4 

To  warm  a  ttictory,  according  to  H.  Claudel,  43  fbet  in  width  by  10. 5  high,  a  single 
line  of  hot- water  pipe  6.25  ins.  in  diameter  per  foot  of  length  of  room,  api>ears  to  be 
sufBcient,  temperature  in  pipe  being  IVom  170°  to  180°.  Also,  water  being  at  i8o<>, 
and  air  at  60°,  making  a  diflference  of  120^,  it  Is  convenient  to  estimate  from  x.5 
to  1.75  sq.  feet  of  wator-heated  surfkce  as  equivalent  to  one  sq.  foot  of  steam-heated 
surface,  and  to  allow  flrom  8  to  9  sq.  feet  of  hot-water  pipe-surface  per  1000  cube 
feet  of  room. 

M.  Grouvelle  states  that  4  sq.  feet  of  cast-iron  pipe  surface,  whether  heated  by 
steam  or  by  water  at  176^  to  194°)  will  warm  1000  cube  feet  of  workshop,  main- 
taming  a  temperature  of  60^.  Steam  is  condensed  at  rato  of  .328  lb.  per  sq.  foot 
per  hour 


528 


HEAT,  WABMJNG  BUILDINGS,  BTO. 


a.  {B.L.Oreme.)  Lengthof AronUof buildingB. 2000 lineal fsal 

Total  volume  of  rooms 3  574084  cube  feet 

IU«ll.Uog.«r«««»,^d^r«t,.o8o4..........  ^^,^^  f^ 

Boilers. — Grate-gurfii^ 180 

Heating  surface 5  863 


11 


Volume  of  A.ir  Heated  l>y  Radiator*  ;   Coxksuxnption  of 
Coal  ;   A.reas  of*  Cl-rate  and  Keating-surface  of  i!3oiler. 

(Rob't  Briggs.) 

Per  100  Sq.  Feet  of  Wartning-wrface  of  Radiator, 
Pressure  of  steam  per  sq.  iucb  + ) 


almospbere  in  lbs 

Heat  from  radiators  per  minute ) 
in  unite. ) 

Volume  of  air  heated  i^^  per  min- )  \ 
ute  in  cube  feet. ) 

Effloiency  of  radiators  in  rcUio .... 

Coal  consumed  per  hour  in  lbs. . . . 

Area  of  grate  consuming  8  lbs.  ) 
coal  per  hour  in  sq.  feet ) 

do.  12  lbs 

Heating  surfkce  of  boiler ;  coal ) 
consumed  per  hour  X2.8  in  ^[.fedl 

8  lbs.  X  2.8 

12  lbs.  X  2. 8 


1     _ 

3 

456 

486 

25  no 

2 
304 

.38 

26772 

1.066 
324 

•405 

8.512 

9.072 

22.4 

22.4 

10 


537 

89570 

I  178 
358 

.448 
.298 
10.03 

22.4 

336 


30 
643 

35352 

1.408 
4.28 

•357 
11.98 

336 


60 


74' 

40803 

1.625 
4-94 

.412 
13-83 

33-6 


By  Hot-A-ir  ITHimaoes  or   Stoves. 

A  square  foot  of  heating  surface  in  a  hot-air  furnace  or  stove  is  held  to 
be  equivalent  to  7  sq.  feet  of  hot  water  pipe. 

M.  Peclet  deduced  that  when  the  flue-pipe  of  a  stove  radiated  its  heat 
directly  to  air  of  a  space,  the  heat  radiated  per  sq.  foot  per  hour,  for  1° 
difference  of  temperature,  were,  for:  Cast  iron,  3.65  units;  Wrought  iron,  1.45 
units,  and  Terra  cotta  .4  inch  thick,  z.42  units. 

In  ordinary  practice,  i  sq.  foot  of  cast  iron  is  assigned  to  328  cube  feet 
of  space. 

Open  Fires. 

According  to  M.  Claudel,  the  quantity  of  heat  radiated  into  an  apart  ■ 
ment  from  an  ordinary  fireplace  is  .25  oi.  total  heat  radiated  by  combustible. 

For  wood  the  heat  utilized  is  but  from  6  to  7  per  cent.,  and  for  coal  13  per 
cent 

In  combustion  of  wood,  chimney  of  an  ordinary  open  fireplace  draws 
from  1000  to  1600  cube  feet  of  air  per  pound  of  fuel,  and  a  sectional  area 
of  from  50  to  60  sq.  ins.  is  sufficient  for  an  ordinary  apartment. 

Proportions  of  fuel  required  to  heat  an  apartment  are :  For  orcfinaiy  fire- 
places, zoo ;  metal  stoves,  63 ;  and  open  fires,  13  to  16. 

fXimaoes. 
By  D.  K.  Clark^fnm  investiffotions  of  Mr.  J.  Lothian  BdL 

Cupola. — M.  Peclet  estimates  that  in  melting  pig-ir(m  by  combnstioa 
of  30  per  cent  of  its  weight  of  coke,  14  per  cent  only  of  the  heat  of  oombu»- 
tion  is  utilized. 

Mietallurgical. — According  to  Dr.  Siemens,  i  ton  of  coal  is  consumed 
in  heating  1.66  tons  of  wrought  iron  to  welding-point  of  2700°,  and  a  ton 
of  coal  is  capable  of  heating  up  39  tons  of  iron ;  from  which  it  appears  that 
only  4.5  per  cent  of  whole  heat  is  appropriated  bv  the  iron.  Similarly,  he 
estimates  1.5  per  cent  of  whole  heat  generated  is  utilized  in  melting  pol 


'  HEAT   AND   HEATING. — HYDRAULICS.  529 

■ted  in  ordinary  furnaces,  whilst,  in  his  regenerative  furnace,  x  ton  of  sted 
is  melted  by  combustion  of  1344  lbs.  of  small  coal,  showing  that  6  per  cent, 
of  the  heat  is  utilized. 

BIaat-fVirxxaoe.«^Mr.  Bell  has  formed  detailed  estimates  of  appro- 
priation of  the  heat  of  Durham  coke  in  a  blast-f  uniace ;  from  which  is  de- 
duced following  abstract : 

Diurham  coke  consists  of  92.5  per  cent,  of  carbon,  2.5  of  water,  and  5  of 
ash  and  sulphur.  To  produce  i  ton  of  pig-iron,  there  are  required  1232  lbs. 
of  limestone,  and  5588  lbs.  of  calcuied  iron-stone ;  the  iron-stone  consists  of 
2083  lbs.  of  iron,  1008  lbs.  of  oxygen,  and  2509  lbs.  of  earths.  There  is 
formed  813  lbs.  of  sh^,  of  which  123  lbs.  is  formed  with  ash  of  the  coke, 
and  690  lbs.  with  the  limestone.  There  are  2397  lbs.  of  earths  from  the  iron- 
stone, less  93  lbs.  of  bases  taken  up  by  the  pig-irou  and  dissipated  in  fume, 
say  2314  lbs.    Total  of  slag  and  earths,  3127  lbs. 

Mr.  Bell  assumes  that  304  per  cenL  of  the  carbon  of  the  fuel,  which  es- 
capes in  a  gaseous  form,  is  carbonic  acid;  and  that,  therefore,  only  51.27 
per  cent,  of  heating  power  of  fuel  is  developed,  and  remaining  48.73  per 
cent,  leaves  tunnel-head  undeveloped.  He  adopts,  as  a  unit  of  heat,  the 
heat  required  to  raise  the  temperature  of  112  lbs.  of  water  33.8°. 


HYDRAULICS.     • 

Descending  Fluids  are  actuated  by  same  laws  as  Fallmg  Bodies. 

A  Fluid  will  fall  through  i  foot  in  .25  of  a  second,  4  feet  in  .5  of  a 
second,  and  through  9  feet  in  .75  of  a  second,  and  so  on. 

Velocity  of  a  fluid,  flowing  through  an  aperture  in  side  of  a  vessel, 
reservoir,  or  bulkhead,  is  same  that  a  heavy  body  would  acquire  by  fall- 
ing freely  from  a  height  equal  to  that  between  surface  of  fluid  and 
middle  of  aperture. 

Velocity  of  a  fluid  flowing  out  of  an  aperture  is  as  square  root  of 
height  of  head  of  fluid.  T^heoretical  velocity,  therefore,  in  feet  per  sec- 
ond, is  as  square  root  of  product  of  space  fallen  through  in  feet  and 

64.333  =  **^2^  A;  consequently,  for  one  foot  it  is  v' 64.333  =  S.02  feet. 
Mean  velocity,  however,  of  a  number  of  experiments  gives  5.4  feet, 
or  .673  of  theoretical  velocity. 

In  short  ajutages  accurately  rounded,  and  of  form  of  contracted  vein, 
{vetia  c(mtracta)y  coefficient  of  discharge  :=  .974  of  theoretical. 

Flaids  subside  to  a  natural  level,  or  curve  similar  to  Earth's  convexity;  apparent 
level,  or  level  taken  by  any  instrument  for  that  purpose,  is  only  a  tangent  to  Rarth's 
circumference;  hence,  in  leveling  for  canals,  etc.,  difference  caused  by  Earth's  cur 
valnre  must  be  deducted  fh>m  apparent  level,  to  obtain  true  level. 

r>ed.uotioiis   fVom    Kxperixnents  on  Disoliarge  of*  Fl-uida 

iVojti    Reservoirs*. 

1.  That  volumes  of  a  fluid  dischar^^ed  in  equal  times  by  same  apertures 
from  same  head  are  nearly  as  areas  of  apertures. 

2.  Hiat  volumes  of  a  fluid  discharged  in  equal  times  by  similar  apertures, 
under  different  heads,  are  nearly  as  square  roots  of  corresponding  heights 
of  fluid  above  surface  of  apertures. 

3.  That,  on  account  of  friction,  small-lipped  or  thin  orifices  discharge  pro- 
portionally more  fluid  than  those  which  are  larger  and  of  similar  figure^ 
under  same  height  of  fluid. 

Y  Y 


530 


HYDRAULICS. 


4.  That  in  consequence  of  a  alight  augmentation  which  contractimi  of  tlie 
flnid  vein  undergoes,  in  proportion  as  the  height  of  a  fluid  increases,  the  flow- 
is  a  little  diminished. 

5.  That  if  a  cylindrical  horizontal  tube  is  of  greater  length  than  its  di- 
ameter, discharge  of  a  fluid  ia  much  increased,  and  may  be  increased  with 
advantage,  up  to  a  length  of  tube  of  four  times  diameter  of  aperture. 

6.  That  discharge  of  a  fluid  by  a  vertical  pipe  is  augmented,  on  the  priii- 
ciple  of  gravitation  of  falling  bodies ;  consequently,  greater  the  length  of  a 
pipe,  greater  the  discharge  of  the  fluid. 

7.  That  discharge  of  a  fluid  is  inversely  as  square  root  of  its  density. 

8.  That  velocity  of  a  fluid  line  passing  from  a  reservoir  at  any  point  is 
equal  to  ordinate  of  a  parabola,  of  which  twice  the  action  of  gravity  (3  er) 
is  parameter,  the  distance  of  this  point  below  surface  of  reservoir  being  the 
abscissa.*  Or,  velocity  of  a  jet  being  ascertained,  its  curve  is  a  parabola, 
parfuneter  of  which  =  46,  due  to  velocity  of  projection.f 

9.  Volume  of  water  discharged  through  an  aperture  from  a  prismatic 
vessel  which  empties  itself,  is  only  half  of  what  it  would  have  been  during 
the  time  of  emptying,  if  flow  had  taken  place  constantly  under  same  head 
and  corresponding  velocity  as  at  commencement  of  discharge ;  consequently, 
the  time  in  which  such  a  vessel  empties  itself  is  double  the  time  in  whidi 
all  its  fluid  would  have  run  out  if  the  head  had  remained  uniform. 

10.  Mean  velocity  of  a  Jluid  flowing  from  a  rectangular  slit  in  side  of  a 
reservoir  is  two  thirds  of  that  due  to  velocitv  at  sill  or  lowest  point,  or  it  is 
that  due  to  a  point  four  ninths  of  whole  heiglit  from  surface  of  reservoir. 

XI.  When  a  fluid  issues  through  a  short  tube,  the  vein  is  less  contracted 
than  in  preceding  case,  in  proportion  of  16  to  13 ;  and  if  it  issues  through 
an  aperture  which  is  alike  to  frustum  of  a  cone,  hase  of  which  is  the  aper> 
ture,  the  height  of  frustum  half  diameter  of  aperture,  and  area  of  small  end 
to  area  of  large  end  as  10  to  16,  there  will  be  no  contraction  of  the  vein. 
Hence  this  form  of  aperture  will  give  greatest  attainable  discharge  of  a  fluid. 

12.  Velocity  of  efllux  increases  as  square  root  of  pressure  on  sur&ce  of  a 
fluid. 

13.  In  efllux  under  water,  difference  of  levels  between  the  sur&ces  must 
be  taken  as  head  of  the  flowing  water. 

14.  To  attain  greatest  mechanical  effect,  or  vis  viva,  of  water  flowing 
through  an  opening,  it  should  flow  through  a  circular  aperture  hi  a  thin 
plate,  as  it  has  less  frictlonal  surface. 

ITrom    Conduits   or   I*ipes.    {SosnU.) 

1.  Less  diameter  of  pipe,  the  less  is  proportional  discharge  of  fluid. 

2.  Discharges  made  in  equal  times  by  horizontal  pipes  of  difl^erent  lengths, 
b'Jt  of  same  diameter,  and  under  same  altitude  of  fluid,  are  to  one  another 
in  inverse  ratio  of  sq.  roots  of  their  lengths. 

3.  In  order  to  have  a  perceptible  and  continuous  discharge  of  fluid,  the 
altitude  of  it  in  a  reservoir,  above  plane  of  conduit  pipe,  must  not  be  less 
than  .082  ins.  for  every  100  feet  of  length  of  pipe. 

4.  In  construction  of  hydraulic  machines,  it  is  not  enough  that  elbows  and 
contractions  be  avoide<1j  but  also  any  intermediate  enlargements,  the  in- 
jurious effects  of  which  are  proportionate,  as  in  following  Table,  for  like 
volumes  of  fluid,  imder  like  heads  in  pipes,  having  a  diftereni  number  of 
enlarged  parts. 

HJ^  HS^  Wa 

Velocity. 


No. 
of  P«rU. 

Velocity. 

Vo. 
ofPartfc 

Velocity. 

No. 
of  Parts. 

Velocity. 

No. 
of  Partt. 

0 

X 

I 

•74> 

3 

.569 

5 

•  See  D'AubQlifon,  page  ^ 


•454 
tH«iBbOT,iM|rtS7. 


HTDBAUUCS. 


531 


ITrlotion. 

Flowing  of  liquids  through  pipes  or  in  natural  channels  is  materially  af- 
fected by  friction. 

If  £qual  volumes  of  water  were  to  be  discharged  through  pipes  of  equal 
diameters  and  lengths,  but  of  following  figures : 

Fig.  1.  Fig.  a-  ^  Fig.  3. 


F^«.  X. 

The  times  would  be  as 1, 

And  velocities  as i, 


3.  3- 

1. 1 1,  and  1.55. 
.72,  and    .64. 


Disoliarges   from    Compound  or  Dividecl    lieser-voirs. 

Velocity  in  each  may  be  considered  as  generated  by  difference  of  heights 
in  contiguous  reservoirs ;  consequently,  square  root  of  ditl'eience  will  rep- 
resent velocities,  which,  if  there  are  severed  apertures,  must  be  inversely  as 
their  respective  areas. 

NoTK.— When  water  flows  into  a  vacuum,  33.166  feet  must  be  added  to  height  of 
ii;  and  when  into  a  rarefied  space  only,  height  due  to  difierence  of  external  and 
internal  pressure  must  be  added. 


VELOCITY  OP  WATER  OR  OF  FLUIDS. 

Coefficients  of  IDiscliarge. 

CoefficietU  of  Discharge  or  Efflux  is  product  of  coefficients  of  Contraction 
and  Velocity. 

It  is  ascertained  in  practice  that  water  issuing  froin  a  Circular  Aperfw'f 
in  a  thin  plate  contracts  its  section  at  a  distance  of  .5  its  diameter  from 
aperture  to  very  nearlv  .8  diameter  of  aperture,  so  as  to  reduce  its  area 
from  I  to  about  .61.*  Velocity  at  this  point  is  also  ascertained  to  be  ahovtt 
.974  times  theoretical  velocity  due  to  a  body  falling  from  a  height  equal 
to  head  of  water.  Mean  velocity  in  aperture  is  therefore  .974,  which,  x 
.61  =  .594,  theoretical  discharge ;  and  in  this  case  .594  becomes  coej^ient  of 
discharge^  which,  if  expressed  generally  by  C,  will  give  for  discharge  itself 

ay/2gkxC=iV.  a  representing  area  of  aperture,  and  V  volume  discharged  per 
seconeL    Or,  4.97  a  V*  =  V.    Or,  3.91  d^  y/h  s=  V.    d  representing  diameter  in  feet 

Hence,  for  cube  feet  per  second,  4.97  a  y/k,  or  3.91  d'  y/h. 

Illustratioh.— Assume  bead  of  water  10  feet,  diameter  of  opening  1.227  feet, 
area  i  sq.  foot,  and  C  =  .62. 

Tben  X  Va  p  10  X  .6a  =  15.72  cube  feet.  4.97  x  1  X  V«o  =  i5-7«  cube  feety  and 
3.91  X  I.127  XV 10  =15- 7  ««*«/««*. 

For  square  aperture  it  is  .615,  and  for  rectangular  .621. 

Volume  of  water  or  a  fluid  discharged  in  a  given  time  from  an  aperture 
of  a  given  area  depends  on  head,  form  of  aperture,  and  nature  of  approaches. 


=  ^    h  representing  height  to  centre  of  opening  in  feet 


64-333  *  =  »',  and  - — 

64333 

Nora.  — Head,  or  height,  h,  may  be  measured  from  surface  of  water  to  centre  of 
apertvre  without  practical  error,  for  it  has  been  proved  by  Mr.  Neville  that  for  cir 
cnlar  apertures,  having  their  centre  at  the  depth  of  their  radius  below  the  surface, 
and  therefore  circumference  touching  the  surface,  the  error  cannot  exceed  4  pet 
cent  in  excess  of  the  true  theoretical  discharge,  and  that  for  depths  exceeding  three 


*  Bajw,  .6u    ObMTTvd  diicharRM  of  water  colncida 


to  tukit  at  Boyer  tluui  Uiat  of  til  oihon. 


532  HTDBAULIOS. 

times  the  diameter,  the  error  is  practically  immaterial.  For  rectangular  apertaras 
it  is  also  shown  that,  when  their  upper  side  is  at  sur&ce  of  the  water,  as  in  notches, 
the  extreme  error  cannot  exceed  4.  i?  per  cent  in  excess ;  and  when  the  upper  is 
three  times  depth  of  aperture  below  the  surface,  the  excess  is  inappreciable. 

For  wOches,  toeirs,  sliU,  etc.,  however,  it  is  usual  to  take  ftill  depth  for  head,  when 
.666  only  of  above  equation  must  be  taken  to  ascertain  the  discharge.  . 

Experiments  show  that  coefficient  for  similar  apertures  in  thin  plates,  for 
small  apertures  and  low  velucities,  is  greater  than  for  lar^e  apertures  and 
high  velocities,  and  that  for  elongated  and  small  apertures  it  is  greater  than 
for  apertures  which  have  a  regular  form,  and  which  approximate  to  the 
circle. 

When  Discharge  of  a  Fluid  is  under  the  Surface  if  another  body  of  a 
like  Fluid. — The  difference  of  levels  between  the  two  surfaces  must  be  taken 
as  the  head  of  the  fluid. 

Or,Va^(/i— /0  =  ». 

When  Outer  Side  of  opening  of  a  discharging  Vesselis  pressed  by  a  Force, 
— The  difference  of  heignt  of  head  of  fluid  and  quotient  of  pressures  on  two 
sides  of  vessel,  divided  by  density  of  fluid,  must  be  taken  as  heads  of  fluid. 

Or,  y/2  g  (h  —  /^""Pj^''^A  ^  ^     g  representing  density  of  fluid. 

Illustration.— Assume  head  of  water  in  open  reservoir  is  12  feet  above  wftter- 
line  in  boiler,  and  pressures  of  atmosphere  and  steam  are  14.7  and  19.7  Iba. 

Then  ^/^P^^^MI^^.  \A-333x(»-ig|i)  =  3.56/«t 

When  Water  fUms  into  a  rarefied  Space^  as  into  Condenser  of  a  SteamF- 
engine^  and  is  either  pressed  upon  or  open  to  A  tmosphere. — The  height  due  to 
mean  pressure  of  atmosphere  within  condenser,  added  to  height  of  water 
above  mtemal  surface  of  it,  must  be  taken  as  head  of  the  water. 

Or,  V2^(A4-A')=:r. 

Illustration.— Assume  head  of  water  external  to  condenser  of  a  steam-engine  to 
be  3  feet,  vacuum  gauge  to  indicate  a  column  of  mercury  of  26.467  ins.  (=  13  Iba), 
and  a  column  of  water  of  13  lbs.==  T^gfeet 

Then  V'2flf  (3-I-29.9)  =  V64.333X  32.9  =  -/anS-  57  =  4<5  feet. 

Relative  Velocity  of  Disoliarse  of  "^Vater  tlirotisl^  differ- 
ent A-pertures  and  under  like  Heads. 

Velocity  that  would  result  from  direct,  unrHarded  action  of^ke  column  of 

water  which  produces  it,  being  a  constant,  or i 

Through  a  cylindrical  aperture  in  a  thin  plato 635 

A  tube  from  2  to  3  dinmeters  in  length,  projecting  outward 8125 

A  tube  of  the  sanie  length,  projecting  inward 68xa 

A  conical  tube  of  form  of  contracted  vein 974 

Wide  opening,  bottom  of  which   is  on  a  level  with  that  of  rsBervoir; 

aluice  with  walls  in  a  line  with  orifice ;  or  bridge  with  pointed  piers. 96 

Narrow  opening,  bottom  of  which  is  on  a  level  with  that  of  reservoir; 

abrupt  proJe<>.t{ons  and  square  piers  of  bridges 86 

Sluice  without  side  walls 63 

IDisoliaree  or  ICfflux  of  "Water  ibr  various  Openings  and 

A.pertures. 

Rectangxilar  "Weir. 

Weirs  are  designated  Perfect  when  their  sill  is  above  surface  of  natural 
stream,  and  Imperfect y  Submerged^  or  Drowned  when  it  is  below  that  surfiaoo. 


HVDRAULIOS.  533 

Height  meamredfrom  Surface  of  Water  to  Sill.   {Jas.  B.  Francis.) 


Mmii  Head. 


.6a  to  1.55  feet 


Length  of  Opealng. 


10  feet. 


Mean  Discharfce  per  Second. 


32.9  cube  feet. 


Mean  Coeflcient. 


.623 


Principal  causes  for  variation  in  coefficients  derived  from  most  experi< 
ments  giving  discharge  of  water  over  weirs  arises  from, 

1.  Depth  being  taken  from  only  one  part  of  surface,  for  it  has  been  proved 
that  heads  on,  d/,  and  above  a  weir  should  be  taken  in  order  to  determine 
true  discharge. 

2.  Nature  of  the  approaches,  including  ratio  of  the  water-way  in  channel 
above,  to  water-way  on  weir. 

When  a  weir  extends  from  side  to  side  of  a  channel,  the  contraction  is 
less  than  when  it  forms  a  notch,  or  Poncelet  weir,  and  coefficient  sometimes 
rises  as  high  as  .667. 

When  weir  or  notch  extends  only  one  fourth,  or  a  less  portion  of  width, 
coefficient  has  been  found  to  vary  from  .584  to  .6. 

When  wing-boards  are  added  at  an  angle  of  about  64^,  coefficient  is  greater 
than  even  when  head  is  less. 

Computation,   of*  Volume   of  Disolxarge. 

Mean  velocity  of  a  fluid  issuing  through  a  rectangular  opening  in 
side  of  a  vessel  is  two  thirds  of  that  due  to  velocity  at  sill  or  lower 
edge  of  opening,  or  it  is  that  due  to  a  point  four  ninths  of  whole  height 
from  surface  of  fluid. 

Height  measured  from  Surface  of  Head  of  Water  to  Sill  of  Opening. 

Rule. — Multiply  square  root  of  product  of  64.333  ^"^  ^^  'g^*  or  whole 
depth  of  the  fluid  in  feet,  by  area  in  feet,  and  by  co^cicnt  for  opening,  and 
two  thirds  of  product  will  give  volume  in  cube  feet  per  second. 

t  representing  time  in  seconds  and  V  volume  in  cube  feet. 

ExAMPLB.— Sill  of  a  weir  is  i  foot  below  surface  of  water,  and  its  breadth  is  xo 
feet;  what  volume  of  water  will  it  discbarge  in  one  second? 

C  =  .623,     ■\/64.33X  I  X  lolJo  =  80. 2,  and  f  8a  2  X  •  623  =  33. 32  cube  feet. 

-^OTK.— Mean  coefficient  of  discharge  of  weirs,  breadth  of  which  is  no  more  than 
Ihird  part  of  breadth  of  stream,  is  two  thirds  of  .6  =  .4 ;  and  for  weirs  which  extend 
^hole  width  of  stream  it  is  two  thirds  of  .666  =  .444. 

Or,  214  VP  =  V  in  cube  feet  per  minute.     When  h  is  in  ins.,  put  5.15  for  214. 

Or,  CbhV29b  =  V.    C  for  adepth  .1  of  length  =  .4x7,  and  for  .33  of  length=:.4. 

8 

Or,  by  formala  of  Jas.  B.  Francis:  3.33  (L  — .1  n  H)  H'S^=  V. 

L  representinff  length  of  weir  and  H  depth  of  water  in  caned,  suf^ciently  far  from 
weir  to  be  unaffected  by  depression  caused  by  Ote  current,  both  in  feet,  and  n  number 
of  end  contractions. 

NOTS.— When  contraction  exists  at  each  end  of  weir,  n  :t=:  ? ;  and  when  weir  is  of 
width  of  canal  or  conduit,  end  contraction  does  not  exist,  and  n  -  o. 

This  formala  is  applicable  only  to  rectangular  and  horizontal  weirs  in  side  of  a 
dam,  vertical  on  water-side,  with  sharp  edges  to  current;  for  if  bevelled  or  rounded 
off  in  any  perceptible  degree,  a  material  effect  will  be  produced  in  the  discharge; 
tt  is  essential  hIso  that  the  stream,  after  passing  the  edges,  should  in  nowise  h 
nstricted  in  iUi  (low  and  descent. 

Y  Y* 


534  HYDRAULICS. 

In  cases  in  which  depth  exceeds  one  third  of  length  of  weir,  this  formula  is  not 
applicable.  In  the  observations  iVom  which  it  was  deduced,  the  depth  varied  from 
7  to  nearly  19  ins. 

With  end  contraction,  a  distance  from  side  of  canal  to  weir  equal  to  depth  on 
weir  is  least  admissible,  in  order  that  formula  may  apply  correctly. 

Depth  of  water  in  canal  should  notl>e  less  than  three  times  that  on  weir  for  ac- 
curate computation  of  flow. 

Illustration. ->If  an  overfull  weir  has  a  length  of  7.94  feet  and  a  depth  of  .986 
(as  determined  by  a  hook  gauge),  what  volume  will  it  cfischarge  in  24  hours? 

s  

3-33  (7-94  — -2  X. 986)  .986^  =  3- 33  X  7-94  — -1972  X. 97907  =  3-33  X7'74a*X 
.97907  =  25.243  875,  which  X  60  X  60  X  24  =  2 181 061  cubefuL 

By  Logarithms.— Log.  3. 33  =  ^522  444 

7.7428  =  .888898 

a     _ 
.986^=1.993877 

3 

2)  1.981 631 

1.990815  =  1. 990815 

x.4oa  157 
Log.  34  hours  =  86  400  uconda.  4.936  5x4 

6.338671 
I^fr  6. 338  67  =^ 2 181 073  eulbe  feet.       C  in  this  case = .6x5. 

Or,  2141/113  and  5.i5-\/A3  =  V,  if  stream  above  the  sill  is  not  in  motion.  H 
representing  height  of  surface  of  water  above  sill  in  feet^  h  in  inches;    and 

314  VH3-f-  .035  1)2  H3  =  V,  if  in  motion,  v  representing  velocity  of  approach  of 
water  in  feet  per  secondhand  V  volume  in  cuJbefeet  discharged  over  each  lineal  foot 
of  sill  per  minute. 

In  gauging,  waste-board  must  have  a  thin  edge.  Height  measured  to  level  of  sur- 
Ikce  not  affected  by  the  current  of  overfall.    {Molesioorth.) 

To  Compute  Deptli  of  Klo^w  over  a  Sill  that  -will  IDis- 
cliarge   a  given  Volvmae   of  "Water. 

(3V  8\8  t>* 

— — —  -\-ki\S^Jc  =  d.    *  =  —  representing  height  due  to  velocity  (t>)  as  U 

Hows  to  the  weir. 

Note.— When  back-water  is  raised  considerably,  say  2  feet,  velocity  of  water  ao- 
proaching  weir  (h)  may  be  neglected. 

Xleotangular  iNotolies,  or  Vertical  Aperture»  or  Slita. 

A  Notch  is  an  opening,  either  vertical  or  oblique,  in  side  of  a  vessel  reser- 
voir, etc.,  alike  to  a  narrow  and  deep  weir. 

Vertical  Apertures  or  Slits  are  narrow  notches  or  weirs,  running  to  or 
near  to  bottom  of  vessel  or  reservoir. 

Coefficient  for  opening,  8  ins.  by  5,  mean  .606  (JPoncelet  and  LeArot). 

Coefficient  increases  as  depth  decreases,  or  as  ratio  of  length  of  notch  to 
its  depth  increases. 

When  sides  aud  under  edge  of  a  notch  increase  in  thickness,  so  as  to  be  converted 
mto  a  short  open  channel,  coefficients  reduce  considerably,  and  to  an  extent  beyond 
wbat  increased  resistance  from  friction,  particularly  for^mall  depths,  indicatea 

Poncelet  and  l^esbros  found,  for  apertures  8  x  8  ina,  that  addition  of  a  horiaontal 
Moot  21  ins.  long  reduced  coefficient  from  .604  to  .601,  with  a  head  of  about  4  feet; 
but  for  a  head  of  4. 5  ina  coefficient  fell  from  Tsti  to  .483. 

For  Rule  and  Formulas,  see  precedin^f  pa|^e, 


HYDRAULICS.  535 

Jkieotatigular  Openings  or  Slixioes,  or  Horizontal  Slits. 

ReigM  measured  from  Surface  of  Head  of  Water  to  Upper  Side  and  to  SiU 

of  Opening, 

(  Opening,  i  inch  by  i  inch.    Head,  7  to  33  feet  =  .621. 

Coefficient  for  {       "       3    "     "3    »'  '*     7  "  23    "    =.614. 

(       «'       ft  feet   "  ifoot         '*     1  *'    «    "    =.641. 

Poneelet  and  LesbroB  deduced  that  coefficient  of  discharge  increases  with  small 
and  very  oblong  apertures  as  they  approach  the  surface,  and  decreases  with  large 
and  square  apertures  under  like  circumstances. 

Coefficients  ranged,  In  square  apertures  of  8  by  8  ins.,  uuder  a  head  of  6  ins.  to 
rectangular  apertures,  8  by  4  ins. ;  under  a  head  of  10  feet,  from  .572  to  .745. 

In  a  Thin  FlaU,  C  =  .6x6  (Bozsut) ;  C  =  .6x  (MiohdoUi). 

Xo  Compute  Disoliax^Bre. 

Rule. — Multiply  square  root  of  64.353  and  breadth  of  opening  in  feet,  by 
coefficient  for  opening,  and  by  difiereuce  of  products  of  heights  of  water  and 
their  square  roots,  and  two  thirds  of  whole  product  will  give  discharge  in 
cube  feet  per  second. 

Or,—  b^Tg  ih^/h—h'Jh')  C  =  V; — = ^ =  <;      and 

3  \b  y/Tg  {h y/h^h'^/h')  C 

V 

—  ==  o.    h  and  h'  reprueniing  depth  to  sill  and  opening  in  feet,  and  v  velocity 


b(k—h') 

in  feet  per  second. 

ExAMPLB.— SiU  of  a  rectangular  sluice,  6  feet  in  width  by  5  feet  in  depth,  is  9  feel 
below  surface  of  water;  what  is  discharge  in  cube  feet  per  second? 

C  =  .625,    9 — 5  =  4,  and  ~  Vai X 6 X  .6as  X  (9V9--4 X  y/4)  =  380.95  cubefsO. 
Or,  Vagd  a  C  =  V.    d  representing  depth  to  centre  of  opening  in  feet 
d  =  9  — 3.5  =  6.5,    a  =  6x  5  =  30.  and  V64.33  X 6^5 x  30 X .6b5 =383.44 cubejl 

Sluice  "Weirs  or  Sluices. 

Diacharge  of  water  b^  Sluices  occurs  under  three  forms — viz.,  Unimpeded, 
Impeded,  or  Partly  Unimpeded,, 

7o  Compute  Disoharge  M^lien.   Unimpeded. 


Cdb  VTgh  =  V.    d  representing  depth  of  opening  and  h  taken  from  centre  oj 
opening  to  surface  ofweUer. 

If  velocity,  k,  with  which  water  flows  to  sluice  is  considered, 

—  (rrmiJ  — *  =  *i  :==i  =  d:      and    —  =  d. 

h'  representing  Jieig:u  to  which  noater  is  raised  by  dam  above  sill 

lLU78rBiiTioir.>-How  high  most  the  gate  of  a  sluice  weir  be  raised,  to  discharge 
tso  cub*  IMI  of  water  per  second,  its  breadth  being  24  feet  and  height,  A',  5  feet? 

C  by  «cp0rtment  =:  .6.    d  ai^proxfmately  =  x. 

. ^===:  = ~ =  1.0204/eet 

.6X«4V64.33(5-i)       *^4X?7«4 

^O  Compute  X>i8oliarise  wlien  Impeded* 

y 

Cdby/2gh  =  V,    and — =d. 

CbVagh 
A  rfpresenting  d^gftrmce  qfkoel  between  supply  and  back-water. 


536  HYDRAULICS. 

To   Coznpute  IDiscHarge  Mrlien.  partly  Impeded. 

C b yfTg  \d yjh \- d V^)  =  ^'    <*'  r^re^enting  depth  of  back-wcUer  above 

upper  edge  ofsUL 

Illustration.  — Dimensions  of  a  slaice  are  z8  feet  in  breadth  by  .5  in  depth: 
height  of  opening  above  surface  of  water  .7  feet,  and  difference  between  levels  of 
supply  and  surface  water  Is  2  feet;  what  is  discharge  per  second? 

.6  X  x8  X  8.02  (-7  'v/a  —  ~  +  5  vA  =  86.62  X  .  896 -f. 707  =  138.85  cube  feet 

CoefHcients  of  Ciroular  Openings  or   Sluioes. 

Height  measured  from  Surface  of  Head  of  Water  to  Centre  of  Opetiing. 

Contraction  of  section  (yom  i  to  .633,  and  reduction  of  velocity  to  .974;  hence 
.633  X  .974  =  .617  (Neville). 

In  a  Thin  PlcUe,  C  =  .666  {Bossut)]  .631  iVenturi);  .64  {Eytehoein). 

Qflindrical  Ajt^ages^  or  Additional  Ttibes^  give  a  greater  discharge  than 
apertures  in  a  thin  side,  head  and  area  of  opening  l^ing  the  same ;  but  it 
is  necessary  that  the  flowing  water  should  entirely  fill  mouth  of  ajutage. 

Mean  coefficient,  as  deduced  by  Castely  Bossut^  and  Eyteltoetn^  is  .82. 

Slxort  rrul>es,  Aloutli-pieces,  and   Cylindrical   Prolonga- 
tions  or   A.J\itages. 

F^fr  4-  If  an  aperture  be  placed  in  side  of  a 

vessel  of  from  1.5  to  2.5  diameters  in 
thickness,  it  is  converted  thereby  into  a 
short  tube,  and  coefficient,  instead  of  being 
reduced  by  increased  friction,  is  increased 
from  mean  value  up  to  about  .815,  when 
opening  is  cylindrical,  as  in  Fig.  4 ;  and 
when  junction  is  rounded,  as  in  Fig.  5,  to  form  of  contracted  vein,  coefficient 
increases  to  .958,  .959,  and  .975  for  heads  of  i,  10,  and  15  feet. 


Conioally   Convergent   and    Diverge*^ t   T\x"bes. 

Fig.  6.  In  conically  divergent  tube.  Fig.  6,  cocffi- 

I cient  of  discharge  is  greater  than  for  same 

P^^VM£_  tube  placed  convergent,  iluid  filling  in  both 

l»— »        I         ^"Ull-r^--—  0  cases,  and  the  smaller  diameters,  or  those  at 
'  — '         "  same  distance  from  centres,  O  O,  being  used 

in  the  computations. 


^m^tm^r'' 


Fig.  7. 


©-«-----::::: 


A  tube,  angle  of  convergence,  O,  of  which 
is  5*^  nearly,  with  a  head  of  from  i  to  10 
feet,  axial  length  of  which  is  3.5  ins.,  small 
diameter  i  inch,  and  large  diameter  1.3  ins., 
gives,  when  placed  as  at  Fig.  6,  .921  for  co- 
efficient ;  but  when  placed  as  at  Fig.  7,  co- 
efficient increases  up  to  .948.  Coefficient  of  velocity  is,  however,  larger  for 
Fig.  6  than  for  Fig.  7,  and  discharging  jet  has  greater  amplitude  in  falling. 
If  a  prismatic  tube  project  beyond  sides  into  a  vessel,  coefficient  will  be  re- 
duced to  .715  nearly. 

Form  of  tube  which  gives  greatest  discharge  is  that  of  a  truncated  cone, 
lesser  base  being  fitted  to  reservoir,  Fig.  7.    Yenturi  concluded  from  bia  ex- 


HTDBAULICS. 


537 


periments  that  tube  of  greatest  discharge  has  a  length  9  times  diameter  of 
lesser  opening  base,  and  a  diverging  angle  of  5^  6' — ^charge  being  2.5 
greater  than  that  tlirough  a  thin  plate,  1.9  times  greater  than  through  a 
short  cylindrical  tube,  and  1.46  greater  than  theoretic  discharge. 

Ooxxipouxicl   I^outli-pieces  And.  AJutases. 


Fig.  8. 


Flg.9- 


Fig.  la 


Coeffioients    fbr   Afoutlx- pieces,  SHort  1?ube8,  ai&d.   Cyl- 
indrical   Ir'rolongatione. 

Computed  and  reduced  by  Mr.  Neville,  f  ram  Venturi^s  EzperimenU. 


Description  of  Aperture,  llouth-piece,  or  Tube. 


1.  An  aperture  i.  5  ins.  diameter,  In  a  thin  plate 

2.  Tube  1. 5  iu&  diameter,  and  4.5  ins.  long.  Fig.  4 

3.  Tube,  Fig.  5,  having  junction  rounded  to  form  of  coulracled 

vein 

4.  Short  conical  convergent  mouth-piece.  Fig.  6 

5.  Like  tube  divergent,  with  smaller  diameter  at  junction  with 

reservoir;  length  3.5  ins.,or  =  i  in., and  06  =  1.3  ^^^-  ••• 

6.  Double  conical  tnbe,  ao,S T,  r  b.  Fig.  9,  when  a&  =  ST  =  i.5 

ina, or  =1.21  ina,ao  =  .92  in.,  and  oS  =  4. i  ins 

7.  Like  tube  when, as  in. Fig.  8,  ao  rb=:oS  Tr,  and  aoS-s 

1.84  ina 

8.  Like  tube  when  S T=  1.46  ins. ,  and  0  S  =  2. 17  ina 

9.  Like  tube  when  ST=3  ina,  and  08  =  9.5  ins 

10.  Like  tul)e  when  o S  =  6.5  ins.,  and  S T  =  1.92  ins 

11.  Like  tube  when  ST  =  2.25  ins., and  08  =  12.125  ins 

12.  A  tube,  Fig.  10,  when  os  =  rt  —  3  ina,  or-=^stf=.  1.21  ina, 

and  tube  o  S  T  r,  as  in  No.  6,  S  T  =  i.  5  ins. ,  and  s  8=4.  i  ins. 


c.  for 
Di«m.  a  b. 


.622 
.823 

.611 
.607 

.561 
.928 

.823 

.823 

.911 

1.09 

1. 215 

.895 


C.  for 
Diam.  o  r. 


•974 
.823 

.956 
•934 

.948 

1.428 

1.266 
1.266 

1-4 
1.569 

1-855 
1-377 


Mean  of  various  experiments  with  tubes  of  .5  to  3  insi  in  diameter,  and 
with  a  head  of  fluid  of  from  3  to  20  feet,  gave  a  coefficient  of  .813 ;  and  as 
mean  for  circular  apertures  in  a  tliin  plate  is  .63,  it  follows  that  under 
similar  circumstances,  .813  -4-  .63=  1.29  times  as  much  fluid  flows  through 
a  tube  as  through  a  like  aperture  in  a  thin  plate. 

Preceding  Table  gives  coeflicients  of  discharge  for  figures  given,  and  it 
will  be  found  of  great  value,  as  coefficients  are  calculated  for  large  as  well 
as  small  diameters,  and  the  necessity  for  taking  into  consideration  form  of 
junction  of  a  pipe  with  a  reservoir  will  be  understood  from  the  results. 


Circular  Sluices,  etc. 

To    Compute    X)i8cliarefe. 

Height  meamtred  from  Surface  of  Head  of  Water  to  Centre  of  Opening. 

Rule. — ^Multiply  square  root  of  product  of  64.333  and  depth  of  centre  of 
opening  from  surface  of  water,  by  area  of  opening  in  square  feet,  and  this 
product  by  coefficient  for  the  opening,  and  whole  product  will  give  discharge 
in  cube  feet  per  second. 

Or,  y/TgHf  aC  =  Y.    a  rq^ennting  area  in  tq.  feet,  and  d  depth  qf  aur/ace  <^ 
JIuidfrom  centre  of  opening  vn  fe^. 


538  HYDRAULICS. 

ExAVPLB  —Diameter  of  a  circular  sluice  is  i  foot,  and  its  centre  is  1.5  feet  below 
surface  of  the  water;  what  is  discharge  in  cube  feet  per  second? 

Area  of  i  foot  =  .7854 ;  C  =  .64,  and  V64.333X1.5  X  .7854  X  .64  =  4.938  cfibtfeeL 

When  Circumference  reaches  Surface  of  Water.    VTgr,  .9604 o C  =  V. 
r  representing  rctfHus  of  cireie  in  feet. 

Illustration.— In  what  time  will  800  cube  feet  of  water  be  discharged  through  a 
circular  opening  of  .025  sq.  foot,  centre  of  which  is  8  feet  below  surface  of  water? 

p_  >;       800  800 

^  —  •°^-       , — -, —  =  ^^z:o  V  r^.  sy  z;^  =  2239.58  =  37  min.  19.6  sec. 

V2gdX.025X'63      22. 68  X. 025  X.  63  ^^  ^        j/^  v 

NoTB.— For  circular  orifices,  the  formula  y/Tgd  a C  =  V  is  sufficiently  eiact  for 
all  depths  exceeding  3  times  diameter;  the  finish  of  openings  being  of  more  effect 
than  extreme  accuracy  in  coefficient. 

Semicircular   Sluices, 

W^e«  Diameter  is  either  Upward  or  Downward.  VTgd  a C  =  V.  d  repre- 
senting depth  of  centre  of  gravity  of  figure  fr&m  surface. 

When  Diameter  as  above  is  at  Depth  d, hehto  Surface.   -y/Tgd  i.  x88  a  C  =  V. 

Circvilar,    SexuioircTxIar,   Triangular,  Trapezoidal,  Pris- 
zuatio  W^ edges.  Sluices,  Slits,  etc. 

See  Neville,  London^  i860,  pp.  51-63,  and  WeUbach,  vol.  \.  p.  456. 

For  greater  number  of  apertures  at  any  depth  below  surface  of  water, 
product  of  area,  and  velocity  of  depth  of  centre,  or  centre  of  gravity,' 
if  practicable  to  obtain  it,  will  give  discharge  with  sufficient  accuracy.  ' 

IDischarge   fVozu  Vessels  not   Receiving  any   Supply. 

For  prismatic  vessels  the  general  law  applies,  that  twice  as  much  would 
be  discharged  from  like  apertures  if  the  vessels  were  kept  full  during  the 
time  which  is  required  for  emptying  them. 

To   Compute   Time.     -^^  =  ?>*  =  <. 

CaV2^        ^ 

Illustration.— A  rectangular  cistern  has  a  transverse  horizontal  section  of  14 
feet,  a  depth  of  4  feet,  and  a  circular  opening  in  its  bottom  of  2  ins.  in  diameter-  in 
what  time  will  it  discharge  its  volume  of  water,  when  supply  to  it  is  cut  off*  and 
cistern  allowed  to  be  emptied  of  its  contents? 

A  =  4/ce<,    a  — 2«x. 7854 -^144  =0218,    C  =  .613,  and  VagkXaxC  =  .214^1 

2X14X4 

cube  foot  per  second.    Then — -  =  522. 6  seconds. 

.2143 

To  Compute   Time  and   ITall. 
Depression  or  subsidence  of  surface  of  water  in  a  vessel,  corresponding  to 
a  given  time  of  efflux,  is  A  —  h'.    h'  representing  lesser  depth. 

;;^(VA-*')  =  t  inversely,  Uk^^^ t)' =  K'. 

Qay/:ig  \  2A/ 

Illustration,  —  In  what  time  will  the  water  in  cistern,  as  given  in  precedins 
case,  subside  1.6  feet,  and  how  much  will  it  subside  in  that  4im«  ? 


A  =14.    C  =  .6,    O  =  .o2i8,    %/««»  =  8.02,    ft  =  4,    A'=s4-.j.$~a.4. 

a8 
.1049 


.6X.L8'x8.o2^^^^""V'2.'|)=;^X(2-i.5s)  =  ,2aiW«md* 


/  ,6  X  .0218  X  8.02  \a      

V* 2x14  *    ^'^'y  =*— •45  =  2.4/««*;  hence,4-2.4  =  x.6/e«i 

When  Supply  is  maintained,— VWida  result  obtained  as  preceding  by  3. 


HYBBAULIOS.  539 

iDisplxarge,  -^s^liexi    VoTtti   and   I>inaensioiia  of*  VeAsel   or 

fijfflux   are   not  kno'ivn. 

Volume  discharged  may  be  estimatetl  by  observing  heads  of  the  water  at 
equal  intervals  of  time;  and  at  end  of  half  time  of  discharge,  head  of  water 
will  be  .25  of  whole  height  from  surface  to  delivery. 

When  t  =  mch  interval.  For  openingi  in  Mtom  or  Hde,  Gaty/^g  (^  "rv  i\ 
=  Y,Jbr  ^  depth;       C  a  t  V J^  (^^  "*"  '^  ^^ '  "^  ^* -)  =  V /or  2  depUu ;       and 

NoTK.— At  end  of  half  time  of  discharge,  head  of  water  will  be  .25  of  whole  height 
firom  surface  to  delivery. 

"Weirs  or  ^N'otch.es. 

-  Cbty/ng  {y/h3  -j-  4  y/h^i  -\-  y/h^i)  =  V.    6  representing  breadth  in  feet 

9 

Illustration.— A  prismatic  reservoir  9  feet  in  depth  is  discharged  through  a 
notch  2.222  feet  wide,  surface  subsiding  6.75  feet  in  935  seconds;  what  is  volume 
discharged  ? 

C  =  .6,        *,=9— 6.75  =  2.25yfec<,        and   -   6  X  2.222  X935  X  8.02  (>/93-|-4 

V2.253-I-  Vo3)  =  2221.6  X  4a 5  =  89 974. 8  cube  feet 

When  there  m  an  Infivx  and  Efflux. 

If  a  reservoir  during  an  efflux  from  it  has  an  influx  into  it,  determination 
of  time  in  which  surface  of  water  rises  or  falls  a  certain  height  becomes  so 
complicated  that  an  approximate  determination  is  here  alone  essayed. 

A  state  of  permanency  or  constant  height  occurs  whenever  head  of  water  is  in- 
creased or  decreased  by  —  (   —  j  =  Jfc.    I  reprewiUing  influx  in  cube  feet  per  fecond. 

Ai  V 
Time  (t)  in  which  variable  head  («)  increases  by  volume  (0)  =  i q  ^    ,         ; 

Aft) 

and  time  in  which  it  sinks  height,  fc,  by  — _^^ .    Time  of  efflux,  in  which 

CaV^  gx  —  l 

subsiding  sarlace  falls  fW>m  A  to  Ai,  eta,  and  head  of  water  flrom  h  to  Ax,  when 

k  is  represented  by =  >/*i  1^ 

Cay/i  g 

*— *4       /        ^  I         4Ai         .         2Aa         ■         4A3         . A4        \ 

i2Cav^W*-Vfc'^VAi-VA"^VA2-v'*"*'V*3-V*'^VA4-V*/'" 

Illustratiox.  — Tn  what  time  will  surface  of  water  in  a  pond,  as  in  a  previous 
example,  CblII  6  feet,  if  there  is  an  influx  into  it  of  3.0444  cube  feet  per  second? 

flo— 14 /  600000      ■  4  X  495000  t  '  X  410000  I   4  X  325 OOP 

"  X. 537  x'SBJex  8.02       V4-472—  8"*"  4.301— .8  "*^  4123-  8  "•"  3-937  — -8 

26$  OCX)   \  6  -  «,  J  »  .        >. 

-I- — -        -)=      ^    X  i48o2oi  =  i94486«econd«=54  A.,  I  mtfk,  26«ee. 
3.742  — .a/      45-ooS 

PrimuUic  Vends^ 

U  rtmssk  has  a  uniform  transverse  section,  A, 

Then— i4=f>/*—V*i +  V*X hyp. log.  (^,^^^jA]=t=zUmeinwhM» 
G  a  V  2 17  L  >v  *i  —  V  */  J 

head  qf  water  Jlawtjiwn  htoh^ 


540  HYDBAULICS., 

lLLuaTRATiO!7.->A  reservoir  has  a  sarface  of  500000  sq.  feet,  a  depth  of  30  feet;  it 
16  fed  by  a  stream  affording  a  supply  of  3.0444  cabe  feet  per  second,  and  outlet  has 
an  area  of  .8836  sq.  foot;  in  what  time  will  it  subside  6  feet? 

2  X  'JOO  000  I 

y/k^  as  before,  =,. 8,    C  = . 537,   and    ^  x    V20  —  'V/14-J-.8  X  hyp.  log. 

Cay/zg        l 

l-y — ZTg)  ^  *•  3°3 1  ~  ^3®  ^^^  fecondt  =  66  A.  13  min.  34  «c. 

To    Compute    Fall   in   a.  given   Time. 

This  is  determining  head  hi  at  end  of  that  time,  and  it  should  be  sub- 
tracted from  head  h  at  commencement  of  discharge.  Put  into  preceding 
equation  several  values  of  hi,  until  one  is  found  to  meet  the  condition. 

iLLusTRATiox. — Take  a  prismatic  pond  having  a  surface  of  38750  sq.  feet,  a  depth 
to  centre  of  opening  of  sluice  of  10. 5  feet,  a  supply  of  33.6  cube  feet,  and  a  discharge 
of  40  cube  feet  per  second. 

-^^  =  .84. 

Putting  these  numerical  values  into  the  equation,  and  assuming  different  values 
for  Ai,  u  value  which  nearly  satisQes  the  equation  is  4.  Consequently,  10.5 — 4  = 
6. 5  feel,  faU. 


(- Y  =  *^>  arc  (tang.  =  y,  arc  tangent  of  which  =  y,  and  I  as  preceding. 
tCby/^g/ 

According  as  A:  is  ^  A,  and  influx  of  water,  l^^Cl  Vsgh^^  there  is  a  rise  or  fkll 

of  fluid  surface,  the  condition  of  permanency  occurring  when  hi  —  k,  and  time  cor- 
responding becomes  cxs. 

Illustration.— In  what  time  will  water  in  a  rectangular  tank,  12  feet  in  length 
by  6  feet  in  breadth,  rise  from  sill  of  a  weir  or  notch,  6  inches  broad,  to  2  feet 
above  it,  when  5  cube  feet  of  water  flow  into  the  tank  per  second  P 

fc,  =  2,    A  =  o,     A=  12X6  =  72,     I  =  5i    ''  =  •5)    C  =  .6. 

*  =  (ir-7 — - — r—'\^  =  '&^3."7«  =  2.1338. 
Vf  .6  X    5  X  8.02/ 

— .     73  X  2.1338  r.      ,      ,^.     2  +  ^2  X  2. 1338 -|- 2. 1338  ,    -         / 

'""        3X5        l*"^  "*"'""°  (V»-V.  .3T8)'         +^"  *"  ('"'«■  = 

-)     =  10.2423  X  hyp.  log.  -^^^ 3.4641  X  arc  (tang.    "^     \  = 

2/ J  002162  \         4- 335V 


2  v/2. 1338  4-^2) 

ia2423  X  [7.961  —  (3.461  X  arc,  tangent  of  which  =  .56497,  or  29°  28'  =  29.466, 

length  of  which  =  .5143)  =  1.781]  =  ia2423  —  7.961  —  x.781  =  ia2423  X  6.18  = 
63.297  seconds. 

X>isoliarge   of  "Water  under  "Varia^ble   Pressures, 
To  Compute  Time,  Xtise  and.  Fall,  and  Volume. 


~--y/2  gx  =  v.    X  representing  variable  Aea<2,  A  and  a  areas  oftramverie  Aomofi- 
A 

tal  seUion  of  vessel  and  discharge,  and  v  theoretical  velocity  ofeffLviz. 

To   Compute  "Volume. 

A  y  =  y.    y  repretei^ng  extent  of  fall,  and  V  volume  of  water  dis^of^td,  ai 
h~—h . 

Illustration.— Assume  elements  of  preceding  case. 

A  =  x4.       y  =  4feet.       Then  $6  X  ^  =  224  evbefttt 


HTDBAULICS. 


It  of  that  In  supply,  tbrou^  B  pipe  a  ina  In  dituu- 
Bupplyf 

M  X  V4 S6_  _  ^^ 

.oaiBxB.m~.ioji      '^    '^ 

Ihal,  tod  I  feet  below  ouIlBi  o;  in  wbHt  time  will 
Kiel  ill  vussel  ruD  out  aud  aver  al  a  Ihruugb  a  pipe, 


i=0"= 


^^ — ^^  =  J.    A'  TfpTfunting  tectum  oJttcHvirtg  vtuet,  t  Ane  in  whicA 

Ca(A  +  ATv'ip  ^  _ 

Ikt  Ini Rir/ii«t  r^nUfl- oUsin  hmi  1«vI;  and  '**  V*~V^  ~  i  Umi  wUMn 
Ca{A  +  A-)v^ 

»Aie*  In>rf/aUl/™«  *  <o  »'. 

.8iX-78MX^XS.oa       ■'™ 
DlBohaPBe  fVom  a  Mocoh*  In   Side  of  s  Vease). 

iLLmTunon.— ira  menolr  ottiUfr.  iid  r«t  in  tengtb  by  tain  bimdib,  bxa 
noub  Id  end  or  g  ios.  in  widih;  In  ntasiiime  will  head  DrwaUrofij  ine.  lUl  la  6? 

NoTS.— For  dMtarBS  of  rnwis  in  motion,  see  Welsbacb.  toL  t,  pp.  J94-»(L 

Reeervoira   or   Cistei-ns. 

Xo  Compote  Time  of  K>]IIi>k  and  of  KmptylnB  a  Renap. 

^~g  =  T,  and  ^--g  =  (.  V  rrpriieBling  votume  of  vnel,  S  fimply  ef  maltr, 
and  D  ditdmroi  of  mater,  boa  prr  minalt.  and  in  cute  fat.  T  timi  itfJUUmg  tatO, 
«ihI  t  time  of  diarAarging  if,  boU  in  minitfet. 


542 


HYDBAUUGS. 


Irregn^ilaivSliapedL  "Vessels,  as  a  Pond,  Hiake,  eto. 

Xo  Compute  rTime  and  'Volume  XDisoharged. 
Operation, — Divide  whole  mass  of  water  into  four  or  six  strata  of  equal 
depths.  • 

Then, /br  4  StraJUx, =r  X  (-7r+^7ri  +  -7T-  +  ^^  +  -7ril  =*  I  *,  *, 

etc.,  r«pre«en<in^  dep^Aa  o/  Araia  cU  a,  ai,  etc.,  commencing  at  surface;  o^,  aa, 
etc.,  6et9i^  areai  of  first,  second,  etc.,  transverse  sections  of  pond,  etc.  ;  and    

12 

X  a-|-4at  +  2aa+4o3-f  a*=V. 

**'**"         A  «  %  Illustration. —In  what  time 

C  will  depth  of  water  in  a  lake, 
A  6  C,  Fig.  12,  subside  6  feet,  sur- 
faces of  its  strata  having  follow- 
ing areas,  outline  of  sluice  being 
a  semicircle,  i8  ins.  wide,  9  deep, 
and  60  feet  in  length? 


Then 


a  at  20  feet  {h  )  depth  of  water = area  of  600000  sq.  feet 
ai  "  18.5  "  (hi)        "        "        =      "      495000 
aa  '.♦  17      "  (A2)        "        "        =      "      410060 
o3  "  15.5  "  (A3)        «        "        =      "      325000 
a4  "  14      "  (h4)        "        «'        =      «'      265000 

a  =  area  of  18  -r-  2  =  .8836  sq.  feel ;  (j  =  .537. 

20—14  \,  /600000     4X495000  ,  2X410000 


(1 


(600  OOG 

4-473 


4- 301 


4- 123 


"X. 537  X. 8836 X8.O8 
265  ooo\     6 
-f J  =  — —  X  1 194  431  =  156  938  »«c.  =  43  A. ,  35  »*n.  38  tea 

6 


4X325000 
3-937 


3742 


And  discharges:  —  X  (600000+4  X  495000-f  a  X  410000+4  x  325  000+365000) 
12 

=  ■5  X  4965000  =  2482  500  cti&e/ee& 

For  6  Strata,  put  a  a4,  instead  of  a4,  ^d  4  as  and  at  additional,  and  divide  by 
x8  instead  of  22. 

inow  of  "Water  in.   Beds. 
Flow  of  water  iu  beds  is  either  Uniform  or  Variable.    It  is  uniform  when 
mean  velocity  at  all  transverse  sections  is  the  same,  and  consequently  when 
areas  of  sections  are  equal ;  it  is  variable  when  mean  velocities,  and  there- 
fore areas  of  sections,  vary. 

To  Compute  Fall  of  Flow. 

G  —  X  —  =  A-    C  representing  coefficient  of  friction,  I  length  offiow,  p  perimeter 
a      ng 

of  sides  and  bottom  of  bed,  and  hfaU  infeeL 
Illustration.— A  canal  2600  feet  in  length  has  breadths  of  3  and  7  (bet,  a  depth 


of  3  feet,  with  a  flow  of  40  cube  feet  per  second ;  what  is  its  fidi  ? 
G  =  aa  per  table  below  .007565;     p  =  "\/3a  +  2*X2  +  3=ia2;     0=15; 


and 


0 = 40  4- 15  =  2,66.    Hence  ,007  565  x 


2600  X  X0.2   ^  2.66* 


»S  64.33 

To  Conapute  Velocity  of  Flow.     ^— iL 


=  1.47  7&ct 


2  jirA=«. 


Illustration.- A  canal  5800  feet  in  length  has  breadths  of  4  and  12  feet,  a  depth 
of  5,  and  a  fall  of  3;  what  is  velocity  and  volume  of  flow? 

^  =  Vp+V  X  2+4  =  x6.8,  and  a  =  4a 


Then 


J: 


40 


.007  565  X  5800  X  16.8 
TOlttme  =  40  X  3. 23  =  129. 2  cu6e  feei. 


X  64. 33  X  3  =  V.0542  X 193  =  3. 23  feeu    Henoe 


HYDBAUUCS. 


543 


Ooe£Aoi«nt«   o£  IPriotion.  of  Srio-w  of  '^Varter  in.   Bods, 
ill   R.i\rex«9  Canals,  Streams,  eto. 

In  Feet  per  jSecond. 


Velocity. 


•3 
■4 
•5 
.6 


C. 


.<y>8i5 
.00707 
.00785 
.007  7B 


Velocity. 


•7 
.8 


C. 


•00773 
.00769 
.00766 
.Q0763 


Velocity. 

C. 

Vdodty 

*  1-5 

.00759 

5 

2 

.00752 

8 

a.5 

.00751 

ID 

3 

.00749 

13 

c. 


•0074s 
.00744 

•00743 
.00742 


Forms   of  Transverse    Sections   of  Canals,  eto. 


Resistance  or  friction  which  bed  of  a  stream,  etc.,  opposes  to  flow  of  water, 
in  coiisequence  of  its  adhesion  or  viscosity,  increases  with  surface  of  contact 
between  bed  and  water,  and  therefore  with  the  perimeter  of  water  profile,  or 
of  that  portion  of  transverse  section  which  comprises  the  bed. 

Friction  of  flow  of  water  in  a  bed  is  inversely  as  area  of  it. 

Of  all  r^^ar  fi^i^ures,  that  which  hss  greatest  immber  f^  sides  has  for 
same  area  least  perimeter ;  hence,  for  enclosed  conduits,  nearer  its  trans* 
verse  profile  approaches  to  a  regular  figure,  less  the  coefiScient  of  its  friction ; 
ocmseqaently,  a  circle  has  the  pnofile  which  presents  minimum  of  friction.  - 

When  a  canal  is  cut  in  earth  or  sand  and  not  walled  up,  the  slope  of  its 
sides  should  not  exceed  45°. 

'Varia'ble   IVXotion.. 

Variable  motion  of  water  in  beds  of  rivers  or  streams  may  be  reduced  to 
rules  of  wiiform  motion  when  resistance  of  friction  for  an  observed  length 
of  river  can  be  taken  as  constant. 

To  Compute  Voluzxke  of  "Water  ilo-wing  izi  a  River. 


y/zgh 


Va^ 


■^C 


ip 


Aa  A, -I- A 


W,'^A=) 


=  V.  A  and  A^  representing  areas  of  upper 
and,  lower  transver^  sections  of 
flow. 


Illustratiom.  ^A  stream  having  a  mean  perimeter  of  water  profile  of  40  feet  for 
a  length  of  300  feet  has  a  fall  of  9.6  ins. ;  area  of  its  upper  seclion  is  70  sq.  feet,  and 
of  Its  lower  60;  what  is  volume  of  its  discharge? 


To  obtain  C  for  velocity  due  to  this  case,  92.35 
ooefficient  for  which,  see  Table  above,  =  .007  44. 

V64.33X(9.6-j-i2) _ 


sjl 


+  60X 


9^ 
12 


40  X  300 


=  8.59/««<, 


7174 


V^ 


6o» 


+  00744 


300X40 
7o-|-6o 


\7oa"'"6o='/ 


V-ooo33o89 


=  394.6  cube  feet; 


and  mean  velocity  =  ^^' .  -  '  =  6.07  fea^  C  for  which  is . 007  45. 

70-f-uo 

FRICTION  JN  PIPES  AND  SETWEES. 

Friction  in  flow  of  water  through  pipes,  etc.,  of  a  uniform  diameter  is  in- 
dependent of  pressure,  and  increases  diiecdy  as  length,  very  nearly  as  square 
of  velocity  of  flow,  and  inversely  as  diameter  of  pipe. 

With  wooden  pipes  friction  is  1.75  times  greater  than  in  metallic 

Time  occupied  in  flowing  of  an  equal  quantity  of  water  through  Pii)es  or 
Sewers  of  equal  l^igths,  and  with  equal  Leads,  is  proportionaUy  as  foUows : 

In  «  Right  Line  as  90,  in  a  True  Curve  as  100,  and  in  a  Right  Angle  as  140. 


544 


HYDBAULICS. 


To  Compute  Head  neoesaary  to  overooxna  B^riotion,  of 

Pipe.    (Weitbach.) 

Loi44-f '°'/^  )  X  ^  X  —  =  h\    h'  representing  head  to  overcome  JriOion  of 

flow  in  pijpe,  I  length  of  pipe,  and  v  velocity  of  water  per  second,  aU  in  feet^  and  d 
intemdt  diameter  of  pipe  in  ins. 

Illustration. — Length  of  a  condait-pipe  is  looo  feet,  its  diameter  3  ins.,  and  the 
required  velocity  of  its  discharge  4  feet  per  second;  what  is  required  head  of  water 
to  overcome  fViction  of  flow  in  pipe? 

(.  .017  46\      1000      16  ,  ^      ,  . 

•0144  +  -77-]  X  -y  ><  57;=  -^^a  *3  X  333-333  X  a. 963  =  32. 845 /cct 

Head  here  deduced  is  height  necessary  to  overcome  friction  of  water  in 
pipe  alone. 

Whole  or  entire  head  or  fall  includes,  in  addition  to  above,  height  between 
surface  of  supply  and  centre  of  opening  of  pipe  at  its  upper  end.  Conse- 
quently, it  is  whole  height  or  vertical  distance  between  supply  and  centre 
of  outlet. 


To   Compute   -^vliole   Head,  or   Heiglit   fVom.   SurfiaMse   of 
Supply-   to   Ceutre   of  Disoliarge. 

I  ^ 

(Cx^+i.5)X— =  A. 

X.5  is  taken  as  a  mean,  and  is  coefficient  o^riction  for  interior  orifice,  or  that  of 
upper  portion  of  pipe. 

To  obtain  C  or  coefficient,     (.0144  +  - — 7-^)  =  C. 

For  facilitating  computation,  following  Table  of  coeffici^ts  of  resistance 
is  introduced,  being  a  reduction  of  preceding  formula : 

Coefficients   of  BViotion.   of  'Water. 
In    Pipes   at  IDiffereixt  "Velocities. 


V. 

C. 

V. 

C. 

V. 

C. 

V 

C. 

V. 

Ft.  In*. 

Ft.  In*. 

Ft.  Ins. 

Ft.  Ina. 

Ft.  Ina. 

4 

•0443 

2  8 

.025 

5 

.0221 

7  4 

.0208 

II  6 

8 

•0356 

3 

.0244 

5  4 

.0219 

7  8 

.0206 

12 

I 

■0317 

3  i 

.0339 

5  8 

.0217 

8 

.0205 

12.  6 

I  4 

.0294 

3  8 

.0234 

6 

.0215 

8  6 

0204 

13 

X  8 

.0278 

4 

.0231 

6  4 

.0213 

9 

o2oa 

14 

9 

.0266 

*  ^ 

.0227 

6  8 

.0211 

10 

0199 

15 

2  4 

.0257 

4  8 

.0224 

7 

.0209 

II 

0196 

16 

.0195 
.0194 
.0193 

.0191 

.OIBQ 
.0188 
.0187 


iLLrsTRATioN  I.— Coefficient  due  to  a  velocity  of  4  feet  per  second  is  .0231. 
s.— Take  elements  of  preceding  casa 

16 


^^  1000  X  12    ,  ,  A' 

(.0231  X : |-«-5)X    ^ 


=  93-9  X 


=  23-35yfe«<- 


3  '      "64.33      ''•'■'"' 64.33 

Note.— In  preceding  formula  I  was  taken  in  feet,  as  the  multiplier  of  13  for  ins. 
was  cancelled  by  taking  5.4  Ibr  2  g,  but  in  above  formula  it  is  necessary  to  restor« 
this  multiplier. 

Radii  of  Curvatures. 

When  Pipes  branch  off  from  Mains,  or  when  they  are  deflected  at  right 
angles,  radius  of  curvature  should  be  proportionate  to  their  diameter.    Thua, 


Ina. 

Ina. 

Ina. 

In*. 

Ina. 

Diameter 

2  to  3 
18 

3*04 
so 

6 
30 

8 

Radius 

10 

60 

nyi/HAULICS. 


545 


Cnrvea  and.  Bends* 

Reaifltance  0/  Voss  of  head  due  to  curves  and  bends,  alike  to  that  of  friction, 
increases  as  square  of  velocity ;  when,  however,  curves  have  a  long  radius 
and  boids  are  obtuse,  the  loss  is  small 

Carved  Circular  Pipe,  ( WeUbach).    -^  x  [.  131  -f  i.  847  (^  *1  x  ^  =  *• 

a  repr^te^ng  angle  ofcurve^  d  diameter  ofpipcj  r  raditu  of  curve,  and  h  height 
due  to  friction  or  vetiitance  of  curve,  aU  in  feet. 

For  c*eilHy  of  compatations,  foUowing  values  of  .131  +  1.847  f — )     "^  intro- 


dUOftd- 


Coefficients   of*  Resistaxiod. 
lr%.   Curved.   Pipes   -^vitlx   Section   of  a   Circle. 


d    ]  '^        * 
— {     '5      •« 


i3> 

33 
38 


•25 

•145 

•4 

.206 

.6 

•44 

•75 

.806 

•9 

•3 

.158 

•45 

.244 

.65 

•54 

.8 

•977 

•95 

•35 

.178 

•5 

.294 

•7 

.661 

•«5 

x,i77 

I 

1.408 

I.674I 
1.978 


Illustration.  —  If  in  a  pipe  18  ina  in  diameter  and  i  mile  in  length  there  is  a 
rigbt-angled  curve  of  5  feet  radius,  what  additional  head  of  flow  should  be  given  to 
attain  velocity  due  to  a  bead  of  20  feet? 

a=9oP,    V  for  such  a  pipe  and  head  =  4  feet  per  second;    18=1.5  <uid  -^^ 

*X  5 
= .  15,  and  .  IS  by  table  = .  133. 

Hence, -^  X  .133  X  ~— =  .5  X  .133  X  T^  =  .016  53>oe. 
»8o  64.33  64.33 

NoTK.~If  angle  is  greater  than  90*',  head  shoald  be  proportionately  increased. 

Bent  or   A^ngular   Circular  Pipes. 

Coeflteient  A>r  angle  of  bend  =  .9457  sin.^  x  -(-  2.047  ^^^-^  ^'    Hence, 

70O 


X 

loO 

200 

300 

400 

45° 

50° 

55° 

60O 

65° 

C 

.046 

•«39 

•364 

•74 

.984 

1.26 

«-556 

i.86x 

2.158 

2.43« 


and  —  X  C  =  /u    X  repreteniing  haif  angle  of  bend, 
aff 


QO° 

iLLDSTRATioir.  —  Assumo  «  =r  4  fset,  and  angle  =  90° ;    a?  =  ^—- = 45°. 


Then 


4' 
64.33 


X  .984  ■=  .24^7  foot  additional  head  required. 

In  "Valve   Oates   or   Slide  "Valves. 
In  Rectangular  Pipes, 


r 

t 

•9 

.8 

•7 

.6 

•5 

•4 

•3 

.2 

.z 

C 

.0 

.09 

•39 

•95 

2.08 

4.02 

8.12 

17.8 

44-5 

«93 

r = ratio  oferou  tection. 


In  Cylindrical  Pipes, 


h 

0 

•125 

•25 

•375 

•5 

.625 

•75 

•875 

r 
C 

I 
.0 

•948 
.07 

.856 
.26 

.1} 

.609 

9. 06 

.466 

5-52 

•3'5 
«7 

.159 
97.8 

h  =  relatite  height  of  opening. 

In   a  Throttle  Valve.    Tn  Qflindrical  Pipes. 


r 
C 


5° 

.913 
•24 

loO 

150 

20O 

25O 

30O 

35° 

400 

45° 

50° 

60O 

.826 
•52 

•74« 
•9 

.658 
«54 

•577 
a.51 

•5 
3-9* 

.426 
6.22 

•357 
xa8 

.293 
18.7 

•234 
32.6 

XI8 

70^ 


.06 


75« 


A  =  angU  (/potiUon. 


546 


ttTDAAtTLlOB. 


In  a  GlAok  Of  Trttp  Vfedve. 


Angle  of  <»pMiing. 


«5* 


90 


62 

*5° 
42 

300 
30 

35* 
30 

4<^ 

45* 
9-5 

50° 
&6 

55* 
4.6 

«n«>| 

«5^  t<^ 

3-a 

a.  3 

«»r 

Iix  a  Cook.     /»  Qfi/nirfrttfti/  Pip^. 


▲ 

5* 

xoo 

r 
0 

.936 
OS 

•85 

.29 

«5* 


.772 
75 


.692 
1.50 


25^ 


.613 
3*     |5'47 


30^ 


535 


35' 


•458 
9.68 


_4o" 

•385 
«7«3 


45' 


•3>5 
3i.a 


50^ 


•95 
Sa.6 


55' 


,19 


k«i6 


60° 


137 


65' 


.091 
486 

In  a  Conioal  Valve.  (  x-645  —  —  1)  =C.  a^mda'  =  arecuofpipe 
andopetwug. 

Ixx  Izxipexrfeot  Contraotiotxa.    (;r~>'~'')  '*^^'    c=ia/act9r^ttuiif 

J,  tt  a 

inif/rom  .624/or  —,  =  .ito  ijbr  -7  =  x,  being  greater  the  gireei/ter  the  nUia. 

CI  A 

iLLrsTRATioN— If  a  slide  valye  is  set  in  a  oyliodfictt  pipe  3  ins.  in  diatneter  and 
500  feet  in  length,  is  opened  to  .375  ofdiameter  of  pipe  (hence,  .625  diameter  closed), 
what  volume  of  water  will  it  disclMiiBe  ubdef'  a  lieftd  of  ta»  fiset)  ootfflcStai  of  en- 
trance of  pipe  assumed  at  .5 ? 


C,  by  tabUiP.  5iS»P^P^  ^'^  -^S  cU>9ed=:S'S^ 


y/ig  y/h 


=  «. 


C  z=from  tabUj  p.  544,/OT'  an  asmnud  velocity  qf  11  feet  6  ins.  =  .0195. 

8.03  X  xo 


Then 


'\^64.33X  Vioo 


^  ^^i  5  +  5-  52  +  otgs  — - — ) 


^80.3 
500  X  ia\  ""  V^(7-oa  +  39)  "  6- 78 


:3£  XI.85.^et 


Hdnce,  area  of  3  fna  =  7.07,  and  7.07  x  la  X  11.8J  =  X005.4  ci^fietperKcand, 

Valves.    (Conical,  Spherical,  or  Flap.) 

Oouioal  or   Spider ioal  Valve  £*uppet. 

v^ 
Height  due  to  resistance  or  loss  0/  head  of  waler  =11—.    v  repreaetUing 

vehcitg  of  water  infuU  diameter  of  pipe  or  vessel. 

(-^  —  x)  =  C.    A  and  A'  r^^esenHng  traasvene  areas  of  vessel  and  of  valve 

dperUng,  and  (x.645  p  — »)  =  C  qf  contraction  in  general 
Illustration.  —If  A'  = .  5  of  vessel,  C  =  f  i.  645  X  ~  —  i  j  =  3. 29"  5=  5. 34. 

Clack  or  Trap  VcUve. — C  decreases  with  diameter  of  vesseL 

iLLOSTRATi^f.— If  aeingle-acting  force-pump,  6  ins.  in  diameter,  delivers  at  each 
stroke  5  cabe  feet  of  water  in  4  seconds,  diameter  of  vulve  seat  3.5  in«.,  and  of  valv* 
4.S>  what  resiBtance  has  water  in  its  pMsage,  and  what  is  loss  of  mechanical  effect  T 

a  = .  X96.    (~  )  = .  34  nUio  of  transverse  area  of  opening,    x  —  \~r)  =  •  44  w^^^e 
qfaxwular  oirUxaciUm  to  transverse  Area  of  vessel 
Hence,  -34+ -44^  ^^  fii^^ifi  ^^^^^  ^m^  confident  of  rssislanee  correspvmdinff 


thgrtU>=  (i^  -xy  =  3.8a»=xa37. 


4X.196 


^  6.37  veloe&y  per  second. 


! 


HTOBA.UI.ICS. 


547 


2-^  =  .63  height  due  to  velociiy.    Consequently,  lasj  X  .63  =  6.53  height  due  to 
04.33 

fiMUtaNee  o/valve^  and  -  X  62. 5  X  6.53  =  5io<  iS  ^-  n^echaniccU  fffect  lost 

I>isoliarge  of  "V^ater  in.   Pipes. 

For    any    X^euffth.   and    Kead,   and.    for    Dianxeters    fVom 
1   Incli   to   10   Keet.     In  Cube  Feet  per  Minute.    {BearUmore.) 

T*b.  No.  L  Di«B.  Tab.  No.  Dbun.  Tab.  No. 


DUm. 

Tab.  No. 

1  DUm. 

Tab.  No. 

DUm. 

Int. 

Ft. 

In*. 

Ft.  Ina. 

I 

til 

9 

1 147.6 

I     II 

1.25 

10 

1493-5 
1894.9 

3 

1-5 

13.02 

II 

3         Z 

I  75 

19.15 

2356 

2         3 

a 

26.69 

I 

2876.7 

2         3 

«-s 

46.67 

9 

34633 

2        4 

3 

73-5 

3 

4115-9 

a      5 

3-5 

108.14 

4 

4836.9 

3       6 

4 

151.02 

5 

562^5 

3      7 

4-5 

194.84 

6 

6493.1 

3      8 

5 

263.87 

7 

7  433 
8449 

3      9 

6 

416.54 

8 

3    10 

I 

612.32 

9 

9544 

3    II 

85499 

10 

10722 

3 

1 1 983 

»3328 

16278 
17889 

19592 

31  390 
33282 
35270 
27358 
29547 

3«834 
34228 

3P725 


Ft.  Ins. 


2 

3 

4 
5 
6 

I 

9 
10 

II 


t  ? 


39329 
42040 

44863 

47  794 
50835 

53995 
57265 
60648 
64156 
67782 
71526 

75392 

87730 

101207 


Ft.  Ina. 

4  9 
5 

5  S 

5  6 

I  ' 

6  6 

I  6 
8 

8  6 

9 

9  6 
10 


"5  854 
131  703 

148  791 

167  139 

186786 

207754 
253  781 
305  437 
362  935 
426481 

496275 
572508 

655  369 
745038 


xn 


This  Table  is  applicable  to  Sewers  and  Drains  by  taking  same  proportion 
of  tabular  numbers  that  area  of  cross-section  of  water  in  sewer  or  drain 
bears  to  whole  area  of  sewer  or  drain. 

Formula  upon  which  the  table  is  constructed  is,    9356^-?-  xd'^=^y  in 

ing  hei^  of  fall  qf  water  artd  d  diameter  of  pipe  und  I  lengthy  cUl  in  feet. 

To   Compute   DisoliarKe. 

{Egtelwein. )    yj  -~-  4.71  a=  V,  and   k/-^  .  538  =  d.    d  =::  diameter  of  pipe  v 
<M.,  I  length  of  pipe  and  h  head  of  water ^  boih  in  feet 

(ffawksley.)  yj—r-  —  =  <*i  and  ij ^^-r —  =  ^-  ^  =  number  of  Imperial 
gallons  per  hour,  and  I  length  of  pipes  in  yards. 

(Heville. )  xio  y/r  «  —  1 1  ^r7  =  v  in  feet  per  second,  r  =  hydraulic  mean  depth 
iufutj  and  t  sine  of  the  indination  or  total  fall  divided  by  toted  length. 

V  47.124  d^  =  V,  and  «  293.7286  d'  =  Imperial  gallons  per  minute^  d  ■=■  diameter 
of  pipe  in  feet. 

To   CoTnpute   "VolnTne   disoliarfced. 

When  Length  of  Pipe^  Height  or  Fatt^  and  Diameter  are  given.  Rule. 
—  Divide  tabular  number,  opposite  to  diameter  of  tube,  by  square  root  of 
rate  of  inclination,  and  quotient  will  give  volume  required  in  cube  feet  per 
minute. 

EzAMPLB. — ^A  pipe  has  a  diameter  of  9  ins.,  and  a  length  of  4750  feet;  what  is 
Its  dlschaiip  per  minute  under  a  head  0117.5  (bet? 


XrU.  No.  9  ina  =  1147  6,  and 


1147.61      1x47.61 


/475 
V  »7- 


4750 
5 


16.47 


=s  69.67  cubofkeL 


54^  BTDRAtLIOa 

To   Coxnpvite   IDiazneter. 

When  Lengthy  Head,  and  Volume  are  given.  Rule.— Multiply  discharge 
per  minute  by  square  root  of  ratio  of  inclination ;  take  nearest  coiresponding 
number  in  Table,  and  opposite  to  it  is  diameter  required. 

Example.— Take  elements  of  preceding  case. 


69.67  X  -v/^^  =  "47-6i,  and  opposite  to  this  is  9 


ins. 


^^'  WTs^h  "^  **  *"/*'«'■    "  representing  velocity  in  feet  per  second  and  I  length 
in  feet. 

To   Compute   Head. 

When  Length,  Discharge^  and  Diameter  are  given.  Rule.  — Divide 
tabular  number  for  dia^neter  by  discharge  per  minute,  square  quotient,  and 
divide  length  of  pipe  by  it ;  quotient  will  give  head  necessary  to  force  given 
volume  of  water  through  pipe  in  one  minute. 

Example.— Take  elements  of  preceding  cases. 

1147.61       .-  ^     , 

^^^  =  16.47;  16.472  =  271.3;  47So-^27i.2  =  i7.5ye«t 

To  Compute  -whole  Kead  xieoeasarsr  to  furnish.  req.ui8ite 

X>isoliarg'e. 

See  Formula  and  Illustration,  page  544. 

To  Compute  Velooity. 

When  Volume  and  Diameter  alone  are  given.  Rule.  —  Divide  volume 
when  in  feet  per  minute  by  area  in  feet^  and  quotient,  divided  by  60  will 
give  velocity  in  feet  per  second.  * 

Example.— Take  elements  of  preceding  case. 

— ft^^a     ^6o  =  2.63/egt. 
•75^  X. 7854 

When  Volume  is  not  given.  Rule.  —  Multiply  square  root  of  product  of 
height  of  pipe  by  diameter  in  feet,  divided  by  length  in  feet,  by  50,  and 
product  will  give  velocity  in  feet  per  second.    (Beardmore.) 

To   Compute   Inolitiatioii.   of  a  I*ipe. 

When  Volume,  Diameter,  and  Length  are  given.     I ^^  —  —  — . 

\8356/  d*      I 
Illustration. — ^Take  elements  of  preceding  case. 

{l^y^::^='°^^7iX4'2i4  =  . 00368,  and  iZl^  =  .003 68, or 4750 X. 003 68 
=ziy.^g  feet  head. 

To   Compute   Elements   of  Xjong*   Pipes. 

V  4  V  V  /    ,     ,  /,'\  v=*     .  V77h 


5  /  V2 

and     4787  ^ {1. 505X d -^ c I) -^=z din  ins. 


V^'+c  +  Cj 


=  «• 


This  latter  formula  will  only  give  an  approximate  dimension  fn  consequence  of 

unknown  element  d,  and  also  of  C,  as  v  = 1 . 

'  3.1416  xd' 

For  Illustration,  see  Miscellaneous  lliustratiou.  ^uge  556. 


HYDBAULies.  549 

To  Compute  Vertical  Height  of  a  Stream  prcgeotecl  &om 
Pipe   of  a   Fire-engiixe   or   Pump. 

Rule. — Ascertain  velocity  of  stream  by  computing  volume  of  water  run- 
ning or  forced  through  opening  in  a  second ;  then,  by  Rule  in  Gravitation, 
page  488,  ascertain  height  to  which  stream  would  be  elevated  if  wholly  un- 
obstructed, which  multiply  by  a  coefficient  for  particular  case. 

In  great  heights  and  with  small  apertures,  coefficients  should  be  reduced. 
In  consequence  of  the  varying  elements  and  conditions  of  operation  of  fire- 
engines,  it  is  difficult  to  assign  a  coefficient  for  them.  Difference  between 
actual  discharge  and  that  as  computed  by  capacity  and  Stroke  of  cylinder, 
as  ascertained  by  Mr.  Lamed,  1859,  was  18  per  cent  :=  a  coefficient  of  .82. 

A  steam  fire-engine  of  the  Portland  Company,  discharging  a  stream  1.125  ins.  in 
diameter,  through  100  feet  3.5  iueh  hose,  gave  a  theoretical  head,  computed  fVom 
actual  dischaive,  of  225  feet,  and  stream  vertically  projected  was  300  feet;  hence 
coefficient  in  this  case  was  .88. 

EzAMPLs.-— If  a  flre-engine  discharges  14  cube  feet  of  water  vertically  throug?)  a 
pipe  ,75  inch  in  diameter  in  one  minute,  bow  high  will  the  water  be  projected? 

14  X  1728 -5-. 4417  area  of  pipe,  -?-  la  ina  in  a  foot,  -i-  60  seconds  =  76.07 /;«/  le- 
locity ;  and  as  coefficient  of  such  a  stream  =:  at  .85,  then  1x4.1  x  .85  =  i^.^Jiu, 

~^      —.        .0022  H' 

Or,  H -^ —  =  A.    H  representing  head  at  nozgU^  and  d  height  ofjtt,  lt«th  in 

feet^  and  d  diameter  ofnoxzU  in  im.    (R  F.  Hartfbrd) 
Illustbation.— /iffiume  head  of  no  feet  and  diameter  of  nozzle  .75  inch. 

.0022  X  no'  ,   . 

J  ,0 _ =  1 10  -^  35. 5  =  74-  5/««'- 

•75 
NoTK.  —  The  loss  of  head  is  greater  with  ring  than  with  smooth  nozzlea    E.  B. 
Weston,  Am.  Soc  C.  E.,  puts  the  difference  at  .000 171  v*. 

The  loss  of  head  increases  with  the  absolute  height  of  the  Jet,  and  is  less  with  an 
increase  of  its  diameter.  This  loss  increases  nearly  in  ratio  of  square  of  height  of 
Jet,  and  varies  nearly  in  inverse  ratio  to  its  diameter 

Cylindrical  Ajutage. 

Mean  coefficient  as  determined  by  Mariotte  and  Bos8ut= .003066  square 
of  effective  head  for  cylindricid  ajutages ;  hence,  for  co&ical,  alike  to  that  of 
an  engine  pipe,  coefficient  ranges  from  .72  to  .9,  or  a  mean  of  .81. 

By  formula  of  D'Anbuisson,  .003  047  K*  =  V, 

Effective  head,  or  A,  in  preceding  examples  114.1.  Then  114.1— .003 047  x 
■  14. 1  »  =  1 14. 1  —  39.67 = 74.43  feet  height  of  jet. 

Hence,  for  a  conical  or  engine  pipe,  74. 43  x  .8x  =  6a  2g  feet,  or  a  coefficient  of .  535. 

To  Compute  l^ietanoe  a  Jet  of  ^Vater  -^will  l:>e  prcxjeoted 
Arozxi   a   Vessel   through   an   Open  ins  in   its   Side. 

AMFw^      ^  ^»  ''^fr  '3'  '^  «Qi»l  to  twice  square  root  of  A  o  X  0  B. 
' 'S-  >3-  ^^S      If  «  is  4  times  as  deep  below  A  as  a  is,  <  will  discharge 

twice  volume  of  water  that  will  flow  (h}m  a  in  same  time, 
as  2  is  v^  of  A  <  and  i  is  -y/  of  A  a. 

NoTK.— Water  will  spout  fluthest  when  o  is  equidistuit 
from  A  and  B;  and  if  vessel  is  raised  above  a  plane,  B  most 
bo  taken  upon  plana 

^  Volumes  of  water  passing  through  equal  apertures  in 

time  are  as  square  roots  of  their  depths  (Tom  surfkce. 


Rui«c. — Multiply  sqiuire  root  of  product  of  distance  of  opening  from  sur- 
face of  water,  and  its  height  from  plane  upon  which  water  flows,  in  feet  by 
a,  and  produet  will  give  distance  in  feet 

EXAUPLV.— A  vessel  zo  feet  deep  is  raised  5  feet  above  a  plane;  how  far  will  a  Jet 
reach  that  is  5  feet  ttom  bottom  ot  vessel  ? 

ao  —  5X5  +  5  =  '5o>  and  V150  X  a  =  a4.49s/eet 


HYDBAULICB. 


e  Tolaiiie  o{  discharge  tbcoiigh  a  tylindiical  (qpaDuig 

Jets  d'Kku.    (Fit.  14-1 

Tliat  a  jet  may  ascend-  to  greatest  practicable  height, 
conimunicatiiin  with  aupply  ahavld  be  perfectly  free. 

Short  lubes  shaped  aliks  to  contracted  fluid  vein,  and 
conically  converj.'CDt  pipes,  big  those  vhich  give  gitalieBt 
vdocilieB  of  efflux.  Uanx^  to  attain  eieatoit  effect,  u  in 
fire-eni^nea,  lone  and  eli^lly  conical^  coavttgtail  tubes 
or  pipes  should  be  appUe). 

In  order  t^  diniioish  rpsUUnce  of  descending  valer,  a 
4ed  with  a  slight  iiiclioaUoo  bom  vcitical. 


With  cylindrical  tobea,  vdocity  being  rediu»d  in  ratio  of  i  to  .8a,  and  as 
btightH  of  jets  are  as  squares  of  these  coefBcicDts  or  rRtios.  or  as  i  to  .67, 
height  of  a  jet  through  a  cylindrical  tube  is  two  thirds  that  of  head  of 
water  (rom  whidi  it  flows. 

H  C  =  A.  H  reprtiBiting  head  </  wolcr,  C  coffficient,  and  H  luigkl  qfjtL  < Jtoli*- 
VhendsH-r-  300,0  =  . 9^     I    When  d  =  H -!- lyn,  C  =  .B. 


PLOW  OP  WATER  IN  KrVERS,  CAITAIS,  AND  BTBBAlCa. 

^nnti^  ITiUcr.— Water  flows  either  in  a  natural  or  artifirial  bed 
or  course.  In  first  case  it  forma  Streams,  Brooks,  and  Bivers  ;  in 
second,  Drains,  Cuts,  and  CanaU. 

Bed  of  a  water-coiiiBB  la  formed  of  a  Bottom  and  two  Baakt  or  Skertt. 

7VaHiE«rM  Section  is  a  vertical  plane  at  ri|^t  angles  to  course  of  the 
flowing  wBt«ri  Penmeter  is  length  of  this  section  in  its  bed. 

La^Uvdinid  StcHan  or  Pn^  is  a  vertical  plane  in  the  course  or  Ikrtai 
of  cutrnic  of  flowing  water. 

Slope  or  Dti^vitf  is  the  mean  angle  of  ioclinatian  of  surface  of  the  water 
to  the  horizon. 

FiM  is  vertical  distance  of  the  two  estreme  points  of  ■  defined  length  o( 
the  flowiuR  course,  measured  upon  a  horizontal  plane,  and  this  fall  assigns 
anf-le  for  defined  length  of  the  course. 

Une  or  Thrtad  of  Cutrenl  is  the  pomt  where  Bowing  water  attains  ita 
maxiuiutn  vdoclty. 

Wid-channel  is  deepest  point  of  the  bed  in  thread  of  current.     ftliKit/  is 

rratest  at  surface  aivd  in  middle  of  current ;  and  surface  of  flowing;  water 
higheet  iti  current,  and  lowest  at  hanha  or  shore. 

A  River,  Canal,  etc..  is  in  a  stale  of  pfnaimmey  when  an  equal  quantity 
irf  WHlor  flows  through  each  of  its  traiuverae  sections  in  an  equal  timf^  or 
when  V.  product  of  area  of  lection,  (aid  nkoh  ntonfy  tinmsi  vialt  4SUM 
q/"  lie  ffrcum,  ii  a  ootutant  number. 


HYDRAULICS,  55 1 

Vo  Ooxnp'at#  ^ean  X>eptH  of*  ^Flo'wing  "Water » 

BuLE. — Set  off  breadth  of  the  stream,  etc.,  into  any  convenient  number  of 
divisions ;  ascertain  mean  depths  of  these  divisions ;  then  divide  their  sum 
by  number  o£  divitioiis,  and  quotient  is  the  mean  depth. 

To   Coxiapixte   ISCean.   A.rea  of*  Flo-^ving  "Water. 
Rule  i. — Multiply  breadth  or  breadths  of  the  stream,  etc.,  by  the  mean 
de|)th  or  depths,  and  product  is  the  area* 

2. — Divide  the  volume  flowing  in  cube  feet  per  second  by  mean  velocity 
in  feet  per  second,  and  quotient  is  area  in  sq.  feet. 

To-  CoTOpiate   "Voliznae   of  Flo-wing  "^^ater. 

Rule. — Multiply  area  of  the  stream,  etc.,  in  sq.  feet,  by  the  mean  veloclty^ 
of  its  flow  in  feet,  and  product  is  volume  in  cube  feet 

To  Compute   ACean  'Velocity  of  IFlowing  '^^ater. 
RuLJU-^Divide  smrfiice  velocity  of  flow  in  feet  per  second  by  area  of  the 
stream,  etc.,  and  quotient,  multiplied  by  coefficient  of  velocity,  will  gm 
mean  Telocity  in  feet 

Mean  velocity  at  half  depth  of  a  stream  has  been  ascertained  to  be  as  .91c  to  t, 
and  at  bottom  of  it  as  .83  to  s,  compared  with  velooity  at  snrflftce.  ,  Again,  the  ve- 
locity diminishea  flrom  line  of  current  toward  banks,  and,  to  obtain  mean  superficial 
velocity,  „,^„,-j.V3 


n 


=  .915  w;  hence, 


To  Complete  M,eQii.  "Velooity  in  -vvlxole  Profile  of  a  19'avi- 

ga'ble   River,  eto,, 

V-J-j  ^  9  V^  ~  velocity  at  Mtom,  and  V-f-s — V  V  =  mean  vel^icUjf. 

In  rivers  of  low  velocities  multiply  mean  velocity  by  .8. 

Obstrnotion   In   Rivere.    (JtHtl^sworth.} 

-rr^  -f  05  X  ( — I  -«- 1  =3  B.    V  rqpresetUing  velocity  in  int.  per  ucond  previow 
58.6  \a/ 

to  obstrueiiony  A.  and  a  areas  of  river  unob§tnieted  and  ai  obstruction  in  «?.  feet,  and 

R  rise  in  feet. 

Illustbation.  — Velocity  of  ol)8tructed  flow  of  a  river  is  6  feet  per  second,  and 

areas  of  soctioa  before  and  after  obstmetion  are  xoo  and  90  sq.  feet;  what  would  be 

life  in  feet  ? 

^+05X^— j  -  1^.664  X.a34=«i55/«<- 

Blew  of  "Watev  in  X<ined  Channels.    (Bagin.) 

/?^  _-  V ; =  C.    D  rqmsentinff  mean  kydmulie  depth  i»  fMy  P 

^    ^  •  x(v4-^  ^^  ^  i€«^&  of  channel  to  fall  of  i,  x  and 

\^  '   D/  y  as  per  toJble^  and  C  as  per  table  p.  543. 


.9 

Plastered 0000045 

Cut  Stone .000013 


zaio 
4-354 


X 

Rubble  Masonry 00006 

Earth 000  35 


y 

1. 219 
"4 


For  Sections  of  Um/vrm  Area^  at  Canab,  Seioers^  etc,  \J^  2  D = v.    A  =^ 

area  of  fUm  in  sq.  feety  P  toet  perimeter  of  section,  and  D  fall  of  stream  per  mile 
vnfeeL 

Illcbtbation.— Area  of  transverse  section  of  a  sewer  is  50  sq.  feet,  Its  wet  perim. 
eter  20  feet,  and  its  ttB\  5  feet  per  iniM. 

/  (—  X  2  X  5)  =s  V^S  =  5  f^^    ^^  Sections  of  Rivers.     12  ^D  p  =  v. 
iiLDSTMAtiOH.— Assume  area  goo  eq.  feet,  wet  perimeter  aoo,  and  ikll  5  feet  per  mUa 

13  W 5  X  ~  =  la  V»* 5  =  49-4 /««• 

V       300 


552  HYDEAULiCS. 

•  .  •  ■ 

Hydraulic  Radius  or  Mean  Depth  is  obtained  by  dividing  area  of^traot- 
verse  section  by  wet  perimeter,  both  in  feet. 

To  Compvite  Fall  per  A^Iile  for  a.  required  'M.eeaa.  'Velooity. 

(V  X  I2\' 
—J  -j-  a  r  =  D.    r  representing  hydraulic  radius  in  feet 

Upper  surface  of  flowing  water  is  not  exactly  horizontal,  as  water  at  Its  sarfkce 
flows  with  different  velocities  with  respect  to  each  other,  and  consequently  exert 
ou  each  other  different  pressures. 

If  V  and  vi  are  velocities  at  line  of  current  and  bank  of  a  stream,  the  difference 

of  the  two  levels  is =  A. 

2g 


Illustration.  —If  v=s  f^^i  and  « x  9  w ;  then '^ — -  =  ^^  =0738  JbaL 

zg  64.33 

A  velocity  of  7  to  8  ins.  per  second  is  necessary  to  prevent  deposit  of  slime  and 
growth  of  grass,  and  15  ins.  is  necessary  to  prevent  deposit  of  sand.  . 

MaoBimum  velocity  of  water  in  a  canal  should  depend  on  character  of  bed  of  the 
channeL 

Thus,  Mean  Velocity  should  not  exceed  per  second  over 


Fine  clay 6  ins. 

A  slimy  bed 8   " 

Common  clay. 6   " 


River  sand i  ft. 

Small  gravel i  ** 

Large  shingle 3  " 


Broken  stonea 4  fL 

Stones 6" 

Loose  rocks xo  " 


To  Compute  Velocity  of  Flow  or  T>ia6h.ane^ee  of-TVater  in 

Streaxns,  Pipes,  Oeiiials,  etc. 

I.  When  Volume  discharged  per  Minute  is  given  in  Cube  Feet,  and  A  rea  of 
Canal,  etc,  in  8q.  Feet,  Rule. — Divide  volame  by  area,  and  quotient,  di- 
vided by  60,  will  give  velocity  in  feet  per  second. 

3.  When  Volume  is  given  in  Cube  Feet,  and  A  rea  in  Sq,  Ins,  Rule. — Di- 
vide volume  by  area ;  multiply  quotient  by  144,  and  divide  product  by  60. 

3.  When  Volume  is  given  in  Cube  Ins,,  and  Af^ea  in  Sq.  Ins.  Rule. — Di« 
vide  volume  by  area,  and  again  by  12  and  by  60. 

To   Compute   Flo-w  or  Vol-ume   of  X>iaoliaree. 

1.  When  Area  is  given  in  Sq.  Feet,  Rule. — Multiply  area  of  flow  by  its 
velocity  in  feet  per  second,  and  product,  multiplied  by  60,  will  give  volume 
in  cube  feet  per  minute. 

2.  When  Area  is  given  in  Sq.  Ins,  RuLfi. — Multiply  area  by  its  velocity, 
and  again  by  60,  and  divide  product  by  144. 

NoTB  L— Velocities  and  discharges  here  deduced  are  theoretical,  actual  results  de- 
pending upon  coeflicient  of  efflux  used.    Mean  velocity,  however,  as  before  given, 

page  529,  may  be  taken  at  y/Tg  .673  =  5.4  feet,  instead  of  8.02  feet. 

2.— As  a  rule,  with  large  bodies,  as  vessels,  etc.,  their  floating  velocity  is  some- 
what greater  than  that  of  flow  of  water,  not  only  because  in  floating  they  descend 
an  inclined  plane,  formed  by  surface  of  the  water,  but  because  they  are  but  slightly 
affected  by  the  irregular  intimate  motion  of  water:  the  variation  for  small  bodies 
is  BO  slight  that  it  may  be  neglected. 

a?o   Comptite  XXeifflit  of  Head  of  Flowing  "Water. 

When  Volume  and  Area  of  Flow  are  given  in  Feet,  Rule. — Divide  vol- 
ume in  feet  per  second  by  product  of  area,  and  f  coeflicient  for  opening,  and 
square  of  quotient,  divided  by  64.33,  will  give  height  in  feet. 

BxAXPLK Assume  volume  266.48  cube  feet,  area  40  sq.  feet,  and  C  zl  4a^ 


_.      /    266.48    \»  .  ^  257.28         .  . 

Then  ( "*  ^     1  -^64.33  =  -^^ — ^±feeL 

\4oX*.6a3;         *"       64.3a 


HTDBAUUCS. 


553 


SubxxxerKed.  or  r>rovrxied   OrifioeB   and.  "Weirs. 

When  wholly  submerged  (Fig.  is).-Available  pressure  at  any  poipi  in  depth 

of  orifice  is  equal  to  diflference  of  pressure  on 
Fig*  15-  ■  each  side. 


Whence,  C y/Tgh  =  t>,  and   C a y/Tffh  =  V. 
a  repraenting  area  ofduice  in  sq.feet. 
_^_^^^_  ^_  ^^^^___^         Illobtratick.—  Assuino  opening  3  foet  by  5, 

/-T^-r^r^T   ^r  S--^fA      Then,  5  X  3^5  V64.33X4  =  7-5  X  16.04  = 

120. 2  cube  feet  per  second. 

When  partly  submerged  iFig  16).     h' -h  =  d  =  subroerged  depth, and  *-- 
*^     ^              ^         fc"  =;  d'  —  remaining  portion  of  depth;  whence 
Fig.  j6.  -         


L'Sjssj^gj.l.jjy 


^  -|-  d  —  entire  depth,  and 

^^ss-si,-.^^  .  iLLrsTRATiON.— Assume  opening  as  above,  fc= 

^^^^5^-wi_   4/fe<rf,fc'  =  6,A"  =  3,andC  =  .5.    Thend  =  6~ 

^^'T    1       r^ri      Then  .5  X  5  X  8.02  (2  V4+1  X  4>/4  -  3>/3) 
—  -=2ao5X  5  869  =  117.67  CM6«/ec< per  •flcond. 

TV%m  drowned  (Fig.  17). 

.--   ^^«B  CZ>/7?A(d+f  A)  =  V. 

S^^^J       Illustration. -»•  Assume  opening  as  above, 
^|g^   h=z4feet,    d  =  a,  and    C  =  .52. 

Then,  .52  X  5  X  V64.33  X  4,X  (2  +  f  4)  =  a-6 
X  16.04  X  4-66  =  194.34  cw^  /ee<  j>«r  tecond. 

CANAL  LOCKS. 
Single    Hjooks. 
WTiMi  iL  fliiM  msses  from  one  level  or  reservoir  to  another,  through  an 
irJ^re  ?overed?v^e  mad  in  the  latter,  eflfective  head  on  each  point  of 
:K  and^^uently  head  due  to  velocity  of  efflux  at  each  instant,  is 
the  diffSence  of  levels  of  the  two  reservoirs  at  that  instant. 
Hence  C  a  V7^=V  per  second,    h' repretentina  difference  of  levels. 

To  Compnte  Time  of  KilUns  and  IDisolxargiiiK  a  Single 

Xjoclr.— Fig.  18- 

When  Sluice  in  Ujype^  G<^  «  ^*''^^y  "'•^  ^"^^^  "^^^  '**^''  ^^"^  ^^ 


AV 


Oay/Tgh 


=  time  of  filing  up  to  centre  of  sluice. 


Fig.  18. 


I 


h  repremUbing  height  of  centre  of  sluice  in  uppar  ^^ 

aaU  from  surface  of  canal  or  reservoir,  and  fi  height  ^^ . 

^^  VsluiceUn  upper  g^Ue  fro^U^iur-  M^^^^Sk 

face,  or  loiur  infhelockoT  river,  aU  tnfeet;  and  ^S^^^^^^B 


aAh 


^;^=«me  ofjaiing  the  remaining  space, 


Uppw 


?C     A»l£ 


6«I4«K^  U'^oS  &-4M  UIC' CSLt 


Zha-ea^gradual  diminution  of  head  of  water  occurs. 

ConsequenUy,  (A'±^^  =  t  time  qf  fitting  a  single  tock 
Cay/Vgh 

When  Aperture  or  Sluice  in  Lower  Gate  is  entirely  under  Water,  and  above 
Lower  Level.  — ^^^"^ '^-  =  time  of  emptying  or  discharging  it.  a' representing 
mrea  of  lower  Ouice. 


SS4 

and  or  lowi 
diiwgln^ 

h^mtof^r 

IlXIlHiUUCS. 

enaloDB  oT  tt  IMk,  Dg.  >8,  trs  ido  ftet  Ifa  tetaph  by  14 
or  upstMiB  or  rtuioe  irom  upper  Md  lower  surtHiMB  i» 
asd  kuter  sluices  Is  i.  j  reet;  hsigbiof  up|>er  is  4  f«sl, 
r  water.-;  feet;  required  the  tlmee  ot  Ullmg  aad  die- 

"  =  !45,59  iwrndi  =  (iwt  ../Jiiting  UxkHpIo  caUn  0/ 

I  o/ilaia,  and  »4S»+  49i'8  =  73«-77  '«™d»,  "^ote 
^  =  ,j6,iT«K.=«iiieofJlttiKF.       'X«8mv^H^ 

or'x-t: 

1X4B00X 

.S4iX.<.xV. 

_303S _  55^.j  ,(„„,),_  j,^yi(i^arji^. 

If  Aen  .iJperturs  orShice  in  Upper  Gale  is  eatirdy  under  Water  and  bdoa 
Loioer  Level. -^--  =  liiiif  o/^Ung  Mk. 

fV&eu  Sluice  in  the  Loaei-  Gate  it  is  pari  oiove  Surface  of  Lamer  Level 
and  in  part  belwi  it.     —. — —  ■   =  K""  vf  •'w- 

chdrairig.    <E  and  if  rt^if^mf^ni^  ditfanov  ly"  por^  cf  aperivrt  atjove  dnd  qf  httov 
lurfice  o/Wer  loafer,  A  breadlh  ofaprrOtre,  anil  *  nnd  A'  at  b^fiiri. 

[LLEtTTUTioH.—Asenme  sluice  in  precedLOg  eiainpte  lo  be  1  Toot  sboie  loner 
leiel  or  water,  or  tbat  of  lower  canal:  wbat  is  time  uf  d.ecbarge  of  lock,  distance 
of  pan  of  aperture  ■  font  and  of  Itist  below  lurlkoe  of  water  4  l^elt 


-  =  SsB-i  "COnd*. 

Double   X>otdE.    (J.  D.  Vmi  Barm,  Jr.] 
..  double  loek  is  not  a  duplication  of 
lower  chamber  supply  of  water        _ 
LB  from  upper  one,  having  no         • 
Influx,  inetesilof  aunirorm  sup-       s 
ply  lowing  dimctlj  from  8Ui-    ( 
face  level  of  canal  or  feeder. 

Operation,    therefore,    of    ■  fl 
double  lock  is  complex,  addiUon  ? 
to  formula  for  a  sinsle  lock  be-  i 
iu^thatof  ilisdiatviiiKuf  water  . 
in  iii>iiar  lock  to  All  lower,  the 
head  0!  water  cradually  depreas- 
iuR  in   the  chamber,  which   is 
c]i««i  from  upper  reach  (luring  diaobarge  into  lower. 
Xo  Compute  Time  required  ftjr  'Watep  to  ITolI  iVom 
tJlkp«r   to   UalAimi  Wktiu  Ubv«1. 

'■  cwo'^-^''"''''*"^'*""'^"''  ^'^''''''^'^ll'nriimtaiareiKifloa^ 
and  a  arra  o/iiufce  upening,  both  in  iq.  fiet.  C  n)fjfc*i«  hf  diichargt  =  .Ki^Jbr 
tftntngi  uiilA  iquart  arriia,  g  acciltralim  of  gravily,  /  drpA  ef  ctMn  »f  Mfkx 


HTDBAUUOS.  555 

belmo  uniform  level,  k  depth  of  centre  sluice  opening  Mow  upper  water  level,  and  d 
height  of  centre  of  sluice  above  Tower  water  level,  all  infect^  and  t  tCmefor  water  to 
fall  from  upper  to  uniform  toater  tevel,  in  seconds. 

Illustration— A  =c20oo«qf./<«5«/  C=.54S;  ^^^S;  /=*6;  h^n^  JmUcJ^? 
afeeL    (Fig.  19.) 

Then, 2000      ^   ^:^2E^X77i- 4-9  =  367-6  seconds. 

.545X5X567      »5'45 

a.  ira^o,    caVP  .545X5X5-67      iS-45 

Note  —/is  never  greater  than  I  (lift  in  feet);  it  is  equal  to  /  when  dr=:o;  /a  is 
eonal  to  I  when  /i  =  o,  never  greater.  In  each  caae  it  is  the  unbalanced  beaa  above 
sluice,  however  far  below  the  lowest  water  level  the  sluice  is. 

To   Fill    Upper  X^ools   or  Blxnpty   rjovror. 

To  fill  upper  lock  or  empty  lower,  when  the  sluice  is  below  the  lowest  water-line, 
in  either  case,  takes  the  same  time;  for  the  head  diminishes  at  the  same  rate,  one 
from  the  upper  surface,  the  other  from  the  bottom. 

3.  ^^^-f  —  t,    Ber^jflteing  below  loioest  water  level  0/ ioc*=  8 /jct,  as  <ii=o, 
Co  y/g 

aooo  '1/2  X  8         8000  «  ■» 

attdf=zwhoU  lift=    '"""^^^      -> =  517.8  seconds. 

•'  •'       .545X5X5.67      15-45 

To  Discharge  a  like  Volume  under  a  Constant  Head 

^  GayfTg     Ga\/ ^g     ^        .545X5V  64.33       ^^ 

Or,  one  half  the  time  given  by  preceding  case. 

The  times  deduced  by  preceding  formulas  are  in  the  foUowing  proportions  in 

order,  as  i  :  v«  •         »  or  i  :  V2  :  -7^- 

If  sluice  of  upper  lock,  through  which  it  is  filled,  is  above  lowest  water  level, 
thtoB,  by  combiniBg  formulas  3  and  4,  the  time  is  thus  deduced. 

To  jm  from  Lottfest  Water  l^el  of  said  Lock  to  Level  of  Centre  of  Sluice, 

5.  .^^'^ .  ss  e'.  /'  representing  height  cfcewtn  of  sluice  above  said  lowest  water 
G  a  yf%g  leveL 

To  Jill  remaining  Portion  of  Loch  above  Sluice, 

5.  ?^.^J     =s  f\    /"  repreaenibng  depQi,  hetaw  upper  woter  levd  of  centre  of 
i^ayfTg 

dmce  or  remaining  portion  of  lift    Hence,  «*  +  <"  =  (y/f  +  2  V/")  =  t 

\j  a  'v  2-ff 

TofiU  iMoer  Lock  under  Constant  Head  from  Upper  Canal  LeveL 

8,  If  both  lifts  are  the  same,  h  — /=  J,  and  — ^ —  (^  +  T  ""  ^-v  /     )  —  ^' 

CaV2fl»^       "        ^  i2A 

If  lower  lock  is  filled  from  upper  one  under  a  constant  head,  when  latter  is  dtuwn 
down  to  lowest  level,  formnia  7  will  apply  by  making  h  =/,  and 

— ^^z=z  (»  y/f+  -ttY  which  te  lde^Ucal  with  7,  for/=/8  apd  d  =/,  the  CM^f 
Cay/^g  V  v// 

bein^  the  same- 


556  HTDBAULICS. 

MISCELLANEOUS  ILLUSTRATIONS. 

1.  If  external  height  of  fresh  water,  at  60^.  above  injection  opening  in  condensei 
of  a  steam-engine,  is  3  feet,  and  the  indicated  vacuum  at  23  iua  ,  velocity  of  watei 
flowing  into*oondenser  is  thus  determined.     {FonniUa  page  532J 

V  =  Vap  (A-j-fc')-  A'  representing  height  of  a  cohunn  ofwaler  equivalent  to  press- 
ure o/atmo^here  vnthin  condenser. 

Assuming  mean  pressure  of  atmosphere  =  14. 7  Ws.  per  sq.  tncA,  height  of  a  column 
of  fresh  water  equivalent  thereto  =:  33.95/eet. 

Then,  if  i  inch  =  .4913  Uu.,  23  ins.  =  ix.3  lbs.;  and  if  14.7  ibs.  =  33.9s  f^t  ii-3 
lbs.  =  26. 1  feet 

Hence  v  =  Va  9  (3  4-  36.  i)  =  43. 37  feet^  less  retardation  due  to  coefficient  of  both 
influx  and  efflux. 

2.  What  breadth  must  be  given  to  a  rectangular  weir,  to  admit  of  a  flow  of  6  cube 
feet  of  water,  under  a  head  of  8  ins.  ?    {FonntUa  page  533. ) 

_  =r —  =  2.21  feet 

fX.easVaT^      .4*7  X  6.56 

3.  It  being  required  to  ascertain  volume  of  water  flowing  in  a  stream,  a  tem- 
porary dam  is  raised  across  it,  with  a  notch  in  it  2  feet  in  breadth  by  i  in  depth, 
which  so  arrests  flow  that  it  raises  to  a  head  of  1.75  feet  above  sill  of  notch;  what 
is  volume  of  flow  per  second  ?    {Formula  page  533. ) 


C  =  .635.      -  X. 635X  a  X  1.75  >/2flfX>.75- 1-481  X  10-6  =  15  7  cu6«/«et 
3 

4.  A  rectangular  sluice  6  feet  in  breadth  by  5  in  depth,  has  a  depth  of  9  feet  of 
water  over  its  sill,  and  discbarges,  as  per  example  page  535,  380.95  cube  feef  per 
second ;  what  is  velocity  of  flow  t    (Formula  page  535. ) 

38o,9J         38095^^^ 

6x(9-4)  30  ' 

2        / —      ■Jh^  —  'Jh'^ 
If  volume  was  not  given :    —  C  v  a  ^  x       .  _ /, — = «.    C  =  .eaj. 

Then  -^  x  .635  X  8.02  X  v^^Q  — V  4_  ^^^^  ^  3.8  =  ia.7/e«^. 
3  9  —  4 

5.  If  a  river  has  an  Inclination  of  1. 5  feet  per  mile,  is  40  feet  in  breadth  with  nearly 
vertical  banks,  and  3  feet  depth ;  what  is  volume  of  its  discharge  ?  (F<yrmulap.  542. ) 

Perimeter  40  +  3  X  3  =  46  f^et;      hydraulic  mean  depth  ^  =r  2.61  feet; 

46 

a  3=  tao  feet;       C  per  tdble^  page  543, ^r  assumed  velocity  of  2.$  feet  =  .  0075. 

Then  W -^^ — -^^^——  x  64.33  X  15  =  V. 0659  x  96. 5  =  2.52/e«<  velocity. 

Hence  120  x  2.52  =  302.4  tmbefeet 

6.  What  is  head  of  water  necessary  to  give  a  discharge  of  25  cube  feet  of  water 
per  minute,  through  a  pipe  5  ins.  in  diara.  and  150 feet  in  length?  {Formulap.  548.) 

Tabular  number  far  diameter  5  ins.^p<xge  547,  =  263.87. 

— * 

Then  263.87-^-25  =  111.3,  and  150-^  111.3  =  1. 35 /««<. 

If  this  pipe  bad  2  rectangular  knees  or  bends,  what  then  would  be  head  of  water 
requ ired  t    (Foi-mula  page  545. ) 

C)  P«^«  545./o»' —  =  .984,  area  of  $  ins.  =  .i36/€e^  and  -^ -J- 60  =  3. 06 /eel 
2  "   . I 30 

?  06' 
velocity.    Then  ^ —  X  984  X  2  =  .2863,  which,  added  to  1.35  =  1.64  >^1 
64.33 

By  formulas  foot  of  page  548,  €  =  .024,  and  c  .505  velocity  =  3.06  feet ;  head=: 

i.^qfett^  and  volume  26.38  cube  feet, 

7.  If  a  stream  of  water  baa  a  mean  velocity  of  2.25  feet  per  second  at  a  breadth 
of  560  feet,  and  a  mean  depth  of  9  feet,  what  will  be  its  mean  velocity  when  it  baa 
t  br«adth  of  390  feet,  and  a  mean  depth  of  7.5  feet?    (Rule page  548.) 

560x9x2.25^11340^      ^^^^^^ 
320  X  7-5  24«? 


HTDBAULtCS.  557 

8.  What  volume  will  a  pipe  48  feet  in  length  and  ?  ins.  in  diameter,  under  a  head 
of  5  feet,  deli  ver  per  second  f    { Formula  page  547. ) 

Tabular  number  for  diameter  2  tyu.,  page  547,  =  26.69. 

^—  =  3-  »•     Then  ^-^ = 8.61,  w^ich  -i-  60 = .  143  cube/eeL 

If  this  pipe  had  5  curves  otqaP,  with  radii  — =  -  =.5;  what  would  be  it»diB- 

2  r      4 

charge  per  second  ? 
V  =  .i43;  a  =  2-hi44=.oi39;  Cper  tabU=2^  =  .2g4;    v  =  -^^^:=:  10. agfiet. 

90®       10.29' 
Then  .294  X  ^^  X  j~-  =  .147  X  1.64  =  241,  which  Xs/or  5  curvet  =  i.a  =s 

height  due  to  resistance  of  carves.    h  =  s  —  1.2  =  3. 8. 

Henc«,  if  V2  ^  5  s= .  143 ;  V2  ^  3.8  =s .  125  cu^e/stft 

9.  If  a  slide  stop  valve,  set  in  a  cylindrical  conduit  500  feel  in  length  and  3  ins.  m 
diameter,  is  raised  so  as  to  close  .625  of  conduit;  what  volume  will  it  discharge 
under  a  head  of  4  feet  ?    {FormtUa  page  546. ) 

Cfor  conduit  =  .s,  for  friction  .025,  and  for  dide  valve  .375  open.  taJbJ^pagt  545, 
5. 52,  d  = .  25,  and  a  =  7.07  sq.  ins. 

Then  '.  =    ..      '  , — r  =  2.13  ftei  velocity^  aad 

3. 13  X  13  X  7-07  s=  x8o, 71  cube  ins. 

ta  If  a  single  lock  chamber  is  200  feet  In  length  by  24  in  breadth,  with  a  depth 
of  10  feet,  centre  of  up'per  gate,  which  is  4  feet  in  depth  by  2. sin  breadth,  is  at 
middle  of  depth  of  chamber,  lower  gate,  k  feet  in  depth  by  2.5  in  breadth  and  wholly 
immersed;  what  is  time  required  for  filling  and  discharging  it?    {Formula  p.  553.) 

C  =  .6i5,  A=5,  A'=s,  A ^200X24  =  4800,  0  =  4X2.5  =  10,  and  a' =  5 
X  2.5  =  12.5 

(2X5  +  5)4800  _  ^  7£0oo  ^        3  ^^^^  ^ .^^ 
.615X10^64.33X5      "°-'7 

2X4800XV5  +  5  _  ^^  =  491.4  seconds  time  of  emptying. 

I "i'73 

.615  X  12.5  V2flr 

XX.  In  a  moderately  direct  and  uniform  course  of  a  river,  the  depths  and  velocities 
are  as  follows ;  what  is  the  volume  of  its  flow  and  what  its  mean  velocity  ?   {p.  55X.) 

F«et.      Feet.       Feet.       Feet.     Feet. 


Distances 5        12        20        15        7 


Area  of  profiles  =  5X34- 


Depths 3  6         11  8         4         12  x6-f  20X  n -f  15  X  8-f 

Mean  velocity 1.9       2.3       2.8       2.4      2.1      7  X  4  =  455  ^S'-/^^^'- 

15  X  x.9  4-72X2.3-}-22oX2.8  +  x2oX2.4  +  28X2.i  =  xx56.9  citbefeet  volume, 

and  — =-^  =  2.SAfeet  velocity. 
455 

Alixier's   Inoh.. 

A  *  Miner's  inch  "  is  a  measure  for  flow  of  water,  and  is  an  opening  one 
inch  square  through  a  plank  two  inches  in  thickness,  ander  a  head  of  six 
inches  of  water  to  upper  edge  of  opening. 

It  will  discharge  11.625  U.  S.  gallons  water  in  one  minute. 

Theoretical  IP  under  diff&'ent  Beads. 

xoo      90      |8o     170      |6o       so     40      ho    (20    I15    |xo    |  sj-    3I     x 
3.25    3.61I  4.061  4.64I  5.41    6.5    8. i2lia8|i6.2l2i.6|32.5|65|io8|325 


Heads  in  flset. 
Ins.  per  W. . . 


Water  Inch  (Pouce  ePeau). — Circular  opening  of  i  inch  in  a  thin  plate  is 
equal  to  a  discharge  of  19.1953  cube  meters  per  24  hours. 

a  A* 


558  HYDRODYNAMICS. 

HYDRODYNAMICa 

Hydrodynamics  treats  of  the  force  of  action  of  Liquids  or  Inelastic 
Fluids,  and  it  embraces  Hydraulics  and  Hydrosiaiics  .-^  the  former  of 
which  treats  of  liquids  in  motion,  as  flow  of  water  in  pipes,  etc.,  and 
latter  of  pressure,  weight,  and  equilibrium  of  liquids  in  a  state  of  rest. 

Fluids  are  of  two  kinds,  aeriform  and  liquid,  or  elastic  and  inelastic, 
and  they  press  equally  in  all  directions,  and  any  pressure  communicated 
to  a  fluid  at  rest  is  equally  transmitted  throughout  the  whole  fluid. 

Pressure  of  a  fluid  at  any  depth  is  as  depth  or  vertical  height,  and 
pressure  upon  bottom  of  a  containing  vessel  is  as  base  and  perpendicu- 
lar height,  whatever  may  be  the  figure  of  vessel.  Pressure,  therefore, 
of  a  fluid,  upon  any  surface,  whether  Vertical,  Oblique;,  or  Horizontal,  is 
equal  to  weight  of  a  column  of  the  fluid,  base  of  which  is  equal  to  sur- 
face pressed,  and  height  equal  to  distance  of  centre  of  gravity  of  sur- 
face pressed,  below  surface  of  the  fluid. 

Side  of  any  vessel  sustains  a  pressure  equal  to  its  area,  multiplied  by  . 
half  depth  of  fluid,  and  whole  pressure  upon  bottom  uuU  against  sides 
of  a  cubical  vessel  is  equal  to  three  times  weight  of  fluid. 

Pressure  upon  a  number  of  surfaces  Is  ascertained  by  multiplying 
sum  of  surfaces  into  depth  of  their  common  centre  of  gravity,'  below 
surface  of  fluid. 

When  a  body  is  partly  or  wholly  immersed  in  a  fluid,  vertical  press- 
ure of  the  fluid  tends  to  raise  the  body  with  a  force  equal  to  weight  of 
fluid  displaced ;  hence  weight  of  any  quantity  of  a  fluid  displaced  by  a 
buoyant  body  equals  weight  of  that  body. 

Centre  of  Pressure  is  that  point  of  a  surface  against  which  any  fluid 
presses,  to  which,  if  a  force  equal  to  whole  pressure  were  applied,  it 
would  keep  surface  at  rest.  Hence  distance  of  centre  of  pressure  of 
any  given  surface  from  surface  of  fluid  is  same  as  CerUre  of  Percussion. 

Centres   or  Pressuxre. 

PlBiraUelogram^  Sidt^  Base,  Tangent,  or  Vertex  of  Figure  at  Surfhce  ofFlmid,  \b  at 
.66  of  line  (meaflariag  downward)  that  Joins  centres  of  two  horizontal  'sides. 

}  Triangle,  Base  ujmermogt,  is  at  centre  of  a  line  raised  from  lower  apex,  and  join- 

'  ing  it  with  centre  or  base;  and  Vertex  uppermost,  it  is  at  .75  of  a  line  let  fall  from 

{  vertex,  and  joining  it  with  centre  of  base. 

'  Right-angled  Triangh,  Base  uppermost,  is  at  intersection  of  a  line  extended  (Vom 

t  centre  of  base  to  extremity  of  triangle  by  a  line  ranning  horizontally  from  centre 

1  of  side  of  triangle.     Vertex  or  Extremity  uppermost,  is  at  intersection  of  a  line  ex- 

tended fYx)m  the  centre  of  the  base  to  the  vertex,  by  a  line  running  horizontally  flrom 
I  375  of  side  of  triangle,  measured  from  base. 

;  TrapeMoid,  either  of  parallel  Sides  at  Surface,    - '  ■     ,  X  a  -  d    *  and  6'  repre- 

•  senting  breaiUhs  ofjlgure,  d  distance  from  surface  of  fluid,  and  a  length  ofUne  join- 

ing opposite  sides. 

Circle,  at  1.95  of  Its  radias,  measured  from  upper  edge. 

"i  pr 
Semicircle,  Diameter  ai  Surface  of  Fluid,—  =d.  r  representing  ra4liusqfciirdl» 

10 

and  j» =3.1416.    Diam.  dmanward,  '^  *^   *"  ^    -rsd. 

n  j>— 10 


HTPBQDYNAMICS,  559 

Side,  ^aae,  or   T^T^f^^nt    of  F'igure    Iselo-w    Surface    of* 

n   ^       ,        «      ,.  >    .       2       ^'3  — A3                \rAo4-m^      ,         .m*      ,,, 
Rectangle  or  PardUelog^m.  -  X  irr—t  ^  =*  d  ;  or, ' =  d :  and  —  =  d  . 

h  and  &'  ngit^enA^n^  dcjiifti  qf  upper  an4  lovudr.  wr/aoes  offyfv^t  a{a4i  d  d^pth. 
both  from  surface  of  fluids  m  JuUfifipt^  of  figure,  o  depth  0/ centre  of  gravity  of 
figure  fron^  suxfau^  of  fluid,  d'  distance  from  upper  side  of  figure,  and  d"  distance 
Jrom  centre  of  gravity. 

Triangle.  —  Vertex  Uppermost     — *— =  a:    —r —  =  d\    Base  Uppermost. 

z8  o  18  o  "^ 

'  '    °  =:  d.    I  representing  depth  offigw-e,  d  distance  from  smfuce  of  fluid  upon 

a  line  from  vertex  to  centre  of  base,  and  d'  distance  from  centre  of  gravity  of  figure, 

Cirde. ■ —  =  d.  or  —  =  distance  from  centre  ofdrde. 

Semidrde.  — Diam.  Horixontal  and  Upward  «>r  DowMMrd.     <—  --~  -^ — ^  4-  Q  =3  d; 

'xnl  —  A.l  4,1  I'       16P 

^^ ^—  =  d':    -^— =ad",  and    -; —  =aft     d  fwretcnHng  di^anoe  from 

surface  of  fluid,  d'  diftanct  of  centre  of  gravity  from,  centre  of  arc,  d'*  distance  of 
centre  qf  gravity  fnm,  diameter  when  it  is  uppermost,  and  c  centre  of  pressure. 

I^ressure. 
To   Compute   ^Pressure   of  a   IB^luid   upon  Bottom,   of  its 

'  Oontainingp  'Vesael. 

Rule. — Multiply  area  of  base  by  he!£;ht  of  flttid  ia  feet,  and  .product  by 
weigbt  of  a  cube  foot  of  fluid. 

To   Compute  Pressure   of  a  F'luid   upon  a  Vertical,  In- 
clined, Curved,  or   any.   Surface. 

Rule. — Multiply  area  of  surface  by  height  of  centre  of  gravity  of  fluid 
in  feet,  and  product  by  weight  of  a  cube  foot  of  fluid. 

ExAMPLB  I.— What  is  pressaro  i)p«a  a  ploping  9ido  of. a  pond  of  flresh  water  10  feet 
square  a^drifr  feet  in  depth  ^ 

Centre  of  ^ayit^,  8  -4-  2  —  4feHfrom  surface,    irhen  io«  X  4  X  62. 5  ==  25  060  lbs. 

2. — What  is  pressure  upon  staves  of  a  cylindrical  reservoir  when  filled  with  fresh 
water,  depth  being  6  f^t,  an4  diameter  of  base  5  feet  ? 

5X3. 1416  =  isjdi  feet  curved  mrface  of  reservoir,  which  is  coQSidered  as  a  plane. 
15.708  X  6 X  6-7-2  =  282.744,  which  X  62. 5  =  17 671.5  lbs. 

3. — A  rectangular  flood-gate  in  ftesh  water  is  25  feet  in  length  by  13  feet  deep; 
what  is  pressure  upon  it? 

85  X  12  X  i2-r-2=  1800,  which  x62.5=ii2  5oo  Ihs. 

When  water  presses  against  both  sides  of  a  plane  surface,  there  arises  from 
resultant  forces,  corresponding  to  the  two  sides,  a  new  resultant,  which  is 
obtained  by  subtraction  of  f  omter,  as  they  are  opposed  to  each  other. 

iLLrsTRATior  ^Depth  of  water  in  a  canal  is  7  feet;  in  its  ac^olning  lock  it  18^ 
feet,  and  bi^dtn  of  gates  is  15  feet;  what  mean  pressure  have  they  to  sustain,  anp 
what  is  depth  of  point  of  its  application  below  surface  f 

7  X  15  =  "OS,  and  4  X  15  =60  sq.feet.    (105  X  -  —60X2)  X  62. 5  ==  15468. 75  itt., 

Then  15468.75---  62. 5  =  247. 5  =  cube  feet  pressing  uptm  gates  upon  high,  side,  and 
•47. 5-r-i5X7  =  3.3S  fket  =.  depth  of  centre  of  gravity  of  mean  pressure. 

To  Compute    Pressure  on    a  Sluioe. 
Awd  —  V,  and  C  P = P*.    A  representing  area  of  shHce  in  sq.  fket,  w  weight  qf 
Ufaterpercuhefbot,  d  mean  depth  of  sluice  betma  suTfaoe,  infoet,  F  pressure  <tn  sluioef 
and  r  power  required  to  operate  it^  both  in  lbs. 

C= .68  when  sluice  is  of  wood,  and  .31  when  of  irpo. 


560  HYDRODYNAMICS. 

Example — What  Is  pressure  on  a  sluice-gate  3  feet  square,  its  centre  of  gravity 
being  30  feet  below  surface  of  a  pond  of  flresh  water? 

3  X  3  X  30— 270,  which  X  62.5=  16875  Ibt. 

« 

To   Coxxipnte    Fressiire  or  a.  Coluxxizx  of  a   Fluid   per 

6q..  Inoli. 

Rule. — Multiply  height  of  column  in  feet  by  weight  of  a  cube  foot  ot 
fluid,  and  divide  product  by  144 ;  quotient  will  give  weight  or  pressure  per 
sq.  inch  in  lbs. 

NoTit ^When  height  is  given  in  Ins.,  omit  division  by  144. 

PIPES. 
To  Compute  required  Tlxiokness  of  a  Pipe. 

Rule. — Multiply  pressure  in  lbs.  per  sq.  inch  b^  diameter  of  pipe  in  ins., 
and  divide  product  by  twice  assumed  tensile  resistance  or  vahte  of  a  sq. 
inch  of  material  of  which  pipe  is  constructed. 

By  experiment,  it  has  been  found  that  a  cast-iron  pipe  15  Ina  in  diameter,  and 
.75  of  an  inch  thick,  will  support  a  head  of  water  of  600  feet;  and  that  one  of  oalc, 
of  same  diameter,  and  2  ins.  tbiclc,  will  support  a  head  of  x8o  feet? 

Example  i.— Pressure  upon  a  cast-iron  pipe  15  ins.  in  diameter  is  300  lbs.  per  sq. 
inch ;  what  is  required  tbiclcness  of  metal? 

300  X  IS  =  4500.  which  -T-  30Q0  X  2 = .  75  inch. 
Note. — Here  3000  is  taken  as  value  ot  tensile  strength  of  cast  iron  in  ordinary 
small  water-pipes.    This  is  in  consequence  of  liability  of  such  castings  to  be  im- 
perfect from  honey-combs,  springing  of  core,  etc. 

2 Pressure  upon  a  lead  pipe  i  inch  in  diameter  is  150  lbs.  per  sq.  inch;  what  IB 

required  thickness  of  metal  ? 

Here  500  is  taken  as  vaZue  of  tensile  strength. 

150  X  I  =  150,  which  -r-  500  X  2  =  .15  inch. 

Cast-iron  Fipes. 
To  Compute  TliiokiiesB,  etc.,  of*  flangred   !Pipe0* 

For  75  lbs.  Pressure.  For  100  Jbs.  Pressure. 

.025  D-f   .25  =T 


.03  D-|-   .3  =J 

.05  D  -f-  I'lS  =  * 

.03  I>+    -35  =/ 

1.05  D4-4.25<l-l-  1.25=0 

X.05  D-|-2Xd+i       =0' 


.03   D-j-   .3  =T 

.035  D--    .45  =r« 

.05    D+  1.15  =1 

.04    DH-^^6 =/ 

I.I      D  +  5  X  d-f  i.S  =0 

I.I      DH-2.5Xd4-x.4  =0' 


.7D  +  2.2  =  n;        — ^^-^- =  a,   and     ^/— 5 — \-C  =  d. 

'     ^  4000  V   7854 

D  representing  diam.  of  pipe,  T  tiiickness  0/ metal,  t  tiiickness  and  I  len^  qfboss^ 
f  thickness  offiangt,  o  diam.  of  flange,  0*  diam.  of  centres  at  boU  holes,  and  d  diam. 
iffboUSj  cUl  in  ins.;  A  area  of  pipe  and  a  area  of  bolt  at  base  of  its  tftread,  in  sq.  ins., 
p  pressure  in  lbs.  per  sq.  inch,  and  C  a  coefficient  due  to  diam.  of  bolt 

Thus, diam.  .125 -f. 032,  .25 4- .064,  .5  +  . 107,  x  +  .i6,  1.5-}-. 214,  and  2  +  . 285. 

Illustration.— What  should  be  dimensions  of  a  flanged  pipe,  10  ins.  in  diameter, 
for  a  pressure  of  100  lbs.  per  sq.  inch  ? 
.7  X  xo  +  2.2  =  9. 2  =  10  number  of  bolts,  and  diam.  10  int.  =  78.54  ins.  area  =  A. 

Z?Jl^±i2  =  ..^35,and,/^  +  C  =  V.>s  =  .5:  hence,  .5+  .07  = 

607 i=  .625  lbs.  diameter  ofboUs ;  .03  X  lo-f-  .3  =  .6  =  thickness  qf  metal;  .035  X  10 
4-.  4s  =  '^  =  thickness  of  flange;  .05X  10+ 1.15  =  1.65  =  ggwgtfft  of  boss;  .04X10 

4-  .6  =  I  =s  thiekness  of  flange;  i.i  X  10  -f-  5  X  .625  +  x.  5  =  15.635  =  diameter  qf 

flange  ;  and  1. 1  X  10 + 2. 5  X  .625  -+- 1. 4  =  13. 9625  =  diameter  ofboU  hdsi. 

For  Tables  of  Cast-iron  Pipes,  see  page  132. 


HYDB0DYNAMIC8.  5^^ 

fTo  Compxite  ICleznents  of*  'V^ater-pipes. 

xx»ia4  5Pd  +  C  =  «;  or,     .000054  H  d-f- C  =  «;  .4336H-=P;    and 

02^ijPX  a- 45  =  W.  P  representing  pressure  of  water  in  lbs.  per  sq.  inch,  D  and  d 
tsBtemal  and  internal  diameters  ofpipe^  and  t  thuSeness  ofmetal^  all  in  ins. ,  C  coejgl- 
dentfar  diameter  ofpipe^  and  H  head  ofwaler  infiet. 

C  ss .  37  for  pipes  less  than  12  in&  in  diameter, .  5  flrom  12  to  30.  and  6  (torn  30  to  50 

To   Compute   "Weight   of  Fipea. 
To  Diameter  add  thickness  of  metal,  multiply  sum  by  10  times  thickness, 
ind  product  wiU  give  weight  in  lbs.  per  foot  of  length. 

Weight  of  Faucet  end  is  equal  to  8  ins.  of  length  of  pipe. 

Hydrostatic   I*ress. 

Vo  Compute  Elements  of  a  Ujrdroatatio   Press* 

Tlk      „    Wra       ,      Wi'a      „     PA«  r,  *.-  

y^  =  W;  -^^  =  A;   -^-^  =  P;    ^^  =  a.    V  repremOxng  pouter  or  pren- 

ure  appliedy  W  toei^t  or  resistance  in  lbs.  ^  I  and  V  lengths  of  lever  and  fiUcrum  in 
ins.  or/eety  a$id  A  and  a  areas  ofrwrn  andpiston  in  sq.  ins. 

Illustration.— Areas  of  a  ram  and  piston  are  86.6  and  x  sq.  ins.,  lengths  of  lever 
and  fulcnim  4  feet  and  9  ins.,  end  power  applied  20  lbs. ;  what  is  weight  that  may 
be  sustained?  

ao  X  TXi^  X  86. 6      83 136  ., 

=  ■  =  9237.3  lbs. 

9X1  9 

To  Compute  ^Fliiokuess    of  "M-etal    to  Resist  a  given 

Pressure. 

Rule. — Multipl}''  pressure  per  sq.  inch  in  lbs.  b^  diameter  of  cylinder  in 
ins.,  and  divide  product  by  twice  estimated  tensile  resistance  or  valtte  of 
metal  in  lbs.  per  sq.  inch,  and  quotient  will  give  thickness  of  metal  required. 

Example.— Pressure  required  is  9000  lbs.  per  sq.  inch,  and  diameter  of  cylinder  is 
5.3  in& ;  what  is  required  thicl^ness  of  metal  of  cast  iron? 

VcOue  of  metal  is  taken  at  600a    9p°.^J'J.  -  47  7oo  __  ^^ 

6000X2       12000 

Values  of  Different  Metals  in  Tom,    (JUolesuforih.) 
Cast  iron. 41 1  Gun  metal 22  |  Wrought  iron..  .14)  Steel 06 

Hydraulic    Ham. 

Useful  effect  of  an  Hydraulic  Ram,  as  determined  by  Eytelwein,  varied 
from  .9  to  .18  of  power  expended.  When  hei<^ht  to  which  water  is  raised 
compared  to  £all  is  low,  effect  is  greater  than  with  any  other  machme ;  but 
it  diminishes  as  height  increases. 

Len^  of  supply  pipe  should  not  be  less  than  .75  of  height  to  which 
irater  is  to  be  raised,  or  5  times  height  of  supply :  it  may  be  much  longer. 

To  Compute  Klements.' 

.ooii3V*  =  H»;    ^^  =  V;    1.45VV-D;    .75v/V  =  d;    and  |x^  = 

effidencjf.  V  and  v  represetUing  vohtmes  expended  and  raised,  in  cube  feet  per 
minmUf  h  and  h'  keighiU  from  unUcft  water  is  drawn  and  eUwUed  in  feet,  D  and  d 
diameters  ofs%qpply  and  discharging  pipes  in  ins.^  and  IP  effective  horse-power. 

Illustration. — Heights  of  a  fall  and  of  elevation  ars  10  and  26.3  feet,  and  vol- 
umes eqwnded  and  raised  per  minute  are  1.71  and  .543  cul>e  feeW 

.001X3X  1-71  X  10 =.0193  ff; ' — —  =  1.71  cube  feet;    1.45^1.71  =  1.89 

tm.;    .75V»-7«=-975<«.;    tnA  ^  X  ^^^^  =  .6g^  efficiency. 


S02 


HTDBOPTHAtfJCa 


Re«ult9 

of*  Operationei  of  ^srdirAv&Ue  HaiSRfl* 

Strokes 

FaU. 

Eleva- 

WAter 

Usefnl 

Strokes 

FaU. 

Eleva- 

Water         | 

{Mr  M. 

tion. 

Expen'd. 

Raited. 

Effect. 

perM. 

tion. 

ExfenM. 

Raised. 
C,  *  t. 

No. 

Feet. 

Feet. 

C.  Ft. 

C.  Ft. 

No. 

Fe»t. 

Feet. 

C  Ft. 

66 

iao6 

26.3 

1.71 

•543 

% 

15 

3-«2 

38.6 

1.98 

.058 

50 

9-93 

•38.6 

«-93 

.421 

10 

1.97 

38.6 

1.58 

.014 

36 

6.05 

38.6 

1-43 

.169 

% 

— 

22.8 

196.8 

.38 

.029 

3> 

5.06 

38.6 

X.29 

.113 

— 

8-3 

52.7 

2 

.186 

UMftll 

Efltet. 


•35 
.18 

.67 
•57 

NoTB.—  Volume  of  air  vessel  =  volume  of  delivery  pipe.  One  seveQtb  of  w^er 
may  be  raised  to  about  4  times  head  of  fall,  or  one  fourteenth  8  times,  or  one  twenty- 
eighth  16  times. 

WATER  POWER. 

Water  acta  as  a  moving  power,  either  by  its  weight  or  by  its  f^s  vivat,  and 
in  latter  case  it  acts  either  by  Pressure  or  by  Impact. 

Natural  Effhct  or  Pmoer  of  a  fall  of  water  is  equal  to  weight  of  its  volume 
and  vertical  height  of  its  fall. 

IfSvater  is  made  to  impinge  upon  a  machine,  the  velocity  with  which  it 
impinges  may  be  estimated  m  the  effect  of  the  machine^  Result  or  effect, 
however,  is  in  nowise  altered ;  for  in  firfit  case  P  sm  V  «»  A,  and  in  latter  ^ 

—  Y  Iff,    V  representing  volume  in  cube  feet^  to  v>eighi^  in  lbs,f  and  v  velocity 
2  g 

of  flow  in  feet  per  second. 

62.  s  V  A  =  P,  and  3.  a  *  a  ^A  =s=  V.  P  represe^tifM  pressure  in  {Ifs. ,  a  Ckv^  <if  vpm- 
ing  in  sq./eet,  and  A  height  of  flow  infect  per  second. 

To   Compnte   Power  of  a   FalJ   of  "Water- 

RuLK. -^Multiply  volume  of  ilowin*;  water  in  cube  feet  per  minute  by 
62.5,  and  this  product  })y  vertical  height  of  fall  in  feet« 

if OTE.— When  Flow  is  over  a  Weir  or  Notch,  height  Is  nreaSnred  from  surfkce  of 
tail  race  to  a  point  four  ninths  of  height  of  weir,  or  to  centre  of  velocity  or  pressure 
of  opening  of  flow. 

When  Flow  is  through  a  Sluice  or  Horizontal  Slit^  height  Is  measured  from  sur 
face  of  tail-race  to  centre  of  pressure  of  opening. 

Example. — What  is  power  of  a  stream  of  water  when  flowing  over  a  weir  5  feel 
in  breadth  by  i  in  depth,  and  having  a  fall  of  20  feet  from  centre  of  pressure  of  flow? 

By  Rule,  page  533,  -5X1  V^gi  X  .625  =  16,73  cube  J^et  per  «ecan<i 

16.68  X  60x62.5  X  20  =  1 251 000  ?&«.,  which -f- 33 000:^=37.91  htrrses''  power. 

Or, .  1 1 35  V  A  =  theoretical  H*.    A  representing  height  from,  race  in  feet. 

Illustration.— If  flow  of  a  stream  is  17.9  cube  feet  per  second,  to  what  height 
and  area  of  flow  of  i  foot  in  depth  should  it  be  dammed  to  attain  a  power  of  10 
horses.  i 


33 000  X  10  __  ^^^^  ^^^  ^^  ucond^'dnd  y*  •  aaSS  cube  feet  per  second. 
60  02.5 


88 
17.9 


4.92  ^(  heighti    H^oe,--  .6  V2  gx  i  =  3-9,  and  r7.9-r-3»2  =  5.59  sq.feeL 

Water  sometimes  acts  by  its  weight  and  vis  viva  simultaneously,  by  com- 
bining effect  of  an  acquired  velocity  with  fall  through  which  it  nows  upon 
wheel  or  instrument. 


In  this  case  h,  +  ^  j  V  x  62.5  =  mtckanieal  effect. 


*  4a  determlMd  \ff  -  O, 


HYI>RODYNAMIC8.  563 

WATEK-WHEEL8. 

Water-wheels  are  divided  into  two  classes,  Vertical  and  Horizontal. 
Vertical  comprises  Overs/iot^  Breast^  and  Uiiderthot ;  and  Hori;&outai, 
Turbifiey  Impact^  or  Reaction  wheels. 

Vertical  wheels  are  limited  by  construction  to  falls  of  less  than  60  feet 
Turbines  are  applicable  to  falls  of  any  height  from  i  foot  upward. 

Vertical  wheels  applied  to  a  fall  of  from  20  to  40  feet  give  a  greater 
effect  than  a  Turbine,  and  for  very  low  falls  Turbines  give  a  greater  effect. 

Slxiices. — Methods  of  admitting  water  to  an  Overshot  or  Breast 
Wheel  are  various,  consisting  of  Overfall^  Guide-hiicket^  and  Penstock. 

An  OverfaU  Sluice  is  a  saddle-beam  with  a  curved  surface,  so  as  to  direct  the 
current  of  water  tangentially  to  buckets ;  a  Chiide-bttcket  is  an  apron  by  which 
water  is  guided  in  a  course  tangential  to  buckets;  and  a  Penstock  is  sluice-board  or 
gate,  placed  as  close  to  wheel  as  practicable,  and  of  such  thickness  at  its  lower  edge 
as  to  avoid  a  contraction  of  current.  Bottom  surface  of  penstock  is  formed  with  a 
parabolic  lip. 

Sb.rovidinR:  of  a  wheel  consists  of  plates  at  its  periphery,  which 
form  the  sides  of  the  bucket. 

Height  offaU  of  a  water- wheel  is  measured  between  surfaces  of  water  in  penstock 
and  in  tail-rcux,  and,  ordinarily,  two  thirds  of  height  between  level  of  rcQcrvoir  and 
point  at  which  water  strikes  a  wheel  is  lost  for  all  effective  0))^ration. 

Velocity  of  a  wheel  at  centre  of  percussion  of  fluid  should  be  fbom  .5  to  .6  that 
of  flow  of  the  water. 

Total  effect  in  a  fall  of  water  is  expressed  by  product  of  its  weight 
and  height  of  its  fall. 

Ratio   of  Kflteotive   I*ower  of  "Water   ^otprs. 

Overshot  and  high  I  m^^  ^g  »„  ^   .^ 
breast *;   }  ft«m  .68  to  .6   to  i 

Turbine "     .6   to  .8  to  i 

Breast... "     .45  to  .65101 

Hydraulic  Ram "  .6   to  i 


Undershot,  PoDcelet'-s,  from  .6   to  .4  to  i 

Undershot. .» . .    "     .^27  to .45  to i 

Impact  and   Reac-')     „      •   to  c  tot 

tion f  *   ">-5   *aj 

Water-pressure  engine  **  .8  toi 


Oversliot-AVh.eel, 

OvEBSHOT-wHEEL. — The  flow  of  water  acts  in  some  degree  by  iippact, 
but  chiefly  by  its  weight. 

Lower  tiie  speed  of  wheel  at  its  circumference,  the  greater  will  be  mechan- 
ical effect  oi  the  water,  in  some  cases  rising  to  80  per  cent. ;  with  velocities 
of  from  3  to  6.5  feet,  eflSciency  ranges  from  70  to  75  per  cent.  Proper  ve- 
locity is  about  5  feet  per  second. 

Number  of  buckets  should  be  as  great,  «nd  should  retain  water  as  long,  as 
practicable.  Maximum  effect  is  attained  when  the  buckets  are  so  numerous 
and  close  that  water  surface  in  the  bucket  commencing  to  be  emptied  should 
come  in  contact  with  the  under  side  of  the  bucket  next  above  it.  Moles- 
worth  gives  12  ins.  apart. 

Curved  buckets  give  greatest  effect,  and  Radial  give  but  .78  of  effect  of 
Elbow  buckets.    Wheel  40  feet  in  diameter  should  have  152  buckets. 

Small  wheels  give  a  less  effect  than  large,  in  consequence  of  their  greater 
centrifugal  action,  and  discharging  water  from  the  buckets  at  on  earlier 
period  than  with  larger  wheels,  or  when  their  velocity  is  lower. 

When  head  of  water  bears  to  faXL  or  height  of  wheel  a  proportion  as  great 
as  I  to  4  or  5,  ratio  of  effect  to  power  is  reduced.  The  general  law  there- 
fore is,  that  ratio  of  effect  to  power  decreases  as  proportion  of  hecui  to  toiaJ 
head  andfaU  increases. 


564 


HTBBODTNAHICS. 


Wheel  with  shallow  Shrouding  acts  more  efficiently  than  one  where  it  is 
deep,  and  depth  is  usually  made  lo  or  12  ins.,  but  in  some  cases  it  has  been 
increased  to  15. 

Breadth  of  a  wheel  depends  upon  capacity  necessary  to  give  the  buckets 
to  receive  required  volume  of  water. 

Form,  of  Buckets.— ^KA\a\  buckets— that  is,  when  the  bottom  is  a  right  line— in- 
volve so  great  a  loss  of  mechaDical  effect  as  to  render  their  ase  incompatible  with 
economy;  and  when  a  bucket  is  formed  of  two  pieces,  lower  or  inner  piece  is 
termed  bottom  or  floor,  and  outer  piece  arm  or  torut.  Former  is  usually  placed  in 
a  line  with  radius  of  wheel. 

Line  of  a  circle  passing  through  elbow,  made  by  junction  of  floor  and  arm,  is 
termed  division  circle,  or  bwket  pUch,  ana  it  is  usual  to  put  this  at  one  half  depth 
of  shrouding. 

When  arm  of  a  backet  is  included  in  division  angle  of  buckets,  that  is,  ^ — ,  n 

It 

representing  number  of  buckets,  the  cells  are  not  suflSciently  covered,  except  for  verj' 

shallow  shrouding;  hence  it  is  best  to  extend  arm  of  a  backet  over  x.2  of  division 

angle,  so  as  to  cover  or  overlap  elbow  of  backet  next  in  advance  of  It. 

Construction  of  Buckets  (Fig.  i) Capacity  of  bucket  should  be  3  times  volume 

of  water. 

^'S-  >•  Fairbaim  gives  area  of  opening  of  a  backet  in  a 

— ^ r — .— T--,-.  wheel  of  great  diameter,  compared  to  the  volume  of  it, 

^..-AVV    \  A  Ms  to 24. 

'"f'- \     \     '  /  \  Backets  having  a  bottom  of  two  planes,  that  is,  with 

a'        V'^V*--/    I         two  bottoms,  and  two  division  circles  or  bucket  pitches 

and  an  arm,  give  a  greater  effect  than  with  one  bottom. 

When  an  opening  is  made  hi  base  of  buckets,  so  as 
to  afford  an  escape  of  air  contained  within,  without  a 
loss  of  water  admitted,  the  buckets  are  termed  ven- 
tilated, and  effective  power  of  wheel  is  much  greater 
than  with  closed  bucketa 

D  =  distance  apart  at  periphery  =  d,  d  depth  of 
shrouding,  i  length  of  radial  start  =  .33  d,  Z  length  of 
backet  curve  =  x.  25  d  in  large  wheels,  and  i  in  wheels 
under  25  feet,  a  angle  of  radius  of  carve  of  bucket, 
with  radial  line  of  wheel  at  points  of  backet  =  15^. 
(Midesivorth.) 

To  Compute   Radius  and  Revolutions  of*  an  Oversliot— 
^wlieel,  and  Heiglit  of*' Fall  of  Water. 

When  whole  Fall  and  Veldcity  of  Flow,  etc.,  are  given,     —— =  r, 

—  n,     — 1.1=*',     and  ^'**'  =  c    h  representing  height  of  whole 


3.1416  r  ig  fc 

faU,  h'  height  between  the  centre  of  gravity  of  discharge  and  half  depth  of  bucket 
upon  which  water  flaws,  v  velocity  of  flaw  in  feet  per  second,  a  ang^  tMck  point  qf 
entrance  of  water  into  a  bucket  makes  with  summit  of  wheel,  n  number  qf  revolutions 
per  minute,  c  velocity  of  wheel  ctt  its  circumference  per  second,  and  r  its  radius. 

NoTK.— Height  of  whole  fall  is  distance  between  surface  of  water  in  flume  and 
point  at  which  lower  buckets  are  emptied  of  water,  and  as  a  proportion  of  velocity 
of  flow  is  lost,  it  is  proper  to  assume  height  ft'  as  above  given. 

Illustration.— A  fall  of  water  is  30  feet,  velocity  of  its  flow  is  16  feet  per  second, 
angle  of  its  impact  upon  backets  is  12^,  and  required  velocity  of  wheel  is  8  feet  per 
second ;  what  is  required  radius,  number  of  revolutions,  and  helriit  of  fall  nnou 
wheel? 

*'=^X  1.1=4. 38/'«*/ «>8- "*'  =  -978;  ^^P^==^  =  ia.95/«rfradM«; 
»ff  i-f.978      1.978  ^  ' 

3.Z416X   12.95  40.68  """ 


HTDBODTKAMICS.  565 

Wheu  Number  of  RevoluHons  and  Ratio  between  Velocifiea  of  Flow  and  at 

Circumference  of  Whed  are  given. 

\/.cxx>772  (»n)*A-(-(i-|-cos.  a)2  —  i-fcos.  a)  v  3.i4i6nr 

.000386  «n)»  '         c  '  30 

iLLCSTRATiOH.— If  Dumber  of  revolutions  are  5,  x  =>  2,  and  fiiU,  etc. ,  as  in  previous 
case,  what  is  radius  of  wheel,  velocity  of  flow,  and  height  of  fall? 

V:^77i  { g  X  5')'  X  30  +  ( I  97»)'  -  '978  ^  ^518^  ^  y^^ 

.000386(2X5)*  .0386        ■*"*  •' 

3_i4i6  X  5  X  13-4'  _,  ^  ^^^     ^^^^6  7.03  X  2  =  1406  vdocitif  of  flow,  and  ^^^ 
30  04.33 

X  I  i=y^^feei 

Xo   Compute    "W^xdtli   of  an   Oversliot-'svheel. 

C  V 

— ;  =  10.    G  rejTresetiImp  a  coefficient  =■  3,  toAeu  buckets  arefUed  to  an  excess,  and 

9  C 

5  when  they  are  deficiently  fllled,  V  volume  of  water  in  cube  feet  per  second,  s  depth 
of  shrouding,  w  width  of  buckets,  both  in  feet,  and  c'  velocity  of  wheel  at  centre  of 
Arouding,  in  feet  per  second 

'  iLLUSTRATioM  ~A  wheel  is  to  be  31  feet  in  diameter,  with  a  depth  of  shrouding  of 
I  foot,  and  is  required  to  make  5  revolutions  per  iriinute  under  a  discharge  of  10 
cube  feet  of  water  per  second ,  what  should  be  width  of  buclcets? 

A«iumeC-4,andc'r.3^^^X3-4»6X5^y854.    Then    *  ^  '  °    509/«^ 

60  .  1  X  7054 

Xo   Compute   Nuin"ber  of  BuoUeta. 

7(1  +  — J  —  12  =  d,  and     ^    =  n.     D  representing  diameter  of  wheel,  d  dis- 
tance between  centres  of  buckets,  in  feet,  and  n  number  of  buckets. 
Illustration  —Take  elements  of  preceding  case. 

Then  7  (,  +  -J-)  =.  7  X  2.2  -  ,2  =  1.283,  and  31I=i^3_L4i6X_i  ^  „.^^  g^y  73 

buckets;  hence  -  —  ^=50,  angle  of  subdivision  of  buckets. 
72 

Xo'  Compute   Il2fi*eot  of  au   Overshot-'wlieel- 

v*'»-(gv«+/) 

^.^ —     -      '  =  p.    10  representing  weight  of  cube  foot  of  water  in  lbs. , 

1/  velocity  of  it  discharged  at  taU  of  wheel,  in  feet  per  second,  V  vatum/e  of  flow  in 
cube  feet,  and  f friction  of  wheel  in  lbs. 

Illustratiok.  -—A  volume  of  13  cube  foet  per  second  has  a  fiUl  of  10  feet,  wheel 
Ming  bttt  8.5  feet  of  it,  and  velocity  of  water  discharged  is  9  feet  per  second;  wha^ 
Is  effect  of  fiill? 

Friction  of  wheel  is  assumed  to  be  750  lbs. 


ja  X  8.5  X  62. 5_-  (g^  X  la  X  62.5  +  750^ 


6375  — (1.26  X  75o-h7S0)_  4680  ^ 

12X10X62.5  7500  7500 

.6»4  t:i  ratio  of  effect  to  power ;  and  4680x60  Meofidf-^  33  000  -  8.51  H^. 

Xo   Compute   l*0"^^er  of  an.   Oversliot--wlieel. 

Rule.*— Multiply  weigbt  of  water  in  lbs.  discharged  upon  wheel  in  one 
minute  by  height  or  distance  in  feet  from  centre  of  opening  in  sate  to  sur- 
face of  toil-race;  divide  product  by  33000,  and  multiply  quotient  by  as- 
•umed  or  detennined  ratio  of  effect  to  power.  Or,  for  general  puiposeai 
divide  product  by  50000,  and  quotient  is  W. 

Or,  .0853  V  /t  =  H»,  and  ^  inVper  second;  or,  ^^^  ^W  per  minitte. 

aB 


566  HYDBODYNAMICS. 

Mechanical  £lffect  of  water  is  product  of  its  weight  into  height  from  which 
it  falls.  . 

Example. — Volume  of  water  discharged  upon  an  oversbot-wheel  is  640  cube  feet 
per  minute,  and  effective  height  of  fkllis  22  feet;  what  is  ^  ? 

-i2 J — ??  =  36.67,  which,  X  .75 = assumed  ratio  of  effect  to  power  =  20  ff. 

33000 

XJsefiil   JbSfibot  of  an   Overshot-'wrb.^el. 

With  a  large  wheel  ranning  in  most  advantageous  manner,  .84  of  power 
may  be  taken  for  effect  . 

Velocity  of  a  wheel  bears  a  constant  ratio,  for  maximum  effects,  to  that 
of  the  flowing  water,  and  this  ratio  is  at  a  mean  .55. 

Ratio  of  effect  to  power  with  radial-buckets  is  .78  that  of  elbow-buckets. 
Ratio  of  effect  decreases  as  {proportion  of  head  to  total  head  and  fall  increases. 
Thus,  a  wheel  10  feet  in  diameter  gave,  with  heads  of  water  above  gate, 
ranging  from  .25  to  3.75  feet,  a  ratio  of  effect  decreasing  from  .82  to  .67  of 
power. 

Higher  an  overshot-wheel  is,  in  proportion  to  wfade  descent  of  walef, 
greater  will  be  its  effect  Effect  is  as  product  of  volume  of  water  and  its 
perpendicular  height. 

Weight  of  arch  of  loaded  buckets  in  lbs.  is  ascertained  by  multiplying 
444  of  their  number  by  number  of  cube  feet  in  each,  and  that  product  by  40. 

XJxvderslxot-'wlieel, 

Undershot-whrbl  is  usually  set  in  a  curb,  with  as  little  clearance  for 
escape  of  water  as  practicable ;  hence  a  curb  concentric  to  this  wheel  is  more 
effective  than  one  set  straight  or  tangential  to  it 

Computations  for  an  undershot-wheel  and  rules  for  construction  are  near- 
ly identical  with  those  for  a  breast-wheel. 

Buckets  are  usually  set  radially,  but  they  may  be  inclined  upward,  so  as 
to  be  more  effectively  relieved  of  yater  upon  their  return  side,  and  thev  are 
usually  filled  from  .5  to  .6  of  their  volume.  Dej)th  of  shrouding  should  be 
from  15  to  18  ins.,  in  order  to  prevent  overflow  Of  water  within  the  wheel, 
which  would  retard  it 

Velocity  of  periphery  should  equal  theoretical  velocity  due  to  head  of 
water  x  .57. 

NoTB.— "When  constructed  without  shrouding,  as  in  a  current-wheel,  etc,  buckets 
become  blades. 

Sluice-gate  should  be  set  at  an  inclination  to  plane  of  curb,  or  tang^tiid 
to  wheel,  in  order  that  its  aperture  may  be  as  close  to  wheel  as  practicable ; 
and  in  order  to  prevent  partial  contraction  of  flow  of  water,  lower  edge  of 
sluice  should  be  rounded. 

Effect  of  an  undershot-wheel  is  less  than  that  of  a  breast-whed,  as  tbe 
fall  available  as  weight  is  less  than  with  latter. 

rTo  Ooxnpxite  Po-wer  af  an.  Uxiderehot-'urlieel. 

Proceed  fts  per  rule  for  an  overshot-whed,  using  937S0  for  50000,  imd  ^ 
for  ,75. 

_   M  —    ^       T^3 

Or,  V  k  .ooo66  =  H»;  or,  -—^ —  ±=  V.  '  V  repretmdn^  volyime  o/uxtter  in  eu^ 
/bet  ppr  nf^Nnte,  wnd  K  Kemd  of\tfaier  in  feet 


HYDRODTNAMlCfd.  tfij 

Fonoelet's   "WTieel* 

PoNCBLET*s  Whkbi* — Buckets  are  curved,  so  that  flow  of  water  is  in 
course  of  their  concave  side,  pressing  upon  them  without  impact;  and  effect 
is  greater  than  when  water  impinges  at  nearly  riglit  angles  to  a  plane  sur- 
face or  blade. 

This  wheel  is  advantageous  for  application  To  fails  Uttder  6  feet,  as  fts 
effect  is  greater  than  that  of  other  undershot  wheels  with  a  curb,  and  for 
falls  from  3  to  6  feet  its  effect  is  equal  to  that  of  a  Turbine. 

For  falls  of  4  feet  and  less,  efficiency  is  65  per  cent,  for  4.25  to  5  feet,  60 
per  cent,  and  from  6  to  6.5  feet,  55  to  50  per  cent 

In  its  arrangement,  aperture  of  sluice  should  be  brought  close  to  fkce  of 
wheeL  First  part  of  course  should  be  inclined  from  4°  to  6° ;  remainder  of 
course,  which  should  cover  or  embrace  at  least  three  buckets,  should  be  car- 
ried concentric  to  wheel,  and  at  end  of  it  a  quick  fall  of  6  ins.  made^  t*  guard 
against  eff'ect  of  back-water.  Sluice  should  not  be  opened  over  i  foot  in  any 
caaO)  add  6  ins.  is  a  suitable  height  for  &lls  of  5  and  6  feet 

Distance  between  two  buckets  should  not  exceed  8  or  10  ins.,  and  radius 
of  wheel  should  not  be  less  than  40  ins.,  or  more  than  8  feet 

Plane  ot  stream  or  head  of  water  should  meet  periphery  of  wheel  at  an 
angle  of  from  24°  to  30°,  Space  between  wheel  and  its  Curb  shouM  no|  ex- 
cecit  .4  of  an  inch. 

Depth  of  shrqudinff  should  be  at  least  .35  depth  of  head  of  water,  or  such 
as  to  pr^ent  W^ter  m)m  flo#in^  through  it  and  ovet»  the  backets,  4ud  width 

of  wheel  should  be  equal  to  that  of  stream  of  impinging  water. 

« 

Eff'ect  of  this  wheel  increases  with  depth  of  water  flow,  and,  therefore, 
other  elements  being  -eqnal,  as  Ailing  of  buckets,  to  obtain  maximum  effect, 
water  should  flow  to  buckets  without  impact,  and  velocity  of  wheel  BlMUld 
be  only  a  little  less  than  half  that  of  velocity  of  wat^.r  flowing  upou  wheel. 

170  Compute   P«>oportions  of  a,  Poki omelet  "^l^lieel. 

Note.—  As  it  is  Impracticable  to  arrive  at  the  results  by  a  direct  formula,  they 
must  be  obtained  by  gradufU  approximation. 

ExAMPLX. — Height  or  fall  is  4.5  feet:  volume  of  water  40  cube  feet  per  second; 
radiusof  wbeel  =  2^or9feet;  depth  or  the  stream  ==.  75 /ee^;  and  C  assumed  at  .9. 

V  riprtati^ng  voUim€  qf  water  in  cuiffefsetper  Koond,  h  height  o/faUy  4  d^th  q^ 
throuding  =  —  . 1-  d' ;  d'  opening  of  and  e  wicUh  oftluice,  r  radi-As  of  curva- 

iure  of  buckets  ^= ,  and  a  ofwheelj  all  in  feet;  n  number  qfrcwltUiom  =  - — 

per  nUn^ ;  e  ieSoeit^  oftiraMi^renee  of  vtlhed  4nd  «  ^Oocify  cf  water ^  ft«M  imfeet 
par  tecond;  C  cOejfic€eM  of  tiHstdnie  dfjlow  ofwalet;  a)  angle  bditetn  plane  of 

'Sfc 

Jlowimg  water  and  Otat  qf  circuntference  qf  wheel  at  point  of  contact^  sin.  of  -■=. 
•>Acoa  « ;  *  a^le  made  by  cirdwnfir&nce  ofwhtel  with  end  ofbuckd9=.^  lang.  y; 
and  y  angU  of  direetim  <if  wdktfrdtn  eircmt^fortncB  ofwkita  sz  ^     I-       ^, 


Then  ©  =  •9'vA  g\^ )  =  -9  X  16.29  =  »4-^  f^  •'•  velocity  of  wheel,  being 


568  HYDB0DYNAM1C8. 

1MB  than  half  velocity  of  water  •,  c  r=  ^ — ^ — =  7  feet; 

2 

.95,  angle  corresponding  to  which  =  14O  30';  n  =  ^°  ^  =  7.43  revoluHofu; 
«  =  2  tang,  y  =  2  X  .25862  =  .517 24  .-.  «  =  27°  20';  e  =z—^-—=z 3.63 feet; 
r  =  —  —  ^ — >  =  -55l — =^1.7^  feet;    fl;  =  8in.  -  =  Vcoe. t  =  Vcoe. 27® 90'  =  .943 


COB.  27O  20'        .88835  '     -^        '  3 

=r8in.  of  70°  34' .'.  X  =  141°  8'.    Effect  is  a  maximum  when  c  =  .5  «  cos.  y. 

Fi^.  2.  Construction  0/ Buckets  (Fig.  2).    (^otewoortt.) 

From  point  of  bucket,  a,  draw  a  line,  a  6,  at  an  angle  of  26^ 

/    with  radial  line,  point  6,  where  this  line  cuts  an  imaginary  cir- 

'     cle,  drawn  at  a  distance  of  «  X  x.tj  fh>m  periphery  of  wheel,  is 

ib     centre  from  which  bucket  is  struck  with  radius,  b  a.    Radius  of 

;  ^    wheel  should  not  be  less  than  7,  or  more  than  16  feet 

;    '^      Curb  should  fit  wheel  accurately  for  18  or  20  ins.,  measured 
1"  '  back  fh>m  perpendicular  line  which  passes  through  axis  of 
\        wheel,  the  breast  should  then  incline  i  in  10,  or  x  in  15  towards 
sluice. 

\        After  passing  axis  of  wheel  in  tail-race,  curb  should  make  a 
sudden  dip  of  6  in& 

To  Compute    Power  of*  a   £*oixoelet  AVhieel. 

880  ^P 
V  k  .001 13  =  IP,    and  — 7 —  =  V.    V  =  velocity  of  theoretical  periphery = .  55.  ♦ 

A 

Number  of  buckets  1.6  D  + 1.6,  D  =  diameter  of  wheel  in  feet  Shrouding  .  33  to 
.5  depth  of  head  of  water,  and  D  ■=  2  A,  and  not  less  than  7  or  more  than  x6  feet 

B  reas  t-Tvlie  el . 

Breast-whbbl  is  designed  for  fails  of  water  varying  from  5  to  15  feet, 
and  for  flows  of  from  5  to  80  cube  feet  per  second,  'it  is  constructed  with 
either  ordinary  buckets  or  with  blades  confined  by  a  Curb, 

Enclosure  within  which  water  flows  to  a  breast-wheel  as  it  leaves  the  sluice 
is  termed  a  Curb  or  Mantle, 

When  blades  are  enclosed  in  a  ctir5,  they  are  not  required  to  hold  water ; 
hence  they  may  be  set  radicU^  and  they  should  be  numerous,  as  the  loss  of 
water  escaping  between  the  wheel  and  the  curb  is  less  the  greater  their  num- 
ber ;  and  that  they  may  not  lift  or  carrv  up  water  with  them  from  tail-race, 
it  is  proper  to  give  them  such  a  plane  that  it  may  leave  the  water  as  nearly 
vertical  as  may  be  practicable. 

Distance  between  two  buckets  or  blades  should  be  from  1.3  to  1.5  times 
head  over  gate  for  low  velocity  of  wheel  and  more  for  a  high  velocity,  or 
equal  to  depth  of  shrouding,  or  at  from  10  to  15  ins. 

It  is  essential  that  there  should  be  air-holes  in  floor  of  buckets,  to  prevent 
air  from  impeding  flow  of  water  into  them,  as  the  water  admitted  is  nearly 
as  deep  as  the  interval  between  them ;  and  velocity  of  wheel  should  be  SQcli 
that  buckets  should  be  filled  to  .5  or  .635  of  their  volume. 

When  wheels  are  constructed  of  iron,  and  are  accurately  set  in  masoniy, 
a  clearance  of  .5  of  an  inch  is  suflliclent. 

*  ^9  g  k  i%  /tit  p*r  MMmA, 


HYDRODYNAMICS.  569 

High  Breast-wkeel  is  used  when  level  of  water  in  iail-raoe  and  penstock 
or  fortbay  are  subject  to  variation  of  heights,  as  wheel  revolves  in  airection 
in  which  water  flows  from  blades,  and  oach^oater  is  tlieref ore  less  disad- 
vantageonSf  added  to  which,  penstocks  can  be  so  constructed  as  to  admit  of 
an  adjustable  point  of  openuig  for  the  water  to  flow  upon  the  wheel. 

Efi^ect  of  this  wheel  is  equal  to  that  of  the  overshot,  and  in  some  instances, 
from  the  advantageous  manner  in  which  water  is  admitted  to  it,  it  is  greater 
when  both  wheels  have  same  general  proportions. 

Under  circumstances  of  a  variable  supply  of  water,  ^reasHtfh^el  is  better 
designed  for  efl^ctive  duty  than  Oversfiotj  as  it  can  be  made  of  a  greater 
diameter;  whereby  it  affords  an  increased  facility  for  reception  of  water 
into  its  buckets,  also  for  its  discharge  at  bottom ;  and  further,  its  backets 
more  easily  overcome  retardation  of  back-water,  enabling  it  to  be  worked 
for  a  longer  period  in  back-water  consequent  upon  a  flood. 

Id  a  well-constructed  wheel  au  efOciency  of  03  per  cent  was  observed  by  M. 
Morin,  and  Sir  Wm.  Fairbairn  gives,  at  a  velocity  of  circumference  of  wheel  of 
5  feet,  an.  ^Bciency  of  75  per  cent,  velocity  usually  adopted  by  him  was  from  a 
to  6  feet  per  second,  both  for  high  and  low  falls;  a  mfnimum  of  3.5  feet  for  a  foil  of 
40  and  a  maximum  of  7  feet  for  a  foil  of  5  to  6  feet. 

When  water  flows  at  flrom  10°  to  12°  above  horizontal  centre  of  wheel,  Fairbairn 
gives  area  of  opening  of  buckets,  compared  with  their  volume,  as  8  to  24. 

The  capacity  between  two  buckets  or  blades  should  be  very  nearly  double  that  of 
volume  of  water  expended. 

1*0  Compute  Proportioixs  and  Sfieot  of*  a  Sreast-'wlieel. 

lUtUSTKATioN. — Flow  of  Water  is  15  cube  feet  per  second;  height  of  fall,  measured 
flrom  centre  of  pressure  of  opening  to  tail-race,  is  8.5  feet;  velocity  of  circumference 
of  wheel  5  feet  per  second;  and  depth  of  buckets  or  blades  i  foot,  filled  to  .5  of  their 
volume. 

V  IS 

Width  of  wheel  =  — ,  d  r^reseiUing  deptA,  and  v  velocity  of  bucketi  ;  — ^—  =  3 ; 

and  as  buckets  are  but .  5  filled,  3  -i- .  s  =  6fuL   Assume  water  is  to  flow  with  double 
velocity  of  circumference  of  wheel ;  v  =  5  x  2  =  lofeet ;  and  foil  required  to  gen- 

^3                        100 
erate  this  velocity  =  —  xi.i  =  *'  =  z X  1. 1  =  171  fut.  , 

2  9  64.33 

Deducting  this  height  ftora  total  fall,  there  remains  for  height  of  curb  or  shrood- 
ing,  or  foil  daring  which  weight  of  water  alone  acts,  ft — h'  =  8.5  — 1.71  zz^t.-j^fut 

Making  radius  of  wheel  12  feet,  and  radius  of  bucket  circle  ix  feet,  whole  mechan- 
ical effect  of  flow  of  water  =  15  x  62.5  X  8.5  =  7968.75  26a,  Arom  which  is  to  be  de- 
ducted ft'om  10  to  15  per  cent,  for  loss  of  water  by  escape. 

Theoretical  efibct,  as  determined  by  M.  Morin,  velocity  of  circumference  about 
.5  of  that  of  water,  and  within  velocities  of  1.66  to  6  feet 

/(pcoaa— t>)t>  ^  ^,\  ^  ^^^     ^  repnwnting  wngU  of  direction  of  velocity  vnik 

ufhick  toaUr  fiows  to  takeel  at  centre  of  thread  offlovt  and  directum  of  velocity  of 
wheel  at  this  line,  and  h*'  h—h'  in  feet 

a  Is  here  assumed  at  20^.  See  Weisbach,  London,  1848,  vol.  ii.  page  197,  and  for 
tbe  necessarily  small  value  of  a,  its  cosine  may  be  taken  at  x.    Go&  ao°  =  .94. 

Then  (^'°^  ^7 ^^^  +  6.79^  X  xsX62.5  =  7.474X  15X62.5  =  7006.9  Mw.,  which 
\         32- "o  / 

is  to  be  reduced  by  a  coefficient  of  .77  for  a  penstock  cluice,  and  .8  for  an  overfall 
Blnice. 

Theoretical  effect,  as  determined  by  Weisbach,  7273  Ihs.^  from  which  are 
to  be  deducted  losses,  which  he  computes  as  follows : 

TiOfls  by  escape  of  water  between  wheel  and  curb =   916 

Loss  by  escape  at  sides  of  wheel  and  curb =   x8o 

Friction  and  resistance  of  water  =  2. 5  per  cent. =   160 

1256  Vb». 
3B* 


570  HYPBODYNAMICS. 

Frlotton  ofwbMl  m  per  fbrmala,  page  571,  sc WmC  .0686;    aas.048    /-->  = 

^llSSZss  4. 36  WW.;       and  n  = ^^^ — 2  =  4  rMtuttont.       C  =  08. 

r=4.36-r-a  =  2.xa     Then  x6 goo X  3.18  X  4X  .08  X. 9086  =^98.99  Ux. 

Whence,  ^ ^^"^  "r9-9  __  ^^  efficiency^  upon  assumption  of  losses  as  com- 

7968.75 
puted  by  Weishach. 

To  Compute  1P<%-v^&t  of"  A  Breast-'^^lieel. 

Rule. — Proceed  as  per  rule  for  an  overshot-wlieel,  using  55000  and  .65 
with  a. high  breast,  and  62  500  and  .6  for  a  low  breast 

Or,  High  breast,  .0612  V  A  =  ff ,    and  ^^4 —  =  ^  J    *•*<*  ^'^^  breast  0546  V  *  = 

n 

ff,    anditAi^^v 

iLLusTRATHur.^Aasume  elements  of  preceding  case.    Then  'SX  *5X  .sX — 

33000 
=  14-49,  ^hich  X  .7  =  10. 14  liartei. 

7006.9 ~ "564- igg:6X6o ^  ^^     ^^^ 
33000 

Openings  ofBuek$ts  or  Blades.— High  Breast,  .33  sq.  foot,  and  Lone  Breast,  .9  so. 
foot  for  each  cube  foot  of  their  volume,  or  generally  6  to  8  in  opening  in  a. high 
breast  and  9  to  12  in  a  low  breast. 

f\)nns  of  Buckets.— Two  Part.  dt^D,  »=  5  d,  1 1.*5  d  in  large  wheels,  and  =d 
In  wheels  less  than  25  fbet  in  diameter. 

Three  Part  Buckets.~d  divided  into  3  equal  parts;  J  =  .25  d,  d  =  D,  »  =  .33  d,  i  =3 
d  in  large  wheels,  and  .75  d  in  wheels  less  than  35  feet  in  diameter. 

Ventilating  Buckets  (Fairbaim^s).    Spaces  are  about  i  Inch  in  width. 

NoTsa.— A  Committee  of  the  Franklin  Institute  ascertained  that,  with  a  high 
breast  wheel  20  feet  in  diameter,  water  admitted  under  a  head  of  9  1n&,  and  at  17 
feet  above  bottom  of  wheel,  elbow  buckets  gave  a  ratio  of  effect  to  power  ol  .731  at 
a  maximum,  and  radial  blades  .653.  With  water  admitted  at  a  height  of  33  feet 
8  ina.,  elbow-buckets  gave  .658,  and  radial  blades  .638. 

At  iaQ6  feet  above  bottom  of  wheel,  with  a  head  of  4.29  feet^  elbow-buoketa  gave 
.  544,  ana  bladee .  329. 

At  7  ^t  above  bottom  of  wheel,  and  a  head  of  2  ftet,  a  >f»e  *treast  gave  for 
elbow-buckets  .62,  and  for  blades  .531. 

At  3  feet  8  Ins.  above  bottom  of  wheel,  and  a  head  of  i  foot,  elbowbnoketa  gare 

.555,  and  blades. 533. 

Cnrrent-'WT'lieel. 

CuRRENT-WHRBU^D.  K.  Clark  assigns  the  most  saitable  ratio  of  v«loo 
ity  of  blades  to  that  of  current  as  40  per  cent. 

Depth  of  blades  should  be  from  .35  to  .3  of  radius :  it  should  not  be  less 
than  13  or  14  ins.  Diameter  is  usually  from  13  to  16.5  feet,  with  13  l)lades ; 
but  it  is  thought  that  there  might  be  an  advantage  in  applying  x8  or  even 
34.  The  blades  should  be  completely  submerged  at  lower  side,  but  not  mpre 
tliaii  3  ins.  under  water,  and  not  less  than  3  at  one  time. 

*L-  (tj  _  »)»  =  H».    a  r^ftesenting  area  of  tertical  section  of  imnersed  btadet  in 

»5o 

sq.  feet,  s  velocity  of  wheel  at  drwi^fermcey  amd  «  ofttremm,  Mk  infest  ptr  mcqmL 
Or, .  38  —  V  6a.  5  =  iu</W  effeeL    Henoe,  efflolenoy  = .  3a 


HYDBOt^TKAMIGS.  57 1 

Flutter  w  Setw-mUi  Wheel — Is  a  small,  low  breast-wheel  operating  under 

a  high  head  of  water ;  the  design  of  its  construction,  water  i>eing  plenty,  is 

the  attainment  of  a  simple  api)Tication  to  high-speed  (KHinections,  as  a  gang 

or  circnlar  saw.    In  efiect  it  is  from  .6  to  .7  that  of  an  overshot-wh^  of 

like  head  of  faU. 

v« 

—  (v^t)=zl3P.    V and t oi preceding. 
150 

PViotion  of*  Journals  or  <3-udg:eon.s. 

A  very  considerable  portion  of  mechmiical  effect  of  a  wheel  is  lost  in  ef- 
fect absorbed  by  friction  of  its  gudgeons. 

To  Compute   ITriotion   of*  Jourxietls  or  Qudgeoxus  ot  a 

AVater->vlieel . 

W  rn  C  .  0086  =/  W  representing  weight  of  wheel  in  lbs. ,  r  raditu  0/ gudgeon  in 
ms.,  asid  n  number  qf  revolutions  ofwheaper  mimUe. 

For  well-turned  surfaces  and  good  bearipgs,  C=:.o7s  with  oil  or  tallow;  when 
best  of  oil  is  well  supplied  =  .054 ;  and,  as  in  ordinary  circumstances,  when  a  black- 
lead  unguent  is  alone  applied  = .  ix. 

IU.U8TRATI0N. — A  wheol  Weighing  25  000  Ib&  has  gudgeons  6  ina  in  diameter,  and 
makes  6  revolatlons  per  minute;  what  is  loss  fA  effect? 

A8SumeG  =  .o8.    ThenasoooX  -  X 6X08 X. 0086 =309.6  ^. 

'W«igpfait«.~/rM»  Mtkeds  of  x8  to  ao  feat  in  diameter  wiU  weigh  fimn  800  to 
1000  Iba  per  H*. 
Wood  wheels  of  30  feet  in  diameter,  2000  to  2500  lbs.  per  H*- 

rro  Compute  Diameter  and  JonmalB  of*  a  Shaft,  Stress 
lAid  iuiifbxrml3^  alons  its  X^enstb. 

Casilnm, — r-^**-     Wood,6.ia3/ — zsd.    W  representing  weight  or  load  in 

lbs..  I  length  qfsk^  between  jowmals  in  Jetty  emd  d  diameter  of  she^  w  its  bedy 
in 


Journals  or  Gudgeons C^t  Iron^  .048     / — =d. 


When  Shaft  has  to  rteiet  both  Laieral  and  Torsionai  Streu.—Aacettahk 
the  diameter  for  each  stress,  and  cnbe  root  of  sum  of  their  cubes  will  give 
diameter. 

To  Compute  T>inaenslot&s  ot  i^rms. 

CadJrm^^^^w.    d nprtsenting diameter ^sk(\ftt and w width 0/ am, bath 
ifn 

w 
in  isu.^  n  numter  of  ariM, — =s<,  and  t  thickntse  ^arm, 

Whfn  Arm  is  j/Oak^  w  should  be  1.4  times  that  of  Iron,  and  thickness  .7  that 
of  width. 

Al  Axnoranda. 

A  volome  of  wator  of  17. 5  cube  feet  per  second,  with  a  ftill  of  25  fttet,  applied  to  an 
andeilhoA-wheel  will  drive  a  hammer  of  1500  Iba  in  weight  fh>m  loo  to  lao  blows 
per  minute,  with  a  lift  of  f^om  i  to  1.5  feet* 

A  Tohime  of  water  of  3x<5  cube  feet  per  second,  with  a  fall  of  12.5  feet,  applied  to 
a  wheel  having  a  great  height  of  water  above  its  summit,  being  7.75  feet  in  diame- 
ter, will  drive  a  hammer  of  $00  lbs.  in  weight  100  blows  per  minute,  with  a  Uft  of  9 
feet  xo  Ina    Estimate  of  power  3x.  5  horses. 

e  Tolam*  of  water  raqBlrtd  for  •  bammeV  lacrMUM  In  11  maeli  grwtor  r»tfo  tluui  Ttlodiy  to  >•  glTW 
to  It.  it  boinf  BMrly  m  c«b«  of  Tolocity. 


572  HYDROBTKAMIOS. 

A  Stream  and  Overshot  Whee\  of  following  difnensions— ti2.,  height  of  head  to 
centre  of  openiDg,  24.875  ina  ;  opening.'  1.75  by  Bo  ins. ;  wheel.  22  feet  in  diameter 
by  8  feet  foee;  53  buckets,  each  i  foot  fn  depth,  making  ^5  revolutions  per  niinvte 
-^rove  3  run  of  4.5  feet  stones  130  revolutions  per  minute,  with  all  attendant  ma- 
chinery, and  ground  and  dressed  25  bushels  of  wheat  per  hour. 

4.5  bushels  Southern  and  5  bushels  Northern  wheat  are  required  to  make  i  bar- 
rel of  flour. 

A  Breast-wheel  and  Stream  of  following  dimensions— viz.^  head,  20  feet ;  height 
of  water  upon  wheel,  16  feet;  opening,  18  feet  by  2  ins. ;  diameter  of  wheel,  26  feet 
4  ins. ;  face  of  wheel,  20  feet  9  ins. ;  depth  of  buckets,  15.75  ins. ;  number  of  buck- 
ets, 70;  revolutions,  4.5  per  minute --.drove  6144  self-acting  mule  spindles;  160 
looms,  weaving  printing-cloths  27  ins.  wide  of  Ko.  33  yarn  (33  hanks  to  a  lb.),  and 
produeing  24ocx>  hanks  in  a  day  of  n  hours. 

Horizontal   AVlieels, 

In  horizontcd  water  ■■  wheels^  water  produce  its  effect  either  by  Impact, 
Pressure^  or  Reaction,  but  never  directly  by  its  weight. 

These  wheels  are  therefore  classed  as  Impact,  Pressure,  and  Reaction,  bat 
are  now  designated  by  the  generic  term  of  Turbine. 

Tu.r"bines. 

Turbines,  being  operated  at  a  higher  number  of  revolutions  than  Ver- 
tical Wheels,  are  more  generally  applicable  to  mechanical  purposes ;  but 
in  operations  requiring  low  velocities.  Vertical  Wheel  is  preferred. 

For  variable  resistances,  as  rdllng-mills,  etc.,  Verticiil  Wheel  is  far 
preferable,  as  its  mass  serves  to  regulate  motion  better  than  a  small 
wheel. 

In  economy  of  construction  there  is  no  essential  -difference'  between 
a  Vertical  Wheel  and  a  Turbine.  When,  however,  fall  of  water  and 
volume  of  it  are  great,  the  Turbine  is  least  expensive.  Variations  in 
supply  of  water  affect  vertical  wheels  less  than  Turbines. 

Durability  of  a  Turbine  is  less  than  that  of  a  Vertical  Whtol ;  and  it  is 
indispensable  to  its  operation^that  the  water  should  be  free  from  sand,  silt, 
branches,  leaves,  etc. 

With  Overshot  and  Breast  Wheels,  when  only  a  small  quantity  of  water  is 
available,  or  when  it  is  required  or  becomes  necessary  to  produce  only  a  por- 
tion of  the  power  of  the  fall,  their  efficiency  is  relatively  increased,  from  the 
blades  being  but  proportionately  filled ;  but  with  Turbines  the  effect  is  con- 
trary, as  when  the  aluioe  is  lowered  or  supply  decreased  water  enters  the 
wheel  under  circumstances  involving  greater  loss  of  effect.  To  produce 
maximum  effect  of  a -stream  of  water  upon  a  wheel,  it  must  flow  without  im- 
pact upon  it,  and  leave  it  without  velocity ;  and  distance  between  point  at 
which  the  water  flows  upon  a  wheel  and  level  of  water  in  reservoir  should 
be  as  short  as  practicable. 

Small  wheels  give  less  effect  than  large,  in  consequence  of  their  making  a 
greater  number  of  revolutions  and  having  a  smaller  water  arc. 

In  Higk-presture  Ttvtbines  reservoir  (of  wheel)  is  enclosed  at  top,  and  water 
is  admitted  through  a  pipe  at  its  side.  In  Lou>preuure,  water  flows  into  res- 
ervoir, which  is  open. 

In  Turbines  working  iinder  water,  height  is  measured  from  surface  of 
water  in  supply  to  sur&ce  of  dischai*ged  water  or  race ;  and  when  they  work 
in  air,  height  is  measured  from  surface  in  supply  to  centre  of  wheel. 

In  order  to  obtain  maximum  effect  from  water,  velocity  of  it,  when  leav- 
ing a  Turbine,  should  be  the  least  practicable. 


HYDBODYNAMTCS.  57  J 

Efficiency  is  greater  when  sluice  or"  supply  is  wide  open,  and  it  is  less  af- 
fected by  head  than  liy  variations  in  supply  of  water.  It  varies  but -little 
with  velocity,  as  it  was  ascertained  by  experiment  that  when  35  revolutions 
gave  an  effect  of  .64, 55  gave  but  .66. 

When  Turbines  operate  under  water,  the  flow  is  always  full  through  them ; 
hence  they  become  Reaction-ieheelsy  which  are  the  most  efficient. 

Experiments  of  Morjn  gave  efficiency  ;of  Turbines  as  high  as  .75  of  power. 

Angle  of  plane  of  water  entering  a  Turbine,  with  inner  periphery  of  it, 
shottld  be  greater  than  90^,  and  angle  which  plane  of  water  leaving  reservoir 
makes  with  inner  circumference  of  Turbine  should  be  less  than  90^^ 

When  Turbines  are  constructed  without  a  guide  curve*^  angle  of  plane  of 
flowing  water  and  inner  circumference  of  wheel  =  90°. 

Great  curvature  involves  greater  resistance  to  efflux  of  water ;  and  hence 
it  is  advisable  to  make  angle  of  plane  of  entering  water  ratlier  obtuse  than 
acute,  say  100° ;  angle  of  plaue  of  water  leaving,  then,  should  be  50°,  if  in- 
ternal pressure  is  to  balance  the  external ;  and  if  wheel  operates  free  of 
water,  it  may  be  reduced  to  25^  and  30^. 

If  blades  are  ^iven  increased  length,  and  formed  to  such  a  hollow  curve 
that  the  water  leaves  wheel  in  nearly  a  horizontal  direction,  water  then  boUi 
impinges  on  blades  and  exerts  a  pressure  upon  them;  therefore  effect  is 
greater  than  with  an  impact-wheel  alone. 

Turbines  are  of  three  descriptions :  Outward,  Downward,  and  Inward  flow. 

OutTvard-flovr  rrux^bizies. 

FouRNBTRON  TuRBiNif,  as  reccntlv  constructed,  may  be  considered  as  one 
of  the  most  perfect  Of  horizontal  wheels;  it  opiates  both  in  and  out  of 
back-water,  is  applicable  to  high  or  low  ^lls,  and  is  either  a  high  or  low 
pressure  turbine. 

In  hi^-pressure,  the  reservoir  is  closed  at  top  and  the  water  is  led  to  it 
through  a  pipe.  In  low-pressure,  the  water  flows  directly  into  an  open  res- 
ervoir.   Pressure  upon  the  step  ia  confined  to  weight  of  wheel  alone. 

Fonmejrron  makes  angle  of  plane  of  water  entering  =90°,  and  angle  of 
plane  of  water  leaving  =  30*^. 

Efficiency  is  reduced  in  proportion  as  sluice  is  lowered,  for  action  of  water 
on  wheel  is  less  favorabk'  exerted.  M.  Morin  tested  a  Foumeyron  turbine 
6.56  feet  in  diameter,  and  he  found  that  efficiency  varied  from  a  minimum 
of  24,  to  79  per  cent.,  when  supply  of  water  was  reduced  to  .25  of  full  supply. 
In  practice,  radial  length  of  blades  of  wheel  is  .25  of  radius,  for  falls  not  ex- 
ceeding 6.5  feet,  .3  for  falls  of  from  6.5  to  19  feet,  and  .66  for  higher  falls. 

To   Coxxxpute  Eitlexneiits  aiad   Reeul-ts. 


Bigh  Pretturef6.6y/h  =  v;      -=A;      ^    ;/     =Dt;     12.6  =^  =  V;    and 

.079  yk  =  W.  h  TtpresenHmg  head  o/uxUer,  v  vetocUjf  oftMrbine  at peHphery  per 
«i»ntf<e,  and  D  internal  diameter  of  turbine,  aU  in  feet,  V  volume  of  water  in  cube  feet 
per  second,  A  titm  of  area  of  orifices  in  sq.  feet,  and  W  effective  horsepovfer. 

I. a  0  =  external  diameter  of  turbine  in  feet,  when  it  is  more  than  6  feet,  and  1.4' 
when  it  is  less  than  6  feet  Number  of  guides  =  number  of  blJEtdes  t  when  less  than 
34t  and  number-^  3  when  greater  than  24.    Area  of  section  of  supply  pipess  .4  V. 

For  construction  of  blades  and  guides,  see  Molesworth,  Londun,  1882,  page  540. 

■  I  ■  ■  — II.    .     ...  1. II ■  ■»  ■     II  ■       -    .,  ■   >i... ! ■         I        1 1 

•  OoUe  canras  utm  plalM  a|H>p  ecnti*  bodjr  of  •  TarbiM,  wiiich  glT«  flncUoti  to  flowtag  water, 
or  to  Madat  of  whaal  wUch  anrrooud  tham. 
t  Ib  astr«na  cataa  of  T«ry  hifch  fall*  diamatar  ftfvan  by  tiiU  fonnala  may  ba  increaiMd. 
i  Wwtntjton'*  rala  for  the  oombar  of  bbidaa  ia  eooatant  nvmbar  36,  irrMpaetiT*  of  iIm  of  tarbtM*    ' 


574 


BTDBOOTHiLiaCS. 


Operation  of  Hi«b- 

Pressure  ' 

Purl^inea 

• 

h 

V 

« 

4a 
36 

40 
31 
42 

50 

2-5 

47 

60 
2.1 
5> 

7®„ 
1.8 

55 

80 
1.6 

59 

90 

63 

100 

1.37 

xao 

1.05 

73 

140 

78 

k6o 
.8 

84 

180 
8,' 

30O 


.63 

94 

hszhead  ofuMiUir  infeet^  V  vo^mt  qfioater  in  eubtfut  requirtdfar  eifch  xo  ff, 
and  V  velocity  ofpfriphery  ofturbiiu  infut  per  second. 

BoYDBN  Turbine.  —  Mr. Boyden,  of  Massftchngetta,  designed  an 

oojtirflurd-flow  turbine  of  75  H*,  which  realized  an  eflkien<7  of  88  per  cent 
Peculiar  features,  as  compared  with  a  Fuumeyron  turbine^  are,  ist,  and  most 
important,  the  conduction  oC  the  water  to  turbine  through  a  vertical  tnm- 
cated  eon^  concentric  with  the  shaft  The  water,  as  it  descends,  acquires  a 
gradually  increasing  velocity,  together  with  a  spiral  movement  in  direction 
of  motion  of  wheel.  The  spiral  movement  is,  in  fact,  a  continuation  of  the 
motion  of  the  water  as  it  enters  cone. — sd.  Guide-plates  at  base  are  inclined, 
so  as  to  meet  tangentially  the  approaching  water. — 3d.  A  **  diffnser,"  or  annu- 
lar chamber  surrounding  wheel,  into  which  water  from  wheel  is  discharged. 
This  chamber  expands  outwardly,  and,  thus  escaping  velocity  of  water,  is 
eased  off  and  reduced  to  a  fourth  when  outside  of  diffuser  is  reached.  Efifect 
of  diffuser  is  to  accelerate  velocity  of  water  through  machine;  and  gain  of 
efficiency  is  3  per  cent    Diffuser  niuit  be  entirely  submerged.    {D.  K.  GtaTk,\ 

PoNCELRT  TuKBiNE. — This  whccl  IS  alike  to  one  of  his  undershot-wheeb 
set  horizontally,  and  it  is  the  most  simple  of  all  horizontad  wheels. 

To    Compute    Klemeiits    of    G^eneral    Proportion,    and 

Reaulta.    {tA  F.  A.  Malum,  U.  &  A.) 

.o^sD'hy/h  =  Wi  4-85^j^  =  I>;  .5l'V*  =  V;  .iD  =  H;  4-49V'*  =  «; 


3(D+,o)  =  N;  ?  =  «>;   ^  =  W; 


V 


SD       _  ...  „  d 

—  =  d;   .5Nto.75N  =  »;    - -w  ; 


and  C  coefficient  for  V  in  terms  of  V  =  — .    X>  and  d  rqpretenfing  exterior  and  ini- 

terior  diameUn  ofv^eel,  H  atid  h  heights  of  orifices  efdisdwrge  at  onUer  ciroum- 
ference  and  of  fail  acting  on  tohfel,  to  and  w  shortest  didances  b^ween  ttoo  a4s<tcent 
biades  and  ttoo  adjacent  guides,  all  in  feet,  V,  T'  and  v  vdocities  due  tofaU  of  water 
passing  through  narrotoest  section  of  wheel,  and  of  interior  drcwMferenee  ofvoheel^ 
all  in  fset  per  second,  N  and  n  numlMrs  of  Ua4ie$  wnd  guides,  mtd  W  aetml  Aorte- 
pouter. 

For  lUis  of  fh>m  5  feet  to  40,  and  diameters  not  leas  than  3  feet,  n  to  should  be 
equal  to  diameter  of  wheel.  H  equal  to .  i  D,  nio'  —  d,  and  4  w  =  width  of  crown. 
For  fUls  exceeding  this,  H  should  be  smaller,  in  proportion  to  diameter  of  wheel 

IDownward-flo'w  Tur"bin.e8. 

In  turbines  with  downward  flow,  wheel  is  placed  below  'an  annular  series 
of  guide-blades,  by  which  water  is  conducted  to  wheeL  The  water  strikes 
curved  blades,  and  falls  vertically,  or  nearly  so,  into  tail-race ;  consequently, 
centrifugal  action  is  avoided,  and  downward  flow  is  more  compact. 

FoNTAiME  Turbine  yiehls  an  efficiency  of  70  per  cent,  when  fuU^ 
charged.  When  supply  of  water  is  shut  off  to  .75,  by  sluice,  efficiency  is 
57  per  cent  Best  velocity  at  mean  circumference  of  wheel  is  equal  to  55 
per  cent  of  that  due  to  height  of  fall,  it  may  vary  .35  of  this  either  way, 
without  materially  affecting  efficiency. 

In  operation  the  water  in  race  is  in  immediate  contact  with  wheeL  and  its 
effieien<rjr  is  greatest  when  sluice  is  fully  opened.  Its  efficiency,  also,  is  lesa 
affected  by  variations  of  head  of  flow  than  in  volume  of  water  supplied; 
heooe  they  are  adapted  for  fi^mlU, 


sn>Boi>Tir&ttic6. 


sn 


J&ttrAL  TtmBtNfi.— TMs  wheel  ni  essentially  tliks  in  its  princip^ropoiv 
tioiiB  to  Fontaine's,  and  in  principle  of  operation  it  is  the  same,  ^^ter  in 
race  must  be  at  a  certain  depth  bdiow  wheel. 

For  convenience,  it  is  placed  at  some  heiffht  above  level  of  tail-race,  within 
an  air-tight  cylinder,  or  "  draft-tube,"  so  that  a  partial  vacuum  or  reduction 
of  pressure  is  induced  under  wheel,  and  eifect  of  wheel  is  by  so  much  in- 
creased. Besulting  efficiency  is  same  as  if  wheel  was  placed  at  level  of  tail- 
race;  and  thus,  while  it  may  be  placed  at  any  le%'el,  advantage  is  taken  of 
whole  height  of  fall,  and  its  efticiency  decreases  as  volume  of  water  b  di- 
minished or  as  sluice  is  contracted. 

To  Compute  Slenxents  and   Result. 
Low  Pteuure.—For  fiiUs  of  30  feet  «b4  less. 


6y/h 


=  I  =  A; 


and  .079  V  &  =  BP. 


h  representing  head  oftoater,  v  velocity  of  turbine  eU  periphery  per  minute^  and  D 
mtemcU  diameter  of  turlrine,  all  in  feet,  V  volume  of  water  in  cube  feet  per  second^ 
A  sum  of  area  of  orifices  in  iq.feelf  and  ^  ^B^Mive  horse-power. 

i.s  D =«xlenial  diameter  of  turbine  in  (bet,  when  it  is  more  than  6  feet,  and  1.4 
when  it  is  less  thaa  6  feet.  NuiiU)er  of  guides  =  number  of  blades f  when  less  than 
24,  and  number  -i-  3  when  greater  than  24.    Area,  of  section  of  supply-pipe  ^  .4  V. 

For  oonslructioa  of  blades  and  guides,  see  Moles  worth,  London,  1882,  page  540. 


UO'^v-JPressure   rTuk-bixxes.     {Molesworth.) 


1 

SH»  1 

10 

IP 

15  > 

B? 

V 

V 

V 

R 

V 

R 

a- 5 

9.48 

25 

50 

24 

75 

20 

5 

13-38 

*i!-5 

81 

35 

57 

3« 

47 

7-5 

16.38 

8.5 

136 

»7 

92 

as 

79 

to 

fR.06 

6.3 

180 

ta.6 

k«8 

«9 

105 

»5 

93.  M 

4-« 

3*9 

«.4 

836 

18. 6 

««5 

ao 

96.88 

— 

— 

<>'3 

3«9 

9-3 

rj 

95 

y'^u 

— 

— 

— 

— 

7-5 

30 

32.88 

■^ 

— 

— 

— 

— 

— 

ao 

IP 

30 

ff 

40 

V 

R 

V 

R 

V 

100 

>7 

— . 

50 

■  33 

a 

75 

51 

U 

100 
68 

«5 

90 

3« 

75 

SO 

'^ 

160 

«S 

\3i 

33 

X2.6 

a3a 

1^9 

*9i 

as 

to 

310 

'5^ 

253 

3Q 

^4 

380 

IS.O 

310 

17 

R 


28 
48 
«4 
"3 
164 
230 
268 


50 

W 

V 

R 

J.     ^ 

~^ 

126 

26 

85 

ti 

63 

42 

roo 

3« 

1*8 

25 

196 

21 

240 

9  representing  wlocitif  ^f^anire  <^yb»Ast  infeei  and  V  voUtme  of  aoofef,  in  esAe 
fietf  Mhper  second,  R  revolutions  jper  minute^  and  IP  effective  horse-power. 

rsfi«inUSha0.    ^^^SsiOKm^erofsKt^inint. 

In-warcL-flow  TTurlDiiie, 

iNWAtiD-FiiOW  Turbine.  —  Inward-flow  or  vortex  wheel  is  made  with 
radiating  blades,  and  is  surrounded  by  an  annular  case,  closed  externally, 
■nd  open  internally  to  wheel,  having  its  inner  circumference  fitted  with  fbur 
oarred  guide-passages.  Tiis  water  is  admitted  by  one  m*  more  pipes  to  tlie 
caae,  and  it  issues  ccntripetally  through  the  guide-passages  upon  circum- 
ference of  wheel.  The  water  acting  against  the  curved  blades,  wheel  is 
driven  at  a  velocity  dependent  on  height  of  fall,  and  water  having  expended 
its  force,  passes  out  at  centre.  This  wheel  has  realized  an  efficiency  as  high 
as  77.5  per  cent.    It  was  origmally  designed  by  Prof.  James  Thomson. 

SwAUf  Tuiu»MB.~Coabine»  an  inward  and  a  downward  discharge.  Re- 
ceiving edges  of  buckets  of  wheel  are  vertical  opposite  guide-blales,  and 
lower  portions  of  the  edges  are  bent  into  form  of  a  quadrant.  Each  budost 
thus  fonns>  with  the  sumee  of  adjoming  bucket,  an  oudet  which  combines 
ma  inward  and  a  downward  discharge.    One,  73  ins.  in  diameter,  was  tested 


•  la 


citM  of  v«ry  Uftli  Uls  dhm«t«r  giva  by  tlii*  formnU  may  b«  incrMMd. 

'•  raU  for  th*  namlwr  of  Uadti  b  coastant  nambar  36,  lmfep<KUT«  of  slBa  of  tarUsa. 


S76 


HTDBODTKAMiipS. 


by  Mr.  J.  B.  Francis,  for  several  heights  of  gate  or  sluice,  from  a  to  13.08 
ins.,  and  circumferential  velocities  of  wheel  raqgine  from  60  to  80  per  cent 
of  respective  velocities  due  to  heads  acting  on  whed. 

For  a  velocity  of  60  per  cent.,  and  for  heights  of  gate  varying  within  limits  al- 
ready stated,  efficiency  ranged  from  47.5  to  76.5  per  cent,  and  for  a  velocity  of  80 
per  cent,  it  ranged  from  37.5  to  83  per  cent  Maximum  efficiency  attained  was  84 
percent,  with  a  12-inch  gate  and  a  velocity  ratio  of  76  per  cent ;  butlVx)ra  9-inch 
to  13  inch  gate,  or  fh>m  .66  gate  to  full  gate,  maximum  efficiency  varied  within 
very  narrow  limits— ft*om  83  to  84  per  cent,—v8looity-rati08  bemg  72  per  cent  for 
9-inch  gate,  and  76.5  per  cent  for  full  gate.  At  half-gate,  maximum  efficiency  was 
78  per  cent,  when  velocity-ratio  was  68  per  cent  At  quarter-gate,  maximum  effi- 
ciency was  61  per  cent,  and  velocity-ratio  66  per  cent 

Tremont  Turbine,  as  observed  by  Mr.  Francis,  in  his  experiments  at 
Lowell,  Mass.,  gave  a  ratio  of  effect  to  power  as  .793  to  i. 

Victor  Turbine  is  alleged  to  have  given  an  effect  of  .88  per  cent  under 
a  head  of  18.34  feet,  with  a  discharge  of  977  cube  feet  of  water  per  minute, 
and  with  343.5  revolutions. 

Tangential  'Wh.eel. 

Wheels  to  which  water  is  appUed^at  a  portion  only  of  the  circumference 
are  termed  tangential.  They  are  suited  for  very  high  falls,  where  diameter 
and  hi^h  tangential  velocity  may  be  combined  with  moderate  revolutions. 
The  G%r€ard  turbine  beloings  to  this  class.  It  is  employed  at  Groeschenen 
station  for  St.  Gothard  tunnel ,  it  operates  imder  a  head  of  279  feet.  The 
wheels  are  7  feet  10.5  ins.  in  diain.,  halving  80  blades,  and  their  speed  is  i6o 
revolutions  per  minute,  with  a  maximum  charge  of  water  of  67  gallons  per 
second.  An  efficiency  of  87  per  cent,  is  claimed  for  them  at  the  Paris 
water-works ;  ordinarily  it  is  nrom  75  to  80  per  cent.     (J).  K,  Ctark,) 

Impact  and.  Reaction  "Wh-eel. 
Impact-wheel. — Impact  Turbine  is  most  simple  but  least  efficient  form 
of  impact-wheel.  It  consists  of  «  series  of  rectangular  buckets  or  blades, 
set  upon  a  wheel  at  an  angle  of  50***  to  70*^  to  horizon ;  the  water  flows  to 
blades  through  a  pyramidal  trough  set  at  an  angle  of  26°  to  40°,  so  that 
the  water  impinges  nearly  at  right  angles  to  blades.  Effect  is  .5  entire  me- 
chanical effect,  which  is  increas^  by  enclosing  blades  in  a  border  or  frame. 

If  buckets  are  given  increased  length,  and  formed  to  such  a  hollow  curve 
that  the  water  leaves  wheel  in  nearly  a  horizontal  direction,  the  water  then 
impinges  on  buckets  and  exerts  a  pressure  upon  them;  effect  therefore  is 
greater  than  with  the  force  of  impact  alone. 

By  deductions  of  Weisbach  it  appears  that  effect  of  impact  is  only  half 
available  effect  under  most  favorable  circumstances. 

Reaction-wheel. — Reaction  of  water  issuing  from,  an  orifice  of  leas 
capacitv  than- section  of  vessel  of  supply,  is  eqtml  to  loeiffht  of  a  colnmn  of 
water  ^  oasig  of  which  is  area  of  oHJtce  or  of  stream^  and  height  of  which  it 
twice  height  dm  to  vdocitg  of  water  discharged. 

Hence,  the  expression  is  2.  —  a  to  =  R.    w  representing  weight  of  a  cube  foot  of 

water  in  lbs.y  and  a  area  of  opening  in  sq.feet 

Whitelaw's  'is  a  modification  of  Barker's  j  the  arms  taper  from  centre 
towards  circumference  and  are  curved  in  such  a  manner  as  to  enable  the 
water  to  pass  from  central  openings  to  orifices  in  a  line  qearly  ri^t  and 
radial,  when  instntment  is  operating  at  a  proper  velocity ;  in  order  that  very 
little  centrifugal  force  may  be  imparted  to  the  Water  by  the  revolution  of 
the  arms,  and  consequently  a  minimum  of  frictional  resistance  is  opposed 
to  course  of  the  water. 


HYDRODYNAMICS.  577 

A  Turbine  9.55  feet  in  diameter,  with  orifices  4.944  ins.  in  diameter,  oper* 
ated  by  a  fall  of  25  feet,  gave  an  efficiency  of  75  per  cent ,  including  friction 
of  gearing  of  an  inclined  plane. 

When  a  reaction  wheel  is  loaded,  so  that  height  due  to  velocity,  corresponding  to 

velocity  of  rotation  v,  is  equal  to  fall,  or  —  —  A,  or  v  =  -\/2  ^  A,  there  is  a  loss  of  17 

per  cent,  of  available  effect;  and  when  —  =  2  A,  there  is  a  loss  of  but  10  per  cent. ; 

and  when  —  =  4  ^t  there  is  a  loss  of  but  6  per  cent.    Consequently,  for  moderate 

falls,  and  when  a  velocity  of  rotation  exceeding  velocity  due  to  height  of  fall  may 
be  adopted,  this  wheel  works  very  effectively. 

Eflaciency  of  wheel  is  but  one  half  that  o/an  undershot- wheel. 

When  sluice  is  lowered,  so  that  only  a  portion  of  wheel  is  opened,  efficiency 
ot  a  Reaction-wheel  is  less  than  that  of  a  Pressure  Turbine. 

Ratio  of  Effect  to  Pbwer  qf  several  Turbines  is  as  follows:    ■ 

Poncelet 6510  75  to  i  I  Jonval , 6  to  7  to  x 

Foumeyron ,,, 6    to  .75  to  i  |  Fontaine... 6  to  7  to  i 

Barker's  Mill. — Effect  of  this  mill  is  considerably  greater  than  that 
which  same  quantity  of  water  would  produce  if  applied  to  an  undershot- 
wheel,  but  less  than  that  which  it  would  produce  if  properly  applied  to  an 
overshot-wheel. 

For  a  description  of  it,  see  Grier^s  Mechanics^  Calculator^  page  234;  and  for  its 
formulas,  see  L&Mmi  Artisan^  1845,  page  229. 

IMPULSE  AND  RESISTANCE  OF  FLUIDS. 

Impulse  and  Resistance  of  "Water. — Water  or  any  other  fluid, 
when  flowing  against  a  body,  imparts  a  force  to  it  by  which  its  condition  of 
motion  is  alter^.  Resistance  which  a  fluid  opposes  to  motion  of  a  body 
does  not  essentially  differ  from  Impulse. 

Impulse  of  one  and  same  mass  of  fluid  under  otherwise  similar  circum- 
stances  is  proportional  to  relative  velocities  c  :f  »  of  fluid. 

For  an  equal  transverse  section  of  a  stream,  the  impulse  against  a  surface 
at  rest  increases  as  square  of  velocity  of  water. 

Impulse  against  Plane  Surfaces. — The  impulse  of  a  stream  of  water  de- 
pends principally  upon  angle  under  which,  after  impulse,  it  leaves  the  water ; 
it  is  nothing  if  the  angle  is  o,  and  a  maximum  if  it  is  deflected  back  in  a 

line  parallel  to  that  of  its  flow,  or  180°,  2  -"^^  V  w  :=  P*. 

When  Surface  of  Resistance  is  a  Plane,  and  =  90°,  then •  V  w  =  P,  and 

for  a  surface  at  rest,  zahw^P,   a  representing  area  of  opening  in  sq.feet. 

P  =  2  A  A  to-;  c  a«»d  v  representing  velocities  of  water  and  of  surface  upon  which  it 
impinges  infutper  seconA,  to  weight  of  fluid  per  cube  foot  in  lbs. ,  A  transverse  section 
of  stream  in  sq.  ins. ,  and  c  if  v  relative  motions  of  water  and  surface. 

*    Normal  impulse  of  water  against  a  plane  surface  is  eq'.nvalent  to  weight 
of  a  column  which  has  for  its  base  transverse  section  of  stream,  and  for 

altitude  twice  height  due  to  its  velocity,  2^  =  2 — . 

Resistance  of  a  fluid  to  a  body  in  motion  is  same  as  impulse  of  a  fluid 
moving  with  same  velocity  against  a  body  at  rest. 

*  Weubach,  New  York,  1870,  ▼ol.  i.  page  leoS. 


578  H  YDROD  YN  Aif  ICS. 

Maximum  Effect  of  ImpuUe. — Effect  of  impulse  depends  principally  on 
velocity  v  of  impinged  surface.  It  is,  for  example,  o,  both  when  t;  =  c  and 
v^o;  hence  there  is  a  velocity  for  which  eifect  of  impulse  is  a  maximum 

t=  (c  —  9)  v;  that  is,  v  =  — ,  and  maxinmm  effect  of  impulse  of  water  is  ob- 
tained when  surface  impinged  moves  from  it  with  half  velocity  of  water. 

Illustration. — A  stream  of  water  having  a  transverse  section  of  40  sq.  Ins.,  d's 
charges  5  cube  feet  per  second  against  a  plane  surface,  and  flows  oflT  with  a  velocity 

of  x3  feet  per  second ;  effect  of  its  impulse,  then,  is  ^^^  Vwzs:F]c= - — —  =  18; 

^  =  32.16;    10  =  62.5; 2- X  5X62.5=  58.38  a*. 

32.10 

Hence  mechanical  effect  upon  surface  =  P  o  =  58.28  x  12  =  699.36  Ibt. 

C  I  ^  X  ld,A,  I  18' 

Maximum  effect  would  be  «  =  -  =  -  X  = —  =  9  feet,  and  -  X  —  X  5  X  62.5 

2       2  40  2       3  ff 

=  -  X  5036  X  312.5  =  786.87  lbs.;  and  hydrauHepretmrezzi^--^  ==87.44  lbs. 
2  9 

When  Surface  it  a  Plane  and  at  an  AngU^  then  (i  —  cos.  a)  —  V  «?=  P. 

y 

Illustration.— A  stream  of  water,  having  a  transverse  section  of  64  sq.  ins.,  dis 
charges  17.778  cube  feet  per  second  against  a  fixed  cone,  having  an  angle  of  con- 
vergence from  flow  of  stream  of  50°,  hydraulic  pressure  in  direction  of  stream; 

then  c  =  -—Prr^  =  40;  coa  50°  =  .642  79.      (1 — .642  79)  -1°--  X  17-  778  X  62. 5  = 

04 -r- 144  32.10 

.357  21  X  1382.2  =  494.26  Ibt. 

When  Surface  of  Resistance  is  a  Plane  at  90°,  and  has  Borders  added  to 
its  Perimeter^  effect  will  be  greater,  dei^emyng  upon  height  of  border  and 
ratio  of  transverse  section  between  stream  and  part  confined. 

Oblique  Impulse. — In  oblique  impulse  against  a  plane,  the  stream  may  flow 
in  one,  two,  or  in  all  directions  over  plane. 

VThen  Stream  is  coi\fiMed  at  Three  Sides,  (1  00&  a) V 10  =s  P. 

When  Stream  is  cor^fined  at  Two  Sides, sin.  a'  V  w  =  P. 

Normal  impulse  of  a  stream  increases  as  sine  of  angle  of  incidence;  par- 
allel impulse  as  square  of  sine  of  angle ;  and  lateral  impulse  as  double  the 
angle. 

When  an  Inclined  Surface  is  not  Brndered,  then  stream  can  spread  over 
it  in  all  directions,  and  impulse  is  greater,  because  of  all  the  angles  by 
which  the  water  is  deflected,  a  is  least ;  hence  each  particle  that  does  not 
move  in  normal  plane  exerts  a  greater  pressure  than  particle  in  that  plane, 

,    2  sin.  a'       c  — 1>  -,  -. 

*nd  — r-TT — 5  X V  «?  =  P. 

1  -f-  sin.  a'        g 

Impulse  and  Instance  against  Surfaces. 

Coefficient  of  resistance,  C,  or  number  with  which  height  due  to  velocity  is  to  be 
multiplied,  to  obtain  height  of  a  column  of  water  measuring  this  hydraulic  press- 
ure, varies  for  bodies  of  different  figures,  and  only  for  surfaces  which  are  at  right 
angles  to  direction  of  motion  is  it  nearly  a  definite  quantity. 

According  to  experiments  of  Du  Buat  and  Thibault,  €  =  1.85  fbr  impulse  of  air 
or  water  against  a  plane  surfkce  at  rest,  and  for  resistance  of  air  or  water  against  a 
surface  in  motion,  G  =«  i.  4.  In  each  case  about  .66  of  effect  ia  expended  upon  fhmt 
■urfkce,  and  .34  upon 


HYDBODYNAMIC8.  579 

Coxzxparison  iDet-veeen.  Xvirl^ines  axxd  otlier  'Water-'%vlieel8. 
Turbineg  are  applicable  to  falls  of  water  at  any  height,  from  i  to  500  feet. 

Their  efficiency  for  very  high  falls  is  less  than  for  smaller,  in  consequence 
of  the  hydraulic  resistances  involved,  and  Which  increase  as  the  square  of 
the  velocity  of  the  water.    They  can  only  be  operated  in  clear  water. 

With  Fourneyron's,  the  stress  and  pressure  on  the  step  is  that  of  the  wheel 
in  motion ;  with  Foataine^s,  the  whole  weight  of  the  water  is  added  to  that 
of  the  wheel ;  they  are  well  adapted,  however,  for  tide-mills.  Experiments 
on  Jouval's  gave  equal  results  with  Fontaine's. 

Vertical  Water-Wheels  are  limited  in  their  application  to  falls  under  60 
feet  in  height. 

For  falls  of  from  40  to  20  feet  they  give  a  greater  effect  than  any  turbine ; 
for  falls  of  from  20  to  10  feet,  they  are  equal  to  them ;  and  for  very  low 
&lls,  they  have  much  less  efficiency. 

Variations  in  the  supply  of  water  effect  them  less  than  turbines. 

"Water-pressure   ISngine. 

By  experiments  of  M.  Jordan,  he  ascertained  that  a  mean  useful  effect  of 
.84  was  attainable. 
Weisbach,  London,  1848,  vol  ii.  page  349. 

PERCUSSION  OP  FLUIDS. 

When  a  stream  strikes  a  plane  perpendicular  to  its  action,  force  with 
which  it  strikes  is  estimated  by  product  of  area  of  plane,  density  of  fluid, 
and  square  of  its  velocity. 

Or,  A  d  v3  =  P.  A  represerUing  area  in  sq.  feetj  d  toeigJU  of  fluid  in  Ibs.^  and  v 
vdoeity  in  feet  per  aeeond. 

If  plane  is  itself  in  motion,  then  force  becomes  A  d  (v — v')^  =  F.  V  representing 
velocUy  ofj^ne. 

If  C  represent  a  coefficient  to  be  determined  by  experiment,  and  h  height 
due  to  velocity  r,  then  v'  ^  9  g  h^  and  expressiou  for  force  becomes 
AC2gh  =  V. 

CENTRIFUGAL  PUMPS.     {D.  K.  Clark.) 

i^ppold  Puxnp,  made  with  curved  receding  blades,  is  the  form  of 
centrifugal  pump  most  widely  known  and  accepted.  M.  Morin  tested  three 
kinds  of  centrifugal  or  revolving  pumps : 

ist,  on  model  of  Appold  pump;  2d,  one  having  straight  receding  blades 
inclined  at  an  angle  of  45°  with  the  radius,  and  jd,  one  havmg  radial  blades. 
They  were  12  ins.  in  diameter  and  3.125  ins.  in  length,  and  had  central  open- 
ings of  6  ins.    Their  efficiencies  were  as  follows : 

.1.  Curved  blades. .  48  to  68  per  cent     |    2.  Inclined  blades. .  40  to  43  per  cent 

3.  Radial  blades 24  per  cent 

Height  to  which  water  ascends  in  a  pipe,  by  action  of  a  centrifugal  pump, 
would,  if  there  were  no  other  resistances,  be  tiiat  due  to  velocity  of  circttm- 

ference  of  revolving  wheel,  or  to  — .    Results  of  experiments  made  by  the 

author  on  two  pumps,  in  1862,  yielded  following  data,  showing  height  to 
which  water  was  raised,  without  any  discharge: 

(bladM  partly  rmdial,        /vTn^^nVSS^ 
eurr^UMidi).  (bl»det,  curved). 

Diameter  of  pomp- wheel 4  feet  4  feet  7  ins. 

Revolutions  per  minute..... 177  95.4 

Veloctty  of  circumference  per  second. . .      37.05  feet  22.9     feet 

Head  due  to  the  velocity 21.45    '^  8->94    ** 

Actualhead ia2i    "  5.833   " 

Do.  do.  in  parts  of  head  due  to  velocity,     85  per  cent  71.2  per  cep(. 


JSO        HYDRODYNAMICS. — IMPACT   OR   COLLISION. 

Mr.  David  ThomBon  made  similar  experiments  with  Appold  pumps  of  from  1.25 
to  1. 71  feet  in  diameter,  the  results  of  which  showed  that  the  actual  head  was  about 
90  per  cent,  of  the  head  due  to  the  velocity. 

M.  Tresca,  in  1861,  tested  two  centrifugal  pumps,  18  ins.  in  diameter,  with  a  cen- 
trul  opening  of  9  ins.  at  each  side.  The  blades  were  six  in  number,  of  which  three 
sprung  trom  centre,  where  they  were  .5  inch  thick;  the  alternate  three  only  sprung 
at  a  distance  equal  to  radius  of  openiug  from  centre.  They  were  radial,  except  at 
ends,  where  they  were  curved  backward,  to  a  radius  of  about  2.25  ins. ;  and  they 
joined  the  circumference  nearly  at  a  tangent.  Width  of  blades  was  taper,  and  they 
were  5.75  ins.  wide  at  nave,  and  only  2.625  ^^^-  ^^  ends:  so  designed  that  section  of 
outflowing  water  should  be  nearly  constant. 

M.  Tresca  deduced  from  his  experiments  that,  in  making  fi*om  630  to  700  revolu- 
tions per  minute,  efficiency  of  the  pump,  or  actual  duty  in  raising  water,  through  a 
height  of  31.16  feet,  amounted  to  from  34  to  54  per  cent,  of  work  applied  to  shaft; 
or  that,  in  the  conditions  of  the  experiment,  the  pump  could  raise  upward  of  x6aoo 
cube  feet  of  water  per  hour,  through  a  height  of  33  feet,  with  about  30  H*  applied 
to  shaft,  and  an  efficiency  of  4  5  per  cent 

According  to  Mr.  Thomson,  maximum  duty  of  a  centrifugal  pump  worked  by  a 
steam-engine  varies  from  55  per  cent,  for  smaller  pumps  to  70  per  cent  for  larger 
pumps.  They  may  be  most  effectively  used  for  low  or  for  moderately  high  lifts,  of 
from  15  to  20  feet;  and,  in  such  conditions,  they  are  as  efficient  as  any  pumps  that 
can  be  made.    For  lifts  of  4  or  5  feet  they  are  oven  more  efficient  than  others. 

At  same  time,  larger  the  pump  higher  lift  it  may  work  against.  Thus,  an  18-inch 
pump  works  well  at  20  feet  lift,  and  a  3-feet  pump  at  30'feet  lift  A  21  inch  wheel 
at  40-feet  lift,  has  not  given  good  results:  high  lifts  demand  very  high  velocities. 

Efficiency  is  influenced  by  form  of  casing  of  pump.  Hon.  R.  C.  Parsons  made  exper- 
iments with  two  14- Inch  wheels  on  Appold's  and  on  Raiikine's  forms.  In  Rankine's 
wheel  blades  are  curved  backwards,  like  those  of  Appold's,  for  half  their  length; 
and  curved  forwards,  reversely,  for  outer  half  of  their  length.  Deducing  results  or 
performance  arrived  at,  following  are  the  several  amounts  of  work  done  per  lb.  of 
water  evaporated  from  boiler : 

Work  don«  p«r  lb.  of 
watfir  evapontfld. 

Foot-lbs.  Ratio.  . 

Appold  wheel,   in  concentric  circular  casing 11 385  1.06 

'''■  '*       in  spiral  casing 15996  1.5 

Rankine  wheel,  in  concentric  circular  casing xo  748  x 

"  '*       in  spiral  casing 12954  1.2 

Thes*  data  prove:-— ist,  that  spiral  casing  was  better  than  concentric  casing;  2d 
that  Appold's  wheel  was  more  efficient  than  Rankine's  wheel. 


IMPACT  OR  COLLISION. 


Impact  is  Direct  or  Oblique.  Bodies  are  Elastic  or  Inelastic.  The 
division  of  them  into  hard  and  elastic  is  wholly  at  variance  with  these 
properties ;  as,  for  instance,  glass  and  steel,  which  are  among  hardest 
of  biodies,  are  most  elastic  of  all. 

Product  of  mass  and  velocity  of  a  body  is  the  Momefitum  of  the  body. 

Principle  upon  which  motions  of  bodies  from  percussion  or  collision  are 
determined  belon«:s  both  to  elastic  and  inelastic  bodies ;  thus  there  exists  in 
bodies  the  same  momentum  or  quantity  of  motion,  estimated  in  any  one  and 
same  direction,  both  before  collision  and  after  it. 

A  ction  and  reaction  are  always  equal  and  contrary.  If  a  body  impinge 
obliquely  upon  a  plane,  force  of  blow  is  as  the  sine  of  angle  of  incidence. 

When  a  body  impinges  upon  a  plane  surface,  it  rebounds  at  an  angle  equal 
to  that  at  which  it  impinged  the  plane,  that  is,  angle  of  reflection  is  equal  to 
that  of  incidence. 

Effect  of  a  blow  of  an  elastic  body  upon  a  plane  is  double  that  of  an  in- 
"^tic  one,  "reloctty  and  mass  being  equal  in  each ,  for  the  force  of  blow 


IMPACT  OB  COLLISIOK.  ^gl 

from  inelastic  body  is  as  its  mass  and  velocitv,  which  is  only  destroyed  by 
resistance  of  the  plane ;  but  iu  an  elastic  body  that  force  is  not  only  destroyed, 
being  sustained  by  plane,  but  another,  also  equal  to  it,  is  sustained  by  pfane, 
ill  consequence  of  the  restoring  force,  and  by  which  the  body  is  repelled  with 
an  equal  velocity ;  hence  intensity  of  the  blow  is  doubled. 

If  two  perfectly  clastic  bodies  impinge  on  one  another,  their  relative  ve- 
locities will  be  same,  both  before  and  after  impact ;  that  is,  they  will  recede 
from  each  other  with  same  velocity  with  which  they  approached  and  met. 

If  two  bodies  are  imperfectly  elastic,  sum  of  their  moments  will  be  same, 
both  before  and  after  collision,  but  velocities  after  will  be  less  than  in  case 
of  perfect  elasticity,  in  ratio  of  imperfection. 

Effect  of  collision  of  two  bodies,  as  B  and  b,  velocities  of  which  are  differ- 
ent, as  V  and  v\  is  given  in  following  formulas,  in  which  B  is  assumed  to 
bave  greatest  momentom  before  impact 

If  bodies  move  in  same  direction  before  and  after  impact,  sum  of  their 
momenta  before  impact  will  be  equal  to  their  mm  after. 

If  bodies  move  in  same  direction  before,  and  in  opposite  direction  after 
impact,  mm  of  their  momentt  before  impact  wiUbe  eqttm  to  difference  of  their 
nam  after. 

If  bodies  move  in  opposite  directions  before,  and  in  same  direction  after 
impact,  difference  of  their  moments  before  impact  will  be  equal  to  their 
sum  after. 

If  bodies  move  in  opposite  directions  before,  and  in  opposite  directions 
after  impact,  difference  of  their  moments  before  impact  toiU  be  equal  to  their 
difference  after. 

rro  Coxnpiate  Velocities  of  Inelastic  I3odies  after  Ixxipaot. 

When  Impelled  in  Same  Direction.        pT^.     =  r.    B  and  b  representing 

vfeight*  of  the.  two  bodies,  V  and  v  their  velocUies  before  impact,  and  r  velocity  of  bodies 
afUr  impacty  aU  infeeL 

Consequently,        ■    X  6  =  velocity  lost  by  B,  and  --    -  x  B  =  velocity  gained  by  b. 

B  -f-  0  D  -J-  0 

KoTK.— In  these  formulas  it  is  assumed  that  V>v.  If  V<v  the  result  will  be 
negative,  but  may  be  read  as  positive  it  lost  and  gained  ure  revei'sed  in  places. 

Illustration. — An  inelastic  body,  6,  weighing  30  lbs.,  having  a  velocity  of  3  feet, 
is  struck  by  another  body,  B,  of  50  lbs.,  having  a  velocity  of  7  feet;  the  velocity  of 
b  after  impact  will  be  , 

50X7  +  30  X  3  _  440      .  ,  A*# 

— — , —  -n —  —  J- 5  /*». 

50  +  30  tio       *'"'•[ 

When  Impelled  ir.  Opposite  Directions*     ■  pT.    =»'■ 

iLUJSTRATioir.— Assume  elements  of  preceding  case. 

50X7  —  30X3  _  260  _ 
50  4-30  80 

B  V 
When  One  Body  is  at  Best.     » -I- ft  "*** 

Illusthation.  —Assume  elements  as  preceding. 

50  X  7  _  350  _  ^  ^      .  ^ 
So+lo-fo-'^'^ys/eet 

When  Bodies  are  inelastic,  their  velocities  after  impact  will  be  aliks. 


582  IMPACT   OB  COLLISION. 

To  CoznpTxte  Velocities  of*  Silastic  Bodies  after  Impact 

fTTj:       T        J7J-    ^       rvr     ^-          B^^V  +  2  6t»      _           2BV— B^w 
When ImpelUd »n One Dtrectton,    „  ^  . =  R, and ^  '■ . =  r. 

Illustration. — Assume  elements  as  preceding. 


5o-3oX7  +  :»X3oX3^3go^^^^JaX5oX7-5o-3oX3^^_8/.^t 
50+30  80       ^-^     '  •       50-1-30  80 


ttb    =7 ...»  .      .     2  B 


Or,  V  —  V  —  »  =  velocity  of  iv,  and  w  +  V  —  «  xs^ocity  of  r. 

Wiften  Impelled  in  Opposite  DtPtcfioni. 


B  —  bVro2bv      „        ^zBV-l-B  — 6w 

— r+  6 — = ^'  ""**  — B+fr —  "''• 

Illustration.— Assume  elements  as  preceding. 


5o--3oX7'^2X3oX3_'40'^'8o_  /fcct  and  '  ^  ^°^  ^"^^^"^^"^  ^  = 

50  +  30  80       ""     •5«'**»  50  +  30 


700+60  .   .      _     2  6(V+i))         t    .,    t    *v    »       A„  2X30X7  +  3      60c 

Z-^  =  9.5^«t     Or,-^qj;^  =  t«toct<yto«*6yB.     As  — ^-p^  =  — 

=^7.5  feet. 


V  B  —  6  2  B  V 

PF^en  (?»e  Boc^  is  at  Rest,      ^         =  R,  and  ^-^=r. 

Illustration.— Assume  elements  as  preceding. 

7  X  50  —  30      140  ,.       .2X50X7      700      o       J.. 

50+30  80         '•'•''  50+30         80 

To  Compxite "Velocities  oriixiperfeot  Silastic  Bodies  af^er 

Ixxxpaot. 

Effect  of  Collision  is  increased  over  that  of  perfectly  inelastic  bodies,  but 
not  doubled,  as  in  case  of  perfectly  elastic  bodies ;  it  must  be  multiplied  by 

I  +  —  or  "*       ,  when  —  represents  degree  of  elasticity  relative  to  both  per- 
fect inelasticity  and  elasticity. 

Moving  in  same  Direction,    V ^t_  x  g^^;  (V— »)=:R;  and  v-| 

•D 

X  ( V — «)  ~  r,    m  and  n  repretetOing  ratio  ofperfeU  to  imperfsct  elaatidty, 

B  +  ft 

Illustration. — Assume  elements  as  preceding.       m  and  n= 9  and  z. 

-     *  +  "-      30      X7-3  =  7  — 1-5X^X4  =  7-2.25  =  4.75  yw<,  and  3  + 


'         2     "50+30'''      "     '      --"^80 

^i^X— ^x7^  =  3  +  3.75  =  6.75/«««• 
2         50  +  30 

When  Moving  in  Opposite  Directions, 

v(B-n6)  BV{.  +  ^) 

When  One  Body  is  at  Rest.     — ^  =  R,  and  — ^  =  r. 

Illustration.— Assume  elements  of  preceding  case. 

7X(50— -X30)         ^ 50X7xfi+-) 

_V_a /^7X5o— 5^    ^^^^  ^  V »/ 

35oXf  5 


80 


=  6.5625  ftel. 


LIGHT. 


S83 


LIQHT. 

Light  is  similar  to  Heat  in  many  of  its  qualities,  being  emitted  in 
form  of  rays,  and  subject  to  same  laws  of  reflection. 

It  is  of  two  kinds,  NtUural  and  Artificial ;  one  proceeding  from  Sun 
and  Stars,  the  other  from  heated  bodies. 

Solids  shine  in  dark  only  at  a  temperature  from  600^  to  7CX>°,  and  in 
daylight  at  IOOo^ 

Intensity  of  LigJu  is  inversely  as  square  of  distance  from  luminous 
body. 

Velocity  of  Light  of  Sun  is*  185  000  miles  per  second. 

Standard  of  Intensity  or  of  comparison  of  light  between  different  methodi 
of  illumination  is  a  Sperm  Candle  *'  short  6,"  burning  120  grains  per  hour. 

Can.dles. 

A  Spermaceti  candle  .85  of  a  inch  in  diameter  consumes  an  inch  in  length 
in  I  hour. 


X>eooncipo8itioxi  of  I^iglit. 


Coi.OBa. 

Violet... 
Indigo. . . 

Blue 

Green . . . 
Yellow . . 
OfRDge . . 
Red 


MaxiiDom 
Ray. 


Chemical. 

Electrical. 
Light 
Heat. 


Primary. 


Contrasts. 

Second'y. 


Blue. 

Yellow. 

Red. 


Green. 

Orange. 
Purple. 


TerUary. 


Brown. 

Green. 

Broken. 
Green. 


Primary. 


CombinaUoos. 

S«condary. 


Blue. . . ) 
Yellow,  j 
Blue...  I 
Red. ...  J 

Yellow.  \ 
Red....  1 


Green. . » 

Purple. ) 
Orange.  1 
Green. . ) 
Purple. 
Orange 


•} 


Tortlary. 


Dark. 
Green. 

Gray. 
Brown. 


All  colors  of  spectrum,  when  combined,  are  white. 


Consumption    nnd    Comparative    Intensitsr    of   ILiiglxt 

oi*  C and  lea. 


Candlb. 


Wax. 

Spermaceti 
it 

Tallow 

(I 

it 


No.  In  a 
Lb. 

Diameter. 

Lenirth. 

Inch. 

Int. 

3 
3 

.875 

12 
15 

3 

.9 

15 

4 
6 

•84 

135 
8.5 

3 

I 

"•5 

3 

4 

:I 

15 

13-75 

Consomptlon 
per  Hour. 


Gmins. 
135 

156 
204 


light  comp'4 
irith  Carcel. 


.09 
.09 

.07 


Compared  toith  icx»  Cube  Feet  of  Gas. 


Cavdlb. 

Oassx. 

Con- 
sump- 

tiOD. 

Light. 

C«a-   1 
samption, 
for  equal 
LliKlit. 

Piarafflne. 
Sperm . . . 

.098 

.095 

Lba. 
3-5 
3-9 

Lbt. 

35-5 
41. 1 

103 
lao 

Candlb. 

Oassi. 

Con- 
sump- 
tion. 

Light. 

Adamantine. 
Tallow. 

.108 
.074 

Lbs. 
51 
5" 

Lbs. 

47-3 
53-8 

Coo- 

aainptloD 

for  equal 

Lifcht. 


137 
'55 


In  combastion  of  oil  in  an  ordinary  lamp,  a  straight  or  horizontally  cut  wick 
glTes  great  economy  over  one  Irregularly  cut. 


584 


LIGHT. 


Relative    Iix tensity-,  ConsiaxKiption,   Ill-axnxnatioii,   and 
Cost   of*  variovis   Alod.es  of*  Illunaiuation. 

Oil  at  II  cents,  Tallow  at  14  cents,  Wax  at  52  cents,  and  Stearioe  at  32  cents  pel 
lb.    100  cube  feet  coal  gas  at  14  cents,  and  100  cube  feet  of  oil  gas  at  52  cents. 


iLLmnNATOB. 


Carcel  Lamp 

Lamp  with    in- ) 
,  verted  reserv'r.  | 

Astral  liamp 

Wax  Candle  6  to  lb. 


Illumi- 
nation. 
Carcel 
Lamp 
=  100. 


ZOO 

57.8 

48.7 
61.6 


Actual 

Cost 

per 

Hour. 


Genu. 
.87 

.89 

.56 
.92 


Coit  for 
equal 
Inten- 
sity. 

PerH'r. 
.87 

•99 
1.78 
6.31 


Illvmikatob. 


Stearine  Candle  5  to  lb. 
Tallow        '*      6    " 
Sperm        "      6    " 

Coal  Gas. 

Oil  Gas 


niumi. 
nation. 
Cartel 
Lamp 
=  100. 

Actual 
Coat 

Hoar. 

66.6 

Cento. 

•59 

.25 

.89 

1.22 

I.2S 

Coatfoi 
equal 
Inten- 
sity. 

PerH»r. 
4«3 

2-34 

.96 
.98 


1000  cube  feet  of  13- candle  coal  gas  is  equal  to  7.5  gallons  sperm  oil,  52.9  lbs.  mold) 
and  44.6  lbs.  sperm  caudles. 

Candles,  I^amps,  Fluids,  and   Ghas. 

Comparison  of  severed  Varieties  0/ Candles^  Lamps,  and  Fluids^  xoith  Coal*  €hu,  de- 
duced from  Reports  of  Cmn,  of  Franklin  Institute^  and  of  A.  Frye,  JU.D.y  etc 


Caxdli. 


V3 

Lieht 

at  Equal 

Costs. 

Coat  com- 
pared with 

Oaafor 
Equal  Light. 

Canolb. 

Intensity 

of 
Li^ht-t 

Ifl 

Coat  com- 
pared with 

Gas  for 
Equal  Light. 

.58 

.5 
•54 

.85 

15.1 
16.2 

7-5 

Tallow,  short  6's,) 
double  wick . .  } 
Wax,  short  6 's.... 
Palm  oil 

X 

.8 
7 

X 

.6x 
•77 

7-x 

»4-4 
las 

Diapbane 

Spermaceti,  short  6*8. 
Tallow,  short  6'8, ) 
single  wick... )  '* 

*  City  of  Philadelphia.        t  Compared  with  a  fish-tail  jet  of  Edinburgh  gas,  containing  la  per  cent, 
of  condensable  matter  and  consuming  i  cube  foot  per  hour. 


Lamt  and  Fluid. 


Carcel. 
Sperm  oil,  max^m 
mean. 
mtn'm 


Urd  oil. 


Inten- 
sity of 
Light. 


2.15 

J.  22 

.69 

•77 


Light 
at 

Equal 

Coat. 


Time  of 

Burning 

zPint 

of  Oil. 


Hours. 

1,8     i    6.32 

'•35   ' 
1.2 

•97 


9.87 
14. 6 

"•3 


Lamp  and  Fluid. 


Gas 

Semi-solar,  Sperm  oil 

Solar,  Sperm  oil 

Camphene 


Inten- 
sity of 
Ught. 

Light 

at 
Equal 
Coat. 

z 

1.76 
»-75 

X 

•93 

Time  of 

Baming 

I  Pint 

ofOU. 

Hours. 


6.75 
8.4a 
9.31 


Loss  of  Light  by  Use  of  Glass  Globes. 
Clear  Glass,  12  per  cent  |  Half  ground,  35  per  cent.  |  Full  ground,  40  per  cent 

RefVaotion . 

Relative  Index  of  Refraction—lB.  Ratio  of  sine  of  angle  of  incidence  to  sine  of 
angle  of  refhiction,  when  a  ray  of  light  passes  fVora  one  medium  into  another. 

Absolute  Index  or  Index  of  Refraction — Is,  When  a  ray  passes  ftx>m  a  vacuum  into 

any  medium,  the  ratio  is  greater  than  unity- 
Relative  index  of  refVaction  (torn  any  medium,  as  A,  into  another,  as  B,  is  alwaya 

equal  to  absolute  index  of  B,  divided  by  absolute  index  of  A. 

Absolute  index  of  air  is  so  small,  that  it  may  be  neglected  when  compared  with 
liquids  or  solids;  strictly,  however,  relative  index  for  a  ray  passing  fit>m  air  into  a 
given  substance  must  be  multiplied  by  absolute  index  for  air,  in  order  to  obtain 
like  index  of  reft'action  for  the  substance. 


Alean 

Air  at  52° 1 

Alcohol 1.37 

Canada  balsam ......  x.  54 

Crystalline  lens x.34 


Indices 

Glass,  fluid. . 


i( 


crown 


of  RefVaotion. 

Humors  of  eye. ...  x.34 

Salt,  rock x.55 

Water,  fresh x.34 

sea........  x.34~- 


1 1.58 
)  1.64 


(I 


LIGHT. 


585 


Gras. 

Retort, — A  retort  produces  about  600  cube  feet  of  gas  in  5  hours  with  a 
charge  of  about  1.5  cwt.  of  coal,  or  2800  cube  feet  in  24  hours. 

In  estimating  number  of  retorts  required^  one  fourth  should  be  added  for 
being  under  repairs,  etc 

Pressure  with  which  gas  is  forced  through  pipes  should  seldom  exceed  2.5 
ins.  of  water  at  the  Works,  or  leakage  will  exceed  advantages  to  be  obtauied 
from  increased  pressure. 

The  average  mean  pressure  in  street  mains  is  equal  to  that  of  i  inch  of 
water. 

When  pipes  are  laid  at  an  inclination  either  above  or  below  horizon,  a  cor- 
rection will  have  to  be  made  in  estimating  supply,  by.  adding  or  deducting 
431  inch  from  initial  pressure  for  every  foot  of  rise  or  fall  in  the  length  of  pipe. 

It  is  customary  to  locate  a  governor  at  each  change  of  level  of  30  feet. 

Illuminating  power  of  coal-gas  varies  from  1.6  to  4.4  times  that  of  a  tallow 
candle  6  to  a  lb. ;  consumption  being  from  1.5  to  2.3  cube  feet  per  hour,  and 
specific  gravity  from  .42  to  .58. 

Higher  the  flame  from  a  burner  greater  the  intensity  of  the  light,  the 
most  effective  height  being  5  ins. 

Standard  of  gas  burning  is  a  15-hoIe  Argand  lamp,  internal  diameter  .44 
inch,  chimney  7  ins.  in  height,  and  consumption  5  cube  feet  per  hour,  giving 
a  light  from  ordinary  coal-gas  of  from  10  to  12  candles,  with  Cannel  coal 
from  20  to  24  candles,  and  with  rich  coals  of  Virginia  and  Pennsylvania  of 
from  14  to  16  candles. 

In  Philadelphia,  with  a  fish-tail  burner,  consuming  4.26  cube  feet  per  hour, 
iUumioating  power  was  equal  to  17.9  candles,  and  with  an  Argand  burner, 
consuming  5.28  cube  feet  per  hour,  illuminating  power  was  20.4  candles. 

Gas,  which  at  level  of  sea  would  have  a  Value  of  100^  would  have  but  60 
in  city  of  Mexico. 

Internal  lights  require  4  cube  feet,  and  external  lights  about  5  per  hour. 
When  large  or  Argaud  burners  are  used,  from  6  to  10  are  required. 

An  ordinary  single-jet  house  burner  consumes  5  to  6  cube  feet  per  hour. 

Street-lamps  in  city  of  New  York  consume  3  cube  feet  per  hour.  In  some 
cities  4  and  5  cube  feet  are  consumed.  Fish-tail  burners  for  ordinary  coal 
gas  consume  from  4  to  5  cube  feet  of  gas  per  hour. 

A  cube  foot  of  good  gas,  ftom  a  jet  .033  inch  in  diameter  and  height  of 
flame  of  4  ins.,  will  burn  for  65  minutes. 

Resin  Gas. — Jet  .033,  flame  5  ins.,  1.25  cube  feet  per  hour. 

Purifiera. — Wet  purifiers  require  i  bushel  of  lime  mixed  with  48  bushels 
of  water  for  lodbo  cube  feet  of  gas. 

Dry  purifiers  require  i  bushel  of  lime  to  10  000  cube  feet  of  gas,  and  i 
sup^cial  foot  for  every  400  cube  feet  of  gas. 

Intensity  pf .  X^ight  -witli    Kqiial   Volumes   of*  G}-as  frozu 

different    13  timers. 

EqtmL  to  Spermaceti  Candle,  burning  120  Grains  per  Hour. 


Bobs  saa. 


Sfncle-Jet,  x  foot 
FiS-tail  No.  3 . 
BaVswing 


Ezpenditare  in  Cube 
Feet  per  Hour. 


2.6 
35 
3 


4 
4* 


4.2 
4-3 


4-5 


BUBMKBS. 


Argand,  16  boles.... 

Argaud,  24  holes 

Argand,  28  holes. . . . 


Expenditure  in  Cube 
Feet  per  Hoar. 

4 
3-8 


•32 
•33 
•34 


1.9 
2.2 
2.3 


3-3 
3-4 
3-5 


ii 


586 


LIGHT. 


Volnxne  of*  O-as  obtained  fVoixi  a  Ton  of  Coal»  Itesin^  eto. 


Ifntorial. 


Boghead  Cauoel... 
Wigan  Cannel 

CanneL | 

Cape  Breton,     ) 
"Cow  Bay,"}  .. 
etc J 


Cab« 
Feet. 


13334 

15426 

8960 

15000 

9500 


Material. 


CnmberlaDd 

English,  mean 

Newcastle j 

Oil  and  Grease .... 
Pictoa  and  Sidney. , 
Pine  wood , 


Cube 
Feet. 

9800 

IIOOO 

9500 

10000 
23000 

8000 
II800 


Material. 


Cube 
Feet. 


Pittuburgb 
Resin 

Scotch .... 

Virginia. 


West'n.. 


Walls-end . 


9520 

15600 

10300 

15000 

8960 

9500 

Z2000 


I  Chaldron  Newcastle  coal,  3136  lbs.,  will  furnish  8600  cube  feet  of  gas  at 
a  specific  fi^vity  of  .4,  1454  lbs.  coke,  14. i  gallons  tar,  and  15  gallons  am- 
moiiiacal  liquor. 

Australian  coal  is  superior  to  Welsh  in  producing  of  gas. 

Wigan  Cannel,  i  ton,  has  produced  coke,  1326  lbs. ;  gas,  338  lbs. ;  tar, 
250  lbs. ;  loss,  326  lbs. 

PecUt  1  lb.  will  produce  gas  for  a  light  of  one  hour. 

Fuel,  required  for  a  retort  18  lbs.  per  100  lbs.  of  coal. 

In  distilling  56  lbs.  of  coal,  volume  of  gas  produced  in  cube  feet  when 
distillation  was  effected  in  3  hours  was  41.3,  in  7,  37.5,  in  20,  33.5,  and  in 

F'lO'^v  of*  Q-as   ill   l:*ipe8. 

Flow  of  Gas  is  determined  by  same  rules  as  govern  that  of  flow  of  water. 
Pressure  applied  is  indicated  and  estimated  in  inches  of  water,  usually  from 
.5  to  I  inch. 

Volumes  of  gases  of  like  specific  gravities  discharged  in  equal  times  by  a 
horizontal  pipe,  under  same  pressure  and  for  different  lengths,  are  inversely 
as  square  roots  of  lengths. 

Velocity  of  gases  of  different  specific  gravities,  under  like  pressure,  are  in* 
versely  as  square  roots  of  their  gravities. 

By  experiment,  30000  cube  feet  of  gas,  specific  gravity  of  .42,  were  dis- 
charged in  an  hour  through  a  main  6  ins.  in  diameter  and  22.5  feet  in  length. 

Loss  of  volume  of  discharge  by  friction,  m  a  pipe  6  ins.  in  diameter  and  i 
mile  in  length,  is  estimated  at  95  per  cent. 

Diameter    and.   Uengtli   of*  O-as-pipes  to  transmit  given 
Volumes  of*  Gi-as  to   Branoli-pipes.    {Dr.  Ure,) 

Volnme 
per  Hour. 


Volume 
per  Hour. 

Diameter. 

Length. 

Volume 
per  Hour. 

Diameter. 

Length. 

Cube  Feet. 

Im. 

Feet. 

Cube  Feet. 

Ine. 

Feet. 

50 

•4 

100 

1000 

3.16 

1000 

250 

z 

200 

1500 

3.87 

1000 

500 

1.97 

600 

aooo 

5- 33 

2000 

700 

2.65 

xooo 

2000 

6.33 

4000 

Diameter. 

Length. 

los. 

7 

7.7s 

Q.2Z 
8.9s 

Feet. 
0000 
1000 
2000 
1000 

Cube  Feet. 
2000 
6000 
6000 
8000 


Regulation  or  X>iekmeter  and   Bxtreme  JLiengtK  of*  Xu'bo 
ing,  and   l^uml^er  of  Burners  permitted. 


Bamen. 


Diameter 

Capacity 

Diameter 

Capacity 

of 

Length. 

of 

Burners. 

of 

Length. 

of 

Tnblnir. 

Meters. 

Tubing. 

Meters. 

Ina. 

Feet. 

Light 

No. 

Ina. 

Feet. 

Light. 

•95 

6 

3 

9 

•75 

50 

30 

.375 

20 

5 

IS 

I 

70 

^5 

•5 

30 

10 

30 

1.25 

100 

60 

.625 

40 

20 

60 

^•5 

150 

100 

No. 
90 


LjaHT. 


587 


Temperaiure  of  Gcuea, — Combustion  of  a  cube  foot  of  common  gas  will 
heat  650  lbs.  of  water  1°. 


Services   for   Xjaxnps. 


LAmps. 

from  Msin. 

Diaowter 
of  Pipe. 

No. 

2 

t 

Feet. 
40 
40 
50 

Ins. 
•375 
•5 
.635 

Lamp*. 


No. 
10 

>5 
ao 


L«wth        Diameter 
om  Main,     of  Pipe. 


from 


Feet. 
100 
130 
150 


Ins. 

•75 

I 

1.25 


Lamp*. 


No. 
25 
30 


Leofftb 
from  Main. 


Feet. 
x8o 
aoo 


Diameter 
of  Pipe. 


In*. 

1-5 

«-75 


Volumes  of*Oas  XDisoliarged  per  Hour  under  a  Pressure 

of  Half  an   Inoli  of  "Water. 


Specific  Gravity  .42. 


Dfaun.of 
Opening. 

Volame. 

Dlam.  of 
Opening. 

Volume. 

IMam.  of 
Opening. 

Volume. 

In*. 
•25 
•5 

Cab*  Feet. 
80 
321 

In*. 

•75 

I 

Cube  Feet. 

723 
1287 

In*. 

1.12$ 

'•25 

Cube  Feet 
1625 
aoio 

Diam.  of 

0|i6nin(;. 


Ins. 
1-5 
5 


Volume. 


Cube  Feet. 
2885 
46150 


Xo  Coixipute  "Volume  of  d-as  Disoliarged.  through,  a  Pipe. 

yd-i  h  /V«  G  I 

YTT  =  V",  and   063 1  / — ^ —  =  d.    d  representing  diameter  ofpipe^  and 

k  height  of  wcUer  in  tn«.,  denoting  pressure  upon  gas^  I  length  of  pipe  in  yards,  Q 
specific  gravity  of  gas,  and  V  volume  in  cuf>efeet  per  hour. 

Q  may  be  assumed  for  ordinary  computation  at  .42,  and  A  .5  to  i  inch. 

Illustkatiox.— Assume  diameter  of  pipe  x  inch,  pressure  1.68  ina,  and  length 
of  pipe  1  yard. 

/i  X  1.68  /iM  I   ^  _. 

1000  X  .  / —  =  1000  X  ^  / =  2000  cube  feet, 

V  •4a  X  X  V  '43 

-«j       <    v^  e  /4000000X.42X  I         e/x  680000 

Nora. —For  tables  deduced  by  above  formulas  see  Molesworth,  1878,  page  326. 

I>ixxien8ions   of  Adainsy  -^^ith.  "Weight  of  One  Hiength. 

Diameter  in  ina .... 

Length  in  feet 

Thickness  in  ina  . . . 
Weight  in  lbs 


4 

6 

8 

9 

10 

"4 

18 

9 

9 

9 

9 

9 

9^ 

9 

•375 

•375 

•5 

.5 

•5 

.625 

•75 

288 

234 

400 

454 

489 

,868 

1316 

20 
9 

1484 


•75 


GAS  ENGINES. 


In  the  Lenoir  engine,  the  best  proportions  of  air  and  gas  are,  for  common 
gaSf  8  volumes  of  air  to  i  of  gas,  and  for  cannel  gas,  11  of  air  to  i  of  gas. 

The  time  of  explosion  is  about  the  27th  part  of  a  second. 

An  engine,  having  a  cvlinder  4.625  ins.  in  diameter  and  8.75  ins.  stroke  of 
piston,  making  185  revolutions  per  minute,  develops  a  half  horse-power. 

Disttibtaion  o/Beat  Generated  in  the  Cylinder,    {M.  Tresca.) 

Per  cent.  Per  cent. 


Losses. 


27 

too 


PlHfpated  by  the  water  and  prod- 
ads  (tfcombosiion. 69 

Ccmverted  Into  work 4 

Hence  efficiency  as  determined  by  the  brake  =  4  per  oenk 

Atmospheric  Gas  Engine, 

A  single-acting  cylinder  6  ina  in  diameter,  making  81  strokes  per  minute,  devel- 
oped .456  H*,  and  the  gas  consumed  per  minute  for  cylinder  20  cube  feet  and  for  in- 
timing  2  cube  feet.    {M-  Tresca  ) 


S88      LIMES,  CEMENTS,  M0BTAB6,  AND  CONCRETES. 

LIMES,  CEMENTS,  MORTARS,  AND  CONCRETES. 
Essentially  from  a  Treatise  hy  Bng.'Gen'l  Q.  A.  Gillmore,  U.S.A.* 

Xiizue. 

Calcination  of  marble  or  any  pure  limestone  produces  lime  (quick- 
lime).    Pure  limestones  burn  white,  and  give  richest  limes. 

Finest  calcareous  minerals  are  rhombohedral  prisms  of  calcareous 
spar,  the  transparent  double-reflecting  Iceland  spar,  and  white  or  statu- 
ary marble. 

Property  of  hardening  under  water,  or  when  excluded  from  air,  con- 
ferred upon  a  paste  of  lime,  is  effected  by  presence  of  foreign  sub- 
stances— as  silicum,  alumina,  iron,  etc. — when  their  aggregate  presence 
amounts  to  .i  of  whole. 

Limes  are  classed :  i.  Common  or  Fat  limes,  which  do  not  set  in  water. 

2.  Poor  or  Meagre,  mixed  with  sand,  which  does  not  alter  its  condition. 

3.  Hydraulic  Lime,  containing  8  to  12  per  cent,  of  silica,  alumina,  iron, 
etc.,  set  slowly  in  water.  4.  Hydraulic,  containing  12  to  20  per  cent,  of 
similar  ingredients,  sets  in  water  in  6  or  8  days.  5.  Eminently  Hydraulic, 
containing  20  to  30  per  cent,  of  similar  ingredients,  sets  in  water  in  2  to  4 
days.  6.  Hydraulic  Cement,  containing  30  to  50  per  cent,  of  argil,  sets  in  a 
few  minutes,  and  attains  the  hardness  of  stone  in  a  few  months.  7.  Natural 
Pozzuolanas,  including  pozzuolana  properly  so  called.  Trass  or  Terras,  Ar^nes, 
Ocbreous  earths,  Basaltic  sands,  and  a  variety  of  similar  substances. 

Indications  of  Limestones.  They  dissolve  wholly  or  partly  in  weak  acids 
with  brisk  effervescence,  and  are  nearly  insoluble  in  water. 

Rich  Limes  are  fully  dissolved  in  water  frequently  renewed,  and  thev 
remain  a  long  time  without  hardening;  they  also  increase  greatly  in  vol- 
unie,  from  2  to  3.5  times  their  original  bulks,  and  will  not  harden  without 
the  action  of  air.  They  are  rendered  HydratMc  by  admixture  of  pozzuolana 
or  trass. 

Rich,  fat ^  or  common  Limes  usually  contain  less  than  10  per  cent,  of  im- 
purities. 

Hydraulic  Limestones  are  those  which  contain  iron  and  clay,  so  as  to  en- 
able them  to  produce  cements  which  become  solid  when  under  water. 

Poor  Limes  have  all  the  defects  of  rich  limes,  and  increase  but  slightly  in 
bulk,  the  poorer  limes  are  invariably  basis  of  the  most  rapidly  -  setting 
and  most  durable  cements  and  mortars,  and  they  are  also  the  csAy  limes 
which  have  the  property,  when  in  combination  with  silica,  etc.,  of  indurating 
under  water,  and  are  therefore  applicable  for  admixture  of  hydraulic  cements 
or  mortars.  Alike  to  rich  limes,  they  will  not  harden  if  in  a  state  of  paste 
under  water  or  in  wet  soil,  or  if  excluded  from  contact  with  the  atmosphere 
or  carbonic  acid  gas.  They  should  be  employed  for  mortar  only  when  it  is 
impracticable  to  procure  common  or  hydraulic  lime  or  cement,  in  which  case 
it  is  recommended  to  reduce  them  to  powder  by  grinding. 

ffydraidic  Limes  are  those  which  readily  harden  under  water.  The  most 
valuable  or  eminently  hydraulic  set  from  the  2d  to  the  4th  day  after  immer- 
sion ;  at  end  of  a  month  thev  become  hard  and  insoluble,  and  at  end  of  six. 
months  they  are  capable  of  being  woi4ced  like  t^  hard,  natural  limestones. 
They  absorb  less  w^ater  than  pure  limes,  and  only  increase  in  bulk  from  1.75 
to  2.5  times  their  original  volume. 


•  See  also  hi*  TreatiMt  on  Limet,  HydnuUc  Cementt,  and  Mortars,  io  Paper*  on  Practical  Enginee»> 
bug,  Engineer  Department,  U.  S.  A.  " 


LIMES^  CEAi:fiNTS,  HO&TABS,  AND  CONCRETES.      589 

Inferior  grades,  or  moderately  hydraulic^  Tcquire  a  period  of  from  15 
«o  20  days'  immersion,  and  continue  to  harden  for  a  period  of  6  months. 

Resistance  of  hydraulic  limes  increase  if  sand  is  mixed  in  proportion 
of  50  to  180  per  cent,  of  the  part  in  volume ;  from  thence  it  decreases. 

M.  Vicat  declares  that  lime  is  rendered  hydraulic  by  admixture  with  it  o(  from 
3^  to  40  per  cent  of  clay  and  silica,  and  that  a  lime  is  obtained  which  does  not 
slake,  and  which  quickly  sets  under  water. 

Artificial  Hydraulic  Limes  do  not  attain,  even  under  favorable  circum- 
stances, the  8anie  degree  of  hardness  and  power  of  resistance  to  compression 
as  natural  limes  of  same  class. 

Close-grained  and  densest  limestones  furnish  best  limes. 

Hydraulic  limes  lose  or  depreciate  in  value  by  exposure  to  the  air. 

Pastes  of  fat  limes  shrink,  in  hardening,  to  such  a  degree  that  they  can* 
not  be  used  as  mortar  without  a  large  proportion  of  sand. 

Ar^nes  is  a  species  of  ochreous  sand.  It  is  found  in  France.  On  account 
of  the  large  proportion  of  clay  it  contains,  sometimes  as  great  as  .7,  it  can  be 
made  into  a  paste  with  water  without  any  addition  of  lime ;  hence  it  is  some- 
times used  in  that  state  for  walls  constructed  en  pisi,  as  well  as  for  mortar. 
Mixed  with  rich  lime  it  gives  excellent  mortar,  which  attains  great  hardness 
under  water,  and  possesses  great  hydraulic  energy.    . 

Pozzuolana  is  of  volcanic  origm.  It  comprises  Trass  or  Terras,  the  Arbnes, 
some  of  the  ochreous  earths,  and  the  sand  of  certain  craywackes,  granites, 
schists,  and  basalts;  their  principal  elements  are  silica  and  alumina,  the 
former  preponderating.    None  contain  more  than  10  per  cent,  of  lime. 

When  finely  pulverized,  without  previous  calcination,  and  combined  with  paste 
of  fat  lime  in  proportions  suita-ble  to  supply  its  deficiency  in  that  element,  it  pos- 
sesses hydraulic  energy  to  a  valuable  degree.  It  is  used  in  combination  with  rich 
lime,  and  may  be  made  by  slightly  calcining  clay  and  driving  off  the  water  of  com- 
bination at  a  temperature  of  i2oo<^. 

Brick  or  Tile  Dust  combined  with  rich  lime  possesses  hydraulic  energy. 

Trass  or  Terras  is  a  blue-black  trap,  and  is  also  of  volcanic  origin.  It 
requires  to  be  pulverized  and  combined  with  rich  lime  to  render  it  fit  for 
use,  and  to  develop  any  of  its  hydraulic  properties. 

General  Gillmore  designates  the  varieties  of  hydraulic  limes  as  follows:  If,  after 
being  slaked,  they  harden  under  water  in  periods  varying  from  15  to  20  days  after 
immersion,  tlighUy  hydrauUc;  if  from  6  to  8  days,  hydraulic;  and  if  from  i  to  4 
days,  eminently  hydravUc 

Pulverized  silica  burned  with  rich  lime  produces  hydraulic  lime  of  ex- 
cellent quality.  Hydraulic  limes  are  iniured  by  air-slaking  in  a  ratio  vary- 
ing directly  with  tHeir  hydraulicity,ana  they  deteriorate  by  age. 

For  foundations  in  a  damp  soil  or  exposure,  hydraulic  limes  must  be  ex- 
clusively employed, 

Bydraulic  Lime  of  Teil  is  a  silicious  hydraulic  lime;  it  is  slow  in  setting, 
requiring  a  period  €€  from  18  to  24  hours* 

Cements. 

Hydraulic  Cements  contain  a  larger  proportion  of  silica,  alumina,  magnesia, 
etc.,  than  any  of  preceding  varieties  of  lime ;  they  do  not  slake  after  calcina- 
tion, and  are  superior  to  tlie  very  best  of  hydraulic  lime?,  as  some  of  them 
set  under  water  at  a  moderate  temperature  (65*^)  in  from  3  to  4  minutes; 
others  require  as  many  hours.  They  dry  not  shrink  in  hardening,  and  make 
an  excellent  mortar  without  any  admixture  of  sand. 


590      LDUBS,  CXMBNTS,  MOBTAB8,  AND  CONCBBTS8. 


When  ezpond  to  air,  thejr  absorb  moistnre  and  cartwaic  add  g^utd  are 
rapidly  deienanled  thenhy. 

Bomam  CemetU  is  made  from  a  lime  of  a  peculiar  character,  found  m  Eng- 
land and  France,  derived  from  aTgillo-calcareoiis  lddney-«haped  stonm  termed 

It  is  about  .33  strength  of  Portland,  and  is  not  adapted  for  use  with  sand. 

Rotendaie  CemetU  is  from  Roeendale,  New  Twk. 

Pmrtiand  Cement  is  made  in  England,  Germany,  France,  and  the  United 
States.  It  requires  less  water  (cement  i,  water  .29)  than  Roman  cement, 
sets  slowly,  and  can  be  remixed  with  addiiwncd  water  c^ter  an  interval  ofii 
or  even  24  hmtrsfrom  itsjtrtl  mixture. 

Propertj  of  setting  slow  may  be  an  obstacle  to  nee  of  some  desigmitions  of  this 
cement,  as  the  Boulogne,  when  reqaired  for  iocalities  having  to  contend  against 
immediate  causes  of  destmction,  as  in  sea  constructions,  having  to  be  executed  un- 
der water  and  between  tides.  On  the  other  hand,  a  quick-setting  cement  is  always 
difficult  of  use  ;  it  requires  special  workmen  and  an  active  supervision.  A  slow- 
setting  cement,  however,  like  natural  Portland,  possesses  the  advantage  of  being 
managed  by  ordinary  workmen,  and  it  can  also  be  remixed  vaiik  additional  water 
ajler  an  interval  0/12  or  even  24  hours  Jrom  itefint  mixing. 

Conclugions  derived  from  Mr.  Grantg  Experiments. 

X.  Portland  cement  improves  by  age,  if  kept  firom  moisture. 
3.  Longer  it  is  in  setting,  stronger  it  will  be. 

3.  At  end  of  a  year,  z  of  cement  to  i  sand  is  about  .75  strength  of  neat  cement; 
I  to  2,  .5  strength;  i  to  3,  .33;  x  to  4,  .35;  t  to  s.  ->6. 

4.  Cleaner  and  sharper  the  sand,  greater  the  strength. 

5.  Strong  cement  is  heavy;  blue  gray,  slow-setting.  Quick-setting  has  generally 
too  much  clay  in  its  composition— is  brownish  and  weak.  . 

6.  Less  water  used  in  mixing  cement  the  better. 

7.  Bricks,  stones,  etc.,  used  with  cement  should  be  well  wetted  before  use. 

8.  Cement  setting  under  UUl  water  will  be  stronger  than  if  kept  dry. 

9.  Bricks  of  neat  Portland  cement  in  a  few  months  are  equal  to  Blue  bricks, 
BramleyFall  stone,  or  Yorkshire  landings. 

10.  Bricks  of  x  cement  to  4  or  5  of  sand  are  equal  to  picked  stock  bricks. 

1 1.  When  concrete  is  being  used,  a  current  of  water  will  wash  away  the  cement 

Artificial  Cement  is  made  by  a  combmatioD  of  slaked  lime  with  unbumed 
clay  in  suitable  proportions. 
Artificial  Pozmolana  is  made  by  subjecting  clay  to  a  slight  calcination. 

Salt  water  has  a  tendency  to  decompose  cements  of  all  kinds,  and  their 
strength  is  considerably  impaired  by  their  mixture  with  it 

IVIortax*. 

Lime  or  Cement  paste  is  the  cementing  substance  in  mortar,  and  its  pro« 
portion  should  be  determined  by  the  rule  that  Fo^ume  of  cementing  subttanot 
should  be  somewhat,  in  excess  of  volume  of  voids  or  spaces  in  sivna  or  coarst 
material  to  be  united^  the  excess  beuig  added  to  meet  imperfect  manipulation 
of  the  mass. 

Hydraulic  Mortar^  if  re-pulverized  and  formed  into  a  paste  after  having 
once  set^  immediately  loses  a  great  portion  of  its  hydraulicity,  and  descends 
to  the  level  of  moderate  hydraulic  limes. 

The  retarding  influence  of  sea-water  upon  initial  hydraulic  induration  is 
not  very  great,  if  the  cement  is  mixed  with  fresh  water.  The  strength  of 
mortars,  however,  is  considerably  ini))aired  by  being  mixed  with  sea-water. 

Pointing  Mortar  is  composed  of  a  paste  of  finely-ground  cement  and  clean 
sharp  siliceous  sand,  in  such  proportions  that  the  volume  of  cement  paste  is 
"lightly  in  excess  of  the  volume  of  voids  or  spaces  in  the  sand.    The  volume 


LIMES,  CEMBNTS,  MOBTABS,  AND  CONCBBTES.       59I 

of  sand  varies  from  2.5  to  2.75  that  of  the  cement  paste,  or  by  weight,  i  oi 
cement^powder  to  3  to  3.33  of  sand.  The  mixture  should  be  made  under 
shelter,  and  in  small  quantities. 

AH  mortars  are  much  improved  by  being  worked  or  manipulated ;  and  as  rich 
limes  gain  somewhat  by  exposure  to  the  air,  it  is  advisable  to  work  mortar  in 
large  quantities,  and  then  render  it  fit  for  use  by  a  second  manipulation. 

White  lime  will  take  a  larger  proportion  of  sand  than  brown  lime. 

Use  of  salt-water  in  the  composition  of  mortar  ii^ures  adhesion  of  it 

When  a  small  quantity  of  water  is  mixed  with  slaked  lime,  a  stiff  paste 
is  made,  which,  upon  becoming  dry  or  hard,  has  but  very  little  tenacity,  but, 
by  being  mixed  with  sand  or  like  substance,  it  acquires  the  properties  of  a 
cement  or  mortar. 

Proportion  of  sand  that  can  be  incorporated  with  mortar  depends  partly 
upon  the  degree  of  fineness  of  the  sand  itself,  and  partly  upon  character  of 
the  lime.  For  rich  limes,  the  resistance  is  increased  if  the  sand  is  in  pro- 
portions varying  from  50  to  240  per  cent,  of  the  paste  in  volume ;  beyond 
this  proportion  the  resistance  decreases. 

Lime,  i,  clean  sharp  sand,  2.5.  An  excess  of  water  in  slakmg  the  lime 
swells  the  mortar,  which  remains  light  and  porous,  or  shrinks  in  drying ;  an 
excess  of  sand  destroys  the  cohesive  properties  of  the  mass. 

It  is  indispensable  that  the  sand  should  be  sharp  and  clean. 

Stone  Mortar, — 8  parts  cement,  3  parts  lime,  and  31  parts  of  sand ;  or  i 
cask  cement,  325  lbs.,  .5  cask  of  lime,  120  lbs.,  and  14.7  cube  feet  of  sand:= 
18.5  cube  feet  of  mortar. 

Brick  Mortar, — 8  parts  cement,  3  parts  lime,  and  27  parts  of  sand;  or  i 
cask  cement,  325  lbs.,  .5  cask  of  lime,  120  lbs.,  and  12  cube  feet  of  sand= 
16  cube  feet  of  mortar. 

Brown  Mortar, — Lime  i  part,  sand  2  parts,  and  a  small  quantity  of  hair. 

Lime  and  sand,  and  cement  and  sand,  lessen  about  .33  in  volume  when  mixed 
together. 

Calcareous  Mortar^  being  composed  of  one  or  more  of  the  varieties  of  lime 
or  cement,  natural  or  artificial,  mixed  with  sand,  will  vary  in  its  properties 
with  quality  of  the  lime  or  cement  used,  the  nature  and  quality  of  sand,  and 
method  of  manipulation. 

Xurkish.    Plaster,   or    Kydraulio    Cexnent. 

100  lbs.  fresh  lime  reduced  to  powder,  10  quarts  linseed-oil,  and  i  to  a 
ounces  cotton.  Manipulate  the  lime,  gradually  mixing  the  oil  and  cotton,  in 
a  wooden  vessel,  until  mixture  becomes  of  the  consistency  of  bread-dough. 

Dry,  and  when  required  for  use,  mix  with  linseed-oil  to  the  consistency  of  paste, 
and  then  lay  on  in  coats.  Water-pipes  of  clay  or  metal,  Joined  or  coated  with  it, 
resist  the  effect  of  humidity  for  very  lobg  perioda 

Stuooo. 

Stucco  or  Exterior  Platter  is  term  given  to  a  certain  mortar  designed  for 
exterior  plastering;  it  is  sometimes  manipulated  to  resemble  variegated 
nuurUe,  and  consists  of  x  volume  of  cement  powder  to  2  volumes  of  dry  sand. 

In  India,  to  water  for  mixing  the  plaster  is  added  i  lb.  of  sugar  or  molas- 
•es  to  8  Imperial  gallons  of  water,  for  the  first  coat ;  and  for  second  or  finish- 
ing, X  lb.  sugar  to  a  gallons  of  water. 

Powdered  slaked  lime  and  Smith's  forge  scales,  mixed  with  blood  in  suit* 
able  proportions,  make  a  moderate  hydraulic  mortar,  which  adheres  well  to 
masonry  previously  coated  with  boiled  oiL 


592     LIMES,  CEMENTS,  MOBTABS,  AND  CONCRETES. 

Plafiier  should  be  applied  in  two  coats  laid  on  In  one  operation,  first  coat  being 
thinner  than  second.    Second  coat  is  applied  upon  first  while  latter  is  yet  soft. 

The  two  coats  should  form  one  of  about  1.5  inches  In  thickness,  and  when  fin- 
ished it  should  be  kept  moist  for  several  daya 

When  the  cement  is  of  too  durk  a  color  for  desired  shade,  it  may  be  mixed  w*4i 
white  sand  in  whole  or  in  part,  or  lime  paste  may  be  added  until  Its  volume  equals 
that  of  the  cement  paste. 

K.h.ora8sa.r,   or  Xixrlsish.   Miortetr, 

Used  for  the  construction  of  baildings  requiring  great  solidity,  .33  pow- 
dered brick  and  tiles,  .66  tine  sifted  lime.  Mix  with  water  to  requir^  con« 
sistency,  and  lay  between  the  courses  of  brick  or  stones. 

Miortara. 

Mortars  used  for  inside  plastering  are  termed  Coarse,  Fine,  Gauge  or  hard 
finish,  and  Stucco. 

Plasia-ing. — i  bushel,  or  1.35  cube  feet  of  cement,  mortar,  etc.,  will  cover  1.5 
square  yards  .75  inch  thick.  75  volumes  are  required  upon  brick  work  fbr  70  upon 
laths. 

When  full  time  for  hardening  cannot  be  allowed,  substitute  flrom  15  to  20  per 
cent,  of  the  lime  by  an  equal  proportion  of  hydraulic  cement 

For  the  second  or  In-own  coat  the  proportion  of  hair  may  be  slightly  diminished. 

Coarse  StxiflT.  —  Common  lime  mortar,  as  made  for  brick  masonry, 
Jvith  a  small  quantity  of  hair ;  or  by  volumes,  lime  paste  (30  lbs.  lime)  i 
part,  sand  2  to  2.25  parts,  hair  .16  part. 

Kiiie  Sttiff  (lime  putty). — Lump  lime  slaked  to  a  paste  with  a  mod- 
erate volume  of  water,  and  afterwards  diluted  to  consistency  of  cream,  and 
then  to  harden  by  evaporation  to  required  consistency  for  working. 

In  this  state  it  is  used  for  a  slipped  coat^  and  when  mixed  with  sand  or  plaster  of 
Paris,  it  is  used  tor  finishing  coat 

O-atige,  or  Hard  Kiiilsli,  is  composed  of  from  3  to  4  volumes  fine 
stuff  and  i  volume  plaster  of  Paris,  in  proportions  regulated  by  rapidity  re- 
quired in  hardening  i  for  cornices,  etc.,  proportions  are  equal  volumes  of 
each,  fine  stuff  and  plaster. 

Scrdtch  (7oaf.— First  of  three  coats  when  laid  upon  laths,  and  is  from  .25  to 
•375  o^  ^"  i"^^^  i"  thickness. 

One-coat  Work, — Plasteringln  one  coat  without  finish,  either  on  masonry 
or  laths — that  is,  rendered  or  laid. 

Two-coat  Woi*k. — Plastering  in  two  coats  is  done  either  in  a  laid  cocU 
and  set,  or  in  a  sci'eed  coat  and  set. 

Screed  coat  is  also  termed  a  Floated  coat.  Laid  first  coat  ir  two-coat 
work  is  resorted  to  in  common  work  instead  of  screeding^  when  finished  sur- 
face is  not  required  to  be  exact  to  a  straight-edge.  It  is  laid  in  a  coat  of 
about  .5  inch  in  thickness. 

Laid  coat,  except  for  very  common  work,  should  be  hand-floated. 
Firmness  and  tenacity  of  plastering  is  very  much  increased  by  hand:floating. 

Screeds  are  strips  ci  mortar  6  to  8  inches  in  width,  and  of  required  thick« 
ness  of  first  coat,  applied  to  the  angles-  of  a  room,  or  edge  of  a  wail  and  paral- 
lelly,  at  intervals  of  3  to  5  feet  over  surface  to  be  covered.  When  these  have 
become  sufiiciently  hard  to  withstand  pressure  of  a  straight-edge,  the  inter- 
spaces between  the  screeds  are  filled  out  fiush  with  them. 

Slipped  Coat  is  the  smoothing  off  of  a  brown  coat  with  a  snuiU  quantity 
of  lime  putty,  mixed  with  3  per  cent,  of  white  sand,  so  as  to  nu^e  a  compar* 
atively  even  siurface. 

This  finish  answers  when  the  sorCue  is  to  be  finished  in  distemper,  or  paper    . 


LIMES,  CEMENTS,  MOBTABS,  AND    CONCRETES.       593 

Concrete  01*  Betoxi 
Cs  a  mixture  of  mortar  (generally  hydraulic)  with  coarse  materials,  as 
^avel,  pebbles,  stones,  shells,  broken  bricks,  etc.  Two  or  more  of  these 
hiaterials,  or  all  of  them,  may  be  used  together.  As  lime  or  cement  paste  is 
the  cementing  substance  in  mortar,  so  is  mortar  the  cementing  substance  in 
concrete  or  beton.  The  original  distinction  between  cement  and  beton  was, 
that  latter  possessed  hydraulic  energy,  while  former  did  not. 

Heraldic,  — 1.5  parts  unslaked  hydraulic  lime,  1.5  parts  sand,  i  part 
gnvfii,  and  2  parts  of  a  hard  broken  limestone. 

This  mass  contracts  one  flflb  m  volume.  Fat  lime  may  be  mixed  with  concrett, 
without  serious  prejudice  to  its  hydraulic  energy. 

'Various   Com  positions   of  Concrete. 

ffydraulic.^'yiS  lbs.  cement  =  3.65  to  3.7  cube  feet  of  stiff  paste.  12  cube 
feet  of  loose  sand  =  9.75  cube  feet  of  dense. 

For  Stmeratnicture. — 11.75  cube  feet  of  mortar  as  above,  and  16  cube  feet 
of  stone  fragments. 

Sea  Wall. — Boston  Hai'hur. — Hydraulic. — 308  lbs.  cement,  8  cube  feet  of 
sand,  and  30  cube  feet  of  gravel.    Whole  producing  32.3  cube  feet. 

Superstructure.-^ 30S  lbs.  cement,  80  lbs.  lime,  and  14.6  cube  feet  dense 
sands.    Whole  producing  12.825  cube  feet. 

Pise  fs  made  of  clay  or  earth  rammed  in  layers  of  lYom  3  to  4  ins.  in  depth.  In 
moist  ctimates,  it  is  necessary  to  protect  the  external  surface  of  a  wall  constructed 
in  this  manner  with  a  coat  of  mortar 

A-splialt  Composition. 

Aiphaltum  3  parts,  residuum  oil  or  soft  bitumen  i  part,  powdered  stone  or  fine 
sand  12  parts. 

Ashes  2  parts,  powdered  clay  3  parts,  sand  t  part  Mixed  with  soft  bitumen 
makes  a  very  fine  and  duruble  cement,  suitable  for  external  use. 

Flooring. — 8  lbs.  of  composition  will  cover  i  sup.  foot,  .75  inch  thick.  Asphaltic 
limestone  55  \bs.  and  gravel  28.7  lbs.  will  cover  10.75  sq.  feet,  .75  inch  thick. 

Agpkallic  Mastic. —Mix  hot  asphaltic  limestone  8  parts,  asphaltum  i  part;  add 
sufficient  sand  for  density  needed  for  floor,  roof,  or  walk. 

WaUrproofing. — Asphaltum  4  parts,  linseed  oil  2  parts,  sand  14  parts,  pulverized 
limestone  14  parts,  by  weight.  Materials  to  be  well  dried,  liot,  and  apply  to  dry 
surface. 

For  Roads. — Asphaltum  12.5  parts,  soft  bitumen  or  maltlKi  2.5  parts,  powdered 
limestone  5  parts,  sand  80  parts,  mixed  at  temperature  of  300^.    Thickness,  s  ina 

ArtifieuA  lfa<^— -Gomposftion  of  i  square  yard  .9  inch  thick: 


Mineral  tar. 905  cube  in& 

Pitch 165    "      " 

Sand 549    '*      " 


Gravel 275  cube  iu& 

Slaked  lime 55    "      '^ 


1249  cube  ins. 

Adiiral  Efflorescence. —White  alkaline  efflorescence  upon  the  surface 
of  brick  walls  laid  in  mortar,  of  which  natural  hydraulic  lime  or  cement  is  the  basia 

Mortar  mixed  with  animal  fat  in  the  proportion  of  .025  of  its  weight  will  prevent 
its  formation. 

Crystallization  of  these  salts  within  the  pores  of  bricks,  into  which  they  have 
been  absorbed  fh>m  the  mortar,  causes  disintegration. 

Distemper  is  term  for  all  coloring  mixed  with  water  and  size. 

Growtfng. — ^Mortar  composed  of  lime  and  fine  sand,  in  a  semi-fluid  state, 
poured  into  the  upper  beds  and  internal  joints  of  masonry. 

Laitance  is  the  pulpy  and  gelatinous  fluid,  of  a  milky  hue,  that  is  washed 
from  cement  upon  its  being  deposited  in  water.  It  is  produced  more  abun- 
dantly in  sea  water  than  in  fresh ;  it  sets  very  imperfectly,  and  has  a  ten- 
dency to  lessen  the  strength  of  the  concrete. 

3D* 


594     LI^SS,  CEMENTS,  MOBTABS,  AND   C0NCB3ETXS. 

SlcOcins. 

SlciXxd  Lime  is  a  hydrate  of  lime,  and  it  absorbs  a  mean  of  3.5  times  its 
volume,  and  2.25  times  its  weight  of  water. 

Lime  {quicklime)  must  be  slaked  before  it  can  be  used  as  a  matrix  for 
mortar. 

Ordinary  method  of  slaking  is  by  submitting  the  lime  to  its  full  propor- 
tion of  water  (previously  known  or  attained  by  trial)  in  order  to  reduce  it  to 
the  consistency  of  a  thick  pulp.  The  volume  of  water  required  for  this  pur- 
pose will  vary  with  different  limes,  and  will  range  from  2.5  to  3  volumes 
that  of  the  lime,  and  it  is  imperative  that  it  should  all  be  poured  upon  it  so 
nearly  at  one  time  as  to  be  in  advance  of  the  elevation  or  the  temperature 
consequent  upon  its  reduction. 

This  process,  when  the  water  used  is  in  an  excessive  quantity,  is  termed 
"  drowning,"  and  when  the  volume  of  lime  has  increased  by  the  absorption 
of  water  it  is  termed  its  "  growth." 

If  too  much  water  is  used,  the  binding  qualities  of  the  lime  is  injured  by 
its  semi-fluidity ;  and  if  too  little,  it  is  injurious  to  add  after  the  reduction  of 
the  lime  has  commenced,  as  it  reduces  its  temperature  and  renders  it  granu- 
lar and  lumpy. 

While  lime  is  in  progress  of  slaking  it  should  be  covered  with  a  tarpaulin 
or  canvas  (a  layer  of  sand  will  suffice),  in  order  to  concentrate  its  evolved 
heat. 

The  essential  point  in  slaking  is  to  attain  the  complete  reduction  of  the 
lime,  and  the  greater  the  hydraulic  energy  of  a  lime,  the  more  difficult  it  be- 
comes to  effect  it. 

Whitewash  or  Grouting, — ^When  lime  is  required  for  a  whitewash  or  for 
grouting,  it  should  be  thoroughly  "  drowned,"  and  then  run  off  into  tight  ves- 
sels and  closed. 

Slaking  by  Immersion  is  the  method  of  suspending  lime  in  a  suitable  ves^ 
sel  in  water  for  a  very  brief  period,  and  withdrawing  it  before  reduction 
commences.  The  lime  is  then  transferred  to  casks  or  like  suitable  receptacles, 
and  tightly  enclosed,  until  it  is  reduced  to  a  fine  powder,  in  which  condition, 
if  secured  from  absorption  of  air,  it  may  be  preserved  for  several  months 
without  essential  deterioration. 

Spontaneous  or  Air  Slaking. — When  lime  is  not  wholly  secured  from  ex- 
posure to  the  air,  it  absorbs  moisture  therefrom,  slakes,  and' falls  into  a  powder. 

Umes  and  Cements. — A  Cask  of  Lime  =  240  lbs.,  will  make  from  7.8  to 
8.15  cube  feet  of  stiff  paste. 

A  Cask  of  Cement  =  300  *  lbs.,  will  make  from  3.7  to  3.75  cube  feet  of 
stiff  paste. 

A  Cask  of  Portland  Cement  =  4  bushels  or  5  cube  feet  ^420  lbs. 

A  Cask  of  Roman  Cement  =  3  bushels  or  3.75  cube  feet  =  364  lbs. 

•5  inch.  .75  inch.  x  incli. 

A  Bushel  of  cement  will  cover 2. 25  yards  x.  5  yards  1. 14  yardlb 

From  experiments  of  General  Totten,  it  appeared  that 

I  volume  of  lime  slaked  with  .33  its  volume  of  water  gave  2.27  volumes  of  powder. 
1       "  "  "         .66  "  "  1.74        "  " 

I       »*  "  "        I  "  "  3,06        "  '* 

One  cube  foot  of  dry  cement,  mixed  with  .33  cube  foot  of  water,  will  make .  63  to 
635  cube  fbot  of  stiff  paste. 

Lime  should  be  slaked  at  least  one  day  before  it  is  incorporated  with  the 
sand,  and  when  they  are  thoroughly  mixed,  the  mortar  should  be  heaped  into 
one  volume  or  mass,  for  use  as  required. 

*  900  Ibt.  net  h  aUndard ;  it  otaally  OTtrmoa  8  lb*. 


JilMES,  CSMSNTS,  MOBTABS,  AKD   CONCBBTBS.       595 

BdCortar,  Cement,  Aco.    {MoUi%oortk.) 

Mbrtetr, — i  of  lime  to  a  to  3  of  sharp  river  sand. 

Or,  I  of  lime  to  a  sand  and  i  blacksmith's  ashes,  or  coarsely  ground  coke. 

Cdarse  Mortar. — 1  of  lime  to  4  of  coarse  gravelly  sand. 

Concrete.^-1  of  lime  to  4  of  gravel  and  2  of  sand. 

Hydraulic  Mortar,-^i  of  blae  lias  lime  to  2.5  of  burnt  clay,  ground  to? 
gether. 

Or,  I  of  blue  lias  lime  to  6  of  sharp  sand,  i  of  pozzuolana  and  i  of  calcined 
ironstone. 

Beton. — I  of  hydraulic  mortar  to  1.5  of  angular  stones. 

Cement, — i  of  sand  to  i  of  cement. — If  great  tenacity  is  required,  the  ce- 
ment should  be  used  without  sand. 

Portland   (IJenient 

Is  composed  of  clayey  mud  and  chalk  ground  together,  and  afterwards  cal- 
cined at  a  high  temperature — after  calcining  it  is  ground  to  a  fine  powder. 

Strengtli   or  JVXortars,  Ceznexits.  un.d   Concretes. 

Deduced  from,  Experiments  of  Vicaty  Paisley  ^  Treuuart^  and  Voisin. 


Tensile 
Weight  or  Power  required  to  Tear  asunder  Otie  Sq.  Inch. 

Cement    ^Mortar.    (43  days  old.) 

Proportion  of  Sand  to  x  of  Cement. 


Roman.., 
Portland. . 


284 
142 


284 
142 


199 
113 


166 
92 


4 

5 

6 

7 

8 

9 

xo 

142 
79 

128 
67 

116 
57 

106* 
42 

99 
35 

92 

25 

95lba 

Briolz,  Stone,  and.   d-ranite   Af  asonrsr.    (320  days  old.) 
Experiments  of  General  GiUmore,  U.  S.  A. 


Cement  on  Bncks, 
Pure,  average 30.8 


Sandx  ) 
Cement  i ) 
Saodx  \ 
Cement  2 ) 
Sandz  ) 
Cement  3  ) 


'5-7 

X2.3 

6.8 


Ddajleld  and  Baxter.  Lba. 

Pure  cement 68 

Cement  4  \  ^ 


Sand  X 
Cement  8 ' 
Siftings  I 
Cement  x 
Siftings  I 
Cement  x 
Sifting!  9 
Lawrence  Cement  Co. 
Pure  cement 87 

"       54 


80 
82 


74 


Cement  on  Granite. 


Pure. 


Sandz  ) 
Cement  z ) 
Sand  z  1 
Cement  2 ) 
Sand  z  ) 
Cement  3 ) 


Lb*. 
27-5 

2a8 

Z2.6 

9.2 


James  River.  Lbs. 

Pure  cement 87 

Cement  4 )  ^ 

Sandz      } ^» 

Newark  Lime  and  Cement 
Co. 

Pure  cement 93 

Cement  z ) 

Sand  2     ] ^° 

Newark  ana  Rosendale. 

Pure  cement 75 

Cement  t\  , 

Sandx      } *^ 


Sand  z  ) 
Cement  4 ) 
Water  z  I 
Cement  2 ) 
Water  .42 
Cement 
Water  .33 ) 
Cement  x ) 


n 


Lbi. 

7-9 
2a5 

3725 
29.  X5 


Newark  and  Rosendale. 
Cement  z  I 

Sand  3      )  

Pure,  without ) 
morter,  mean ) 

Mortar. 
Lime  paste  z,  sand  2. 5, 


Lta 


7 
45 


6 

t 


2 
3 
1,     "     3. 
cement  paste  5 m 


tt 


(t 


(t 


59^      LIMSS,  CBMENTS,  MORTAJtS,  AKD   CONGBBTBS. 


Aire  CemaU, 


Lbs. 

Boulogne  loo,  water  50 112 

Portland,  natural,  i  year 675 

"         artificial,  Eng.,  I  year...  462 

''     '    English,  320  days 1152 

"              "        I  month 393 

Newark  and  Rosendale 339 


Lbs. 

Portland,  In  sea- water,  45  days 366 

'  *         English,  6  months 424 

Roman ''Septaria,"  X  year 191 

"      masonry,  5  months 77 

Rosendale,  9  months. ycx: 

Lawrenoe  Cement  Co. 1210 


Transverse. 

Reduced  to  a  uniform  Measure  of  One  Inch  Square  and  One  Foot  in  Length, 

Suppoiied  at  Both  Ends. 

Experiments   of*  Gl-eneral   Grillmore. 
Formed  in  molds  under  a  pressure  of  32  lbs.  per  sq.  inch,  applied  until  mortar 
had  set.     Exposed  to  moisture  Tor  24  hours,  and  then  immersed  in  sea-water. 

Prisms  zbyzbyB  ins.  between  supports. 


z  W 
Reduced  by  Formula  - 


portion  of  prism  L 
Cement, 


James  River. 

Thick  cream. 

Thin  paste 

Stiff  paste 

Rosendale  *'  Hoffman. " 

Thin  paste 

Stiff  paste 

"  Delafleld  and  Baxter." 

Thin  paste 

Stiff  paste 

English. 

Portland,  pure 

Stiff  paste 

Cumberland,  Md.,  pure  . . . . 
High   Falls,  U1-) 

8terCo.,N.Y./ 

Complete  calcination. . . . 


3  4  6  d'      2  ~"    * 


C  coefficient  of  rupture,  and  a  wetfj^t  of 


Mortar. 


• 

< 

1 

Days. 

Lbs. 

59 
320 

59 

It 

6.9 

320 
320 

8.9 

320 
320 

8.5 
12 

320 
320 
320 

16 

13 
13.2 

95 

8.4 

95 

4.2 

Matkrial. 


Portland,  Eng.,  stiff  paste 
Roman,       "       "       " 


(t 


t( 


(( 


Cumberland,  Md. 

Akron,  N.  Y 

James  River,  Va 

Pulverized    and    re- ) 
mixed  after  set. . . . ) 

Fresh 

Kingston  and  Rosendale. 
High  Falls,  Ul- ) 

8terCo.,N.Y.} 

Fresh  water  to  a  stiff  ) 
paste j 

Sea- water  to  a  stiff  paste 
Lawrence  Cement  Co. 

Fresh 


< 


Days. 
320 
20 
100 
320 
320 


O09 


Lbs. 
13 

2-5 

6 

12.8 
&8 


320  I  8.6 
3  I  3-6 


320 
320 

95 

95 
95 

320 


9 
76 


laa 


J8 

On 


xo 


7.8 
8.4 
8.8 


6.6 
3-2 

4-4 
3.6 


Crush-lns;. 

Cements,  Stones,  etc.    (Crystal  Palace,  London.) 

Reduced  to  a  uniform  Measure  of  One  Sq.  Inch, 


Matcbial. 


Portrd  cemU,  area  x,  height  i. 
cement ) 
sand. , . ) 


(C 

"     stone 


DflstnictiTe 
PrssBure. 


Lbs. 
1680 

X244 
"44 


Matirial. 


Portland  cement  i 
"       sand  4 
''       cement  x' 
"       sand  7 

Roman  cement,  pare. , 


DflstractiT* 

Preuurit. 


Lbs. 
X244 

693 
34a 


GS-eneral  Deductions. 

X.  Particles  of  unground  cement  exceeding  .0125  or  an  inch  in  diameter  may  hs 
<iIlowed  in  cement  paste  without  sand,  tf>  extent  of  50  per  cent,  of  wUole,  without 
detriment  to  its  properties,  while  a  curresixinding  proportion  of  sand  injures  the 
strength  of  mortar  about  40  per  cent. 


lilMES,  CEMENTS,  MORTAES,  ETC. — MASONRY.       59/ 

9  WbMi  these  uogroand  particles  exist  in  cement  paste  to  extent  of  66  per  cent 
of  whole,  adhesive  strt-ngih  is  diminished  about  28  per  cent.  For  a  corresponding 
proportion  of  sand  the  dimiuution  is  68  per  cent. 

3.  Addition  of  siftings  exercises  a  less  ii\jarioas  effect  upon  the  cohesive  than  upon 
the  adhesive  property  of  oemeot.  The  converse  is  true  when  sand,  instead  of  sift- 
ings, is  used. 

4.  In  all  mixtures  with  siftings,  even  when  the  latter  amounted  to  66  per  cent  of 
whole,  cohesive  strength  of  mortars  exceeded  their  adhesion  to  bricks.  Same  re- 
sults appear  to  exist  when  siftings  are  replaced  by  sand,  until  volume  of  the  latter 
exceeds  20  per  cent  of  whole,,  after  which  adhesion  exceeds  cohesion.* 

5.  At  age  of  320  days  (and  perhaps  considerably  within  that  period)  cohesive 
strength  of  pure  cement  mortar  exceeds  that  of  Croton  front  bricks.  The  converse 
:b  true  when  the  mortar  contains  50  per  cent  or  more  of  sand. 

6.  When  cement  is  to  be  used  without  sand,  as  may  be  tlic  case  when  grovling  is 
resorted  to,  or  when  old  walls  are  to  be  repaired  by  injections  of  thin  paste,  there  is 
no  advanta^  in  having  it  ground  to  an  impalpable  powder. 

7  For  economy  it  is  customary  to  add  lime  to  cement  mortars,  and  this  may  be 
done  to  a  considerable  extent  when  in  positions  where  hydraulic  activity  and 
strength  are  not  required  in  an  eminent  degree. 

8.  Ramming  of  concrete  under  water  is  held  to  be  injarious.' 

9.  Mortars  of  common  lime,  when  suitably  made,  set  in  a  very  few  day^,  and  with 
euch  rapidity  that  there  is  no  need  of  awaiting  its  hardening  in  the  prosecution  of 
work. 

Kire  Clay.— The  fUsibillty  of  clay  arises  from  the  presence  of  impurities^ 
such  as  lime,  iron,  and  manganese.  These  may  be  removed  by  steeping  the  clay  in 
hot  muridtic  acid,  then  washing  it  with  water.  Crucibles  from  common  clay  may 
be  made  in  this  manner 

iViotes  by  General  Gillmort,  U.  8.  .i.-^Recent  experiments  have  developed  that 
most  American  cements  will  sustain,  without  any  great  loss  of  strength,  a  dose  of 
lime  paste  equal  to  that  of  the  cement  paste,  while  a  dose  equal  to  5  to  75  the  vol- 
ume of  cement  paste  may  be  safely  added  to  any  Rosendale  cement  without  pro- 
ducing any  essential  deterioration  of  the  quality  of  the  mortar.  Neither  is  the 
hydraulic  activity  of  the  mortars  so  far  impaired  by  this  limited  addition  of  lime 
paste  as  to  render  them  unsuited.  for  concrete  under  water,  or  other  subntar  ue 
masonry  By  the  use  of  lime  is  secured  the  double  advantages  of  slow  setting  and 
economy 

Notes  by  OenercU  TotUn^  U.  S.  A.— 240  lbs.  lime=:  i  cask,  will  make  from  7.8  to 
8. 15  cube  feet  of  stiff  paste. 

I  cube  foot  of  dry  cement  powder,  measured  when  loose,  will  measure  78  to  8 
cube  foot  when.packed,  as  at  a  manufactory. 

For  composition  of  Concretes,  at  Toulon,  Marseilles^  Cherbourg,  Dover,  Aldemey, 
etc.,  see  Tretttiae  of  General  Gillmore,  pp.  253-2561 


MASONRY. 

£ond  is  an  arrangement  of  bricks  or  stones,  laid  aside  of  and  aboye 
each  other,  so  that  the  vertical  joint  between  any  two  bricks  or  stones 
does  not  coincide  with  that  between  any  other  two. 

This  iB  termed  "  breaking  Jointa^' 

I/ectder  is  a  brick  or  stone  laid  with  an  end  to  face  of  walL 

Stretcher  is  a  brick  or  stone  laid  parallel  to  face  of  wall. 

Header  Course  or  Bond  is  a  course  or  courses  of  headers  alone. 

Stretcher  Course  or  Bond  is  a  course  or  courses  of  stretchers  alone. 

Closers  are  pieces  of  bricks  inserted  in  alternate  courses,  in  order  to  obtain 
ft  bond  by  preventing  two  headers  from  being  exactly  over  a  stretcher. 

£ngHeh  Bond  is  Uiying  of  headers  and  stretchers  in  alternates  courses. 


598 


MAftONBT. 


f^miah  Bond  is  lapng  of  headers  and  stretchers  alternately  in  each  coorsa 

Gauged  Work. — Bricks  cut  and  rubbed  to  exact  shape  required. 

String  Course  is  a  horizontal  and  projecting  course  around  a  building. 

CorbeiUng  is  projection  of  some  courses  of  a  wall  beyond  its  face,  in  order 
to  support  wall-plates  or  floor-beams,  etc. 

Wood  Bricks^  Pallets,  Plugs^  or  Slips  are  pieces  of  wood  laid  in  a  wall  in 
order  the  better  to  secure  any  woodwork  that  it  may  be  necessary  to  fasten 
to  it. 

Reveals  are  portions  of  sides  of  an  opening  in  a  waU  in  front  of  the  recesses 
for  a  door  or  window  frame. 

Brick  Ashlar. — Walls  with  ashlar-facing  backed  with  brick. 

Grouting  is  pouring  liquid  mortar  over  last  course  for  the  purpose  of  filling 
all  vacuities. 

Lxxrrying  is  filling  in  of  interior  of  thick  walls  or  piers,  after  exterior  faces 
are  laid,  with  a  bed  of  soft  mortar  and  floating  bricks  or  spawls  in  it. 

Rendering  (Eng.)  is  application  of  first  coat  on  masonry,  Laging  if  one 
or  two  coats  on  laths,  and  *^  Pricking  up  "  if  three-coat  worK  on  laths. 

Srioks  sboald  be  well  wetted  before  use.  Sea  sand  shoald  not  be  used  in  the 
composition  of  mortar,  as  it  contains  salt  and  its  grains  are  round,  being  worn  by 
attrition,  and  consequently  having  less  tenacity  than  sharp-edged  grains. 

A  common  burned  brick  will  absorb  i  pint  or  about  one  sixth  of  its  weight  of 
water  to  saturate  it.  The  volume  of  water  a  brick  will  absorb  is  inversely  a  test  of 
its  qufdity. 

A  good  brick  should  not  absorb  to  exceed  .067  of  its  weight  of  water. 

The  courses  of  brick  walls  should  be  of  same  height  in  flront  and  rear,  whether 
ft-ont  is  laid  with  stretchers  and  thin  joints  or  not 

In  ashlar- facing  the  stones  should  have  a  width  or  depth  of  bed  at  least  equal  to 
height  of  stone. 

Hard  bricks  set  in  cement  and  3  months  set  will  sustain  a  pressure  of  40  tons 
per  sq.  foot. 

The  compression  to  which  a  stone  should  be  subjected  should  not  exceed  .1  of  its 
crushing  resistance. 

The  extreme  stress  upon  any  part  of  the  masonry  of  St.  Peter's  at  Rome  is  com- 
puted at  15.5  tons  per  sq  foot ;  of  St.  Paul's,  London,  14  tons  ;  and  of  piers  of  New 
York  and  Brooklyn  Bridge,  5. 5  tons. 

The  absorption  of  water  in  24  hours  by  granites,  sandstones,  and  limestpnes  of  a 
durable  description  is  i,  8,  and  12  percent,  of  volume  of  the  stone. 

Color  of  Bricks  depends  upon  composition  of  the  clay,  the  molding  sand,  tem- 
perature of  burning,  and  volume  of  air  admitted  to  kiln. 

Pure  clay  free  of  iron  will  burn  vMte,  and  mixing  of  chalk  with  the  clay  will 
produce  a  like  elHect. 

Presence  of  iron  produces  a  tint  ranging  from  red  and  orange  to  light  yelloio, 
according  to  proportion  of  iron. 

A  large  proportion  of  oxide  of  iron,  mixed  with  a  pure  clay,  will  produce  a  bri^ 
red,  and  when  there  is  from  8  to  10  per  cent.,  and  the  brick  is  exposed  to  an  intense 
heat,, the  oxide  fUses  and  produces  a  dark  blue  or  purple,  and  with  a  small  volume 
of  manganese  and  an  increased  proportion  of  the  oxide  the  color  is  darkened,  even 
to  a  black. 

Small  volume  of  lime  and  iron  produces  a  cream  cotor,  an  increase  of  iron  pro- 
duces red,  and  an  increase  oflime  brown. 

Magnesia  in  presence  of  iron  produces  yellow. 

Clay  containing  alkalies  and  burned  at  a  high  temperature  produeesa  bluish  gran. 

For  other  notes  on  materials  of  masonry,  their  manipulation,  etc.,  see  **  Limes, 
Cements,  Mortars,  and  Concretes,"  pp.  588-597. 

Pointing. — Before  pointing,  the  joints  should  be  reamed,  and  in  olose  ma- 
sonry they  must-be  open  to  3  of  an  inch,  then  thoroughly  saturated  with  water, 
and  maintained  in  a  condition  that  they  will  neither  absorb  water  Arom  the  mortar 
or  impart  any  to  it  Masonry  should  not  be  allowed  to  dry  rapidly  after  pointingi 
but  it  should  be  well  driven  in  by  the  aid  of  a  calking  iron  and  hammer. 

Jn  pointing  of  rubble  masonry  tbe  Sfiipe  p^eper^l  4ireotions  are  to  be  observed. 


ICASONBT. 


599 


Sand  is  ArgiUaeeout,  SilieMut,  Or  CcUcareouSy  according  to  its  composition. 
Its  use  is  to  prevent  excessive  shrinking,  and  to  save  cost  of  lime  or  cemeut  Or- 
dmarily  it  is  not  acted  upon  by  lime,  its  presence  in  mortar  being  mechanical,  and 
with  hydraulic  limes  and  cements  it  weakens  the  mortar.  Rich  lime  adheres  better 
to  the  surfitce  of  sand  than  to  its  own  particles;  hence  the  sand  strengthens  the 
mortar. 

It  is  imperative  that  sand  should  be  perfectly  clean,  Areed  fh)m  all  imparities, 
uid  of  a  sharp  or  angular  structure.  Within  moderate  limits  size  of  groin  does 
not  affect  the  strength  of  mortar;  preference,  however,  should  be  given  to  coarse. 

Calcareous  sand  is  preferable  to  siliceous. 

Sea  and  River  sand  are  suitable  for  plastering,  but  are  deficient  in  the  sharpness 
required  for  mortar,  fh)m  the  attrition  they  are  exposed  to. 

Clean  sand  will  not  soil  the  hands  when  rubbed  upon  them,  and  the  presence  of 
salt  can  be  detected  by  its  taste. 

Scoriae,  Slag,  Clinker,  and  Cinder,  when  properly  crushed  and  used,  make  good 
liubstitutes  for  sand. 

Concrete.— In  the  mixing  of  concrete,  slake  lime  first,  mix  with  cement,  and  then 
with  the  chips,  etc.,  deposit  in  layers  of  6  in&,  and  hammer  down. 

IB  ricks. 

Variations  in  dimensions  by  various  manufacturers,  and  different  d^^ees 
of  int^isity  of  their  burning,  render  a  table  of  exact  dimensions  of  different 
manufactures  and  classes  of  bricks  altogether  impracticable. 

As  an  exponent^  however,  of  the  ranges  of  their  dimensions,  following 
averages  are  given : 

Dbscriftior.  Ink  DBscHiPTtoit.  Int. 


Baltimore    fh>nt 
Philadelphia    " 
Wilmington    " 
Croton  " 

Colabaugh 

Eng.  ordinary... 

"     Tx>nd.  stock 

Dutch  Clinker... 


J  8.25X4125X2.375 

8.5   X4        X2.25 

8.25X3.625X2.375 

O  X4-5  X2.5 
8.75X4-25  X2.5 
6.25X3         X  1.5 


Maine. ...... 

Milwaukee . . 
North  River. 


Ordinary 

Stourbridge       1 

fire-brick ) 

Amer.  do>,N.  Y. . 


X  3-375  X  2.375 
X  4125X2.375 
X  3-5      X  2.25 
X  3-625X2.25 
X  4- 125  X2.5 

9.125X4-625X2.375 
8.875X4-5      X '2.625 


7-5 

8.5 
8 

(7-75 

18 


In  consequence  of  the  variations  in  dimensions  of  bricks,  and  thickness  of 
the  layer  of  mortar  or  cement  in  which  they  may  be  laid,  it  is  also  impracti- 
cable to  give  any  rule  of  general  application  for  volume  of  laid  brick-work. 
It  becomes  necessary,  therefore,  when  it  is  required  to  ascertain  the  volume 
of  bricks  in  masonry,  to  proceed  as  follows ; 

Xo  Compute  Volume  of  Bricks,  and  14'umber  in.  a.  Cube 

Foot  of  Afaeonry. 

RuLB. — To  face  dimensions  of  particular  bricks  used,  add  one  half  thick- 
ness of  the  mortar  or  cement  in  which  they  are  laid,  and  compute  the  area ; 
divide  width  of  wall  by  number  of  bricks  of  which  it  is  composed ;  multiply 
this  area  by  Quotient  thus  obtained,  and  product  wUl  give  volume  of  the 
mass  of  a  brick  and  ita  mortar  in  ins. 

Divide  1728  by  this  volume,  and  quotient  will  give  number  of  bricks  in  a 
cabefoot 

"*  ExAMPLS.— Width  of  a  wan  is  to  be  12.75  ina,  and  tront  of  it  laid  with  Philadel- 
phia bricks  in  courses  .25  of  an  inch  in  depth;  how  many  bricka  will  there  be  in 
fiu;«  and  backing  in  a  cube  foot? 

Philadelphia  front  brick,  8.25  x  3.375  ina  foca 

8.25  -{-.25X2-7-2  =  8.25  -|-. 25  =  8.5     zslength  of  brick  €mdJ4nfU; 

2.375  -{-.25X2-^2  =  2.375  -f  .25 =2.625  =  «»<tt*  of  brick  and  joint. 

Then  8.5  X  2.625  =  22.3x35  ti«.  =  carta  of  face;  12.75 -r- 3  {number  of  bricks  in 
wkUh  of  watt)  =z  4.35  tiw. 

Hence  33.3125  x  4.35=94.83  cube  im. ;  and  1738-^94.83= 18.33  brickt. 


6oo 


MASONRY. 


One  rod  or  brick  masonry  (Eng.)  =  11.33  ^^^  yards  and  weighs  15  tons,  or  373 
superficial  feet  by  13.5  thick,  averaging  4300  bricks,  requiring  3  cube  yards  mortar 
and  120  gallons  water. 

Bricklayers'  hod  will  contain  16  bricks  or  .7  cube  feet  mortar. 

Fire-Tjriolxs. 

Fire-clay  contains  Silica,  Alumina,  Oxide  of  Iron,  and  a  small  proportion 
of  Lime,  Magnesia,  Potash,  and  Soda.  Its  fire-resisting  properties  depend- 
ing upon  the  relative  proportions  of  these  constituents  and  character  of  its 
grain. 

A  good  clay  should  be  of  a  uniform  structure,  a  coarse  open  grain,  greasy 
to  the  hand,  and  free  from  any  alkaline  earths. 

The  Stourbridge  clay  is  black  and  is  composed  as  follows : 

Silica 63.3  I  Alumina 23.3  {  Lime 73  }  Protoxide  of  iron. ...  x. 8 

Water  and  organic  matter la  3 

Newcastle  clay  is  very  similar. 

rrixiclExiess   of*  Briok   IV alls   for  'W'areliouses   in   Feet. 

{Holenoortfu) 


Height  in  Feet 

100 

90 

80 

70 

60 

50 

40 

30 

as 

Length  Unlimited. . . . 
Thickness  in  Ins. .... 

34 
70 
30 

34 

30 

a6 

36 

26 

21.5 

17.5 

»3 

Length  in  Feet 

Thickness  in  Ins 

70 
30 

60 
26 

45 
21.5 

30 
17-5 

50 

21-5 

70 
31.5 

60 
17-5 

50 

— 

Length  in  Feet 

Thickness  in  Ins 

55 
26 

60 
36 

45 
21.5 

35 
17-5 

40 
17-5 

30 
13 

45 
X3 

— 

Stone   Miasoiiry. 

Masonry  is  classed  as  Ashlar  or  Rubble. 

>\shiar  consists  of  blocks  dressed  square  and  laid  with  close  joints. 
Coursed  Asfdar  consists  of  blocks  of  same  height  throughout  each  course, 
Iivibt>le  is  composed  of  small  stones  irregular  in  form,  and  rough. 
Rubble  Ashlar  is  ashlar  faced  stone  with  rubble  backing. 

A.slilav. 

Fig.  2. 


Fig.  I. 


:i:^Av<-^| 


wm 


g 


^^^aiaa 


P^"?.|lSm53|g^^^B 


mti^imm^ 


^istsism^smi^i 


Fig.  x.^Coursed^  with  chamfiered  and 
rusticated  quoins  and  plinth. 


Fig.  ^.—Coursed,  with  rock  nu:e  and 
draft,  edges. 


Fig.  3. 


:^-^'^,*^ 


^g>.lf^'  :>^:yx: 


Fig.  4. 


Fig.  3.— (7our«e(2,  with  rock  face. 


I 


I 


I 


I 


Fig.  ^—Regular  Cowrnd. 


MASONRY. 


60I 


Fig.  5- 


III 

1         1         1        1      I 

J 

-    I           1           1           1        > 

'    1    '    1        1        1  > 

III       \ 

Randomed  Ashlar. 
Fig.  6. 


Fig.  ^,^Irregular  Coursed. 


Fig.  6.— Random  Coursed. 


Fig.  7- 


Fig.  8. 


Fig.  T-— Hanged  Kandom,  level,  and 
broken  coursea 

R,tal3"ble. 

*'ig-  9-     rrrrvr~nr-\i^-TT<rnn       Fig.  la 


Fig.  8.—Randomj  level,  and  broken. 


Fig. .  9.  Bfodt  Coursed. — f  jirge  blocks 
in  courses  (regular  or  irregular),  Beds 
and  Joints  roughly  dressed. 

Fig.  XI. 


Fig.  10.— Ovrxed  and  Ranged 
Random. 


i<JV 


Fig.  12. 


"-  IC 


Fig.  XI.  itanflwd  iZandoiH.— Squared  Fig.  12.  Coursed  Random.-^ioneBl&\^ 

rubble    laid    in    level    and  broken       in  courses  at  intervals  of  from  12  to  18 
courses.  ins.  in  height. 

Dry   Rubble 
is  a  wall  laid  without  cement  or  mortar. 

Fig.  13-    S  V  "  rgTV^^^^iH'^^  ..wx^'vj  ^'& 

14. 


Fig.  13.    I>ry  .Rudb^e.— Without  mor- 
tar or  cement. 


Fig.  15. 


yig.  14.  Rustic  or  Rag.— Stonea  of 
irregular  form,  and  dressed  to  make 
close  Joints. 

Fig.  16. 


Fig.  15.  Uneoursed  or  Random.  — 
Beds  and  Joints  undressed,  projections 
knocked  off,  and  laid  at  random.  In- 
terstices filled  with  spalls  and  mortar. 

NOTS. —Rustic  or  Rag  work  is  frequently  laid  in  mortar. 

3E 


Fig.  16.  Zrac^d  Cottrxed.— Horizontal 
bands  of  stone  or  bricks,  interposed  to 
give  stability. 


UASONRT. 


.,  „  — Pirint»,Fig.is,onaM;hBide, 

trom  whicb  srcb  epriii|p). 

Omen. — Higheat  point  of  arch. 
Hii««ie*«.--8iiles  of  arch,  from  Bpringing 


.,  ce  between  e:tlrailo9,aho> 
izonUI  line  drawn  through  crown  and  a  ver- 
tical line  through  upper  end  oS  skewback. 

Siaidact  U  Hp[>er  surface  of  an  abul- 
nient  or  pier  from  which  an  arch  sprinKS, 
uiil  its  face  ia  on  a  line  radiating  frraa  centre  nf  arch. 

Abu/iaeni  ia  outer  body  that  supports  ari'li  and  from  whic 

Pkr  is  the  intermediate  support  for  two  or  more  arches. 

Jambi  are  sides  of  abutments  or  piers. 

rouwoir)  are  the  bhicks  forming  an  arch. 

Keg-tlone  is  centre  voussoir  at 


Span  is  horizontal  distance  from  springing  to  Bpringing  of  arch. 

^«.-Heighl  from  Bj.rinf  ■       ■■      -         ■       - 

t^eni/th  19  that  of  springin( 


It  key-stone.    ■ 

Bing-count  of  a  wall  or  arch  is  parallel  to  face  of  it,  and  in  directioa  of 

Slrmg  and  Collar  courtn  are  projecting  ashlar  dreseed  broad  stones  at 
right  angles  to  (ace  of  a  wall  or  arch,  and  in  direction  of  its  length, 
dimfter  is  a  slight  rise  of  an  arch  as  .laj  lu  .35  of  an  inch  per  foot  of 

ilHorn  is  the  external  angle  or  course  of  a  wall. 

PHidh  is  a  pnijecting  base  to  a  waU. 

Foolmg  is  prmecting  course  at  bottom  of  a  wall,  in  order  to  distribute  its 
weight  over  an  mcreased  area.  Its  width  shouhl  be  double  thai  of  base  of 
wair,  diininisliing  in  regular  offsets  .5  vidth  of  tlieir  height. 

Blocking  OmrK.—K  course  placed  on  top  of  a  cornice. 

Piirapel  is  a  low  wall,  over  Mge  of  a  roof  or  terrace. 

Erfrndw.— Back  or  upper  and  outer  surface  of  an  arch. 

fnlradoi  or  <?a^  is  underside  of  lower  surface  of  arch  or  an  opeuiog. 

Groirttil  is  when  arches  intersect  one  another. 

laserl. — An  inverted  arch,  an  arch  with  its  intrados  below  axis  or  spring- 
ing line. 

Athlar  fBOjOBty  requires  .125  of  its  volume  of  mortar.  SubbU,  1.3  cube 
yards  stone  and  .35  cube  yard  mortar  for  each  cube  yard. 

ftiiiife  miuonn/  m  cement,  160  feet  in  haghl,  will  stand  and  hear  3000a 
lbs.  per  SI).  inch- 
Stones  should  he  laid  with  their  strata  horizontal. 

When  "  through  "  or  "  thorough  .bonds  "  are  not  introduced,  headers  ahould 
cverlap  one  another  fn>m  opposite  sides,  known  ba  'l"if$'  /oolb  bond. 

Aggregate  surface  "f  ends  of  bond  stones  should  be  from  .135  to  .95  of 
area  of  each  face  of  wall. 

Weak  alonea,  as  sandstone  and  granular  limesione.  should  not  have  a 
length  over  3  times  their  depth.    Strong  or  bard  stones  amy  have  a  leogU 


MASONRY. 


603 


GcUlets  are  small  and  sharp  pieces  of  stone  stuck  into  mortar  joints,  in 
which  case  the  work  is  termed  gaUeted. 

Snapped  work  is  when  stones  are  split  and  roughly  squared. 

Quarry  or  Rock-faced, — Quarried  stones  with  their  faces  undressed. 

Pitch-faced. — Stones  on  which  the  arris  or  angles  of  their  face,  with  their 
sides  and  ends,  is  defined  by  a  chisel,  in  order  to  show  a  right-lined  edge. 

Drafted  or  Drafted  Margin  is  a  narrow  border  chiselled  around  edges  of 
faces  of  a  block  of  rough  stone. 

Diamond-faced  is  when  planes  are  either  sunk  or  raised  from  each  edge 
and  meet  in  the  centre. 

Squared  Stones, — Stones  roughly  squared  and  dressed. 

RubUe. — Unsqnared  stones,  as  taken  from  a  quarry  or  elsewhere,  in  their 
natural  form,  or  their  extreme  projections  removed. 

Cat  SUmet, — Stones  squared  ami  with  dressed  sides  and  ends. 

Dressed.   Stones.  , 

The  following  are  the  modes  of  dressing  the  faces  of  ashlar  in  engineering: 

Rnuyh  Pointed. — Rough  dressing  with  a  pick  or  heavy  point 

Fine  Pointed, — Rough  dressing,  followed  by  dressing  with  a  fine  point. 

Crandalled. — Fine  pointing  in  right  lines  with  a  hammer,  the  face  of 
which  is  close  serried  with  sliarp  edges. 

Cross  Q'andalled. — When  the  operation  of  crandalling  is  right  angled. 

Hammered. — The  surface  of  stone  may  l)e  finished  or  smooth  dressed  by 
being  Axed  or  Bushed ;  the  former  is  a  finish  by  a  heavy  hammer  alike  to  a 
craodall,  the  latter  is  a  final  finish  by  a  heavy  hammer  with  a  face  serried 
with  sharp  points  at  right  angles. 


Tliiokiiess   of  Brick  Walls  for 

AVarelxouses.    (Molesworth.) 

Lenfcth. 

Height. 

ThickneM. 

Length. 

Height. 

Thickness, 

Length. 

Height. 

Thickness. 

Faet. 

Feet. 

In*. 

Feet. 

Feet. 

Ins. 

Feet. 

Feet. 

Ins. 

Unlimitod. 

25 

13 

Onlimit'd. 

100 

34 

45 

30 

>3 

do. 

30 

175 

60 

40 

^7-5 

30 

40 

13 

da 

40 

215 

70 

50 

ai-5 

40 

50 

175 

da 

50 

a6 

SO 

60 

2>-5 

35 

60 

17s 

do. 

60 

26 

45 

70 

21-5 

30 

70 

'75 

da 

70 

26 

60 

80 

26 

45 

80 

21.5 

da 

80 

30 

70 

90 

30 

.60 

90 

26 

do. 

90 

34 

70 

100 

30 

55 

100 

26 

For  drawings  and  a  description  of  stone-dressing  tools,  see  a  paper  by  J.  R  Cross, 
W.  E.  Memll,  and  E.  B.  Van  Winkle,  ''A.  S. Civil  Engineer  Transactions,"  Nov.  1877. 

Walls  not  exceeding  30  feet  in  height,  upper  story  walls  may  be  8.5  ins.  thick. 

From  16  feet  below  top  of  wall  to  base  of  it,  it  should  not  be  less  than  the  space 
deflne<l  by  two  right  lines  drawn  trom  each  side  of  wall  at  its  base  to  x6  feet  trom 
top 

Thiokness  not  to  be  less  in  any  case  than  one  fourteenth  of  height  of  story. 


IL«atli8. 


Laths  are  1.25  to  1.5  ins.  by  4  feet  in  length,  are  usually  set  .25  of  an  inch 
upart,  and  a  bundle  contains  100. 


to4 


MASOK&T. 


Matouai. 


Cobe  Feet. 

Cement  i 

Cement  i,BaDd  i. 
Cement  i,  sand  2. 


Plastering* 

Volumei  required/br  Vcurums  Thiekntn. 

Square  Yards. 


Ina. 
2.25 
4-5 
6.75 


75 


Ins. 

3 
4-5 


Ins. 

2.25 
3-33 


Matsual. 


Cobe  Feet. 

Lime  1,  sand  2, ) 
lw"f3-75- j  •* 


Square  Tanli. 

•75     I 


In*. 


Ina.    f    Ina. 

75  yard8.8up'l  ren- 
dered and  set  on 
brick  or  70  on  lath. 


Kstimate  of  Afateriale  and.  I^a1:>or  fbr  lOO  Sq..  Yards  of 

Xjatlx   and    Plaster. 


Mnteriala 
and  I<abor. 

Thre»  Cnata 
Hard  Finish. 

Lime 

4   casks. 
66  " 

.5  " 

20CX>. 

4  bashela 
7  luad& 

Lump  lime 

Plaster  of  Paris. . 

lAths. . . 

Hair. 

Sand 

Two  Coats 
Slipped. 

3. 5  casks. 


2000. 

3  bushcte. 

6  loads. 


Materiala 
and  Labor. 


White  sand. 

Nails 

Masons . . . . 
Lqjwrer. . . . 
Cartage.... 


TbreeCoaU 

Two  CoaU 

Hard  Finuh. 

Slipped. 

2.5bashel6. 

islha 

islba. 

4day& 

3.5<»ay8- 

3    " 

3       " 

I     « 

.75  " 

Rougli   Caa^  is  washed  gravel  mixed  with  hot  hydraulic  lime  and 
water  and  applied  io  a  semi-fluid  condition. 


i^jx^Ues   and  ^'butments. 
To  Compute  I>epth.  of*  Keystone  of  Circular  or  Slliptio 


\/K-}-*-=-2 


+  .25  =  d.    R  represmting  raiUuSj  s  span,  and  d  depths  aU  infuL 


This  is  for  a  rise  of  abont .  25  of  span ;  when  it  is  reduced,  as  to  .  125,  add .  5  instead 
of .  25. 

iLLrsTRATiox.— Arch  of  Washington  aqnednct  at  "Cabin  John**  has  a  span  of  230 
feet,  a  rise  of  57. 25,  and  a  radius  of  134-25;  what  should  be  depth  of  its  keystone  f 

■>/l34.25-|-220-r-2    ,  15-63    ,  ^^^»%it.t  ^1.* 

— ^^    ^ 1-.25  =  -2— ^  +  .25  =  4.i6./fe«t     I>epth  is  4.16  feet 

Viaducts  of  several  arches  increase  results  as  determined  above  by  add- 
ing .125  to  .15  to  de])th. 

For  arches  of  2d  class  materials  and  work,  and  for  spans  exceeding  10 
feet,  add  .125  to  depth  of  keystone,  and  for  good  rubble  or  brick-work 
add  .25. 

NoTK. — It  is  customary  to  make  the  keystones  of  elliptic  arches  of  greater  depth 
than  that  obtained  by  above  fonnula.  Trautwine,  however,  who  is  high  authority 
in  this  case,  declares  it  is  unnecessary. 

To   Compute   Radius  of  an  A.Tcih.,  Circular    or  Sllips«. 

I —A  -f-r'-s-ar  =  R    r  rqprttmting  rite. 

Railtvay  A^rches. 

For  Spans  between  25  and  70  feet  Rise  .2  of  span.  Depth  of  arch  .055  of  spao. 
Thickness  of  abutments  .2  to  .25  of  span,  and  of  pier  .14  to  .16  of  span. 

A.l>utment8. 

Wh^n  height  does  not  exceed  1.5  time$b€ue.  R-^s-f-.i  r -\- 2  z=  thickness  at tpring 
qf  arch  in  feet.     ( Trautvoine. ) 

Batter. — From  .5  to  1.5  ins.  per  foot  of  height  of  walL 


MASONBY.^-MECHANICAL   CENTEKS. — GRAVITY.      605 


To   Coxnpute   13epth  of  ^rolx.    (Hurst.) 
Cv^R  =  D.     c  =  Stone  (block)  .3.     Brlck  =  .4.    Rubble=:.45. 
When  there  are  a  series  of  arches,  put .  3  = .  3-5, .  4  = .  45,  and  .  45  = .  5. 

AI!in.izxiuxxi    rTliickness   or  A.l3utTneiits   for  Sridge   and 
similar,  Arclies   of  ISO©.     (HursU) 

When  depth  of  crown  does  not  exceed  3  feet.    Computed  from  formula 
yjt  R  -f-  (^  )  —  ^  =  T.    H  representing  height  of  abutment  to  springing  in  feet 

Height  of  Abutment  to  Springinff. 


lUdiiu 

HfliKht  of  Abatment  to  Sprin|clnf(>        { 

Radius 

Heig 

of  Arch. 

5 

7-5 

ID 

ao 

30 

of  Arch. 

5 

Feet. 

Feet. 

Feet. 

Feet, 

Feet. 

Feet. 

Feet. 

Feet. 

4 

3-7 

4-2 

4-3 

4.6 

4.7 

12 

5.6 

4-5 

3-9 

4-4 

4.6 

4.9 

5 

15 

6 

5 

4.2 

4.6 

4-8 

5-5 

5.2 

20 

6.5 

6 

4-5 

4-7 

5-2 

5-6 

5-7 

25 

6.9 

7 

4-7 

5-2 

5-5 

6 

6.1 

30 

7.2 

8 

4-9 

5-5 

5.8 

6.4 

6.5 

35 

7-4 

9 

S-i 

5- a 

6.1 

6.7 

6.9 

40 

^t 

zo 

5-3 

6 

6.4 

71 

7-3 

45 

7.8 

11 

5.5 

6.2 

6.6 

7-3 

7.6 

50 

7-9 

7-5 

xo 

Feet. 

Feet. 

6.4 

6.9 

7 

7-5 

Z-7 

8.4 

8.2 

9.1 

8-7 

9  7 

9.1 

10.2 

9.4 

ia6 

9-7 

IX 

10 

11.4 

20 

30 

Feet. 

Feet. 

7.6 

8.4 

9.6 

10.5 

7-9 
8.8 
10 

II.X 

11.4 

13 

II.8 
12.8 

12.9 
13.6 

134 
14 

14.3 
15 

XoTB. —Abutments  in  Table  are  assumed  to  be  without  counterforts  or  win^> 
walls.  A  sufficient  margin  of  safety  must  be  allowed  beyond  dimensions  here 
given. 

Culrertc  for  a  road  having  double  tracks  are  not  necessarily  twice  the 
length  tor  a  single  track. 

For  other  and  foil  notes,  tables,  etc.,  see  Trautwine's  Pocket  Book,  pp.  593-7za 


MECHANICAL  CENTRES. 


There  are  four  Mechanical  centres  of  force  in  bodies,  namely,  Centre 
of  Gravity,  Centre  of  Gyration,  Centre  of  Oscillation,  and  Centre  of 
Percussion. 

Centre   of*  GJ-ravity. 

Centre  or  Grayitt  of  a  body,  or  any  system  of  bodies  rigidly  con- 
nected together,  is  point  about  which,  if  suspended,  all  parts  will  be  in 
equilibrium. 

A  body  or  system  of  bodies,  suspended  at  a  point  out  of  centre  of  gravity, 
will  rest  with  its  centre  of  gravity  vertical  under  point  of  suspension. 

A  body  or  system  of  bodies,  suspended  at  a  pcjint  out  of  centre  of  gravity, 
and  successively  suspended  at  two  or  more  such  points,  the  vertical  lines 
through  these  points  of  suspension  will  intersect  each  other  at  centre  of 
gravity  of  body  or  bodies. 

Centre  of  gravity  of  a  body  is  not  always  within  the  body  itself. 

If  centres  o?  gravity  of  two  bodies,  as  B  C,  be  connected  by  a  line,  dis- 
tances of  B  and  C  from  their  common  centre  of  gpravity,  c,  is  innernely  as 
the  weights  of  the  bodies.    Thus,  B  :C::C  c:e  B. 

To  Ascertain  Centre  of  Gravity  of  any  Plane  Figure  MechamcaUy. 

Suspend  the  figure  by  any  point  near  its  edge,  and  mark  on  it  direction 
of  a  plumb-line  hung  from  that  point ;  then  suspend  it  from  some  other 
point,  and  again  mark  direction  of  plumb-line.  Then  centre  of  gravity  of 
«urfa<^'e  will  pe  at  point  of  intersection  of  the  two  marks  of  plumb-line. 

3E* 


6o6  MECHANICAL  CENTBBS. — GBAVITy. 

Centre  of  gravity  of  parallel-sided  objects  may  readily  be  found  in  this 
way.  For  instance,  to  ascertain  centre  of  gravity  of  an  arch  of  a  bridge, 
draw  elevation  upon  paper  to  a  scale,  cut  out  figure,  and  proceed  with  it  as 
above  directed,  in  order  to  find  position  of  centre  of  gravity  in  elevation  of 
the  model.  In  actual  arch,  centre  of  gravity  will  have  same  relative  position 
as  in  paper  model. 

In  regular  figures  or  solids,  centre  of  gravity  is  same  as  their  geometrical 
centres. 

I-iine. 
r  c 
Circular  Arc.     -z- z=  distance  from  centre^  r  representing  radius^  c  chord,  and  I 

length  of  arc 

Surflatces. 

Square^  Rectangle,  Rhombuty  Rhomboid,  Gnomon,  Cube,  Regular  Pobfgon, 
Circle,  Sphere,  Spheroid  or  Ellipsoid,  Sphercidal  Zone,  Cylinder,  Circular 
■  Ring,  Cylindrical  Ring,  Link,  Helix,  Main  Spiral,  Spindle,  all  Regular  Fig- 
ures, and  Middle  Frusta  of  aU  Spheroids,  Spindles,  etc. 

The  centre  of  gravity  of  the  surfaces  of  these  figures  is  in  their  geometri- 
ccU  centre. 

Triangle, — On  a  Une  drawn  from  amy  ang^  to  the  middle  of  opposite  side, 
at  two  thirds  of  the  distance  from  angle. 

Trapezium. — Draw  two  diagonals,  and  ascertain  centres  of  gravity  of  each 
of  four  triangles  thus  formed ;  join  each  opposite  pair  of  these  centres,  and  it 
is  at  intersection  of  the  Unes. 

Trapezoid.     (  rrrrr)  ^  ~  =  di^ance  from  B  on  a  Une  joining  middle  of  two 

parcUlel  sides  Bb,m  represeiUing  middle  Une. 

c  r 
Circular  Arc     -^  =  distance  from  centre  ofcvrdit, 

V 

Setoff  of  a  Cirde.    .  4344  r  =  distanee  from  cenk^  of  eirde,  c  npresenHng  chord. 

Semicircle.    .4244  r  =  distance  from  centre. 

Semi-semicircle.  .4244  r  =  distance  from  both  base  and  height  and  at  their  inters 
section. 

c3 
Segment  of  a  Cirde.     =  distance  from  centre,  a  reprewnting  area  of  segment 

Sector  of  a  Circular  Ring.     —  x  — -^  7"  X  -x tz  =  distance  from  centre  of 

•^  3  arc  ^        r^  —  r^  ' 

arcs,  r  and  t'  representing  the  radii. 

Illustration.— Radii  of  surfoces  of  a  dome  are  5  and  3.5  feet,  and  angle  (^  al 
centre  =  130°. 

4  ^  Sin^  ^  !?5zi4i87S  =  i  X  :i^  X  '*•'-''  =  3.43>«t 
3      arc  130°        15  — 12.25        3      3.2689       *2-75 

Hemisphere,  Spherical  Segment,  and  Spherical  Zone^  At  centre  of  their 
heights,  ^ 

Circular  Zone, — Ascertain  centres  of  gravity  of  trapezoid  and  segmenta 
comprising  zone;  draw  a  line  (equally  dividing  zone)  perpendicular  to 
chords;  connect  centres  of  segments  by  a  line  cutting  perpendicular  to 
chords. 

Then  centre  of  gravity  of  figure  will  be  on  pernendictdcar,  toward  lesser 
chord,  at  such  proportionate  distance  of  difference  between  centres  of  gravity 
of  tr(q)ezoid  and  line  connecting  centres  of  segments,  c(s  area  of  smtents 
ocQrs  to  area  of  trapezoid,  ^ 


M£CUANIGAX  CENTRES. GRAVITY.        607 

Prism  and  Wec^e,— When  end  is  a  Parallelogram,  in  their  geometiicaX 
centres;  when  the  end  is  a  Triangle,  Trape/^iuiu,  etc.,  it  is  in  middle  of  its 
lefufth,  iU  scum  distance  from  base,  as  that  of  triangle  or  trapezoid  of  which 
it  u  a  section. 

Parabola  in  its  a.cis=..6  distance  from  vertex, 

Prismoid,—At  samt  distance  from  its  base  as  that  of  the  trapezoid  or 
trapezium^  which  is  a  section  of  it. 

Lune. — On  a  line  connecting  centres  of  gravity  of  arcs  ai  a  proportiotiate 
^  ^      point  to  respective  areas  of  arcs, 

■ordinates.      (r4-r* ; — -A  -  =«, 

V  •■+r7  3 


Co- 


and  (^)  *  = 
Kr  +  r'/  3 


X. 


Solids. 

CiUfe,  ParaUelopipedon.,  Hexahedron^  Octahedron.,  Dodecahedronj  Icosahe- 
drony  Qflinder,  Sphere,  Right  Spherical  Zone,  Spheroid  or  Ellipsoid,  Cylin- 
drical Ring,  Iawc,  Spindle,  ail  Regular  Bodies,  and  Middle  Frusta  of  aU 
Spheroids  and  Spindles,  etc.  Centre  of  gravity  of  these  figures  is  in  their 
geometrical  centre. 

Tetrahedron.— In  common  centre  of  centres  of  gravity  of  the  triangles  made  by  a 
section  through  centre  ofeacli  side  ofl/iejigures. 

Cone  and  Pyramid.  .25  of  line  joining  vertex  and  centre  of  gravity  ofbase=rdis- 
tancefrom  base. 

Frustum  of  a  Cone  or  Pyramid.     \ — 7—77..-' ,  X  -  h  =  distance  from  centre 

\r-\-rY  —  rr       4 

of  lesser  end,  r  and  r',  in  a  cone  representing  nuin,  and  in  a  pyramid  sides.,  and  h 
height. 

Cone,  Frustum  of  a  Cone,  Pyramid^  Frustum  of  a  Pyramid^  and  Ungula. — 
At  same  distance  from  base  as  in  that  of  triangle,  parallelogram,  or  semicir^ 
de,  which  is  a  right  section  of  them. 

Hemisphere.    .  375  r = distance  from  centre. 

Spherical  Segment  3.1416  M'fr J  -r- v  z=:  distance  from  centre,  vs  repre- 
senting versed  sine,  and  v  volume  of  segment     (     ^~^  .)  x  *  =  distance  from 

\i2  r —  4  »*/ 
vertex. 

Spherical  Sector.    .75  (r  — .  5  *)  1=  distMioe  from  centre.     '  ^o^    =  distance 

from  vertex. 

Spirals. — Plane,  in  its  geometrical  centre.  Conical,  aJl  a  distance  from  the 
hose,  .25  of  line  joining  vertex  and  centre  of  gravity  of  base. 

Frustum  of  a  Circular  Spindle.     -—7 — =r— ^  =  dista  ce  from  centre  of  spindle. 

2  {h  —  D.s) 

h  representing  distance  between  two  bases,  D  distance  of  centre  of  spindle  from  centre 

efcirde,  and  z  generating  arc,  expressed  in  units  ofraditu. 

r» 
Segment  of  a  Circular  Spindle.    — -r — =r-T  =  dwtatice/rom  centre  of  spindle. 

2  (»  —  u.t) 

Semi-spheroids. — Prolate.    .375  o.— 06/afe.    .^ys<'^=^  distance  from  centre 

Semi-spheroid  or  ElUpsoid  and  its  Segment— See  HasweWs  Mensuration,  pages 
a8i  mod  282. 

Frusta  of  Spheroids  or  Ellipsoids.    Prolate.    .75       ^^  ~ — '  =  distance  from 

3  a'  —  «' 

eentre  of  spheroid,  a  reprsunting  semi-transverse  diameter  in  a  prolate  fruUum^  and 
semi-conjugate  in  an  oblate  frustuM. 


HyperboUnd  of  Be.voluUon.     ^  .   ,  ^  .  X  %  =  dUtanoe  from  vertex^  b  represenUng 


608  MECHANICAL   CENTBES. — GRAVITY. 

Segmentt  of  Spheroids.— Prolate,    ./s  ^"t^.— O&tefe.    .75^^i^  =  <«i<afiOft 

3a-|-a  20+0 

^om  centre  ofspheroidf  d  and  d'  rqpretetUing  distancei  of  bate  of  segments  from. 

centre  of  spheroid. 

3(1* — »    -f-d  a-f-O"* 
roid,  d  and  d'  representing  distances  of  base  and  end  of  segments  from  centre  of  the 
spheroid. 

Segment  of  an  Elliptic  Spindle  cU  two  thirds  of  height  from  verieas, 

ParoUfoloid  of  Revolution,  at  two  thirds  of  height  from  vertex. 

Segment  of  a  Hyperbolic  Spindle^  at  75  of  height  from  vertex. 

2  r'4-r        h 
Frustum  of  Paraboloid  of  Revolution.     — ^  ,.    ,  X  -  =  distancefrom  baae^  r  astd 

r  -j~  r         3 

r'  representing  radii  qfbase  and  vertex. 

Segment  of  Paraboloid  of  Revolution,  at  two  thirds  of  height  from  vertex. 

Segments  nj  a  Circular  and  a  Parabolic  Spindle. — See  HasweWs  Mensuration^ 
pages  192  aDd  199. 

Parabola.    .4  of  height  =:  distance  from  base, 

Hyperboloid  oj 
diameter  of  base. 

(d  4- dO  (2  o*  —  d'«  +  <l») 
Frustum  of  Hyperboloid  of  Revolution.     . 75         ^_'   ^-^,>  j  r.  ^2    =  distance 

fi'OM  centre  of  base,  a  representing  semi-transverse  axis,  or  distance  from  centre  of 
curve  to  vertex  of  figure  ;  d  and  d'  distances  from  centre  of  curve  to  centre  of  lesser 
and  greater  diameter  of  frustum. 

Segment  of  Hyperboloid  of  Revolution.     ^.  ,  ^-  X  A  =  distancefrom  vertex. 

o  O-f-4  » 

Of  Two  Bodies.  =  distance  from  V  or  volume  or  area  of  larger  body,  d  rg>. 

resenting  distance  between  centres  of  gravity  ofbodieSy  and  v  volume  or  area  of  less 
body. 

Cycloid.  —  .833  of  radius  of  generating  circle  :=  distance  from  centre  of 
chord  of  curve. 

A  ny  Plane  Fif/ttre. — Divide  it  into  triangles,  and  ascertain  .centre  of  grav- 
ity or  each ;  connect  two  centres  together,  and  ascertain  their  common  cen- 
tre ;  then  connect  this  common  centre  and  centre  of  a  third,  and  ascertain 
the  common  centre,  and  so  on,  connecting  the  last-ascertained  common  centre 
to  another  centre  till  whole  are  included,  and  last  common  centre  will  give 
centre  required.    . 

Of  an  Irregular  Body  ofRofaiion. 

Divide  figure  into  four  or  six  equidistant  divisions ;  ascertain  volume  of 
each,  their  moments  with  reference  to  first  horizontal  plane  or  base,  and 
then  connect  them  thus : 

h 
(A-f-4  Ai  +  2  Aa-f  4  A3-f  A4)  —  =  V,  A  Ai,  etc.,  representing  volume  qf  ditis- 

12 

ton*,  and  h  height  of  body  from  base  ; 

A-f  4Ai-f  2  Aa  +  4A3-|-A4  4  ^  ^ 

gravity  from  base. 


MBGHANIOAL  CENTRES. — GTBATION.  CX)9 

Centre  of  Gryration. 

Centre  of  Gyration  is  that  point  in  any  revolving  body  or  system 
of  bodies  in  which,  if  the  whole  quantity  of  matter  were  collected,  the 
Angtdar  velocity  would  be  the  same ;  that  is,  the  Momentum  of  the  body 
or  system  of  bodies  is  centred  at  this  point,  and  the  position  of  it  is  a 
mean  proportional  between  the  centres  of  Oscillatioti  and  Gravity 

If  a  straight  bar  of  wiiform  dimensions  was  struck  at  Uiis  point,  the 
stroke  would  communicate  the  same  angular  velocity  to  the  bar  as  if  the 
whole  bar  was  collected  at  that  point. 

The  A  ngular  velocity  ot  a  body  or  system  of  bodies  is  the  motion  of  a  line 
connecting  any  point  and  the  centre  or  axis  of  motion :  it  is  the  same  in  all 
parts  of  the  same  revolving  body. 

In  different  unconnected  bodies,  each  oscillating  about  a  common  centre, 
their  angular  velocity  is  as  the  velocity  directly,  and  as  the  distance  from 
the  centre  inversely.  Hence,  if  their  velocities  are  as  their  radii,  or  distances 
from  the  axis  of  motion,  their  angular  velocities  will  be. equal. 

When  a  body  revolves  on  an  axis,  and  a  force  fe  impressed  upon  it  suffi- 
cient to  cause  it  to  revolve  on  another,  it  will  revolve  on  neither,  but  on  a 
line  in  the  plane  of  the  axes,  dividing  the  angle  which  they  contain ;  so  that 
the  sine  of  each  part  will  be  in  the  inverse  ratio  of  the  angular  velocities 
with  which  the  bodies  would  have  revolved  about  these  axes  separately. 

Weight  of  revolving  body,  multiplied  into  height  due  to  the  velocity  with 
which  centre  of  gyration  moves  in  its  circle,  is  energy  of  body,  or  mechaui> 
cal  power,  which  must  be  communicated  to  it  to  give  it  that  motion. 

Distance  of  centre  of  gyration  from  axis  ot  motion  is  termed  the  Radius 
of  gyration ;  and  the  moment  of  inertia  is  equal  to  product  of  square  of 
radius  of  g3rration  and  mass  or  weight  of  body. 

The  moment  of  inertia  of  a  revolving  body  is  ascertained  exactly  by  as- 
certaining the  moments  of  inertia  of  every  particle  separately,  and  adding 
them  together ;  or,  approximately,  by  adding  together  the  moments  of  the 
small  parts  arrived  at  by  a  subdivision  of  the  body. 

To  Compute  Alomeiit  of  Inertia  of  a  Revolving  Body. 

Rule.— Divide  body  into  small  parts  of  regular  figure.  Multiply  mass 
or  weight  of  each  part  by  square  of  distance  of  its  centre  of  gravity  from 
axis  of  revolution.    The  sum  of  products  is  moment  of  inertia  of  body. 

NoTB.— The  value  of  moment  of  inertia  obtained  by  this  process  will  be  more 
exact,  the  smaller  and  more  numerous  the  parts  into  which  body  is  divided. 

To  Compute  Radiiis  of  O-yration  of  a  Revolving    Body 
about  its   A.xia   of  Revolution, 

Rule.— Divide  moment  oi  mertia  of  body  bv  its  mass,  or  its  weight,  and 
square  root  of  quotient  is  length  of  radius  of  gyration. 

NoTB.— When  the  parts  into  which  body  is  divided  are  equal,  radius  of  gyration 
naav  be  determined  by  Uking  mean  of  all  squares  of  distances  of  parts  from  axis 
of  revolution,  and  taking  square  root  of  their  suol 

Or,  VR^  +  r'-r-  2  =  0.     R  and  r  rcprenrntimj  radii. 
ExAMPLB.— A  straight  rod  of  uniform  diameter  and  4  feet  in  length,  weighs  4  Iba ; 
what  is  ita  inertia,  and  where  is  its  radius  or  centre  of  gyration  ? 

Each  foot  of  length  weighs  i  lb.,  and  if  divided  into  4  parta,  centre  of  gyration  of 
6«ch  is  respectively  .5,    1.5,    3.5,  and    3.5  feet    Hence, 

IX   .51=     .25  1 

1  X  1. 5   =  225      21  =^  inertia,  which  -J-  4  =  5.25,  and  A/s-as  =  a.9a» 
iXa.5»=:  6.25         feetradiui.  ^ 

«X3-5'  =  xa.2S  J 


5lO  MBCHANICiiL   CENTRSS. — GYRATION. 

Following  are  distances  of  centres  of  gyration  from  centre  of  motion  io 
various  revolving  bodies : 

Straight,  uniform  Bod  or  Cylinder  or  tfiin  RectangtUar  Plate  revolving  about  one 
end;  length,  x  5773,  ^nd  revolving  ubout  their  centre;  ler^^  x  .2886. 

The  general  expression  is,  when  revolving  at  any  point  or  its  length, 

Circular  Plane,  revolving  on  its  centre;  radiM  of  circle  X  -7071 ,  Circle  Plane,  as 
a  W/teel  or  Disc  of  uni/bi-m  Thickness^  revolving  about  one  of  its  diameters  as  an 
axis;  radius  x  -s- 

Solid  Cylinder y  revolving  about  its  axis;  radius  x  •7071. 

Solid  S]^rej  revolving  about  its  diameter  as  an  axis;  radius  x  .6325. 

Thin,  hollow  Sphere,  revolving  about  one  of  its  diameters  as  an  axis;  radius 
X -8164.    Surface  of  sj^ere  .96is  r. 

Sphere  and  Solid  Cylinder  (vertical),  at  a  distance  from  axis  of  revolution  =s 

Vt'-^.^r'  for  sphere,  and  Vl^-i- •  5  r^  Jor  cy Under ^  I  representing  length  qf  connec- 
tion to  centre  of  sphere  and  cylinder. 

Cone,  revolving  about  itg  axis;  radius  of  hose  X  .5447;  revolving  about  its  ver- 
tex =  V12  A2-4-3  r^ -H 20^  A  representing  height,  and  r  radius  qf  base,  revolving 
about  its  ba£es=  V2  h^^^  r^-j-zo. 

Circular  Ring,  as  Rim  of  a  Flywheel  or  Hollow  Cfylinder,  revolving  about  its 

diameter  =  VR*-|-r«-r-2,  R  rqpresenting  radius  of  periphery,  and  r  of  inner  circle 
of  ring. 

Fly-wheel  =    J  ^ ■ — ^^^ — ^ ■ — -,  W  and  w  representing  toeights  of 

rim  and  of  arms  and  hub,  and  I  length  of  arms  from  ojbu  of  wheel 

I A  d^  -\-  c' 
Section  of  Rim.       J- — yr^-^-rd.    d  representing  depth  and  c  periphery 

of  rim. 


i=V^+»' 


Parallelopiped,  revolving  about  one  end,  distance  flrom  end= « /^ — — — ,  b  rep- . 

V        12 

resenting  breadth. 

Illustration.— In  a  solid  sphere  revolving  about  its  diameter,  diameter  being 
2  feet,  distance  of  centre  of  gyration  is  12  x  -6325  =  7.59  ins. 


Xo   Compute   ICleznents  of  G-y ration. 
GWr      „  Pr«o      ^  GWv  Vrtg     _  GWt>      ^ 

-— ~  =  t>.     G  representing  distance  of  centre  of  gyration  from  axis  of  rotation^ 
i»  w 

W  weight  of  body,  t  Ums  power  acts  in  seconds.,  v  velocity  in  feet  per  second  acquired 
by  revolving  body  in  thai  time,  and  r  distance  of  point  ofapplioatian  of  power  from 
axis  of  body,  as  length  of  cranky  etc 

Illustration  i What  is  distance  of  centre  of  gyration  in  a  fly-wbeel,  power 

224  lbs.,  length  of  crank  7  feet,  time  of  rotation  10  seconds,  weight  of  wheel  5600 
lbs.,  and  velocity  of  it  8  feet  per  second? 

224X7X'OX3».«66^S04373^        eyeet 
5600X8  42800  '   ' 

2.— What  should  be  weight  of  a  fly-wheel  making  12  revolutions  per  minute.  lU 
diameter  8  feet,  power  applied  at  2  feet  fV-om  its  axis  84  lbs.,  time  of  rotation  6  sec- 
onds, and  distance  of  centre  of  gyration  of  wheel  3.5  feet? 

8X31416X12  ,    -^         ,    .^      --      84X2X6X32.166       „        __ 

^-7^ =  5.0265 feet  =  velocity.    Then  -^-^ ^^ =  1843. «  *• 

°^  3.5  X  5.0265 


MECHANICAL   CENTRES. — GYRATION.  6l  I 

When  the  Body  is  a  Compound  one.  Rule. — Multiply  weight  of  several 
particles  or  bodies  by  squares  of  their  distances  in  feet  from  centre  of  mo- 
tion or  rotation,  and  divide  sum  of  their  products  by  weight  of  entire  mass; 
the  square  root  of  quotient  will  give  distance  of  centre  of  gyration  from 
centre  of  motion  or  rotation. 

ExjkXPLB.— If  two  weighu,  of  3  and  4  lbs.  respectively,  be  laid  upon  a  lever  (which 
is  here  assumed  to  be  without  weight)  at  the  respective  distances  of  i  and  2  feet, 
what  is  distance  of  centre  of  gyration  fVom  centre  of  motion  (the  fulcrum}  ? 

3X1^  =  3;     4X2»=i6;     ^^^=^  =  2.71,  and  ^"2.71  =  1.64 /erf. 

3"r4        7 

That  is,  a  single  weight  of  7  lbs.,  placed  at  1.64  feet  from  centre  of  motion,  and  re- 
volving in  same  time,  would  have  same  momentum  as  the  two  weights  in  their 
respective  places. 

When  CerUre  of  Gravity  is  given.  Rule. — Multiply  distance  of  centre  of 
(»ciUation  from  centre  or  point  of  suspension,  by  distance  of  centre  of  grav- 
itv  from  same  point,  and  square  root  of  product  will  give  distance  of  centre 
of  g}'ration. 

Example.— Centre  of  oscillation  of  a  body  is  9  feet,  and  that  of  its  gravity  4  feet 
ft-om  centre  ef  rotation  or  point  of  suspension ;  at  what  distance  from  this  point  is 
centre  of  gyration  ? 

9  X  4  =  36,  and  ^36  =  6  feet. 

To   Compute   Centre   of  Ghyration   of  a  Water-wlaeel. 

Rule. — Multiply  severally  twice  weight  of  rim,  as  composed  of  buckets, 
shrouding,  etc.,  and  twice  that  of  arms  and  that  of  water  in  the  buckets 
(when  wheel  is  in  operation)  by  square  of  radius  of  wheel  in  feet ;  divide 
sum  by  twice  sum  of  these  several  weights,  and  square  root  of  quotient  will 
give  distance  in  feet. 

ExAiiPLB.  — In  a  wheel  20  feet  in  diameter,  weight  of  rim  is  3  tons,  weight  of 
arms  2  tons,  and  weight  of  water  in  buckets  i  ton;  what  is  distance  of  centre  of 
gyration  Trom  centre  of  wheel? 

.Rim       =3  tonsx  lo^x  2=  600  3-f  a  + i  X  2  =  12  «uin  o/wetiyAte. 

Buckets = 2  tons  x  los  x  2  =  400 

Water    =:iton   X  io»        =  100  _      ^     /noo        ,      .  .  ^ 

Hence  ^  ^^   -^/9i.67  =  g. $7  feet. 


1100 


Gknsral  Formulas.— P  represmting  power.,  H  horset^  power,  F  force  applied  to 
rotate  body  in  //>«.,  M  mass  of  revolving  body  in  Ihs.^  r  radiiis  upon  which  F  atis  in 
feet,  d  distance  from  axis  of  motion  to  centre  of  gyration  in  feet,  t  time  force  is  ap- 
pliejl  in  seconds,  n  number  of  revolutions  in  time  t,  x  angular  velocity,  or  number  of 

32.  i66  F  7*^ 
revolutions  per  minute  at  end  of  time  ty  and  G  =  — xr  a'J — "' 

'4prn      ^        2pr^x      ,         Majd»       _         Mwd*  2.56e'Fr 


y 


O      ~    »         6o(}    ~    '       i53-5tr~     '      2,56«»F         '  M  d= 

i53.5«F»*_  244  t  P  _   „  g'  M  d«  *!^<*'_H 

Md«       -*'  x^d'~      *  244^  '  i34ioot 


iLLrsTBATioy.— Rim  of  a  fly-wheel  weighing  7000  lbs.  has  radii  of  6.5  and  5  75 
feet;  what  is  its  centre  of  gyration,  and  what  force  must  be  applied  to  it  2  feet 
from  axis  of  motion  to  give  it  an  angular  velocity  of  130  revolutions  per  minute  in 
40  seconds?  bow  many  revolutions  will  it  make  in  40  seconds?  and  what  is  its 
power? 

±3o'X7o°oX6.,4'  ^  4459 862680 ^  ^^^ 

234100X40  5364000 

Centre  of  gyration-^     M±k2^  ^t.t^feet.    Then  Fz.^^^^^"^^^'^'^ 

^  V  2  **^  153-5X40X2 

34306636  _  .  2.56  X  40*  X  2793.7  X  2       -,  ,  -  ^. 

"        «      =  2793.7  '^•i  *nd     -  - —^  :r ==  86. 67  revolutions. 

W38o  '^""  70ooX6.i4»  ' 


6l2       MECHANICAL   CKNTKES.— OSCILLATION,  ETC. 

Centres   of*  Oscillation  and  I*erotission. 

Centre  of  Oscillation  of  a  body,  or  a  system  of  bodies,  is  that  point 
in  axis  of  vibration  of  a  vibrating  body  in  wliicb,  if,  as  an  equivalent 
condition,  the  whole  matter  of  vibrating  body  was  concentrated,  it  would 
continue  to  vibrate  in  same  time.  It  is  resultant  point  of  whole  vibrat- 
ing energy,  or  of  action  of  gravity  in  producing  oscillation. 

As  particles  of  a  body  further  from  centre  of  its  suspension  have  greater 
velocity  of  vibration  than  those  nearer  to  it,  it  is  apparent  that  centre  of 
oscillation  is  further  from  its  centre  than  centre  of  gravity  is  from  axis  of 
suspension,  but  it  is  situated  in  centre  of  a  line  drawn  frcmi  axis  of  a  body 
through  its  centre  of  gravity.  It  further  differs  from  centre  of  gyration 
in  this,  that  while  motion  of  oscillation  is  produced  by  gravity  of  a  body, 
that  of  gyration  is  caused  by  some  other  force  acting  at  one  place  only. 

Radius  of  oscillation,  or  distance  of  centre  of  oscillation  from  axis  of  sus- 
pension, is  a  third  proportional,  to  distance  of  centre  of  gravity  from  axis 
of  suspension  and  radius  of  gyration. 

Centre  op  Percussion  of  a  body,  or  a  system  of  bodies,  revolving 
about  a  point  or  axis,  is  that  point  at  which,  it  resisted  by  an  immov- 
able obstacle,  all  the  motion  of  the  body,  or  system  of  bodies,  would  be 
destroyed,  and  without  impulse  on  the  point  of  suspension.  It  is  also 
that  point  which  would  strike  any  obstacle  with  greatest  effect,  and 
from  this  property  it  has  been  termed  percussion. 

Centres  of  Oscillation  and  Percussion  are  in  same  point. — ^If  a  blow  is 
struck  by  a  body  oscillating  or  revolving  about  a  fixed  centre,  percussive 
action  is  same  as  if  its  entire  mass  was  concentrated  at  centre  of  oscillation. 
That  is,  centre  of  percussion  is  identical  with  centre  of  oscillation,  and  its 
position  is  ascertained  by  same  rules  as  for  centre  of  oscillation.  If  an  ex- 
ternal body  is  struck  so  that  the  mean  line  of  its  resistance  passes  through 
centre  of  percussion,  then  entire  force  of  percussion  is  transmitted  directly 
to  the  external  body ;  on  the  contrary,  if  a  revolving  body  is  struck  at  its 
centre  of  percussion,  its  motion  will  be  absolutely  destroyed,  so  that  the  body- 
will  not  incline  either  way. 

As  in  bodies  at  rest,  the  entire  weight  may  be  considered  as  collected  in 
centre  of  gravity ;  so  in  bodies  in  vibration,  the  entire  force  may  be  consid^ 
ered  as  concentrated  in  centre  of  oscillation ;  and  in  bodies  in  motion,  the 
whole  force  may  be  considered  as  concentrated  in  centre  of  percussion. 

If  centre  of  oscillation  is  made  point  of  suspension,  point  of  suspension 
will  become  centre  of  oscillation. 

Angle  of  OsdUation  or  Percussion  is  determined  by  angle  delineated  by 
vertical  plane  of  body  in  vibration,  in  plane  of  motion  of  body. 

Velocity  of  a  Body  in  Oscillation  or  Percussion  through  its  vertical  plane 
is  equal  to  that  acquired  by  a  body  freel}'  falling  through  a  vertical  line 
equal  in  height  to  versed  sine  of  the  arc. 

Xo   Coxnpvite   Centre   of*  Oscillation   or   Percussion   of  a 
Body   of  Uniform   Density   and.   Figure. 

Rule.— Multiply  weight  of  body  by  distance  of  its  centre  of  gravity  from 
point  of  suspension;  multiply  also  weight  of  body  by  square  of  its  length, 
and  divide  product  by  3. 

Divide  this  last  quotient  by[  product  of  weight  of  body  and  distance  of 
its  centre  of  gravity,  and  quotient  is  distance  of  centre  irora  point  of  sus- 
pension* 


MBCUANIGAL  CEKTBBS. — OSCILLATION,  ETC.        613 

tir  12 

Or, j-  W  X  p  =  distance  frcm  axis.    Or,  square  radioB  of  gyration  of  body 

3 
Vid  divide  by  distance  of  centre  of  gravity  from  axis  of  suspension. 

ExAJfPLB.— Where  is  centre  of  oscillation  in  a  rod  9  feet  in  length  fkt)m  its  point 
of  suspeosion,  and  weighing  9  lbs.  ? 

Q  X  -  =  40. 5  =  product  of  weight  and  its  centre  of  gravity  ;  2 — 2-  z=  243  =  quo- 

V  24? 

tient  of  product  of  weight  of  body  and  square  of  its  length  -r-  3 ;  — -  =  6  feet. 

40-5 

.  When  Point  of  Stispension  is  not  at  End  of  Rod.  Rule.  —  To  cube  of 
distance  of  point  of  suspeiision  from  top  of  rod  or  bar,  add  cube  of  its  dis- 
tance from  tower  end,  and  multiply  sum  by  2. 

Divide  product  by  three  times  difference  of  squares  of  these  distances,  and 
quotient  is  distance  of  point  of  oscillation  from  ])oint  of  suspension. 

ExAMPLK.— A  homogeneous  rod  of  uniform  dimensions,  6  feet  in  length,  is  sus- 
pended 1.5  feet  from  its  upper  end;  what  is  distance  of  point  of  oscillation  from 
that  of  suspension  ? 

2  (4.5' +  1.5')      189 
6—1.5=4.5.  2  a=  -^  =  3S/«<<' 

3  14-5"  — x-5')       54 

Centres    of  Oscillation,    and.    Peroussioii    iix    Bodi'es    of 

"Various   ITiguves. 

When  Axis  of  Motion  is  in  Vertex  of  Figure,  and  when  Oscillation  or  Motion 

is  Facewise. 

Right  Line,  or  any  figure  of  uniform  shape  and  density  =  .66  /. 
Isosceles  Triangle  =  .75  A.  Circle  =  1.25  r. 

Parabolas  = .  714  A.  Cone  =  .Bh. 

When  Axis  of  Motion  is  in  Centre  of  Body.     Wheel  =  .75  radius. 

When  Oscillation  or  Motion  is  Sidewise.  Right  Line,  or  any  figure  of  urn- 
form  shape  and  density  =  .66  i.  Bectangle,  suspended  at  one  angle  =  .66  0/  d»- 
tMffonaL 

Parabola,  if  suspended  by  its  vertex  =7 14  of  axis -f- 33  parameter;  if  suspended 
by  middle  of  its  base  = .  57  of  axis  -{- .  5  parameter. 

"i  arc  r 

Sector  of  a  Circle  = ,  c  representing  chord  ofarCj  and  r  radius  of  base. 

4  ^ 

CircU=7sd.       C<m«  =s  -  rxls -f- 


5  5  axis 

2  /•' 
Sphere  =  >"f-*'4'C>  c  representing  length  of  cord  by  which  it  is  suspended. 

Xo  A.8certain.  Centres  or  Oscillation   and  f*ercu8sion 

experimentally. 

Suspend  body  very  Areely  from  a  ftxed  point,  and  make  it  vibrate  in  small  arcs, 
noting  number  of  vibrations  it  makes  in  a  minute,  and  let  number  made  in  a  min- 
ute be  represented  by  n;  then  will  distance  of  centre  of  oscillation  fh)m  point  of 

140850 
suspension  be  =       ^    =  tns. 

For  length  of  a  pendulum  vibrating  seconds,  or  60  times  in  a  minute,  being 
^9.125  ins.,  and  lengths  of  pendulums  being  reciprocally  as  the  squares  of  number 

of  vibrations  made  in  same  time,  therefore  n« :  6o»  : :  39. 1 25 : ^-  —  =  '^^,^° 

n^  n 

being  length  of  pendulum  which  vibrates  n  timss  in  a  minute^  or  distance  of  centre 

ofoscUlation  bdow  axis  nf  motion. 

3F 


6l4  MSCHANICAL   CENTBBS. — ^MBCHANICS. 

To   Oompute  Centres  of  Osoillation   or  Peronssion.  of  a 
System    of  JParticles   or    Dodies. 

Rule. — Multiply  weight  of  each  particle  or  body  by  square  of  its  distance 
ttom  point  of  suspension,  and  divide  sum  of  their  products  by  sum  of  weights, 
multiplied  by  distance  of  centre  of  gravity  from  point  of  suspension,  and 
quotient  will  give  centre  required,  measured  from  point  of  suspension. 

^'"'    WfyH-W"y~  ^  ^"^"^  qf  centre. 

ExAMPLR  I. — Length  of  a  suspended  rod  being  20  feet,  and  weight  of  a  foot  in  length 
of  it  equal  100  oz.,  has  a  ball  attached  at  under  end  weighing  100  oz. ;  at  what  point 
of  rod  from  point  of  suspension  is  centre  of  percussion  ? 

20 
100  X  20  =  2000  =  weight  of  rod;  2000  X  —  =  20000  =£  momentum  ofrod^  mrprod- 

2  y      a 

uctofiU  weighty  and  distance  of  Us  centre  of  gravity;  ■ =a66666.66  = 

3 
force  of  rod  ;  1000  X  20'  =  400  000  ■=.  force  of  balL 

_.       266  666. 66  4- 400  000        ^  ^^  -  . 

Then -^-^ — —  =  16.66 /cet 

20  000 -f-  20000 

2. — Assume  a  rod  12  feet  in  length,  and  weighing  2  lbs.  for  each  foot  of  itsjength, 
with  2  balls  of  3  lbs.  each^one  fixed  6  feet  fVoni  the  point  of  sus|)ension,  and  the 
other  at  the  end  of  the  rod;  what  is  the  distance  between  the  points  of  suspension 
and  percussion  ? 

,2  X  2  X  Jjf  =  f44  =  n,amentom  of  rod.  ^_4Xr^  ^  3456  ^„       y^,^^^  ^^^^ 
3X6          =  18=         "        ofistbaU.  3  3 

3XJ2         =_36=         "         qf^ball.  3X   62  =  3X36^108=  '' qfistbaU. 

igS  sum  of  moments.  3X12*=  3X144=432=  ^''ofadbaU. 
Then  1 693  -r- 1 98  =  8. 545  feet.  1692  sum  qf forces. 


MECHANICS. 

Mechanics  is  the  science  which  treats  of  and  investigates  effects  of 
forces,  motion  and  resistance  of  material  bodies,  and  of  equilibrium: 
it  is  divided  into  two  parts — Statics  and  Dtnamics. 

Statics  treats  of  equilibrium  of  forces  or  bodies  at  rest.  Dynamics 
of  forces  that  produce  motion,  op  bodies  in  motion. 

These  bodies  are  further  divided  into  Mechanics  of  Solid,  Ftuid,  and  Aeri' 
form  bodies;  lience  the  following  combinations : 

I.  Statics  of  Solid  Bodies^  or  GeosfcUics. 

'2.  Dynamics  of  Solid  Bodies,  or  Geodyncanics. 

3.  SicUics  of  Fluids,  or  Ht/drostatics.  . 

4.  Dynamics  of  Fluids,  or  Hydrodynamics, 

5.  Statics  of  A  eriform  Bodies,  or  A  erostatics. 

6.  Dynamics  of  Aeriform  Bodies,  Pneumatics  or  Aerodynamics, 

Forces  are  various,  and  are  divided  into  moving  forces  or  resistances ;  as 

Gravity,  Heat  or  Caloric,  IneHia, 

Muscvlar,  Magnetism,  Cohesion, 

Elasticity  and  Contractility,  Percussion,  Adhesion, 

Central,  Expansion,  and  Explosion, 

Couple. — Two  forces  of  equal  magnitude  applied  to  or  operating  upon 
same  oody  in  parallel  and  opposite  directions,  but  not  in  same  liue  of  action, 
constitute  a  couple,  and  its  force  is  sum  or  magnitude  of  the  two  equal  forces. 

Moment, — Quantity  of  motion  in  a  moving  body,  which  is  alwa3'S  equal 
to  product  of  quantity  of  matter  and  its  velocity. 
When  velocities  of  two  moving  bodies  are  inversely  as  their  quantities  of 
er,  tlieir  momenta  are  equal. 


XSCHANICS. — STATICS. 


6lS 


Fig.  I. 


STATICS. 
Oompositioxi  and.   Resolutioxx  of  Woroen,- 

When  two  forces  act  upon  a  body  in  same  or  in  an  opposite  direc- 
tion, effect  is  same  as  if  only  one  force  acted  upon  it,  being  sum  of 
difference  of  the  forces.  Hence,  when  a  body  is  drawn  or  projected  in 
directions  immediately  opposite,  by  two  or  more  unequal  forces,  it  is  affected 
as  if  it  were  drawn  or  projected  by  a  single  force  equal  to  difference  between 
the  two  or  more  forces,  and  acting  in  direction  of  greater  force. 

This  single  force,  derived  from  the  combined  action  of  two  or  more  forces, 
is  their  RemltatU. 

The  process  by  which  the  restdiatU  of  two  or  more  forces,  or  a  single 
force  equivalent  in  its  effect  to  two  or  more  forces,  is  determined,  is  termed 
the  Composition  of  Forces^  and  the  inverse  operation ;  or,  when  combined 
effects  oi  two  or  more  forces  are  equivalent  to  that  of  a  single  given  force, 
the  process  by  which  they  are  determined  is  termed  the  Decomposition  or 
Resolution  of  Forces.  Two  or  more  forces  which  are  equivalent  to  a  smgle 
force  are  tcnrmed  Components, 

When  two  forces  cut  on  scune  point  thdr  intensities  are  repres&ated  by  sides 
of  a  paraUelograniL,  and  their  combined  effect  will  be  equivalent  to  that  of  a 
single  force  acting  on  point  in  direction  of  diagonal  of  parallelogram^  the 
intensity  of  which  is  tnroportiofial  to  diagoimL 

Illustbation. — Attach  three  cords  to  a  fixed  point,  c.  Fig.  i ;  let  c  a  and  c  b  pass 
over  fixed  rollers,  and  su^end  weights  A  and  B  tbereflrom. 

Point  c  will  be  drawn  by  the  forces  A  and  B  fn  directions  a  o 
and  6  c.  Now,  in  order  to  ascertain  which  single  force,  P,  would 
produce  the  etane  eOect  upon  it,  set  ofl*  the  distances  c  m  and 
c  n  on  the  cords  in  the  same  proportion  of  length  as  weights 
of  A  and  B;  that  is,  so  that  cm:  en::  A:  B;  then  draw  par* 
allelogram  cm  on  and  diagonal  o  c,  and  it  will  represent  a  sin- 
gle fbrce,  P,  acting  in  its  direction,  and  having  same  ratio  to 
weights  A  or  B  as  it  has  to  sides  e  m  or  c  n  of  parallelogram. 
Consequently,  it  will  produce  same  effect  on  point  c  as  com 
bined  actions  of  A  and  B. 

A  parallelogram,  constmcted  from  lateral  forces,  and  diagonal  of  which  is 
Fig.  2.       a  mean  force,  is  termed  a  Parallehgixim  of  Forces, 

^  Illustration.  — Assume  a  weight.  W,  Fig.  2,  to  be 

suspended  trom  a;  then,  if  any  distance,  a  o,  is  set 
off  in  numerical  value  upon  the  vertical  line,  a  W, 
and  the  parallelogram,  or  as,  is  completed,  a  s  and 
a  r,  measured  upon  the  scale,  a  0,  will  represent 

#  strain  upon  a  e  and  a  «  in  same  proportion  that  a  0 

W  bears  to  weight  W. 

If  several  forces  act  ujwn  same  point,  and  their  intensities  taken  in  order 
are  represented  by  sides  of  a  polygon^  except  one,  a  single  force  proportioned 
to  and  acting  in  direction  of  that  one  side  will  be  their  recant. 

To  Resolve  a  Single  Farce  into  a  Pair  of  Forces. — Figs.  3  and  4. 

The  ends  of  a  cord,  Fig.  3,  are  led  over  two  points,  a  and  h,  and  in  centre  of 
cord  at  e  a  weight  of  4  lbs.  is  suspended.    If  distances  ac^hc,  are  each  \_  foot,  dis- 
Fig.  3.  tance  a  h  should  be  18  Vna 

When  cord  is  in  this  posi- 
tion, weight  at  c  draws  upon 
c  a  and  c  b  with  a  force  of 
3  lbs. ;  hence  c  of  4  lbs.  is 
equal  to  two  forces  of  3  Iba 
each  in  direction  of  a  c  and  b  c 
Apply  end£  of  cord  to  «/,  Fig.  4,  distance  being  22  ins.,  then  the  strain  on  ee,cji 
are  eadi  5  lbs. ;  hence  one  force  of  4  lbs.  is  equal  to  two  of  5  Iba  each. 


6 1 6  MBCHANICS. — STATICS.-^D  YNAMICS. 

!Kquili"briiim   of*  IForces. 

Two  bodies  which  act  directly  against  each  other  in  same  line  are  iii  eqiii> 
librium  when  their  quantities  of  motion  are  equal ;  that  ia,  when  product  of 
mass  of  one,  into  velocity  with  which  it  moves  or  tends  to  move,  is  equal  to 
product  of  mass  of  other,  into  its  actual  or  virtual  *  velocity. 

When  the  velocities  with  which  bodies  are  moved  are  same,  their  forces 
are  proportional  to  their  masses  or  quantities  of  matter.  Hence,  when  equal 
masses  are  in  motion,  their  forces  are  proportional  to  their  velocities. 

Relative  magnitudes  and  directions  of  any  two  forces  may  be  represented 
by  two  right  lines,  which  shall  bear  to  each  other  the  relations  of  the  forces, 
j;,.  and  which  shall  be  inclined  to  each  other  in  an  angle 

*■  **       -     ^      equal  to  that  made  by  direction  of  the  forces. 

Illustration. — Assume  a  body,  W,  to  weigh  150  lbs.,  and 
resting  upon  a  smooth  surface,  to  be  drawn  by  two  forces,  a 
and  6,  Fig.  5.  =  24  and  30  lbs.,  which  make  with  each  other 
an  angle-  a  W  6  =  1050,  in  which  direction  and  with  what 
acceleration  will  motion  occur? 

^  a  W  6  =  1050,  and  cos.  180^  —  105O  =  cos.  75®,  mtam 


P = V3o''-l-a4'  — g  X  30X  24  COB-  75°  =  V900 -\r  576  —,1440  COS.  7^ 
=  >/ 1476— (1440  X  2ii88^=s'\/iio3.3  =  33.8i  Wfc 

The  acceleration  Is  ^  =  ^^i^ii^J?:!^  =  7.i2xs/«e<. 

W  150 

Angle  of  Hepose  is  greatest  inclination  of  a  plane  to  horizon  at  which  a 
body  will  remain  in  equilibrium  upon  it. 

Hence  greatest  angle  of  obliquity  of  pressure  between  two  [danes,  consist- 
ent with  stability,  is  the  angle  tangent  of  which  is  equal  to  coefficient  of 
friction  of  the  two  planes. 

Inertia  is  resistance  which  a  body  at  rest  offers  to  an  external  power  to 
be  put  in  motion  or  to  change  its  velocity  or  direction  when  in  motion. 

To   Compute  Inertia  of  a  Revolvins  Body. 

Divide  ft  into  small  parts  of  a  regular  figure,  multiply  weight  of  each  pan 
by  square  of  its  distance  of  its  centre  of  gravity  from  axis  of  revolution, 
and  sum  of  products  will  give  moment  of  inertia  of  body. 

DTNAHICS. 

Dynamics  is  the  investigation  of  the  laws  of  Motion  of  Solid  Bodie$^ 
or  of  Matter^  Force,  Velocity,  Space,  and  Time, 

Mass  of  a  body  is  the  quantity  of  matter  of  which  it  is  composed. 

Force  is  divided  into  Motive,  Accelerative,  or  Retardative. 

Motive  Force,  or  Momentum,  of  a  body,  is  the  product  of  its  mass  and 
its  velocity,  and  is  its  quantity  of  motion.  This  force  can,  therefore,  be 
ascertained  and  compared  in  any  number  of  bodies  when  these  two 
quantities  are  known,  f 

Accelerative  or  Retardative  Force  is  that  which  respects  velocity  of 
motion  only,  accelerating  or  retarding  it ;  and  it  is  denoted  by  cpiotient 
of  motive  force,  divided  by  mass  or  weight  of  body.    Thus,  if  a  body 

*  Virtaal  wtoeity  Is  tha  Telocity  which  >  body  In  «qailibrlnin  would  aeqairo  wtra  tba  eqaiUbriaa 
to  be  dtetorbed. 

t  It  It  eomiwred.  bocsoM  It  b  not  referable  to  any  standard,  aa  a  ton,  poand,  etc.  That,  rappos* 
a  cannon-ball  wrigfaing  15  Iba.,  projected  with  a  Telocity  of  1500  fset  per  lecond,  atvike  a  reautta* 
Hody.  it!  momentnn,  aeoerdin^  to  the  above  rule,  woald  bo  15  X  1500  b aa  500 1  not  pooods,  for  walfU 
pressure  wltb  which  It  cauuot  be  compared. 


HSCHA19ICS. — DYNAMICS.  617 

of  5  lbs.  is  impelled  by  a  f oroe  of  40  lbs.,  accel^ating  force  is  8  lbs. ; 
but  if  a  force  of  40  lbs.  act  upon  a  body  of  10  lbs.,  accelerating  force 
is  only  4  lbs.,  or  half  former,  and  will  produce  only  half  Telocity. 

With  equal  masses,  velocities  are  proportional  to  their  forees; 

With  equal  forces,  velocities  are  inversely  as  the  masses. 

With  equal  velocities,  forces  are  proportional  to  the  masses. 

Work  is  product  of  force,  velocity,  and  time. 

Motion. — The  succession  of  positions  which  a  body  in  its  motion  pro- 
gressively occupies  forms  a  line  which  is  termed  the  trajectory,  or  path 
of  the  moving  body. 

A  motion  is  Uniform  when  equal  spaces  are  described  by  it  in  equal 
times,  and  Variable  when  this  equality  does  not  occur.  When  spaces 
described  in  equal  times  increase  continuously  with  the  time,  a  variable' 
motion  is  termed  accelerated^  when  spaces  decrease,  retarded,  and  when 
equal  spaces  are  described  within  certain  intervals  only,  the  motion  is 
termed  periodic,  and  Intervals  periods.  Uniform  motion  is  illustrated 
in  progressive  motion  of  hands  of  a  watch ;  variable  in  progressive  ve- 
locity of  falling  and  upwardly  projected  bodies ;  and  periodic  by  oscil- 
latioD  of  a  pendulum  or  strokes  of  a  piston  of  a  steam-engine. 

TJnifbrxzx  Amotion. 
roBMmJLB.  /»,  Y»  Hsso,  and  y  =  P;      ~,    y,  and  -^=/;       -, 
-      •,  and  77  =  9;       vt,   -y,    -7,  and  — =~ —  =  «;         •' 


/»      /    ' /<~    *       ^     /*     /' /     — '         P'    r'    /«' 

md 
W 


•"*  g^='5       ^'^    °5So<,    P«.  and /!.<:=  W;        ^-,    {l,   I^*»  *»* 
±1550  550      550      5Sot 


-r  =  H.    P  rq^retenting  power  in  effect^  pody,  or  momentum,fJbrce  m  26f. ,  v  and 

M  velocity  and  tpace  in  feet  per  second,  t  Hme  in  seconds,  H  horsepotoer,  and  W  work 
inJboUws. 

If  two  or  more  bodies,  etc.,  are  compared,  two  or  more  corresponding  letters, 
as  *I',p,p'i  V,  V,  rf,  etc.,  are  enqfloyed. 

Illustration  i.— Two  bodies,  one  of  20,  the  other  of  10  lbs. ,  are  Impelled  by  same 
momentum,  say  60.  They  move  uniformly,  first  for  8  seconds,  second  for  6;  what 
are  the  spaceB  described  by  both  ? 

60  -f-  20'=  3  =  V,  and  60  -r-  xo  =  6  =  ». 

ThenT  V  =  3  X  8  =  24  =  8,  and  tv=6x6  =  s6=zs,^paces respectively. 

a.  — If  a  power  of  la  800  eifectB  has  a  velocity  0^10  feet  per  second,  what  is  its 
force?  xa  800  -3-  xo  =  X38o  lbs. 

XJnlfbrm  Varlat>le  IMotlon. 

Space  described  by  a  body  having  uniform  variable  motion  is  represented 
by  sum  or  difference  of  velocity,  and  product  of  acceleration  and  time,  ac- 
cording as  the  motion  is  accelerated  or  retarded. 

Illustration  l— A  sphere  rolling  down  an  inclined  plane  with  an  initial  Telocitf 
of  25  feet,  acquires  in  its  course  an  additional  velocity  at  each  second  of  time  of  5 
feet ;  what  will  be  its  velocity  after  3  seconds  ? 

^5  +  5X3  =  40  feet. 

2  — A  locomotive  having  an  initial  velocity  of  30  feet  per  second  is  so  retarded 
that  In  each  second  it  loses  4  feet;  what  is  its  velocity  after  6  seconds? 


6l8  MECHANICS. — ^DYNAMICS. 

XJxilfbnii  IMtotioYi  ^ccdlefEkt^d. 

In  this  motion,  velocity  acquired  at  end  of  any  time  whatev^er  is  equal  to  proct 
net  of  accelerating  force  into  time,  and  space  descriDed  is  equal  to  product  of  half 
accelerating  force  into  Bqiiiup»  of  time,  or  balf  product  of  vekt^ity  and  time  of  ac- 
quiring the  velocity. 

Spaces  described  in  sacoessiTe  seconds  of  time  are  as  the  odd  numbers,  z,  3,  5,  7, 
9,  etc. 

Gravity  is  a  constant  force,  and  Its  effect  upon  a  body  fklling  ft-eely  in  a  vertical 
iUxe  is  represented  by  g^  and  the  motion  of  such  body  is  uniformly  accelerated. 

The  following  theoremfi  are  appticable  to  aik  caces  of  motion  uniformly  aooeler- 
ated  by  any  constant  force,  F : 

2^F  V      g F      y  .sg¥ 

~p  —  gTt^y/2gTsT^v.  --  =  —--1= =  P. 

t  gt     gi'^     zg» 

When  gratify  acts  alone^  as  token  a  hcdyfaUs  in  a  vertical  line^  F  is  omit- 
ted.   Tkus^ 

t  representing  time  in  seconds,  and  s  velocity  infect  per  second. 


If,  instead  of  a  heavy  body  falling  freely,  it  be  projected  vertically  upward 
or  downward  with  a  given  velocity,  »,  then  8=ztv^:.sgt'',  aa  expression 
in  which  —  must  be  taken  when  the  projection  is  upward,  and  +  when  it  is 
downward. 

Illustration  i.  —  If  a  body  in  10  seconds  has  acquired  a  velocity  by  uniformly 
accelerated  motion  of  26  feet,  what  is  aocelerating  foroe,  and  what  space  described, 
in  that  time? 

26 -^10  Si  9.6  ^oecder^UingfMrci'}    ^  Xto*ssty>fBet^^pacedeseribed. 

2 

2.— A  body  moving  with  an  acceleration  of  15.625  feet  describes  in  1.5  seconds  a 

3 — A  body  propelled  with  an  initial  velocity  of  3  feet,  and  with  an  acceleration 
of  5  feet,  describes  in  7  seconds  a  siwice  =  3X7-l-sX  —  =  lA^-sJcet 

4.— A  body  which  in  180  seconds  changes  Its  velocity  fh)m  2.5  to  7.5  feet,  trav- 
erses in  that  time  a  distance  of  '•5'r7-5  ^  180  =  ^00  feet. 

5.— A  body  which  rolls  up  an  inclined  plane  with  an  initial  velocity  of  40  fbet  per 
second,  by  which  it  suffers  a  retardation  of  8  feet,  ascends -only  —  =  5  secondSy  and 

4o»-i-  2  X  8  ^  iQo/Mt  in  height,  then  rolls  back,  and  returns,  after  10  seconds,  with 
a  velocity  of  40  feet,  to  its  initial  point;  and  after  12  seconds  arriTOs  at  a  distance 
of  40  X  12— :4  X  i2'=<j6feet  below  point,  assuming  plane  to  be  extended  backward. 

Ciroular  Miotiou.. 

2prn^2prn'^^  55ooff^^_^^  frn_f_»prn 

60  t  '  rn        2prn'    •''  5500  ~  550 X 60  "" ^» 

f2pr  n'  8= — ^^  c  W.  r  teprtdtnting  radius  infect,  n  number  of  revolutions 
2^/.!rfJf..2r  '**"**^  **'  '""'"^  revolutions,  f  force  in  tot.,  t  time  in  seconds,  and  W 


MECHANICS. — DVNAMXCS.  619 

ACotion  on   an   Iii.oUn.ed  !Plane. 

To  Ascertain  Conditions  of  Motion  by  Graviijf, 

Fig.  6.  0         A      ^^'^^^^  A  B,  Fig.  6,  an  inclined  plane,  B  C  its  base, 

/Tn  ^^     A  C  iU  height,  and  t>  a  body  descending  the  plane ;  from 
OrJ^fr"^       dot,  centre  of  gravity  of  body,  draw  6  a  perpend. cular 
to  BG,  representing  pressure  of  b  by  gravity ;  draw  bo 
parallel  and  6  r  perpendicular  to  A  B,  and  complete 
„   parallelogram ;  then  force  6  a  is  equal  to  both  6  o,  &  r, 
Qi  which  b  r  te  sustained  by  reaction  of  plane,  and 
force  5  o  is  wholly  effective  in  accelerating  motion  of  body. 

'  Let  this  force  be  rqpretenUd  by/,  and  bc^by  g  or  force  of  gravity,  then  by  similar 
triangle,/:  gy.bo:  ba:  AC:  AB.    Hence,     ^^^=/ 

Put  AB  =  /,  AC=:A  and  ^  A  B  0 = a,  then  force  which  produces  motion  on  the 
plane  on /becomes  g  -j  ,  and  ^  sin.  a. 

Therefore,  accelerating  force  on  an  inclined  plane  is  constant,  and  eqaations  of 
motion  will  be  obtained  by  substituting  its  value  of /for  g  in  equations  x,  3,  and 
3,  page  6x8. 

^——f    — r,    'Stv.    .sgt^BMLo^    and — - — =1. 
at*     agh*     ^     *     ^*'  ^  3^  sin.  a 

as      ght         hghs        ^   .  .    , -. 

T'    ^~*    \/"~^ — »   fir*  sin.  a,    and  va^pf  sin.  a=:o. 

When  a  Body  is  projected  down  or  up  an  Inclined  Plane^  with  a  given  Ve- 
lority,  —  llie  distance  which  it  will  be  from  point  of  projection  in  a  given 

time  will  be  ght*  i 

tv±.- — r-,and  —A2lv±.ght)=zs. 
a  I  a  I 

iLLusTRAnoN  I.— Ijongth  of  an  inclined  plane  is  100  feet,  and  its  angle  of  inclina- 
tion 60^  \  what  is  time  of  a  body  rolling  down  it,  and  velocity  acquired  ? 

8in.6oO  =  .866. 

'  X  v>°tr^  =  yf7'  «8  =  2.68  seconds^  and  32.  x6  x  2.68  x  866  =  74.64/^. 
3x16  X -866      ^'  I         J  IT  -t^ 

3. — If  a  body  is  projected  up  an  Inclined  plane,  which  rises  i  in  6,  with  a  velocity 
of  50  feet  per  second,  what  will  be  its  place  and  velocity  at  end  of  6  seconds  y 

6  X  50— ^^-T.-g^^ — =203.52  feet  from,  bottom,  and  50  —  (33.16  x  6  x  -^  J  = 

50  —  33.x6  =  i7.84yec<. 

To  effect  an  ascent  up  an  inclined  plane  In  least  time,  its  length,  to  its  height, 
must  be  as  twice  weight  to  power. 

TVork  A.oou.TOi:ilated  in    I^oving   Sodiea. 

Quantity  of  work  stored  in  a  body  in  motion  is  same  as  that  which  would 
be  accumulated  in  it  by  gravity  if  it  fell  from  the  height  due  to  the  velocity. 
Accumulated  work  expressed  in  foot-lbs.  ia  equal  to  product  of  height  so 
found  in  feet,  and  weight  of  body  in  lbs.  Height  due  to  velocity  is  equal 
to  square  of  velocity  divided  by'64.4,  <^"d  work  and  velocity  may  be  de- 
duced directly  from  each  other  by  following  rules : 

Xo  Compute  i\.oonmulated  "Work. 

Bulk. — ^Multiply  weight  in  lbs.  by  square  of  velocity  in  feet  per  second, 
and  divide  by  64^  and  quotient  is  accumulated  work  in  foot-lbs. 

Or,  W  =  --— — ,     or,  =  10  X  A-      W  repretenUng  workf  w  weight  in  <&«..  ar^ 
64.4  ^  * 

h  heipht  due  to  veloett^  in  /eet  per  feotfRd 


V3 


620 


MECHANICS. — DYNAMICS. 


TVorlr  "by   IPercvissive    Force. 

If  a  wedge  is  driven  by  strokes  of  a  hammer  or  other  heavy  mass,  effect 
of  percussive  force  is  measured  by  quantity  of  work  accumulated  in  stricken 
body.  This  work  is  computed  by  preceding  rules,  from  weight  of  body 
and  velocity  with  which  a  stroke  is  delivered,  or  directly  from  height  of 
fall,  if  gravity  be  percussive  power. 

Useful  work  done  through  a  wedge  is  equal  to  work  expended  upon  it, 
assuming  that  there  is  no  elastic  or  vibrating  reaction  from  the  stroke,  as  if 
the  work  had  been  exerted  by  a  constant  pressure  equal  to  weight  of  strik- 
ing body,  exerted  through  a  space  equal  to  height  of  fall,  or  height  due  to 
its  final  velocity. 

If  elastic  action  intervenes,  a  portion  of  work  exerted  is  absorbed  in  an 
elastic  stress  to  resisting  body ;  and  the  elastic  action  may  be,  in  some  cases, 
so  ^eat  as  to  absorb  the  work  expended. 

The  principle  of  action  of  a  blow  on  a  wetlge  is  alike  applicable  to  action 
of  the  stroke  of  a  monkey  of  a  pile-driver  u{)on  a  pile. 

If  there  be  no  elastic  action,  the  work  expended  being  product  of  weight 
of  monkey  by  height  of  its  fall,  is  equal  to  work  {performed  in  driving  the 
pile:  that  is,  to  product  of  resistance  to  its  descent  by  depth  through  which 
it  is  driven  by  each  blow  of  monkey. 

Illustration. — If  a  horso  draws  200  lbs.  out  of  a  mine,  at  a  speed  of  2  miles  per 
hour,  bow  many  units  of  work  does  he  perform  in  a  minute,  coefflcieDt  of  friction  .05  ? 

— "2^ —  =  ij6  feet  per  mintUe.    Hence,  176  x  200  +  .05  X  200  =  35  aio  unUs, 
00 

Deooiia position,   of  Foroe. 

By  parallelogram  of  force  it  is  il- 
lustrated how  a  vessel  is  enabled  to 
be  sailed  with  a  free  wind  and  against 
one. 

Assume  wind  to  be  free  or  in  direction 
of  arrows,  Fig.  7,  and  perpendicular  to 
line  A  B,  the  course  of  vessel. 

Let  line  m4)  represent  directiou  and 
force  of  wind,  and  rs  plane  of  sail ;  from 
o  draw  o  u  perpendicular  to  r  s,  and 
fVom  m  perpendicular,  m  o  on  r  «,  and 
m  u  on  0  u. 

By  principle  of  parallelogram  of  forces, 
force  m  0  may  be  decomposed  into  o  v 
and  ou,  since  they  are  the  sides  of  parallelogram  of  which  m  0,  representing  force 
of  wind,  is  diagonal.    Force  of  wind,  therefore,  is  measured  by  o  u,  both  in  magni- 
tude and  direction,  and  represents  actual  pressure  on  sail. 
Draw  u  n  and  u  x  parallel  to  o  A  and  o m,  thus  forming  parallelogram  unox. 

Hence  force  o  «  is  equal  to  the  two,  o  n 


Fig.  7. 


Fig.  8. 


and  o  X.  Force  o  n  acts  in  a  direction 
perpendicular  to  vessel's  course  and  that 
of  o  a;  is  to  drive  vessel  onward. 

It  can  thus  be  shown  that  when  di- 
rection of  sail  bisects  angle  m  o  B,  the 
effect  of  o  z  is  greater  than  when  sail  is 
in  uny  other  position. 

Assume  wind  to  be  ahead  as  in  direc- 
tion of  arrows,  Fig.  8.  Let  o  m  repre- 
sent direction  and  force  of  wind,  and  r  a 
direction  of  sail ;  from  o  draw  o  m,  and 
proceed  as  before,  and  0  u  represents  the 
effective  force  that  acts  upon  the  saiL 
o  n  that  which  drives  her  to  leeward,  and 
o  X  that  which  drives  her  on  her  course. 

Vox  fall  treatlsM  ott  this  aabjoct,  see  John  C.  Tniatwlne's  Englneer'i  PuckeUbook,  1873 ;  Ball'*  Ez« 

?erlv>enUl  Mechanic*,  L^DdoD,  1871 ;  «Qd  Pyn»qil«t>  C^nitrPCliW  of  Mftcbinery,  «tc,  by  G,  FladM 


MBCHANIC^.— MOHSNTS  OF  STBE3S  OK  GIRDEBS^STC.  6il 


Fig.z. 


MOlfEKTS  OF  STRESS. 

To  iDeaoribe  and  Coxxipute  Aloments  of  Stress  on  Ghird« 

era  or   Seams. 

Supported  at  Both  Ends. 

Loaded  in  Centre^  Fig.  x.  —  Assume 

A  B,  a  beam.    At  centre  erect  W  c  = 

Wi 

— .    Connect  A  e  nnd  e  B,  and  any 

vertical  dtstance  between  them  and 
B  A  B  will  give  moincut  required  at  that 


=  M  at  any  point.    W  rqaresetU- 

ing  weight  or  Uxzd^  I  length  ofvpan^  x  horizonUU  distance  from  nearest  support  at 
vihich  M,  the  moment  of  stress,  is  required. 

Illustratiox. — Assume  { =  lo  feet,  W  ==  lo  |ba,  and  as  =  3  feet 

Then,  W  c  =  ^— — ^—  =  as  Vbs.  at  centre  of  span ;  and  ^^  -  =  15  ;6s.  a<  a 

Loaded  at  Any  Pointy  Fig.  2.— 
Proceed  as  for  previous  figure. 

— ~. —  or  W  c= moonmiiin  load. 


Fig.  3. 


a  representing  least  distance  ofWto  mppwty 
ajnd  h  greatest  distance. 


Wxb 

I 
Wxa 


=  M  between  A  and  W. 


riH  H  between  W  and  B. 


iLLusTRATioir.— Take  elements  as  before  with  a  =  3  feet,  x  1.5,  smA  x'  3.5  feet. 
Then,  W  c  = '°  ^  ^  ^  ^  =  31  Jbi.  at  point  of  stress  ;    ^^  ^  'l^  ^  ^  =  la^  »*.  at  x 


10 


10 


between  A  and  W,  and  '°X35X3  ^  ^^  5  «».  a<  a;  6<< w«en  W  ami  B. 

10 
NoTB.— <0  and  re'  must  be  taken  flrom  the  pier,  which  is  on  the  same  side  of  W  as 
that  of  the  stress  desired. 

Loaded  with  Two  Equal  Weights  at  Equal  Distances  from  Supports,  alike  to  a 
Transverse  Girder  in  a  Single  Line  of  JRailuxiy.^Fig.  3. 

Fig.  3.  c d  At   point  of  stress  of  weights 

^  ""^  erect  W  c  and  W  d,  each  =  W  a. 

Connect  Aed  and  B,  and  vertical 
- — I  distances  l)etween  them  and  A  B 
-^     will  give  moments  required. 


7 

W 


-II . 


4. — h-- 


Yf  {l  —  o) 


=  War=:  Wb  =  M  a< 


any  point  between  weights. 


% 


hoadsd  wUK  Four  Equal  Weights,  symmetrically  hearing  from  Centre,  alike  to, a 
Transverse  Girder  in  a  Double  Line  of  Railway— ¥\g.  4. 

Fig.  4.  ,. At  W  and  w"  erect  Wc.  and 

w"i  —  2Vfa,  and  at  w  and  w' 

erect  w  d,  lo'  e,  each  =:  W  (2  a -f  a'). 

Connect  A  c  d  « t  and  B,  and  or- 
dinates  from  them  to  A  B  will  give 
-|     moments  required. 

^       W  (2  a  +  o')  =  M  at  u>  and  to'; 


.ai 


% 


10' 


^ 


w 


w' 


3  W  a  =  M  at  W  and  w' . 

iLLusTiuTioK. — Assumo  W  oacb 
TO  Iba  2  feet  apart,  and  1 10  feet. 

nieD,  10  (3 X  3-f  2)  =  60  at  10  or  w\  and  3  x  xo  x  2  ^  40  at  W  or  ui". 


^22  MBOHANICS.— MOMBKTS  OT  STRESS  ON  GIRDEES,  ETa 


Fig-S 


---"f? 


H-- 

-l- 


Loaded  at  Differ eni  Points.— T\g.  5. 

Locate  three  werghta,  W,  w,  and 
to',  as  at  a  b,  a,  b,,  a,  6,. 

Draw  A  c  B,  A  (2  B,  and  A  «  B,  ag 
three  separate  cases,  by  fonnala, 
Waft   _. 

Produce  W c  until  W 0  =  W r,  W *, 
;»  and  Wc;  Wd  until  wu  =  wn,w9 
^    and  u;d,  and  w' e  to  to'm  in  like 
manner. 

:..fc j^         Connect  A q urn,  and  B,  and  an  or- 

^^...J^      dinate  tbereA-om,  to  A  B  will  give 

moment  ofstress  at  the  poinj,  taken. 


Fig.  6. 


Illustration.  —Take  a  =  2  feet,  o,  =  4.  0^=6,  6  =  8,  6,  =  6,  6a  =  4>  W,  w,  and 
v»  each  10  lbs.,  and  /=  10  feet,  carefiilly  observing  Note  to  Fig.  2. 

Then -i  (W&aj  + w6,  »-f«'63»)  =  M  at  a>. 

Take«  =  a.    Then  i.(io  X  8  X  2  +  10X  6  x  2  +  10X  4  X  2)=^=36  »t. 

10  .  10 

»'  =  4.      ^  (10  X  2  X  6  -I*  10  X  6  X  4  +  10  X  4  X  4)  =  —  =  52  ««. 
'"  10 

•"«6.     ^(ioX2X4+«oX4X4-f  ioX4X6)  =  ^  =  48»#. 
*"  xo 

Loaded  with  a  Rolling  Weig^.— 
Fig  6. 

Define  parabola  A  c  B  as  deter- 
Vf  I 
mined  by  —  =  the  ordinate  at  c, 

1b  and  vertical  distances  between  A  B 
^   will  give  moments. 

Yfx{l  —  x)      „ 

^ =  M  at  any  point 

Loaded  Unijormbjf  ifo  MnUre  LengOL-^De^na  parabola  as  at  Pig  6,  ordinate  of 
which  at  c  =  -g- .    L  representing  stationary  or  dead  load  per  unU  of  length. 

—  (l—x)  =  M  (rf  any  point,  and  -—  =  M  a<  centre. 

o 

Load^  with  Two  Connected  Weights,  moving  in  either  Direction,  aWcetoa  Locomo- 

twe  or  Car  on  a  Bailway.--Fig.  7. 


Define  parabola  A  e  B  as  deter- 
mined  by  "^+""'=.c. 

4 
At  A  and  B  erect  A  «,  B  t  =  to  d, 
connect  At  and  Be,  and  yertical 
distances  between  A  o  B  and  A  c  B 
will  give  moments. 

f  [(W  +  ta)  (I-»)-^  =  M 
at  any  point 

Position  o/W  at  greatest  moment^  when  x=-±—:^^ — .    Or  if  Wand  to  ara 

2      2  (W-|-to)  " 

equal,  when  x=:  -±  — . 
2      4 

iLLusTRATioK.— ABsame  «= 3,  d = 4,  and  W  to  each  10  Ih&,  and  2  zo  ftet 
Then  —(10+ 10  x  lo— 2 —  10X4)  =  U  at  any  point,  as  at  W r,  tor. 


M£CHANIC&.— MOmSNTS  OF  STRESS  ON  6IBDSBS,,ETC.  62$ 

Sliearing;   Stress. 

To  IDetenxiixie  Slieafing  Stress  at  any  Fart  of  a  d-irder 
or  GeanoL  and  -under  any  X>lstributioxx  .of  Xuoad. 


Fig.  8. 

A 


^—^^ 


^ 


Required  to  determine  stress  of  a 
beam  at  any  point  as  c,  Fig.  8. 

Assume  Vs=load  between  A  and 
c,  and  u)  that  between  B  and  o. 
Then  9x  at.c  =  P  —  W, or  F  —  w. 
The  greater  of  the  two  values  to  be  taken. 

S  X  repruenting  shearing  stress  at  any  point  as,  P  and  P'  the  reaction  on  supports 
due  to  total  load  on  beam  between  supports^  W  and  v)  loads  or  stress  concentrated  at 
any  point 


To    Describe 


and    A.so«sFtaln    Sliearins   Str«s«  in  at 
GMrder   or    Beam. 


Supported  or  Fixed  at  Both  Ends. 


Loaded  Uniformly.    Fig.^ 
At  A  and  B,  erect  A  c,  B  «,  each 

equal  to  — .    Connect  c  and  e  at 

a 

middle  of  span  as  at  n,  and  vertical 
distances  between  A  B  and  cne  will 
give  shearing  stresses  as  determined 
by  the  ordi nates  to  en  e. 


{H= 


S.    Sign  of  result  to 


be  disregarded.     L  representing  distributed  load  per  unit  of  length. 
Illustration.— Assume  L  =  xo  lb&  per  foot,  I  =  lo,  and  x  =  3.5  fbet. 


Then  10  (--  —  2.5  j  =  25  ibi. 


NoTK— The  moment  of  rupture  at  any  point,  prodnoed  by  several  loads  acting 
simultaneously  on  a  beam,  is  equal  to  the  sum  of  the  moments  produced  by  the 
several  loads  acting  seiMrately. 

For  other  Formulas  and  Diagrams  sec  Strains  in  Girders,  by  William  Humber, 
A..1.C.E.,  London,  1872. 

Operation  deduced  by  Cfraphic  Delineation  of  Chreate&l  Sfresa^  with  a 
Uni/wnUy  Distributed  load  of  14  000  X^.-^Fig.  la 


T\M,  xa 


Determine  mommt  of  weights  by 


formulas 


Wmii    vfrs 


and 


w  ov 


I     '      t    ' I 

Assume  W  =  7ooo  lbs.,  10  =  4000, 
and  w'  =  3poo,  m  =:  7  feet,  n  =  13, 
r = 13,  *=s7, 0=3,  !>=:  17,  and  l=v>. 


Then 


^_7oooXi3X7_^ 


20 


31850, 


w  =  ^??^  ^1^  =  18  aoo,  and  vT  =  3«»X3Xi7  _  ^^^^  ^^  ,g^  j^j,  ^j^^^^^. 

ulars  thereto,  as  3  d,  2  c,  and  x  h. 

Connect  d,  c,  and  h  with  A  B,  and  sum  of  distances  of  intersections  of  these  lines 
upon  perpendiculars,  flrom  3,  2,  and  i  respectively,  will  give  stress  upon  A  B  at 
these  pointa 

To  determine  Ortate$t  Stress  at  Greatest  Load. 

Stress  at  X  bc3  <7  ;  7650 :  5=5  x  350 


Stras  at  3  d  =  31 850 

"      *' ac=x3  :  18200  :  7=  9800 


43000 


43000  +  l2lll — 4000  X -5  _  j^  j^  2^^  concentrated  load  at  W,  and  proportion 
20 
of  uniformly  distribated  load  of  4000  lbs. 


1 


624  MZCHANICAli   POWKBS. — ^LEVEB. 

MECHANICAL  POWERS. 

Mechakical  Powkb  is  a  compound  of  WeigM^  or  Force  and  VdocUy: 
it  cannot  be  increased  by  mechanical  means. 

21ie  Powers  are  three  in  number^~-y\z.y  Leyer,  Incunid  Plane,  and 
Pullet. 

Note.— A  Wheel  and  Axle  is  a  continuotu  or  revolving  lever j  a  Wedge  a  double  in- 
dined  plane,  and  a  Screw  a  revolving  inclined  plane. 

LEYEB. 
JJevers  are  straight,  bent,  cnrved,  single,  or  oompomid. 
To   Compnte  Hiengtli  of*  a  Xjever. 

When  Weight  and  Bower  are  given,    Rqle.— Divide  weight  by  power, 
and  qaotient  is  leverage,  or  distance  from  fulcrum  at  which  power  supports 
weight, 
w 

Or,  —  =  jj.  W  representing  weight,  P  power^  and  p  distance  of  power  fhmJiUcrum. 

ExAMPLB.— A  weigbt  of  1600  lbs.  is  to  be  raised  by  a  power  or  finrce  of  80;  re- 
quired length  of  longest  arm  of  lever,  shortest  being  i  foot 

1600 -i-  80  =  -ioftet. 

To  Compute  'Weigh.t  tliat  oaix  "be  raised  \yy  a  Xjever. 

When  itt  Length,  Power,  and  Position  of  its  Fuicrum  are  given.  Rule. — 
Multiplv  power  by  its  distance  from  fulcrum,  and  divide  product  by  dis- 
tance of  weight  from  fulcrum. 

Pp 
Or,  -^  =  W.    w  representing  distance  of  weigM  from  fkdervm. 

ExAVPLK.— What  weight  can  be  raised  by  375  lbs.  suspended  ftt)m  end  of  a  lever 
8  feet  flrom  fulcrum,  distance  of  weight  flrom  /ulcrum  being  2  feet? 

375  X  8 -7- 2  =  1500  M>«. 

To  Compute  Position  of*  IT-uloruxn. 

When  Weight  and  Power  and  Length  of  Lever  are  givent  and  when  Ful- 
crum ia  between  Weight  and  Power,    Rule. — Divide  weight  by  power,  add 
I  to  quotient,  and  divide  length  by  sum  thus  obtained, 
/w      \ 

Or,  L  -r-  f  jj  +  I J  =  w.    L  representing  entire  length  of  lever. 

Example. —A  weight  of  2460  Iba  is  to  be  raised  with  a  lever  7  feet  long  sod  a 
power  of  300;  at  what  p^rt  of  lever  must  fUlcrum  be  placed  ? 

2460-7-300  =  8.2,  and  8.2  + 1  =  9- 2-    l^en  7  X  ia-i-9-3  =  9.x3<n«i 

When  Weight  is  between  Fulcrum  and  Power,  Rule. — ^Divide  length 
by  quotient  of  weight,  divided  by  power.  , 

Or,L-5--  =  ia 

To    Compute    luength.    of  A.rrxx    of*  I^ever    to    virfaiioli 

"Weight   is   attadied. 

When  Weight,  Power,  and  Length  of  Arm  of  Lever  to  which  Power  is  op- 
plied  are  given.  Rule.  —  Multiply  power  by  length  of  arm  to  which  it  is 
applied,  and  divide  product  by  weight 


MECHANICAL   POWBBS. — LBYSB. 


625 


Erucpuc— A  weight  of  1600  lb&,  suspended  firom  a  lever,  is  supported  by  a  power 
of  80,  applied  at  other  end  of  arm,  20  feet  in  length ;  what  is  length  of  arm  ? 

80  X  20-4- 1600  =  I  fool. 

Note. — ^Theae  rules  apply  equally  Whenfvlcrwm.  (or  WLpporVs  of  lever  is  bettoeen 
weight  and  power  ;*  when  fiUcrum  is  at  one  extremity  of  levers  and  power,  or  weight, 
at  Uie  oitier  ;t  and  when  anm  of  lever  are  eqiuUiy  or  uneqtuiUy  bent  or  curved. 

To  Compute  Po'wer  Reqiaired.  to  Raise  a  given  "Weiglxt. 

When  Length  of  Lever  and  Position  of  Fulcrum  are  given.  Rule. — Mul- 
tiply weight  to  be  raised  by  its  distance  from  fulcrum,  and  divide  product 
by  distance  of  power  from  fulcrum. 

^    Ww     „ 
Or,  =  P. 

P 

ExAMPLB length  of  a  lever  is  10  feet,  weight  to  be  raised  is  3000  lb&,  and  its 

distance  from  fhlcrum  is  2  feet;  what  is  power  required? 

3000  X  2      6000  ,- 


10 


8 


To  Compute  I^ength.  of  Anaa.  of*  Lever  to  "wliicli  Fo'wrer 

is   applied. 

When  Weighty  Poicer^  and  Distance  of  Fulcrum  are  given,    Rulk. — Mul- 
tiply weight  by  its  distance  from  fulcrum,  and  divide  product  by  power. 


Or,  -p-  =j). 


Example. 


Fig.  I 


-A  weight  of  ^00  lbs.,  suspended  15  ins.  flrom  fUlcrum,  is  supported  by 
a  power  of  50,  applied  at  other;  what  is  length  of  the  arm  ? 

400  X  15  -^  50=  120  ins. 

When  A  rma  of  a  Lever  are  bent  or  curved^ 
Distances  taken  from  perpendiculars,  drawn 
from  lines  of  direction  of  weight  and  power, 
must  be  measured  on  a  line  running  horizon- 
tally through  fulcrum,  as  a  6  c,  Figs,  i  and  2. 

When  Arms  of  a  Lever  are  at  Right  Angles, 
and  Power  and  Weight  are  applied  at  a  Right 


Angle 
Fig._  3 


to  each   other. 
The  moments 
_  are  computed  directly  aa  ab  to  be. 

Thrust,  or  presB^ 
'  »'  -  ure  on  fulcrum, 

is  in  this  case  less 
than  sum  of  pow- 
er and  weight; 
and  it  may  be 
determined  bv 
drawing  a  paral- 
lelogram upon 
the  two  lurms  of 

O/^  lever,  arms  repre- 
_  ^senting  inverse- 

ly theif  respec- 
tive forces.  That  is^ab  represents  magnitiide  and  dbection  of  weight  W, 
and  6  c  of  power  P.  Diagonal  0  6  of  parallelogram  represents  magnitude 
and  direction  of  third  force,  or  thrust  upon  fulcrum. 

*  Pwnrt  apon  ftilcrbm  !■  eqoAl  to  sam  of  weight  and  power, 
t  Pmnare  apon  ftilcram  it  eqiwl  to  diifereuce  of  weiglit  tnd  power 

1  G 


626         MECHANICAL   POWEBS. — ^LBTEB. — WHEEL. 


Fig.  4. 


When  seme  Lever  is  borne  into  an  Oblime 
Position,  Potcer  continuing  to  act  HorizofUwly^ 
lEjP  Fig.  4,  Draw  ^-^rtical  a  v  through  end  o  of 
lever,  and  produce  the  power  line  |>  c  to  meet 
it  at  a.  Complete  parallelogram  avhr;  then 
sides  r  h  and  0  v  are  perpendiculars  to  direc- 
tions to  power  and  weight,  on  which  moments 
are  computed. 

Consequently,  moment  P  x  r  ft  =  moment 
W  X  6  t^,  and  a  diagonal,  b  a,  is  resultant  thrust 
at  fulcrum. 


O 


Fig.  5. 


0  — 


When  Powei'  does  not  act  Horizon- 
tally, Fig.  5,  but  in  some  other  direc- 
tion, a  p,  produce  the  power  -  line  p  a 
and  draw  0  c  perpendicular  to  it ;  dra^ 
p  b  o,  then  moments  are  computed  on 
perpendiculars  be,  bo,  and  P  x  c 6  = 
Wxbo. 

If  several  weights  or  powers  act 
upon  one  or  both  ends  of  a  lever,  cou- 
/^   dition  of  equilibrium  is 

^       Vp  +  P'p'  +  P"p  ",  etc,  =  W  w  H- 
W  to',  etc. 

In  a  system  of  levers,  /Bither  of  similar,  compound,  or  mixed 
kinds,  condition  is       Ppp*  p' 


w  w  w' 


=  W. 


Illustration.— Let  P=  i  lb,  p  and  p'  each  10  feet,  p"  i  foot;  and  if  to  and  w' 

be  eacb  i  foot,  and  w"  i  inch,  then 


=  laoo;  that  is,  x  lb.  will  support  laoo,  with  levers 


I  X  I20 X  120  X  12  _  172800 

12  x  12  X  1       ~     144 
of  the  lengths  above  given. 

NotE.— Weights  of  levers  in  above  formulas  are  not  considered,  centre  of  gravity 
being  assumed  to  be  over  flilcruus. 

General  Rule,  therefore,  for  ascertaining  relation  of  Power  to 
VVeigiit  in  a  lever,  whether  straight  or  curved,  is.  Pmcer  multiplied  by  its 
distance  from  fulcrum  is  equal  to  weight  multiplied  by  its  distance  from 
fulcrum.  Or,P:W::M;:p,orPp  =  Ww;  and 

P  to 


Wto 
3-   -T5-=l'- 


4.  ^=«^ 


WHEEL  AND  AXLE. 

A.  "Wheel  and  Axle  is  a  revolving  lever. 

Power,  multiplied  by  radius  of  wheel,  is  equal  to  weight,  multiplied  by 
radius  of  axle. 

As  radius  of  wheel  is  to  radius  of  axle,  so  is  efD^ct  to  power. 

Or,PR  =  Wr.     Or,PV  =  Wt>.     Or,  B  :  r  ::  W  :  P.     Or.P^saW;     ?^=r{ 

-  =  R.    R  and  r  representing  radii,  and  V  and  v  velociHes  0/ wheel  and  aaUe, 


HBCHAKICAL  POWERS.— WHEEL  AXD   AXLE.       627 

When  a  series  of  wheels  and  axles  act  upon  each  other,  either  bv  belts  or 
teeth,  weiji^ht  or  velocity  will  be  to  power  or  unity  as  product  of  radii,  or 
circumferences  of  wheeb.  to  product  of  radii,  or  circumferences  of  axles. 

« 

I1X.U8TRATION.— If  radii  of  a  series  of  wheels  are  9,  6,  9,  zo,  and  la,  and  their  pin- 
ions have  each  a  radius  of  6  ins.,  and  power  applied  is  to  lbs.,  what  weight  will 
they  raise? 

10  X  9  X  6  X  9  X  10  X  12      583  200  _ 

6X6X6X6X6  7776        '^ 

Or,  if  zst  wheel  make  10  revolutions,  last  will  make  75  in  same  time. 

To  CoxnpYite  I»ower  of*  a  Cozn'binatioii  of  "Wlieels  and  an 
.A.xle  or  ^xles,  as  in   OrancM,  etc. 

Rule. — Divide  product  of  driven  teeth  by  product  of  drivers,  and  quo- 
tient is  their  relative  velocity ;  which,  multiplied  by  len^h  of  lever  or  arm 
and  power  applied  to  it  in  pounds,  and  divided  by  radius  of  barrel,  will  give 
weight  that  can  be  raised. 

Or. =  W;   Or,  W  r  =  w  J  P;   Or,  — =-  =  P,    I  repretenting  length  of  leoer  or 

arm^  r  radnu  ofbarrd^  F  power j  v  velocity^  and  W  voei^ 

ExAMPLK  I.— A  power  of  18  lbs.  is  applied  to  lever  or  winch  of  a  crane,  length  of 
it  being  8  ins.,  pinion  having  6  teeth,  driving-wheel  72,  and  barrel  6  in&  diameter. 

^  =  12,  and  12X8X18  =  1728,  which,  -r-  3,  raditu  ofbarrd,  =  576  lbs. 
6 

2.— A  weight  of  94  tons  is  to  be  raised  360  feet  in  15  minutes,  by  a  power,  velocity 
of  which  is  220  feet  per  minute;  what  is  power  required? 

jl£K>-^xs=z2^futperminuie.    Hence —^ — ^=10.2545  fotu. 

220 

Coxapouiid.  .Ajcle,  or  Cliizxese  "Windlass. 

Axle  or  drum  of  windlass  consists  of  two  parts,  diameter  of  one 
being  less  than  that  of  the  other. 

The  operation  is  thus :  At  a  revolution  of  axle  or  drum,  a  portion  of  sus- 
taininii^  rope  or  chain  equal  to -circumference  of  larger  axle  ih  wound  up,  and 
at  same  time  a  portion  equal  to  circumference  of  lesser  axle  is  unwound. 
Effect,  Uierefore,  is  to  wind  up  or  shorten  rope  or  chain,  by  which  a  weight 
or  stress  is  borne,  by  a  length  equal  to  difference  between  circumferences  of 
the  two  axles.  Consequently,  half  that  portion  of  the  rope  or  chain  will  be 
shortened  by  half  difference  oetween  circumferences. 

rFo  Compute   Slexnents    of  a   \^lipel    and    Compound 
AjLie^  or   dxinese   AViiidlasH.^^ITi^.  6. 

Bulk. — Multiply  power  by  radius  of  wheel,  arm,  or      pig.  6. 
bar  to  which  it  is  applied,  and  divide  product  by  half 
difference  of  radii  of  axle,  and  quotient  is  weight  that  ^\ 
can  be  sustained.  ^ 

P  R 
Or, 7:  =  W.    R  representing  radius  of  wftedy  etc,  and  r  and  r' 

radii  of  axle  ai  its  greatest  and  least  diameters.  L^""^ 

EZAMFLB.— What  weight  can  be  raised  by  a  capstan,  radius  of  its  bar,  a, 
5  tMi,  power  applied  50  Iba,  and  radii,  r  r',  of  axle  or  drum  6  and  5  ins.  ? 


O 


S£2<.5Xia^3ooo 
.5(6-^5)         .5  W 


^ 


628        MECHANICAL  POWEBS, — IKCLIKED  PLANE. 

"Wlieel   and   Pinion    Com'binations,  or   Complex 

"Wheel- work. 

Power,  multiplied  by  product  of  radii  or  circumferences,  or  number  of 
teeth  of  wheels,  is  equal  to  weight,  multiplied  by  product  of  radii  or  circum- 
ferences, or  number  of  teeth  or  leaves  of  pinions. 

Or,  P  R  R'  R",  etc.,  =  W  r  r'  r",  etc. 

Note. — Cogs  on  face  of  wheel  are  termed  teeth,  and  those  on  surface  of  axle  are 
termed  leaves;  the  axle  itself  in  this  case  is  termed  &  pinion. 

m 

I^ack  and.  Pinion. 
To   Compute   Fo^^ver  of  a   Rraok   and   Pinion. 
Rur.E. — Multiply  weight  to  be  sustained  by  quotient  of  radius  of  pinion, 
divided  by  radius  of  crank,  and  product  is  power  required. 

Or,W^  =  P. 

When  Pinion  on  Crank  Axle  communiccUes  with  a  Wheel  and  Pinion. 
Rule. — Multiply  weight  to  be  sustained  by  quotient  of  product  of  radii  of 
pinions,  divided  by  radii  of  crank  and  wheel,  and  product  is  power  required. 

rr' 

ExAMPLK. — If  radii  of  pinions  of  a  Jack-screw  are  each  one  inch;  of  crank  and 
wheel  lo  and  5  ins. ;  what  power  will  sustain  a  weight  of  750  lbs.  ? 

^1X1       750  ,. 

750  X  — TT-  =  ^^  =  15  Ws. 
10X5       50 

mCLINED  PLANE. 
To   Compute   Length  of*  IBase,  Heiglxt,  or   Uengtli. 

When  any  Two  of  them  are  given,  and  when  Line  of  Direction  of  Power 
or  Traction  is  Parallel  to  Face  of  Plane. — Proceed  as  ih  Mensuration  or 
Trigonometry  to  determine  side  of  a  right-angled  triangle,  any  two  of  three 
being  given. 

To  Compute  Power  necessary  to  Support  a  Weight  on 

an    Inclined    Plane. 

When  Height  and  Length  are  given.  Rule. — Multiply  weight  by  height 
of  plane,  and  divide  product  by  length. 

Or,  — T—  =  P.    h  and  I  representing  height  and  length  of  plane. 

Example.— What  is  power  necessary  to  support  xo(x>  lbs.  on  an  inclined  plane 
4  feet  in  height  and  6  feet  in  length? 

1000  X  4 -i- 6  =  666.67  M>«. 

Xo  Compute  "^Veiglit  that  may  he  Sustained,  hy  a  given 
Po-wer  on   an    Inclined.    Plane. 

When  Height  and  Length  of  Plane  are  given.  Rule. — Multiply  -power 
by  lengtli  of  plane,  and  divide  product  by  height. 

Or,-  =  W. 

Example. —What  is  weight  that  can  be  sustained  on  an  inclined  plane  5  feet  jn 
height  and  7  feet  in  length  by  a  power  of  700  lbs.  ? 

700  X  7  -J-  5  =  980  lbs. 

KoTK.— In  estimating  power  required  to  overcome  resistance  of  a  body  being 
drawn  up  or  supported  upon  an  inclined  plane,  and  contrariwise,  if  body  is  de- 
scending; weight  of  body,  in  proportion  of  power  of  plane  (t.  «.,  as  its  length  to  its 
height),  must  be  added  to  resi^awXy  if  being  drawn  up  or  supported,  or  to  the  mo- 
ment if  descending. 


MECHANICAL    POWERS. — INCLINED    PLANE.         629 

Xo   Compute  Heiglit  or   I^ength,  of*  an   Inolixiecl    Plane. 

When  Weight  uml  Po\oer  and  one  nf  required  Elements  are  f/iven,  and 
when  Height  is  i^equired.  Rule. — Multiply  power  by  length,  and  divide 
product  by  weight. 

When  Length  is  reqiw-ed.  Rule,— Multiply  weight  by  height,  and  divide 
product  by  power. 

Or,  ^  =  A,  and  -p-='. 

To   Comptite   Pressure  on   an   Inclined   Plane.    - 

Rule.— Multiply  weight  by  length  of  base  of  plane,  and  divide  product 

by  lengtii  of  face. 

W  b 
Or,  — —  =  pressure,    b  representing  length  of  bcise  of  plane. 

EZAMPLK. — Weight  on  an  inclhied  plane  Is  100  lbs.,  b»se  of  plane  is  4  feet,  and 
length  of  it  5 ;  required  pressare  on  plane. 

xoo  X  4  -^  5  =  80  »#. 

When  Two  Bodies  on  Ttoo  Inclined  Planes  sustain  each  ot/tevy  as  by  Connection 
of  a  Cord  over  a  Pulley^  their  Weights  are  directly  as  Lengt/is  of  Planes. 

Illustration. — If  a  weight  of  50  lbs.  upon  an  inclined  plane,  of  10  feet  rise  in  100 
of  an  inclination,  is  sustained  by  a  weight  on  another  plane  of  10  feet  rise  in  90, 
what  is  the  weight  ortbe  latter? 

xoo  :  90 ::  50  :  45  =  toeigfU  that  on  shortest  plane  would  sustain  thai  on  largest. 

When  a  Body  is  Simported  by  Two  Planes,  as  Fig.  7,  pressure  upon  them 
Pjg  _  will  be  reciprocally  as  sines  of  inclinations  of  planes. 

^1^    .  D  Thus,  weight  is  as  sin.  A  B  D. 

A 1^    ^^^^/  Pressure  on  A  B  as  sin.  D  B  i. 

PNy^BHP^  Pressure  on  B  D  as  sin.  AB  h. 

I       ^X!^/  Assume  angle  A  B  D  to  be  90°  and  D  B  f,  60°;  then  angle 

i B i    ^^^  ^'**  ^  3°**»  ^^^  ^  ^'°®^  ^^ 9°°'  ^°'  ^^^  3°*^ *'®  respec- 
tively .1,  .866,  and  .5,  if  weights  100  lbs.,  then  pressures  on 

A  B  and  B  D  will  be  86.6  and  50  lb&,  centre  of  gravity  of  weight  assumed  to  be  in  its 

centre. 

When  Line  of  Direction  of  Power  is  parallel  to  Base  of  Plane^  power  is 
to  weight  as  height  of  plane  to  length  of  its  base. 

Or,P:  W::A2  6. 

H»cP=!L";  w=^,  »=^;  »=!;*. 

When  Zine  of  Direction  if  Power  is  neither  paraUel  to  Face  of  Plane  nor 
to  its  Base,  but  in  some  other  Direction,  as  P,  Fig.  8,  power  is  to  weight  as 
sine  of  angle  of  phine's  elevation  to  cosine  of  angle  wliich  line  of  power  or 
traction  describes  with  face  of  plane. 

Fig.  a  9\  Thus,P':  W::sln.  Arcos.P'ec 

P*  Sin.  Arcos.  Fee::?*:  W. 

o  CoB.P'ecrsin.  A::W:  P*. 

Illustration.— A  weight  of  500  lbs.  is  required  to  be 
sustained  on  a  plane,  angle  of  elevation  of  which, 
c  A  B,  is  10°;  line  of  direction  of  i)ower  or  traction, 
A  n  B  P'  e  c,  is  50 ;  what  is  sustaining  {tower  required  r 

Cos.  P* «  c  (5°)  =  .996 19 ;  sin.  A  (iqO)  =  .173  65  ::  500 :  87. 16  lbs. 
Or,  draw  a  line,  B  *,  perpendicular  to  direction  of  power's  action  from  end 
of  base  line  (at  back  of  phine),  and  intersection,  of  this  line  on  length,  A  & 
will  determine  length  and  height  (n  r)  of  the  plane. 

3G« 


632        MECHANICAL    POWERS. — SCBEWS. — PULLEY. 


Difierexxtial   Sove^v. 

When  a  hollow  screw  revolves  upon  one  of  less  diameter  aqid  pitch  (as 
designed  by  Mr.  Hunter),  effect  is  same  as  that  of  a  single  screw,  in  which 
the  distance  between  threads  ^s  equal  to  difference  of  distances  between 
threads  of  the  two  screws. 

Therefore  power,  to  effect  or  weight  sustained,  is  as  difference  between 
distances  of  threads  of  the  two  screws  to  circumference  described  by  power. 

Illustration. — If  external  screw  has  ao  threads,  and  internal  one  at  threads  in 
pitch  of  I  inch,  and  power  applied  describes  a  circumference  of  35  ina,  the  result  or 

Hence  —^^=14706. 


power  is  as  —  00  —  =  —  ,or  00238. 
2x      20     420 


.00238 


PULLEY. 

Pullets  are  designated  as  Fixed  and  MovaHe,  according  as  cord  is  passed 
over  a  fixed  or  a  movable  pulley.  A  movable  pulley  is  when  cord  passes 
through  a  second  pulley  or  block  in  suspension ;  a  single  movable  pufl^  is 
tsi^med  a  runnet*;  and  a  combination  of  pulleys  is  termed  a  tgttem  cfpuueyt. 

A  Whip  is  a  single  cord  over  a  fixed  pulley. 

To  Compute  I*ower  Required  to  Raise  a  given  WeigHt, 

When  Number  of  Parts  of  Cord  supporting  Ijoirer  Block  are  ffiven,  and 
when  oidy  one  Cord  or  Hope  is  used.  Kulk. — Divide  weight  to  be  raised  by 
number  of  parts  of  cord  supporting  lower  or  movable  block. 

Or,  W  -i-  n  =  P.    Or,  n  P  =  W.    n  representing  mmber  of  parts  of  cord  suOain 
-Mg  lower  block. 

Example.— What  power  is  reqaired  to  raise  600  lbs.  when  lower  bl6ck  contains 
jix  sheaves  ? 


600 
6x2 


When  Cord  is  aUaehed  to  Upper  or  Fixed  Block, 
=  50  lbs.  =  weight  -7-  number  of  parts  of  rope  sustaining  lower  blode. 


600 


6X2  +  1 


When  Cord  it  attached  to  Lower  or  Movable  Block, 
1 46. Z5  lbs,  =  weight  -r  number  qf  parts  qf  Trope  sustaining  lower  bloek, 


To   Compute  'Welglit  a  given   Po'wer  "will  Raise. 

When  Nunyber  of  Parts  of  Cord  supporting  Lower  Block  are  given.    Rule. 
— Multiply  power  by  number  of  parts  of  cord  supporting  lower  block. 

Or,  P  n  =  W. 

To  Compute   Number  of  Cords  necessary  to   Sustain 

I^o'%v-er   Block. 

When  Weight  and  Power  are  given.    Rule. — Divide  weight  by  power. 

Or,W-J-P=n. 


When  more  than  one  Cord  is  used. 

In  a  Spanish  Burton^  Fig.  10,  where  ends  of 
one  cord,  a  P,  are  fastened  to  support  and  power, 
and  ends  of  the  other,  c  o,  to  lower  and  upper 
blocks,  weight  is  to  power  as  4  to  i. 

In  another,  Fi^.  11,  where  there  are  two  cords, 
a  and  0,  two  movable  pulleys,  and  one  fixed 
pulley,  with  ends  of  one  rope  fastened  to  sup- 
port and  upper  movable  pulley,  and  ends  of 
other  fastened  to  bwer  Uock  «nd  power,  weight 
is  to  power  as  5  to  i. 


rH^ii. 


Hechanical  powkes.  —  pcllky. 


633 


}r.  Hulttply  power  eucceealvel] 
KiiurLB  [.— irbBtneigblKill 
ihroe  niovabie  pulleys,  ihB  cci 


1,  flicil  block  b« 


men  fired  Ihtllei/i,  e  e.  are  used  in  Place 
0/ Hoots,  to  Allach  Endt  of  Rope  to  Sup- 
W  port— Fig.  14. 

W*3«=P;     3"XP  =  W;     W-:-P=3''.  9 

WhenEadiofOrdoiFiiiiedPuUtyaTrfattejitdlo  Weiijlu^aaby  aa  Inver- 
HDB  Of  tie  last  Figwei,  pall  lug  Support!  for  ^Veighrl,  and  con/rarivriic, — 
Figs.  13  and  14. 

Flg-.j.  "—  =  P;  (a"~i)P  =  W;  ^  =  lJ•_I^ 

Flg.,4.      jj^^=P;  (3»_,|P=W;  ^=(3--,^ 

lurSTBiTiox.— Wbal  welgbt  »iU  a  po«er  of  1  lb.  BusUln  In  a  syfllr^m  on  wo  mat- 


WAtii  (hrdi  lUilainUg  Pullegi  are  not  in  a  Vertical  Diiteli'on.—Fi 
F.g  n,                          (o.Flp  15,1a  ventcal  line  Ihrough  whicb  weight  be 
' D  draw  D  r,  0 1  parallel  tn  D  «  ami  A  a 


'▼f    i   portioDB.    Hence  Ihewpighl  Kill  always  full  inlQlbepoBii!oa 

I         W   ID  wbleh  ihB  mo  pana  of  cnril  A  <  anil  e  D  will  be  equally 

'X  P    IndlaMl  lo  gertlcal  line,  and  It  will  bear  lo  power  ume  rain 


of  conl,  U  polBl  of  nupenBton  ot  wi 


coa.  .je  :  I.  t  repreiaUine anete  Ar D. 
Thai  la.  iwica  p«wer,  maUiplied  bf  coiiD*  of  batf  angle 
1 f~.i.i..  i- equal  to  weigh!. 


634 


METALS. — ALLOYS   AND   COMPOSITIONS. 


Illustbatioh.— Wbal  weight  will  be  suBtained  by  a  power  of  5  lbs.,  with  an  ob- 
lique movable  pulley,  Fig.  15,  having  an  angle,  A  e  D,  of  ;^^  ? 

5  X  2  X  .965  93  =  9-6593  lbs.  =  twice  power  X  cos.  15°. 
When  Direction  of  Cord  is  Irregular^  Weight  not  resting  in  Centre  of  it. 


W 


sin.  a 


Psin  (a-f-6) 


sin.  (a  4-  ^) '  sin-  a 

greater  and  U$ter  cmglu  of  cord  at  e. 


=  W; 


W  sin.  a 
sin.  (a -f  6) 


=  P     a  and  b  representing 


METALS. 

ALLOYS  AND  COMPOSITIONS. 

Alloy  is  the  proportion  of  a  baser  inetal  mixed  with  a  finer  or  purer, 
as  copper  is  mixed  with  gold,  etc. 

A.xxialgazxi  is  a  compound  of  Mercury  and  a  metal — a  soft  alloy. 

Compositions  of  copper  contract  in  admixture,  and  all  Amalgams  ex- 
pand. 

In  manufacture  of  Alloys  and  Compositions,  the  less  fusible  metais 
should  be  melted  first. 

In  Compositions  of  Brass,  as  proportion  of  Zinc  is  increased,  so  is 
malleability  decreased. 

Tenacity  of  Brass  is  impaired  by  addition  of  Lead  or  Tin. 

Steel  alloyed  with  one  five-hundredth  part  of  Platinum,  or  Silrer,  is 
rendered  harder,  more  malleable,  and  better  adapted  for  cutting  instru- 
ments. 

Specific  gravity  of  al toys'**  does  not  follow  the  ratios  of  those  of  their 
components ;  it  is  sometimes  greater  and  sometimes  less  than  the  mean. 

Coin  position   fbr  'Welding*   Oast  Steel. 

Borax,  91  parts-,  Sal  ammoniac,  9  parts.  Grind  or  pound  them  roughly  together; 
Aise  them  in  a  metal-pot  over  a  clear  fire,  continuing  heat  until  all  spume  has  dis- 
appeared fVom  surface.  When  liquid  is  clear,  pour  composition  out  to  cool  and  con- 
crete, and  grind  to  a  fine  powder;  then  it  is  ready  for  use. 

To  use  this  composition,  the  steel  to  be  welded  should  be  raised  to  a  bright  yellow 
heat;  then  dip  it  in  the  welding  powder,  and  again  raise  it  to  a  like  heat  as  before; 
it  is  then  ready  to  be  submitted  to  the  hammer. 


F'usible   Compotincls. 


COMFOUNDB. 


Rose's,  fusing  at  200^ 

Fusing  at  less  than  200^ 

Newton's,  fusing  at  less  than  312°. 
Fusing  at  150°  to  160° 


Zinc. 

Tin. 

LMd. 

Biamuth. 

— 

as 

as 

SO 

33-3 

— 

33-3 

33-4 

— 

^9 

3» 

50 

— 

12 

25 

50 

Cadmiam. 


13 


Solders. 


Solder  is  an  alloy  used  to  make  joints  between  metals,  and  it  must  be 
more  fusible  than  the  metals  it  is  designed  to  imite,  and  it  is  distinguished 
as  hard  and  soft,  according  to  the  temperature  of  its  fusing. 

The  addition  of  a  small  portion  of  Bismuth  increases  its  fusibility. 


*  For  ■  tabl«  of  Alloys,  hsTing  drailtlM  diffvreot  from  •  mMD  of  tholr  eompoa«iU»  •••  D.  K.  Cfaurk^ 
niud,  London,  1877,  pMge  20X. 


MKTALS. — ALLOTS  AKD   COMPOSITIONS. 


635 


Alloys  and  Compositions. 


Aiigentan 

AlumiDum,  brown 
Babbitt's  meUl*. 
BrasB,  common. . . 


4i 
li 

H 

«t 
«t 
u 
•I 
u 
u 
u 

M 

t« 
t( 

4( 


*'       hard, . . . . 

instruments 

locomot.  bearings. 

Pinchbeck 

red  Tombac 

rolled 

Tutenag 

very  tenacious... 
wheels,  ralves.... 

white 

it 


wire  

yellow,  fine  ...... 

Britannia  metal 

Wb«n  rated  add ...... 

Bronze,  red. 

4»       ^     ^ 

yellow 

Gan  metal,  large 
**  small 
*'         soft. 

Cymbals ,. 

Medals 

Statuary 

Chinese  silver 

**       white  cop|)er... 
Church  bells 


M 
«« 
•i 
«( 
U 
({ 
I( 


Clocks,  Miisicia  beUs. . . . 

Cloi^k  bells 

German  silver 


i( 


"    fine 

Gongs 

House  bells. 

Lathe  bashes 

Machinery  bearings 

hard. 
Metal  that  etpands  in) 

cooling 5 

Mantz  metal 

Pewter,  best..  


Sheathing  mcUil 

Speculum     "     

it  (t 

^^  • .  . . . .  • 

Telescopic  mirrors 

Temper t. 

Type  metal  and  stereo-  i 

typeplatea j 

White  metal 

"       *'     hard 


Orefde 


Copperi 


55 

95 

3- 

84. 

75 

79- 
92. 

88.8 

74-3 

50 

88.9 

90 
10 

3 

7 
67 
66 


87 
86 

67.2 
90 

93 
95 
80 

93 
91.4 

58.1 

40.4 
80 

^7-5 
72 

33-3 
40.4 

49-5 
81.6 

77 
80 

87-5 
77-4 


60 


56 
66 

50 
66.6 

33.4 


41 

73 


Zinc 


24 


5-8 
25 
6^4 

I 
20 
II. 2 
22.3 

31 
3.8 

80" 
90 

33 
34 


13 

II.X 

31.2 


55 
17.9 

25-4 
5.6 


33-4 
aS-4 
34 


40 


45 


ax 


7-4 
25. » 

xa.3 


Tin. 


89 
las 


143 
7-8 

9 


3-4 

10 
10 


25 


1.6 

xo 

7 

5 

20 

7 
1-4 

2.6 
tax 
31 

X2.S 

26.5 


18.4 
93 

ao 
15.6 


86 
80 

92 
29 

33-4 
66.6 


Nickel. 


21 


4-4 

(Mai 

IISaF 


»9 


Lead. 


46 


tx.6 
31.6 


33-3 
V-6 

24 


28.4         — 


Anti- 
mony. 


7-3 


7 
47 


25 
25 


Bie- 
moUu 


Ala- 
minam. 


25 


«-7 
4-3 


75 


90 


75 
87-5 


16.7 
«4 


CO 

2 


0 
g 

s 

8.3 


Magnesia 

SaHunmoniac 


4-4 
2-5 


25 

12-5 

56.8 


Cream  of  tartar  .6.5 
Quicklime..... .x.? 


ri.x 


g 


«-5 

9.6 


X9    ' 


•  8w  page  636  for  dlractiou. 


i  For  addiag  ma$H  qutntitiee  of  ooppw. 


636 


MJiTALS. — ALLOTS   AND   COMPOSITIOKS. 


Copper. 

Tin. 

Solders 

L«ad.      Zinc. 

> 
Silver. 

Bis- 
naath. 

Gold. 

Cad- 
miam. 

Anti- 
mony. 

rill 

• 

65 

13 
50 
47 

4 

20 
12 

66 
S3 

25 
58 

33 
67 

33 

33 
50 

33 

25 
67 
50 

25 
66 

40 
47 

11 
67 

33 
6^ 

45 

25 

67 

75 
33 
50 
25 

34 
20 

SO 

35 

5 

50 
47 

34 
33 

82 
6 

7 

80 
67 

16 

22 
25 

40 

89 

Mi     1    1  1  1  1  1  1  1  1    1    i  II  M  1  1  1  St  1  1 

<(           • 

Ytf^ 

"   coarse,  melts ) 

at  5000 . . .  j 

"   ordi'y,  melts) 

at  360°.. . ) 

Spelter,  soft 

♦'       hard 

T^ad 

♦ 

Steel 

Brass  or  Copper.. . 

Fine  brass 

Pewterers'  or  Soft. 

• 

Plumbers'     pot- ) 
metal.. ) 

"      coarse  . . . 

"      fine 

"      fUslble... 

"  very  "    ... 
Gold 

— 

"  hard 

"  soft 

— 

Silver,  hard 

"     soft 

Pewter 

— 

Iron 

Copper 

t 

A  Plastic  Metallic  AUoy. — See  Journal  of  Franklin  Institute,  vol.  xxtix.,  page  55, 
for  its  composition  and  manufacture. 

Soldering  Fluid  for  use  with  Soft  Solder. 

To  2  fluid  oz.  of  Muriatic  acid  add  small  pieces  of  Zinc  until  bubbles  cease  to  riM. 
Add .  5  a  teaspoonfbl  of  Sal-ammoniac  and  two  fluid  oz.  of  Water. 

By  the  application  of  this  to  Iron  or  Steel,  they  may  be  soldered  without  their  sar- 
fluses  being  previously  tinned. 

Muxes  for  Soldering  or  Welding. 


Iron Borax. 

Tinned  iron Resin. 

Copper  and  Brass Sal-ammoniac. 


Zinc Chloride  of  zinc. 

Lead Tallow  or  resin. 

Lead  and  tin Resin  and  sweet  oil. 


Sab'bitt's    ^iiti -attrition    IVIetal. 
Molt  4  lbs.  copper :  add  12  lbs.  Banca  tin,  8  lbs.  Regulus  of  antimony,  and  12 
lbs.  more  of  Tin.    After  4  or  5  lbs.  Tin  have  been  adde^i  reduce  heat  to  a  dull 
red,  then  add  remainder  of  metal  as  above. 

Tbis  composition  is  termed  hardening  ;  for  lining,  melt  i  lb.  of  this  hardening 
with  2  lbs.  tin,  which  produces  the  lining  metal  for  use. 

As  this  metal  was  introduced  in  1839,  it  is  now  maintained  by  engineers  that 
the  increased  weight  of  machines  and  the  velocity  of  engines  and  dynamos 
require  an  appropriate  alloy  ;  and  it  is  claimed  by  engineers  that  Phoenix  Metal 
meets  existing  requirements. 

I3ra8s. 

Brass  is  an  alloy  of  copper  and  zinc,  in  proportions  varying  with  purpose 
of  metal  required,  its  color  dependinp^  upon  the  proportions. 

It  is  rendered  brittle  by  continued  impacts ;  more  malleable  than  cop]>er 
when  cold,  but  is  impracticable  of  being  forged,  as  its  zinc  melts  at  a  low 
temiterature.  Its  fusibility  is  governed  by  the  proportion  of  zinc  in  it;  a 
mail  quantity  of  phosphorus  gives  it  fluidity. 


METALS. — ALLOYS   AND   COMPOSITIONS. — lEON.      637 

Bronze. 

Bronze  is  an  alloy  of  copper  and  tin ;  it  is  harder,  more  fusible,  and 
stronger  than  copper.     It  is  usually  known  as  Gun-metal. 

Aluminum  Bronze  contains  90  to  95  per  cent,  of  copper,  and  5  to  10  per 
cent,  alarainum. 

Phosphor  Bronze  contains  copper  and  tin  and  a  small  proportion  of  phos- 
phorus.   It  wears  better  than  bronze. 

IRON. 

Foreign  substances  which  iron  contains  modify  its  essential  proper- 
ties. Carbon  add^to  its  hardness,  but  destroys  some  of  its  qualities, 
and  produces  Cast  Iron  or  Steel,  according  to  proportion  it  contains. 
Thus,  .25  per  cent,  renders  it  malleable,  .5  steel,  1.75  is  limit  of  weld- 
ing steel,  and  2  is  lowest  limit  of  cast  iron.  Sulphur  renders  it  fusible, 
difficult  to  weld,  and  brittle  when  heated,  or  **  hot  short."  F/imphoj'us 
renders  it  "  cold  shoi't^''^  but  may  be  present  in  proportion  of  .002  to 
.003,  without  aflFecting  injuriously  its  tenacity.  Antimony^  Arsenic^  and 
Copper  have  same  effect  as  sulphur,  the  last  in  a  greater  degree.  Sili- 
con renders  it  hard  and  brittle.  Manganese^  in  proportion  of  .02,  ren- 
ders it  "  cold  sJiort^"  and  Vanadium  adds  to  its  ductility. 

Cast  Iron- 
Process  of  making  Cast  Iron  depends  much  updh  description  of  fuel  used ; 
whether  charcoal,  coke,  bituminous,  or  anthracite  coals.  A  larger  yield  from 
same  furnace,  and  a  great  economy  in  fuel,  are  ^fected  by  use  of  a  hot  blast. 
The  greater  heat  thus  produced  causes  the  iron  to  combine  with  a  larger 
percentage  of  foreign  e^ubatances. 

Cast  Iron  for  purposes  requiring  great  strength  should  be  smelted  with 
a  cold  blcuf.  Pig-iron,  according  to  proportion  of  carbon  which  it  contains, 
is  divided  into  Foundry  Iron  and  Forge  Iron,  latter  adapted  only  to  conver- 
Bion  into  malleable  iron ;  while  former,  containing  largest  proportion  of  car- 
boDf  can  be  used  either  for  castings  or  bars. 

High  temperatnre  in  melting  injures  gun-metal. 

There  are  many  varieties  of  Cast  Iron,  differing  hj  almost  insensible 
shades;  the  two  principal  divisions  are  gray  and  white,  so  termed  from 
color  of  their  fracture.    ITieir  properties  are  very  different. 

Gray  Iron  is  softer  and  less  brittle  than  white ;  it  is  in  a  slight  degree 
malleable  and  flexible,  and  is  insonorous ;  it  can  easily  be  drilled  or  turned, 
and  does  not  resist  the  file.  It  has  a  brilliant  fracture,  of  a  gray,  or  some- 
times a  bluish-gray,  color;  color  is  lighter  as  grain  becomes  closer,  and  its 
hardness  increases.  It  melts  at  a  lower  heat  than  white,  and  preserves  its 
fluidity  longer.  Color  of  the  fluid  metal  is  red,  and  deeper  in  proportion  as 
the  heat  is  lower ;  it  does  not.  adhere  to  the  ladle ;  it  fills  molds  well,  con- 
tracts less,  and  coptains  fewer  cavities  than  white ;  edges  of  its  castings 
are  sharp,  and  surfaces  smooth  and  convex.  It  is  used  for  machinery  and 
ordnance  where  the  pieces  are  to  be  bored  or  fitted.  Its  tenacity  and  specific 
gravity  are  diminished  by  annealing. 

White  Iron  is  vety  brittle  and  sonorous ;  it  resists  file  and  chisel,  and  is 
susceptible  of  high  polish ;  surface  of  its  castings  is  concave;  fracture  pre- 
sents a  silvery  appearance,  generally  fine  grained  and  compact,  sometimes 
radiating  or  lamellar.  When  melted  it  is  white,  throws  off  a  great  number 
of  sparks,  and  its  qualities  are  the  reverse  of  those  of  gray  iron  ;  it  is  tbere^ 
fore  unsuitable  for  machinery  purposes.  Its  tenacity  is  increaaed,  and  its 
specific  gravity  diminished^  by  annealing. 

^  H 


638 


METALS. — ^IBON. 


Mottled  Iron  is  a  mixture  of  white  and  ^ay ;  it  has  a  spotted  appear- 
ance ;  flows  well,  and  with  few  sparks ;  its  castings  have  a  plane  surface, 
with  edges  slightly  rounded.  It  is  suitable  for  shot,  shells,  etc.  A  fine  mot- 
tled is  only  kind  suitable  for  castings  which  require  great  strength.  The 
kind  of  mottle  will  depend  much  upon  volume  of  the  casting.  A  medium- 
sized  grain,  bright  gray  color,  fracture  sharp  to  touch,  and  a  dose,  compact 
texture,  indicate  a  good  quality  of  iron.  A  grain  either  very  large  or  very 
small,  a  dull,  earthy  aspect,  loose  texture,  dissimilar  crystals  mixed  together, 
indicate  an  inferior  quality. 

Besides  these  general  divisions,  the  different  varieties  of  pig-iron  are  more 
particularly  distinguished  by  numbers,  according  to  their  rektive  hardness. 

No.  I. — Fracture  dark  gray,  crystals  large  and  highly  lustrous,  alike  to 
new  surface  of  lead.  It  is  the  softest  iron,  possessing  in  highest  degree  the 
qualities  belonging  to  gray  iron ;  it  has  not  much  strength,  but  on  account 
of  its  fluidity  when  melted,  and  of  its  mixing  advantageously  with  scrap 
iron  and  with  the  harder  kinds  of  cast  iron,  it  is  of  great  use  to  a  foundry. 

No.  a  is  harder,  closer  grained,  and  strongs  than  No.  i ;  it  has  a  gray 
color  and  considerable  lustre.    It  is  most  suitable  for  shot  and  shells. 

No.  3  is  harder  than  No.  2.  Fracture  white,  crystals  lar^r  and  brighter 
at  centre  than  at  the  sides ;  color  gray,  but  inclining  to  white ;  has  consid- 
erable strength,  but  is  principaUy  usea  for  mixing  with  other  kinds  of  iron 
and  for  large  castings. 

No.  4  or  Bright. — Fracture  light  gray,  with  small  crystals  and  little  lustre, 
and  not  being  suificieutlyfusible  for  castings  It  is  used  for  conversion  to 
wrought  iron. 

No.  5.  Mottled.  —  Fractare  dull  white,  with  gray  specks,  and  a  line  of 
white  around  edge  or  sides  of  fracture. 

No.  6.  White. — Fracture  white,  with  little  lustre,  granulated  with  radiat- 
ing crystalline  surface.  It  is  hardest  and  most  brittle  of  all  descriptions, 
and  is  unfit  for  use  unless  mixed  with  other  grades,  or  for  being  converted 
to  an  inferior  wrought  iron. 

Qualities  of  these  descriptions  depend  upon  proportion  of  carbon,  and  upon 
state  in  which  it  exists  in  the  metal ;  in  darker  kinds  of  iron,  where  propor- 
tion is  sometimes  7  per  cent.,  it  exists  partly  in  state  of  grapliite  or  plumbago, 
which  makes  the  iron  soft.  In  white  iron  the  carbon  is  thoroughly  com- 
bined with  the  metal,  as  in  steel. 

Cast  iron  frequently  retains  a  portion  of  foreign  ingredients  from  the  ore, 
such  as  earths  or  oxides  of  other  metals,  and  sometimes  sulphur  and  phos- 
phorus, which  .are  all  injurious  to  its  quality. 

Foreign  substances,  and  also  a  portion  of  the  carbon,  are  separated  bj* 
melting  iron  in  contact  with  air,  and  soft  iron  is  thus  rendered  harder  and 
stronger.  Effect  of  remelting  varies  with  nature  of  the  iron  and  character 
of  ore  from  which  it  has  been  extracted ;  that  from  hard  ores,  such  as  mag- 
netic oxides,  undergoes  less  alteration  than  that  from  hematites,  the  latter 
being  sometimes  changed  from  No.  i  to  tchite  by  a  single  remelting  in  an 
air  furnace. 

Color  and  ^exture  of  cast  iron  depend  greatly  upon  volume  of  casting  and 
rapidity  of  its  cooling ;  a  small  casting,  which  oools  quickly,  is  almost  always 
wAiVe,  and  surface  of  large  castings  partakes  more  of  the  qualities  of  white 
metal  than  the  interior. 

All  cast  iron  expands  at  moment  of  becoming  liquid,  and  contracts  in  cool- 
ing ;  gray  iron  expands  more  and  contracts  less  than  other  iron. 

Remelting  iron  improves  its  tenacity :  thus,  a  mean  of  14  cases  for  two 
fusions  gave,  for  ist  fusion,  a  tenacity  of  29284  lbs. ;  for  2d  fu!«ion,  33790 
lb9.    For  two  cases— for  first  fusion,  i<s  129  lbs. ;  for  9d  fusion,  35  786  lbs* 


MBTALS. — IBON.  639 

AdCallea'ble  CBBtings. 

Halleable  cast  iron  is  made  by  subjecting  a  casting  to  a  process  of  anneal- 
ing, by  enclosing  it  in  a  box  with  hematite  iron  ore  or  black  oxide  of  iron, 
and  maintaining  it  in  an  equable  heat  for  a  period  depending  upon  form  and 
volume  of  casting. 

^W'roiogh.t  Iron. 

Wrought  iron  is  made  from  pig-iron  in  a  Bloomei'y  Fire  or  in  a  Puddling 
Furnace — generally  in  latter.  Process  consists  in  nieltmg  and  keeping  it 
exposed  to  a  great  heat,  constantly  stirring  the  mass,  bringing  every  part  of 
it  under  action  of  the  flame  until  it  loses  its  remaining  carbon,  when  it  be- 
comes malleable  iron.  When,  however,  it  is  desired  to  obtain  iron  of  best 
quality,  pig-iron  should  be  rejined. 

Refining. — This  operation  deprives  iron  of  a  considerable  portion  of  its 
carbon ;  it  is  effected  in  a  Blast  Furnace^  where  iron  is  melted  by  means  of 
charcoal  or  coke,  and  exposed  for  some  time  to  action  of  a  great  heat ;  the 
metal  is  then  run  into  a  cast-iron  mold,  b^^^  which  it  is  formed  into  a  large 
broad  plate.  As  soon  as  surface  of  plate  is  chilled,  cold  water  is  poured  on 
to  render  it  brittle. 

A  Bloomtrg  resembles  a  large  forge  fire,  where  charcoal  and  a  strong  blast 
are  used ;  and  the  refined  metal  or  pig-iron,  after  beuig  broken  into  pieces  of 
proper  size,  is  placed  before  the  blast,  directly  in  ccmtact  with  charcoal ;  as 
the  metal  fosea,  it  falla  into  a  cavity  left  for  that  purpose  below  ^  blast, 
where  the  ^*  bloomer  "  works  it  into  the  shape  of  a  haU^  which  he  places  again 
before  the  blast,  with  fresh  charcoal ;  this  operation  is  generally  again  re- 
peated, when  ball  is  ready  for  the  **  sbingler. 

Shingling  is  performed  in  a  strong  squeezer  or  under  a  trip-hammer.  Its 
object  is  to  press  out  as  perfectly  as  practicable  the  liquid  cinder  which  a 
ball  contains ;  it  also  forms  a  ball  into  shape  for  the  puddle  rolls.  A  heavy 
hammer,  weighing  from  6  to  7  tons,  effects  this  object  most  thoroughly,  but 
not  so  cheaply  as  the  squeezer.  A  ball  receives  from  15  to  20  blows  of  a 
hammer,  being  turnexi  from  time  to  time  as  required :  it  is  now  termed  a 
Bloom,  and  is  ready  to  be  rolled  or  hammered ;  or  a  ball  is  passed  once 
thrimgh  the  squeezer,  and  is  still  hot  enough  to  be  passed  through  the  puddle 
rolls. 

A  Puddling  Furnace  is  a  reverberatory  furnace,  where  flame  of  bituminous 
coal  is  brought  to  act  directly  upon  the  melted  metal.  The  "  puddler  "  then 
stirs  it,  exposing  each  portion  in  turn  to  action  of  flame,  and  continues  this 
as  long  as  he  is  able  to  work  it.  When  it  has  lost  its  fluidity,  he  forms  it  into 
balls,  weighing  from  80  to  100  lbs.,  which  are  then  passed  to  the  "shingler." 

Puddle  Rolls.  —  By  passing  through  different  grooves  in  these  rolls,  a 
bloom  is  reduced  to  a  nmgh  bar  from  3  to  4  feet  in  length,  its  term  convey- 
ing an  idea  of  its  condition,  which  is  rough  and  imperfect. 

Piling. — To  prepare  rough  bars  for  this  operation,  thev  are  cut,  by  a  pair 
of  shears^  into  sucn  lengths  as  are  best  adapted  to  the  volume  of  finished  bar 
required ;  the  sheared  bars  are  then  piled  one  over  the  other,  according  to 
volame  required,  when  pile  is  ready  for  bailiff. 

Balling. — This  operation  is  performed  in  balling  furnace,  which  is  similar 
to  puddling  furnace,  except  that  its  bottom  or  hearth  is  made  up,  from  tiute 
to  tinoe,  with  sand ;  it  is  used  to  give  a  welding  heat  to  piles  to  prepare 
them  for  rolling. 

Finishing  Rolls. — The  batts  are  passed  successively  between  rollers  of  va- 
rious forms  and  dimensions,  according  to  shape  of  finished  bar  required. 

QftaUlg  of  iron  depends  upon  description  of  pig-iron  used,  skill  of  the 
**  puddler,*'  and  absence  of  deleterious  substances  in  the  furnace. 


640 


METALS. — IRON. — 1.ELD. — Simah. 


Strongest  cast  irons  do  not  produce  strongest  malleable  iron. 

For  many  purposes,  such  as  sheets  for  tinning,  best  boiler-plates,  and  bars 
for  converting  into  steel,  chmH:oal  iron  is  used  exclusively ;  and,  generally, 
this  kind  of  iron  is  to  be  relied  upon,  for  strength  and  toughness,  with  greater 
contidence  than  any  other,  though  iron  of  a  superior  quality  is  made  from 
pigs  made  with  other  fuel,  and  with  a  hot  blast.  Iron  for  gun-barrels  has 
been  lately  made  from  anthracite  hot-blast  pigS. 

Iron  is  improved  in  quality  by  judicious  working,  reheating,  hammering, 
or  rolling :  other  things  being  equal,  best  iron  is  that  which  has  been  wrought 
the  most. 

Best  quality  of  iron  has  greatest  elasticity. 

Tests. — It  will  not  blacken  if  exposed  to  nitric  acid.  Long  silky  fibres  in 
a  fracture  denote  a  soft  and  strong  metal ;  short  Mack  fibres  denote  a  badly 
refined  metal,  and  a  fine  grain  denotes  hardness  and  condition  known  as 
"  cold  short."  Coarse  grain  with  bright  and  crystallized  fracture,  with  dis- 
colored spots,  also  denotes  "  cold  short "  and  brittle  metal,  working  easily  and 
welding  well.  Cracks  upon  edges  of  a  bar,  etc,,  indicate  "  hot  short."  Good 
iron  heats  readily,  is  worked  easily,  and  throws  off'  but  few  sparks. 

A  high  breaking  strain  may  not  be  conclusive  as  to  quality,  as  it  may  be 
due  to  a  hard,  elastic  metal,  or  a  low  one  may  be  due  to  great  softness. 

When  iron  is  fractured  suddenly,  a  crystalline  surface  is  produced,  and 
when  gradually,  a  fibrous  one.  Breaking  strain  of  iron  is  increased  by  heat- 
ing it  and  suddenly  cooling  it  in  water.  Iron  exposed  to  a  welding  or  white 
heat  and  not  reduced  by  hammering  or  rolling  is  weakened. 

Specific  gravity  of  iron  is  a  good  indication  of  its  quality,  as  it  indicates 
very  correctly  its  relative  degree  of  strength. 

LEAD. 

Sheet  Lead  is  either  Cast  or  MiUed^  the  former  in  sheets  16  to  18  feet  in 
length  and  6  feet  in  width ;  the  latter  is  rolled,  is  thinner  than  the  former, 
is  more  uniform  in  its  thickness,  and  is  made  into  sheets  25  to  35  feet  in 
length,  and  from  6  to  7.5  feet  in  width. 

Soft  or  Rain  Water,  when  aerated,  Silt  of  rivers.  Vegetable  matter,  Acids, 
Mortar,  and  Vitiated  Air  will  oxidize  lead.  The  waters  which  act  with 
greatest  eff'ect  on  it  are  the  purest  and  most  highly  oxygenated,  also  nitrites, 
nitrates,  and  chlorides,  and  those  which  act  with  least  effect  are  such  as  con- 
tain carbonate  and  phosphate  of  lime. 

Coating  of  Pipes^  except  with  substances  insoluble  in  water,  as  Bitumen 
and  SuliJhide  of  lead,  is  objectionable. 

Lead-encased  Pipes. — An  inner  pipe  of  tin  is  encased  in  one  of  lead. 

STEEL. 

Steel  is  a  compound  of  Iron  and  Carbon,  in  which  proportion  of  latter 
is  from  i  to  5  per  cent.,  and  even  less  in  some  descriptions.  It  is  dis- 
tinguished from  iron  by  its  fine  grain,  and  by  action  of  diluted  nitric 
acid,  which  leaves  a  black  spot  upon  it. 

There  are  many  varieties  of  steel,  principal  of  which  are : 

Natural  Steely  obtained  \y^  reducing  rich  and  pure  descriptions  of  iron 
ore  with  charcoal,  and  refinmg  cast  iron,  so  as  to  deprive  it  of  a  sufficient 
portion  of  carbon  to  bring  it  to  a  malleable  state.  It  is  used  for  files  and 
other  tools. 

Indian  Steely  termed  Wootz,  is  said  to  be  a  natural  steel,  containing  a  small 
portion  of  other  metals. 


METALS* — STEEL.  64 1 

Blittered  8t6d,  or  Steel  of  Cementai^^m^  is  prepared  by  direct  combination  of 
iron  and  carbon.  For  this  purpose,  iron  in  bars  is  put  in  layers,  alternating 
with  powdered  charcoal,  in  a  close  furnace,  and  exposed  for  7  or  8  days  to 
a  high  temperature,  and  then  put  to  cool  for  a  like  period.  The  bars,  on 
being  taken  out,  are  covered  with  blisters,  have  acquired  a  brittle  quality, 
and  exhibit  in  fracture  a  uniform  crystalline  appearance.  The  degree  of 
carbonization  is  varied  according  to  purposes  for  which  the  steel  is  intended, 
and  the  very  best  qualities  of  iron  are  used  for  the  finest  kinds  of  steel. 

Tilted  Steel  is  made  from  blistered  steel  moderately  heated,  and  subjected 
to  action  of  a  tilt  hammer,  by  which  means  its  tenacity  and  density  are  in- 
creased. 

Shear  Steel  is  made  from  blistered  or  natural  steel,  refined  by  piling  thin 
bars  into  fagots,  which  are  brought  to  a  welding  heat  in  a  reverberatory 
furnace,  and  hammered  or  rolled  again  into  bars ;  this  operation  is  repeated 
several  times  to  produce  finest  kinds  of  shear  steel,  which  are  distinguished 
by  the  terms  of  HcUfshectr^  Single  shear,  and  Double  shear,  or  steel  of  i,  2,  or 
3  nmrkSy  etc.,  according  to  number  of  times  it  has  been  piled. 

Spring  Steel  is  blister  steel  heated  to  an  orange  red  color  and  rolled  or 
hammered. 

Cast  or  Cmclhle  Steel  is  made  by  breaking  blistered  steel  into  small  pieces 
and  melting  it  in  close  crucibles,  from  which  it  is  poured  into  iron  molds ; 
ingot  is  then  reduced  to  a  bar  by  hammering  or  rolling.  Cast  steel  is  best 
kind  of  steel,  and  best  adapted  for  most  purposes ;  it  is  known  by  a  very 
fine,  even,  and  close  grain,  and  a  silvery,  homogeneous  fracture ;  it  is  very 
brittle,  and  acquires  extreme  hardness,  but  is  difficult  to  weld  without  use 
of  a  flux.  Other  kinds  of  steel  have  a  similar  appearance  to  cast  steel,  but 
grain  is  coarser  and  less  homogeneous ;  they  are  softer  and  less  brittle,  and 
-weld  more  readilv.  A  fibrous  or  lamellar  appearance  in  fracture  indicates 
an  imperfect  steel.  A  material  of  great  toughness  and  elasticity,  as  well  as 
hardness,  is  made  by  forging  together  steel  and  iron,  forming  the  celebrated 
Damasked  Steely  which  is  used  for  sword-blades,  springs,  etc. ;  damask  ap- 
pearance of  which  is  produced  by  a  diluted  acid,  which  gives  a  black  tint  to 
the  steel,  while  the  iron  remains  white. 

With  cast  steel,  breaking  strength  is  greater  across  fibres  of  rolling  than 
with  them. 

Heath's  Process  Is  an  improvement  on  this  method,  and  consists  in  adding  to 
molten  metal  a  small  quantity  of  carburet  of  manganese. 

HeaJUnCs  Process  consists  in  adding  nitrate  of  soda  to  molten  pigiron,  in  order  to 
remove  carbon  and  silica. 

JUusheVs  Process. — Malleable  iron  is  melted  in  crucibles  with  oxide  of  manganese 
and  charcoal. 

Puddled  Steel  is  produced  by  arresting  the  puddling  in  the  manufacture 
of  the  wrought  iron  befoi*e  all  the  carbon  has  been  removed,  the  small 
amount  of  carbon  remaining,  .3  to  i  per  cent.,  being  sufficient  to  make  an 
inferior  steeL 

Mild  Steel  contains  from  .2  to  .5  per  cent,  of  carbon ;  when  mo*e  is  pres- 
ent it  Is  termed  Hard  SteeL 

Bessemer  Steel  is  made  direct  from  pig-iron.  The  carbon  is  first  removed, 
in  order  to  obtain  pure  wrought  iron,  and  to  this  is  added  the  exact  quantity 
of  carbon  requirea  for  the  st«el.  The  pig  should  be  free  from  sulphur  and 
phosphorus.  It  is  melted  in  a  blast  or  cupola,  and  run  into  a  converter  (a 
pear-shaped  iron  vessel  suspended  on  hollow  trunnions  and  lined  with  fire- 
orick  or  clay),  where  it  is  subjected  to  an  air  blast  for  a  period  of  20  min- 
utes, in  order  to  dispel  the  carbon,  after  which  from  5  to  10  per  cent,  of  spie- 
^releiaen  is  added. 

3H* 


642  METALS. — ^STESL. 

The  blast  is  theo  resumed  for  a  short  period,  to  incorporate  the  two  metala^ 
when  the  steel  is  run  off  into  molds.  The  moment  at  which  all  the  carbon 
has  been  removed  is  indicated  by  color  of  the  flame  at  mouth  of  converter, 
inhe  ingots,  when  thus  produced,  contain  air  holes,  and  it  becomes  necessary 
to  heat  them  and  render  them  solid  under  a  hammer. 

Siemen's  Process. — Pig-iron  is  fused  upon  open  hearth  of  a  regenerative 
furnace,  and  when  raised  to  a  steel-melting  temperature,  rich  and  pure  ore 
and  limestone  are  added  gradually,  whereby  a  reaction  is  established  between 
the  oxygen  of  the  ferrous  oxide  and  the  carbon  and  silicon  in  the  metaL  The 
silicon  is  thus  converted  into  silicic  acid,  wUch  with  the  lime  forms  a  fasible 
slag,  and  the  carbon,  combining  with  oxygen,  escapes  as  carbonic  acid,  and 
induces  a  powerful  ebullition. 

Modification  of  this  process.— The  ore  is  treated  in  a  separate  rotatory  fa  mace 
with  carbouaoeous  material,  and  converted  into  balls  of  malleable  irun,  which  are 
transferred  from  the  rotatory  to  the  bath  of  the  steel-melting  fUmace. 

This  process  is  adapted  to  the  production  of  steel  of  a  very  high  quality,  becaase 
the  sulphur  and  phosphorus  of  the  ore  are  separated  Arom  the  metal  in  the  rotatory 
furnace. 

Siemen^ 8 -Martin  Process. — Scrap-iron  or  steel  is  gradually  added  in  a 
highly  heated  condition  to  a  bath  of  about  .25  its  weight,  of  highly  heated 
pig,  and  melted.  Samples  are  occasionally  taken  from  the  bath,  in  order  to 
ascertain  the  percentage  of  carbon  remaining  in  the  metal,  and  ore  is  added 
111  small  quantities,  in  order  to  reduce  the  carbon  to  about  .1  per  cent. 

At  this  stage  of  the  process,  siliceous  iron,  spiegeleisen,  or  ferro-manganese 
is  added  in  such  proportions  as  are  necessary  to  produce  steel  of  the  required 
degree  of  hardness.    The  metal  is  then  tapped  into  a  ladle. 

Landore-Siemen's  Steel  is  a  variety  of  steel  made  by  the  Mod^ation  of 
Siemens  Process,  Its  great  value  is  due  to  it^  extreme  ductility,  and  its 
having  nearly  like  strength  in  both  directions  of  its  plates. 

Whitioortk^s  Compressed  Steel  is  molten  steel  subjected  to  a  pressure  of 
about  6  tons  per  square  inch,  by  which  all  its  cavities  are  dispelled,  and  it  is 
compressed  to  about  .875  of  its  original  volume,  its  density  and  strength  be- 
ing proportionately  increased. 

Chrome  and  Tungsten  Sted  are  made  by  adding  a  small  percentage  of 
Chromium  or  Tungsten  to  crucible  steel,  the  resiut  producing  a  steel  of 
great  hardness  and  tenacity,  suitable  for  tools,  such  as  drills,  etc. 

Homogeneous  Steel  is  a  variety  of  cast  steel  containing  .25  per  cenL  0/ 
carbon. 

Remarks  on  Manufacture  of  Steel,  and  Mode  of  Working  it. 

(D.  Chr.rnoff,  1868). 

Steel,  when  wist  and  allowed  to  cool  quietly,  assumes  a  crystalline  structure. 
Higher  temperature  to  which  it  is  heated,  softer  it  becomes,  and  greater  is  liberty 
its  particles  possess  to  group  themselves  into  crystals. 

Steel,  however  hard  it  may  be,  will  not  harden  if  heated  to  a  temperature  lower 
than  what  may  be  distinguished  as  dark  cherry -red,  a,  however  quickly  it  is  cooled-, 
on  contrary,  it  will  become  sensibly  softer,  and  more  easily  worked  with  a  file. 

Steel,  heated  to  a  temperature  lower  than  red,  but  not  sparkling,  5,  does  not 
change  its  structure  whether  cooled  quickly  or  slowly.  When  temperature  has 
reached  &,  substance  of  steel  quickly  passes  from  granular  or  crystalline  condition 
to  amorphous,  or  wax-lUce  structure,  which  it  retains  up  to  its  melting-point,  c 

Points  a,  &,  and  c  have  no  permanent  place  in  scale  of  temperature,  but  their  posi- 
tions vary  with  quality  of  steel ;  in  pure  steel,  they  depend  directly  on  quantity  of 
constituent  carbon.  Harder  the  steel,  lower  the  temperatures.  Tints  above  speci- 
fied have  reference  only  to  hard  and  medium  qualities  of  steel;  in  very  soft  kinds 
of  steel,  nearly  approaching  to  wrought  iron,  points  a  and  b  range  very  high,  and  in 
wrought  iron  point  b  rises  to  a  white  heat. 


METALS. — STEEL.  643 

AsBQinptlon  of  the  crystalline  structure  takes  place  entirely  In  cooling,  between 
temperatures  c  and  b:  when  temperature  sinks  beloMr  b  there  is  no  change  of  struc- 
ture. For  successful  forging,  therefore,  heated  ingot,  after  it  is  taken  out  of  furnace, 
must  be  forged  as  quickly  as  practicable,  so  as  not  to  leave  any  spot  untouched  by 
hammer,  where  the  steel  might  crystallize  quietly,  as  formation  of  crystals  should 
t>e  hindered,  and  the  steel  should  be  kept  in  an  amorphous  condition  until  tem- 
perature sinks  below  point  b. 

Below  this  temperature,  if  piece  is  cooled  in  quiet,  mass  will  no  longer  be  disposed 
to  crystallize,  but  will  possess  great  tenacity  and  homogeneousness  of  structure. 

When  steel  is  forged  at  temperatures  lower  than  &,  its  crystals  or  grains,  being 
driven  against  each  other,  change  their  shapes,  becoming  elongated  in  one  direction, 
and  contracted  in  another;  while  density  and  tensile  strength  are  considerably  in- 
creased. But  available  hammer-power  is  only  sufficient  for  treatment  of  small  steel 
forgings;  and  object  of  preventing  coarse  crystalline  structure  in  large  forgiugs 
is  more  easily  and  more  certainly  effected,  if,  after  having  given  forging  desired 
shape,  Its  structure  be  altered  to  an  homogeneous  amorphous  condition  by  heating 
It  to  a  temperature  somewhat  higher  than  6,  and  the  condition  be  fixed  by  rapid 
cooling  to  a  temperature  lower  than  &,  the  piece  should  then  be  allowed  to  finish 
cooling  gradually,  so  as  to- prevent,  as  far  as  practicable,  internal  strains  due  to 
sudden  and  unequal  contraction. 

Alloys  of  steel  with  Silver,  Platinum,  Rhodium,  and  A  luminum  have  been 
made  with  a  view  to  imitating  Damascus  steel,  Wootz,  etc.,  and  improving 
fabrication  of  some  finer  kinds  of  surgical  and  other  instruments. 

Properties  0/  Steel— After  being  tempered  it  is  not  easily  broken ;  it  welds 
readily ;  does  not  crack  or  split ;  bears  a  very  high  heat,  and  preserves  the 
capability  of  hardening  after  repeated  working. 

Hardening  and  Tempering. — Upon  these  operations  the  quality  of  manu- 
factured steel  in  a  great  measure  depends. 

Hardening  is  effected  by  heating  steel  to  a  cherry-red,  or  until  scales  of 
oxide  are  loosened  on  surface,  and  plunging  it  into  a  cooling  liquid ;  degree 
of  hardness  depends  upon  heat  and  rapidity  of  cooling.  Ste&I  is  thus  ren- 
dered so  hard  as  to  resist  files,  and  it  becomes  at  same  time  extremely 
brittle.  D^ree  of  heat,  and  temperature  and  nature  of  cooling  medium, 
must  be  chosen  with  reference  to  quality  of  steel  and  purpose  for  which  it 
is  intended.  Cold  water  gives  a  greater  hardness  than  oils  or  like  sub- 
stances, sand,  wet-iron  scales,  or  cinders,  but  an  inferior  degree  of  hardness 
to  that  given  by  acids.  Oil,  tallow,  ^tc.,  prevent  cracks  caused  by  too  rapid 
cooling.    Lower  the  heat  at  which  steel  becomes  hard,  the  better. 

Tempering, — Steel  in  its  hardest  state  being  too  brittle  for  most  purposes, 
the  renuisite  strength  and  elasticity  are  obtained  by  tempering— or  "  letting 
d^wn  the  temper  " — which  is  performed  by  heating  hardened  steel  to  a  certain 
de^ee  and  cooling  it  quickly.  Requisite  heat  is  usually  ascertained  by  color 
which  surface  of  the  steel  assumes  from  fUm  of  oxide  thus  formed.  Degrees 
of  heat  to  which  these  several  colors  correspond  are  as  follows : 

At43o<3,  very  faint  yellow..  (Suitable  for  hard  instruments  ;■  as  hammer •  faces, 

At  450^,  pale  straw  color. . . .  (     drills,  lancets,  razors,  etc. 

At  47o*>,  full  yellow ( For  instruments  requiring  hard  edges  without  elastici- 

At  490°,  brown  color (     ty  ;^as  shears,  scissors,  tumingtools,  penknives,  etc. 

^'«^te  ^^^""^  '^'^*'  ^"""^^^  i^«»"  ^^  f«»"  <^«"'°8  ^««^  »°^  soa  metals;  such  as 
At  M8°i  purple  '.'.'.', !  .'!."!.*!(     P'*°®  ''^°°®'  ^*^^'  J^^'^es,  etc. 

At  550^,  dark  blue (For  tools  requiring  strong  edges  without  extreme 

At  560^,  fkill  blue (     hardness;  as  cold-chisels,  axes,  cutlery,  etc. 

At  600°,  grayish  blue,  verg-  (For  spring- temper,  which  will  bend  before  breaking; 
fog  on  black. t    ^  saws,  sword-blades,  etc. 

If  steel  is  heated  to  a  higher  temperature  than  this,  ^ect  of  the  hardening 
process  is  di*8tr(Hred. 

A  high  breaking  strain  may  not  be  conclusive  as  to  quality,  as  it  may  bo 
due  to  a  hard,  eUstic  metal,  or  a  low  one  may  be  due  to  great  softness. 


644 


METALS. — TIN. — ZIWC. — ^MODELS. 


Case-liardenixis. 

This  operation  consists  in  converting  surface  of  wrought  iron  into  steel, 
by  cementation,  for  purpose  of  adapting  it  to  receive  a  polish  or  to  bear  fric- 
tion, etc. ;  it  is  effected  by  heating  iron  to  a  cherry-red,  in  a  close  vessel,  in 
contact  with  carbonaceous  materials,  and  then  plunging  it  into  cold  water. 
Bones,  leather,  hoofs,  and  horns  of  animals  are  generally  used  for  this  pur- 
pose, after  having  been  burned  or  roasted  so  that  they  can  be  pulverized, 
aoot  is  also  frequently  used. 

The  operation  reduces  strength  of  the  iron. 

TIN. 

Tin  is  more  readily  fused  than  any  other  metal,  and  oxidizes  very  slowly. 
Its  purity  is  tested  by  its  extreme  brittleness  at  high  temperature. 
T%n  plate  is  iron  plate  coated  with  tin. 
Block  Tin  is  tin  plate  with  an  additional  coating  of  tin. 

ZINC. 

Zinc,  if  pure,  is  malleable  at  220° ;  at  higher  temperatures,  such  as  400°, 
it  becomes  brittle.  It  is  readily  acted  upon  by  moist  air,  and  when  a  film 
of  oxide  is  formed,  it  protects  the  surface  from  further  action.  When,  how- 
ever, the  air  is  acid,  as  from  the  sea  or  large  towns,  it  is  readily  oxidized  to 
destruction. 

Iron,  Copper,  Lead,  and  Soot  are  very  destructive  of  it,  in  consequence  of 
the  voltaic  action  generated,  and  it  should  not  be  in  contact  with  calcareous 
water  or  acid  woods. 

The  best  quality,  as  that  known  as  *' Vielle  Montagne,"  is  composed  of  zinc 
.995,  iron  .004,  and  lead  .001.  Its  expansion  and  contraction  by  differences 
of  temperature  is  in  excess  of  that  of  any  other  metaL 


STRENGTH  OF  MODELa 

The  forces  to  which  Models  are  subjected  are^ 

I.  To-draw  thehi  asunder  by  tensile  stress.  2.  To  break  them  by  trans- 
verse stress.    3.  To  crush  them  by  compression. 

The  stress  upon  side  of  a  model  is  to  corresponding  side  of  a  structure  as 
cube  of  its  corresponding  magnitude.  Thus,  if  a  structure  is  six  times  greater 
than  its  model,  the  stress  upon  it  is  as  6^  to  i  =  316  to  i :  but  resistance  of 
rupture  increases  only  as  squares  of  the  corresponding  magnitudes,  or  as 
6'  to  I  =:  36  to  I.  A  structure,  therefore,  will  bear  as  nmch  less  resistance 
than  its  model  as  its  side  is  greater. 

Vo  Coznpu.te   X>ixxien8ioxi8   of  a    Seam,  etc.,  '^vhicfai    a 

Strnottiro   can   "bear. 

Rule. — Divide  greatest  weight  which  the  beam,  etc.  (including  its  weight), 
in  the  model  can  Mar,  by  the  greatest  weight  which  the  structure  is  required 
to  bear  (including  its  weight),  and  quotient,  multiplied  by  length  of  beam, 
etc,  in  model,  will  give  length  of  beam,  etc.,  in  structure. 

EzAXPLS.— A  beam  in  a  model  7  inches  in  length  is  capable  of  bearing  a  weigbl 
of  36  lbs.,  but  it  is  required  to  sustain  only  a  weight  or  stress  of  4  Iba ;  what  ia  tba 
grMrte«t  leofth  that  a  corresponding  beam  can  be  made  in  the  structure? 

«6 -f- 4  =  6. 5,  and  6. 5  X  7  =  45- 5  <««• 


\ 


MODELS. — ^MOTION  OF  BODIES  IN  FLUIDS.         645 

Resistance  in  a  model  to  crushing  increases  directly  as  its  dimensions ; 
but  as  stress  increases  as  cubes  of  dimensions,  a  model  is  stronger  than  the 
structure,  inversely  as  the  squares  of  their  comparative  magnitudes. 

Hence,  greatest  magnitude  of  a  structure  is  ascertained  by  taking  square 
root  of  quottent,  as  obtained  by  preceding  rule,  instead  of  quotient  itself. 

EXAMPUB. — If  greatest  weight  which  a  colamn  in  a  model  can  sustain  is  26  lbs., 
and  it  is  required  to  bear  only  4  lbs. ;  height  of  column  being  18  in&,  what  should 
be  height  of  it  in  structure? 

/(— j  =  V^-s  =  2.55,  and  2.55  X  18  =  45.9  iris.,  height  of  column  in  structure. 

If,  when  length  or  height  and  breadth  are  retained,  and  it  is  required  to 
give  to  the  beam,  etc.,  such  a  thickness  or  depth  that  it  will  not  break  in  con- 
sequenoe  of  its  increased  dimensions. 

Then  /f  —  j  =  y/6.s  —  2.55,  which,  X  square  of  relative  size  of  model  =  thick- 
ness required. 

To   Coxxipiite   Itesietance   or  a   Bridge  fVoxn   a  Alodel. 

n*  W  —  I  —  (n  —  i)  11;   =  load  bridge  wiU  bear  in  its  centre. 

Example.— Tf  length  of  the  platform  of  a  model  between  centres  of  its  repose 
upon  the  piers  is  12  feet,  its  weight  30  lbs.,  and  the  weight  it  will  just  sustain  at  its 
centre  350  lb&,  the  comparative  magnitudes  of  model  and  bridge  as  20,  and  actual 
length  of  bridge  240  feet;  what  weight  will  bridge  sustain  ? 

ao*X35o—  I  —  X(20— i)  Xsol  =:  140000  — 3800  X  30=26000/6*. 


MOTION  OF  BODIES  IN  FLUIDS. 

If  a  body  move  through  a  fluid  at  rest,  or  fluid  move  against  body  at 
rest,  resistance  of  fluid  against  body  is  as  square  of  velocity  and  density 
of  fluid ;  that  is,  R  =  c?  v^.  For  resistance  is  as  quantity  of  matter  or 
particles  struck,  and  velocity  with  wbAch  they  are  struck.  But  quan- 
tity or  number  of  particles  struck  in  any  time  are  as  velocity  and  density 
of  fluid;  therefore,  resistance  of  a  fluid  is  as  density  and  square  of 
velocity. 

o'  a  d  v^ 

— =  A,  and =  R.    h  ratresenting  height  due  to  velocity ,  d  density  ofjlwd, 

3  g  ^  g 

and  R  resistance  or  motive  force. 

Resistance  to  a  plane  is  as  plane  is  greater  or  less,  and  therefore  resistance 
to  a  plane  is  as  its  area,  density  of  medium,  and  square  of  velocity;  that  is. 

Motion  is  not  perpendicidar,  but  oblique,  to  plane  or  to  face  of  body  in  any 
angle,  sine  of  which  is  »  to  radius  i ;  then  resistance  to  plane,  or  force  of 
fluid  against  plane,  in  direction  of  motion,  will  be  diminished  in  triplicate 
ratio  of  radius  to  sine  of  angle  of  inclination,  or  in  ratio  of  i  to  s\ 

Hence, =  R,  and =  F.    to  representing  weight  of  body,  and  F 

39  2  gto 

retarding  force. 

Progression  of  a  solid  floating  body,  as  a  boat  in  a  channel  of  still  water, 
gives  rise  to  a  displacement  of  water  surface,  which  advances  with  an  un- 
dnlation  in  direction  of  body,  and  this  undulation  is  termed  Wave  of  Di9- 
pkuxmerU. 


646 


MOTION  OF  BOPIBS  IN  FLtJlDS. 


Resistance  of  a  fluid  to  progression  of  a  floating  body  increases  as  velocity 
of  body  attains  velocity  of  wave  of  displacement,  and  it  is  greatest  when  the 
two  velocitie:)  are  equal. 

In  the  motion  of  elastic  fluids,  it  appears  from  experiments  that  oblique 
action  produces  nearly  same  effect  as  in  motion  of  water,  in  the  passage  of 
curvatures,  apertures,  etc. 

H.e8i'stanoe  to  an  A.rea  of*  One  SqL.  Foot  moving  tlirougli 

AVater,  or   Contrari-w-ise. 


Angle  of 
Snrface 

with 
PiaDe  of 
Current. 

o 
6 
8 

9 

lO 

'5 

20 

25 
30 

35 
40 


Drtuurf  ptr  8q.  Fbat  for  feOoteing  Vt- 
ioeittet  per  Ifhtd  per  MintUe. 


X20 

.09 

133 
.156 
.179 

•355 
608 

94 

I  353 
1.798 

2258 


\r  aq.  pw*  jar  jouawvn 
I  per  that  per  MintUe. 

040  480 


Uw. 
•359 

53 
624 

.718 

X42 

2.434 
376 

5  4'3 
7.192 
9032 


Lb*. 

1-435 
a.  122 

2.496 

2.87 

5.678 

9-734 
15038 
21.653 
28.766 
36.13 


900 


Um. 

5.046 

7-459 

8.775 

10.091 

19.963 

34. 222 

52.869 

76.123 

101.132 

127.018 


Angle  of 
Snrface 

with 
Plane  of 

Current. 


45 
50 

55 
60 

6S 
70 

75 
80 

85 
90 


iVetntr*  jper  Sq.  Font  far  foJlotring 
loeittee  per  Foot  per  MtniUe. 

120  240  480      !      ge 


re- 


Lbs. 
2.66 
2.995 

3249 
3-455 
3-607 
3.728 
3.81 

3-857 
3.892 

3-9 


Lbe. 
ia639 
11.981 

12-995 
13.822 

1443 
14.914 

15-241 
15.428 

15-569 
15-6 


480      !      goo 

LtM. 

42-  557 
47923 

51  979 

55286 

57-72 

59-654 

60.965 

61.714 

62.275 

62.4 


Lbs 
149.614 
168.48 
182.739 
194.366 
202.922 
209.722 
214.329 
216.926 
218.936 
219.375 


Resistance  to  a  plane,  from  a  fluid  acting  in  a  direction  perpendicular  to 
its  face,  is  equal  to  weight  of  a  column  of  fluid,  base  of  which  is  plane  and 
altitude  equal  to  that  which  is  due  to  velocity  of  the  motion,  or  through 
which  a  heavy  body  must  fall  to  acquire  that  velocity. 

Resistance  to  a  plane  running  through  a  fluid  is  same  as  force  of  fluid  in 
motion  with  same  velocity  on  plane  at  rest.  But  force  of  fluid  in  motion  is 
equal  to  weight  or  pressure  which  generates  that  motion,  and  this  is  equal  to 
weight  or  pressure  of  a  column  of  fluid,  base  of  which  is  area  of  the  plane, 
and  its  altitude  that  which  is  due  to  velocitv. 

» 

Illustration. — If  a  plane  i  foot  square  be  moved  through  water  at  rate  of  32. 166 

feet  per  second,  then  ^ ^  16.083.  space  a  body  would  require  to  fall  to  acquire 

64. 333 

a  velocity  of  32.166  feet  per  second;  therefore  i  x  62.5  (weight  of  a  cube  foot  ot 

32. 166' 
water)  x =  1005  Ibt.  •=  retittance  of  plane. 

64-333 

Resistance  of  different  ITii^-ures  at  different  "V^elocities  in 

A.ir. 


Veloci- 
ty per 
Second. 

Feet. 

3 

4 
5 
8 

9 
10 


Cone. 

Sph«K. 

Cylln- 
■  aer. 

~  0«'. 

Hemi- 
■pbere. 
Round-. 

Oi. 

Veloci- 
ty per 

Cone. 

Bjken. 

Cvlin- 
der. 

Vertex. 

Base. 

Second. 

Vertex. 

Bum. 

o«. 

o«. 

Os. 

Feet. 

Oi. 

0*. 

(H. 

Oi. 

.028 

.064 

.027 

•05 

.02 

12 

-376 

.85 

•37 

.826 

.048 

.109 

.047 

.09 

039 

14 

.512 

1. 166 

•505 

I-M5 

.071 

.162 

.068 

•M3 

.063 

»5 

.589 

1-346 

.581 

1.327 

.168 

.382 

162 

.36 

.16 

16 

673 

1-546 

.663 

1.526 

.211 

.478 

.205 

456 

.199 

18 

.858 

2.002 

.848 

1.986  . 

26 

-5«7 

255 

-565 

.242 

20 

1.069 

2-54 

1.057 

2.528 

Hemi. 
•phere 
Roand. 


Ob. 

•347 

47a 
552 

634 
818 
033 


Diameter  of  all  the  figures  was  6.375  ins.,  and  altitude  of  the  cone  6.625  iQB. 
Angle  of  side  of  cone  and  its  axis  is,  consequently,  25°  42'  nearly. 

From  the  above,  several  practical  inferences  may  be  drawn. 

'  That  resistance  is  nearly  as  sur&ce,  increasing  but  a  very  littla  «bov« 
proportion  in  greater  surfaces. 


MOTION   OF   BODIES   IN   FLUIDS.  647 

s.  Resistance  to  same  surface  is  nearly  as  square  of  velocity,  bat  gradu* 
ally  increasing  more  and  more  above  that  proportion  as  velocity  increases. 

.  3.  When  after  parts  of  bodies  are  of  different  forms,  resistances  are  differ- 
ent, though  fore  parts  be  alike. 

4.  The  resistance  on  base*  of  a  cone  is  to  that  on  vertex  nearly  as  2.3  to 
I.  And  in  same  ratio  is  radius  to  sine  of  angle  of  inclination  of  side  of  cone 
to  its  path  or  axis.  So  that,  in  ttiis  instance,  resistance  is  directly  as  sine 
of  angle  of  incidence,  transverse  section  being  same,  instead  of  square  of  sine. 

Resistance  on  base  of  a  hemisphere  is  to  that  on  convex  side  nearly  as 
2.4  to  I,,  instead  of  2  to  i,  as  theory  assigns  the  pro^wrtion. 

Sphere. — Resistance  to  a  sphere  moving  through  a  fluid  is  but  half  re- 
sistance to  its  great  circle,  or  to  end  of  a  cylinder  of  same  diameter,  moving 
with  an  equal  velocity,  being  half  of  that  of  a  cylinder  of  same  diameter. 

2gx-  dx =  V.    d  representing  diameter  of  gphere^ and  N  and  n  ipe- 

ei^  gravities  0/  sphere  omd  retisting  fluid. 

—  X  -  <2  =  S.    S  representing  space  through  which  a  sphere  passes  while  acquir- 
n       3  .  * 

ing  its  mtxximum  velocity,  in  falling  trough  a  resisting  fluid. 

Illustration. — If  a  ball  of  lead  i  inch  in  diameter,  B|)eciflc  gravity  11.33,  ^  set 
free  in  water,  specific  gravity  i,  what  is  greatest  velocity  it  will  attain  in  descend- 
ing, and  what  space  wUl  it  describe  in  attaining  this  velocity  f 

^  =  32.166,        d  =  — fbot,        N  =  11.33,  *>id  n=st. 


y. 


Then 


/  ~      4    Ti      11.33  —  X       , 

^aX32i66X^of-X— ^^     =  V7. 148  X  la  33  = 


Hence,  ^^^  x  —  of  —  =  1.259  feet         q    vt  ,=/=  retardive force  = 


3       12  '  SgHd  "^  3gs 

n  a  v^  n  a  v^ 

Cylinder.    =  R,  and  =/    a  representing  area  or  p  r^.  and 

^g  '  igw      "^  "^  "  ^     * 

w  weight  of  body. 
Illdstratiox. — Assume  a  =  3?  sq.  feet,  v  =  10  feet  per  second,  and  n  =  .0013. 

Tben*^ 2~^ =  .06  of  a  cube  foot  of  water  =  .06  of  62.5  =  3.75  lbs. 

64.33 

^       .      ,  ^    ^.  notes'      _     ,      npd^v^s'      _        .  npd'v^s^ 

Conical  Surface.     =  R,  also  — ^— =  R,  and  -^ 

2  g  Sg  Sgw 

sssf.    s  representing  sine  of  inclination,  and  a  convex  surface  of  cone. 

pnv^  d' 
Ciiirved  Snd  as  a  Sphere  or  Henaisplierioal  Sud.    =- — - — — 

16  y 

=  R,  and  Circle  .5  of  spherical  end. 

In  general,  when  n  is  to  water  as  a  standard,  result  is  in  cube  feet  of  water,  if 
a  is  in  sq.  feet;  and  in  cube  in&  of  water,  if  a  is  in  sq.  ins.,  v  in  ins.,  and  g  in  ins. 

Iff!  is  given  in  lb&  in  a  cube  foot,  a  is  in  sq.  feet,  v  and  g  are  in  feet,  result  is  in  lb& 

To  Compute  A.ltitnde  of  a  Column  of  Air,  I*ress-ure  of 
vtrlxiolx  slxall  l>e  eq.ual  to  Resistance  of  a  Sody  moving 
througb,   it,  with,   any  Velocity. 

■f-  X  —  =  »  =  aUituie infect    ax  —  vchtme ofaUumn infect, and  —  a »  =  toeight 
o       a  5 

in  ounces,  a  representing  area  ofseUion  of  body,  similar  to  any  in  table,  perpen- 
dicular to  direction  of  motion,  r  resistance  to  velocity  in  table,  and  x  altitude  sought 
4ffa  column  of  air,  base  of  which  is  a,  and  pressure  r. 

*  Tklf  to  n  rafuUtion  of  th«  popalar  MMdion  tbnt  a  Uper  tf*r  mb  b«  tow«d  in  w«Wr  vailMt  wbw 
1^9  b«M  la  forftmoct. 


648  MOTION    OF   BODIES   IN   FLUIDS. 

3  IK 

When  a  =  —  of  a  foot,  as  in  all  figures  in  table,  x  becomes  ~  r  when  r^re^ 

9  4 

tistance  in  table  to  similar  body.  ^ 

Illustration.— Assume  convex  face  of  hemisphere  resistance  =  .634  oz.  at  a  Te- 
locity of  16  feet  per  second. 

Then  r  =  .634,  and  aj  =  —  r  =  2. 3775  feet  =  altitude  0/ column  of  air ^  pressure  oj 

4 
which  =  resistance  to  a  spherical  surface  at  a  velocity  of  16  feet. 

Xo  CJotnpute  -wheii  Pressure  of  Air  in  rear  of  a  I*rojeotile 

is  Inferior  to  i*ressvire  due  to  its  "Velocity, 

Assume  height  of  barometer  =  2. 5  feet,  and  weight  of  atmosphere  =  14.7  lb& 

Weight  of  cube  inch  of  mercury  =  -^^  =  .49  lbs.,  and  weight  of  cube  inch  of  air 

30 
=  .000043  57  1^'  >  hence,  .49  -^  .000043  57  =  "  246,  which  X  2.5  feet  =  28 115  feet 

Then  y/i6.d&  :  V28 115  ::  32.16  :  x,  andx=:^^^^ —  \     "^  =  1^^1.6  feet. 

Xo  Compute  "Velocity  witli  whioU  a  Plane  Surface  must 
"be  projected  to  g;enerate  a  H^esistance  Just  eq.ual  t;o 
Pressure   of  A-tmospliere   upon   it. 

By  table,  resistance  on  a  circle  with  an  area  of  .222  sq.  foot  (2 -7-9)  =  .051  oz.,  at  a 
velocity  of  3  feet  per  second.     Hence  3^  :  i*  : :  .051  :  .0056  oz.  at  a  velocity  of  i  foot, 

and  I X  144X 14-7 X  i6x 2-^9=  7526.4  oz.  Hence,  v^.c»56  :  ■y/7526.4  ::  i  :  1160  feet. 

To   Compute   Velocity   lost  "by   a  Projectile. 

If  a  body  is  projected  with  any  velocity  in  a  medium  of  same  density  with  itself, 
and  it  describes  a  space  =  3  of  its  diameters, 

Then  x  =  -id,  and  b  =r  — —  r=  — . 

'  Q  C**~"'         2.08 

Hence,  6  «  =  -|- ,  and  — r —  =  -^—-  =  velocity  lost  nearly  .66  ofproffctile  velocity. 

c  =  base  of  Nap.  system  of  log. ;  hence  c&»  =  number  corresponding  to  Nap.  log. 
b  X.    Hence,  if  6  x  x  -43^3)  result  =  com.  log.  of  c&«. 

b  X  =1  =  1. 125,  which  X  -4343  =  -488  587  5,  and  namber  to  thiscom.  log.= 3.0803. 

8 

_  ,     .X     1     »   '    30803  —  I       2.08 

Hence,  velocity  lost  = ^ =  — - . 

3.0803         3.08 

Illustration. — If  an  iron  ball  2  ins.  diam.  were  projected  with  a  velocity  of  1200 
f«etper  second,  what  would  be  velocity  lost  aftor  moving  through  500  feet  of  space? 

d  =  —  =  -  ,    aj  =  5oo,    N  =  7l,    and  n  =  . 0012. 
12       6  ^    '  '¥' 

„  .  3«*       3X12X500X3X6       8i  .  1200  „  -   , 

Hence,  6 aj  =  |^  r  =  — r— — ^ =  — ,  and  v  =  -— -  =  998 /ee/ per 

'  8Na  8  X  21X10000  440  c  81        J^  -^       «' 

second,  having  lost  202  feet,  or  nearly  —  of  its  initial  velocity. 

13  3  6  22  .    1 

=  .0012,  —  and  —  =  —  and  — •  inverted,  b«c«nM  N  and  «  are  in  denominator. 


xoooo  33         •        3  6 

To  Compute   Time   and.  "Velocity. 

T-  (-•  —  —  J  =  '*'^*i     ?Tr3=  ^  ^^^  -r-  =  *• 
b  \v       a)  '     8  N  d  c6«    . 

Illustration.— If  an  iron  ball  2  ins.  in  diameter  were  projected  in  air  with  a  ve- 
locity of  1200  feet  per  second,  in  what  time  would  it  pass  over  1500  feet,  and  what 
its  velocity  at  end  of  that  time? 

.       3X12X3X6         X      ^j.         1500     ,  I       2716       I         1 

b  = =  — 2 »  *nd  6  as  =   ^  ,  :  hence  —  =  — —  ;   —  = .  and 

8x22X10000      2716'  2716'  b         I     '    a       1200 

I       cf>»      1.7372        I  ,  ,  ^  ,  ,/i  l\ 

=  —  =  =  2 —  nearlv.     :.  t>  =  6qo  and  <=27i6  x  1 7 1  =  1.67 

a         I200       600  ^690      xaoo/  ' 


NAVAL   ARCHITECTUBE. 


649 


NAVAL  ARCHITECTURE. 

I^esults  of*  Experiments   upon  f  onxL  o£  "Vessels. 

{Wm.  Bland.) 

Cu'bical  ACodele.    Head  RemiManee. — Increases  directly  with  area 
of  its  surface.      WeigJU  Resistance. — Increases  direct!}'  as  weight. 

'Vessels'  Alodels.  Lateral  Resistance.  —  About  one  twelfth  of 
length  of  body  immersed,  varying  with  speed. 

(h'der  of  Superiority  of  Amidship  Section, — Rectangle,  Semicircular, 
Ellipse,  and  Triangle. 

Centre  of  lateral  resistance  moves  forward  as  model  progresses. 

Centre  of  gravity  has  no  influence  upon  centre  of  lateral  resistance. 

lielative    Speeds. 

Length. — Increased  length  gives  increased  speed  or  less  resistance. 

Depth  of  Flotation, — Less  depth  of  immersiun  of  a  vessel,  less  the  resistance. 

A  midship  Section, — Curved  sections  give  higher  speed  than  angled. 

Sides. — Slight  horizontal  curves  present  less  resistance  than  ri^^ht  lines. 
Curved  sides  with  one  fourth  more  beam  give  equal  speeds  with  straight 
sides  of  less  beam.  Keel, — Length  of  keel  has  greater  effect  than  depth. 
Stem, — Farallel-sided  after  bodies  give  greater  speed  than  taj^er-sided. 

0r4«r  of  Speed. 


Form  or  Bow. 


I 
2 


Isosceles  triangle^  sides  slightly  convex 

"  "  "     right  lines , 

'*             *'           "     slightly  concave  at  entrance  and'  running) 
oat  convex ) 

Spherical  eqmkUertd  triangle  compared  to  Equilateral  triangle^  speed  is 
as  1 1  to  12.  EquUaieral  triangle,  with  its  isosceles  sides  bevellal  off  at  an 
angle  of  45°,  compared  to  bow  with  vertical  sides,  is  as  5  to  4. 

When  bow  has  an  angle  of  14^  with  plane  of  keel,  compared  with  one  of 
7°,  its  speed  is  greater. 

Bodies  Inclined  Ufmards  from  Amidship  Section, 

I.  Model  with  bow  inclined  from  !St  has  less  resistance  than  model  with- 
out any  inclination. 

a.  Model  with  stem  inclined  from  iS,  has  less  resistance  than  model  with- 
out any  inclination. 

Model  I  had  less  resistance  than  model  3.  Model  with  both  bow  and 
stem  inclined  from  iS,  has  less  resistance  tlian  either  i  or  3. 

Stability. 

He«»ults  of  Kxperixnents  upon  Sta'bility  of*  Reotansvilar 
Blocks  of*  Wood  of  XJniforiu  Hiengtli  and  I>epth,  "bxit 
of  X>ifieren.t   Breadths.    {Wm.  Bland.) 

Length  15,  Dq^  2,  and  Depression  i  inch, 

lUkio  of  Stability. 


Width. 

Wetgfai. 

A«  ObMrved. 

With  nice 
Wtighu. 

By  Squares  of 
Breadth. 

By  Cabes  of 
Breadth. 

In*. 

Oi. 

3 

34 

I 

I 

z 

I 

15 

35 

a- 5 

24 

2- 25 

V" 

6 

45 

7 

3-7 

4 

7 

55 

XI 

4.8 

6.25 

15625 

3l 


650 


NAVAL  ABGHITJEGTURB. 


Hence  it  appears  that  rectangular  and  bomogei\eou8  bodies  of  a  uniform 
length,  depth,  weight,  and  immersion  in  a  fluid,  but  of  different  breadths,  have 
stability  tor  uniform  depressions  at  their  sides  (heeling)  nearly  as  aquartt 
of  their  breadth ;  and  that,  when  weights  are  directly  as  their  breadths, 
their  stability  under  like  circumstances  is  nearly  as  cubes  of  their  breadth. 

With  equal  lengths,  ratio  of  stability  is  at  its  limit  of  rapid  increase  when 
width  is  one  third  of  len^h,  being  nearly  in  cube  ratio ;  aft^wards  it  ap- 
proaches  to  arithmetic  ratio. 

Results  of*  Ifixperiments  upon  Stalsility^  and  Speed  of 
]Nd[odel8  Yiarvitxss  A-xnidsliip  Sections  ordifierent  WoTixxet^ 
"but  XJniibrm  JJengtli,  Bread  til,  and  TVeifflits.    {W.Bland.) 

Immersion  different^  depending  upon  Form  of  Section. 


Form  oV  Immbkbbd  Sbction. 


Half-depth  triangle,  other  half  rectangle 

Rectangle. 

Right-angled  triangle  * 

Semicircle 


13 

«4 
7 
9 
*  Dnnf  ht  of  water  or  ImoMriion  dovble  thai  of  rMtaogle. 


Stability. 


Speed. 


4 
3 

3 

a 


Statical  Stability  is  moment  of  force  which  a  body  in  flotation  exerts  to 
attain  its  normal  position  or  that  of  equilibrium,  it  having  been  deflected 
from  it,  aud  it  is  equal  to  product  of  weight  of  fluid  displaced  and  horizontal 
distances  between  the  two  centres  of  gravity  of  body  and  of  displacement,  or 
it  is  product  of  weight  of  displacement,  height  of  Meta-centre^  and  Sine  of 
angle  of  inclination. 

Dynamical  Stability  is  amount  of  mechanical  work  necessary  to  deflect  a 
body  in  flotation  from  its  normal  position  or  tliat  of  equilibrium,  and  it  is 
equal  to  product  of  sum  of  vertical  distances  through  which  centre  of  grav- 
ity of  body  ascends  and  centre  of  buoyancy  descends,  in  moving  from  ver- 
tical to  inclined  position  by  weight  of  body  or  displacement 

To  IDeterziiine  ^Ceasure  of  Sta1:>ilit3r  of*  Hull  of*  a  Vessel 

or   Floating   Body.— ITigj.  1. 

MMisure  of  stability  of  a  floating  body  depends  essentially  upon  horizontal  dis- 

tance,  6«,  of  meta-ceutre  of  body  from  centre 

*^'8-  '•  /         P  of  gravity  of  body ;  and  it  is  product  of  force 

M  /'.'.':-::j(||fc  -^         of  the  water,  or  resistance  to  displacement  of 

I         ■'~~-~-jL^  ^^  *'»  acting  upward,  and  distance  of  6  «,  or  P  x 

...        /  l\  {-^^  G  8.     If  distanced  M,  represented  by  r,  and 

e   "'""r~-|--       o    \        »*!    7      f  angle  of  rolling,  c  M  r,  by  M<>,  measure  of  sta- 

B^7 —     ""7 '!--.. — ;  ^l'>vy-'    bility,  or  S  is  determined  by  P r,  sin.  M®  =  S ; 

W^  I  el  'f   '  '^'T"-'-     **^^  *'**'®  '"^  therefore  greater,  the  greater  the 

/  Q  r'-t'         '  /        'i    weight  of  body,  the  greater  distance  of  mefa- 

V r"*'*  /  cen<r«  fh)m  centre  of  gravity  of  body,  and  the 

^— ---...._  J  greater  the  angle  of  inclination  of  this  or  of 

Assume  figure  to  represent  transverse  section  of  hull  of  a  vessel,  6  centre  of 
gravity  of  hull,  w  I  water-line,  and  c  centre  of  buoyancy  or  of  displacement  of  im- 
mersed hull  in  position  of  equilibrium.  Conceive  vessel  to  be  heeled  or  inclined 
over,  so  that  «/ becomes  water-line,  and  s  centre  of  buoyancy;  produce  s  M,  and 
point  M  is  m^tc^^erUre  of  hull  of  vessel. 

TntmverM  mtla-eetUrt  depends  upon  poeition  of  centre  of  boofucy,  for  it  U  that  point  wkere  « 
▼ertical  line  drawn  from  centre  interaecte  •  line  paesing  throagh  centre  of  graTity  of  null  of  Teaaa) 
perpendicular  to  plane  of  keel. 

Point  of  mMa-eentrt  may  be  the  aame,  or  it  may  differ  slifrht^y  for  different  anelee  of  heeliufr.  Angle 
of  direction  adopted  to  ascertain  poeition  of  nuta-etntre  should  be  greatest  which,  under  ordinary  cir- 
enmetancee,  ie  or  probable  occurrence ;  in  different  vessels  this  angle  ranges  from  ao*  to  6o*. 

If  mHa-et»tr€  is  above  centre  of  gravity,  eqoillhriam  (s  Stable )  if  It  oolnddM  with  it,  eqaiiibriam  k 
ifferent;  and  if  it  ie  below  it,  eqaUibrinm  is  Unstable. 


iiAVAL  ABCHITECTUBE.  65  I 

Comparative  SLabUily  of  difl'erent  hulls  of  vessels  is  proportionate  to  the  distauce 
of  6  M  for  same  angles  of  heeling,  or  of  distance  G  s.    Oscillations  of  hull  of  a  ves 
sel  may  be  resolved  into  a  rolling  about  its  longitudinal  axis,  pitching  about  its 
transverse  axis,  and  vertical  pitching,  consisting  in  rising  and  sinking  below  and 
above  position  of  equilibrium. 

If  transverse  section  of  hull  of  a  vessel  is  such  that,  when  vessel  heels,  level  of 
centre  of  gravity  is  not  altered,  then  its  rolling  will  be  about  a  permanent  longi- 
tudinal axis  traversing  its  centre  of  gravity,  and  it  will  not  be  acuompunied  by  any 
vertical  oscillations  or  pitchings,  and  moment  of  its  inertia  will  be  constant  while 
it  rolls.  But  if,  when  hull  heels,  level  of  its  centre  of  gravity  is  altered,  then  axis 
about  which  it  rolls  becomes  an  instantaneous  one,  and  moment  of  its  inertia  will 
vary  as  it  rolls;  and  rolling  uiust  then  necessarily  be  accompanied  by  vertical  os- 
cillations. 

Such  oscillations  tend  to  strain  a  vessel  and  her  spars,  and  it  is  desirable,  therefore, 
that  transverse  section  of  hull  should  be  such  that  centre  of  its  gravity  should  not 
alter  as  it  rolls,  a  condition  which  is  always  secured  if  all  water-lines,  as  ti;  ^  and  ef. 
are  tiingents  to  a  common  sphere  described  about  G;  or,  in  other  words,  if  point  of 
their  intersections,  o,  wiih  vertical  plaue  of  keel,  is  always  equidistant  u'om  centre 
of  gravity  of  hull. 

To   Cotnpxite    Statical    Stability;. 

D  c  M  sin.  M  =  S.  D  representing  displacement,  M  angle  of  inclination,  and  S 
stability. 

Illustration  l— Assume  a  ship  weighing  6000  tons  is  heeled  to  an  angle  of  gO, 
dist:incr  c  M  =  3  feet, 

Sin.  90  =  1564.    Then  6000  x  3  X  1564  =  28152  foot-tons. 

2— Weight  of  a  floating  body  is  5515  lbs.,  distance  between  its  centre  of  gravity 
and  meta-centre  is  n.32  feet,  and  angle  M  =  20^ 

Sin.  M  =  .34202.     Hence  5515  x  1132  x  34202  =  21  352.24/oo<-i6«. 

Statical    Surface    Stability. 

Moment  of  Statical  surface  stability  at  any  angle  is  c  zD.  Assuming 
centre  of  gravitv  of  vessel  coincided  with  c;  coefficient  of  a  vessel's  stability 
at  any  angle  of  heel  is  expressed  when  the  displacement  is  multiplied  by 
vertical  height  of  the  meta-^entre  for  given  angle  of  heel  above  centre  of 
gravity,  or  U  c  M. 

Approximately.  Rule.— Divide  moment  of  inertia  of  plane  of  flotation 
for  upright  position,  relatively  to  middk  line  bv  volume  of  displacement; 
and  quotient  multiplied  by  sine  of  angle  of  heel  will  give  result. 

Per  Foot  of  Length  of  Vessel,  |  (B3  sin.  M).    B  representing  half  breadth. 

Dynamical    Surface   Stability. 
Moment  of  Dynamical  surface  stability  is  expressed  bv  product  of  weight 
of  vessel  or  displacement  and  depression  of  centre  of  buoyancy  during  the 
mclmation,  that  is,  for  angle  M.  j      j  & 

Tto   Compute   Dynamical    Stability  of  a  Vessel. 
Approximately.    Rule.— Multiply  displacement  by  height  of  meta-centre 
above  centre  of  gravity,  and  product  by  versed  sine  of  angle  of  heel. 

Or  multiply  statical  stability  for  given  angle  by  tangent  of  .5  angle  of  heel. 

To  Compute  Slements  of  Stability  of  a  Floating  Body. 

A^      __  c  g 

A  *~*'  Bin.  li  " *^'  sin.  M~^'  *°**  ®*°*  *^ '"  =  <'•  ^  representing  area  of 
SSIfl!^  ««c«M)n;  A'  section  immersed  by  careening  of  body,  asfol;s  horizontal 
autance,  er,  Mween  centres  of  buoyancy  ;  a  horitonUd  distance  between  centres  of 
^^iJ'XfiL^'^'^^  twm«r»ed  and  emerged  by  careening;  g  distance,  c  M.  between 
c^ire  of  bwyancy  or  of  water  displaced  and  meta-centre  ;  r  distance,  G  M,  bet%»een 
centre  of  gramty  and  meta  centre;  c  horizontal  distance,  G  s,  between  centre  of  grav- 
ity ana  oflxne  of  displacement  of  it  when  careened ;  e  vertical  distance  between  centres 
qf^rw/Uy  and  buoyancy,  all  in  feet ;  and  M  angU  of  careening. 


652  NAVAL   ABCHITECTURE. 

NoTB.~When  centre  of  gravity,  G,  is  belo^r  tbat  of  displacement,  c,  then  e  Is  -f-; 
when  it  is  above  c  it  is  — ;  and  when  it  coincides  with  c  it  is  o;  or  e  is  —  when 

-    <  s;  and  a  kxKiy  will  roll  over  when  e  sin.  M  =  or  >«. 

Assamed  elements  of  figure  illustrated  are  A  =  86,  A'  =:  21. 5, 6  =  21. 5,  and  c  =: .  5. 

The  deduced  arc  <  =  3.7,  0  =  3.87,  ^=10.82,  0=14.9,  and  r^  11.32.  b  repre- 
senting breoiUlt  at  wattr-line  or  team  in/eUy  and  P  weight  or  dvg^lacement  in  lbs, 
or  tuns. 

Then*  =  ^-X  i4'9  =  3-7/««^    r  =  -^^-^=:  11.32 /««<,    e^r—g^  g=    ^'^ 


86  ^  .34202  .34202 

=  10. 82  feetf    c  = .  342  02  X  1 1 .  32  =  3-  87  faet. 

Of  HuU  qf  a  VesseL      ( —  ,^'  -^-r  ±  e\  P,  sin.  M  =  S ;  <Z  cob.  .5  M  =  d', 

\io.7toi3*A        / 

— r-r  =  9y     — ^j(^  — «W±«;         P  (^^  +  «6in."M)  =  S;    and 

10.7  to  13 (1 1.93) A      *"     sin.  MVp       /  \^  / 

P  (»  dr  «  sin.  M)  =  S.    d  representing  depUi  of  centre  of  gravity  of  displacement  wi- 
der voaier  in  equilibrium^  and  d'  depth  when  out  of  equUit/riuniy  both  in  feet 

Illustration  i Displacement  of  a  vessel  Is  looooopo  lbs. ;  breadth  of  beam,  50 

feet;  area  of  immersed  section,  800  sq.  feet;  vertical  distance  from  centre  of  grav 
ity  of  bull  up  to  centre  of  buoyancy  or  displacement,  i.o  feet,  nnd  horizontal  dis- 
tance a  between  centres  of  gravity  of  ureas  immersed  and  emei^ed,  when  careened 
to  un  angle  of  9*^  10'  =  33.4  feet,  immersed  area  being  50  sq.  I'ueL 

Sin.  90  10'  =  1593.    Then  s  =  ^  x  33-4  =  20875  feet,  800  X  2.0875  :=  50  X  33-4. 

000 

r  =  ^9_  ^      j-ggf       g  ^ 50^         =  ,3. 1  feet,      S  =  ( ^°'  ,    )  -f  1.9  x 

.1593  11.93X800         ^     ''     '  \ii.93X8oo/^     ^ '^ 

loooooooX  1593  =  23905396  '^*-j  and  «  = (     ■^— 2.0875)  =  \.Q  feeL 

^  .1593X10000000  / 

2.— Assume  a  ship  having  a  displacement  of  5000  tons,  nnd  a  height  of  me/a-c<^(re 
of  3.25  feet,  to  be  careened  to  6°  12'.     What  is  her  statical  stability? 

Sin.  60  12'=. 1079.     Then  5000  X  3.25  X  .1079=  1753.37/oof-tofM. 

3. — Assume  a  weight,  W,  of  50  tons  to  be  placed  upon  her  spar  deck,  having  a 
common  centre  of  gravity  of  15  feet  above  her  load-line, 


Then  5000  X  3  25  —  50  + 15  X  .  1079  =  1747. 36/00/  f on*. 

4.  — Assume  100  tons  of  water  ballast  to  be  admitted  to  her  tanks  at  a  common 
centre  of  gravity  of  15  feet  below  her  load-line. 


Then  5000  x  3. 25 -f  100  x  15  X  .1079=  \^\i.'x^  fooiUms. 
5.— Assume  her  masts,  weighing  6  tons,  to  be  cut  down  20  feet, 

Then  ^ =  —  foot  =/a/i  of  centre  of  gravity,  and  5000  x  (3-  25  H — )  X  .  1079 

=  1774.95  tons. 

1?o    Compute    Klements    or  Po-^ver,   etc.,   req.uire<l    to 
«  Careen    a   Body   or   Vessel. 

— ft5  /  P 

Sin.  M  (A  — n  sin.  M)  -fn  sec.  M  —  »  —  Z.     -—  3/_ __ _  =  in. 

io.7toi3*AV  64.125  Ij  A 

W  Z  r  :=  P  c,  and  W  Z  =  S.  W  representing  weight  or  power  exerted  and  I  distance 
at  which  weight  or  power  acts  to  careet^  body,  taken  from  centre  of  gravity  of  displace- 
ment perpendicular  to  careening  force,  h  vertical  height  from  centre  of  gravity  nfdiM- 
plaeement  to  centre  of  weight  or  power  to  careen  body  when  it  is  in  equilibrimtn. 
n  horigontal  distance  from  centre  of  vessel  to  centre  of  weight  or  power,  L  ZenptA  of 
vessel,  m  metacentre,  and  S  cu  tn  preceding  case,  ail  in  feet. 


*  Unit  for  aection  of  a  parallelofcnun  la  10.7 ;  of  a  Mmicircle  la,  aod  of  a  triangl*  taJB. 


NAVAL   AKCHITECTUEE.  653 

Illustration. — A  weight  is  placed  upon  deck  of  a  vessel  at  a  mean  height  of  3.87 
feet  from  centre  line  of  hull;  height  at  which  it  is  placed  is  xi.32,  and  other  ele- 
ments as  in  first  case  given. 

Sec.  20°  =  . 342.      ThenA  =  ii.32,  »  — 3.87,  and  /  =  .342  (n. 3  — 3.87  X  •342)  + 


3.87  X  1.0642  —  3.7  =  .342  X  10-I-4.12  — 3.7  =  3.84/ce<. 

Assume  W  =  5515.    Then  5515  x  3-84  =  21  iSy. 6  foot-lbs. 

Or  P  (10  C0&  M  -f  A  sin.  M)  =1 S.  10  repreMenting  distance  of  yaeighi  frvm  centre  of 
vcskL,  and  h  height  ofvo  above  water-line^  both  infeeL 

iLLUSTKATioff.— If  a  Weight  of  30  tons  placed  at  20  feet  from  centre  of  hull  or 
deck,  10  feet  above  water-line,  oareens  it  to  an  angle  of  2°  9',  what  is  its  stability  ? 

cos.  2°  9'  =  .9993 ;  sin.  2°  9'  =  .0375. 
30  (20  X  .9993  + 10  X  .0375)  =  30  X  aa  361  =  610. 83  foot-  tons. 

Bottom  and  Iizizziersed  Surface  of  Hull  of  Vessels. 
To  Conopxite  Bottom  and  Side  Surface  of  Hull. 
Bottom  and  Side,  Rule.— Multiply  length  of  curve  of  amidship  section, 
taken  from  top  of  tonna^  or  main  deck  b^nis  upon  one  side  to  same  point 
upon  other  (omitting  width  of  keel),  by  mean  of  len^^ths  of  keel  and  be- 
tween perpendiculars  in  feet,  multiply  product  by  .85  or  .9  (according  to  the 
capacity  of  vessel),  and  product  will  give  surface  recjuired  in  sq.  feet. 

Example.— I<engths  of  a  steamer  are  as  follows:  keel  201  feet,  and  between  per- 
pendiculars 210  feet,  carved  surface  of  amidship  section  76  feet;  what  is  surface? 

Ck)efflcient  87.        210  -1-  201  -;-  2  =  205. 5,  and  76  x  205. 5  x  .  87  =  1 3  587  sq.  feet. 
Note.— Exact  surface  as  measured  was  13650  sq.  feet 

Bottom  Surface,  Rule. — Multiply  length  of  hull  at  load-line  by  its 
breadth,  and  this  product  by  depth  of  immersion  (omitting  the  depth  of 
keel)  in  feet;  and  this  product  multiplied  bv  from  .07  to  .08  (according  to 
capacity  of  vessel)  will  give  surface  requirea  in  sq.  feet. 

RxAMPLS. — Length  upon  load-line  of  a  vessel  is  310  feet,  beam  40  feet,  depth  of 
keel  I  foot,  and  draught  of  water  20  feet;  what  is  bottom  or  wet  surface? 

Coefficient  assumed  .073.    3x0  x  40  X  20  —  i  x  .073  =  17 199  sq.  feet 

Xo  Compute   Resistanoe   to   "Wet   Surface   of  Hull. 
C  a  v^  =  R.    C  representing  a  coefficient  of  resistance^  a  area  of  wet  surface  in  sq. 
feet,  and  v  velocity  of  hull  in  feet  per  second. 

Valn«BofC  (•oo7>  clean  copjwr.        I         .014,  iron  plate. 

'  j.oi,    smooth  paint.       |        .019,  iron  plate,  moderately  foul. 

Power  required  to  propel  one  sq.  foot  of  immersed  amidship  section  at  ^  is  .073 
that  of  smooth  wet  surface. 

To  Coini>ute  EJlements  of  a  Vessel. 
Displaoexnent  and    it«   Centre   of  Gravity. 
Displacement  of  a  vessel  is  volume  of  her  body  below  water-line. 

Centre  of  Gravity^  or  Centre  of  Buoyancy  of  Displacement ^  is  centre  of 
gravity  of  water  displaced  by  hull  of  vessel. 

For  Duptacemenf,  Rule.— Divide  vessel,  on  half  breadth  plan,  into  a 
number  of  equidistant  sections,  as  one,  two,  or  more  frames,  commencing 
at  !8  and  running  each  side  of  it.  Add  together  lengths  of  these  lines  in 
both  fore  and  aft  bodies,  except  first  and  last,  by  Simpscm's  rule  for  areas 
(see  page  344) ;  multiply  sum  of  products  by  one  third  distance  between 
sections,  and  product  will  give  area  of  water-line  Ijetween  fore  and  aft>sections. 

Then  compute  areas  contained  in  sections  forward  and  aft  of  sections  taken,  in- 
cluding stem  and  rudder-post,  rudder  and  stem,  and  add  sum  to  area  of  body-see- 
tioos  already  ascertained.  ■* 

*  7b  ComptOa  Artavf  a  WaUtAi.%t^  ue  Mensp.' Atlon  of  SiirfacM,  p«|{«  344. 

31* 


^54 


NAVAL  ARCHITECTURE. 


Compute  area  of  remaining  water-lines  in  lilte  manner  Tabulate  regnlts,  ^nd 
multiply  them  by  Simpeon's  rule  jn  like  manner  as  for  a  water-line,  and  again  by 
consetutive  number  of  water-lines,  and  sum  of  products  between  wAter-line  and 
product  will  give  volume  between  load  and  lower  water-line. 

Add  area  of  lower  water  line  to  area  of  upper  surface  of  keel :  multiply  half  sum 
by  distance  between  them,  and  product  will  give  volume;  then  compute  areas  con- 
tamed  in  sections  forward  and  aft  of  sections  taken  as  before  directed. 

If  keel  is  not  parallel  to  lower  water-line,  take  average  of  distance  between  them. 

Compute  volume  of  keel,  rudder-post  and  rudder  below  water-line;  add  to  volume 
already  ascertained;  multiply  product  by  two,  for  full  breadth,  and  product  wiU 
give  volume  required  in  cube  feet,  all  dimensions  being  taken  in  feet 

Ex  AMPLE. -Assume 
a  vessel  loo  feet  in 
length  by  20  feet  in 
extreme  breadth,  on 
f  load-line  of  8  feet  9 
inches  immersion. 
Figs.  .2  and  3. 

Distance  between 
sections,  for  purpose 
of  simplifying  this 
example,  is  taken 
at  10  feet;  usually 

Ins.  apart,  and  two  or  more  Included  in  a  section.    Water-lines  sTefaJJJt.'®  ^  ^ 


ist  Water-line. 

4  5  == 

3  7-7  X 

«  95  X 

«  9-9  X 

o  10      X 

A  9.6  X 

B  7-8  X 

C  6.8  X 

D  4 


4 

3 

4 

a 

4 

3 

4 


xo-?-3    = 

Abaft  section  4,  rud- 
der and  post 

Forward  section  D 
and  stem  ........ 


5 
30.8 

19 

39-6 

20 

38.4 

15-6 

27.2 

4_ 

199.6 
3j 
665.3 

25 

20.7 
7" 


4 

3 
2 

X 

o 
A 
B 
C 
D 


2d  WcUer4ine. 

2.7  = 

6.9  X 

8.7  X 

9-5  X 

9-6  X 

9  X 

7  X 

5  X 

2  =3  2 


4 
2 

4 

2 

4 

2 

4 


=    10.2 


2.7 

27.6 

38 
19. 

36 

14 
20 


176.9 
io-h3    =      3i 

589.7 
Abaft  section  4,  rud- 
der and  post 13.2 

Forward  section   D 
and  stem 9.  i 

612 


4 

3 

2 

X 

o 
A 

B 
C 
D 


3d  Water-Une. 

x-s  = 

5 
6.6 

8.7 
8.9 
7.6 
7 


3 

X.3 


X 
X 
X 
X 
X 
X 
X 


ao 

13-a 
34-8 
X7.8 

30.4 
«4 

12 
=  1.3 


4  = 

3  = 

4  = 

3  = 

4  = 

3  = 

4  = 


*44-9 
xo-^3    =      3| 

483 
Abaft  section  4,  rud- 
der and  post j 

Forward  section  D 
and  stem 5.^ 

495-4 


4^  WcOer-line. 


4 

3 

3 

x 
o 
A 
B 
C 
D 


4-3 
6.5 
6.8 

5 
3.6 

•9 
•3 


X 
X 
X 
X 
X 
X 
X 


4 

2 

4 

3 

4 

3 

4 


ZO' 


Keel 
Half  breadth  = .  35  x  length  of  98  feet  = 
Rudder-post  and  rudder ; 


293*3 

Abaft  section  4,  rod- 
der and  post 3.2 

Forward  section  D 
and  stem g 

a97-3  I 


ist  water-Une  7x1 


2d 

3d 
4th 

Keel 


It 


ResuUs. 
711 


612     X  4  =  2448     X  I  =  2448 
495-4  X  3  =   990.8  X  3  =  198X.6 
297- 3  X,  4  =  "89.3  X  3  =  3567.6 
24.8  24- 8  X  4  =     99.3 

8096.4 


5363.8 

3 


3)10727.6 
DitpUuement,  3575.9  X  a  =  7i5<*8cM6e^ 


NAVAL   ARCHITECTURB/  655 

To   Compnte   Centre   of  Oravity  of  Displacemexit. 

Rule. — Divide  sum  of  products  obtAined  as  above,  by  consecutive  water- 
lines,  by  sum  of  products  obtained  in  column  of  products  by  Simpson's  mul- 
tipliers, and  quotient,  multiplied  by  distance  between  water-lines,  will  give 
depth  of  centre  below  load  water-line. 

IixusTKATitfN  I.    8096.4,  from  above,  -h  5363.8  =  i.  5,  which  X  2  =  3  feet 

Or, **  z=zd.    n  representing  draught  of  vxxUr  exclusive  of  any  drag  cf 

*  V  ~  on/ 
ked^  a  area  of  immersed  surface  of  hull  in  sq.  feet,  and  D  disflaoement  in  cube  feei. 

2. — Assume  draught  of  water  8  feet,  displacement  7152  cube  feet,  and  area  of  im- 
mersed surface  of  hull  iioo  sq.  feet.  . 

8  8 

Then  = —^yyi  feet. 

{,  7'52     \        2X1-187 

*  V        1100X8/ 

To   Compute   Displaoement   Approximately. 

Coefficient  of  Dimlacement  of  a  vessel  is  ratio  that  volume  of  displacement 
bears  to  paraUelopipedon  circumscribing  immersed  body. 

V 

=  C.    V  representing  volume  of  disj^acement  in  cube  feet,  L  length  at  im- 

\j    D    D 

mersed  toater-line,  B  extreme  breadth,  and  D  draught  in  depth  of  immernon,  both 
in  feet. 

Coefficient  of  Area  of  A  midship  Section  in  Plane  of  a  WaterAmt  is  ratio 
which  their  areas  bear  to  that  of  circumscribing  rectangle. 
L  representing  length  of  water-line,  and  D  distance  between  water-lineSy  both  in  feet 

Coefficients.    (By  S.  M.  Pook,  Constructor  U  S.  Navy.) 

Rule. — Multiply  length  of  vessel  at  load-line  by  breadth,  and  product  by 
depth  (from  load-line  to  under  side  of  garboard-strake)  in  feet,  and  this 
product  by  co^cient  for  vessel  as  follows :  divide  by  35  for  salt  water,  36 
for  fresh  water,  and  quotient  will  give  displacement  in  tons. 

Amidship  sections  range  (^rom  .7  to  .^  of  their  circumscribing  square,  and  mean 
of  horizontal  lines  from  .  55  to  .  75  of  their  respective  parallelograms.  Hence,  ranges 
for  vessels  of  least  capacity  to  greatest  are  .7  X  -55  =  .385,  and  .9  x  .75  =  .675. 

Merchant  ship,  very  fbll 6    to  .  7 

"  "     medium 5810.62 

River  steamer,  stem- wheel. . .    6  to  .65 

Sbipof  the  line 5    to  6 

Naval  steamer,  first  class 5   to  .6 


"       52  to  58 

Merchant  steamer,  sharp 54  to .  58 

Half  clipper 52  to  .56 

Brigs,  barks,  etc 52  to  .  56 

River  steamer,  tug-boat,  med'm  .  52  to .  56 

In  steam  launch  Miranda,  when  making  16.2  knots  per  hour,  with  a  displace 
ment  of  58  tons,  her  coefficient  was  3. 


Merchant  steamer,  medium. . .    52  to  .  54 

Clipper 5    to.54 

Schooner,  medium 48  to  .  52 

River  steamer,  tug-boat,  sharp  .45  to  5 

"  *'        medium 45  to. 5 

"  *'        sharp 42  to  .45 

Schooner,  sharp. 46  to  .5 

Yacbts,  sharp 4   to. 45 

"       very  sharp 3    to  .4 

River  steamers,  very  sharp. . .  .36  to  .42 


To   Compute   Change   of  Trixu. 

W  /I         T 

-=r-  X  —  =  d'.    D  representing  displacement  at  line  of  draught  in  tons,  L  length 

at  same  lint  in  feet,  and  m  longitudinal  meta-centre. 

iLHTBTRATioJr.—"  ITarrior,"  at  draught  of  25. 5  feet,  bas  T,=r^8o  feet,  m  =  475  feet, 
and  D  =  8625  tona    If,  then,  a  weight  of  20  tons  was  shifted  fore  and  aft  100  feet, 

20  X  100     380        «  ,  ^  ^ 

—=2 X  ^—  = .  1856  feU  =  9.29  in§. 

?62$        475 


656 


NAYAIi   ABCHITECTUBB. 


To   Coinputo    Common  Centre  of*  Q-ra.yrity  of  Hull,  Ar- 
mament, Kngine,   Boiler,  eto.,  of  a  Vessel. 

Rule. — Compute  moments  of  the  several  weights,  relativelj'  to  assigned 
horizontal  and  vertical  planes,  by  multiplying  weight  of  each  part  by  its 
horizontal  and  vertical  dutance  from  these  planes. 

Add  together  these  moments,  according  to  their  position  forward  or  aft,  or 
above  or  below  these  planes,  and  difference  between  these  sums  will  give  po- 
sition forward  or  aft,  above  or  below,  according  to  which  are  greatest. 

Divide  results  thus  ascertained  by  total  weight  of  vessel,  and  product  will 
give  horizontal  and  vertical  distances  of  centre  of  gravity  from  these  planes. 

Note.— To  simplify  computation  in  table,  common  centre  of  gravity  of  hull,  ma- 
chinery, etc.,  is  taken,  instead  of  centres  of  individual  parts,  as  engine,  boiler,  pro- 
peller, etc. 

Illustration.—  Vertical  Plane  at  0  and  Horizantal  at  Load4ine. 


Elbmsmts  of  a  Stbam 

FSIOATB. 


Hull,  bunkers,  and  ce- 
ment in  bottom 

Engines,  boilers,  water, 
and  stores. 

Coal 

Battery  and  ammuni- 
tion.  

Masts,  spars,  sails,  and 
rigging 

Anchors  and  cables. . . . 

Boata 

Water  and  ship's  stores 

Provisions  and  galley. . 

Crew  and  effects 

Officers'  and  mess  stores 


Total. 


W«ight. 


Tons. 

1075 

470 
252 

131-5 

24 
25 

325 

22 
30 

7-25 


2C70 


HOBIZONTAL. 


Distances. 
Forward.  Abaft. 


Feet. 
1.6 

16 
62 

27 
40 

40 

I.S 

17 


Feet. 


29 


48 


40 


Moments. 


Forward, 


I  720 

4032 

8153 

648 
1000 

880 
360 

510 


17303 


Abaft. 


13630 


156 


290 


14076 


Vkktical. 


Distances. 


Above 


Feet. 


31 
16 

5 
7 


Below 


Feet. 

X 

6.3 

4 


6 
3 

8 


Momenta. 
Above  Bek^w 


263 

744 
52 

150 
210 


1419 


1075 

301 1 
1008 


150 
66 

_J8 
5368 


Moments  forward  Jg,  17303  —  moments  abaft,  14076  =  3227-5-2070  tons  (toeight] 
=  1.56  feet  =  distance  of  centre  forward  of  gj. 

Moments  above  load-line,  5368  —  moments  below,  1419  =  3949  -r-  2070  tons  {weight) 
=  1.91  fee.t  =  distance  of  centre  below  load-line.  " 

XoTR.— Rule,  in  Strength  of  Materials,  to  compute  common  centre  of  gravity, 
page  819,  would  apply  in  this  case. 


To     Compute     I>eptli    of    Centre    of    Q-ravity    or    Bixoy- 

arxoy    Below    oMeta-Centre. 

=  d.    S  representing  statical  stability^  D  displacement  in  ton«,  and  sin.  M 


D  sin.  M 
sine  of  angle  of  heel. 

Illustration.— Elements  of  Fig.  2,  page  654,  are,  statical  stability  at  angle  of 
5.44O,  90  tons,  and  displacement  204.33  tons. 


Sin.  5. 44°  =  .0999.    Then 


90 


204-33X  .0999 


=  4.4i/«et 


NAVAL  ABCHITSCTITBE. 


65; 


To  Ooxnpu.te  Centre  of  Gt-ravltjr  or  Buoyaiicsr  ^pproxi- 

inately. 


a  ,     9 


—  to  —  otmean  draught  ofhuU^  using  larger  coefficient  for  fbll-bodied  vessela 
5       20 

To  X)elineate   Curve  of  Displacexx^exxt. 

This  curve  is  for  purpose  of  ascertaining  volume  of  water  or  tons  weight, 
displaced  by  immersed  hull  of  a  vessel  at  any  given  or  required  draught ;  or 
weight  required  to  depress  a  hull  to  any  given  or  required  draught.  From 
residts  o^  computation  for  displacement  of  vessel,  proceed  as  follows,  Fig.  4: 


Fig.  4. 


6- 


keel 


On  a  vertical  scale  of  feet  and  ins., 
as  A  B,  set  off  depths  of  keel  and  water- 
lines,  draw  ordinates  thereto  represent- 
ing displacement  of  keel,  and  at  each 
water-line,  in  tons. 

Through  points  i,  2,  3,  4,  and  5  d( 
lineate  curve  A  5,  which  will  represent 
displacement  at  any  given  or  required 
draught. 

Draw  a  horizontal  scale  correspond- 
ing to  weight  due  to  displacement  at 
load-line,  as  A  C.  and  subdivide  it  into  Cons  and  decimals  thereof,  and  a  ver- 
tical line  let  fall  from  any  point,  as  a;,  at  a  given  draught,  will  indicate 
weight  of  displacement  at  (fepth,  on  scale  A  C,  and,  contrariwise,  a  line  raised 
from  any  point,  as  z,  on  A  C  will  give  draught  at  that  weight. 

Illustbatiox. —Displacement  uf  hull  (page  654)  at  load-line  =  7151.8  cube  feet, 
which  -r-  35  for  salt  water  =  204.3  tons,  hence  AC  reprcucntH  tons,  and  is  to  be  sub- 
divided accordingly. 

Assume  launching  draught  to  have  been  4  feet,  then  a  vertical  let  fall  trom  4  will 
indicate  weight  of  hull  in  tons  on  A  C. 

Coi-fficients.    {By  C.  JUackrow,  M.  I.  N.  A.) 


DBMBimOIf  OF  ViaSBL. 


Iron-Cluds, 


Mail  Steamera . 


< 


Uerchant,  small | 

Gunboats | 

rroop  Ships........ | 

Swift  Naval  Steamers. . . .  | 
Fast  SteamenB,  R.  N. 


Coefflcient. 

Length. 

Breadth. 

Mean 
Draught. 

Displace- 
ment. 

A  midship 
Section. 

225 

45 

IS 

.715 

.932 

325 

59 

24-75 

.64 

.81 

350 

35 

21 

.687 

-85 

385 

42 

22 

.659 

.88 

368.27 

42-5 

18.71 

.516 

.812 

220 

27 

8 

.702 

.912 

90 

*5 

4 

-637 

v 

"S 

23 

8 

.536 

z6o 

31-3 

12 

.466 

•745 

350 

49.12 

23-5 

.47 

.674 

340-5 

46.13 

15-75 

"♦« 

.68 

337-3 

50.38 

22.75 

-433 

-787 

270 

4a 

19 

•497 

.792 

300 

40.27 

14 

-4»4 

.711 

WatMT. 

Itnee. 

-755 

•71 

.84 
.8 

•63s 
.742 
.704 
.6x6 
.603 

•7 

.58a 

.614 

.628 

.7x1 


Curve  of  "Weiglit. 

Xo  Compute  dumber  of*  Tons  required  to  Depress  a 
Vessel  One  Inoli  at  any  Drauglit  of*  AVater  Parallel 
to  a  Water-lixie. 

Rule. — Divide  area  of  plane  by  la,  and  again  by  35  or  36,  as  may  be 
xeqaired  for  salt  or  fresh  water. 

Example. — Area  of  load  water-line  of  a  vessel  is  1422  sq.  feet;  what  is  its  ca* 
psoity  per  inch  in  salt  water  ? 

1422  -r-  x2  =  xxB-s,  which  -=-  35  =  3.38  tons. 


6s8 


NAVAL  ARCHITEOTUBB. 


'J?o    Compute    Centre    of  Ghravity    of*   Bottom    Plating 

of  a    Vessel.. 

LonffUudinal. 

Rule. — Measure  half  girths  of  piatuig  at  equidistant  sections,  as  at  two 
or  more  frames.  Multiply  these  in  accordance  witii  Simpson's  role  f« 
areas  and  add  products  together. 

Multiply  each  of  these  products  in  their  order,  by  number  representing 
number  at  intervals  of  section  forward  and  abaft  of  J8.  Divide  difference 
of  these  moments  by  sum  of  products  of  half  girths,  previously  obtained. 

Multiply  product  by  common  distance  between  sections,  and  result  will 
give  distance  of  centre  of  gravity  from  iS  in  a  horizontal  plane. 

Illustration.— Assuni*  half-girths  aS  in  foUowiDg  table,  and  distance  between 
sections  lo  feet 


FORWARD. 


Half- 

Multi- 

Prod- 

Gtrtha. 

plien. 

uct. 

Feet. 

25 

i. 

25 

23 

4 

92 

21 

2 

42 

»9 

4 

76 

17 

2 

34 

15 

z 

15 

Malti- 

Mo- 

Sec- 

pli«n. 

menta. 

tion. 

No. 

— 

— 

I  ... 

I 
2 

it 

2  ... 

3--- 

3 

228 

4... 

4 

136 

5-*. 

5 

75 

615 

ABAPT. 


H«ir- 

Malti- 

Prod- 

MaUi- 

Mo- 

Oirtfat. 

pHera. 

net. 

plien. 

menta. 

Feet. 

23 

4 

92 

I 

2' 

20 

2 

40 

9 

80 

x8 

4 

72 

3 

2X6 

16 

2 

3a 

4 

Z28 

«4 

z 

"4 

5 

70 

534 

586 

Sec- 
tion. 

No. 

¥'" 

^m  .  .  •  • 

B. . . . 
C . . . 
D.... 


Moments  forward,  615  —  moments  abaft,  586  =  29  ^  sum  of  product  534  =  .054, 
which  X  zo  feet  =  .s4ffetfonoard  of  jgj. 

Centre   of  X^ateral   Resistance. 

Centre  of  Lateral  Resistance  is  centre  of  resistance  of  water,  and  as  its  po- 
sit ion  is  changed  with  velocity  of  vessel,  it  is  variable.  It  is  genendly  taken 
at  centre  of  immerseil  vertical  and  longitudinal  plane  of  vessel  when  npon 
an  even  keeL 

If  vessel  is  constructed  with  a  drag  to  her  keel,  the  centre  will  be  moved 
proportionately  abaft  of  longitudinal  centre. 

Yacht  America  had  a  drag  to  her  keel  of  2  feet,  and  centre  of  lateral  re- 
sistance of  her  hull  was  8.08  feet  abaft  of  centre  of  her  length  on  load-line. 


Centre   of  Sfibrt. 

Centre  of  Effort  is  centre  of  pressure  of  wind  upon  sails  of  a  vessel  in  a 
vertical  and  longitudinal  plane.  Its  position  varito  with  area  and  location 
of  sails  that  may  be  spread,  and  it  is  usually  taken  and  determined  by  tlM: 
ordinary  standing  sails,  sudi  as  can  be  carried  with  propriety  in  a  moderatdy 
fresh  breeze. 

In  computing  this  position,  the  yards  are  assumed  to  be  braced  directly  fore 
and  aft  and  the  sails  flat. 

NoTi.— Centre  of  effort  of  sails,  to  produce  greatest  propelling  efRsct,  most  accord 
with  capacity  of  vessel  at  her  load-line,  compared  with  fulness  of  her  immersed 
body  at  its  extremitiea  Thus,  a  vessel  with  a  tall  load  line  and  sharp  extremities 
below,  will  sustain  a  higher  centre  of  effort  than  one  of  dissimilar  capacity  and  oo§* 
ftractioR. 


NAVAL  ABCHITECTUBB. 


659 


To  Compuite  Xjooatipu  pf  Cez>tre  of  Sffbrt. 

Rule. — Multiply  area  of  each  sail  in  square  feet  by  height  of  its  centre  of 
gravity  above  centre  of  lateral  resistance  in  feet,  divide  sum  of  these  prod- 
ucts (moments)  by  total  area  of  sails  in  square  feet,  and  quotient  will  give 
height  of  centre  in  feet. 

2.  Multiply  area  of  each  sail  in  square  feet,  centre  of  which  is  forward  of 
a  vertical  plane  passing  through  centre  of  lateral  resistance,  by  direct  dis- 
tance of  its  centre  from  that  plane  in  feet,  and  add  products  together. 

3.  Proceed  in  like  manner  for  sails  that  are  abaft  of  this  plane,  add  their 
products  together,  and  centre  of  effort  will  be  on  that  side  which  has  greatest 
moment  of  sail. 

ExAHPLK. — Assume  elements  of  yacht  America  as  rigged  when  in  U.  S.  Service. 


Sail. 


Flying  Jib 

Jib 

Foresail . . 
Maiosail.. 

5383 
Vertical  moments  172575 

Area  of  sails 5  383 

sistance. 

91 765  '\j  68  896 


Height  of 
Cent,  of  Grav- 
ity of  ShUb. 

Vertical 
Moments. 

Distance  of  Centra 
ofGravity  of  bails. 

Foreward.    Abaft. 

Mome 
Foreward. 

Feet. 
28 
26 

34 
35 

18368 
28262 

49470 
7647s 

52 

32 

3 
40 

34  "2 
34784 

«72  575 

68896 

Abaft. 


4365 
87400 

9*765 


=  32.06  =  height  of  centre  above  centre  of  kUerctl  re- 


MvnunU  \ 
sistance. 


5383 


=  4.25  =  distance  of  centre  ahaft  centre  of  lateral  re- 


Relative   Fositioxxs  of  Centre' of  Sffort  and   of  X-iateral 

Resiataiioe. 


Square  lUg, 
4A 


L(.75d'  +  d") 


xo(d'  +  0 


=  E. 


Fore  and  Aft  Riff. 


io(d'-|-d") 


rA  =  E, 


and  ^-^  =  E'.    L  rqn'esenting  length  of  load-line^  d  distance  of  centre  of  buoyancy 

of  vessel  beUno  it,  d'  distance  of  centre  of  lateral  resistance  abaft  centre  of  it,  d"  dis- 
tance of  centre  of  buoyancy  before  centre  of  it,  E  distance  of  centre  of  effort  before 
centre  of  lateral  resistance,  and  E'  distance  of  centre  of  effort  above  centre  of  lateral 
resistance. 

^^eta-Centre. 
Meta-cewtre  of  a  vessel's  hull  is  determined  by  location  of  centre  of  grav- 
ity or  buwancy  of  immersed  bottom  of  hull,  for  it  is  that  point  in  transverse 
section  of  hull,  where  a  vertical  line  raised  from  its  centre  of  gravity  or 
buoyancy  intersects  a  line  passing  through  centre  of  gravity  of  hull,  as 
Fig.  I,  page  650. 

To   Compute   Heiglit   of  ^f  eta-Centre. 

By  Moment  cf  Inertia,     T)  =  ^*    ^  representing  moment  of  inertia  qf  area 

of  water-line  or  plane  of  flotation^  and  D  volume  of  displacement  in  cube,  feet 

NoTS. — Moment  of  Inertia  of  an  area  is  sum  of  products  of  each  element  of  that 
area,  by  square  of  its  distance  flrom  axis,  about  which  moment  of  area  is  to  be 
computed. 

To  A.soertaixi  Iifozxiezit  of  Inertia  approxiraatelsr. 

Rectangle  =iCLB3-    G  =  -L  when  L  =  4B;    C  =  — when  L  =  5B;    andC  = 

12  50 

SL  when  L  =  6  B.    With  very  fine  lines  and  great  proportionate  length  C  =  — 
Ij  emi  3  measured  at  load  line. 


66o 


NAVAL  AKCHITECTURE. 


Volume 


Illustbatiok.— As^me  length  of  vesael  333  feet,  breadth  43,  draught  x6,  and 
displacement  2700  tons.    Length  =  5.65  beams;  hence  C  is  talien  at 
of  displacement =2700  x  35  =  92  500  cube  foet 

Then  ^'X '33X433^ 


21 


400 


400  X  92  500 


ia5i.    Exact  height  of  moment  was  10.44  f^^ 


By  Ordinaies,  Rule. — Divide  a  half  longitudinal  section  of  load  water- 
line  by  ordinates  peri)endicular  to  its  length,  of  such  a  number  that  area 
between  any  two  may  be  taken  as  a  parallelogram.  Multiply  sum  of  cubes 
of  ordinates  by  respective  distances  between  them,  and  divide  two  thirds 
of  product  by  volume  of  immersion,  in  cube  feet. 


Illustration.— Take  dimensions  from  Figs.  2  and  3,  page  654. 


4 

3 

2 

k 


Length. 

.  5    .. 
.  7.7.. 

.  9-  5 . . . 

.  9.9*  • ' 
.10    . . . 


Cube. 
.   125 

.  456 
.  857 

•  970 
.xooo 


Len^tb. 

B 7.8... 

C 6.8.., 

D 4    ... 


Cube. 
51460 

2 


102020 


7151.8)    34306.6  =  4.77  fi. 


Cube. 
.  885 
•  475 
'  314 

5146  X  10 

If  there  are  more  ordinates,  their  coefficients  must  be  taken  in  like  manner,  ae 
X  —  4  —  2  —  4  —  2  —  4  —  X. 

For  operation  of  this  method,  see  Simpson's  rule  for  areas,  page  343. 

2     /*  W^  rf  X 

Or,  —  /  ^-j- —  =  M.     y  representing  ordinates  of  haJf-breadth  sections  cU  load- 
3*-'       IJ 

line,  d  x  increment  of  length,  oftoadline  section  or  differentiai  ofx,  and  D  displace- 
ment of  immersed  section  in  cube  feet. 


By   Areas. 


—  (a3  ^- 4  63 -f.  2  c3 -I- 4  d3  +  €3)  i. -f.  F -I- A 

3 3 

D 


=  M.     a,  6,  c,  d, 


and  e  representing  ordinates  of  isi  or  load  toaier-line,  P  area  of  irregular  section 
between  ist  frame,  and  stem,  and  A  area  of  like  section  between  Uut  frame  and 
stern-post  y  both  in  sq.  feet,  D  displacement,  in  cube  feet,  and  I  distance  between  frames 
or  sections  ofvtater-line,  as  may  be  taken,  in  feet 

To  Ascertain  Areas  ofT  and.  A* 
—Fig.  S. 


—  abxbc^ 
3 


4  =  F,  and— dcX<fl'3-r-4^  A 
3 


Klements  of  Capacity  and  Speed  of  Several  Types  of 

Steamers   of  R.  N.    {W.  H.  White.) 


Claims. 

Length. 

LenKth 

to 
Breadth. 

Displacement. 

SpMd. 

ObplMw- 

ment. 

to 

Diaplace- 
nwntf. 

Ironclads. 

Feet. 

Tone. 

Knots. 

Recent  types, 
do.   twin  so. 

300  to  330 

280  to  320 

5.25t05.7S 
4-5 105 

7500tO  9000 
6oootO  9000 

14      to  15 
14      to  IS 

.9tox 
.7  to  .9 

16  to  20 
X5t0x9 

Unarmorkd. 

Swifl  cruisers 
Corvettes .... 

Ships 

Gun -vessels.. 
Gun  boats  ... 

270  to  340 
200  to  220 

160 

125  to  170 
8oto  90 

6. 5  to  6. 75 
6 

5.5  to  6.25 
3    to  3. 25 

3000  to  5500 

1800  to  2000 

850  to      050 

420  to      800 

200  to      250 

15      to  16 
12.75  to  13.25 

IX 

0.5  toix 
8      to  9 

x.3tOi.5 

X      tOl.2 
X      tOX.2 

.8  to  1.4 
.8tOi.i 

20t0  24 

X3  to  14 

XOtOlI 

7  to  XX 
5  to  7 

Mkbohant. 

Mail,  large... 

'<    smaller. 
Cargo,  large.. 

'*    smaller. 

400  to  500 
300  to  400 
250  to  350 
200  to  300 

9'  ton 
8    toio 
7. 5  to  10 
7    to  9 

7000  to  10  000 
5000  to  7000 
3000 to  6000 
i5ooto  4000 

14      to  15 

13      tox4 

XI      to  15 

9      to  IX 

•5  to  .6 

.4  to  .5 

3to  -5 

.2to  .4 

xotoxi 
7  to  10 
5to  0 
3to  6 

NAVAL   AUCHITKCTUKE. 


661 


Xo  Compute  PoAver  R,eq.uiired.  in.  a  Steam  Vessel,  oapao- 
ity   of  anotlier  Vessel   toeiiig  given. 

In  vessels  of  similar  models,     —  =  V ;   — j-  =  V ;   —7-  =  C ;  and  — -  =  R; 

V  and  V  representing  pi'oduct  of  volumes  of  given  and  required  cylinders  and  revo- 
lutions in  cube  feet,  a  and  A  area^  of  immersed  section  of  given  and  required 
vessel  in  sq.  feet  a4  like  revolutions  and  speed  of  given  vessel,  s  and  S  speeds  of  given 
and  required  vessel  at  revolutions  of  given  vessel,  both  in  feet  per  minute,  r  and  r' 
revolutions  of  given  and  required  vessel  per  minute^  and  C  product  of  volume  of  com- 
bined cylinder  and  revolutions  for  required  vessel. 

Illustration.— A  steam  vessel  having  an  areaof  amidship  section  of  675  sq.  feet, 
lias  two  cylinders  of  a  combined  capacity  of  533.33  cube  feet,  and  a  speed  of  10.5 
knots  per  hour,  with  15  revolutions  of  her  engines.  Required  volume  of  steam 
cylinders,  with  a  stroke  of  10  feet,  for  a  section  of  700  feet  and  a  speed  of  13  knots 
with  14.5  revolutions 


I'  =■•  533-  33  X  1 5  —  8000  cube  feet, 
15X15745-2 


8000X700  1.     r    *        133X8296.3 

-    —  =  8296. 3  cube  feet,     — —    J;       = 


15745.2  cube  feel, 


675 
=  16  288. 1  ciibe  feet. 


and 


16288.1 


10.5- 
=  561.66  cm6« 


14-5  '  a  X  14-5 

feet,  lofcicfc-t-  10  stroke  of  piston,  12  for  ins,,  and  X  1728  ins.  in  a  cube  foot=z 

— — — =8087.0  sq.  ins.  area  ofecu:k  cylinder  =  diameter  of  loi I ^  ins. 

10  X  12 

Approximate  Rules  to  CoTupute  Speed  aud  IIP  o£  Steaxn 

Vessels. 


V3  of 
1H» 


=  C 


=  1/ 


Clip 


—  V ;  and 


V3dS 


=  IIP.    Or, 


'^ 


Clff  V3A 

-  =  V:  and-— ^=  IIP. 


C  representing  coefficient  of  vessel,  A  area  qf  immersed  amidship  section  in  m.feet, 
V  velocity  of  vessel  in  knots  per  hour,  and  D  displacement  of  vessel  in  tons. 

NoTB. — When  there  exists  rig.  an  unusual  surface  in  freeboard,deck-hou8es,  etc., 
or  any  element  that  eflects  coefficient  for  class  of  vessel  given,  a  corresponding  ad- 
ditloD  to,  or  decrease  of,  foUowing  units  is  to  be  made: 

Rttnge  of  Coefficients  as  deduced  from  obsei'vation  is  cufoUoics: 


SIDE- WHEEL. 


Vbmil. 


JBttamboat. 
Medium  line*  . 


Ftn«  linet 

Buamtr. 
Medium  fall  Uum* 


VId«  Unc«t. 


Sq.F, 
43 
150 
136 

675 


T't. 

73 
465 

300 


3600 

•  Fall  rigged. 


K'to. 
10 
13 
«9 


10 


15 


V»A 
IH» 


470 
570 
540 

650 
650 


V*D| 
IH» 


212 
219 
200 


214 


SIX 


PPOPKLLER. 


VCSSEL. 


Sttamboat* 

Mediam  lines.. 
«  << 

Fiu«  lines 

Steanur, 

Medium  full... 


Torpedo  boat. 


45 
150 


550 
390 


2532 
U7S 
3600 

27 
t  Bark  rigged. 


12 


9 

xo 

13 

20 


v* a!v>d| 


1K» 


194 
180 
2x0 
170 


IH> 


SOD 

530 

570 
470 

500 


Coefficients  €u  Determined  by  Several  Steamers  of  H.  B.  M.  Service. 

{C.  Mackrow,  M.  I.  N.  A.) 


Length. 

Feet. 
185 

912 
360 

380 
400 
36a 

400 


Length 

Areaof 

Displace- 

IR' 

Beam. 

Section  at  g{. 

ment. 

Sq.  Feet. 

Tons. 

6.53 

236 

775 

782 

589 

377 

>554 

1070 

7-33 

814 

5898 

2084 

6.43 

63a 

3057 

2046 

6.52 

1308 

9487 

3205 

6.73 

1 198 

9152 

5971 

7  33 

778 

5600 

3945 

6867 

6.73       I 

n85 

9071 

3K 


V»A      ^ 

Speed. 

I  fP  -  ^• 

Kuoto. 

10.34 

333 

laSq 

456 

"•5 

598 

12.3 

574 

12.05 

714 

13-88 

536 

14. 06 

548 

>5-43 

634 

4-5 


3-5        3        2-5 


662  NAVAL   ABCHITBCTURE. 

^Approximate    Rule    for    Speed,    of*  Sore^w    Propellers. 

(Molesuwrth.) 

,o.V  PN_  loiV         .       ?^_N.      ^-„.      and?^-P 

"P"-^'      T^-^'       ~N~-*^'      ^^-N'      IT-'''      *"'*     N  -*^ 

V  and  V  representing  velocities  in  knots  and  miles  per  hour^  P  pitch  of  propeller  in 

feet,  and  N  number  of  resolutions  per  minuU, 
This  does  not  include  slip,  which  ranges  from  lo  to  30  per  cent 

I*itolx   of  Sore-w-   Propeller. 

f*itch  ranges  with  area  of  circle  described  by  diameter  of  screw  to  that  of 
amidship  section. 

Area  of  screw  circle  to  amidsbip )  |    ^ 
section  =  i  to )  1 

Tivo  B.'ndi's. 
Pitch  to  diameter  of  screw  =  I  to   |     8    |  1.02  |  i.ii  |  1.2   |  1.37  1 1.31  |  1.4  |  1.47 
Four  Blades.  \  1.08  j  1.38  |  i  5   |  1.62  |  1.71  I.1.77  |  1.89  |   1.98 

Length  =  166  diameter 

Slip   or  Side-^velieels. 

Radial  Blades.  ~     -  S.        Feathering.     '5  ^    ~^'  =  S.    A  representing 

A  A 

length  o/arc  of  immersed  circumference  of  Modes,  c  length  of  chord  of  immersed  arc^ 

and  S  slip,  aU  in  feet. 

A.rea  of*  Blades. 

River  Service.     ''^^ — =  A.     Sea  Service.     '— -  =  A    D  representing  diameter 

of  wheel  in  feet,  and  A  area  of  each  blade  in  square  feet 

Lengtii  of  Blades     .7  in  River  service  and  6  in  Sea  service. 

Distances  between  Rculial  Blades.  2.25  in  River  service  and  3  feet  in  Sea  service; 
between  Featliering  blades,  4  to  6  feet. 

Proportion   of*  Power   Utilized   in   a   Steaxn  "Vesael. 

p t  „^^ 

Side   Wlieel. r^— -  =  C.      P  representing  gross  Iff,  «  lost  of 

000002  59  d3r«  ^  "  "  '  "^ 

effect  by  slip  and  oblique  action  of  wheels,  d  diameter  of  wheds  at  centre  of  effecty 
r  revolutions  per  minute,  and  C  coefficient  for  vessel 

Illustration. — Iff  of  engines  of  a  side-wbeel  steamer  is  ti2o;  slip  of  wheela 
and  loss  by  oblique  action,  33.37  per  cent. ;  diameter  of  centre  of  effect  of  wheels  is 
29.5  feet,  and  number  of  revolutions  13.5  per  minute;  what  is  coefficient,  and  what 
power  applied  to  propel  vessel  f 

NoTK. — Slip  of  wheels  fVom  their  centre  of  effect  in  this  case  is  15.37  l*^^  cent, 
and  loss  by  oblique  action  18  per  cent  Hence,  representing  total  power  by  100^ 
100  —  (18 -j-  15.37)  =  66.63  P^""  cent  of  power  applied  to  wheels. 

As  assumed  power  that  operates  upon  wheels  in  this  case  is  taken  at  86  x a  per 
eent  of  ))ower  exerted  by  engines,  86.12  X  33-37  =228.74  per  cent  for  sum  of  Ion 
by  wheels. 

i,2o-(xi2oX    174^100)  ^ 7981U  =  65.63  coefficient 
.00000259  X  295^  X  13.5*       ««»6 
Speed  of  vessel  being  10  knots  per  hour  =  17.05  feet  per  second,  power  applied 
to  pro{)el  vessel  at  this  speed  =  65.63  X  17-05'=:  19076.13,  and  ff  exerted  = 
19076.13  X  1705  X  60  _ 

—  59'-  3".  Per  cent. 

^^  **^-  ofPoww. 

Friction  of  engines  1.5  lbs.  upon  3848  sq.  ina  x  13-5  revolu-t 

tious  X  7oX2  ^  33000  X  2 )     ^^^  ,         ,g  g 

Friction  of  load  6  per  cent  upon  pressure  of  steam,  less  2  lbs. )     g^  . 

for  iHction  of  engine,  as  above )     "*^45 

Oblique  action  of  wheels aoi.6  18 

sup  ot  wheels 173.14  »5-37 

-oibed  by  propulsion  of  vewe) ..,..f,.,,,., 591.36  5^8 

Xiao  100 


NAVAL  ABCBITECTCBB. 


663 


P«r  MDt. 
of  Power. 

18.83 

6.83 
36.27 

100 


Bore'w  Propeller.    Friction  of  enginea 96.06) 

Friction  of  load » §1. 48  J 

*'       of  screw  surface  and  resistance  nf  edges  of  blades 53. 44 

Slip  of  propeller. 205. 55 

Abflorbed  by  propulsion  of  vessel. 375-92 

782.4s 

NoTS.— From  experiments  of  Mr  Froude,  he  deduced  that,  as  a  rule,  only  37  to 
40  per  cent,  of  whole  power  exerted  was  usefully  employed. 

With  an  auxiliary  propeller,  essential  differences  are  in  fViction  of  surfaces  and 
edges  of  blades  of  propeller  and  slip  of  propeller,  being  as  13  to  6. 83  in  excess  in  first 
case,  and  as  13.7  to  36.37  in  second  case,  or  $0  per  cent  less. 

Reiistance  o/BoUonu  0/ Hulls  at  a  Speed  qfone  Knot  per  Hour, 


Smooth  wood  or  painted. 01    lb. 

Smooth  plank 016  " 

Iron  bottom,  painted 0x4  ** 


CJopper. 007  lb 

Moderately  foul 019  ** 

Grass  and  small  barnacles 06    " 


Sailing. 

Xlatio  of  Kffeotive  JLrea  of  Sails  and  or  Veseel^s  Speed 
under   Sail   to   Velocity  of*  "Wind- 


COUBSB. 


5  points  of  wind. 

3      "     abaft  beam  . . 

6  "     of  wind 


Ratio  of 

EttmMv 

Are* 

ofSidli. 


•59 
.91 

.68 


Ratio  of 
to  Wind. 

Couaaa. 

Ratio  of 
EffectiTO 

Area 
ofSaila. 

Ratio  of 
Speed  of 

to  Wind. 

•33 

.5 

•5 

Wind  ab^m ......... 

.«3 

I 
.96 

.6 

"    astern......... 

•5 
.66 

"    on  quarter 

Propulsion,  and  A.rea  of  Sails. 

Plain  saiU  of  a  vessel  are  standing  sails,  excluding  royals  and  gaff  topsaOs. 
Resistance  of  vessels  of  similar  models  but  of  different  dimensions  for  equal 
8peeds=D3 

Hence  -7  =  f  ^j   .    a  and  a'  representing  areiu  of  sails  qfknotm  and  given  ves- 
teUj  cmd  D  and  D'  tA«t>  dUspUucaikKnlts  in  tons. 
iLLUsnunoii.— Assome  D  and  D'  =  3400  and  1600. 

Then  (^2— 1  =  V»  5*  =  «'3«>  *»«**<»  »'«*  of  sails  a'  =  -^  —  763  per  cenL 

In  Ve$telt  of  Dissimilar  Models. — Plain  saU  area  should  be  a  multiple 
of  Di. 

MMplesfor  Different  Classes  of  Vessels,  R.  M 

SaiUng.  Steamers. 

Ships  of  Line 100  to  zso  Ships,  iron-clad 6oto8o 

Frigates )  Frigates ) 

Sloops. S    X3ot0z6o  Sloops [    80  to  1 30 

Brigs )  Brtgs ) 

Enfflish  Yachts,  designed  for  high  speed,  have  multiples  from  180  to  200, 
mud  when  designed  for  ordinary  speed  from  130  to  180. 

Wken  Area  o/SaU  to  Wti  Surftue  of  Hull  is  <aJleen.— American  yacht  Sappho  had  a 
ratio  of  3.7  to  I,  and  several  English  yachts  nearly  the  same,  while  in  some  others 
itwaabniatoi. 


664 


NAVAL   ABCHITECTUKE. 


I^ooation   or  IVIasts,  etc.    Load-line  =z  too. 


Vrnmaim 


Ship 

Bark , 

Brig 

Schooner  ... 
Sloop 


Fore. 


DbUnoe  from  Stem. 


Main. 


lo  to  20 
12  to  20 

17  to  20 
16  to  22 


53*058 

54  to  60 
64  to  65 

55  '"  61 
36  to  42 


Minen. 


801090 
81  1091 


Fool  of  Sail.* 


<  HeU^tofCantn 
I    of  Effecl  aboT* 
I     Water-lfB«  = 
Brwulth.* 


125  to  160 
130  to  160 
160  to  165 
160  to  170 
170  to  190 


— I- 


to  2 

to  1.95 
to  1.75 
to  t.75 
1.25  to  1.75 


1-5 
1-5 
1-5 
>.5 


*  Meaaurad  from  Tack  of  Jib  to  Clevr  <tf  Spankar  or  Mainnll. 

Rakeo/Mcuti. 

ShipB. — Foremast  o  to  .28  of  length  fVom  hud,  Mr. in  ami  Mizzen  o  to    25 
Schooners. — Foremast  .1  to  .25,  Mainmtist  .63  to  .77.    Sloot)8.— .08  to  .11. 


A-rGB.  of  Sails. 


Sails. 


Jib 

Foremast. 
Mainmast. 


3  Yard*  upon 
each  Maat. 


.08 

•295 
.417 


4  Yarda  apon 
each  Maat. 

Sails. 

3  Yards  apon 
each  Maat. 

4  Yarda  apon 
CHch  Maat. 

.08 
295 
•417 

Mizzenroast. . . . 
Spiuikcr  or  \ 
Driver. . .  {  * ' 

.127 
.081 

•«4 
.068 

Proportional  Area  of  Sails  upon  each  Mast  under  abate  Divisions. 


Sail. 


Course. 

Topsail 

Topgallant  sail , 

Royal 

Spanker  or  Driver. . . . , 
Jib 


Fore.         1 

Main.         1 

Mixcen. 

Proporl 

."5 

.097 

.162 

.138 

— 

— 

.389 
•358 

»o5 

.09 

.149 

.127 

.075 

.063 

.075 

.063 

.106 

.089 

.052 

.045 

•853 

— 

•045 

— 

.063 

.033 

— 

.i— 

— 

—— 

.081 

068 

^— 

.08 

.08 
•375 

. 

— 

— 

— 

375 

•417 

.417 

.208 

.208^ 

I 

■33 
•303 
•a»5 
•15a 


Balance  of  Sails. — Effect  of  jib  is  equal  to  that  of  all  sails  upon  main- 
mast, and  sails  upon  mizzenmast  balance  those  of  foremast. 

Areas  of  sails  upon  masts  of  a  ship  should  be  in  following  proportion : 
Fore X. 414  I  Main a  |  Mizzen i 

When,  therefore,  main  yard  has  a  breadth  of  sail  of  100  feet,  fore  yard 
should  have  70.71  feet,  and  mizzen  50  feet-,  topgallant  and  royal  yards  and 
sails  being  in  same  proportion.- 

i^ngles  of  Keel   for  Different  VeBselB. 

Approximately.     — j^ — =  S.      D  repreuaUng  displacement  of  vessel  in  Oti., 

M  height  ofmetat^mire  above  centre  of  gravity  in  feet,  a  angle  of  heel  of  vessel  m  cir- 
cular mecuuref*  and  H  height  of  centre  ofegtect  above  centre  of  lateral  t-esistance, 
infeet. 

Moment  of  sail  should  be  equal  to  moment  of  atabilify  at  a  defined  awj/le 
offieel. 

Schooners,  etc.  ....  6°         .  105 
Yachts 60  to  90    .105  to  .107 


Circnlftr 

Measure. 

.07 

.087 


Angle. 

Frigates,  etc. 4^ 

Corvettes. 5^ 

Illustration.  — Assume  displacement  170  tons,  height  or  meta-centre  6.75  foelt 
H  =  36  feet,  and  angle  of  heel  9^^ ;  what  should  be  area  of  sails  ? 

170  X  3240  =  380  800  lbs.    9°  = .  107. 

380800X6^75  X.  107  ^ ^8 ^^^ 

30 


*  8ae  rale,  page  113. 


NAyAL   AECHITECTUKB. 


665 


Trikxnming   of*  Sails. 
That  a  vessel's  sail  may  have  greatest  effect  to  propel  her  forward,  it  should 
be  so  set  between  plane  of  wind  and  that  of  her  course,  that  tangent  of  angle 
it  makes  with  wind  may  be  twice  tangent  of  angle  it  makes  with  her  course. 

Or,  tan.  a  =  a  tan.  6.    a  representing  angle  of  sail  with  windj  and  b  angle  0/  sail 
and  course  of  vessel. 


Wind 
AheMl. 


.A.iigle8   of*  Course   axid. 

AdrIm  of  Sail 


with 
Course, 


3 

35°  16' 
Impulse 


Wind 
Abaft. 


Sails  Avitb.   "Wind. 

Angles  of  Sail 


PoinU. 

2 

3 

4 
6 


Angie 

oT 
Course. 


112°  30' 

123°  45' 
135° 
157°  30' 


Tan- 
gent. 


2.166 

2-737 
3-562 

7-5" 


Half 
Tan- 
gent. 


1.082 
1.368 
1. 781 

3-754 


with 
Wind. 


with 
Course. 


65°  13',' 47*^17. 
69O  56'      ' 

74°  17' 
82°  25' 


53°  49, 
60O43' 

75°    i' 


of  Wind. 

Let  P  0,  Fig.  6,  represent  direction  by  com- 
pass and  force  of  wind  on  sail,  A  B;  fVom  P 
draw  P  C  parallel  to  A  B,  from  o  draw  o  C  per- 
pendicular to  A  6;  o  G  is  effective  pressure 
of  wind  on  sail  A  B,  and  r  C,  perpendicular  to 
plane  of  vessel,  is  component  of  o  C,  which  pro- 
duces lateral  motion, as  heel  and  leeway,  and 
r  o  is  component  of  0  C,  which  propels  vessel. 
Isin.arrP;  Pcos. aj  =  L;  and  Psin.a;  =  E. 
I  representir^  direct  impact  and  P  efftctive 
pressure  of  wind  on  sail,  L  effective  impact 
producing  leeway,  and  E  effective  impact  which 
propels  vessel.  » 

Note.— The  law  as  usually  given  is  sin.'.  This  is  manifestly  incorrect,  as  it  gives 
results  less  than  normal  pressure  for  angles  of  small  incidence.  At  an  angle  of  in- 
cidence of  wind  of  25°,  the  law  of  sin.  is  exact.  Hence,  although  it  may  not  be 
exp.ct  at  all  angles,  it  is  sufficiently  so  for  practical  purposes. 

Illustration  i. — Assume  wind  5  pqints  ahead,  and  I  =  100  lbs. 

By  preceding  table  angle  of  course  with  wind  56^  15';  hence  angle  of  sail  a,  with 
wind  36°  12',  as  tan  36°  12'  =  2  tan.  20°  3',  and  angle  x  56°  15'  —  36°  12'  =  20°  3'. 

Then,  100  X  sin.  36°  12'  =  xoo  X  .5906  =  59.06;      59.06  X  cos.  20°  3'  =  59.06  X 
-9394  =  55  48,  and   59.06  X  sin.  20°  3'  =  59.06  x  -3426  =  20  23  Ihs. 
3.  —Assume  wind  4  points  abaft,  and  I  =  100  lbs. 


Then,  iooXsia2  740  17'=  100 X -96262  =  92.66;    02.66  X  cob.  180°  — 74°  17'-}- 45° 
=  6o°43'  =  92  66x.49  =  45  4i,  and  92. 66 X sin.  60°  43' =92  66 X. 8722  =  80.82  i6». 

To   Compute    Sailing   IPower   of  a  Vessel. 

F/sin.  w,  sin.  s  =  P. 

7o   Compute   Careening   Power  of  a   Sailing  Vessel, 
Fy  sin.  yo,  cob.  «  =  P     F  represefniing  area  of  sails  in  sq.  feet,  f  force  of  wind  in 
lbs.  per  sq.faot,  w  angle  of  wind  to  sails,  and  s  angle  of  sails  to  course  of  vessel. 

To   Compute   A.ngle   of  Steady   Keel. 
Within  a  Range  of%<>. 


gPE 
DM 


=  Bin.  H.    a  representing  area  of  plain  sail  in  sq.  feet,  P  pressure  of  wind 


in  lbs.  per  sq.faot,  E  height  of  centre  of  effect  above  mid-draught,  in  feet,  D  displace- 
wsent  ofhuUy  in  lbs. ,  and  M  height  of  meta-cenire  in  feet. 

P  assumed  at  i  lb.  per  sq.faot,  or  that  due  to  a  brisk  wind. 


20 


Illustbatios.— AsBame  0  =  15600,  draught  =  20,  and  £=62;  hence  634-^=3 

2 

r,  D  =  6  800000,  and  M  =  3. 
Then 


15600  X  1  X  72  _  1 123200 
6800000X3         20400000 


=  05505  =  3° 


zo 


3K» 


666 


KAYAL   ABCHITECTUlgUB. 


Course  and  A-pparent  Course  of  \Viiicl. 

Apparent  course  of  a  wind  against  sails  of  a  vessel  is  resultant  of  normal 
course  of  wind  and  a  course  equal  and  directly  opposite  to  that  of  vessel. 

Illcstratiox.  —  If  P,  Fig.  7,  repre- 
sent direction  by  compaiffi  and  force  of 
wind,  and  a  b  direction  and  velocity  of 
vessel,  firom  P  draw  P  c  parallel  and 
equal  to  a  h,  join  c  a  and  it  will  repre- 
sent direction  and  force  of  apparent 
wind. 


A  C 

Or,  — r;  =  ratio  of  velocity  oftxppareiii 

C  mT 


aP 


wind  to  UuU  ofvettely  — ^  z^  ratio  of  velocity  oj  wind  to  that  of  vessel. 

c  P 

Resistance  of  Air,    {Mr.  FnnuU.) 

Resistance,  of  wina  to  a  vessel  is  estimated  as  equivalent  to  square  of  its 

velocity. 

In  a  caln),  resistance  of  air  to  a  steamer  =  one  thirty-fourth  part  of  resist- 
ance of  water,  anU  when  a  steamer's  course  is  head-tc>,  and  combined  veloc- 
ity of  vessel  and  wind  =  15  knots,  resistance  is  one  ninth  of  that  of  the  water. 

Resistance  of  air  to  a  sq  fooi  of  surface  at  right  angles  to  course  of  a  ves- 
sel is  about  .J3  lb.,  aixl  whcL  surface  is  mclined  t)  direction  of  wind,  press- 
ure varies  as  sine  of  angle  0I  incidence. 

Mean  of  angles  of  surface  of  a  steamer  exposed  to  wind  may  be  taken  at 
45° ;  hence  their  resistance  is  about  .25  lb.  per  sq.  foot  when  wind  lias  a  ve- 
locity of  10  knots  per  hour. 

If  sectional  area  of  a  steamer's  hull  above  water  is  750  sq.  feet,  resistance 
to  air  at  a  speed  of  10  knots  in  a  calm  would  be  750  X  .25  :=  187.5  lbs.,  and 
resistance  to  smoke-pipe,  spars,  and  rigging  (brig  rigged)  would  be  201  lbs. 

I-jee\vay- 

Ant/le  of  Tjeeicay  in  gootl  sailing  vessels,  close  hauled,  varies  from  8°  to 
12°,  and  ill  inferior  vessels  it  is  much  greater. 

Ardency  is  tendency  of  vessel  to  fly  to  the  wind,  a  consequence  of  the 
centre  of  effort  being  abaft  centre  of  lateral  resistance. 

Slackness  is  tendency  of  vessel  to  fall  off  from  the  wind,  a  consequence  of 
the  centre  of  eft'ort  being  forward  centre  of  lateral  resistance. 

Remits  of  Experiments  upon  Resistance  of  Screw-propellers,  at  High  Velocities 
and  Immersed  at  Varying  D^Ots  of  Water. 


Immcralon  of 
Screw. 


Surface. 
I  foot 


Resistance. 


I 
5 


Immersion  of 

Screw. 

Resistance. 

a  feet 
3    " 

7 
75 

Immersion  of 
Screw. 

4  feet. 

5  " 


Reetstanos. 


7-8 
8 


Slip  ofPropeUer^  15  per  cent. ;  of  Sule-irheel  {feathering  bladeB)^  and  tak-^ 
ing  axes  of  blades  as  the  centre  of  pressure,  23  per  cent. 


Tr"reelt>oard# 


Measured  fi'om  Spar-deck  stringer  to  surface  0/  water.    Depth  ofHotdfirom  under- 
side qfspar  dedc  to  top  of  ceiling. 


Hold. 


Feet. 
8 

IP 


Per  Ft. 


Ins. 
«-5 

9 


Hold. 

Feet. 
12 

X4 


Per  Ft. 


Ins. 
2.25 

a-5 


Hold. 

Feet. 
16 
z8 


Per  Ft ' 

■I 


Ins. 
a- 75 
3 


Hold. 


Feet. 
20 
23 


Per  Ft 


Ins. 

3- "5 
3.25 


Hold. 


Feet. 

24 

26 


Per  Ft 

Ins. 
3-375 
3-5 


Hold.  iPttr  Fv 

Feet.  I   las. 
a8    I  3.625 

5°    1^75 


NAVAL   ABCHITSCTUBB. 


667 


Plating  Iron  Knlls. 
PA    _, 

d  depth.    Or,  .osfy/d  =  T.    /  rqn^etenting  distance  betvoeen  centra  0/ frames,  and 
d  dqp*k  ofiplaU,  Mow  load-line,  all  in  feet,  and  T  thickness  of  plate  in  ins. 


,  =  T.    D  representir^  displacement  in  tons,  L  length  of  huU,  b  breadth^  and 


INdasts    and.    Spars. 

Lower  masts at  spar  deck. 

Bowsprit ^^  stem. 

Topmasts "  lower  cap. 

Topgallant  masts "  topmast  cap. 

Fore  and  ma  in  masts,  when  of  pieces,  x 


Diameter  for  Dimensions. 

Jib-boom at  bowsprit  cap. 

Yards in  middle. 

Gaffs at  inner  end. 

Main  and  S)^>anker  booms  at  tJiHVail. 

inch  for  each  3  to  3.25  feet  of  whole 


-  feet  of  whole  length. 


length.    Mizzenmast  .66  diameter  of  mainmast.    Masts  of  one  piece  i  inch  for  each 
3.5  to  3.75  feet  of  whole  length. 

Bowsprit,  depth,  equal  diameter  of  mainmast;  width,  diameter  equal  to  foremast 

Main  and  fore  topmasts i      iuch  for  each  3 

Mizzen  topmast i 

Topgallant  masts i 

Royal  masts. i 

Topgallant  poles i 

Jib  boom i 

Fore  and  main  yards i 

Topsail  yards. 875 

Cross -jack,  Topgallant,  and) 

Royal  yards } 

Main  and  8piinker  booms i        3-5 

Gafls I        "      "      "    3-5*04 

SiuddiDg-sail  yards  and  booma  I        "     ''      "    4.5104.75, 


u 
i( 
(( 
(t 
n 
(i 
t( 

<t 

l( 
it 

(( 


(( 
t( 
1( 
(I 
(( 

C( 

t( 

i( 

(( 
t( 
<( 


(I 

(( 
t( 

(( 
t( 
t( 
i( 

cc 

(( 
ic 
it 


to  3.25 

3- 25  ''  3-33 

3-25  "  3-33 

3-66 

2.87 

2  ft.  of  length  beyond  bowsprit  cap. 

4 
4 

5 


feet  of  whole  length. 


Rudder   Head. 


{Mgckrow. ) 
At>a 


/    T  A  t>2 

Pd  =  T:    .iq6CD3=M;     3/ — __=rD;    and  =P.   P representing press- 

^  V  •  '96  C  2400 

ure  on  rudder  when  hard  over,  in  tons,  d  distance  of  geometrical  centre  of  rudder  from 
axis  of  motion,  in  ins.,  T  stress  on  head,  and  M  moment  of  resistance  of  head,  both  in 
t'ncA-totu,  A  immersed  area  of  rudder  xn  sq.  feet,  v  velocity  of  water  passing  i-udder 
in  knots  per  hour,  and  C  coefficient  =  3. 5  jter  sq.  inch  for  Iron,  and  .  125  for  Oak. 

iLLrsTRATioN. — Assumc  iiroa  of  wooden 'rudder  24  sq.  feet,  distance  of  its  geomet- 
lical  centre  from  centre  of  pintles  2  feet,  and  velocity  of  water  10  knots. 


24  X  10 


—  =  1  ton.    I  X  2  X  12  =3=  24  istch-tons. 


V.«« 


24 


=  9.93  tfU. 


2400  "V  -196  X  •125 

ACemoranda. 

Weights.  —  A  man  requires  in  a  vessel  a  displacement  ot  488  lbs.  per  month,  for 
baggage,  stores,  water,  fUel,  etc,  in  addition  to  his  own  weight,  which  is  estimated 
at  175  lbs.     A  man  and  his  baggage  alone  averages  225  lbs. 

A  ship.  150  feet  in  length,  32  beam,  and  22.83  in  depth,  or  664  tons,  C.  H.  (0.  M.), 
bas  stowed  2540  square  and  484  round  bales  of  cotton.    Total  weight  of  cargo 

I  354  448  lbs. ,  equal  to  4. 57  bales,  weighing  1889  lb& ,  per  ton  of  vessel. 

A  full  built  ship  of  1625  tons,  N.  M.,  can  carry  1800  tons'  weight  of  cargo,  or  stow 
4500  bales  of  pressed  cotton. 

Hull  of  iron  steamboat  John  Stevens  — length  245  feet,  beam  31  feet,  and  hold 

II  feet;  weight  of  iron  230440  lbs.     And  of  one  other— length  175  feet,  beam  24 
feet,  and  8  feet  deep;  weignt  of  iron  159 190  lbs. 

Weight  of  hull  of  a  vessel  with  an  iron  frame  and  oak  planking  (composite),  com- 
pared with  a  hall  entirely  of  wood,  is  as  8  to  15. 

An  iron  hull  weighs  about  45  per  cent,  less  than  a  wooden  hull. 

Iron  ship,  254  feet  in  length,  42  beam,  and  23. 5'hold,  1800  tons  register,  bas  a  stow- 
age of  3200  tons  cargo  at  a  draught  of  22  feet    Weight  of  hull  in  service  1450  tons. 

l,oss  by  Weight  per  Sq.  Foot  per  Month  ofMelaUing  of  a  Vessel's  Bottom  in  Service. 

Copper  .0061  lb. ;  Muntz  metal  .0045  lb. ;  Zinc  .007  lb. ;  and  Iron  .0204  lb. 

Comparison  between  Iron  and  Steel  pkUed  Steamers— In  a  vessel  of  5000  tons 
displacemei^t,  hull  of  steel-plated  will  weigh  330  tons  less  =  6.66  per  eentwn  less. 


OPTICS. 

MirFora,  in  Optics,  aie  either  Pltme  or  SjAerical.  A  plane  mimviit 
plane  reflecting  gunac«^  and  a  spherical  mirror  19  ons  the  Teflecting  boi^ 
of  which  IB  a  [mition  of  aurtace  of  a  aphere.  It  la  concave  or  convei,  «■ 
cording  as  inside  or  oulside  of  surface  ia  reflected  from.  Centre  of  it! 
sphere  ia  termed  Centre  q/"  cwmaare. 
Focal — Point  ia  which  1  numlter  of  ra;^  meet,  or  would  meet  if  preduoiL 
/VincijNii  Focal  Diilnacn  ia  half  raJiua 
of  cnrvature,  and  is  generally  termed  lit 
focrd  Hiilan^.  Line  a  i:  ia  tenned  tit 
=  principal  aril,  and  any  nther  riRht  liiif 
:  throuKhcwhichmcetsIheniirrorisleriiiri 
-  a  Secondary  nxii.  When  the  ioctdciil 
rays  are  parallel  to  ttie  principat  arii,  lit 
reflected  rays  converge  (o  a  point,  F. 
of  the  rays  proceeding  from  any  given  poitl 
r,  and  which  are  reflectcit  ao  aa  to  meet  in  u- 
other  point,  on  a  lino  passing  Ihroufjh  cenln 
of  sphere.  Hence,  their  relation  being  mu- 
tual, they  are  teniieil  conjugate. 


Coi^jaiiaU 


■etbe/oci 


is  behind  a  mirror,  and  reflected  rays  diverge,) 
lint,  such  focus  ia  termed  Vitiaat,  and  a  focus  i 
is  termed  RfoI. 


OPTICS.  669 

When  a  ray  is  diverted  from  vacuum  into  any  medium,  tlie  ratio  is  greater 
than  unity,  and  is  termed  absolute  index  or  index  of  refraction. 

Mean  Indices  of  Refraction, 


Eye,  vilreous  humor i- 339 

*'    crystalliue  lens,  under i-379 

"  "  '*    central 1.4 

Diamond  2.6 

Gluss,  flint 1.57 

For  indices  of  other  substances,  see  page  584. 
Heat  increases  refractive  power  of  fluids  and  glass. 


Glass,  lead,  3  flint 2.03 

"     lend  2.  sand  1 1.99 

"       "    I,  flint  I 1.78 

Ice 1. 31 

Quartz 1.54 


Critical  Angle. — Its  sine  is  reciprocal  of  index  of  refraction,  the  incident 
ray  being  in  the  less  refractive  medium. 

Thus,  -    .     =  sin,  of  angle. 
'  Index  "^     ^ 

Visual  Angle  is  measnre  of  length  of  image  of  a  straight  line  on  the  retina. 

Total  Reflection  is  when  rays  are  incident  in  the  more  refractive  medium, 
at  an  angle  greater  than  the  critical  "angle. 

Mirage. — An  appearance  as  of  water,  over  a  sandy  soil  when  highly  heated 
by  the  sun. 

Caustic  Curves  or  Lines  are  the  luminous  intersections  from  curve  lines,  as 
shown  on  any  reflective  surface  in  a  circular  vessel. 

1?o  Compute   Index  or  RefVaotioii. 

Qin    T 

_.  '  _^  =  Index.    I  rqpresenting  angle  of  incidence^  and  R  HuU  of  refradMn. 
Sin.  R 

To   Coxnpxite   H.efVaction. 

Concave-Convex  and.  Meniscus. — Effect  of  a  concave-convex  in  refracting 
light  is  same  as  that  of  a  convex  lens  of  same  focal  distance,  and  that  of'a 
meniscus  is  same  as  a  concave  lens  of  same  focal  distance. 

2  R  r 
Meniscus y  with  parallel  rays  ^-— ;  =  F. 

Magnifying  Poioer. — In  Telescopes  the  comparison  is  the  ratio  in  which  it 
apparently  increases  length.  In  Mici'oscopes  the  comparison  is  between  the 
object  as  seen  in  the  instrument  and  by  the  eye,  at  the  least  distance  of 
vision,  which  is  assumed  at  10  ins.,  and  the  magnifying  power  of  a  micro- 
scope is  equal  to  the  distance  at  which  an  object  can  be  most  distinctly  ex- 
amined, divided  by  the  focal  length  of  the  lens  or  sphere. 

Linear  power  is  number  of  times  it  is  magnified  in  length,  and  Super- 
ficialy  number  of  times  it  is  magnified  in  surface. 

Magnifying  power  of  microscofies  varies,  according  to  object  and  eye- 
pr]as8,  from  40  to  350  times  tiie  linear  dimensions  of  object,  or  from  1600  to 
X22  500  times  its  superficial  dimensions. 

Apparent  Area. — As  areas  of  like  figures  are  as  the  squares  of  their  linear 
dimensions,  the  apparent  area  of  an  object  varies  as  square  of  visual  angle 
subtended  by  its  diameter. 

The  number  expressing  Magnification  of  Apparent  Area  is  therefore 
square  of  magnifying  power  as  above  described. 

Illustbatioh. — If  diameter  of  a  sphere  subtends  i^^  as  seen  by  the  eye,  and  100 
a0  «eeo  through  a  lelescope,  the  telescope  is  said  to  have  a  power  of  xo  diameters. 


670 


OPTICS. 


Xo   Compute  Slexnents  of  ^lirrors  and   Hieneies. 

Or  It' 

li^irrors.    Spherical  Concave.*    z=  =  D;  =r:  =  l^ 

r  —  2  I  r  —  2  I 

Or  L  r  d^ 

Spherical  CmvexA     — -,— =D;         ,    ,      =1        Parabolic  Concave.     -7-r  =  P 
'^  2  Ii-|-r  2  L-|-r  10  A 

UnequaUy  Convex,  t     -r =  F.        Piano-  Convex,  g    2  B  —  .  66  f  =  F. 

K  -J-  >■ 

Hyperbolic  Concave  \\      EUipf^c  Concave.^  Spliere.         .  _    =  F. 

0  representing  abject  z:z  x,  r  \'adiu8  of  convexity^  I  and  L  length  or  distance  ofobijeci 
from  vertex  nfcu^-ve,  andfrmn  external  vei-tex,  D  dimension  of  object,  d  diameter  of 
base,  Y  focal  distance,  and  h  depth  of  mirror  in  like  dimensions,  I  index  of  refraction^ 
and  t  tftickness  of  lens. 

Illustration  l— Before  a  concave  mirror  of  5  feet  radius  is  set  an  object  at  1.5 
feet  frona  vertex  of  curve;  what  is  r.itio  of  apparent  dimenBion  of  image,  and  what 
is  length  of  and  distance  of  object  from  external  vertex  ?  Object  =  i. 

— '^^-  =  2. 5  f'^et,  and  -^^JH,  =  3-  75  /«««• 

5— 2X15  5  — 2Xi_j 

2 If  object  is  set  at  4.5  feet  f)rom  vertex' of  a  like  mirror,  what  is  length  of  and 

distance  of  inverted  object  ft'om  internal  vertex  ? 

— ?AL_  =  ,.25  feet,  and      ^'^^^     =  5.625  feet. 
2X45-5  2X4.5-5      ^     ^'^ 

3. — Before  a  convex  mirror  of  3.5  feet  radius  is  set  an  object  at  3  feet  from  ver- 
tex of  curve;  what  is  length  of  and  distance  of  object  from  external  curve? 

'  ^  3-5     _  .368 >rf,  and      ^^f^    ^i.iosfteL 


2X3  +  3-5  2X3  +  35 

4.— A  parabolic  reflector  has  a  depth  of  1.25  feet  and  a  diameter  of  2  feet;  what 


is  its  focal  distance  from  vertex  of  internal  curve  ? 

■=.^fe»t  or  2.4  ins. 


2« 


16  X  I  25 

Uenses.    Double  Convex.     t=F.     When  R  =  r  =  F; 

m-ixK  +  r  2m  — I 

dF        _            'F        _           S+F      „           OF  __         ^       SF        _ 


F  — J         '        ¥  —  1         '  F     ~"     '        p_0~     '  S-l-F 

Optical  centres  are  in  centres  of  lens.      Hano  -  Convex  and  Ptano  •  Concow. 
r 
—7—  =  F.     Optical  centres  are  respectively  centres  of  convex  and  concave  sor- 

R  T 

faces.     Convex  Concave  (Meniscus)  and  Concavo- Convex.     =F. 

w  — I  xR— r 

Optical  Centres.  Convex  Concave.  Delineate  lens  in  half  section,  draw  R  fVom 
its  centre  to  circumference  of  lens  (intersection  of  radii),  draw  r  parallel  thereto 
and  extending  to  its  circumference,  connect  R  and  r  at  these  external  points  of 
contact  with  circumference  and  external  curve,  extend  line  to  axis  of  lens,  and  point 
of  contact  is  centre  required.  Concavo- Convex^  Proceed  in  like  manner,  but  in 
this  case  r  extends  to,  or  delineates,  the  inner  surface  of  the  lens,  •'vnd  point  of  con- 
tact with  axis  is  centre  required. 


•  D  or  \mage  diMppean  when  /  =  .5  r.       f  W1i«n  O  it  bepond  F,  It  will  be  inrertod,  m     .  **     =  1>* 

aL  — r 
L  r 
•»"*  7dT r  ~  '■       ^  When  equAlly  convex  F  =  R.       f  When  convex  side  to  ezpoMd  to  pwmltel  i»J« 

•Dd  when  Mrallel  rajra  f»U  upon  plane  aide,  F  as  a  R.       |  Rays  of  Ufrht,  heat,  or  tound,  Mflectod  fron 

.•?•..**'  «J»yperbola,  will  diverge  from  ita  concave  lurfiMe,  *  and  whw  from  the  focua  of  as  eUiPM» 

wUlberaAraciedbyanrteceoftbeother.  ^^ 


OPTICS. — PILB-DBIVING.  6^  I 

WU»  tiifett  it  htftmd/oeai  ditUinc*  (F),  ite  Image  (D)  will  be  inverted,  u  ^1=  =  D,  and    ^^  =  /. 

P  r^e<en<»n^  magnifying  povoer  of  lens,  8  J»m«  ofwntMl  sight,  lo  to  12  ins.  for 
far-stghted  eyes  and  6  to  8  for  nearsigfiUed,  ordinarUy  10  mm.,  V  UmU  of  distinct 
vuwn,  O  extreme  disUmce  ofoiijectfrom  optical  centre  at  distinct  viHon,  and  m  index 
of  reaction.  ^ 

Illustration  i.— If  a  double  convex  lens  offline  glass  has  radii  of  6  and  6  25  ins 
what  is  its  focal  distance  ?  Index  of  refraction  =  i.  57,  see  page  584.   ' 

6  X  6.25 

===  =5-37  tw- 

1.57 —  «  X  6  +  6.25 

2.— If  a  double  concave  lens  has  a  focal  distance  of  2  ins.,  and  object  is  6  ins.  from 
vertex  of  curve,  what  is  its  dimension  and  what  is  its  distance  fh>m  vertex  of  inner 
curve  ? 

^  ^  2      -  .w    .»rf  4X2 

— -. —  =  2  tiw.,  ana  — ; —  =  i'.33  vns. 

2  +  4  4  +  2 

3.— If  focal  distance  of  a  single  microscope  is  4  ins.,  what  is  its  limit  of  distinct 

vision,  and  what  its  magnifying  power?  0  =  2.857  »»**. 

2.857X4  .  "0+4 

4-2.857-'°*'"'^°^  -^  =  3.5  times. 

Telescopes,  Opera-glasses,  etc. 

D:o  =  F:/;    o/^F  =  D,  and  ^  =  i;     M!L±Jl-  =  F+f    f  represent- 
ing  length  of  focal  distance  fi-om  object  lens. 

Illustration— Principal  focal  distance  of  ocular  lens  of  a  telescope  is  .0  in.  of 
objective  lens  90  ins. ;  what  is  its  magnifying  power?  ' 

90 -f-  .9  =  100  times  the  oltject 


PILE-DRIVING. 


Effect  of  the  impact  of  the  ram  of  a  pfle-driver  is  as  the  square  root  of 
its  velocity  or  heigat  o£  its  fall.    Thus  the  theoretical  velocity  of  fall  is  as 

Vs  g  h  or  S  Vh. 

The  impact  or  dynamic  effect  of  the  blow  of  a  ram  on  a  pile  cannot  be 
determined  with  exactness,  so  long  as  it  yields  under  the  blow,  as  the  yield- 
ing cushions  it  and  reduces  its  effect. 

By  my  experiments  in  1852  to  determine  the  dynamic  effect  of  a  falling  body,  I 

found  it  to  be  far  greater  than  that  given  by  the  formula  y/2  g  h,  and  upon  a  late 
repetition  of  them,  under  improved  conditions  of  the  instrument  of  registry,  I  find 
it  to  be  for  one  pound  falling  two  feet,  52  pounda  One  pound  falling  2  feet  has  a 
velocity  of  xi.31  feet  per  second,  but  its  dynamical  effect  or  vis  viva  was  52  pounds, 
or  4.6  times  the  velocity. 

Observation  and  tests  of  the  sustaining  power  of  piles,  at  different  locations  and 
under  diflferent  conditions,  gave  it  as  2,13,  and  3.7  to  i  times  that  deduced  by  the 
formula  8  VA,  which  was  but  the  net  effect,  or  capf^city,  of  ram,  less  the  friction  of 
its  operation. 

Wm.  J.  McAlpine  in  his  operation  on  the  foundations  of  the  dry-dock  in  the  Navy 
Tard,  Brooklyn,  estimated  the  effect  of  a  ram  weighing  2240  lbs.,  falling  30  feet  to  n 
reAisal,  at  224000  lbs.,  or  2.28  times  that  given  by  the  formula  w  8  y/h. 

EsBayists  present  a  variety  of  formula,  which  differ  in  form.    Some  are  com 
paratively  simple,  while  others  embrace  diameter,  length,  weight,  and  section;  < 
area,  depth  driven  by  last  blow  in  feet  or  in  inches,  and  Modulus  of  Elasticity  of  the 
material  of  the  pile,  together  with  various  factors  for  results. 

When  the  losses  of  effect  in  the  operation  of  a  pile-driver  are  duly  considered-. 
viz.,  ftiction  of  ram  in  the  guides  of  the  leader,  and  of  the  hoisting  line  of  ram  in 
the  sheave  and  over  drum  (ascertained  by  experiment  with  a  very  heavy  ram  to 

*  +  for  tclaecopee  kod  —  for  qi)«r»-^liuMe,  etc 


672 


PILE-DRIVING. 


be  equal  to  .2  foot  of  penetration:  with  a  light  ram  it  would  be  materially  more), 
the  cushioning  of  it  on  head  of  a  pile,  however  square  it  may  be  dressed  oflr,  the 
want  of  vcrticality  both  of  ram  in  falling  and  of  plane  of  the  pile  to  the  blow  and 
consequent  lateral  vibration  of  it,  the  buckling  of  it  In  driving,  the  fVeqaent  split- 
ting of  it  on  a  boulder,  and  the  condition  of  soil,  whether  dry,  moist,  or  wet;  if  it 
is  imbedded  or  partially  exposed  to  the  air,  or  wholly  immersed  in  wet  soil  and 
water,  and  the  integrity  of  the  driving — they  furnish  the  elements  in  determina 
tion  of  a  coefficient  of  safety. 

Opposed  to  these  effects  is  that  of  the  subsidence  of  the  soil  around  a  pile  that 
has'  been  disturbed  in  driving,  the  effect  of  which,  under  favorable  conditions  of 
soil,  has  approached  to  that  of  the  resistance  of  the  pile  at  its  flnal  blow. 

The  foUowinpr  formula  is  constructed  on  the  basis  of  a  pile  being  driven 
to  a  depression  of  one  inch  or  less,  as  all  estimates  based  upon  a  greater  de- 
pression are  not  only  comparatively  valueless,  in  consequence  of  the  cush- 
ioning of  the  ram,  but  if  piles  are  not  driven  to  such  depression  their  utility 
is  decreased,  and  a  greater  number  are  rendered  necessary  to  support  the 
weight  to  l)e  imposed  upon  them,  and  in  it  I  have  omitted  an  element  which 
is  universally  given  in  others,  that  of  the  last  depression  of  a  pile  as  a  divi- 
sor, as  I  nut  only  fail  to  recognize  its  connection,  but  hold  its  introduction 
erroneous. 

To  Coinpute  Safe   X^oad  of*  a    l^ile   X) riven  to  a   Depres- 
sion  of*  1   Iiiclx-  or   l^ess. 

4  W  8  y/h  =  L.  W  rqtresenting  weight  of  ram,  and  L  toad,  both  in  lb*.,  and  h 
height  of  fall  in  feet. 

From  which  result  is  to  be  deducted  a  factor  of  safety  representing  the  faction 
and  losses  of  eff'ect. 

Hence,  the  formula:  - — ^    =  L,  or  safe  load  in  pounds. 

For  C,  or  coefficient  of  safety,  in  consideration  of  the  several  losses  of  effect  re- 
cited, and  especially  that  of  brooming  uf  the  heads  of  a  pile,  It  is  assumed  at  from 
3  to  6,  according  to  the  soil  and  the  integrity  of  the  driving. 

Eliminating  the  numerator  4  and  correspondingly  reducing  the  3  and  6,  the  for- 

mula  18, -^ =  L. 

Illustration. — Assume  an  ordinary  pile  driven  in  firm  soil  by  a  ram  of  3000  lb& 
weight,  falling  25  feet,  with  a  flnal  depression  of  .5  inch,  and  coefficient  of  1.35; 
what  would  be  its  safe  load? 


2000  X  8  ^25     2000  X  8  X  5      ,  ,. 

z. — i  — ^=£04  000  CM. 

1-25  1.25 

In  practice,  in  the  determining  the  capacity  of  a  range  of  piles,  it  is  proper 
to  reduce  the  result  obtained  by  the  fornmla,  to  meet  incidental  effects,  as 
negligence  in  driving,  in  the  superintendence  of  it,  and  the  frequent  and  un- 
observed splitting  or  crushing  of  a  pile  on  a  stone  or  boulder. 

A  heavy  ram  and  a  low  fall  is  most  effective  condition  of  operation  of  a 
pile-driver,  provided  height  is  such  that  force  of  blow  will  not  be  expended 
in  merely  overcoming  friction  of  leader  and  inertia  of  pile,  and  at  same  time 
not  from  such  a  height  as  to  generate  a  velocity  which  will  be  essentially 
expended  in  crushing  fibres  of  head  of  pile. 

When  the  soil  is  very  soft  or  wet,  concrete  should  be  laid  between  the 
heads  of  the  piles  to  a  depth  of  from  1.5  to  3  feet. 

When  the  soil  is  of  fine  sand  or  light  gravel,  piles  may  be  set  two  fiert 
from  their  centres,  but  if  it  is  saturated  with  moisture,  a  greater  distance  ia 
necessary,  otherwise  small  piles  are  liable  to  be  disturbed  by  large. 

(Continued  on  pa{fe  972.) 


PILE-DRIVING. — PNEUMATICS. — AEROMBTEY.      6/3 

File-fSixibiiig. 

MUchelVa  Screw  Piles  are  constructed  of  a  wrought-iron  shaft  of  suitable 
iliamet«r,  usually  from  3  to  8  ins.,  with  1.5  turns  of  a  cast-iron  thread  of 
from  1.5  to  3  feet  diameter. 

Hydraulic  Process  is  effected  by  the  direction  of  a  stream  of  water  under 
pressure,  within  a  tube  or  around  the  base  of  a  pile,  by  which  the  sand  or 
earth  is  removed. 

Pneumatic  and  Pkimm  Process.— ¥ot  illustration  and  details,  see  Trautr 
wine's  Engineer's  Pocket-book,  647-8.  New  Edition. 

Dr,  Whewell  deduced  the  following  results : 

1.  A  slight  increase  in  hardness  of  a  pile  or  in  weight  of  a  ram  wiU  con- 
siderably increase  distance  a  pile  may  be  driven. 

2.  Resistance  being  great,  the  lighter  a  pile  the  faster  it  may  be  driven. 

3.  Distance  driven  varies  as  cube  of  the  weight  of  ram. 

Belative  Resistance  of  FormcUions  to  Driving  a  Pile. 

Coral 100  I  Hard  clay - .  60  I  Light  clay  and  sand. . .  35 

Clay  and  gravel 83  |  Clay  and  sand. 45  |  River  silt 25 


PNEUMATICS.— AEROMETRY. 


Motion  of  gases  by  operation  of  gravity  is  same  as  that  for  liquids. 
Force  or  effect  of  wind  increases  as  square  of  its  velocity. 

If  a  volume  of  air  represented  by  i,  and  of  32°,  is  heated  t  degrees  without 
assuming  a  different  tension,  the  volume  becomes  (1  -f-  .002088  0  =  V;  and 
if  it  requires  a  temperature  in  excess  of  t'  32^,  it  will  then  assume  volume 

(i  -|-  .002088  <'  —  32°).    All  aeriform  fluids  follow  this  law  of  dilatation  as 
well  as  that  of  compression  proportional  to  weight. 

When  air  passes  into  a  medium  of  less  density,  its  velocity  is  determined 
by  difference  of  its  densities.  Under  like  conditions,  a  conduit  will  discharge 
3a55  times  more  air  than  water. 

To  Compute  tbe  X>egree  o£  Rarefkotion  that  may  tte  ef- 

ieoted.  in.  a  Vessel. 

Let  quantity  of  aur  in  vessel,  tube,  and  pump  be  represented  by  i,  and 
proportion  of  capacity  of  pump  to  vessel  and  tube  by  .33;  consequently,  it 
contains  .25  ^f  the  air  in  united  apparatus. 

Upon  the  first  stroke  of  piston  this  .25  will  be  expelled,  and  .75  of  original 
quantity  will  remain ;  .25  of  this  will  be  expelled  upon  second  stroke,  whicfi 
is  ef]ual  to  .1875  of  original  quantity;  and  consequently  there  remains  in 
apparatus  .5625  of  original  quantity.  Proceeding  in  this  manner,  following 
Table  is  deduceid : 


No.  of  Sirokflt. 

Air  Expelled  at  each  Stroke. 

Air  Remaining  in  Veaael. 

z 

.25  =  .25 

•75  =  -75 

4 

3  _     3 

9_3X3 

x6      4X4 

»6      4X4 

0 

9          3X3 

27_3X3X3 

0 

64      4X4X4 

64      4X4X4 

And  so  on,  multiplying  air  expelled  at  preceding  stroke  by  3,  and  dividing 
it  by  4;  and  air  remaining  after  each  stroke  is  ascertained  by  nmltiplying 
remaining  after  preceding  stroke  bv  3,  and  dividing  it  by  4. 


674 


PNEUMATICS. — AEROMBTBY. 


IDistauoes   a.t  ^vliiolx   "DiffereTit   Sounds   are   A.u.di'ble. 

Feet.  Mile*. 

A  fUIl  human  voice  speaking  in  open  air,  calm 460  .087 

In  an  observable  breeze,  a  powerful  human  voice  with  the)  « 

wind  can  be  heard )      '^  ^°         ^ 

Report  of  a  musket x6 000  3.02 

Drum 10  560         2 

Music,  strong  brass  band 15  840         3 

Cannonading,  very  heavy 575  000  90 

In  Arctic  Ocean,  conversation  has  been  maintained  over  water  a  distance 
of  6696  feet. 

In  a  conduit  in  Paris,  the  human  voice  has  been  heard  3300  feet 

For  an  echo  to  be  distinctly  produced,  there  must  be  a  distance  of  55  feet. 

Coefficients  o/Effiux  0/ Discharge  qf  Air.     {D^Aubuisson.) 

Orifice  in  a  thin  plate 65        .751 

Cylindrical  ajutage 93        .958 

Slight  conical  ajutage 94      1.09 

To  Conapixte  Volniiae  of  Air  IDi^oKarged.  througli  an  Oper&«. 
ixig  into  a  Vacuvixxi,  per  Second. 

a  C  V2  gh  =  Y  in  cube  feet,    a  representing  area,  of  opening  in  square  feety  C  co- 
effi/Hent  ofeffiux,  and  y/i  g  h=  1347.4,  ^  shoton  at  page  428. 
Illustration. — Area  of  opening  i  foot  square,  and  G  =  .707. 
Then  i  x  707  X  1347-4  =  952.61  cube  feet 
Inversely y  V  -r-  a  =  velocity  in  feet  per  second.' 

"Velocity   and   I:*ressvire   of  Wind. 
Pressure  varies  as  square  of  velocity,  or  P  oc  V. 

Va  X  .005  =  P;        \/2oo  P  =>V;        «'  X  0023  =  P;   and   .0023  e*  sin.  a?  =  P. 
V  repre»!ntiim  velocity  in  miles  per  Aof«r,  v  in  feet  per  second,  P  pressure  in  lbs. 
per  sq.foot,  and  x  angle  of  incidence  ofvxind  with  plane  of  surface. 

rrable   deduced   from   a'bove   Formulas. 


Vel 

ocity 

Pressure 

Honr. 

per 
Minnte. 

on  s 
Sq.  Foot. 

Miles. 

I 
2 

3 
4 

Feet. 

88 

176 

264 

352 

Lbs. 
.005 
.02    ) 

•045} 
.<!>8 

5 
6 

440 
528 

•  125) 

..8 

8 
10 

704 
880 

32   ) 
•5 

15 
20 

1320 
1760 

1.125 
2 

Character  of  the  Wind. 

Barely  observable. 

Just  peroeptible. 

Light  breeze. 

Gentle,     pleasant 
wind. 

Fresh  breeze. 
Brisk  blow. 
Stiff  breeze. 


Velocity 

Pressure 

Hour.  Minute. 

on  a 

Sq.  Foot. 

Miles. 

Feet. 

Lbe. 

25 
30 
35 

320D 

2640 
3080 

3»25 
6.125) 

40 
45 

3520 
3960 

8 
iai25 

50 
60 

4400 
5280 

12.5 
18 

80 

7040 

32 

90 
100 

7920 
8800 

40^51 
50    }•• 

Character  of  the 
Wind. 


Very  brisk. 

High  wind. 

Very  high  wind. 

Gale. 

StornL 

Great  storm. 

Hurricane. 

Tornado. 


Illustration. — What  is  pressure  per  sq.  foot,  when  wind  has  a  velocity  of  x8 
miles  per  hour?  ,32  ^  .005  =  1.62  lbs. 

To   Compute    Force   of  Wind   upon,   a   Surfhoe. 

»=  a  /  a  sin  2  a;  \       „  ,,  ,     .,      ^     .    ,  .     -  . 

1  -       . — ^— 1  =  P     V  representing  velocity  of  unna  mfeet  per  seoondy  a  arem 

oj  surface  in  sq.feel,  and  z  angle  of  incidence  of  wind. 

At  Mount  Wasliiugtoii  wind  has  been  observed  to  have  had  a  velocity  of  150  miles 
per  hour=  112.5  lbs.  per  sq.  foot. 

Extreme  pressure  of  wind  at  Greenwich  Observatory  for  a  period^  20  years  was 
41  lbs.  per  sq.  foot.  .,  ,f^ 


PITEIJMATICS. — AKBOMjETE  Y.  67  5 

Force  of  wind  apon  a  surface,  perpendicular  to  its  direction,  has  been  ob- 
served as  high  as  57.75  lbs.  per  sq.  foot ;  velocity  =  159  feet  per  second. 

Dr.  Button  deduced  that  resistance  of  air  varied  as  square  of  velocity 
nearly,  and  to  an  inclined  surface  as  1.84  power  of  sine  x  cosine. 

Figure  of  a  plane  makes  no  appreciable  difference  in  resistance,  but  con- 
vex surface  of  a  hemisphere,  with  a  surface  double  the  base,  has  only  half 
the  resistance. 

At  high  velocities,  experiments  upon  railways  show  that  the  resistance 
becomes  nearly  a  constant  quantity. 

Course   of  "Wind.. 

Dirtiumi*  r^-vrrtl^-tnAa  DirtlUcn  in 

Nortium  Hemupitr*.  ^  yoiones  .  8t»itk«m  HemitphM^ 

Wind  has  its  direction  nearly  at 
right  angles  to  line  between  points  of 
liighest  and  lowest  pressure  of  air,  or 
barometer  readings,  and  its  course  is 
with  the  point  of  lowest  pressure  at 
its  left,  and  its  velocity  is  directly  as 
difference  of  the  pressures. 

In  Northern  Temperate  zone,  winds  course  around  an  area  of  low  pressure 
in  reverse  direction  to  course  of  hands  of  a  watch,  and  they  flow  away  from 
a  location  of  high  pressure,  and  caase  an  apparent  course  of  the  winds  in  di^ 
rection  of  course  of  the  hands. 

To   Compute   Resistaiioe   of*  a  Plane   Surface  to   ^ir. 

.0023  av^  =  'Pin  lbs.    a  representing  area  of  plane  in  sq.feet^  v  velocity  in  direc 
tion  0/  wind  in /set  per  second^  -\-  when  it  moves  opposite^  and — when  with  the  toind 

When  Barometer  Pressure =yi  Lbs, 

{C.  F.  Martin,  U.  S.  S.  S.) 

.004  a  V»  =  P.    V  representing  velocity  of -wind  in  miUs  per  hour^  and  a  area  of 
pressure  in  sq.feet. 

To  Compute  Hieiglit  of  a  Column  of  l^eroury  to  induce 
an   J£filnx   of  Air  tliroiigh.   a  given    r^ozzle. 

Barometer  assumed  at  2. 46  feet  =  29. 52  ins. ,  and  Temperature  $2^. 

pa 

-g 5-^  =  H,  and  48.073  d*  y/R  =  P.    d  representing  diameter  ofnoztle  and  H 

height  of  column  of  mercury,  both  infect,  and  P  volume  of  air  in  lbs.  per  me  second, 
Illustbation.— Assume  d  = .  19,  and  P  =  .7  lbs. 

48.073' X.t9*  ~  "'^'^  ^^^     *^°"  ^  •  '^'  "^'^^  =  •7- 

To  Compute  Pressure  or  "WeigHt  of  Air  under  a  given 
Heiglit  of  Barometer  and  Temperature,  I3iaoIiarged  in 
One  Second. 


30. 787  d'^  yj^  -^^  =  pressure  in  lbs.    Or,  48.073  d«  ^B  =  lbs.    b  representing 

height  ofbaromfter  in  external  air.  B  manometer  or  pressure  of  air  in  reservoir  in 
mercury,  both  in  feet,  and  t  temperature  of  air  or  gas  in  degrees. 

Illcstkation. —Assume  6  =  2. 5  fett ;  d  = .  25  foot ;  B  = .  x  foot ;  and  t  =  x. oss^- 
Hien  3a 787 X  .0625  w  . I  X  ''^"^•'  =  1.924  X  V'^465  =  -9543  lbs. 


6/6  PNEUMATICS. — A£BOM£TBY. 

To  Compute  rreznperature  for  a  given.  Iuatitu.de  and  Sllei^ 

vatioxi. 


82.8  COS.  I  -^  .001  981  E  —  .4  =  t     E  representing  elevation  in  feet 
Illustration.— Assume  2  =  450;  cos.  =.707;  and  E=(Ss6  feet. 

Then  82.8  x  707  —  .001 981  X  656  — "^  =  58.54  —  1.299  —  4  =  58.54  — .899  = 
57.641. 

Xo  Compute  Volume  of  A.iv  or  O-as  Discliarged  through 
au  Opening  and  under  a  JPressure  above  that  of  ^jX^- 
ternal   ^ir. 


d' 


A  ir.    1347. 4  C  —  Vb  (6'  -|-  B)  T  =  V  in  cube  feet  per  second, 
o 

T  =  I  ■+- .002  22  {t  —  32°),  and  6'  =  2.5  —  .00009  elevation. 

Or,  621.28  d2  VB  =  V. 

iLLrsTRATioN.— What  would  be  volume  of  air  that  would  flow  through  a  nozzle 
.246  foot  in  diara.  from  a  reservoir  under  a  pressure  of  .098  foot  of  mercury,  into 
air  under  a  barometric  pressure  of  2.477  ^^^^-^  temperature  of  air  55.4°,  location  45° 
of  latitude,  and  at  an  elevation  of  650  feet  above  level  of  sea? 

C  =  .7s;    6'  =  2.5  — .00009X650  =  2.4415  (2.44);  and ■  T  r=  1.0502. 

Then  1347.4  X  75  '-— — \/.o98  (2.44  +  .098)  X  1.0502  =  24.689  X  y/.^Sij  =  13.63 

2.477 

cube  feet 

.  When  Densities  of  External  Air  and  that  in  Reservoir  are  ICqual, 


1347.4  C  -p  \/B  (6  -}-  Bj  T  =  V.    b'  representing  height  of  mercury  in  reservoir. 

Gas,    ^J-^/t-zt — ^Trf  — ^-    P  representing  specific  gravity  of  gas  compared 

with  air,  and  L  length  of  pipe  or  conduit  in  feet. 

Illustration. — If  a  pipe  .05  feet  in  diameter  and  420  feet  in  length,  communi- 
cates with  a  gasometer  charged  with  carburetted  hydrogen  (illuminating  gas),  under 
a  water  pressure  as  indicated  by  a  manometer  of  .1088  foot,  what  would  be  the  dis- 
cbarge per  second? 

d  =  .05  foot ;  L  =  420  feet ;  and  B  =       , .  =  .008  foot.    Specific  gravity  of  gas 

13.0' 

.5625. 


4231 


/    .cx)8  X -05*         4231        / 000 000 002 5000  .      - 

/ ^      =^^-   .     -T — ^—=. 013 71  cu6«/oot 

V  420-1- 42  X. 05        -75    V        420  +  2.1 


\/-5625   V  420 -1-42  X. 05 

Resistance  of  Curves  and  A  »^^«.'^Carves  and  angles  increase  resistance 
to  discharge  of  air  or  gas  very  materially.  By  experiment  of  D*Aubuisson 
7  angles  of  45*^  reduced  discharge  of  gas  one  fourth. 

To  Compute   Diameter  of*  X)isoharge-pipe   or   T>fozzle. 
When  Length  and  Diameter  of  Ptpe^  Volume^  and  Presswe  are  given. 

Illustration.— If  a  pipe  1000  feet  in  length,  and  .4  foot  in  diameter,  leads  to  a 
reservoir  of  air,  under  a  mercurial  manometric  pressure  of  .t8  foot,  what  diameter 
must  be  given  to  a  nozzle  to  discharge  4  cube  feet  per  second? 

..  /  42X4^X45  .  /        6.88128 

Then   4  / ?_   -  ?_      -'*  _     .        =  * / = ^—  —  ^.000  405  3  = 

V  42302  X   18X45  — ICXX5X4*      V  32980.19  — 16000 
.1418 /oo<  =  1.703  ins. 

Volumes  of  two  gases  flowing  through  equal  orifices,  and  under  equal  pressures, 
ure  in  inverse  ratio  of  square  roots  of  their  respective  densities. 


*  Specific  gravity  of  mercnry  compared  with  water* 


BAn.WA.TS. 


67; 


To  i:>efixie  a 


Fi|^i. 


RAILWAYS. 
Cvirve.— Fig.  1. 

1719  c 


a 


{Molesumrth.) 
or  t  tau.  a;  =  R;        R  (cotan.  x)  =  t; 


1719  c 
K 


=  a;       R  (cosec.  a?  — i)  =  d; 


R  (cosin.  X)  =  *;'       R  (coversin.  a;)  =  V; 
5400—    _^  ^mi   (5400  — «)  .000582  R  =  i 

c  repreienting  any  chord,  t  length  of  tangent,  d  distance  of  centre  of  curve  from  in- 
terKcUon  of  tangents,  s  ha{f  chord  of  curve,  and  I  lengtli  of  curve,  all  in  like  dimensions 
a  tangential  angle  ofc  in  minutes,  n  number  of  chords  in  curve,  and  x  half  angle  oj 
intersection,  fnU  in  formulas  for  number  of  chords  and  length  of  curve  to  be  expressed 
in  minut€s. 

Illustration. — Assume  radius  900  and  chord  400  feet;  angle  of  iutersection  = 
12°  44'  =  764  minutes,  and  x  =  56*  15'  5". 

Tangent  of  56°  15'  5"  =  i.  496  73.    Cotangent  =  .668 14. 

1719  X  400     _  -  .         1719  X  400       ^  ,  ,,_ 

,         =R  =  9oo/gg<;        -^-^ — ^— =  764TOtnwte«;        900  X  .66814=^  = 

601.33  feet;      900  X  1.20269  — i  =d=  182. 42 /ee<;      9ooX.555  55=«  =  soo/ee<; 

900  X  .16833  =  V  =  i5i.5/««</        ^^^I^^^^^'^  =  2.645  '»»»«,  and  .000582  X  900  X 


764 


5400—3379  =  xo58.6/ee& 


Tangential  Angles  for  Chorda  of  One  Chain. 


Radio*  of 
Cnrre. 

TaDfrential 
An«le. 

Radios  of 
Carv«. 

TangentlHl 
Angle. 

Radias  of 
Curve. 

Tanf^ential 
Angle. 

Radius  of 
Curve. 

Tonjrential 
AuKle. 

Chain*. 

5 
8 

9 
xo 

12 

5°  «f  , 
3°  34;87' 

3°  11 
20  51.9', 
2°  23.25 

Chain*. 

15 
20 

25 
30 

35 

'0  54-^'^ 
1°  25.95 

1°    8.76' 

57-3', 
49.11 

Chain*. 
40 

45 
50 
60 
70 

42. 9j' 
38.2* 

34-38' 
28.65' 
24.55' 

I  mile 
1.25  mil's 
1.5  miles 

1-75    '* 
2 

21.48' 
17.19' 

12.28 
10.74' 

NoTB.— Angle  for  2  chain  chords  is  double  angle  for  i  chain  chords.    Angle  for  .5 
chain  chords  is  .5  the  angle  for  i  chain  chords. 

Carves  of  less  than  20  chains  radius  should  be  set  out  in  .  5  chain  chords.    Curves 
of  more  than  1  mile  radius  may  be  set  out  in  2  chain  chords. 

Angles  in  above  Table  are  in  degrees,  minutes,  and  decimals  of  minutes. 

Sidiugs. 


2  Vrf  R  — (.5  d)*  =  ?.  R  representing  radium  of 
curve,  I  length  of  curve  over  points,  and  d  distance 
between    tracks,  _. 

aU  in  feet.  ^  ,  *^'«- 3- 

\ 


T-arn-otit  of  XJneq.Ti.al   Hadii^ 
^p;=y;  »— y=*;  a4-6=Z;  r— y=A; 

•/y(r+A)  =  a;  R  — «=rB;    V«(R-|-B)  =  &. 

R  and  r  representing  radii  of  the  curves  re- 
spectively  as  to  length,  x  distance  between  outer 
rails  of  tracks  and  oUier  symbols  as  shoum,  aU 
^feeL 

aL* 


678 


BAILWATS. 


Fig.  4. 


Points   and   Orossings. 

'  '     R  '     vsr.  sin.  a 


^^  Xi  1}     ail— 1  Ml  a 


_  serUing  radius  of  curves^  6  ffouffe  o/roady  a  angle  ofcrouimgy 
^  -and  X  =  R  —  G,aUin  feet. 

In  horizontal  curves,  width  required  for  clearance  of 
flange  of  wheel,  and  for  width  of  rail  at  heel  of  switch, 
render  it  necessary  to  make  an  allowance  ii^  length  of  /, 
as  ascertained  by  formula. 

For  other  diagrams  and  formulas,  see  Molesworth^s  Pocket- 
book,  pp.  208-18,  2ist  edition. 

1710  c 
To   Compute   Ta.iigexitial  Aaigle  ."^or   Curves.     — — —  =  0.  e 

representing  chord  in  feet,  and  a  angle  in  minutes. 

Illustration. — What  is  augle  for  a  curve  with  a  radius  of  900  feet,  and  a  chord 
of  400  feet? 

12^12<^  =  764  minutes. 
900 


1.56 1' 
R 


Curving   of*  Hails. 

=  V.     I  representing  length  of  raU  in  feet^  v  versed  sine  at  centre,  when 

tUrved,  in  ins. 
Illustration— What  is  curve  for  a  rail  20  leet  in  length,  with  a  radius  of  900  feet? 

i.5X2o« 


900 


=«666  ins. 


Curves  "by   Offlsets   in   £2qual   Cliorda. 

Chorda  Chord  2 


=  3,0  qfaet 


Illustration.  — Assume  chords  150,  and  ra- 
T    dius  900  feet. 

22  500  _  22  500  -  _, 

=  i2.s  feet;     --5^:  =  25 /erf. 


2  X  900  900 

To  Compute  /Versed   Sines  and  Ordinates  of  Curves. 

Fig.  6. 


B  — VR»-(.5C)»  =  i>i 


(sO)' 


4-  w  =  D  ;     and 


I. 


R^ 


D 


VR''  —  »*  —  (R  —  r)  =  0.      D  representing  diameter  of 
\    eirelet  and  v  versed  sine  of  curve. 

\      Illustration.— Assume  radius  9cx>,  and  chord  400  feet 
900 —  a/Siocxx)  —  40000  =  900  —  877.5  =  aa.5yte<. 


Relation  of  Base  of  Driving  or  Rigid  "Wheels  to  Curve. 

— ^  — .  B.    R  representing  minimum  radius  of  curve,  G  gauffe  of  road,  and  B  6«we, 

all  in  feet. 

To   Compute   Slevation   of  Outer   Rail. 

For  any  Kadtua  or  Combination  of  Curve  tvifk  Straighi  Line. 

•  5  V  y/G  =  c.     V  representing  velocity  of  train  in  feet  per  second,  G  gauge  <{^roa(L 
and  c  Unglk  of  a  chord,  both  in  feet,  the  versed  sine  of  which  =  eUvation  m  in$. 


Va 


On   Curves. 


i.as 


^  G  =  E.    E  representing  elevation  of  outer  rail  in  ins 


RAILWAYS. 


679 


Radii  of*  Ouirves  set  out  in   Tangcxxtial   A^xxgles. 


Angle  for 
Chord  of 
100  Feet. 

Radio* 

of 
Curve. 

Angle  for 
Chord  of 
100  Feet. 

0    ' 

30 

I 

«   30 

2 

Feet. 
5729.6 
2864.8 
1909.9 
1432-4 

0    ' 

2  30 

3 

3  30 

4 

Radio* 

of 
Curve. 

Feet. 

"45-9 

954-9 
818.5 

716.2 


Angle  for 
Chord  of 
100  Feet. 


4  30 
5 

5  30 
6 


Radius 

of 
Curve. 


Feet. 

636.6 

573 
520.9 

447-5 


Angle  for 
Chord  of 
100  Feot. 


O    ' 

6  30 
7 

7  30 
8 


Radio* 

of 
Carve. 


Feet. 

440.7 

409.3 
382 

358.1 


NoTB.— If  chords  of  leEss  length  are  used,  radius  will  be  proportional  thereto. 

To  Ascertain  Radius  of  Curve  in  Inches  for  Scale,  in  Feet  per  Inch. 
Divide  radius  of  curve  in  feet  by  scale  of  feet  per  inch. 

To   Compute   R,eq.\iired.   "Weiglit   of  liail. 

Rule. — Multiply  extreme  load  upon  one  driving-wheel  in  lbs.  by  .005, 
and  product  will  give  weight  of  rail  in  lbs.  per  yard. 

Xo   CJouupvite   Radius   of  Curve   aud   Wlieel   Sase. 

o  B  6  =  R.     —jr  =  B.    B  representing  maximum  rigid  wJieel  base  of  cars^  and  Q 
9G 

gauge  of  way ^  both  in  feet. 

Xo  X>etermine  Klevatiou  of  Outer  Hail. 

f^  any  Badius  or  Construction  of  Curve  with  Straight. — Fig.  7. 

Fig.  7.  V  .5  y/G  —  c.    V  representing  speed  of  train  in  feet  per  sec- 

ond, O  gauge  of  rails  in  feet,  and  c  length  of  chord,  versed  sine 
V  of  which  unit  give  at  its  centre  the  elevation  required. 

Thus,  determine  chord  c,  align  it  on  inner 
side  of  rail,  and  distance  of  rail  from  it  at 
centre  of  its  length  will  give  elevation  re- 
^\>  quired,  whatever  the  radius  of  rail. 

N  U  iC  1.25  K 

diameter  ofwheelSy  W  vridth  of  gauge,  P  lateral  play  between  flange  and  rail,  and 
R  radius  of  curve,  aU  in  feet,  i  -^  N  raiio  of  inclination  of  tire,  V  velocity  of  train  in 
miles  per  hour^  and  E  elevation  of  outer  rail  in  ins.    {Molesworth.) 

'   "*    '  =  resistance  due  to  curve,  and  W  representing  weight  of  body,  both  'in 

2  R 
lbs. ,  C  eoefficiet^  of  friction  of  wheels  upon  rails  =  .ito  .27,  according  to  condition  of 
veather^  d  distance  of  rails  apart^  I  length  of  rigid  wheel  base,  and  R  radius  of  curve, 
aU  in  feet    (Morrison.) 

iLLrsTRATioK.— Assume  weight  of  locomotive  30  tons,  radius  of  curve  1000  feet, 
distance  of  rails  apart  4  feet  8.75  ins.,  length  of  base  10  feet,  and  rails,  dry,  C  =  i. 

30X2240X  XX  (4-73-1- 10) ^  j5,. 

2  X  xooo 

To   Compxite    Resistance    due   to   Gravity  upon    an    In- 
clination. 

■   '^1°  ,  =  lbs.  per  ton  of  train. 
gradient 

Rise  per  ^lile,  and   K,esistanoe  to  Q-ravity,  in  l^bs.  per 

Ton- 
Gradient  of  I  Inch. 


Rise  in  feet 

R«sigtaace,., 


20 

264 
ZX9 

25 

211 
89.6 

30 

35 

151 
64 

40 

132 
$6 

45 

117 
50 

50 

60 

88 
37.3 

70 

75 
32 

80  f  90 

1 

66    59 
28    24.8 

176 

74-7 

106 
44.8 

100 

53 
22.4 


68o 


KAILWAYS. 


To  Coxnpute  X^oad  'wliicb.   a  Xjocoxxiotive   -^vill   Dra^tv   -up 

aix    liicliiiatioxx. 


T  -H  »•  -f-  *■'  —  W  =  L.  T  refrresenting  tractive  povoer  of  locomotive  in  lb$.,  r  re- 
sistance due  to  gravity,  and  r'  resistance  due  to  assumed  velocity  of- train  in  lbs.  per 
ton,  W  weight  tf  locomotive  and  tender,  and  L  load  locomotive  can  draw^  in  tons,  ex- 
clusive of  its  own  weight  and  tender. 

Coefficients  of  Traction  of  Z,ocvmo^ut;«.— Railroads  in  good  order,  eUx,  4  to  6  IbB. ; 
in  ordinary  condition,  8  lb& 

In  coupled  engines  adliesion  is  due  to  load  upon  wheels  coupled  to  drivers. 

To  Compute  Traction,  £ietraotioii,  and  A^dliesive  Fo'wer 

of  a   I^ocoznotive   or   Train. 

When  upon  a  Level,  a«  P-=-D  =  T.  a  representing  area  of  one  cylinder  in 
sq.  ins.,  s  stroke  of  piston  awl  D  diameter  of  driving-wheels,  both  in  feet,  P  mean 
pressure  of  steam  in  lbs.  per  sq.  inch,  and  T  traction,  in  lbs. 

When  upon  an  InclimUion.  asP-r-D  —  rwh  =  T.  r  representing  resistance 
per  ton,  to  weight  of  locomotive  upon  driving-wheels,  in  tons,  h  lieight  of  rise  in  feet 
per  100  of  road,  and  R  =  rwh=z  retraction,  in  lbs. 

Cwb-T- 100  =  A.     b  representing  base  of  inclination  in  feet  per  100  of  road. 
Cw=:A.    C  =  coefficient  in  lbs. per  ton,  and  A  adliesion,  in  lbs. 

WJien  Veipcity  of  a  Train  is  considered. 

When  upon  a  Level,  W  (C  +  -/V)  =  R.  When  upon  an  TnclinaiUm^ 
W  0'  A  +  C  -|-  V^)  =  K.     V  representing  velocity  of  train  in  miles  per  hour. 

Illustration.— A  train  weighing  300  tons  is  to  be  driven  up  a  grade  of  52.8  feet 
per  mile,  with  a  velocity  of  16  miles  per  hour;  required  the  retractive  power? 

52.8  per  mile  =:  i  in  100  feet  =  r  =  22.4  lbs.        C  =  5. 
aoo  (22.4  X  I  +  5  +  y/^^)  ~  200  X  22.4  +  9  =  6280  lbs. 

Velocity  of  Trains. 


Miles  per  hour. 


Resistance  upon  straight ) 

line  per  ton    |  ) 

Do.,  with  sharp  curves  j  > 
and  strong  wind*. . . . )  |  '^ 


10 

Lto. 

8.5 


15 

20 

Lb*. 

Lbs. 

9.25 

10.25 

14 

155 

30 

LU. 
1325 
20 


40 

SO 

60 

Lb*. 

Lb*. 

Lb*. 

1725 

23.5 

«9 

26 

34 

43-5 

70 


36.5 
55 


*  Eqaal  to  50  p«r  cent.  add«d  to  resisUnoe  apon  a  ttnilght  Ho*. 

Friction  of  locomotive  engines  is  about  9  per  cent,  or  2  lbs  per  ton  of  weight. 
Case-hardening  of  wheel  tires  reduces  their  Ariction  (Vom  14  to  .08  part  of  load. 

To  Comp-ute  ^^azimum  ILioad  that  can  l>e  dra'^^n  "by  an 
£^ngine,  up  tUe  ^lazimnm  Ghrade  tliat  it  can  .A^ttaiu, 
Weight  and   O-rade   being  given.     {Mag.  McCldlan,  U  S.  A.) 

2  A  2  A 8  L 

'        .  „  =  L,  and =  —  =  0.    A  representing  adhuive  weight  of  engine, 

.  4242  6  -|-  8  4242  L  w      ^      9      t 

in  lbs. ,  6  grade  in  feet  per  mile,  and  L  loaJ,  in  tons. 

Note  i.— When  rails  are  out  of  order,  and  slippery,  etc.,  for  .a  A,  pat  .143  A. 

2.  —With  an  engine  of  4  drivers,  put  .6  as  weight  resting  upon  drivers;  with  6 
drivers  the  entire  weight  rests  upon  them. 

Illustration.— An  engine  weighing  30  tons  has  6  drivers;  what  are  the  moaBimtm 
loads  it  can  draw  upon  a  level,  and  upon  a  grade  of  250  feet,  and  what  is  its  maxi 
mum  grade  for  that  load? 

.2X2240X30       '3440  _  ,^„^  ,  ,^,  ,^^  „  i^^i        .aXa24oX  30  _  13440 

•— — — 7— r =Tr— =  1505.4  lOn*  tWJOW  O  WDCt ,-r  =  -  -  ^ 

424a-f-8  8.4242  ^  .4342X2504-8       zi4>05 

.9X2240X30  —  8  X  1 17. 8       12497 


117.8  tons  up  a  grade  of  2^0  feet. 


=  a5aiyis«t 


4242X1 17- 8  49-97 

Adhesion  of  a  4- wheeled  locomotive,  compared  with  one  of  6  wheels,  ip  as  5  to  8 


BAILWAYS. 


68l 


OPEKATION   OP    LOCOMOTIYEB.      (O.  CfhanuUy  Am.  Soc  C.  E.) 

Adhesion  of  a  locomotive  is  friction  of  its  driviog-wlieels  upon  the  rails- 
rary  ing  with  condition  of  the  surface,  and  must  exceed  traction  of  the  engine 
upon  them,  otherwise  the  wheels  will  slip. 

Improvements  heretofore  made  in  the  construction  of  locomotives  and 
tracks  have  gradually  increased  the  proportion  which  the  adhesion  bears  to 
the  insistent  weight  upon  the  driving-wheels. 

The  first  accurate  experiments  were  those  of  Mr.  Wood  upon  thQ  early  English 
coal  railways    He  deduced  the  adhesion  to  be  as  Ibilows: 

Upon  perfectly  dry  rails 14  of  weight  on  drivera 

"    damp  or  muddy  rails 08"       **      "        " 

*'    very  greasy  rails 04"       "      '*       ♦* 

In  1838,  B.  H.  Latrobe  indicated  .13  as  a  safe  working  adhesion,  while  modern 
Earo|)ean  practice  assumes  about  .2  of  weight  as  maximum,  and  .  11  as  a  minimum, 
except  perhaps  in  some  mountainous  regions,  subject  to  mista  Thus,  on  the  Soum- 
mering  line,  adhesion  is  generally  .16,  and  between  Pontcdecimo  and  Bosalla,  in 
Italy,  it  never  exceeds  .12  in  open  cuttings,  or  .1  in  tunuela 

Extensive  experiments  made  upon  French  railways,  1862-67,  by  Messrs.  Vuille- 
min,  Guebhard,  and  Oieudonne  gave  following  coefficients  in  actual  working:  dry 
tofother^  extreme,  .105  to  2;  damp,  .isa'to  .139;  wet,  .078  to  .164;  light  rain,  .09; 
extreme  rain, .  109  to  .2,  mean, .  13 ;  rain  and  Jog,  .115  to  .  14 ;  heavy  rain,  16. 

Materially  better  results  are  obtained  in  United  States,  partly,  perhaps,  in  con- 
sequence of  greater  dryness  of  the  weather,  and  certainly  because  of  the  American 
method  of  construction  and  equalizing  the  weight  between  the  drivers,  and  of  mak- 
ing the  locomotive  so  flexible  as  to  adapt  itself  to  inequalities  In  the  track. 

Modem  engines  in  America  can  safely  be  relied  upon  to  operate  up  to  an  adhesion 
equal  to  .222  in  summer  and  .2  in  winter,  of  weight  upon  the  driving  wheels. 

From  these  data  the  following  tables  have  been  computed: 
Ooeflioieiits  of  A.dhe8ioii  upon  X)rivins  'Wlie^tls  per  rPoxi. 


CMditionofRKiU. 


Bails  very  dry.... 
Rails  very  wet.... 
Ordinary  working. 


European 

American 

Practice. 

Practice. 

C. 

I.hn. 

C. 

Lbs. 

■3 

670 

•33 

667 

.27 

600 

•25 

500 

.2 

450 

.222 

444 

Condition  of  Rail*. 


In  misty  weather . 
In  fh>8t  and  snow. 


European 
Practice. 


C. 

.015 
.09 


Lba. 
350 

200 


American 
PractiM. 


C. 
.2 

.16 


Lba. 
400 

333 


Adhesion  of  Locomotivet,  in  Lbs.  (.222  t«  Summer  and  .2  in  Winter). 


Type  of  Locomotive. 


American , 

Ten-wheeled , 

Mogul , 

Consolidation , 

Taok  switching..., 

4»  41 


No.  of  Drivers. 


4  wheels  coupled. . . 

6      ^*     connected. 

6 

8 

6 

4 


li 

it 
ti 


44 

4( 
(( 
44 


Weijrbt. 
Locomotive.  OnDriveta. 


Lte. 
64000 
78000 
88000 
zoo  000 
68000 
48000 


Lba. 
42000 
58000 
72000 
88000 
68000 
48000 


Adhesion. 
Summer.       Winter. 


Lbs. 

Lba. 

9350 

8400 

13000 

Z1600 

16000 

14000 

X9550 

17600 

15100 

-13600 

10650 

9600 

Tractive   Power. 

Traction  of  a  locomotive  is  the  horizontal  resultant  on  the  track  of  the 
pressure  of  the  steam,  as  applied  in  the  cylinders. 

D'PL-i-W=rT.  D  representing  diameter  of  cylinder,  L  length  of  stroke,  and  Vt 
dtatneter  of  driving  wheels,  all  in  ins,  P  mean  pressure  in  cylinder,  in  Un.  per  iq. 
inch,  and  T  tractive  force  on  rails,  in  lbs. 

iLLUSTRATioy.-— Assume  a  locomotive,  cylinders  18  ina  in  diam..  22  ins.  stroke, 
wheels  68  ins.  in  diauL,  and  average  steam  pressure  in  cylinders  50  lbs.  per  sq.  incb 

Then  18  X  z8  X  50  X  22  -7-  68  =  5241  lbs. 


682 


RAILWAYS. 


Train.  Resistances. 

Usual  fonnula  for  train  resistances,  on  a  level  and  straight  line,  is 

[•  B=^^pe\- ton  of  trainy  BXkd \-6  =  R  per  ton  of  train  cUone.    V  repr^' 

171  240 

senting  velocity  in  miles  per  hour,  and  8  constant  axle  friction.    {D.  K.  Clark.) 

NoTB.*->To  meet  the  nnfavorable  conditions  of  quick  curves,  strong  winds,  and 
imperfection  of  road,  Mr.  Clark  estimates  results  as  o})tained  by  above  formula 
should  be  increased  50  per  cent. 

Illustration. — At  20  miles  per  hour,  the  resistance  would  be: 

'  20*  -j-  171  -|-  8  =  10. 3  Ws.  per  ton  of  train. 

This  formula,  however,  is  empirical.  It  gives  results  which  are  too  large  for 
freight  trains  at  moderate  speeds,  and  too  small  for  passenger  trains  at  high  spee^ 

Engineers  are  not  agreed  as  to  exact  measure  and  value  of  each  of  the  elements 
of  train  resistances,  hut  following  approximations  are  sufficient  for  practical  use: 

A  naltfsis  of  Train  Resistances. 

Resistanee  of  traius  to  traction  may  be  divided  into  four  princi[)al  ele- 
ments :  ist  Grades ;  2d.  Curves ;  3d.  Wheel  friction ;  4th.  Atmosphere. 

I  St  Grades.  —  Gradients  generally  oppose  largest  element  of  resistance 
to  trains.  Their  influence  is  entirely  independent  of  speed,  llie  meas- 
ure of  this  resistance  is  equal  to  weight  of  train  niultiphed  by  rate  of  in- 
cluuitioa  or  per  cent  of  grade.  Thus,  a  gradient  of  .5  per  100  feet  (26.4 
feet  per  mile)  offers  a  resistance  of  5X»''4o__.  ^^  ^  jj^g^  p^j.  ^j,^  ^^  ^^  ^^ 

per  2000  lbs.,  which  is  to  be  multiplied  by  weight  in  tons  of  entire  train. 

Following  table  shows  resistance,  dne  to  gravity  alone,  for  the  most  usaal  grades, 
in  lbs.  per  ton  of  train : 


I  St.  Resistance  due  to  Grades, 


Rate  per  too  feet 

Lbs.  per  ton  of  2340  lbs. . . 

Rate  per  mile 

Lba  per  ton  of  3000  lbs. . . 

Rate  per  100  feet 

Lbs.  per  ton  of  3340  lbs. . . 

Rate  per  mile 

Lbs.  per  ton  of  2000  lira. . . 


I 

.3 

•3 

•4 

5 

.6 

■7 

2.24 

4.48 

6.72 

8.96 

11.3 

13-44 

15.68 

5 

II 

16 

21 

26 

3a 

37 

2 

4 

6 

8 

10 

13 

»4 

•9 

I 

I.I 

1.3 

«-3 

1-4 

i-S 

2a  16 

32.4 

24.64 

26.88 

39.13 

3136 

33-6 

47 

53 

58 

63 

68 

74 

79 

18 

20 

22 

24 

36 

38 

30 

.8 
17.9a 

4a 

16 

T.6 

35-84 
85 
3a 


2d.  Curves. — Recent  European  formula  is  that  given  by  Baron  von  Weber. 

6504  -r-  R  — 55  =  W     R  representing  radius  of  curve  in  metres. 

This  formula  assumes  th^t  resistance  due  to  curve  increases  fester  than  radias 
diminishes.  It  gives  results  varying  from  a  rBsistance  of  .8  lb.  per  2000  Ibe.  per 
degree  for  a  curve  of  1000  metres  radius  (3310  feet,  or  i^  44')  to  a  resistance  of  1.67 
lbs.  per  2000  lbs.  per  degree  for  curves  of  100  metres  radius  (331  feet,  or  ij^  ao'). 

Messrs.  VuiUemin,  Guebhard,  and  DieudonnS  found  curve- resistance  to  European 
rolling-stock  to  be  fh>m  8  to  i  lb.  per  2000  lbs',  per  degree,  on  a  gauge  of  4  feet  8. 5 
ins.,  while  Mr.  B.  H.  I>Atrobe,  in  1844,  found  that  with  American  cars  resistance  on 
a  curve  of  400  feet  radius  did  not  exceed  56  lb.  per  2000  lbs.  per  degree. 

Resistance  of  stime  curve  varies  with  coning  given  tires  of  wheels,  elevation  of 
outer  rail,  and  speed  of  train  running  over  it,  but  both  reasoning  and  experiment 
indicate  that  the  general  resistance  of  curves  increases  very  nearly  in  direct  pro- 
portion to  degree  of  curvature,  or  inversely  to  the  radius. 

Recent  American  experiments  show  that  a  safe  allowance  for  cqrve  resistance 
may  be  estimated  at  .125  of  a  lb.  \*bt  2000  lbs.  for  each  foot  in  width  of  gauge. 
Thus,  for  3  feet  gauge  resistance  would  be  .375  lb.  per  degree  of  curve;  for  standard 
gauge  of  4  feet  8.5  ina  .589,  say  .60,  and  for  6  feet  gauge  75  lb.  per  degrea 

For  standard  gauge,  when  radius  is  given  in  feet,  resistance  due  to  this  element  Is: 

•60  X  5730 -r-  B  =  C  in  lbs.  per  ton  of  tram. 


RAILWAYS.  683 

This  is  somewhat  reduced  when  curve  coincides  with  that  for  which  wheels  are 
coned  (geoerally  about  3,°U  aud  when  train  runs  over  it,  at  precise  speed  for  which 
outer  rail  is  elevated,  an  allowance  of  .5  lb.  per  ton  per  degree  is  found  to  give  good 
results  in  practice. 

2d.  Resistance  on  Curves. 

It  follows  from  above  estimate  of  curve  resistance  that,  in  order  to  have  the  Sftme 
resistance  on  a  curve  as  on  a  straight  line,  the  gradient  should  be  diminished  by 
.03  per  100  feet  of  each  degree  of  curve.  Thus  a  2°  curve  requires  an  easing  of  the 
grade  by  .09  per  100  feet,  a  10°  curve  an  easing  of  3  per  100,  etc. 

This,  however,  need  only  be  done  upon  the  limitiim  gradients,  and  when  som  of 
grade  and  curve  resistances  exceeds  resistance  which  has  been  assumed  as  limiting 
the  trains. 

3d.  Resistance  due  to  Wfieel  Friction, 

Experimenters  are  not  agreed  whether  friction  of  wheels  increases  simply  with 
weight  which  they  carry,  but  also  in  some  ratio  with  the  speed.  Originally  as- 
sumed as  a  constant  at*8  lbs.  per  ton,  improvemeuts  in  condition  of  track  (steel 
rails,  etc.)  and  in  construction  and  lubrication  of  rolling-stock  have  reduced  it  to 
3.5  and  4  lbs.  per  ton  for  well-oiled  train&  I' ndei*  ordinary  circumstances,  in  sum- 
mer, it  will  be  safe  to  estimate  it  at  5  lbs.  per  ton  on  fli'st-class  tracks,  and  6  lbs. 
per  ton  on  fair  tracks.  It  may  run  up  to  7  or  8  lbs.  per  ton  on  bad  tracks  (iron 
rails)  in  summer,  and  all  these  amounts  should  be  increased  fh>m  25  to 50  percent. 
in  cold  climates  in  winter,  to  allow  for  inferior  lubrication. 

4th.  Resistance  due  to  A  tmosphere. 

Atmospheric  resistar.ce  to  trains,  complicated  as  it  is  by  the  wind  which  may  be 
prevailing,  has  not  been  accurately  ascertained  by  experiment.  It  consists  of— 
ist  Head  resistance  of  first  car  of  train,  which  is  presumably  equal  to  its  exposed 
area,  in  sq.  feet,  multiplied  by  air  pressure  due  to  speed. 

2d.  Head  resistance  of  each  subsequent  car.  This  varies  with  distance  they  are 
coupled  apart,  and  so  shield  each  other  from  end  air  pressure  due  to  speed. 

3d-  Friction  of  air  against  sides  of  each  car  depending  upon  the  speed.  This  is 
generally  so  small  that  it  may  be  neglected  altogether. 

4th.  Effect  due  to  prevailing  wind,  which  modifies  above  three  items  of  resistance. 
A  head  wind  retards  the  train,  a  rear  wind  aids  it,  while  a  side  wind  increases  re- 
sisUnce  by  pressing  flanges  of  wheels  against  one  rail,  and,  in  consequence  of  curves, 
a  train  may  assume  all  Of  these  positions  to  same  wind. 

Recent  experiments  on  Erie  Railway  seem  to  Indicate  that  in  a  dead  calm  re- 
sistance  of  first  car  of  a.  freight  train  may  be  assumed  at  an  exposed  surface  of  63 
sq.  feet,*  multiplied  by  air  pressiire  due  to  speed,  and  that  each  subsequent  car  may 
be  assumed  to  offer  a  resistance  of  20  per  cent,  of  that  of  first  car,  while  in  a  pas- 
senger train  first  car  may  be  assumed  at  an  area  of  90  sq.  feet,t  multiplied  by  air 
pressure  due  to  speed,  and  that  each  subsequent  car  adds  an  increment  equal  to  40 
per  cent  that  of  first  car,  in  consequence  of  greater  distance  they  are  coupled  apart. 

This  resistance  Is,  of  cotirse,  entirely  independent  of  cars  being  loaded  dr  empty. 
In  practice  it  has  been  found  that  an  allowance  of  1.5  to  a  lbs.  per  ton  of  weight  of 
a  /reight  train  covers  atmospheric  resistance,  except  in  very  high  wmdsi        | 

In  consequence  of  complexity  of  elements  above  enninerated,  exact  fojfflulas  can- 
not probably  be  now  given  for  train  resistances,  but  following,  if  applied  with  judg- 
ment (and  modified  to  fit  circumstances),  will  be  fdund  to  give  feirly  accurate  resuRs 
in  practice.  They  are  for  standard  gauge,  and  in  making  them,  curve  resistance  has 
been  assumed  at  .5  lb.  per  degree,  wheel  friction  at  5  lbs.,  exposed  end  area  of  first 
car  at  90  sq.  feet  for  passenger  cars  and  63  feet  for  freight  cars,  and  mcreraent  ft>r 
sac<^e^ng  cars  at  .4  for  passenger  trains  and  .2  for  freight  trains. 

Fasseneer  Train.     W  ^G  +  ^+ 5)  +  (« +^^)  9oP=R- 
ITreisl&t  Train.     W  (o-f  — +  5)  +  (' "f-Y^j  63  P  =  R- 


•  ThU  U  !•«  thsn  itna  of  c»r,  wliich  jrenerally  inea»are»  «hont  71  "q- feet ;  but  part  I«  ■hi«ld«l  bjr 
tandM'.  and  Mria  belsr  eonrel,  m  whwlt,  bolls,  «tc.,  offer  lew  r*i»Unce  Chan  «  flat  pUne. 

t  Not  ooin*  end  ana  of  paa^ngw  cam  Rrealcr  than  thut  of  freJRht  cm,  but  Jo  conaeqiieDca  pf  tha 
prnj«etinr  r^of  the  and  foriMiri|oo4  io  »«^Va  of  •  copc»v»  turfwe,  wd  w  oppowa  yrMt«r  rwimiK* 
Sbaa  •  fl«t  plant* 


684 


BAILWASTB. 


W  rt^aenling  voetght  of  train^  without  engine,  in  tons  (2000  Ibg.),  G  resistance  of 
gradient  per  ton  (2000  lbs.;  Bee  table,  page  683),  C^  curve  in  degrees,  n  number  of  ears 
in  train.  P  pressure  per  sq.  foot  due  to  speedy  to  which  an  allowance  must  be  made  for 
wind,  if  existing,  R  resistance  of  train,  and  5,  wheel  friction,  both  in  lbs. 

Illustration  i.— Assume  a  passenger  train  of  5  cars,  weighing  136  tons  (aooo  lbs.), 
ascending  a  grade  .5  per  100  (26.4  feet  per  mile),  with  curves  of  4°,  at  a  speed  of  60 
miles  per  hour  (for  which  the  pressure  is  18  lbs.  per  sq.  foot),  resistance  will  be: 

136  (10+ a  +  5)  +  ( I  +  —  j  (90  X  18)  =  6524  I6».,  of  which  2312  lbs.  are  due  to 

gradey  curve,  and  wheels,  and  4212  lbs.  to  atmospheric  resistanee. 

2 Assume  a  fireight  train  of  31  cars,  weighing  620  tons  (2000  Iba),  turning  a  cnrvt 

of  3<),  up  a  grade  of  52.8  feet  per  mile  (i  foot  per  100),  at  a  speed  of  21  miles  per  hour 
(pressure  2  lbs.  per  sq.  foot),  resistance  will  be: 

620  (20  -|-  1.5  -|-  5)  -j-  (i  -f-  —J  (63  X  2)  =  17  312  H>*.,  requiring  a  *•  Consolidation  " 

engine  to  haul  it,  allowance  being  made  for  possible  winds,  etc. 

i\BSume  conversely,  it  is  desired  to  know  how  many  tons  an  American  engine, 
with  an  adhesion  of  10650  lbs.,  will  draw  up  a  grade  of  .9  per  100  (47  feet  per  mile), 
with  curves  of  4*^.  assuming  atmospheric  resistance  between  1.5  to  2  lbs.  per  ton  of 
train. 

Resiistance  firom  grade  .9  x  2000 -r- 100 z=z  iBlbs.) 

u  u    curve  4  -r-  2 =   2  "    >  27  lbs. 

»*  "    wheel  friction  5,  atmosphere  2 =   7"   ) 

Hence,  10 650 -r- 27  =  395  tons,  or  about  20  cars,  and  in  winter  same  engine  will 
haul  9600-^  27  =  355  tons  (2000  lbs.),  or  about  18  cars. 

Following  table  approximates  to  best  modern  practice.  For  freight  trains  it  gives 
aggregate  resistance,  in  Iba  per  ton  (2000  lbs  ),  for  various  grades  and  curvea  In 
using  it,  it  is  sufficient  to  divide  the  adhesion  in  lbs.  of  locomotive  used  by  number 
found  in  table,  in  order  to  obtain  number  of  tons  of  train  that  it  will  haul  at  or- 
dinary speeds  on  gradient  and  curve  selected.  Of  course,  if  grade  has  been  equated 
for  curves,  only  number  found  in  first  column  (for  straight  lines)  is  to  be  used  in 
computing  tons  of  train  on  limiting  gradient 

Approximate   FreigUt-train.   Xleeiistaiioes. 

Gauge  4  feet  8. 5  ins. 

In  Lbs.  per  2000  lbs.  at  Ordinary  Speeds. 

Curve  Resiatanee  assumed  at  .5  lbs.  per  o.  Wheel  Friction  at  5  Ws.^  Atmospheric  JKe- 

sistance  at  a  lbs.  per  Ton. 


U\  xs* 


Gbadb. 

•a 

CUXYS. 

Par 
C«nt. 

Per 

Ulle. 

I* 

2* 

Ibe. 

3* 

4* 

lbs. 

5' 

6* 
Ibt. 

7' 

8» 
Iba. 

9" 
Ibe. 

10" 

Ibe. 

IX' 

12- 

Ibe. 

13" 

ItM. 

lb*. 

lbs. 

lbs. 

Ibi. 

Ibe. 

Ihe. 

Level. 

Feet. 

7 

7-5 

8 

8.5 

9 

9-5 

zo 

X0.5 

zx 

"•5 

za 

12.5 

13 

«3S 

.1 

5 

9 

9-5 

10 

xas 

zz 

ZZ.5 

za 

12.5 

«3 

»3.5 

X4 

«4-5 

15 

«S5 

.2 

IZ 

zx 

"5 

za 

xa.5 

»3 

13-5 

14 

H-5 

15 

X5-S 

r6 

X6.5 

»7 

«7.5 

•3 

x6 

13 

^3-5 

H 

16.5 

»5 

iS'S 

x6 

Z6.5 

»7 

17-5 

z8 

'8.5 

19 

195 

•4 

21 

15 

15-5 

x6 

17 

17-5 

z8 

18.5 

»9 

19-5 

ao 

20-5 

2Z 

21.  5 

•5 

26 

17 

17-5 

x8 

Z8.5 

19 

Z9.5 

20 

20. «; 

21 

21.5 

72 

2a.  5 

23    23.5 

.6 

33 

19 

'9-5 

ao 

2a  5 

2Z 

2Z.5 

22 

22.5 

23 

23.5 

"1 

245 

25     25.5 

•7 

37 

az 

2X.5 

22 

22.5   23 

235  24 

24.5 

25 

255 

a6 

26.5 

27 

27- 5 

.8 

42 

23 

23.5 

^t 

24.5    25 
26.5   27 

25-5 

a6 

26.5 

27 

27-5 

a8 

28.5 

29 

295 

•9 

47 

25 

25.5 

26 

27.5 

28 

28.  s 

29 

29.5 

30 

30-5 

31 

3»-5 

X 

'^ 

27 

27.5 

28 

2a5|29 

29.5 

30 

30-5 

31 

3»-5 

32 

325 

33 

33-5 

I.Z 

29 

29.5 

30 

30-5  31 

315 

32 

32-5 

33 

33-5 

34 

34-5 

35 

35-5 

1.2 

63 

3« 

3»-5 

32 

32.5    33 

33-5 

34 

34-5 

35 

35.5 

36 

36.5 

37 

375 

>-3 

68 

33 

33-5 

31 

34-3   35 

355 

3S 

3<>-5 

37  !  37-5 

38 

38.5 

39 

39-5 

'•4 

74 

35 

35.5 

36 

365    37 

37-5 

3« 

38.5 

39  i  39-5 '40 

40.5 

41 

4«-5 

1-5 

P 

37  137-5 

38 

38.5    39 

39-5 

40 

405 

41  '  41-5  1  42 

42.5 

43 

43-5 

1.6 

85 

39 

39-5 

40 

40-5 

41 

41-5 

42 

425 

43 

43-5' 

-44  1 

44-5 

45 

45-5 

Ibe. 

\t 

x8 
ao 
22 

24 
26 

a8 

30 
32 

34 
36 
38 
40 
42 
44 
46 


TLLDSTBATunr.—AsBume  a 
«7hat  weight  will  it  haul  up  a 


"  Mogul 
grade  of 


Ib«. 

»4-5 
16.5 

ia.5 
20.5 

22.5 

24- 5 

26.5 
28. 5 
30.5 
32  5 
34-5 
36.5 
38.5 

40-5 
4a- 5 
44-5 
46.5 
lbs. 


"  engine  to  have  an  adhesion  of  x6ooo  .w». . 
74  feet  per  mile,  combined  with  a  curve  of  9<>  f 


16000-^  39.5  =  405  tons  (jooo  lbs.). 


BAILWATS. 


685 


Hence,  To  Compute  Adhesion  on  a  Given  Grade  and  Curve,  having  Weight 
of  Train, 

Rule.— Multiply  tabular  number  by  weight  of  train  in  tons  (2000  lbs.)? 
and  product  will  give  adhesion,  in  lbs. 

ExAMPLB.— Assume  preceding  elements    Then  39. 5  x  405  =  16  000  Ibt. 

Nora.— A  ^^CoDSolidalion"  engine,  by  its  superior  adhesion  (19550  lbs.)  would 
haul  up  a  like  grade  and  curve  495  tons. 


IVlexnoretiida   011   Siiglish.  Rail-virays. 

Regulations  {Board  of  Trade). 

Cast-iron  girders  to  have  a  breaking  weight  =  3  times  permanent  load,  added  to 
6  times  moving  load. 

Wrougbt-iron  bridges  not  to  be  strained  to  more  tban  5  tons  per  sq.  inch. 

Minimum  distance  of  standing  work  from  outer  edge  of  rail  at  level  of  carriage 
steps,  3.5  feet  in  England  and  4  feet  in  Ireland. 

Minimum  distance  between  lines  of  railway,  6  feet. 

Stations. — Minimam  width  of  platform,  6  feet,  and  xa  at  important  stationa 
Minimum  distance  of  columns  fTom  edge  of  platform,  6  feet.  Steepest  gradient  for 
sutions,  X  in  360.  Ends  of  platforms  to  be  ramped  (not  stepped).  Signals  and  dis- 
tant signals  in  both  directiona 

Carria0K«-— Minimum  space  per  passenger  no  cube  feet.  Minimum  area  of  elaSs 
per  passenger,  60  sq.  in&  Minimum  width  of  seats,  15  ina  Minimum  breadth  of 
seat  per  passenger,  18  ina    Minimum  number  of  lamps  per  carriage,  3, 

Requirements — Joints  of  rails  to  be  fished.  Chairs  to  be  secured  by  imn  splkei. 
Fang  bolts  to  be  used  at  the  Joints  of  flat-bottomed  raila 

CoMhmction.  ^*'W'      ^^' 

Feet.  In*.  Fe«k  Ink 

Whith,  single  lino 18  34   6 

doableline 30  38 

top  of  ballast,  single  line 13    6  15    6 

**       *^       double  line 34    6  39 

Slope  of  cattings  f^om  centre,  i  in  3a  Width  of  land  beyond  bottom  of  slope, 
a  to  xa  feet  Ditch  with  slopes,  i  foot  at  bottom,  i  to  i.  Quick  mound,  18  ina  in 
height  Poet  and  rail-fence  posts,  7  feet  6  ins.  x  6  ina  x  3-  5  ins.,  9  feet  apart,  3  feet 
in  ground.  Intermediate  posts,  5  leet  6  ina  x  4  ins.  x  x.  s  ina ,  3  feet  apart  Rail* 
4of4Xi-5tna 

Farliaznentarsr   Regulations  fbr  Crossing  Roads. 


ti 


Clear  width  of  under  bridge,  or  approach  .... 
Clear  height  of  under  bridge  for  a  width  of  12  ft. 


u 
u 

M 


(t 
U 


ti 

a 
it 


it 
it 


ii 


10 


it 
ii 


at  springing 

Over  bridge,  height  of  parapets 

Approaches,  inclination 

^         height  of  fencing 


Tamplkii 
Road. 


Feet.  Ins. 

35    — 
16    — 


Z2      — 

4    — 
linjo 

3    — 


Pablie 
Road. 


Feet.  Ini. 
25     — 


15     — 
12      — 

4    — 
I  in  20 

3    — 


OccuiniImmi 
RmA. 


Feet.  Ine. 
12     — 


Z4     — 

4     — 
I  in  16 

3    — 


In 


Umifs  of  Deviation. — In  towns,  lo  yards  each  side  of  centre  line, 
country,  100  yards,  or  5  chains  nearly. 

Z«oe/.— In  towns,  2  feet    In  country,  5  feet. 

Gradient.  —  Gradients  flatter  than  i  in  too,  deviation  10  feet  per  mile 
steeper.  _  Do.,  steeper,  3  feet  per  mile. 

Curve. — Curves  upwards  of  .5  a  mile  radius,  may  be  sharpened  to  .5  mile 
rmdlua.    Curves  of  less  than  .5  mile  radius  may  not  be  sharpened. 

3M 


C86 


BOADS,  STBEBTS,  AND   PAYBMENTS. 


BOADS,  6TBBETS,  AND   PAYEMBNTS. 
Classiiioatioii  of  !Roads. 

I.  Earth.  2.  Corduroy.  3.  Plank.  4.  Gravel.  5.  Broken  stone  (Ma/v 
adam).  6.  St<ine  sub-pavement  with  surface  of  broken  stone  (Telford). 
7.  Stone  sub-pavement  with  surface  of  broken  stone  and  gravel,  or  gravel 
alone.  8.  Kuoble  stone  bottom  with  sqrface  of  broken  stone  or  gravel,  or 
both.    9.  Concrete  bottom  with  surface  of  broken  stone  or  gravel,  or  bot^ 

d-rade   of  R-oads. 

Limit  of  praeticable  grade  varies  with  character  of  road  and  friction  of  ve- 
hicle.   For  best  carriages  on  best  roads,  limit  is  i  in  35,  or  150  feet  in  a  mile. 

'  Maximum  grade  of  a  turnpike  road  is  i  in  30  feet.  An  ascent  is  easier 
for  draught  if  taken  in  alternate  ascents  and  levels,  than  in  one  continuous 
rise,  although  the  ascents  may  be  steeper  than  in  a  uniform  grade. 

Ordinary  angle  of  repose  is  z  in  40  if  roads  are  bad,  and  i  in  30,  to  i  in  20. 

When  roads  have  a  greater  grade  than  i  in  35,  time  is  lost  in  descending, 
in  order  to  avoid  unsafe  speed.  Grade  of  a  road  should  be  less  than  its  <m^ 
qfrepote.  Minimum  grade  of  a  road  to  secure  effective  drainage  should  be 
I  in  3o.    In  France  it  is  i  in  125.  ^ 

Inijonstruction  of  roads  the  advantage  of  a  level  iroad  over  that  of  an  in- 
clined one,  in  reduction  of  labor,  is  superior  to  cost  of  an  increased  length 
of  road  in  the  avoiding  of  a  hill. 

Alpine  roads  over  the  Simplon  Pass  average  i  in  17  on  Swiss  side,  x  in  bs 
on  Italian  side,  and  in  one  instance  i  in  13. 

In' deciding  upon  a  grade,  the  motive  power  available  of  ascent  and  avoid- 
able of  waste  of  power  in  descending  are  to  be  first  considered* 

When  traffic  is  heavier  in  one  direction  than  the  other,  the  grade  in  as- 
cent of  lighter  traffic  may  be  greatest 

When  axis  of  a  road  is  upon  side  of  a  hill,  and  road  is  made  in  parts  by 
excavfition  and  by  embankment,  the  side  surface  should  be  cut  into  steps, 
in  order  to  afford  a  secure  footing  to  embankment,  and  in  extreme  cases, 
sustaining  walls  should  be  erected. 

Oonstrtaotion. 
S2«tixnate  of  luabor  in  Coxistruotion  of  Roads,    (if.  AnediiL) 
A  day's  work  of  10  hours  of  an  average  laborer  is  estimated  as  follows: 

In  Cube  Yards. 


Work. 


Picking  and  digging 

Excavation  and  pitching) 

6  to  xa  feet ) 

LoMding  in  barrows. 

Wheeling  in  barrows  per ) 

xoo  feet J 

Loading  in  cart& 

Spreading  and  levelling. . . 


Ordinary 
Earth. 


x8  to  33 
8  to  19 


33 


3o  to  33 

x6  t0  48 
44  to  88 


Loose 
Earth. 


x6 
8 


Had. 


7  tOx6 
8 


as 


Clay  and 
Earth. 


9 

4 


Graval. 

Blaatlv 

7  to  XX 

«'4 

— 

9.a 

«9 

— 

34  to  38 

— 

17  to  37 
30  to  80 

^^ 

Time  of  pitching  fh>m  a  shovel  is  one  third  of  that  of  digging. 

Ditches. — All  ditches  should  lead  to  a  natural  water-coarse,  and  their 
imum  inclination  should  be  i  in  125. 

Depressions  and  elevations  in  surfiice  of  a  roadway  Involve  a  material  loss  of 
power.    Thus,  if  elevation  is  1  inch,  under  a  wheel  4  feet  in  diameter,  an  inclined 

Elane  of  i  in  7  has  to  be  surmounted,  and,  as  a  consequence,  one  seventh  of  w^abt 
as  to  be  raised  x  inch.  *^ 


BOADS^  STREETS,  AND  PAVBMENTSr  687- 

An  unyieldiog  foandation  and  surface  are  indispensable  for  a  perfect  roadway. 

Eartb  in  embankment  occupies  an  average  of  one  tenth  less  space  than  in  natural 
bank,  and  rock  about  one  third  more. 

Ruts.  —  Surface  of  a  roadwaj  should  be  maintained  as  intact  as  prac- 
ticable,  as  the  rutting  of  it  not  only  tends  to  a  rapid  destruction  of  it,  but 
involves  increased  traction. 

The  general  practice  of  rutting  a  road  displays  a  degree  of  ignorancQ  of 
physical  laws  and  mechanical  effects  that  is  as  inexplicable  as  it  is  injurious 
and  expensive: 

On  compressible  roadways,  as  earth,  sand,  etc.,  resistance  of  a  wheel  decreases  as 
breadth  of  tire  increases. 

Depressing  of  axles  at  their  ends  increases  Mction.  I^ong  and  pliant  springs  de- 
crease effect  of  shock  in  passing  over  obstacles  in  a  very  great  degree. 

Transverse  Section. — Best  profile  of  section  of  roadway  is  held  to  be  one 
formed  by  two  inclined  planes  meeting  in  centre  of  road  aad  slightly 
romided  off  at  point  of  junction. 

Roods  having, a  rough  surface  or  of  broken  stone  should  have  a  rise  of 
X  in  24,  equal  to  a  rise  on  crown  of  6  ins.,  and  on  a  smooth  surface,  as  a 
block-stone  or  wood  pavement,  the  rise  may  be  reduced  to  i  in  48. 

On  roads,  when  longitudinal  inclination  is  great,  the  rise  of  transverse 
section  should  be  increased,  in  order  that  surface  water  may  tliore  really 
run  off  to  sides  of  roadway,  instead  of  down  its  length,  and  consequently 
gullying  it. 

Stone  Breaking,  A  steanl  stone-breaking  machine  will  break  a  cube  yard 
of  stone  info  cubes  of  1.5  ins.  side,  at  rate  ol  i  to  1.5  ip  per  hoar. 

IkCaoadaxni^eiS   Roads. 

In  constniction  of  a  Macadamized  toad,  the  stones  ( road  metal )  used 
should  be  hard  and  rough,  and  cubical  in  form,  the  longest  diameter  of  which 
exceed  2.5  ins.,  but  when  they  are  very  hard  this  may  be  reduced  to  1.25 
and  1.5  ins. 

The  best  stones  are  sach  as  are  difficult  of  fratture,  9&  basaltic  and  trapi 
and  especially  when  they  are  combined  with  hornblende.  Flint  and  sili- 
ceous stone  are  rendered' unfit  for  use  by  being  too  britUfl.  L%ht  gtanitat 
are  objectionable,  in  consequence  of  their  being  brittle  and  liable  to  disihte- 
^ration ;  dark  granites,  possessing  hornblende,  are  less  objectionable.  Lime- 
stones, sandstones,  and  slate  are  too  weak  and  friable. 

Dimensions  of  a  hammer  for  breaking  the  stone  should  be,  head  6  ins.  in 
length,  weighing  i  lb.,  handle  18  ins.  in  rength ;  and  an  average  laborer  can 
break  from  1.5  to  2  cube  }^ds  per  day. 

Stones  broken  up  in  this  manner  have  a  volume  twice  as  great  as  in  their 
original  form.  100  cube  feet  of  rock  will  make  190  of  1.5  ins.  dim^ion, 
182  of  2  ins.,  «nd  170  of  2.5  ins. 

A  ton  of  hard  metal  has  a  volume  of  1.185  cube  yards. 

Construction  of  a  Roadway. — Excavate  and  level  to  a  depth, of  i  foot^ 
then  lay  a  "  bottom  *^  12  ins.  deep  of  brick  or  stone  spalls  or  chips,  clinker 
or  old  concrete,  etc.,  roll  down  to  9  ins,  then  add  a  layer  of  coarse  gravel  or 
small  ballast  5  ins.  deep,  roll  down  to  3  ins.,  and  then  metal  in  2  equM  layr 
ers  of  3  Ins.,  laid  at  an  interval,  enabling  first  layer  to  be  fully  consolidated 
before  second  is  laid  on  and  rolled  to  a  depth  of  4  ins. ;  a  surface  or  ''  blind'* 
of  .75  inch  of  sharp  sand  should  be  laid  over  last  layer  of  metal  and  rolled 
in  with  a  free  supply  of  water. 


688 


BOADS,  STBESTS,  AND  FAVBMSNTS. 


Prcpwrtion  qf  Oettert^  Fillers^  and  Wheelers  in  different  Soils. 

<U  a  Run  of  50  Yards.    (Molestoorth. ) 


Whedert  compufed 


Loose  earth, ) 

Sand,  etc.  ) 

Compact  earth  . . . 
Marl 


Gfltton. 


I 
I 


Fillfln. 


a 
9 


Wheelen. 


3 
2 


Gettera. 


Hard  Clay 

Compact  \ 

gravel    f  '"• 
Rock 


I 
I 
3 


FUlen. 


1.25 

2 
I 


Wb«el«n. 


1-25 

I 

X 


Telford   Roads. 


In  construction  of  a  Telford  road,  metalling  is  set  upon  a  bottom  course  of 
stones,  set  by  hand,  in  the  manner  of  an  ordinar}'  block  stone  pavement, 
which  course  is  composed  of  stones  running  progressively  from  3  inches  in 
depth  at  sides  of  road  to  4,  5,  and  7  inches  to  centre,  and  set  upon  their 
broadest  edge,  free  from  irregularities  in  their  upper  surface,  and  their  in- 
terstices filled  with  stone  spalls  or  chips,  firmly  wedged  in. 

Centre  portion  of  road  to  be  metalled  first  to  a  depth  of  4  ins.,  to  which, 
after  being  used  for  a  brief  peri6d,  2  ins.  more  are  to  be  added,  and  entire 
surface  to  be  covered,  "  blinded,"  with  clean  gravel  1.5  ins.  in  depth. 

Telford  assigned  a  load  not  to  exceed  i  ton  upon  each  wheel  of  a  vehicle, 
with  a  tire  4  ins.  in  breadth. 

Gl-ravel   or  Sarth,   Roads. 

.  In  construction  of  a  gravel  or  earth  road,  selection  should  be  made  between 
dean  round  gravel  that  will  not  pack,  and  sharp  ^avel  intermixed  with 
earth  or  clay,  that  will  bind  or  compact  when  submitted  to  the  pressure  of 
traffic  or  a  roll. 

Surface  of  an  ordinary  gravel  roadwav  should  be  excavated  to  a  depth  of 
from  8  to  la  ins.  for  full  width  of  road,  the  surface  of  excavation  conforming 
to  that  of  road  to  be  constructed. 

The  gravel  should  then  be  spread  in  layers,  and  each  laver  compacted  by 
the  grfbdual  pressure  due  to  travel  over  it,  or  by  a  roller,  tne  weight  of  it  in- 
creasing with  each  layer.    One  of  6  tons  will  suffice  for  limit  of  weight. 

If  gravel  is  dry  and  wiU  not  readily  pack,  it  should  be  wet,  and  mixed 
with  a  binding  material,  or  covered  with  a  thin  laver  of  it,  as  clay  or  loam. 

In  rolling,  the  sides  of  road  should  be  first  rolled,  in  order  to  arrest  the 
gravel,  when  the  centre  is  being  rolled,  from  spreading  at  the  side. 

To  F&'form  a  mile  of  gravel  or  earth  road,  30  feet  in  width  between  guttera, 
material  cast  up  from  sides,  there  will  be  required  1640  hours*  labor  of  men, 
and  ao  of  a  double  team. 

Oordtiroy  Roads. 
A  Corduroy  road  is  one  in  which  timber  logs  are  laid  transversdy  to  its  plane. 

Platik  Roads. 

A  single  plank  road  should  not  exceed  8  feet  in  width,  as  any  greater  width 
involves  an  expenditure  of  material,  without  any  equivalent  advantage. 

If  a  double  track  is  required  it  should  consist  of  two  single  and  independ- 
ent tracks,  as  with  one  wide  track  the  wear  would  be  mostly  in  the  centre, 
and  consequently,  wear  would  be  restricted  to  one  portion  of  its  surface. 

Materials.— SHeepen  should  be  as  long  as  practicable  of  attainment,  in  depth  3  or 
4  ins. ,  according  to  requirements  of  the  soil,  and  they  should  have  a  width  of  3  ina. 
R>r  each  foot  of  width  of  road. 

Pine,  oak,  maple,  or  beech  are  best  adapted  for  economy  and  wear. 

Planks  should  be  ft-om  3  to  3.5  ins.  thick,  and  not  less  than  9  in&  in  width,  or 
more  than  12  if  of  hard  wood,  or  15  if  of  soft. 

A  plank  road  will  wear  from  7  to  12  years,  according  to  service,  material, 
and  location,  and  its  traction,  compared  with  an  ordinary  Macadamized  road, 
is  a>5  to  3  times  less,  and  with  a  common  country  road  in  bad  order  7  timea. 

For  other  elements,  see  Earth-work,  page  466. 


BOAB6,  STREETS,  AND   PAVEMENTS.  689 

A.apb.alt. 

Aspbalt  pavements  are  made  in  two  ways,  either  flrom  a  mixture  of  aspbaltum 
with  sand  and  a  little  powdered  limestone,  or  fVom  natural  asphaltic  limestone, 
called  sometimes  ''rock  asphalt,"  which  contains  from  6  to  12  per  cent,  of  asphal- 
tarn. 

The  asphalt  pavements  of  America  are  principally  made  by  the  former,  and  those 
of  Europe  by  the  latter  method.  The  composition  of  one  is  of  about  12.5  per  cent. 
r«flned  aspbaltum,  2.5  residuum  oil  of  petroleum  or  soft  bitumen  termed  *'  maltha," 
5  powdered  limestone,  and  80  sharp  sand,  by  weight,  mixed  at  about  3cx>°. 

The  rock  asphalt  pavement  is  made  by  powdering  the  natural  asphaltic  lime- 
stone, heating  the  powder,  and  compressing  it  in  place. 

Asphaltic  mastic,  for  floors,  roofs,  and  sidewalks,  is  made  from  rock  asphalt,  by 
adding  aspbaltum  to  it  as  a  flux  and  incorporating  60  per  cent,  more  or  less  of  sand 
and  gravel,  according  to  the  density  needed  and  the  temperature  of  the  place,  cel- 
lar or  walk,  and  whether  exposed  to  the  sun  or  not.  The  roadway  needs  a  convex- 
ity of  at  least .  15  of  its  breadth. 

Artificial  Atfhalt. — Heated  sand,  gravel,  and  powdered  limestone,  with  gas  tar  or 
coal  tar,  when  mixed,  possess  some  of  the  properties  of  asphalt  mastic,  but  are 
much  inferior. 

Bitwninoui  Road  may  he  made  by  breaking  up  asphaltic  limestone,  laying  it  3 
ins.  thick,  covering  with  coal  tar  and  ramming.  UseAil  in  country  districts  near 
each  deposits. 

"^Tood   Paveineiit. 
CSose-grained  and  hard  woods  only  are  suitable,  such  as  oak,  dm,  ash, 
beech,  and  yellow  pme,  and  they  should  be  laid  on  a  foundation  of  concrete. 

Slook   Stone   Petvexxient. 

Paving-blocks,  as  the  Belgian,  etc.,  where  crest  of  street  or  area  of  pave- 
ment does  not  exceed  i  inch  in  7.5  feet,  should  taper  slightly  toward  the 
top,  and  the  joints  be  well  filled,  "  blinded,"  with  gravel.  The  common 
practice  of  tapering  them  downward  is  erroneous. 

The  foundation  or  bottoming  of  a  stone  pavement  for  street  travel  should 
consist  either  of  hydraulic  concrete  or  rubble  masonry  in  hydraulic  mortar. 
The  practice  in  this  country  of  setting  the  stones  in  sand  alone  is  at  variance 
with  endurance  and  ultimate  economy,  but  when  resorted  to,  there  should  be 
a  bed  of  12  ins.  of  gravel,  rammed  in  three  layers,  covered  with  an  inch  of 
sand.    Granite  or  Trap  blocks  should  be  4  x  9  X  12  ins. 

R.u.'b'ble   Stone   I*avexneiit. 
Bowlders  or  Beach  stone  of  irregular  volumes  and  forms,  set  in  a.  bed  of 
sand,  involves  great  resistance  to  vehicles  and  frequent  repairs ;  it  is  whol^ 
at  variance  wiw  requirements  of  heavy  traflfic  or  city  use. 

Ooiiorete   Roads. 

Concrete  roads  are  constructed  of  broken  stones  (road  metal)  4  volumes, 
clean  sharp  sand  1.25  to  .33  volumes,  and  hydraulic  cement  i  volume.  The 
mass  is  laid  down  in  a  layer  of  3  or  4  ins.  in  depth,  and  left  to  harden  during 
a  period  of  3  days,  when  a  second  and  like  layer  is  laid  on  and  well  rolled, 
and  then  left  to  harden  for  a  period  of  from  10  to  20  days,  according  to 
temperature  and  moisture  of  the  weather. 

Roads.    (MoUnoortk.) 

Ordinary  turnpike  roads. —  30  feet  wide,  centre  6  ins.  higher  than  sides ; 
4  feet  from  centre,  .5  inch  below  centre ;  9  feet  from  centre,  2  ins.  below 
centre;  15  feet  from  centre,  6  ins.  below  centre. 

Foot-paths — 6  feet  wide,  inclined  i  inch  towards  road,  of  fine  gravel,  or 
sifted  qoarry  chippings,  3  ins.  thick. 

CrM9-roaaa — 20  feet  wide.        Fo(^'paths — 5  feet 

Side  drains — ^3  feet  below  surface  of  road. 

Road  material — bottom  layer  gravel,  burned  clay  or  chalk,  8  ins.  deep. 
Top  layer,  broken  granite  not  larger  than  1.5  cube  ins.,  6  ins.  deep. 


(bgo 


BOABSj  STBEETS,  ANP   PAYEMSKTS* 


!]Misoellaiieou.s  ^otes. 

MetaUxng  should  be  from  6  ins.  to  x  foot  in  depth,  and  in  cubes  of  1.5  to  1.75  iD& 

One  layer  of  material  of  a  road  should  be  spread  and  submitted  to  traffic  or  rolL 
ing  before  next  is  laid  down,  and  this  process  should  be  repeated  in  2  or  3  layen 
of  3  ins.  each. 

When  new  metal  is  laid  on  old,  thd  surface  of  the  old  should  be  loosened  with  a 
pick.    Patching  is  termed  darning. 

Sand  and  Gravel,  Blinding,  should  not  be  spread  over  a  new  surface,  as  they  tend 
to  arrest  binding  of  metal.    Mud  should  be  scraped  off  of  surface. 

Hoggin  is  application  of  a  binding  of  surface  of  a  metal  road,  composed  of  loam, 
fine  grav0l,  aud  coarse  sand. 

Atetalled  Roads  should  be  swept  wet 

Soiling.  — Steam  rolls  are  most  efftetive  and  economical,  xooo  sq.  yards  of  metal- 
ling will  require  24  hours'  rolling  at  1.5  miles  per  hour.  A  roller  of  15  tons'  weight 
will  roll  1000  sq.  yards  of  Telford  or  Macadam  pavement  in  from  30  to  40  hours,  at 
a  speed  of  1.5  miles  per  hour^  equal  .675  and  .9  ton  mile  per  sq.  yard. 

Sprinkling. — 60  cube  feet  of  water  with  one  cart  will  cover  850  sq.  yarda  100 
cube  feet  per  day  will  cover  looo  sq.  yards;  ordinarily  two  sprinklings  are  necessary. 

Oranite  Pavement. — The  wear  of  granite  pavement  of  London  Bridge  was  .22  aich 
per  year,  and  from  an  average  of  several  streets  in  London,  the  wear  per  100  vehicles 
per  foot  of  width  per  day  is  equal  to  one  sixteenth  of  an  inch  per  year. 

Sweeping  and  Watering  of  granite  pavement  and  Maeadam  road,  for  equal  areas 
and  under  alike  conditions  in  every  respect,  costs  as  i  for  former  to  7  of  latter. 

By  men,  with  cart,  horse,  and  driver,  costs  3.25  times  more  than  by  a  machine, 
one  of  which  will  sweep  16  000  sq.  yards  of  street  per  iieriod  of  6  hours. 

Asphalt  Pavement.  —  Average  cost  per  sq.  yard  in  Lohdon:  foundatiM,  50  cents; 
surface,  $3.25;  cost  of  maintenance  per  sq.  yard  per  year,  40  cents.  Wear  varies 
from  .2  to  42  near  curb,  and  .17  to  .34  inch  on  general  surface  per  year. 

ITcuAm^.— Surface  cleaning  of  stone  or  asphalt  pavement  by  a  Jet  can  be  eff^ted 
at  fk-om  I  to  2  gallons  per  sq.  yard. 

Wood  Pavement. — Wear  of  wood  pavement  in  London,  per  xoo  rehicl^s  per  day 
per  foot  of  width,  .083  Inch  per  year. 

Macadamized  Roads.  —  Annual  cost  of  maintenance  of  several  such  roads  in 
London  was  62  oents  per  sq.  yard. 

Block  Stone  Pavement — Stones  should  be  set  With  their  tapered  or  least  ends  up- 
wards, with  surface  Joints  of  i  inch. 

Fascines,  when  used,  should  bo  in  two  layers,  laid  crosswise  to  each  other  and 
picketed  down. 

BituminouH  road  may  be  made  by  breaking  up  asphalt,  laying  it  2  in&  thick, 
covering  with  c0.1l  tar,  and  ramming  it  with  a  heavy  beetle.  To  repair  a  bitnmi- 
nous  surface,  dissolve  one  part  of  bitumen  (mineral  tar)  in  three  of  pitch  oil  or  resin 
oil,  spread  .625  of  a  lb.  of  solution  over  each  sq.  yard  of  road,  sprinkle  2  lbs  pow- 
dered asphah  (bituminous  limestone)  and  then  sand,  aud  sweep  off  the  surplus. 

Slipping.  ~GTa.n\te  safest  when  wet,  and  asphalt  and  wood  when  dry. 

Gravelf  alike  to  that  of  Roa  Hook,  ft'om  its  uniformity,  will  bear  an  admixture 
of  fVom  .2  to  .25  of  ordinary  gravel  or  coarse  sand. 

Annual  cost  of  a  Telford  pavement  4.2  cents  per  sq.  yard,  including  sprinkling, 
repairs,  and  supervision. 


Voids  in  a  Cube  Yard  of  Stone, 


Broken  to  a  gauge  of  a.  5  Ins. ....  10      cube  feet 

2      " 10.66    "     " 

"•5    '* "33     * 


i( 


Sbingie 9    eubeftet 

Thames  ballast. ...  4.5  "     ** 


Fpr  fhrther  and  full  information,  see  Law  and  Clarke  on  Roads  and  Streets,  New 
York,  1867;  Weale's  Series.  Tendon,  1861  and  1877;  Roads,  Streets,  and  ^vementa, 
by  Brev.  M^.-Gen.  Q.  A.  Gilmore,  U.  S.  A.,  New  York,  1876;  Engineering  Notes,  by 
F.  Robertson,  London  and  Now  York,  187;^;  and  Gonstructton  and  Maintenance  of 
Roads,  by  Ed.  P.  North,  C.  E.,  see  Transactions  4m.  Socof  C.  K.,  voi  Tiil.j  May.187^ 


SEWKBS. 


691 


SEWEBS. 

Sewen  are  the  courses  from  a  series  of  locations,  and  are  classed  as 
Drains,  Sewers,  and  Culverts. 

Ih'abii  are  small  courses,  from  one  or  more  points  leading  to  a  sewer. 
CtUverfs  are  courses  that  receive  the  discharge  of  sewers. 
Greatest  fall  of  rain  is  2  ins.  per  hour  =  54  308.6  galls,  per  acre. 
Inclination  of  sewers  should  not  be  less  than  i  foot  in  240,  and  for 
house  or  short  lateral  service  it  should  be  i  inch  in  5  feet. 

Circular. 


....^r 


X  representing 


6*10.3. 


55  V«  2/=  *,  and  t>  a  =  V. 

D  2 1)        ,       ^  ^ 

Egg.     —  =  to,  —  =  w  ,  and  D  =  r. 

3  3 

area  of  sewer -i- tuetted  perimeter yf  inclincUion  of  sewer 

p«r  mile,  and  v  velocity  of  flow  of  contents  in  feet  per 

minute;  a  area  ofjlmc,  in  sq.feet,  V  wdume  of  discharge. 

in  cube  feet  per  minute  ;   D  height  of  sewer,  w  and  w 

width  at  bottom  and  lop,  and  r  radius  of  sides,  in  feet 

For  diameter  of  sewer  exceeding  6  feet    (r.  Hawksley.) 
D  diameter  of  a  circular  sevoer  of  area  required. 


D--  =  to'. 
9 

EUif^ie. — Top  and  bottom  internal  should  be  of  equal  diam- 
eters. Diameter  .66  depth  of  culvert;  intersections  of  top 
and  bottom  circles  form  centres  for  striking  courses  connect- 
ing top  and  bottom  circles. 

Pipes  or  Small  Sewers. — Height  of  8eetion=  i;  diameter 
of  arch  ^  .66 ;  of  invert  =  .33,  and  radius  of  siiles  =  i. 

In  culverts  less  than  6  feet  internal  depth,  brickwork  should  be  9  ins.  thick ; 
when  they  are  above  6  feet  and  less  than  9  feet,  it  should  be  14  ins.  thick. 

If  diameter  of  top  arch  =.  i,  diameter  of  inverted  arch  =  .5.  and  total' 
depth  ^  sum  of  the  two  diameters,  or  1.5 :  tlien  radius  of  the  arcs  which  are 
tangential  to  the  top.  and  mverted,  will  be  1.5. 

From  this  any  two  of  the  elements  can  be  deduced,  one  being  known. 

X>retinage  or  I^ands   l^jr   Pipes. 


Soils. 

Depth 
ofPtpea. 

DUtance  \ 
apart.    | 

SoxLa. 

Depth 
of  Pipea. 

Distance 
apart. 

Coarse  gravel  sand .... 
Light  sand  with  gravel 
Liirht  loam 

Ft.  Ina. 
4     6 
4 

3    6 
3    2 

Feet. 
60 
50 

33 
21 

Ix>am  with  gravel . . . 
Sandv  loam 

Ft.  loa. 
3     3 

3     9 
2     9 

2    6 

Feet. 
27 

40 
21 

Soft  clav 

Loam  with  clay 

.Stiff  clay 

«5 

I^iiiixu-axn   ^Velocity  and.   Ghrade    of  Se-w^ers   and   Drains 

in    Cities.     tWicksteed.) 


Di«in. 


Id*. 

4 

6 

8 

10 

X3 


Vel. 
Mhiate. 


Feet. 
340 
no 
220 

2ZO 

X90 


Grade, 
xin 


36 

87 
119 

>75 


Grade 

Vd. 

line. 

Diatn. 

Minute. 

Feet. 

Ina. 

Feet. 

146.7 

'5 

180 

81.2 

x8 

180 

60.7 

24 

180 

44-4 

30 

180 

3P2 

36 

180 

Grade, 

I  in 

Umde 
jffle. 

Diam. 

Vel. 

per 

Minute. 

Grade, 
z  in 

Grade 
jStfe. 

Feet. 

Ins. 

Feet. 

Feet. 

244 

21.6 

42 

180 

686 

7-7 

294 

18 

48 

180 

784 

6.8 

392 

13-5 

54 

180 

882 

6 

490 

10.8 

60 

180 

980 

5-4 

588 

9 

A  rea  of  SeiDers  or  Pipes. — An  area  of  20  acres,  miles,  etc.,  will  not  re- 
quire ao  times  capacity  of  pipes  for  one  acre,  mile,  etc.,  as  the  discharge  from 
the  19  acreSf  etc.,  will  not  liuw  into  the  main  simultaneously  with  that  from 
one  acre,  etc.  Ordinarily  in  this  country  an  area  of  sewer  or  pipe  that  will 
discharge  a  rainfall  of  i  inch  per  hour  (3630  cube  feet  per  acre)  is  sufficient* 


092 


SfiWEBS. 


^ 


Sewage.— The  excreta  per  annum  of  100  individuals  of  both  sexea  and 
all  ages  is  estimated  at  7250  lbs.  solid  matter  and  94  700  fluid,  equal  to  1020 
lbs.  per  capita^  and  in  volume  16  cube  feet,  to  which  is  to  be  added  the 
volume  of  water  used  for  domestic  purposes.  A  velocity  of  flow  of  from  a.5 
to  3  feet  per  second  will  discharge  a  sewer  of  its  sewage  matter  and  prevent 
deposits.    The  minimum  velocity  should  not  be  less  than  1.3  feet  per  second. 

Surilsice  from  -w-liioh  Circular  Se-^wers  "witli  proper  Curves 
■will  discUarge  tliat  Proportion  of  "W^ater  trona  a  'Fall 
or  One  IiioU  iu  X>epth.  per  XXour  -^^liioh.  >vould.  reach 
tUem,  iiiclu.d.i£ig  City  I>raixxage.    (John  Roe.) 

Inclination  in  Fbkt. 


Nono. . . . 

I  in  480. 

I  in  240. 

z  in  x6a 

I  in  I20. 

I  in  8a. 

I  in  60.. 


DiAMKTER 

OF  Skwbbs  in  Fsbt. 

3 

2-5 

3 

4      1       S      1      6       1 

Acret. 

Acres. 

Acre3. 

Acres. 

Acres. 

Acres. 

38.75 

67.25 

120 

277 

570 

1020 

48 

75 

135 

308 

■     630 

1117 

50 

87 

155 

355 

735 

1318 

63 

"3 

203 

460 

950 

2692 
2180 

78 

143 

257 

590 

1200 

90 

16s 

295 

570 

1388 

2486 

125 

182 

318 

730 

1500 

2675 

Acres. 

Acres. 

1725 

2850 

«9a5 

3025 

2225 
287s 
3700 
4225 

3500 
4500 
5825 
6625 

4550 

7125 

Surface  of  a  To-wn  from*  wliicli  small  Circular  X>rain8 
-will  difitoliarge  "Water  ecLual  ixi  Volume  to  Two  Inches 
iix  I>epth.  per  Hour.    (John  Roe.) 


Inclination. 
FbU  of  one  in« 


Acres. 
.125 

•25 
•4375 
•5 
.6 

I 
1.3 

«-5 
1.8 

3.1 


IhAMRBK  or 

Draiv 

r  IN  Ins. 

3 

4 

5 

6 

7         8 

Feet. 

Feet. 

Feet. 

Feet. 

Feet.  Feet. 

120 

— 

— 

— 

— - 

— 

20 

I20 

— 

— 

— 

— 

40 

— 

— 

— 

— 

— 

30 

80 

— 

— 

— 

— 

30 

60 

— 

— 

— 

— 

— 

20 

60 

— 

— 

— > 

—,. 

— > 

40 

20 

— 

^■^ 

— 

20 

60 

120 
80 
60 

Inclination. 
Fall  of  one  in. 


Acres. 
2.1 
2.5 


4 
5 
5 
7.8 

9 
xo 

«7 


75 

5 

3 
8 


DiAMrmt  OF  Drain  in  Iks. 
9      I      X2  IS      I      18 


Feet. 

120 
80 
60 


X2 

»5 

Feet. 

Feet. 

X20 

— 

80 

— 

60 

340 

— 

ISO 

_— 

80 

— 

60 



— 

Fsst 


340 

X30 


Dimensions,  A.reas,  and  "Volume  of  »laterial  per  I^ineal 
Foot  of  Kgg-shaped  Se-wers  of  different  Dimensions. 


Intrenal  Dimrksionb. 


Depth. 

Diam.  of 

Diam.  of 

Area. 

Top  Arch. 
Feet. 

Invert. 

Feet. 

Feet. 

Sq.  Feet. 

2.25 

1-5 

•75 

2-53 

3 

2 

I 

4-5 

3.75 

as 

X.25 

7.03 

4  5 

3 

1-5 

xo.  12 

5-5 

3-5 

I-7S 

13-78 

6 

4 

2 

x8 

6.75 

4-5 

2.25 

22.78 

7-5 

5 

3-5 

38.x  3 

8.25 

55 

2.75 

34-03 

9 

6 

3 

40.5 

Cube  Feet 
2.81 

356 

4-31 
5.06 
5.8x 
6.56 
7-31 


Area  =  product  of  mean  diameter  X  height 

Sewer  Pipes  should  have  a  uniform  thickness  and  be  uniformly^  glaze^^ 
both  internally  and  externally. 

Fire-clay  pipes  should  be  thicker  than  those  of  stone-clay. 


VoLUMR  or  Bbick-wokk. 


4-5  In". 
Ick. 


*-l 


9  Ins. 
thick. 

'sSc'r 

Cube  Feet. 

Cube  Feet. 

9.56 
xo.87 

— 

xa.75 

— 

14.35 

— 

15.75 

19.69 

a4-75 

28.41 
30.94 

STABILITY.  693 


STABILITY. 

Stability,  Strength,  and  Stiffness  are  necessary  to  permanence  of  a 
structure,  under  all  vai-iutions  or  distributions  of  load  or  stress  to  which 
it  may  be  subjected. 

SUibUity  of  a  Fixed  Body — Is  power  of  remainmg  in  equilibrio  without 
sensible  deviation  of  position,  notwithstanding  load  or  stress  to  which  it 
may  be  submitted  may  have  certain  directions. 

Stabilify  of  a  Floating  Body. — A  body  in  a  fluid  floats,  or  is  balanced, 
when  it  displaces  a  volume  of  the  fluid,  wei<;ht  of  which  is  equal  to  weight 
of  body,  and  when  centre  of  gravity  of  body  and  that  of  volume  of  fluid  dis- 
placed are  in  same  vertical  plane. 

When  a  body  in  equilibrio  is  free  to  move,  and  is  caused  to  deviate  in  a 
small  degree  from  its  position  of  equilibrium,  if  it  tends  to  return  to  its 
original  position,  its  equilibrium  is  termed  Stable  /  if  it  does  not  tend  to  de- 
viate further,  or  to  recover  its  original  position,  its  equilibrium  is  termed 
Indifferent ;  and  when  it  tends  to  deviate  further  from  its  ori<^iiial  position, 
its  equilibrium  is  Unstable, 

A  body  m  equilibi'io  may  be  stable  for  one  direction  of  stress,  and  unstable 
for  another. 

^AfometU  of  Stabilify  of  a  body  or  structure  resting  upon  a  plane  is  mo- 
ment or  couple  of  forces,  which  must  be  applied  in  a  plane  vertically  inclined 
to  the  body  in  addition  to  its  weight,  in  order  to  remove  centre  of  resistance 
of  body  upon  plane,  or  of  the  joint,  to  its  extreme  position  consistent  with 
stability.  The  couple  generally  consists  of  the  thrust  of  an  adjoining  struct- 
ure, or  an  arch  and  pressure  of  water,  or  of  a  mass  of  earth  against  the 
structure,  toother  with  the  equal  and  imralld,  but  not  directly  o[)posed,  re- 
sistance of  ^ane  of  foundation  or  joint  of  structure  to  that  lateral  thrust. 
It  may  differ  according  to  position  of  axis  of  applied  couple. 

Coujjle. — Two  forces  of  equal  magnitude  applied  to  same  body  or  struct- 
ure in  parallel  and  opposite  directions,  but  not  in  same  line  of  action,  consti- 
tr.te  a  coaple. 

NoTB. — For  Statical  and  Dynamical  Stability,  see  Naval  Architecture,  page  649. 

To  .A^scertain;  Stability  or  a  Body  0x1  a  I^orizontal  Plane. 

—  XTig..!. 

Illustration.  — Stability  of  a  body,  A,  Fig.  i,  when  a 
thrust  is  applied  as  at  o,  to  turn  it  on  a,  is  ascertained  by 
multiplying  its  weight  by  distance  a  s,  from  fUlcrum  a  to 
line  of  centre  of  gravity,  c  t. 

Hence,  if  cubic^il  block  weighed  10  tons  and  its  base  is 

6  feet,  its  moment  would  be  10  X  —  =  30  tons. 

2 

If  upper  part,  abdc,  was  removed,  remainder,  aed^ 

would  weigh  but  5  tons,  but  its  centre  of  gravity  •  would  be  -^  a  «  =  4  feet.    Henoe 

3 
tifi  moment  would  be  5  x  4  =  20  tons,  although  it  is  but  half  the  weight 

•To   Compute   ^Veiglit  of  a  GJ-iven   Sody   to   Sustain  a 

Ghiven   'X'liruet. 

FA 

!___  =  W.     F  representing  thrust  in  lbs. ,  h  height  of  centre  of  gravity  of  body  =  c  *, 

and  I  distance  offiUcrwm  from  centre  ofgi'avity  =  a  «. 

IrxrsrrRATioy. — Assume  figure  to  be  extended  to  a  height  of  30  feet,  and  required 
to  bo  capable  of  resisting  the  extreme  pressure  of  wind. 


694 


STABILITY. — BEYBTUBNT   WALLS. 


Preesare  estimated  at  50  lbs.    F  =  6  x  so  X  50  =  6000  Iba  at  centre  qf  gravity  of 
surface  of  body. 


Then 


6<xx>  X  10 


=  200CX>  lh». 


NoTK  I.— This  result  is  to  be  increased  proportionately  with  the  factor  of  safety 
due  to  character  of  its  material  and  structure. 

2. — If  form  of  body  has  a  cylindrical  section,  as  a  round  tower,  the  thrust  of  wind 
wonld  be  but  one  half  of  that  of  a  plane  surface. 

When  the  Body  is  Tapered^  as  Frustum  of  Pyramid  or  Cone,  —  Ascertain 
centres  of  gravity  of  surface  for  pressure  or  thrust,  and  of  body  for  its  sta- 
bility, and  proceed  as  before. 

ITo  A.soertaiii  Stai'bility  oif*  a  Body  on 
aai   Inoliixc^tioii.^IT'ig.  8. 

iLLtiSTRATioN.— Stability  of  body,  Fig.  2,  when  thrust 
is  applied  at  c,  is  ascertained  by  multiplyiog  its  weight 
by  distance  a  b  from  fulcrum,  6,  to  line  of  centre  of 
gravity,  a  fir. 

If  thrust  was  applied  at  o,  stability  would  be  ascer- 
tained by  distance  s  r  fVom  fulcrum  r. 

^lagles  of*  EqLiaili"brini»  at  -wliioli  various  SulDstances  will 
Repose,  as  deterxnined  133^  a  OliiiLOineter. 

Angle  measured  from  a  Horizontal  Plane^  and  faUiivg  from  a  spout. 

DegTMk 


De^reeB. 

Lime-dust 45 

Dry- sand ,,...  40 

Moist  sand 41 


Degrees. 

Sand,  less  dry 39.6 

Wheat 37 

Com 37, 


Common  mold. . .  37 
Common  gravel. .  35  to  36 
Stones  or  Coal. . .  43 


Weiglit  of  a  Cube  I^oot  of*  I^aterials  of  Ifixxi'baiikxneuta, 

"Walls,  and   Daxns. 

Concrete  in  cement. . .  137 

Stone  masonry 130 

Brick       *•       112 


Gravel 125 

Loam 126 

Sand 


120 


Clay. 
Marl 


120 

100 


Revetment  TlTalls. 

When  a  wall  sustains  a  pressure  of  earth,  sand,  or  any.  loose  material,  it 
is  termed  a  Revetnaent  wall,  and  when  erected  to  arrest  the  fall  or  subsidence 
of  a  natural  bank  of  earth,  it  is  termed  a  Face  wall. 

When  eiirth  or  banking  is  level  with  top  of  wall,  it  is  termed  a  Scarp  re- 
vetment, and  when  it  is  above  it,  or  surcharged,  a  Counterscarp  revetment 

When  face  of  wall  is  battered,  it  is  termed  Sloping,  and  when  back  is  bat- 
tered, Connt^r^oping. 

Thrust  of  earth,  etc.,  upon  a  wall  is  caused  by  a  certain  portion,  in  shape 
of  a  wedge,  tending  to  break  away  from  the  general  mass.  The  pressure 
thus  caused  is  simuar  to  that  of  water,  but  weight  of  the  material  must  be 
r«duo«d  by  a  particular  ratio  dependent  upon  angle  of  natural  slope,  which 
varies  from  45°  to  60°  (measured  from  vertical)  in  earth  of  mean  density. 

Or,  natural  slope  of  earth  or  like  material  lessens  the  thrust,  as  the  cosine 
of  the  slope. 

Angle  which  line  of  rupture  makes  with  vertical  is  .5  of  angle  which  line 
of  natural  slope,  or  angle  of  repose,  makes  with  same  vertical  line.  When 
earth  is  level  at  top,  its  pressure  may  be  ascertained  by  considering  it  as  a 
fluid,  weight  of  a  cube  foot  of  which  is  equal  to  weight  of  a  cube  foot  of  the 
earth,  multiplied  by  square  of  tangent  of  .5  angle  include4  between  patnnl 
slope  and  vertical 


STABILITY. — ^REVETMENT  WALLS.  695 

Therefore  squares  of  the  tangents  of  .5  of  45°  and  .5  of  60®  =  .1716  and 
•3333*  which  are  the  multipliers  to  be  used  in  ordinary  cases  to  reduce  a 
cube  foot  of  material  to  a  cube  foot  of  equivalent  tiuid,  which  will  have 
same  effect  as  earth  by  its  pressure  upon  a  wall. 

X^reseure  of  ICartb.  agaiiist   ftevetmeixt  Walls. 

Fig:  3.  Let  A  B  G  D,  Fig.  3,  be  vertical  section  of  a  revetment 

wall,  behind  which  is  a  bank  of  earth,  A  D/e  ;  let  D  0 
■^  represent  angle  of  repose,  line,  of  rupture^  or  natural  slope 
which  earth  would  assume  but  for  resistance  of  wall. 

In  sandy  or  loose  earth  angle  o  D  A  is  generally  yP ; 
in  firmer  earth  it  is  36°;  and  in  some  instances  it  is  45*^. 

If  upper  surface  of  earth  and  wall  which  supports  it  are 
both  in  one  horizontal  plane,  then  the  resultant,  I  n,  of 
pressure  of  the  bank,  behind  a  vertical  wall,  is  at  a  dis- 
tance, D  n,  of  one  third  A  D. 

line  of  Rupture  behind  a  wall  supporting  a  bank  of  vegetable  earth  is  at 
a  distance  A  o  from  interior  face,  A  D  =  .618  height  of  it. 

When  bank  is  of  sand,  A  o  =  .677  h ;  when  of  earth  and  small  gravel  = 
.646  h ;  and  when  of  earth  and  large  gravel  =  .618  A. 

The  prism,  vertical  section  of  which  is  A  D  o,  has  a  tendency  to  descend 
along  inclined  plane,  o  D,  by  its  gravity  \  but  it  is  retained  in  its  place  bv 
resistance  of  w^all,  and  by  its  cohesion  to  and  friction  upon  face  o  D.  Each 
of  these  forcea  may  be  resolved  into  one  which  will  be  perpendicular  to  o  D, 
and  into  another  which  will  be  parallel  to  o  D.  The-  lines  c »,  i  I  represent 
components  of  the  force  of  gravity,  which  is  represented  by  vertical  line  c  /, 
drawn  from  centre  of  gravity,  c,  of  prism.  Lines  nr,,lr  represent  compo- 
nents of  forces  of  cohesion  aiid  friction,  which  is  represented  b^*  horizontal 
line  ft  I.  Force  that  gives  the  prism  a  tendency  to  descend  is  t  /,  and  that 
opposed  to  this  is  r  /,  together  with  effects  of  cohesion  and  friction. 

Thus,  ilz=:rl-\-  cohesion  +  friction.  Consequently,  exact  solution  of  prob- 
lems of  this  nature  most  be  in  a  great  measure  experimental. 

It  has  been  foand,  however,  and  confirmed  experimentally,  that  angle 
formed  witii  vertical,  by  prism  of  earth  that  exerts  greatest  horizontal  stress 
against  a  wall,  is  half  the  angle  which  angle  of  repose  or  natural  sioj)e  of 
"^arth  makes  with  vertical. 

AJI  exu  o  r  ail  d  a . 

Natural  slope  of  dry  sand =39^,  moist  soil  =  43<3,  very  fine  sand  =  21°,  wet  clay 
=s  14O,  and  gravel  =  35O. 

In  setting  or  founding  of  retaining  walls,  if  earth  upon  which  wall  is  to  rest  is 
elayey  or  wet,  coefficient  of  friction  between  wall  and  earth  falls  to  .3;  hence  it  is 
necessary,  in  order  to  meet  this,  that  the  wall  should  be  set  to  such  a  dc>|Hb  in  the 
earth  that  the  passive  resistance  of  it  on  outer  face  of  wall,  combined  with  its  fric- 
tion on  its  bottom,  may  withstand  the  pressure  or  thrust  on  its  inner  face. 

Moment  of  a  Retaining  Wall  is  its  weight  multiplied  by  distance  of  its  centre  of 
gravity  to  vertical  plane  passing  through  outer  edge  of  its  base. 

Mofnent  of  Pretmre  of  Earth  against  a  retaining  wall  is  pressure  multiplied  by 
distance  of  Its  centre  of  pressure  to  horizontal  plane  passing  through  base  of  wall. 

Equilibrium  of  Retaining  Wall  is  when  respective  moments  of  wall  and  earth  are 
eqaai. 

SialnlUif  of  a  Retaining  WaU  should  be  in  excess  of  its  equilibrium,  according  to 
character  of  thrust  upon  it,  and  the  line  of  its  resistance  should  be  within  wall  and 
St  a  distance  flrom  vertical  passing  through  centre  of  gravity  of  wall,  at  most .  44  of 
distance  of  exterior  axis  of  wall  fh)m  this  line. 

Confident  ofStabUUy  varies  with  character  of  earth,  location,  exposure  to  vibia- 
iioos,  floods,  etc ;  hence  thickness  of  base  of  wall  will  vary  from  1.4  to  2  6. 

Backs  of  retaining  walls  should  be  laid  rough,  is  crder  to  arrest  lateral  subsidenos 
of  the  lllling. 


696 


STABILITY. — ^REVETMENT   WALLS. 


When  flUing-ls  composed  of  bowlders  and  gravel,  the  thickness  of  wall  must  bo 
increased,  and  contrariwise;  when  of  earth  in  layers  and  well  rammed,  it  may  b* 
decreasecL 

Courses  of  dry  wall  shoald  be  inclined  inwards,  in  order  to  arrest  the  flow  of 
water  of  sabsidence  iu  filling  from  running  out  upon  face  of  wall 

Less  the  natural  slope,  greater  the  pressure  on  wall. 

Sea  walls  should  have  an  increased  proportion  of  breadth,  as  the  earth  backing 
is  not  only  subjected  to  being  flooded,  but  the  walls  have  at  times  to  sustain  the 
weight  of  heavy  merchandise. 

BuUrest. — An  Increased  and  projecting  width  of  wall  on  its  flront,  at  intervals  io 
its  length. 

Counterfort— An  increased  and  projecting  width  of  wall  at  its  back  and  at  in- 
tervals. 

Coefficient  of  Friction  of  masonry  on  masonry  .67,  of  masonry  on  dry  clay  .51, 
and  on  wet  clay  .3. 

Face  of  wall  should  not  be  battered  to  exceed  i  to  1.25  ins.  in  a  foot  of  height,  in 
consequence  of  the  facility  afforded  by  a  greater  inclination  to  the  permeation  of 
rain  between  the  Joints  of  the  courses. 

Footing  of  a  wall,  projecting  beyond  its  faces,  is  not  included  In  its  width. 

Pressure.— Limit  of  pressure  on  masonry  12  500  to  z6  500  lbs.  per  sq.  foot  wall 

Thickneu  of  WaUt^  in  Mortar^  Facet  vertical    For  BaUtoayi  or  Like  Strets. 

Cut  stone  or  Ranged  rubble 35    |    Brick  or  Dressed  rubble 4 

When  laid  dry,  add  one  fourth. 

Friction  in  vegetable  earths  is  .5;  pressure  in  sand  .4. 

When  vegetable  earths  are  well  laid  in  courses,  the  thrust  is  rednced  .5. 

When  bank  is  liable  to  be  saturated  with  water,  thickness  of  wall  should  be 
doubled. 

Centre  of  Pressure  of  earthwork,  etc.,  coincides  with  centre  of  pressure  of  water, 
and  hence,  when  surfkce  is  a  rectangle,  it  is  at  .33  of  height  Arom  base. 

The  theory  of  required  thickness  of  a  retaining  wall,  as  befbre  stated,  is,  that  tbe 
lateral  thrust  of  a  bank  of  earth  with  a  horizon^  surface  is  that  due  to  me  prism 
or  wedge-shaped  volume,  included  between  the  vertical  inner  face  of  the  wall  and 
a  line  bisecting  the  angle  between  the  wall  and  the  angle  of  repose  of  the  material 

To   Compu.to   Klemeixts   of*  Revetment  'Wa.Ua.^lFie-  4. 

Let  A  D  0  represent  angle  of  repose  of  material,  against 
a  wall,  ABC D.     ADn  =  .5ADa     Tan.  ADll  =  .49'• 
Tan.  ADn,  A  — ,or  — tan.  ADn  =  V; 
3         3 

sin.  DxDA       .  w*».       .  «-.     «. 

r— =Ao:  tan.  ADn=rp; 

sin.  0  3 

___^^___  — --tan.=  ADn  =  P;  - — tan.»  ADii-=M; 

CD  a  3  3 

Vfhz»  wh3  w/t3  ^,tan.»ADw^_„>. 

=  m:    —T— tan,"  A  *)»»=£;    tan.'ADn=S:    h* — v—Pt 

2*6  '3  'a 

h  tan.  ADn^  /-'*^  =»,  aud  ;*  tan.  ADn^  /2-^  =  »'.      h  represenHng  *«^  *if 

V  3  "  V  3  " 

waU  infeety  V  volume  of  section  of  prism  of  material  A  D  n  one  foot  in  length  in  cube 
feet^  W  and  to  weights  of  a  cube'jfbot  of  wall  and  of  material,  P,  p,  and  p  lateral 
and  moments  of  pressure  of  prisms  of  earth  A  D  o  and  A  D  n  upon  *oott,  ".*.'~  *! 
inomenti  of  pressure  and  weight  on  and  of  wall,  E  and  S  equilibrium  and^alnnpgoj 
waUy  all  in  lbs.,  and  x  and  x  ,  C  Dfor  weights  of  wall  for  equiUbrium  and  ttabuUjf, 

Illustration.— A  revetment  wall,  Fig  4,  of  125  lbs.  per  cube  foot  and  4°^®®*  *" 
height,  sustains  a  baLk  of  earth  having  a  natural  slope  of  52 ^  24',  and  a  weigot  or 
89.25  lbs.  per  cube  fout;  what  is  pressure  or  thrust  against  it,  eta  f 


STABILITY. — EEVETMENT   WALLS.  69/ 

Tan.2  A  Tin  —  .24a.     Then  .492  x  40  X.—  =  3936  cube  feet 
«9:^52<4^  ^  ^^,  ^  35  „8.8  lbs.  ^^^X^o-  ^  ^^^,^  _^  ^^^  ^  ^^^ 

^^^^^    X  .493'  X  ~  =  230384  lbs.        125  X  40  X  ^^-  -=  230400  rbs. 
23  2  . 

4oX.492.>/^^f5  =  9-6/e«<,  and   40  x  .492-^^^^^^  =  »3-58/«e<. 

ifV>r  Rubble  Walh  in  Mortar  or  Dry  Rubble,  add  respectively  to  base  as  above 
obtained,  .14  and  .42  part. 

NoTB  t. — When  coefficient  of  Triction  is  known,  use  it  for  tan.^  A  D  »i. 

S  X  C  D  fig.  5  =  moment  ofstabHity.     (Molesioorth.) 

2. — When  either  relative  weights  of  equal  volumes  of  wall  and  bank  of  earth  or 
their  specific  gravities  are  given,  S  and  s  may  be  taken  for  W  afid  w. 

These  equations  involve  simply  the  operation  of  a  lever,  the  fulcrum  being  at 
the  outer  edge  of  wall  C.  The  moment  of  pressure  of  bank  is  product  of  lateral 
pressure  and  i)erpendicular  distance  ft'om  ftilcrum  to  line  of  direction  of  pi^ssure. 

The  moment  of  weight  of  wall  is  product  of  weight  of  wall  and  perpendicular 
distance  from  fulcrum  to  vertical  line  drawn  through  centre  of  gravity  of  wall. 

When  Weights  of  Embankment  and  Wall  are  equdlper  Cube  Foot. 
C  for  clay  = .  336^  and  for  sand  .267. 

When  WeighU  areoi^to  $,    C  for  clay  = .  3,  and  for  sand  .239. 

When  Wall  has  an  Exterior  Slope  or  Batter,— Fig.  5. 

1^ «. ^,,0      ^  ^G  0  +  E  c'— 5-^  =  M.       M  representing 

I        /       mofmeni  of  weight  of  wall  in  lbs. 

/    /  iLLrSTRATiON.— Assume  weight  of  wall  120  lbs.  per 

/  y '  cube  foot,  and  C  D  and  E  C  respectively  10  and  2. 5  feet, 

,' y  and  all  other  elements  as  in  preceding  case. 

"'  „  120X40      / — ; ■    2.5^  ,. 

Hence, X  (10 +  2. 5  — 1  =  370000  to*. 

(a;4-nA 1  = tan.«  AD.n  =  S. 

2    \  3    /         3 


Or.  h^l 1 —  tan.*  AD n  —  n;i  =  «.    x  representing  A ^  or  CH.    n ratio  bf 

V    3        3  W 
difference  of  widths  of  base  and  top  to  height.    In  absence  of  tan.^  A  D  n  put  C,  co- 
efficient of  material 

C^  .0424  for  vegetable  or  clayey  earth,  mixed  with  large  gravel;  .0464  if  mixed 
with  snuUl  gravel;  .1528  for  sand,  and  .166  for  semi-fluid  earths. 

IixusTBATiov.— ABSame  elements  of  preceding  case,    n  =  one  fortieth,  and  tan. 
A  Dn  =.492. 

40  \/   J    2  +  ^^^'-  X  .492^  —  I  =  12.6  feet 
V  3  X  40         3  X  125         ^"^ 

Hence,  thickness  of  wall  at  base  =£12.64-1  (one  fortieth  of  height)  =  13.6  feet 

NoTB-— If  91  =  one  twentieth,  40  */ — ^— s-f  ^ ^^  X-492'— 2  =  ii.63y«et 

V  3  X  20*  '    3  X  125 

HeDce,  wall  at  ba8e  =  11.63 4-9  (one  twentieth  of  height)  =  13.63/eet    If  C  was 
used,  IS. 37 feet. 

3  N 


698 


STABILITY. — BEYETMENT   WALLS. 


When  Wall  has  an  Inferior  Slope  or  Batter,  B  E.— 

Fig.  6. 


wh'      ^      „  oEr      „ 
X  tan.» =s  P. 


taHhfor  equUibriwn; 
w  A3 


M  oftoaJU;  and 
hility. 


--—  X  tan.a  =  M  0/ 

o  2 

(dcxdc4-ce-^  = 


X  tan.2  0  En  =  M  0/  earth  for  ito 


2 


CoefficienU  for  Batter  offoUowing  Proportions. 
Base  =  Height  x  Tab.  number. 


Weight  of  Etrtb  to  Wall. 


Baitib  of 
Wall 

Ai4 

Clay. 

to  5. 

Saad. 

Asx 
Clay. 

tox. 
Sand. 

I  in  4 

I  "  5 

I  "  6 

.083  ■ 

.122 

.149 

'  .029 
.065 
.092 

"5 

•155 
.i83 

.054 
.092 
.1x8 

Battbk  of 
Wall. 


I  in  8... 
I   "  12.. 

Vertical. 


Weight  of  filarth  tq,  Wall. 
As  4  to  5.      n      At  I  to  X. 


Clay. 


.184 

.221 

•3 


Sand. 


.125 

.x6 
•239 


Clay. 


.2x8 
.256 
•336 


Saad. 
•»53 
.267 


Fig-  7. 


To  Compute  I^ressure  Ferpeudioular  to  Setc^  of  Wall. 

P  »  =  —  or  — ,  and/«  at  right  angle  to  back  of  vail, 
whether  vertical  or  inclined. 

''^*",orLxt«n.AD«, or  "><*'>< *"''^"".., 


. 


jL        n        o 
,  —7 7 


g/f/ 


h 
wx  Ana 


=/  ♦.    L  representing  weight  of  triangle  of  em- 


sm 


hankmenit  as  kUn 


L  X  A  n  X  sec.  m  D  o 


ThJ8  is  pressure  Independent  of  friction  between  surfoces  of  wall  and  earth. 

To  iVsoertaixi  and  Compute  .A^xxiouxit  and  Bfieot  of  Fric- 
tion  of  Wall   and   Earth.— Fig.  8. 

*'*fr  ^-  X         *>  Draw/ *  by  scale  to  computed  pressure  at  right  angle 

"y f- yo    tobackof  wall,  draw  angle/*  r  =  TO  Do  of  natural  slope 

c* /,«     ,        of  earth  with  horizon,  draw/r  at  right  angle  to/  ♦.  make 

rc=f  »,  then  cr  will  represent  by  scale  effect  of  friction 
against  back  of  wall. 

Assume  friction  to  act  at  point  ♦,  then  r  «  will  give  by 
scale  resultant  of  the  two  forces  of  pressure  and  friction, 
equal  to  pressure  in  force  and  direction,  which  bears 
against  wall. 

This  resultant  is  also  equal  to/  «  x  sec.  m  D  0. 

^  ^  ^,  M>xA«xtan.»»iDo 
=  r#,or XsecmDo,  or  LxtaaADn 

X  sec.  m  D  o. 

To  Asoertain  Point  of  IMComent  of  Pressure  of  a  "Wall. 
FIf.  9.  — Figr.  9. 

^  p  By  its  resisting  lever  I  a^added  to  iU  weight 

Weight  of  wall  as  computed  assumed  as  concentrated  at  its 
centre  of  gravity  •  - 

Draw  a  vertical  line  •  0  through  its  centre  of  gravity,  and  cob- 
tinue  line  of  pressure  P  *  to  f,  take  any  distance  r  o  bv  scale  rep- 
resenting weight  of  wall,  and  r  n,  by  same  scale,  for'amount  of 
pressure  or  thrust  against  wall,  complete  pamllelogram  r  o  11  it, 
then  diagonal  ru  will  give  resultant  of  pressure  in  aoiount  sad 
direction  to  overturn  wall. 

For  stability  this  diagonal  should  fall  inside  of  bate  at  a  notet 
oot  less  than  one  third  of  its  breadth. 


•m. 


Vo 


STABIUTT.— xBEVKTHSm'  WALLS. 


699 


flg.Kv  ^ r 


Snroliargecl  Zto-yetments. 

o      When  the  earth  stands  above  a  wall,  as  A  B  e, 

y    Fi^.  10.  with  its  natural  slope,  Af,  A  B  C  is  termed 
a  Surcharged  Revetment, 

If  C  r  is  line  of  rupture,  A/r  C  is  the  part  of  earth 
that  prwses  upon  wall,  which  part  must  be  taken  into 
the  computation,  with  exception  of  portion  A  Be, 
which  rests  upon  wall;  that  is,  the  computation  must 
be  for  part  Ce/r,  whidi  must  be  reduced  by  mnltiplj- 
ing  weight  of  a  cube  foot  of  it  by  square  of  tangent  of 
angle  eCr  =  angle  of  lino  of  rupture,  or  half  angle 
e  G  o,  which  natural  slope  makes  with  vortical,  and 
then  proceed  as  in  previous  cases  for  revetments. 

.  _.        =  Inreadtk  or  C  D.    W  and  w  repre»enting  weighU  oftoaJU  and 
3  a  W 

embankment  in  Ibt.  ptr  cvbejbot^  and  h'  height  of  embankmenp^  asCe. 

Illustration. — Height  of  a  surcharged  revetment^  BC,  Fig.  10,  is  13  feet,  weight 
130  lbs.  per  cube  foot;  what  is  its  width  or  base  to  resist  pressure  of  earth  of  a  weight 
of  100  Ibfl.  per  cube  loot,  and  a  height,  G  «,  of  15  feet,  angle  of  repose  45°  ? 

TaiL»(45«^a^  =  .i7x6.    Then  .5  y/^^^^^^^'S  Vo5i  =  3.S2/iet 

JPomt  of  Alomeiit  of  Pressure  of  a'Sur- 
olxarsed   'Wall.— ITifi;.  11. 

^f      Draw  a  line,  P  «,  paraUel  to  slope^  C  r,' through  centre 
of  gravity  of  sustained  backing,  B  G  r. 

When,  as  in  this  cato,  this  section  is  that  of  a  triangle, 
point  *  will  be  at  .33  height  of  wall. 

When  natural  slope  is  1.5  in  length  to  i  in  height,  as 
With  gravel  or  sand,  to  x  .64= pressure  P  «. 

In  a  surcharged  revetment,  as/B  o,  at  its  natural  slope, 
the  maximum  pressure  is  attained  when  the  backing 
reaches  to  r.  When  slope  of  maximum  pressure,  C  n  r, 
intersects  face  of  natural  slope,  B/  so  that  if  backing  is 
raised  to  /  or  above  it,  there  is  theoretically  no  addi- 
tional stress  exerted  at  back  of  or  against  wall,  but  prac- 
tically there  is,  fh>m  effect  of  impact  of  vibration  of  a 
passing  train,  proximity  to  percussive  action,  alike  to  that  of  1^  trip-hammer,  etc. 

Wben  backing  rests  on  top  of  wall,  as  A  B  e.  Fig.  10,  small  triangle  of  it  is  omitted 
in  computations.    Direction  of  pressure  against  wall  is  same  as  when  wall  is  not 


To  .A.eoertaixx 


F«^ii. 


,— o 


surcbarged. 


Fi^  x3 


When  Wall  it  set  below  Surface  of  Earth.— Y'lp;,  12. 


1.4  tan.  45O 


—  y/^»t.(tan.45°-|y 


2/V 


»(L 


e    '  W 

a  refreuniing  angle  qf  rtpote  of  earthy  w  and  W  totighU 

of  earth  and  wall  per  cube  foot^f friction  qftoall  on  bate 

A  B,  and  V  weight  ofioall. 

lLLUSTRATiON.->If  a  wall  of  masonry.  Fig.  12, 8  feet  in  thickness 

and  13  in  height,  is  to  sustain  earth  level  with  its  upper  surfaee, 

earth  wieighing  100  lb&  per  cube  foot,  weight  of  wall  150  Iba  per 

cube  foot  =15600  lbs.,  and  angle  of  repose  of  earth  30^;  what 

should  be  the  depth  of  wall  below  surface  of  earth  ? 

Tan.  45  —  3o-r-2  =  .5774,  and /=  .3. 


*..   «         s^   .  .      /'3'XiooX.S774''-^gX.3Xis6oo_  «g^  ^     79360^5634.3 
Tben  1.4  X  .5774^ ~ =  -8o84  X^ — 

s=.  ^<y97  feet 

KoTK.— Gosfflcient  of  stability  is  assumed  by  French  engineers  for  walls  of  fi)rti> 
OcaiionB  1.4  ^  and  if  ground  is  clayey  or  wet/=.3. 


^OO      STABILITY. EUBANKUSNT  WAL1£  AMD  DAUS. 


r 


la  CtoKHHitiiiB  giMlilv  of  a  Snrthargtd  Wall,  Fig.  13.  mi 
UuUdfirli,atinJi<auiiniigillaMraliim.    (ifolcworM.) 


r  Unit  of  Surthoa  Bt  all 
r  any  Heieht. 

u  iifiecliimt  <U  nHtnil  q/'inn' 
if,  H,  D^  a  ODlKiiu  if  Oi  maarial  of  vMCk  pier  it  anutraeUd,  due  to  ntpind 
prcjHrc,  and  N  Uc  Rumier,  Btnt.  Ic;.  0/ wiUdi  z=  ^^^— . 

..jiJ/mT'     '  -  ■         .  - 

Couttier/m-ta  src  Increased  thicknetaca  of  a  wall  at  i'>  back,  at  inlerrals  d 
its  length. 

XCmbankment    Walls  anil  l^ams. 

Thrust  of  water  upon  Inner  face  of  an  Embankmeot  wall  or  Dun  is 
borizoQtaL 

When  SotA  Faca  are  VeMcal,  Fig.  14- 
Assume  perpendicular  eDibanknient  or  wall,  A  B  C  D,  Fig.  14,  to  auBtiin 
preaaure  of  water,  B  C  ef. 

Ffg, ,,.  Let  k  i  be  t.  vertical  line  pauing  through  0,  centre 

of  gravity  of  wall,  e  centre  of  pressure  of  waWr,  dis- 
tance Cc  being  =  .33  B  C.  Draw  cl  perpendicular 
ta  B  C ;  then,  biiicc  section  A  C  of  wall  is  reclangular. 
centre  of  gravity,  0,  is  in  its  geometrical  centre,  ind 
,  therefore  l>  1=: .;  D  C.    Now  t  U  >  is  to  be  coniid- 

*'  end  lu  a  Iwnl  lever,  fuk-rum  of  which  is  D,  weight  nE 

wall  acting  in  direction  of  centre  of  gravity,  a,  on  arm 
■D  i.  aiul  preaaure  of  water  on  arm  D  ^  or  a  joice  equal 
~    ~  '  to  that  preseiu^  throating  in  directitm  e  L 

Tbeu  PxDl=Px— =  Wx-— ,ocP  =  i5i^ —  r TtpraenHng pramn 
qfteater. 

Noit  — When  this  equailon  hoMs,  a  will  or  embuikment  will  Jnsl  be  jp  iln 
point  of  oTerlumIng;  but  in  order  UiBl.tbey  may  have  complete  italiilitr,  tliia 
equalton  eboulil  give  a  mvch  larger  value  to  F  than  ita  actual  araaunl. 

The  fallowing  formnlaa  are  for  walla  or  embankmenta  one  fool  in  lenf^th ; 


rttnHnff  depth  of  vraier 
equal,  h  breadth  of  woU 
per  fuhtfnnf  in  Im- 


a  wall  or  emhankment  that  will  just  suiUic 


STABILITY. — EMBANKMBNT  WALLS  AND  DAMS.       7OI 

To   Compute   Equilibrium.    A    /— ^=6. 

Illustration  l— Height  of  a  wall,  B  C,  equal  to  depth  of  water,  is  12  feet,  and  r«- 
Bpective  weights  of  water  and  wall  are  62.5  lbs.  and  120  lbs.  per  cube  foot;  required 
breadth  of  wall,  so  that  it  may  have  complete  stability  to  sustain  the  pressure  of 
water. 

12    / ^^  =  la  X  .4166  =  5  fttt^  breadth  that  tuill  just  sustain  pressure  0/  the 

water. 

Therefore  an  addition  should  be  made  to  this  to  give  the  wall  complete  stability, 
say  2  feet;  hence  5  -f  2  =  7,  required  width  of  wall. 

2.— Width  of  a  wall  is  3  feet,  and  weight  of  a  cube  foot  of  it  is  150  lbs. ;  required 
height  of  wall  to  resist  pressure  of  fkresh  water  to  the  top. 


V 


02.5 


To   Compute   tStalDility.    A^/-^  =  6. 

V  3W 

Illustration. —Take  elements  of  preceding  case. 

/2X62.5  „  ^  ^ 

12    /— =  i2X.589  =  707/<«'' 

V  3  X  120  ^ 

Or,  Divide  i,  2,  or  3,  etc.,  according  as  the  nature  of  the  ground,  the  mate- 
rial, and  the  character  of  the  thrust  of  the  water  requires,  by  .05  weight  of 
material  of  wall,  per  cu^ie  foot,  extract  the  square  root  of  quotient,  and  mul- 
tiply result  by  extreme  height  of  water. 

EXAMTUL  —What  should  be  the  tiiickness  of  a  vertioal  faced  wall  of  masonry, 
having  a  weight  of  125  lbs.  per  cube  foot,  to  sustain  a  head  of  water  of  40  feet,  and 
to  hare  stability  ? 

Via -r-. 05  X  las)  40  =  ^^.32  X  40  =  22.63/e«<. 

^r,  h  yj^^  =  40  V-3472  =  23.56/cffe. 

When  Dam  has  an  Exterior  Slope  or  Batter,  a.<t  A  D.— Fiff.  15. 

Fig.  15.     A       P__^j       Assume prismoidal  wall,  A  B C  D, to  sustain  press- 
ure of  water,  B  C  e/.  ^ 

Draw  A  E  perpendicular  to  D  C ;  A  =  B  C,  the  top 

breadth  A  B  =  E  C  =  6,  and  bottom  breadth,  D  E, 

of  sloping  part,  A  E  D  =r  S. 

Then  weights  of  portions  A  C  and  A  K  D  reipec- 

'/"'  1  rjjjj^^^s^  tively  for  one  foot  in  length  are  hbW  and  .5  W  8  A, 

l>        i"E"<r5rc~       "•'  these  weights  acting  at  points  n  and  i  respectively. 

To   Compute   ^lomeiit. 
*  6  W  X  (3  -I-  -  j  =  moment  for  A  C,  and X  —  =  nioment/or  A  E  D. 

W  h   /  o       Q^ 

Hence, f  s  -f-  fc  — '— |  =  mmnent  of  dam,    S  representing  batter  or  base  E  D. 

Illl^stbation.— Height  of  a  dam,  B  C,  Fig.  15,  is  9  feet,  base  C  £  3,  and  K  D  4  feet,* 
what  ia  Its  moment? 

AC  =  9X3Xi2oXU  +  |^)  =  3240  X  5-5  =  »7  820  lbs. 

Hence,  1 7 820  +  5760  =  23  580  lbs.  moment.    Or,  l?22l9  A  ^  j'_  1-^  =  54© x  43| 

s  33  s8o  lbs  moment 

3N* 


702      STABUJTY.-^KMBANKMBNT  WALLS  AND  DAMS. 

To    Compute    KlementB    of  'W'bII*   or   T>am»    -witli  an 
Kicterior   Batter.— Fie-  lO. 

When  Width  of  Bailer  U  Oinm.  J"—^  +  --  -  3  =  ft. 

I[j.c9tli.TioN.  -ABMina  height  of  will  9  and  b»tter  3  (Ml,  ind  W  md  b  i»  Mrf 

To  Compute  WidtK  uf  Bane. 

WhenWidlho/BaUeritGivin.    Jl^  +  j  =  B. 

To  Compute  ^Vidtli  of  Batlar. 

WAfnWU:iho/1^1ii>Givt»^   -J-^^--^ V  =  * 

When  Width  of  SollomiiGiren.     ^38'-^^^  =  * 

To  Determine  Stability  of  ••  Betalnine  IVall  op  Dam  *>r 
Pi„  ,g^  protrBCtloii.-FiB.  18. 

Aaauine  A  B  C  D,  section  ot  s  wall.  On  hnriinntil 
Hne  of  centre  of  thrust  or  pressure,  with  1  suitaMt 
scale,  lay  off,  from  vardeal  line  ot  centre  of  j.'isvily  ■ 
ot  wall,  line  0  r  =  thniM  u^aiiist  wall,  and  on  vertii:^ 
line  at  centre  of  icravitv  of  wall,  at  iU  inleraeclion,  ft 
witlicentteof  tlirii9t,lii  fall  H«  =  weight  of  wall. 
Complete  paralleltgram,  anil  if  diagonal  on  or  ils 

riongation  falls  within  C,  the  wall  is  slaWc.  and 
X  distance  from  line  ot  ^moment  of  wall. 
W  r'prrjrnting  almte  meigkl  of  wall  in  On. 
To  Determine   Centre  nf  OraTity  of  a  -Wiill  or  Dnin.- 
^If.  le. 

ByOrdinalu.    7  (*  ^  +  C  D  -  ^^)  = -,  «.d  ?^  (^;^^±^)  =  ■■ 

To   Coinpule   Bbbo  of  Dam. 

What  Height, Rale  o/BiilUr.  .mrf  Wei^  of  MaluiaU  are  911™.  Roi.i- 
—MuUiuly  square  gf  width  of  batter  by  .0166  weight  of  material  pet  culw 
foot,  add  I,  3,  or  3  times  square  of  depth  ot  water,  acciinling  as  resJSlaiK* 
due  to  equilibrium  is  required,  divide  result  by  .05  weight  ot  mslenal  pW 
cube  fbot,  anil  enlract  square  root  of  quotient. 

EnHPta-ASBinne  a  dam  40  f™'  m  height,  TOnslnicled  of  rauonry  «t!''^JJ 


STABILITY. — ^EMBANKMENT  WALLS  AND  DAMS.      703 


When  Section  of  Dam  is  a  Triangle^  Fi<j.  17.  —  As- 
sume dam,  A  B  C,  to  sustain  a  head  of  water,  ef.  . 

KuLE.— Proceed  as  by  ^ule  for  Fig.  14;  multiply  by 
.OJ3  instead  of  .05. 
ExAiiPLE.— As  befiQre. 


V(a  -s-  .033  X  125)  40  =  '^/.48s  X  40  =  27- 84  AeL 
Or,  Formula  for  S  (C  B),  Ffg.  15.       /—^  =  ,8.28  feet 

To  Determine  Section  of  a  Vertical  Wall  which  shall  have  Equal  Resitt' 
once  of  one  having  Section  of  a  Triangle,    (See  J.  C.  TratUwine,  Phila.^  1872.) 

To  Coxxipute   Tl]iiokiiess    of   I3ase   of*  a   Wall    or    X>axn.— 

Fi^,  18. 

F'fr  »*•  Rule. — Divide  i,  2,  or  3  times  square  of  depth  of  water 

by  .05  weight  of  material,  add  quotient  to  .5  batter  on  one 
face,  and  square  root  of  this  sum,  added  to  h^  batter  on 
other  side,  will  give  thickness. 

'^3       Or,  yj — m+ (~)  +  — =  ^««.      ft  ond  V  representing 

~      exterior  and  interior  batters,  and  s,  at  before^  number  of  times 
of  resistance  or  square  of  depth. 

ExAMRLE. — Assume  a  dam  40  feet  in  height,  to  batter  5  feet 
on  each  side,  constructed  of  masonry  weighing  izo  lbs.  per  cube 
foot,  and  to  have  twice  the  resistance  due  to  its  equilibrium;  what  should  be 
breadth  of  base,  DC? 

Higlx   ^fasonry   IDaxxis. 

RubUe  Ma8<Mir>%  well  laid  in  strong  cement,  will  bear  with  safety  a  load 
equivalent  to  weight  of  a  column  of  it  160  feet  in  height    Assuming  such 

masonry  as  twice  weight  of  water,  it  is  equivalent 
to  a  pressure  of  aocxx)  lbs.  per  sq.  foot. 

tiOg.  B  +  '434  294  X  ^  =  ft.    B  representif^  width  of 

wall  at  top,  and  d  depth  at  any  desired  point  below  topy 
both  in  feet. 

Ordinarily,  B  may  be  Utken  at  18  feet,  and  iii  cases 
of  extreme  and  exposed  heights  of  dam  at  20  and  more, 
and  when  6  is  determined.  .9  of  it  is  to  be  qb  outer  face 
of  wall,  as  A  B,  and  .  i  on  inner  face. 

_       Illustration. — Determine  section  of  a  dam,  Fig.  19, 
a£.  80  feet  in  height,  at  depths  of  lo^  20,  40, 60,  and  80  feet. 

Log.  B  =  1. 3553. 
«aS53  +  '4343  ^  5^  =  ^^^  »a553  +  -0543  =  2o-4»  which  X  .9  =  18.36. 


ti 


»i 


'•2553  +  -4343X  g-  =  log.  i. 35534-.  1086  =  23. 11,  which  X..9  =  aa8. 

«'a5534- .4343  X  5^=5  log.  X.2553 4-  .3x72  =  39.68,  which  X  .9  =  26.81. 
**  • 

60 

»aS53  +  -4343X  g^  =  log.  i.2553-f-.3257=:38.ii,  which  X  .9  =  34•3• 
8o 

«a553  +  -4343  X  33  =  !<>«•  "2553  +  -4343  =  5oo7,  which  X  .9  =  45.06. 


704  STEAM. 

STEAM. 

Steam  is  generated  by  heating  of  water  until  it  attains  temperature 
of  ebullition  or  vaporization,  and  elevation  of  its  temperature  is  sensible 
to  indications  of  a  thermometer  up  to  point  of  ebullition ;  it  is  then 
converted  into  steam  by  additional  temperature,  which  cannot  be  in- 
dicated by  a  thermometer,  and  is  termed  latent    (See  Heat,  page  508.) 

Pressure  and  density  of  steam,  which  is  generated  in  tree  contact  with  water, 
rises  with  the  temperature,  and  reciprocally  its  temperature  rises  with  the  press- 
ure and  density,  and  higher  the  temperature  more  rapid  the  pressure.  There  is 
bat  one  and  a  corresponding  pressure  and  density  for  each  temperature,  and  steam 
generated  in  tree  contact  with  water  is  both  at  its  maximum  density  and  pressure 
for  its  temperature,  and  in  this  condition  it  is  termed  saiurcUed^  from  its  being  in- 
capable of  vaporizing  more  water  unless  its  temperature  is  raised. 

Saturated  Steam  is  the  normal  condition  of  steam  generated  in  ttee  contact  with 
water,  and  same  density  and  same  pressure  always  exist  in  cot\jnnction  with  same 
temperature.  It  therefore  is  both  at  its  condensing  and  generating  points;  that 
is,  it  is  condensed  if  its  temperature  is  reduced,  and  more  water  is  evaporated  if 
its  temperature  is  raised. 

If,  however,  the  whole  of  the  water  is  evaporated,  or  a  volume  of  saturated  steam 
is  isolated  from  water,  in  a  confined  space,  and  an  additional  quantity  of  heat  is 
supplied  to  the  steam,  its  condition  of  saturation  is  changed,  the  steam  becomes 
superheated^  and  both  temperature  and  pressure  are  increased,  while  its  density  is 
not  increased.    Steam,  when  thus  surcharged,  approaches  to  condition  of  a  gas. 

With  saturated  steam,  pressure  does  not  rise  directly  with  the  (empentaro. 

Steam,  at  its  boiling-point,  is  equal  to  pressure  of  atmosphere,  which  is  14.733307 
lbs.  (page  427),  at  60°  upon  a  sq.  inch. 

In  all  computations  concerning  steam,  it  is  necessary  to  have  some  or  all  of  fol- 
lowing elements,  viz. : 

Its  Pressure,  which  is  termed  its  tension  or  elastic  force,  and  is  expressed  in  lb& 
per  sq.  inch.  Its  Temperature^  which  is  number  of  its  degrees  of  heat  indicated  by 
a  thermometer.  Its  Density^  which  is  weight  of  a  unit  of  its  volame  compared 
with  that  of  water.  Its  ReJative  volume,  which  is  space  occupied  by  a  given  weight 
or  volume  of  it,  compared  with  weight  or  volume  of  water  that  produced  it 

Under  pressure  of  the  atmosphere  alone,  temperature  of  water  cannot  be  raised 
above  its  boiling  point. 

Expansive  force  of  steam  of  all  fluids  is  same  at  their  boiling-point 

A  cube  inch  of  water,  evaporated  under  ordinary  atmospheric  pressure,  is  convert- 
ed into  1642*  cube  ins.  of  steam,  or,  in  a  unit  of  measure,  very  nearly  1  cube  foot, 
and  it  exerts  a  mechanical  force  equal  to  raising  of  14.723307  x  z44=:ai2ai563o8 
lbs.  z  foot  high. 

A  pressure  of  x  lb.  upon  a  sq.  inch  will  support  a  column  of  mercnry  at  a  tem- 
perature of  60®,  i-=-  4907769  (page  427)  =  2.037  586  ins.  in  height;  hence  U  will 
raise  a  mercurial  siphon  gauge  one  half  of  this,  or  1.018793  ins. 

Velocity  of  steam,  when  flowing  into  a  vacuum,  is  about  1550  feet  per  second  wbra 
at  a  pressure  equal  to  the  atmosphere ;  when  at  10  atmospheres  velocity  is  increased 
to  but  1780  fbet;  and  when  flowing  into  the  air  under  a  similar  pressure  it  is  about 
650  feet  per  second,  Increasiug  to  1600  feet  for  a  pressure  of  30  atmoepherea 

BoUing -points  of  Water,  corresponding  to  diflerent  heights  of  barometer,  see 
Heat,  page  517. 

Volume  of  a  cube  foot  of  water  evaporated  into  steam  at  2x2°  is  1642  cube  f)e«t; 
hence  i  -7- 1642  =  .000609013,  which  represents  density  or  specific  gravity  of  steam 
at  pressure  of  atmosphere. 

Elasticity  of  vapor  of  aIcohol,at  all  temperatures,  is  about  2. 125  times  that  of  steam. 

Specific  Oravity^  compared  with  air,  is  as  weight  of  a  cube  foot  of  it  compared 
with  equal  volume  of  air.  Thus,  weight  of  a  cube  foot  of  steam  at  2«2°  and  at 
pressure  of  atnioRpherc  is  266.124  grains;  weight  of  a  like  volume  of  air  at  32°  'S 
565.096  grains,  and  at  62°  532.679  grains.  Hence  266. 124 -r  532.679  =  .499  59,  «p««/* 
gravity  of  steam  compared  with  air  at  32°,  and  with  water  it  is  .000609013. 

*  Pole's  Formoia  make*  it  1712. 


STBAH.  705 

.  Total  Heat  of*  Saturated   Steam.    {BegnauU.) 

From  Water  at  32°. 
1081 .4  4*  'S^S  '^  =■  ^^  ^^^    "^  representing  initicU  temperature  ofwcUer. 
.LLU8TRAT10N.— What  is  total  heat  of  steam  at  212*^? 

108 1. 4 -f"  •305  X  212  c=  1146.06. 
As  Specific  heat  of  water  is  .9  greater  at  212°  than  at  32 o,  heDoe  the  212°  would 
be  212.9,  and  1146.33  tiie  resuU. 

Total  Heat  o/GrOseous  Steam  from  Water  of  2^°  =  1074.6  +  .475  T. 

.A.l>sorptioii   of*  l^eatl 

In  Generation  of  x  Lb.  of  Steam  at  212°  Jrom  Water  at  32°. 
Sensible  hoat,  or  heat  to  raise  temperature  of  water  Tharmal  Units.         Foot-liM. 

ftora  32^10  212° 181.8X772  =  139655 

Latent  heat  to  produce  steam 892.9 

*'        "to  resist  atmospheric  pressure  i^.y  ]b& 

persq.  Inch 7'-4    _9|^4 •  3  X  77a =745X34 

Total  or  constituent  heat 1146 .  i  884  789 

In  GenercUion  of  I  Lb.  of  Steam  at  iy$  lbs.  from  Water  at  32°. 

Tbermal  UniU.    Foot-Ibi. 

Sensibleheat  as  in  preceding  case  from  32°  to  370.8° 342-4         275333 

Latent  heat  to  produce  steam 768.2         599050 

"        "    to  resist  external  pressure  =  175  lbs 83.8  64694 

Total  heat  from  32° 1194.4         933077 

Mechanical  Equivalent  of  Heat  Contained  in  Steam. 

I  lb.  water  heated  from  32°  to  212°  requires  as  much  heat  as  would  raise 
180  lbs.  1°.     Hence 181.8° 

X  lb.  water  at  212°,  converted  into  steam  at  212°  (=:T4.7"lb&  pressure), 
absorbs  as  much  heat  as  would  raise  966.6  lbs.  water  1°.    Hence 964.3° 

1146.1° 
Mfckaniail  Equivalent,  or  maximum  theoretical  duty  uf  quantity  of  heat  in  one 
thermal  nnit  or  one  degree  in  i  lb.  of  water,  is  772  foot-lbs.,  which  X  1146.1  units 
of  he€U=:8&4  jig.2  lbs.  raised  ifoot  high. 

Xo   Compute   Pressure   of  Steam 

Above  Perfect  Vacuum. 

When  Height  of  Column  of  Mercury  it  mil  Support  is  given.  Rule. — Di- 
vide height  of  column  of  mercury  in  ins.  by  2.037  586,  and  quotient  will  give 
pressure  per  sq.  inch  in  lbs.  ' 

ExAMPLK.  —Height  of  a  column  of  mercury  is  203.7586  ins. ;  what  pressure  per 
aq.  inch  will  it  contain  ? 

903.7586-7- 2.037  5^6  =  100  Vbs. 

To  Compute   "^Veiglit  of*  a  Culye  Foot  of  Steam. 
Ruus. — Mtdtiply  its  density  by  62.425. 
ExAXFLB.. — Density  of  a  volume  of  steam  is  .000609013;  what  is  its  weight? 

.<xx>  609  013  X  6a.  425  =  .038  016  825  Ufs: 
Nora.— See  table,  page  708. 
1  atmosphere  or  14.723307  lbs.  per  sq.  inch  =  30  ins.  of  mercury. 

To   Co^npixte   Temperature  of  Steam. 

BuTJU. — Multiply  6th  root  of  its  force  in  ins.  of  mercury  by  177.2,  sub< 
tract  100  from  product,  and  remainder  will  give  temperature  in  degrees. 

ExAMPLK. — Wlien  elastic  force  of  steam  is  equal  to  a  pressure  of  64  ins.  of  mer* 
cary,  what  Is  its  temperature? 

KoTK.— To  extract  6th  root  of  a  number,  ascertain  cube  root  of  its  square  root 

■^64  =  8,  and  ^B  ^  2.    Hence,  2  x  177.2  — 100  =  254.4°  t 

Or,  7 ?^^   '  J 37X.  85 = <.    p  represeuHtut pressure  in  lbs.  per  sq.  iacft. 

6x993544— log- 1»  _    x~  •» 


706  STEAM. 

To  Compute  "Voluzne  of  "Water  ooxxtaixi«<i  ifo.  a  given  TTol- 

vLxxxe  of  Steaxn* 

Whm  iU  Dmmiy  is  ffiven,  RuLE.^Multiply  vdume  of  steam  in  cube 
feet  by  its  density,  and  product  will  give  volume  of  water  in  cube  feet. 

ExAMPLB. — Density  of  a  volume  of  16420  cube  feet  of  steam  is  .000609;  ^^'^^  ^* 
tbe  weight  of  it  in  llw.  ? 

z6  420  X  'COO  609  =  10  =  volume  of  toater^  which  X  62. 425  =  624. 25  lb$. 

To  Cozxipu.te   Pressvire  of  Steam    in  Ins.  of  IV^ieroixry,  or 

X^los.  per   Sq..  Iiicla. 

When  Temperature  is  ffiven,  Kclb  i. — Add  100  to  temperature,  divide 
sum  proportionally  by  177.2  for  temperature  of  212°,  and  by  160  for  tem- 
peratures up  to  445° ;  or,  177.6  for  sea-water,  and  J85.6  for  see-water  Mt> 
urated  with  salt,  and  6th  power  of  quotient  will  giye  pressure. 

ExAMPLB.-~Temperature  of  steam  is  254°;  what  is  its  pressure? 
ICO -f- 254-^  177.2  =  1.998,  and  1.998*  =  63.62  ins. 

When  Ins.  of  Mercury  are  given.  2. — Divide  ins.  of  mercury  by  2.037  5^6, 
and  quotient  will  give  pressure. 

When  Pressure  in  Lbs.  is  given,    3. — Multiply  pressure  by  2.037  586. 

To  Compute  Speoiflo  Gravity  of  Steam   oompcured  'writh 

A.ir. 

Rule.  —  Divide  constant  number  829.05  (1642  X  .5049)  by  volume  of 
steam  at  temperature  of  pressure  at  which  gravity  is  rec^uired. 
ExAUPiJE.<-Pressure  of  steam  is  60  lbs.,  and  volume  437 ;  what  its  specific  gravity? 

829.05  -J-  437  =  r.  898. 

To  Compute  Volume  of  a  Cu"be  Foot  of  "Water  in  Steana. 
When  Elaatic  Force  and  Temperature  of  Steam  are  given.  Rulb.— To 
430.25  for  temperature  of  212°,  and  33a  for  teiniiemturee  up  to  445°,  add 
temperature  in  de^ees ;  multiply  sum  by  76.5,  aud  divide  product  by  elastic 
force  of  steam  in  ms.  of  mercury. 

Note.— When  force  in  ins.  of  mercury  is  not  given,  multiply  pressure  in  lbs.  per 
sq.  inch  by  2.037  586. 

Example.— Temperature  of  a  cube  foot  of  water  evaporated  into  steam  is  386^* 
and  elastic  force  is  427. 5  ins. ;  what  is  its  volume  ? 

Assume  369  for  proportionate  factor.    369  -\-  386  X  76. 5  -?- 497.5  =  13^1  cui(>€fidL 

Or,  for  I  lb.  of  steam,  2.519— .941  log.  p  =7  log.  V  in  cubefset. 

Assume  p  =  14.7  lbs.  2.519  —  .941  log.  14.7  =  2.519  — 1.098=  x. 421^  log.  96.34 
cube  fMt,  which  X  62. 425  =  164  JM. 

Or,  When  Density  is  ^'ven.— Divide  1  by  density,  and  quotient  will  giv^  vohune 
in  cube  feet. 

To   Compute   IDeusitsr   or   Speoifio  0>ravity   of  iBteaxxx. 

When  Volume  is  given.    Rule. — Divide  1  by  volume  in  cube  feet. 
Example.— Volume  is  210;  what  is  density? 

I  ^  210  =  .004  761.    Or,  for  z  lb.  of  pteam,  .941  log.  p  ■»  a.  519  =t  log.  D. 

When  Pressure  is  given. — Take  temperature  due  to  pressure,  and  proceed 
as  by  rule  to  compute  volume,  which,  when  obtaiRed,  proceeds  as  above. 

To  Coxxipute  Volume  of  Steam  reqiiirecl  to  raise  a  Ghiven 
"Volume   of  Water   to   any   Gl-iven    Texxkperature. 

Rule.— Multiply  water  to  be  heated  by  difference  of  temperatures  between 
it  and  that  to  which  it  is  to  be  raised,  for  a  dividend ;  then  to  temperature 
of  eteam  add  965.2^,  from  that  aum  take  required  temperature  of  water  Ibr 

divisor,  and  quotient  will  give  volume  of  water. 


6TBAM, 


707 


RxAMPLK.— Wbat  volume  of  tsteain  At  ^la^  will  ritta«  loo  cube  feet  of  water  at  So^* 

10  212°? 


i — T — ' =  '3-68  cube  feet  water;  or,  (13. 68  X 1642  — *  212)  =;aa  450  of  steam, 

213-1-965.2 — 2X3 

OCp  Coisipvitd  VoliiiTje  of  "Water,  at  any  Oiven  Temper- 
ature, tliat  must  l>fl  IVtixed  -with.  Steam  to  X^aide  or  Re^ 
duoe   the   M.ixtxtre   to   aiiy    H.eqviired   Temperature. 

liuLR.>-^^roin  required  tempeiature  subtract  temperature  of  water ;  then 
ascertain  how  often  remainder  is  contained  in  required  temperature  sub- 
tracted from  sum  of  sensible  and  latent  heat  uf  the  steam,  and  quotient  will 
give  volume  required. 

Sam  of  Sensible  and  Latent  Heats  for  a  range  of  temperatures  will  be  found  under 
Heat,  pages  508  and  509. 

KXAMPLB.— Temperature  of  condensing  water  of  an  engine  is  80°,  and  required 
temperature  100°;  what  is  proportion  of  condensing  water  to  that  evaporated  at  a 
pressure  of  34  lbs.  per  sq.  iucb  ? 

Sum  of  sensible  and  latent  heats  930.120-1-257.60  =  1187.72O. 

100  —  8o=:2a    Then,  1187.72  —  100-7-20  =  54.386  to  i. 


When  Temperature  of  Steam  is  given. 


/-f-T 


~Y.    I  representing  latent  heat, 


t  —  w 

T  and  t  temperatures  ofsiemn  and  required  temperature,  w  temperature  of  condensing 
VKUer,  and  V  volume  of  condensing  toater  in  cultefeet. 

iLLDBTRATioir. — ^Temperature  of  steam  in  a  cylinder  is  257.6°,  and  other  elements 
same  as  in  preceding  example  ;  required  volunie  ot  injection  water?  Latent  heat 
of  steam  at  230^5  =  930. 12°. 

930. 120  +  2j7.i:J^^  io87_.  7_a  ^  ^^^^  ^y^^ 
80 


100 


20 


To   Compvite    Temperature    of*  Water    in    Condenser    or 
Reservoir    odT  a    Steam-eii|?ine. 


=  t.    Illustration.  —Assume  elements  ds  preceding. 


loo*- 


930. 12°  4-  257.6  -f- 54.39  X  80  _  5539  _ 
54-39 -f'  55-39 

To    Compute    Latent    Heat    of  Saturated    St'^atn. 
X112.5  —•708  t^l.    Illustration. — Assume  temperature  257.6°  as  preceding. 

1112.5  —  .708X  257.6=930.12°. 
To  Compute   Total   Heat  of*  Saturated   Steam. 
'3<>S  ^+1081.4  -  H-    iLLUBTRATiON.^Assume  temperature  as  preceding. 

.305  X  257" 6  "H  J081.4  =  1160. 

I£la«tio  Force  and  Temperature  of  Vapors  of  A.loolxol* 
fijther,  Sulpliuret  of  Carbon,  Feti  oleum,  and  Tur* 
pen  tine. 

Force  in  Tru.  of  Mercury. 

o       I       loi. 

P£TROLSUM 

316  30 

345        441 
375    I    64 

Oil  OP 

TCRPBNTINB. 


*»  1 

Int.      1 

0 

Ini. 

0 

Ini.      1 

°     1 

Ina. 

Alcohol.      | 

Alcohol. 

Ether. 

Sulphurkt  of 

3« 

L 

140 

13.9 

34 

6.8 

Carbon. 

50 

.86 

160 

22.6 

54 

15.3 

53-5 

7-4 

60 

««3 

IK 

30 

74 

x6.8 

72- 5 

12.55 

70 

1.76 

34-73 

94 

24.7 

no 

30 

80 

2-45 

200 

53 

96 
W4l 

30, 

212 

126 

90 

3-4 

21S 

Ts 

279.5 

300 

loo 

n 

220 

120 

39-47 

347 

606 

120 

240 

III. 24 

150 

67.6 
»7« 

«3«» 

10.6 

264 

166.  X 

819 

3>5 

357 
370 


47.78 
69.4 


7o8 


6TB  AM. 


Saturated   Steam. 

Pi'essure,  Temperature,  Volumey  and  Density. 


P&B880B> 

* 

S 

I 

B 

11. 

'•8 
13 

n«lty, 
eight  of 
ibe  Foot. 

Pbksbubb 

• 

1 

1^. 

13 

III 

[ocli: 

1      In 

Mer- 
;    cury. 

Ins. 

r 

jlc&b. 

In 
Mer- 
cury. 

1 

If 

r 

Lb*. 

0 

1      ° 

Cub.  ft. 

Lb. 

Lbe. 

Ira. 

0 

0 

Cub.  ft. 

Lb. 

I 

2.04 

loa.z 

1113.5 

330.36 

.003 

58 

118.08 !  290.4 

1170 

7-24 

.138 

3 

4.07 

126.3 

H19.7 

172.08 

.0058 

59 

120.12 ,  291.6 

Z170.4 

7.12 

.1403 

3 

6.  II 

141. 6 

1124.6 

117.52 

.0085 

60 

122.16  1  292.7 

Z170.7 

7.01 

.1425 

4 

8.14 

1 53- 1 

1 128. 1 

89.62 

.011  2 

61 

124.19 

293.8 

1171.1 

6.9 

-1447 

5 

10.18 

162.3 

1 130-9 

72.66 

.0138 

62 

126.23 

394.8 

"7'.4 

6.81 

.1469 

6 

12.22 

170.2 

"33-3 

61.21 

.0163 

63 

128.26 

295.9 

ZZ7Z.7 

H 

•'493' 

7 

14.25 

176.9 

"35-3 

52.94 

.0189 

64 

130.3 

296.9 

1172 

6.6 

.1516 

8 

16.29 

182.9 

"37-2 

46.69 

.0214 

65 

'32-34 

298 

1172.3]  6.49 

.1538 

9 

18.32 

188.3 

I 138. 8 

41.79 

.0239 

66 

134-37 

299 

Z172.6    6.41 

.'56 

lO 

20.36 

'93-3 

1140.3 

37.84    .0264 

1     67 

'36.4 

300 

1172.9 

6.32 

.1583 

ZI 

22.39  ;  *97-8 

'  "41-7 

34.63    .0289 

68 

'38.44 

30a  9 

1173.2 

6.23 

.1605 

za 

2443 

202 

"43 

31.88    .0314   j 

69 

140.48 

30Z.9 

"73-5 

6.15 

.1627 

13 

26.46 

205.9 

I 144. 2 

29-57    -0338   1 

70 

142.52 

302.9 

"73-8 

6.07 

.1648 

>4 

28.51 

209.0 

"45-3 

27.61    .0362    1 

71 

'44-55 

303-9 
304-8 

"74' 

5-99 

.167 

*4  7 

29.92 

212 

1 146. 1 

26.36    .03802 

72 

146.59 

"74-3 

5-9' 

.1693 

»5 

30.54    213. 1 

1 146. 4 

25.85    .0387 

73 

148.62 

305-7 

1174.6 

.1714 

z6 

32.57    216.3 

1 147. 4 

24.32    .041  I 

74 

150.66 

306.6 

"74-9 

576 

.'736 

X7 

34.61    219.6 

"48.3 

22.96  1.0435 

75 

152.69 

307.5    1175  2 

5.68 

•  '759 

i8 

36.65  j  222.4 

"49-2 

21.78    .0459 

76 

'54  73 

308.4    ZZ7S.4 

5.6Z 

.1782 

19 

38.68   225.3 

"50. 1 

20.7 

.0483 

77 

156.77 

309.3 

"757 

5-54 

.1804 

20 

40.72    228 

1150.9 

19.72 

.0507 

78 

153.8 

310.2 

1176 

5-48 

.1826 

3Z 

42.75    230.6 

"51-7 

ii.84 

.0531 

79 

160.84 

31Z.1 

1Z76.3 

5-4' 

.1848 

23 

44-79  1  233- » 

1152.5 

z8.os 

-0555 

80 

162.87 

3'2 

"76.5 

5-35 

.1869 

33 

46.83:235.5 

"53-2 

17.26 

.058 

81 

164.91 

312.8 

1176.8 

5-29 

.1891 

84 

48.86 

237.8 

"53-9 

16.64    -0601 

82 

166.95 

313.6 

"77-' 

5.23 

.'9' 3 

»5 

50.9 

240.1 

"54-6 

15.99   .0625 

83 

168.98 

3'4-5 

z  177.4 

5- '7 

.'935 

36 

52.93 

242.3 

"553 

Z5.38   .065 

b 

171.02 

3'5.3 

Z177-6 

5." 

.'957 

37 

54-97 

244.4 

"55-8 

Z4.86   .0673 

85 

'73-05 

316.1 

1177.9 

5.05 

.198 

38 

57.01 « 

246.4 

"56.4 

14.37   -0696 

86 

175-09 

316.9 

1178.1 

5 

.200a 

39 

59-04 

248.4 

"57-1 

139 

.0719 

87 

'77- '3 

317.8 

1Z78.4 

4-94 

.2024 

30 

61.08 

250.4 

"57-8 

13.46 

.0743 

88 

179. 16 

318.6 

1 178.6 

4-89 

.2044 

31 

63. 11 

252.3 

"58.4 

»3-o5 

.0766 

89 

181.2 

3'9-4 

Z178.9 

4-84 

.2067 

33 

65-15 

254-1 

"58.9 

.  12.67 

-0789 

90 

183.23 

320.2 

1179.1 

4-79 

.3089 

33 

67.19 

255-9 

"59-5 

12.  31 

.0812 

91 

185.27 

321 

"79-3 

4-74 

.31ZI 

34 

69.22 

257.6 

1160 

11.97 

•°?3  5 

92 

187.31 

321.7 

"79-5 

4-69 

.2133 

35 

71.26 

259-3 

1 160. 5 

11.65 

.0858 

93 

'89.34 

322.5 

Z179.8 

464 

.2155 

36 

73-29 

260.9 

iz6i 

"•34 

.0881 

94 

X9'-38 

323.3 

zz8o 

4-6 

.3176 

K 

75-33 

262.0 

iz6z.5 

IZ.04 

.0905 

95 

'934' 

3a4-i 

zi8a3 

4-55 

.2198 

38 

77-37 

264.2 

1 162 

ia76 

.0929 

96 

'95-45 

324.8 

Z180.5 

4-5' 

.2219 

39 

79-4 

265.8 

1162.5 

10.51 

.0952 

97 

197.49 

325-6 

1180.8 

4.46 

.2241 

40 

81.43 

267.3 

Z162.9 

10.27 

■0974 

98 

'99-52 

326.3 

1 181 

4.4a 

.2263 

41 

83.47 

368.7 

ZZ63.4 

zao3 

.0996 

99 

201.56 

327.Z 

1181.2 

4-37 

.3285 

4a 

85.5 

270.2 

1163.8 

9.81 

.102 

100 

203.59 

327-9 

Z181.4 

4-33 

.2307 

43 

87-54 

271.6 

Z164.2 

9-59 

.1042 

ZOI 

305.63 

328.5 

1181.6 

4.29 

.2329 

44 

89-58 

273 

1 164. 6 

9.39   .1065 

Z02 

307.66 

329.  z 

1181.8 

4-25 

.235* 

45 

9Z.61 

274-4 

Z165.Z 

9.18 

.1089 

Z03 

209.7 

329.9 

1182 

^•"i 

.2373 

46 

93-§5 

275.8 

Z165.5 

2« 

.111 1 

Z04 

2ZZ.74 

330.6 

Z182.2 

4.18 

.9393 

47 

95-69 

277.1 

1165.9 

8.82 

•"33 

Z05 

213-77 

331-3 

1182.4 

4- '4 

.3414 

48 

97.72 

278.4 

1166.3 

8.65 

.Z156 

Z06 

215.81 

33».9 

ZZ82.6 

4.1Z 

.2435 

49 

99.76 

279.7 

1166.7 

8.48 

"7  9 

'*^ 

^'7-?4 

332.6 

ZZ83.8 

4.07 

.a45«» 

50 

Z01.8 

281 

1 167. 1 

8.31 

.1202 

zo8 

219.88 

333-3 

ZZ83 

4.04 

.2477 

5> 

Z03.83 

282.3 

1167.5 

8.17    .1224 

Z09 

221.93 

334^ 

"83.3 

4 

•a499 

5a 

105.87 

283.5 

1167.9 

8.04   .1246 

110 

223.95 

334-6 

"83-5 

3.97 

.3531 

53 

107.9 

284.7 

1168.3 

7.88   .120  9 

711 

225.99 

335.3 

"83.7 

3.93 

•9543 

54 

109.94 

285.9 

1 168. 6 

7.74   .1291 

ZZ2 

228.03 

336       ZZ83.9 

%%> 

.3586 

55 

III. 98 

""IV 

ZZ69 

7.61  |.z3i4 
7-48    .1336 

"3 

230.06 

336.7    1184.1 

56 

1 14.01 

288.2. 

"69.3 

"4 

232.  z 

337.4    1184.3 

3*83 

.3607 

1>7 

z  16.05 

289.3 

1169.7 

7.36 

.Z364   1 

"5 

234- '3 

338 

"845 

3-8 

.3638 

ft 

»«« 

& 

»Ur- 

■  ■6 

:& 

J3B.( 

iij 

34=- < 

•M 

'S>-45 

3436 

SS 

J44-8 

j6j,64 

'v 

5ft; 

174-85 

349- S 

>40 

Si 

::? 

a 

M 

,.^ 

ik 

1^ 

ill 

ji 

K 

wi. 

it- 

51 

Ll». 

.>649 

3578 

1190-5 

i.,a 

:; 

::t,=: 

1S5 

Hs^H 

i' 

1190.7 

t^ 

:3: 

.»6irt. 

160 

363-4 

.»738 

.65 

33593 

^ 

1191.9 

a.  71 

'Mi 

i 

1 

■70 

346.., 

|8 

3 

-X 

,4009 

J 

'.till 

!« 

gl 

3J7-'s 

i|i 

»37 

? 

j86? 

379-7 

6 

3SS9 

3B..7 

,10 

386 

■4634 

44J-9 

389-9 

468.16 

393.8 

"°''i 

1.^ 

488.62 

397- S 

.5»,e 

250 

SOS.,3 

1103.7 

I;lj 

.5464 

I 

304 

±0b 

^■9 

.»4.8     1.76 
1K5.8     1.7 

:S 

306 

iBo 

1x6.8    1,64 

-6uBt 

I 

,08 

43tn 

.107.8;  ,.S9 
.>oS.7  '  1.54 
,,,,.6    1-33 

-749« 

4<4.9 

-Ss" 

3.6j 

456-J 

i«0,7 

3.8. 

^a'' 

467.  S 

£1 

3:«* 

Si" 

477- S 

J7 

3"8 

6« 

487 

I 

650 

nu 

495-6 

!'3S-' 

1 

■  -4J9! 

Sm 

6ia.j 

331 S 

83^3 

S33-6 

■244-3 

i;^n 

3336 

546.  S 

1148-1 

Saturated   Stean 

1   from  33'  to 

SIS" 

(CTo«W,) 

■    ; 

^. 

!^^ 

f^. 

r 

sr: 

Mmo- 

S,.^!.. 

dk 

/r* 

3° 

-i?i 

^ 

-^1 

3=J6 

7:7 

3°933 

'''w'j 

■^^4 

i8c5 

:3 

■63 

■58.7 

s° 

i 

.0,9 

.69s 

MO 

11 

sp 

:s:j 

5S 

.436 

7548 

i'^ 

"?:! 

60 

.oS, 

8.  SIS 

65 

.615 

6* 

'g;. 

160    9.63 

16s     .^8^3 

4-731 

MW 

■M-8 

ii 

i*i* 

s 

sH 

:E 

''3.6-^ 

iS 

i!6oj 

^^■: 

ss 

91 

.1B1 

■-97 

50,8 

593 

18; 

17.04, 

8^375 

3-l8[ 

M 

.647 

=9 

:i 

4o8,> 

lis 

.KB 

rJi; 

B 

OS 

li 

I 

i 

wi 

j6s!i 

™ 

ij;^!? 

ii.;i6 

3->!J 

34-1 

il 

\: 

5^5 

:4rfi 
.488 

^9 

=;: 

iS 

;;:"' 

iisi 

18.  J 

7IO  BTBAK. 

GASEOUS  STBAM. 

When  saturated  steam  is  surcharged  with  heat,  or  superheated,  it  is  termed 
gaseous  or  steam-gas.  The  distinguishing  feature  of  this  condition  of  steam 
is  its  uniformity  of  rate  of  expansion  atove  330°,  with  the  rise  of  its  tem- 
perature, alike  to  the  expansion  of  permanent  gasei. 

Xo   Compute   'Potal   Meat  of  G^aseou«   Bteaxn. 

1074.6  + -475  <  3=  H.  t  repraenting  temp$r<Uure,  and  H  Uttai  hMt  in  degree*. 
Hence,  total  heat  at  21 3^,  and  at  atmospheric  pressure  :=^  iz75<3°. 

Specific  gravity  =  .623. 

T?o   Compute  Velocity  of*  Stean^. 

Into  a  Vacuum,  Rule. — To  temperature  of  steam  add  constant  459,  and 
multiply  square  root  of  sum  by  60.9 ;  product  will  give  velocity  in  feet  per 
second. 

Into  Atmosphere,  j.6  y/k  =  V.  V  representing  velocity  eu  above,  and  h  height  in 
feet  of  a  column  ofeteam  of  given  pressure  and  uniform  density ,  weight  of  which  is 
equal  to  pressure  xn  %uiit  of  base. 

Illustration.— Pressure  of  steam  100  lbs.  per  sq.  inch,  what  is  velocity  of  \\m 
flow  into  tbeair? 

Cube  foot  of  water  =  63. 5  Uw.,  density  of  steam  at  100  lb& = 370  cnbefeet  Ueoc#, 
62. 5  :  100  : :  270  :  432  ==  volume  at  100  lbs.  pressure,  and  4^2  X  144  =  63  30S  feet  sb= 
height  of  a  column  of  steam  a(  a  pressure  of  100  lbs.  per  sq.  wA. 

Then  3.6  -y/fia  208  =  898  feet 

EXPANSION. 

To   Compute   Point  of  Cutting;   oflT  to   A.ttain   I^imlt  or 

Expansion. 

6-f/ 1<  -i-  P = point  of  cutting  off.    b  representing  mean  back  pressure  for  entire 
stroke,  in  lbs.sP^r  sq.  in^,  f  friction  of  engine,  P  tnilial  pressure  of  steam,  all  in  ths 
per  sq.  inch,  and  L  length  of  stroke,  in  feet. 

Illustration.— Assume  stroke  of  piston  9  feet,  pressure  30  lbs.,  mean  back  preas- 
ure  3  lbs.,  and  friction  3  Iba 

3  +  2  X  9 -^  30  =  t'SfBet. 

To  Compute  A.otua}  {ifttio  of  fiSxpftnsion, 

^  ■  =;  R.    c  representing  clearance  or  vofiime  of  space  between  valve  seat  asid 

mean  surface  cf  piston,  at  one  or  each  end  in  feet  of  stroke,  I  length  of  stroke  at  point 
qf  cutting  off,  e^xcluding  clearance  in  feet,  and  R  aUual  ratio  of  expansion. 

Illustration.- Assume  length  of  stroke  2  feet,  clearance  at  each  end  1.3  ina., 

aid  point  of  cutting  off  i  foot. 

24-. 1 
1.2  ins. =.  I.    Then  — |— =  1.0  roWo. 

i  +  .i 

To   Compute   Pressure   at   any    Point   of  Period   of  Ex- 
pansion. 
When  Initicd  Pressure  is  given.    ?  l-i-s=p.    p  representing  pressure  at  period 
of  given  portion  qf  stroke,  both  in  lbs.  persq.  inch,  and  s  any  greaier  portion  qf  stroke 
Oian  I. 

When  Final  Pressure  is  given.  P'  x  1/  -5-  «  =  p.  P'  rqtretenting  final  pressmre, 
in  lbs.  per  sq.  inch,  and  U  length  of  stroke,  induding  clearance,  infiet 

Illustration  i.— Assume  length  of  stroke  6  feet,  clearance  at  each  end  1.3  Iqbl, 
pressure  of  steam  60  11)6. ,  point  of  cutting  off  one  third ;  what  is  pressure  at  4  (bet  r 

i.aifM.  ^.  I /oot    60X  2 -h*-^  4 +1  =  30.73  tea 
ff.^What  Is  pressare  tu  above  cylinder  at  s.8  feet,  when  final  pressure  is  si  Iba  f 

f  aiX6  +  .xHra.8  +  .i^44.i7  {be. 


STEAIC  711 

rFo   Coxnpiate   Xilean   or   Total   A-veratfe   Pressure. 

P(^'i-i-hyplogR— c)  ^   ,^  ^^  ^  average  pteMUre.    T  length  of  ttroke  at 
If 
point  0/ cutting  off,  including  clearance. 
Illustbation. -^Assume  elements  of  preceding  cases:  x  -f-  hyp.  log.  R=  a. 065. 

6o(..xX».o65-.i) ^ «5£i9 ^ ^,,365  Ibi. 
6  6 

To   Compute   Final    Pressure. 
Illustration.— ABsti  me  elements  of  preceding  cases,  steam  cut  off  at  3  Te^t 


6oX2-|-.i^6'f.i=  20.65  ^^• 
To   Compute   ]Meaii   Efl'ective   Pressure. 


r(r.+i.yMog,.«:;.)_,„(p._t) 

Li 

iLLuaTRATioN.— Assume  elements  or  preceding  cases,  6  =  2  Iba  per  sq.  inch. 

60(2.1  X  2063— .1)  254.19  , 

— i — ^ 3  =   -^      —  8  =  4a  365  lbs. 

1?o  Compute  Initial  Pressure  to  Produoe  et  d^iven  A.v« 
erage   Kfieotive   or   I^et   Pressure. 

r(i+hyp.log.R)-c      '^' 

Illustration. — Assume  elements  of  case  i. 

6  + .  I  . .  42. 365  X  6  254. 19      .    „ 

—^z=3.Q  ratio.         ,  ^  »  —  —  -^^=z6olbt. 

2-I-.X         ''  (2.1X2.065)  —  .!      4.2365 

rVo  Ooznpute  Point  of*  Cutting  oii^  fbr  a  O-iven  Ratio  of 

Expansion. 

L'-i-R  — d.     Or,  L-I-C-7-R  — c  =  «. 

Illustration. — Assume  elements  of  preceding  cases :  R  =     ;  -   ==  2.9,  and 

2-|-.i        '  2.9 

—  .1  =  2  feet. 

'Fo  Compute  Pressure  in  a  Cylinder,  at  any  Point  of  Ex- 
pansion, or   at   Bind   of  Stroke. 

Pr-i-(-f  c  =  P,  orP-;-R. 
I1XU8TRAT10N. — Assume  elements  of  preceding  cases: 

— r-— —  =  60  ?**-i  *nd  — =  2a69  lb$. 
2-J-.1  2.9 

•X*o  Compute  Initial  Pressure  ibr  a  Required  N'et  Sfiiso- 
tive   Pressure   fbr  a  O-iven   Ratio  of  Kxpansion. 

'  Or,         .      -^ =  P.    W  representing  net- 


a  (/'  I  +  hyp.  log.  K  —  f I  r  r^  hyp.  log.  R  —  c 

^oarle  infoot-lb$.  =0  Lp'  —  6,  and  a  area  of  piston,  in  sq.  ins. 

iLi'USTKATioN. — Assume  elements  of  preceding  cases:  area  of  piston  =  100  sq. 
ina. ,  back  pressure  2  lbs.,  and  net  effective  pressure  =  42.365  lbs. 

coo  X  6  X  42. 365  —  2  =t  24  219  foot-lbs. 


^4219  +  100X2X6   ^       254^9       ^^j^^         4g-3fl5X6      ^>S4<9^gp,^j. 
,00  X2-«X  8.065—1      I06X4-2365  '    a.tXi.o65-.x      4.4365 


^12  stbam;. 

Points  of*  Sxpansion. 

Relative  points  of  expansion,  including  clearance  5  per  cent.,  assuming 
stroke  of  piston  to  he  divided  as  follows,  and  initial  pressure  =  i. 

Point I      .75     .6875     .625    .5625    .5     .4375    .37s    .333    .25    .2    .125    .1 

Ratio I     1. 31   1.43       1.55    1.71      1.9x2.15     2.43    2.74    3.5    4.46.        7. 

H^.  Log.  of  above  Ratios. 
.0      X.27     1.36      1.44      1.54      1.65      1.77      1.9      2     2.2s     2.43     2.79      2.9s 

Receiver   of  Compound.   JtJngin.es. 

Volume — Into  which  the  H». cylinder  exhausts,  should  be  from  i  to  1.5 
times  the  volume  of  it,  plus  that  of  the  clearance  in  it,  when  the  cranks  are 
set  at  ano:les  of  120°  and  90°.  When  the  cranks  are  opposite  (180°)  or  very 
nearly  so,  the  volume  may  be  proportionately  decreased. 

Pressure— In  a  Receiver  should  not  exceed  one  half  that  of  the  boiler  pres* 
sure,  and  usually  it  is  operated  lower. 

Receiver — Of  a  Triple  compound  engine  need  not  have  as  great  a  vol- 
ume, as  the  cranks  are  set  at  angles  of  120°  to  each  other. 

If  a  receiver  is  insufficient  in  volume,  the  result  is  back  pressure  in  the 
IP  cylinder.  If  otherwise,  it  has  too  great  a  volume,  the  result  is  that  of  a 
material  reduction  of  the  pressure,  when  the  exhaust  port  of  the  cylinder  is 
opened,  a  consequent  loss  of  external  work  and  of  efficiency. 

To   Compute   "Volume  of  a   R,eoelver. 
Single  Compound. 
AS— S  1.5 
Cranks  at  90°.     ——  =  volume  in  cube  feet    A  represevUing  area  of  ff 

cylinder,  and  S  stroke  of  piston^  both  in  sq.  ins. 

Illustration.— Assume  a  compound  engine  having  a  H*  cylinder  of  28  ina, 
cranks  at  90^,  and  stroke  of  piston  36  ins. ;  what  should  be  volume  of  receiver? 
3.1416 

4                             784  X  .7854  X  54  t.   ^  * 

— ^^^8 =   X728 =^9-^5  cube  feet 

Thriple  Compound. 

A^  — St 

Cranks  at  120°     5——  z^vdume  in  cube  feet. 

1728 

Illustration. — Assume  a  triple  compound  engine  having  a  IP  cylinder  of  28  Ins., 
cranks  at  120°,  and  stroke  of  piston  36  ins. ;  what  should  be  volume  of  receiver? 

3.1416 
282x^^— 5— X36X1        o    ^  ^    . 

3  784  X  1.0472  X  36  ,.    J.  J 

7^ " T^S =  '7. '  Ctt6e/e.e. 

{The  Practical  Engineer.) 

The  practice  with  some  is  to  give  the  receiver  an  equal  volume  with  that  of  the 
cylinder  fVom  which  it  receives  the  steam. 

Xo   Compute   !Mea.n.    l?ressure   of*  Steam    upoit    a  Piston 

"by    MjrperlDolio   I^ogaritlims. 

Rule. — Divide  length  of  stroke  of  a  piston,  added  to  clearance  in  cylinder 
at  one  end,  by  length  of  stroke  at  which  steam  is  cut  off,  added  to  clearance 
at  that  end,  and  quotient  will  express  ratio  or  relative  expansion  of  steam  or 
number. 

Find  in  table,  logarithm  of  number  nearest  to  that  of  quotient,  to  which 
add  I.    The  sum  is  ratio  of  the  gain. 

Multiply  ratio  thus  obtained  by  pressure  of  steam  (including  the  atmos- 


STEAM. 


713 


phere)  as  it  enfers  the  cylinder^  divide  product  by  relative  expansion,  and 
quotient  'Will  give  mean  pressure. 

Note.— Hjrp.  log.  of  any  number  not  in  table  may  be  found  by  multiplying  a 
common  log.  by  2.302  585,  usually  by  2.3. 

Proceed  by  referring  to  table  pp.  331-334. 

Example.— Assume  steam  to  enter  a  cylinder  at  a  pressure  of  50  lbs.  per  sq.  inch, 
and  to  be  cut  ofl'at  .25  length  of  stroke,  stroke  of  piston  being  10  feet;  what  wiil  be 
mean  pressure? 

Clearance  assumed  at  2  per  cent.  =  .2  feet 

10 -I-  2  =  10. 3 fea,  stroke  10 -:- 4-F^  =  2- 38  feet  Then  10. 2 -r- 2. 38  =  4. 20  rela- 
tive expansion. 

Hyp.  log.  4.29  (p.  332)  =  1.4563,  which  +  i  =  2.4563,  and  '-4563  X  50  ^  ^g^^  ^^ 

4.29 

Relative  Effect  of  steam  during  expansion  is  obtained  from  preceding  rule. 

Afeckantcai  Effect  of  steam  in  a  cylinder  is  product  of  mean  pressure  in 
lbs.,  and  distance  through  which  it  has  [massed  in  feet 

£2£Eeots   of*  ilSxpansiorL.    {Essentially  from.  D.  K.  Clark.) 
Back  Pressure  is  force  of  the  uncondensed  Hteam  in  a  cylinder,  consequent 
upon  impracticability  of  obtaining  a  perfect  vacuum,  and  is  opposed  to  the 
course  of  a  piston.    It  varies  from  2  to  5  lbs.  per  sq.  inch. 

It  must  be  deducted  flrom  average  pressure.  Thus:  assume  pressure  60  lbs., 
stroke  of  piston  as  in  preceding  case,  and  back  pressure  2  lbs. 

At  termination  of.....  I  St,    2d,    3d,    4th,    5th,    and  6th  foot  of  stroke. 

Pressure 60      30      20      15.     12  10  lbs.  per  inch. 

Back  pressure 22222  2    **     "      " 

Effective  pressure "58     28      18      13       io  8    "     *' 

Total  work  done  by  expansion  at  termination  of  each  foot  or  assumed 
division  of  stroke  of  piston  is  represented  by  hyp.  lo^.  of  ratio  of  expansion, 
initial  work ^  I. 

Thus,  for  a  stroke  of  10  feet  and  a  pressure  of  10  lbs. : 
At  end  of xst,    2d,    3d,    4th,    5th,    6ih,    yih,    8th,    9th,  and  xotfa/bot. 

8t«Mn  Is  «z|wnd«d  \ 
into  voU.,  hyp.  V=  .69     i.x     1.39     1.61     1.79     1,95     2.08      3.3  2.3 

log.  of  which...  ) 

Initial  duty iitiiiii  i i 

Total  duty.'. i    1.69    s.x    3.39    2.61    2.79    2.95    3.08     3.2  3.3 

'"iilintS^bi'xoT}       1016.9     ai       33.9     26.1     37.9     29.5     30.8      32  IT 

RMisUn^M  for  each  I „      .  #;         a         ,„,«,.,/;, a  ««, 

foot  of  stroke...}—    =4  6         8         10         I3         14         16  18  30 


Total  effective  I  ^   8x2.9    '5     i5-9    '6.1    159    '55    148     14 


duty 


13 


Gain  by  expansion    o  61.25  87.5  98.75  101.25  98.75  93.75  85       75  62.5 

The  same  results  would  be  produced  if  expansion  was  applied  to  a  non-condens- 
iog  engine,  exhausting  into  the  atmosphere. 

Again,  assume  total  initial  pressure  in  a  non-condensing  cylinder  75  lbs.  per  sq. 
inch,  expanded  5  times,  or  down  to  15  Iba,  and  then  exhausted  against  a  back  press- 
ure of  atmosphere  and  friction  of  15  lbs. 

At  termination  of. ist,  2d,  3d,  4th,  and     s^^  foot  of  stroke. 

Total  duty x  1.69  2.1  2.39  2.61 

*•      '*    p^ormed...  75        X26.75       157.5       179-25         195.75 ^^^6*. 

♦*     backpressure....  x5  30  45  60  75         *»    '* 

"     effective  duly....  60  96.75       112.5       119-25  120.75    "    " 

Gain  by  expansion o  61.25         87.5      ^8.75  101.25  per  cent 

From  which  it  appears  that  the  total  duty  performed  by  expanding  steam  5  timet 
its  initial  volume  is  full  2.5  times,  or  as  75  to  195.75. 

30* 


7*4 


8TBAM. 


Relative  Kffeot  of  Kq^ual  VolixxneB  of  Ste«ixi». 

Relative  toUU  effect  or  work  of  steam  is  directly  as  its  mean  or  average  pressars 
(A),  and  inversely  as  its  filial  pressure  (B),  or  volume  of  steam  condensed. 

If  former  is  divided  by  latter,  quotieqt  will  give  relative  total  effect  qr  work  (G) 
of  a  given  volume  of  steam  as  udmitled  and  cut  off  at  different  points  of  stroke  of 
.piston,  with  a  clearance  of  3.125  per  cent. 

In  following  computations  resistance  of  back  pressure  is  omitted.  If  this  press- 
ure is  uniform  with  all  the  ratios  of  expansion,  it  is  a  uniform  pressure,  to  be  de- 
ducted from  the  total  mean  pressure  in  column  (A). 


Cat  off  at 

Prw 
(A) 

lare, 
(B) 

Relative 

Mean. 

Fnal. 

Effect. 

I 

I 

X 

I 

•75 

.969 

.787 

1.28 

.6875 

.946 

.697 

1-35 

.625 

■^ 

.636 

1-45 

•56*5 

.576 

1-54 

•5 

.857 

.501 

1. 71 

Cat  off  at 


375 
■33 
•35 

.2 

.125 
.1 


Preature. 


(A) 
Mean. 


761 
702 
628 

559 
435 
4i8- 


Filial. 

•394 
•335 
•273 
.224 

•15 
•*3 


(C) 

Reiative 

Effect. 


1-93 

3.Q9 

23 
a.  05 

2.9 

3-21 


To  Compute  Total  Effeotive  WorU  in  One  Strobe  of  Je*ii 
ton,  or  a9   O-ivex).   \>y   au   Iitdioator   X>iasraixL. 


u 


a  P  (r  I  -}-  hyp.  log.  R  —  c)  =  w,  and  a  6  L  =  to',  to  representing  total  work,  and 
to'  bade  pressure. 

Note Pressure  of  atmosphere  is  to  be  included  in  computations  of  expansion; 

it  is  therefore  to  be  deducted  from  result  obtuucd  in  non-condensing  engines.  In 
condensing  engines,  the  deduction  due  to  imperfect  vacuum  must  also  be  made, 
usually  2. 5  lbs.  per  sq.  inch. 

Illustration. — Assume  cylinder  of  a  condensing  engine  26.  i  ins.  in  diameter,  a 
stroke  of  2  feet,  pressure  of  steam  95  lbs.  (80. 3  ■}- 14.7)  per  sq.  inch,  cut  off  at  .5  stroke, 
with  an  average  back  pressure  of  2  lbs.  per  sq.  inch,  and  a  deacance  of  5  per  cent. 

Area  of  piston,,  deducting  half  area  of  rod  =.  530  sq.  ins.  2X5-7-  100  = .  x  dear- 
ance,  and  2-l-^i-5-i+-i  =  i-9  =  ratio  of  expansion,  and  i  -f  hyp.  log.  1.9  3=  x.643. 

Then  530  X  95 X 11 X  1.64a—-. 1  —  530X2X2  =  50 330X170*— «*«<>= 83777  »». 

IixiNiTRAViQ».—>^  Assume  cylinder  of  a  non-condensing  engine  having  an  area  of 
3000  sq.  ins.,  a  stroke  of  8  feet,  steam  at  a  pressure  of  50  lbs.  (35.3-1- 14-7),  cut  off  mi 
.25  of  stroke,  and  clearunos  .25  foot. 

Ratio  of  expansion  3.66,  back  pressure  17  lbs.,  and  i  -{-byp.  log.  3.66  =  9.397. 

2000  X  50  (2.25  X  1  +  hyp.  log.  3.66  —  .35)  =  looooo  X  2.25  X  1  +  1.297  —  .85  = 
46057  5  fool-lbs. 

2000  X  J7  X  8  =  272  ooofhot-lbs.  or  negative  effect,  and  460  575  —  272  000  =  1 88  575 
foot-tbs. 

Total   EflTeot   of  One   I.-.b.  of  Expanded   Bteazn. 

If  I  lb.  of  water  is  converted  into  steam  of  atmospheric  pressure  =  14.7  lbs.  per 
sq.  inch,  or  2116-8  lbs.  per  sq.  foot,  it  occupies  a  volume  equal  to  96.36  eubehet ; 
and  the  effect  of  this  volume  under  one  atmo8|)here:^3ii6.8  lbs.  x  96,^6  Jeet=z 
55  799  foot-lbs.  Equivalent  quantity  of  beat  exi>ended  is  i  unit  per  77a  faat-Uft.^ 
=  55  799  -^  772  =^  72. 3  unitx.  This  is  effect  of  i  lb.  of  steam  of  a  pressure  of  one  at- 
mosphere on  a  piston  without  expansion. 

Gross  effect  thus  attained  on  a  piston  by  t  \h  of  steam,  fsnerated  at  pressaras 
varying  from  15  to  joo  lbs.  persq.  inch,  varies  trom  56000  to  62ooo/<n><-^«.,  equiv- 
alent to  trom  72  to  80  units  of  heat. 

Effect  of  I  lb.  of  steam,  without  expansion,  as  thus  exemplified,  fs  reduced  by 
clearance  according  to  proportion  it  bears  to  voltime  of  cylinder.  If  clearance  is  5 
per  cent,  of  stroke,  then  105  parts  of  steam  are  consumed  in  the  work  of  a  stroke 
which  is  represented  by  100  parts,  and  effect  of  a  given  weight  of  steam  without  ex- 
pansion, admitted  for  full  stroke,  is  reduced  in  ratio  of  105  to  loa  Having  deter- 
tntned,  by  this  ratio,  effect  of  work  by  i  lb.  of  steam  without  expansion,  as  reducfltd 
by  clearance,  effect  for  various  ratios  of  expansion  may  be  deduced  from  that  in 
terms  of  relative  operation  of  equal  weighu  of  steam. 


STEAM.  715 

Volarae  of  i  lb.  of  saturated  Bteam  of  100  lbs.  per  sq.  Inch  is  4.33  cube  feat,  and 
pressure  per  sq.  foot  is  144X100=  14400  tbt.;  theu  total  initial  work  =  14400X4.33 
=  62  25'i  foot-lbs.    This  amount  is  to  be  reduced  for  clearance  assumed  at  7  per  cent 

Then  62352  X  100  -?-  Z07  =  58  273  fool-lbs. ^  which,  divided  by  77a  (Joule's  equiTa- 
lent),  =  75.5  units  of  heat. 

Total  or  constituent  heat  of  steam  of  100  lbs.  pressure  per  sq.  inch,  computed  fk-om 
a  temperature  of  212°,  is  1001.4  units;  and  n-otn  102°  (temperature  of  condenser 
under  a  pressure  of  i  lb.)  the  constituent  heat  is  1 11 1.4  units. 

Equivalent,  then,  of  net  simple  effect  75.5  units  is  7.5  per  cent,  of  total  heat  from 
112®,  or  6.7  per  cent,  from  102°. 

When  steam  is  cut  olf  at 

I           .75          .5  .33          .25          .3          .125  and .  I  of  stroke, 
comparative  effects  are  as 

t         1.26         1. 616  1.9s         214         3.27       2.51  and  2.6. 

Total  effects  as  given  in  table,  page  718. 

Effect  of  I  lb.  of  steam,  without  deduction  for  back  pressure  or  other  effects,  vanes 
from  about  60 000  foot  lbs.,  without  expansion,  to  about  double  that,  or  120000 ^t- 
Ibs.^  when  expanded  3  times,  cutting  off  at  about  27  per  cent,  of  stroke;  and  to 
about  ISO 000  foot-lbs.  when  expanded  about  6  times,  and  cut  off  at  about  10  per 
cent,  of  stroke. 

£^fiect   of  Clearance. 

Clearance  varies  with  length  of  stroke  compared  with  diameter  of  cylinder, 
with  form  of  valve,  as  poppet,  slide,  etc. 

With  a  diameter  of  cylinder  of  48  ins.,  and  a  stroke  of  10  feet,  and  poppet 
valves,  clearance  is  but  3  per  cent,  and  with  a  diameter  of  34  ins.  and  a 
stroke  of  4.5  feet  and  slide  valves,  it  is  7  per  cent. 

iLLUsTaATioN  OF  EFFECT.  — Assume  steam  admitted  to  a  cylinder  for  .25  of  its 
stroke,  with  a  clearance  of  7  per  cent 

Mean  pressure  for  i  lb.  =  .637,  and  loss  by  clearance  =  7  -f- 100  —  .07,  which,  added 
to  .637,  =  .707,  which  is  effect  of  a  given  volume  of  steam,  if  there  was  not  any  loss 
by  clearance,  or  a  gain  of  it  per  cent 

When  steam  is  cut  off  at i      .75     .5     .33     .25      .125  and  .1  stroke. 

Loss  at  7  per  cent  clearance.  .  =  7    7.3     8.1    9.6    xi       15.3         ty    percent 

To  Compute  Net  Vol  time  of  Cylinder  for  G-iven  Weight 
of  Steam,  Hatio  of  Expansion  and  One  Stroke. 

RuLK. — Multiply  volume  of  z  lb.  of  steam,  by  given  weight  in  lbs.,  by 
ratio  of  expansion  and  by  100,  and  divide  product  by  icx>,  added  to  per  cent, 
of  clearance. 

RXAHPLB.— Pressare  of  steam  95  lbs.,  cut  off  at  .5,  weight  .54  lbs.,  volume  of  i  lb. 
gteam  4.55,  and  wetght  =  .2198  lbs.,  stroke  of  piston  2  feet,  and  clearance  7  per  cent 

Ratio  of  expansion  a  -|-  •  14  -^  iH-.i4  =:  i.  88. 

j:55X.54X«.88X«oo^46£:9g^         ci»6.^ 
ioo-f-7  107 

To  Compute  Volume  of  Cylinder  for  diven  BfTeot  -witli 
A  Ghiven   initial  Pressure  and  Ratio  of  Expansion. 

Rule.  —  Divide  given  effect  or  work  by  total  effect  of  i  lb.  of  steam  of 
like  pressure  and  ratio  of  expansion,  and  quotient  will  give  weight  of  steam, 
from  whidti  compute  volume  of  cylinder  by  preceding'  rule. 

EXAVPLB.— Assume  given  work  at  50766  foot- lbs.,  and  pressare  and  expansion  aa 
preceding. 

Total  work  bv  i  lb.,  100  Tbs.  steam,  cut  off  at  .5,  =  by  table  94  aoo^iMMba,  and  by 
labia  of  maltipfierB  for  95  lbs.  =  .998,  which  x  94  300  ==  g^  019  Joot'lht. 

Then  ^^-  :^  54  lbs.  weight  of  steam. 
94013 


] 


7i6 


STEAM. 


Coixauniptioxi  of  Kxpauded  Steam  per  IP  of  S^fibot  per 

Hour. 

H*  =  330cx),  which  x  60^  1980000  foot -lbs.  per  hour,  which  —  1  lb. 
steam,  the  quotient  =  weight  of  steam  or  water  required  per  H*  per  hour. 
Illustratiox.— Effect  of  i  lb.,  100  lbs.  steam,  without  expausiou,  with  7  per  cent 

of  clearance  =  58273  foot-lbs.  ^  and =  34  lbs.  tteam=z  weight  of  steam  con- 

58  273 
sumed  for  the  effect  per  IP  per  hour. 

When  steam  is  expunded,  the  weight  of  it  per  "B?  is  less,  as  effect  of  i  lb.  of  steam 
is  greater,  and  it  may  be  ascertained  by  dividing  1 9800C0  by  tbe  respective  effect, 
or  by  dividing  34  Iba  by  quotient  of  total  mean  pressure  by  final  pressure,  as  given 
in  table,  page  718. 

When  steam  is  cut  off  at      x       .75       .5       .375        .33      .25  and  .2  of  stroke. 
Volumesconsumedperl  _^^      ,^      ^,       ,«  _        ,^^    ,^  ,^«ik, 

H»  per  hour ..,\-^^    *^  9      2>       18.5       17:6    16  14.9  a*. 

Hence,  assuming  10  lbs.  steam  are  generated  by  combustion  of  i  lb.  coal  per  "BP 
of  total  effect  per  hour, 

The  coal  consumed  per  1  _'     ,    „  a«     -  -      ,  «*       w  -a    w  a         ,.«#».. 
IP  per  hour T..J      3-4    ao9     «•«      »*5       i-70    »-o         1.49 '"»• 

SATURATED    STEAM. 
1*0  Compute  E^iiergy  and  KfUciency  of  Saturated  Steazv^. 

|  =  R;      1  =  ^;      p^p'xa,or?or^=P;       33^  =  C;      |  =  D; 

p-p'XaRS  =  X;         i~-XD  =  H";         ^'  =  H'";       15.5108  =  *; 

1      Y      i'.        *        P".      qp  —  aj*^^,  X                £980000  o  *        * 

ft  — X  =  A  ;       Rs  =  *^   }      jv? °'X         '      E — 0'*98ooooY  =  A; 

X  X  

—  =  «;       nlap—p'  =  x,»Qd =  IH*;       Rp— p'a  =  !»;       PCX6o=jr; 

2«  .r      «-  7  33000  1  ^     ^  ^3 

^^000  1080000  ___ 

—■'■'— ,— 1=  cube  feet,     -f— -  -  -  i=  cube  feet  water  evaporated  per  hour  per  H?. 
pa— pa  62.5  X  . 

V  and  V  representing  volumes  of  mass  of  steam  entering  cylinder  and  of  it  at 
termination  of  stroke  of  piston;  S  and  s  volumes  of  t  lb.  steam  when  admitUd  and 
when  at,  termvnuUion  of  expansion  ;  C  volume  of  cylinder  per  minute  for  each  1£P  / 
R  and  r  ratios  of  expansion  and  effective  cut-off ;  F  feed  water  per  cube  foot  of  vol- 
ume of  cylinder  per  stroke  of  piston^  and  f  per  IH*  per  hom\  all  in  cube  feet.  D  den- 
sity or  weight  of  i  cube  foot  of  steam  at  temperature  of  operation,  in  lbs. ;  p  mecut 
pressure ;  p'  mean  back  pressure  ;  I  initial  pressure  ;  P  mean  effective  pressure,  or 
energy  per  cube  foot  of  volume  of  cylinder ;  V'  pressure  per  sq.  inch  or  that  equivalent 
to  hecU  expended^  and  P"  pressure  equivalent  to  expenditure  of  available  heat,  or  en- 
ergy, all  in  lbs.  J  Joule^s  equivalent  =  t^h  foot-lbs. ;  Las  per  following  table  ;  t  and, 
t'  absolute  temperatures  of  steam  at  initial  pressure  and  of  feed  water  in  degrees  ; 
H  D  heat  expended  per  cube  foot  of  steam  admitted  ;  H'  heat  expended  per  cube  foot 
of  volume  of  cylinder,  or  pressure  ec^ivaient  to  heat  expended  per  aq.foot;  W  heal 
r^ectedper  cube  foot  of  steam  admitted;  H'"  he<U  reacted  per  cube  foot  of  volume 
of  cylinder  ;  A  available  heat  per  IH*  per  hour ;  e  energy  per  cube  foot  of  volume  of 
cylinder  to  point  of  cutting  off,  or  of  steam  admitted ;  h  and  h'  heat  eapended  and 
rejected,  and  X  energy  exerted,  all  per  lb.  of  steam  and  in  foot-lbs.  E  effixiency  ;  x  en- 
ergy exerted  per  minute  and  per  cube  foot  of  steam  admitted;  a  area  of  piston  in 
sq.  \ns.  ;  I  length  of  stroke  of  piston  in  feet,  and  ffeed  water  per  IH*  per  hour^  in 
cube  feet 

Illustrations. — Assume  volume  of  cylinder  and  clearance  (5  percent.  =  .6  inch) 
X  cube  foot,  steam  (86.3  -{-  14.7)  100  lbs.  per  sq.  inch,  cut  off  at  .5,  mean  pressure  by 
rule  (page  711)  86  lb&,  and  back  pressure  3  Iba 

V=:i.       v  =  2.       8  =  4.33.       «=8.3x.       p  =  86.       1>'=3.        a=x44tii«. 
<andf  =  327.90 -I- 461.2°  and  10004-461.2°.       l:=»fseL       «  =  i.      L  =  i5774& 


STEAM. 


717 


M-iri  —  i  ratio. 

33000 

S6-3X144 


4.33^-8.31  =  .521  effective  cut-off.        86  —  3  x  144  =  11952  Wt, 


=  2.76  cuXtefeeL 


=  .231  Uu. 


.231 

3 


or 


198389 


4-33         "  »  2X433 

772  X  .  231  (789. 1°  —  561. 2O)  -f.  157  748  =  198  389  foot-lbs. 


1 1 54  cube  feet 


=  99 195  foot-lbs. 


198389 


=  858  827  foot'Ws. 


99195 


=  68g  Ibr. 


■  231  -         -  ,44 

86  — 3  X  144  X  2  X  4-33  =  «o3  $04  ft>ot  lbs. 
198  389  -i-  .331  —  103  504  X  .231  =  174  479  foot-lbs.  174  479  -r-  2  =  87  239  foot-lbs. 

15. 5  X  100  X  144  X  4-  33  =  966  4s^  foot-lbs.     966  456  — 103  504  =  862  952  foot-lbs. 

966456  .  ,.  144X86 144X3  «  1980000  „  ,  jr      s   IK 

■^—^2— =  111 600 lbs.      ^-^-^ 7— ^5_^^=.jo7  E.     -2 =i8so4673/oo<-Z6ai 

2X4-33  III  600  .107 


Or  1 980000  X  zzz~:  —  '^ soA^n  footdbs. 


33904 


103504 


^  =  .725!?. 
33000 

1080000  ,        1.     .r    * 

^ =  .306  cube  feet 

62. 5  X  103  504 

2X86  — 3  X  i44  =  239O4/)0<-i6«.        .1154X2,76x60  =  19.11  cube  feet 


I  X  2  X  144  X  86  — 3  =  239O4^0t-to«. 


103504 


=  ii952ybo<-/6*. 


33000 


=  2.761  cube  feet. 


2X4.33  '"  '  86X144  —  3X144 

In  illustration  of  connection  of  expenditure  of  available  beat  (A)  and  consumption 
of  fkiel,  asBume  coal  to  have  a  total  heat  of  combustion  of  10 000 000*  foot-lbs..,  cor- 
responding to  an  equivalent  evaporative  power  under  i  atmosphere  at  212O  of  13.4 
liM.  water  and  efficiency  of  furnace  .5;  then  available  heat  of  combustion  of  1  lb. 
ooal  =  5  000  000  fbotlbs. 

Hence,  consumption  of  coal  per  lEP  in  an  engine  of  like  dimensions  and  opera- 
tion with  that  here  given  would  be  19  223  000 -i-  5000000  =  3.8444  Ihs. 

Properties  of  Steazxi  of  Adaxixiiuzxi   Density,    {fitmkine.) 

Per  Cube  Foot. 


Twnp. 

L  1 

Temp. 

L 

Temp. 

L 

Temp. 

L 

0 

1 

0 

0 

0 

32 

'^S. 

95 

»999 

158 

9687 

221 

33»8o 

4X 

¥ 

104 

L3571 

167 

11760 

230 

38700 

50 

1^'i 

"3 

3277 

176 

14200 

239 
248  * 

44930 

^ 

S55 

123 

4136 

185 

17010 

51920 

H8f 

>3« 

5178 

.194 

20280 

257 

59720 

11 

1171 

140 

6430 

203 

24020 

266 

68420 

86 

1538 

'49 

7921 

212 

28310 

275 

78050 

Temp. 

L 

Temp. 

L 

0 

0 

284 

88740 

347 

197700 

293 

100500 

356 

219000 

302 

113  400 

3<>5 

242000 

3'» 

127500 

374 

266600 

320 

143000 

383 

293100 

^ 

150800 
178000 

392 

321400 

401 

35"  600 

L  rtpresenHng  UUent  heat  of  eoaporaiion  per  cube  foot  of  vapor  in  foot-lbs.  of  en- 
ergy.   To  reduce  tkit  to  umUs  of  heat  divide  by  772,  or  Joule^s  equivalent. 

SUPERHEATED   STEAM. 

The  results  attained  by  imparting  to  steam  a  temperature  moderately  in 
excess  of  that  due  to  the  volume  or  density  of  saturated  steam  are : 

1.  An  increaseof  elasticity  without  a  corresponding  increase  of  water  evaporated. 

2.  Arresting  or  reducing  passage  of  water,  in  suspension,  to  cylinder  (foaming),  as 
the  heat  contained  in  that  water  is  wholly  lost  without  affording  any  elastic  effect 

Both  of  these  results,  by  increasing  effect  of  the  steam,  economize  AieL 
Superheated  steam  should  be  treated  as  a  gas. 

The  product  of  its  pressure,  p  in  lbs.  per  sq.  foot,  and  volume  r  of  z  lb.  of  it  in  cube 
feet,  in  the  perfectly  gaseous  condition,  is  obtained  by  following  formula: 
42 140  T  -J-  i  =5p  r  =  85.44  T.    T  temperature  of  steam +461. 2^^  and  t  32°-!-  461-2^. 
Illcstratiox.— Assume  temperature  of  steam,  327. 90,  superheated  to  341.1^. 

Then  42 140  x  461.20-f  341.10  -1. 32-1-461.20  =  68  549  foot-lbs. 
Hence,  as  pressure  of  steam  at  327.90=  100  lbs.  per  sq.  inch,  and  at  341.1°  iia 

120 -T- 100  =:  1.2  to  1  =  a  gain  qfonef{fth. 


*  Coal  of  ATBrago  compoeltlnn,  14133  X  779  s*  10910676. 


718 


STBAH. 


To    Compute    Synergy    and    Kfilcieiiioy    of   Superheated 

Steaxu. 

In  foUowiog  iiluBtratioDB  elements  are  same  as  those  in  preceding  cases  for  sata- 
rated  steam,  with  addition  of  the  steam  being  superheated,  so  that 
1  =  115  Mw.,  «  =  338° +  461. 20=799.30  e'  =  29oV46i-20  =  751.2°,  8  =  3.8,  »  =  7.4. 


5-piS-Rap'S  =  X;    15.5108  =  *; 


ap  —  ap 


E;   A-X  =  A'i    g^  =  P; 


—  P". 


h  —  X 


=  H'"; 


33000     -cube  fed'    ii?°-???-A- 


RS""      *      RS 

Efficiency  of  saturated  steam  (p.  7 16) .  107,  and,  aa  above, .  109 ;  hence  —  =  x.03  to  i. 

107 

If,  then,  available  beat  of  combustion  of  efficiency  of  furnace  is  assumed  at  500000a 

foot-lbs.^  as  above,  consumption  of  coal  per  X£P  18 1 83  486 -r-  ji 000 000 =3. 637  lbs. 

NorK.— For  further  illustrations  Rankine's  ''  Steam-engine.''  lx>ndon,  1861,  p. 436. 

AVire-dra-wringf. 

Wire  drawing  of  steam  is  difference  between  pressure  in  boiler  and  pressure  in 
cylinder,  and  is  occasioned  as  follows: 

Resistance  or  friction  in  steain-pi|)e  to  passage  of  steam  to  steam-chest  and  piston. 

Resistance  of  throttle-valve  to  {lassage  of  steam,  when  it  is  partly  closed  or  of  in- 
sufficient area  in  pro|)ortion  to  steam  pi )«. 

Resistance  from  insufficient  area  of  valves  or  ports. 

Mr  Clark,  from  his  experimental  investigation,  declared,  thiit  resistance  in  a 
steam  pipe  is  inapprepiable,  when  its  sectional  area  is  not  less  than  .  i  area  of  piston, 
and  its  velocity  not  exceeding  600  feet  per  minute. 

When  velocity  of  a  piston  is  flrom  200  to  240  feet  per  minute,  area  of  steam  may 
be  .04th  of  piston. 

Sfieot  or  Kxpan^ion  -witli  Kqual  Volumes,  aud  Kfieot  of* 
One  Lb.  of  lOO  Xjbs.  Pressure  per'fc^ci.  Iiicli. 

Cltarance  aJt  each  End  of  Cylinder ^  including  Volume  of  Steam  Openings,  7  per  cenL 
of  Stroke^  and  100  per  cent,  of  Adminion  =  i. 


Ratio 

ofSs- 

paasloo. 

Point 
of 

ciitK>ir. 

Tot* 

Final. 

L  PBBaav 

Mean. 

BU. 

Initial. 

IniTlal 
Vol  ante 

—— 

Initial 

Initial 

Maan 

stroke 

Preemre 

PrMsara 

Prewufe 

e=  I. 

csi. 

9  I. 

?s  I. 

=s  !• 

I 

I 

I 

Z 

I 

I.I 

Z.18 

1' 

•847 

■•? 

1.004 
1. 014 

1.23 

.8 

.813 

.98 

1.02 

1-3 

•75 

.769 

.969 

1.033 

»-39 

'7 

.719 

•953 

1.049 

1-45 

.66 

.69 

.942 

1.063 

1-54 

.635 

.649 

.925 

Z.081 

1.6 
1.88 

.6  . 
•5 

.625 
•532 

%' 

J-09S 
1.163 

3.38 

•4 

.439 

.787 

1. 37 1 

a.  4 

•375 

•417 

.766 

1.305 

2.65 

<33 

•377 

.796 

»'377 

2.9 

•3 

•345 

.692 

1-445 

3-35 

.25 

.298 

.637 

'.57 

4 

.3 

•2J 

.567 

1.764 

4-5 

.16 

.act 

.526 

1.901 

5 

•14 

.2 

.488 

::?si 

55 

.135 

.183 

•457 

59 

.11 

.,69 

•432 

a.315 

5l 

.r 

."59 

•413 

2.42X 

6.6 

.083 

.15a 

.398 

3.5x3 

7 

:YA 

.381 

2.625 

l^ 

.066 

.348 

2.874 

8 

<jo625 

.135 

•34a 

2.934 

AcTUAi.  ErrscT. 

Wefebt 

P»f 

Sq.  Inch 

par  Foot 

of  Stroke 

by  100  Lba. 

Steam. 

Volnoie 

ofBtMra 
of  100  Lbs. 

for  one 
Btrok*  par 
Cube  Foot. 

By  I  I.b. 

of  100  Lbs. 

StMun. 

of  Steam 
expended 
pirH* 
of  Work 
perHoor. 

He»t 

con- 

rerted. 

Lba, 

Foot-lbk 

Foot-lba. 

Lba. 

Unite. 

.247 

58273 

100 

34 

§3.7 

.333 

63850 

P:S 

3x 

.309 

67836 

39.9 
28.3 

87.9 

.201 

70246 

9? 

9x 

•'9„ 

73513 

96.9 

26.9 

95-2 

.178 

77343 

95-3 

35.6 

100.  X 

•*? 

79555 

94.3 

34.0 
33^8 

10&.9 

.161 

83055 

9»-5 

X07.O 

•155 

85125 

2i'3 

33-3 

1x0.3 

.131 

94200 

86 

31 

X23 

.108 

104466 

78-7 

^t 

138* 

.103 

107050 

76.6 

18.5 

.093 

113  3BO 

73.6 

«7-7 

M5-4 

.085 

1 16  855 

69.3 

16. 0 

»5X-4 

.074 

124066 

63.7 

x6 

X60.7 

.063 

132770 

56.7 

14.9 

X7X.0 

178,5 

•055 

138  130 

52.6 

X4-34 

.049 

142  180 

48.8 

1399 

184.3 

.045 

'463*5 

45-7 

13-53 

X89.5 

.042 

148940 

43a 

13.30 
1308 

X92.9 

•039 

»5i  370 

^"•2 

X96,  X 

•037 

152955 

39.8 

13.98 

«97-7 

•035 

155390 

13.75 

201.  X 

.033 

1584x4 

34.8 

12. 5 

305*  a 

'Oil 

'$9433 

34-« 

XX.83 

ao6.5 

STBAU. 


719 


Itfixltipliercp    fbr    Actual    T^elgbt    and    Sfieot    for 

Preatiure«   than   lOO   ILjb6. 


ActOAl 

Effect. 


otlxer 


Proerar* 

Malt 

Sq. Inch. 

Weight. 

Um, 

65 

.666 

70 

•7«4 

75 

.763 

80 

.806 

85 

•855 

Prauure 
p*r 

Sq. Inch. 

Multipliers. 

.„  ,  ,  .         Actual 
Weight.       gjf^pt. 

Lb*. 

90 

95 
xoo 

.901 

•952 
t 

•995 
•998 

X 

ItO 
I20 

1.09 

I.I7 

1.009 
1. 01 1 

Freunr« 

Multiplier*. 

p«r 
Sq. Inch. 

Weight. 

Actual 
Effect. 

Lbe. 

130 

.1.28 

X.015 

140 

1-37 

I.022 

X50 

1.46 

1.025 

160 

«.55 

X.03X 

170 

1.64 

1.033 

•975 
.981 
.986 
.988 
.991 

In  this  illastratioD,  in  connection  with  preceding  table,  no  deductions  are  made 
for  a  redaction  of  temperature  of  steam  while  expanding,  or  for  loss  by  back 
pressure. 

When  steam  is  Qut  off  at  .0625,  or  one  sixteentb,  its  expanbion  is  x6  times,  but  as 
7  per  cent  of  stroke  is  to  be  added  to  it  (. 0625 -f. 07)  =..1325  =  132. 5  per  cent , or 
nearly  doable  of  16^  or  only  a  little  over  7  times,  as  in  3d  column  of  table  on  pre- 
ceding page. 

Column  7  is  product  of  58273  and  ratio  of  total  effect  of  equal  weights  of  steam 
when  expanded,  or  average  toUu  pressure  divided  by  average  final  pressure. 

Thai,  If  staom  ft  cot  off  at  .5,  with  a  clearance-of  7  per  cent,  -     ^  ^^-TL —  = 

.532  X  100  ir  53.2 

X.6165,  and  58  273  X  x>6x65  =  94  900  Jbol-lbs. 

Column  9  gives  volume  of  steam  consumed  per  H*  per  hour.  Thus,  afifiurae  cyl- 
inder to  have  an  area  of  293  sq.  ins.,  a  stroke  of  2  feet,  and  pressure  of  steam  100  lbs. 
without  expansion. 

292  X  xoo  X  2  =  58  4ooybo<-i6«.,  and  202  +  7  per  cent  of  stroke  for  clearance  t= 
.  14 ;  hence,  292  X  2. 14  -r- 144  r=  4.34  evbtfttl^  and  weight  of  a  cube  foot  of  such  steam 
=  .23  lbs.,  and  58400  :  4.34  x  .23  ::  33000  :  .564,  which,x  60  minates^s  33.84,  or  34 
as  per  table. 

The  pressures  are  computed  on  premise  that  steam  is  maintained  at  a  uniform 
pressure  during  its  admission  to  cylinder,  and  that  expansion  is  operated  correctly 
to  termination  of  stroke. 

Column  10  is  quotient  of  work  in  foot-lbs.,  divided  by  Joule's  equivalent  772. 

Thus,  94  200  -h-  772  =  1 22. 

For  percentage  of  constituent  heat,  converted  from  ioa°  and  212^,  assume 
132  as  iu  last  case: 

Then  122  X  9  -J-  roo  r=  10.98  p<r  cmi.  for  102°,  and  122  X  10 -^  100  =  12. 2  per  ctnL 
for  21 2<*. 

*' Wire-drawing"  will  cause  a  reduction  of  pressure  during  admission,  and  clear- 
ance will  vary  from  3  to  8  per  cent,  according  to  design  of  valve,  as  poppet,  long  or 
short  slide. 

In  practice,  wire-drawing  of  steam,  and  opening  of  exhaust  befbre  termination  of 
stroke,  involve  deviations  f^om  a  normal  condition,  for  which  deductions  must  be 
mnde,  added  to  which  there  Is  the  back  pressure,  from  insufficient  condensation  in 
condensing  engines,  and  fk-om  pressure  of  air  in  non-condensing  engines,  and  com- 
pfessiott  of  exhaust  steam  at  tcnnlnatiou  of  stroke. 

1*0  Compute  Q-aixx  in.  Feed  "Water  at  Kis^  Temperatttr«. 

T— <4-W  —  i0=H.  T  and  t  represi  nting  total  heat  in  steam  and  Umptrature  of 
feed  water,  W  and  u>  lemj^rature,  of  water  Mourn  oj^  and  fed  =  heat  lott  ^y  blowin§ 
offy  and  H  tfAal  heat  required  from  fuel,  all  in  degreet. 

I LLUBTBATioN.— Assume  Steam  at  248^,  fbed  water  loo^  in  one  case  and  t$cfl  In 

aoother,  and  density  -^ ,  and  toval  beat  at  248^  ==11570;  what  is  gain  ? 

32 


1157  —  xoo + 348  —  xoo  =  1205°  =  total  heal  reqitired  fivmJStA 


(( 


(t 


« 


1x57  —  150+248—150=11050  = 

H,«  H-H'^.«>s-„o5^ 

H  X20S  *^ 


720 


STSAM. 


COMPOUND   EXPANSION. 


Compound  Expansion  is  effected  in  two  or  more  cylinders,  and  is  prac* 
tised  in  three  forms. 

ist.  When  steam  in  one  cylinder  is  exhausted  into  a  second,  pistons  of  the 
two  moving  in  unison  from  opposite  ends — ^that  is,  steam  from  top  or  for- 
ward-end of  first  cylinder  being  exhausted  into  bottom  or  after-end  of  the 
other,  and  contrariwise — this  is  iinown  as  the  Woolf  *  engine. 

2d.  Steam  from  the  ist  cylinder  is  exhausted  into  an  intermediate  vessel, 
or  **  receiver,''  the  pistons  being  connected  at  right  angles  to  each  other. 

3d.  Steam  from  receiver  is  exhausted  into  a  3d  cylinder  of  like  volume 
with  2d,  pistons  of  all  being  connected  at  angles  usually  of  120°. 

The  two  latter  types  are  those  of  the  compound  engine  of  the  present  tima 

Expansion  from  Receiver.  The  receiver  is  filled  with  steam  exhausted 
from  ist  cylinder,  which  is  then  admitted  to  2d,  or  2d  and  3d.  in  which  it  ia 
cut  off  and  expanded  to  termination  of  stroke. 

Initial  pressare  in  2d,  or  2d  and  3d  cylinders,  is  assumed  to  be  equal  to  final  press- 
ure in  iSt,  and  consequently  the  volume  cut  off  in  the  one  or  the  other  cylinders 
must  be  equal  in  volume  to  that  or  ist  cylinder,  for  its  full  volume  must  be  dis- 
charged there(h)m. 

Inasmuch  as  3d  cylinder  is  but  a  division  of  the  sd,  with  addition  of  receiver, 
this  engine,  in  following  illustrations,  will,  for  simplification,  be  treated  as  having 
but  two  cylinders. 

In  illustration,  assume  ist  and  2d  (flinders  to  have  volumes  as  i  to  2,  with  like 
lengths  of  strolce,  and  tbat  steam  is  cut  off  at  .5  stroke,  and  equally  expanded  in 
both  cylinders,  the  ratio  of  expansion  in  each  cylinder  being  thus  equal  to  their 
volumes. 

Volume  received  into  2d  cylinder  would  be  equal  to  that  exhausted  from  ist,  as- 
suming there  would  not  be  any  diminution  of  pressure  from  loss  of  heat  by  inter- 
mediate radiation^  etc.  This  is  based  upon  assumption  that  expansion  occars  only 
upon  a  moving  piston;  but  in  operation,  expansion  occure  both  in  receiver  and  in 
mtermediate  passages,  as  nozzles  and  clearances;  the  2d  cylinder,  therefore,  receives 
steam  at  a  reduced  pressure,  increased  volume,  and  reduction  of  ratio  of  expansion. 
To  meet  this,  and  attain  like  effects,  volume  of  2d  cylinder  must  be  increased  in 
proportion  to  increased  volume  of  steam  and  its  ratio  of  expansion.  Consequently, 
there  is  no  loss  of  effect  aside  firom  increased  volume  and  weight  of  parts  by  inter- 
mediate expansion,  provided  primitive  ratio  of  expansion  is  maintained  by  giving 
relative  increased  volume  to  2d  cylinder. 

Illustbation.— Assume  cylinders  having  volumes  as  i  and  3,  initial  steam  of  ist 
cylinder  to  be  60  lbs.  per  sq.  inch,  stroke  of  piston  6  feet,  cut  off  at  one  third,  and 
clearance  7  per  cent 

Final  pressure,  as  per  rule,  page  711,  =  22.62  lbs.,  and  pressure  as  exhausted  into 
receiver,  reduced  one  fourth,  =  16.97  ]l)S.,  assuming  there  is  no  intermediate  fall  of 
pressure.  The  steam,  therefore,  is  expanded  to  1.33  times  volume  of  cylinder;  a 
like  volume,  therefore,  must  be  given  to  2d  cylinder,  to  admit  of  this  at  a  like  press- 
ure. If,  therefore,  the  increased  terminal  volume  of  the  steam  in  the  ist  cylinder 
was  augmented,  including  a  clearance  of  7  i)er  cent,  the  effect  would  be  as  follows: 

Volume  admitted  to  2d  cylinder  is  equal  to  volume  of  ist  added  to  its  clearance, 
or  to  .33  volume  of  2d  cylinder  added  to  its  clearance ;  that  is,  to  .  33  of  107  per  cent. , 
or  35.66  per  cent,  consisting  of  clearance,  and  35.66  —  7  =  28.66  per  cent  stroke  of 
2d  cylinder.  The  steam  exhausted  into  2d  cylinder  thus  Alls  less  than .  33  of  its  stroke 
by  4.67  (33-33  —  28.66).  As  steam  is  expanded  from  volume  of  ist  cylinder,  plus  its 
clearance,  to  2d  cylinder,  plus  its  clearance,  ratio  of  expansion  in  2d  cylinder  is  equal 
to  ratio  of  volume  of  both  cylinders,  which  is  3,  and 

too  (i-eprexeniingJuU  stroke) '{' 7              ..     .                22.62  „  .     , 
'-^  =  3,  and  final  pressure =  7. 54  lbs.  per  sq.  mch. 

> 

-*.  J"  -'^"^i*™*  ^'  AlWre,  of  New  York,  adoj>t«d  this  dedfrn  of  eoKlne  In  the  steunbdate  Htun 
SekfvnLt  At*,  Oommtrte^  StnfUurt^  J\M  Boy,  aud  Alat  Bop. 


ST£AM.  7^1 

AoauntngTolnm*  of  receiver,  or  augmented  terminal  volome,  ibr  expanainn  In  ad 
cyIlo4er,  to  have  proportions  of  i,  1.25, 1.33,  and  1.5  timea  volume  of  ist  cylindet 
plus  *ts  clearance,  the  relations  would  be  as  follows: 

Augmented  terminal  volumes)  (times  volume  of 

in  ad  cylinder }   '         ''"S        »'33        «'5     \     ist  cylinder. 

Sdo.       do. 
includiDg    clear 
anca 
Final  volumes  in  2d  cylfnder)  (times  volnmo  of 

added  to  clearance (    3"     3-ai         3-2«         3-2i    J      ist  cylinder. 

Rrtio  of  expansion  in  2d  cyl'r. .  3         2.4  2.25         2 

Intermediate    reductions    of)  (ofterminalpross^ 

pressure.. J   **  **  *5  -33   -^    ure  in ist cyPr. 

Equal  to. o  4.53         5.65       xx. 31  lbs.  per  sq.  inch. 

Pressures  in  receiver  and  inl- )^  ^^    ,«  .         .^  ^       ,,  ^.       ^^         ^^ 
tialpr«8sure  in  2d  cylinder..  P»-^=    '^'^         '^-^       "'31       do.         do. 

Final  pressure  in  2d  cylinder  .. .  7.54     7.54         7.54        7.54       da         da 

To  Compute  ICxpanaioxi   in   a  Coxnpouud  Ifinsfine. 

RECEIVEK  ENGINE. 

Batio  of  Expansion.    In  iH  cylinder ^  as  per  formula,  {lage  710.    In  2d  cylinder. 

— ^^  r = mtio.    Of  Intermediate  Expansion     =  ratio,    n  representing  ratio 

of  intermediate  reduction  of  pressure  between  ist  and  2d  cylinder^  to  final  pressure  in 
%wt  cyUnder,  and  r  ratio  ti/area  of  ist  cylinder  to  that  of  2d. 

Illustration.— Assume  »  =  4,  and  r  =  3 

Then  ^— ^  X  3  =  a-as  ratio,  and  — ^sa  1.33  raita. 
4  4  —  1 

TUal  or  Comtnned  Ratio  of  Expansion,  r  R'  =  product  of  ratio  of  ist  and  2d  cyl- 
inders by  ratio  of  expansion  in  ist  cylinder.  As  when  r  =  3,  and  R'  =  2.653,  then 
9  653  X  3  =  7  959  to<«^  ratio. 

Bence,  Combined  Ratio  of  Eaqaansion  in  both  cylinders.     r  R'=:R''.    R'  rep* 

nefm/tnp  ratio  of  expansion  in  ist  cylinder,  and  R"  combined  ratia 
lLLCSrRATioif.~A8sume  as  preceding,  and  R'  =  2.653. 

Then  ^^^  X  3  X  a-653  =  5-969  oorndtned  ratio. 

X*o  Ooznpute  FlfTect  fbr  One  Stroke  and  a  O-iven  Ratio 
of  li^jcpansion  in   ITirst   Cylinder. 

Without  Intermediate  Expansion,    Rule.  —  Multiply  actual  ratio  of  ez- 

Eansion  in  ist  cylinder  by  ratio  of  both  cylinders,  and  to  hyp.  lo^.  of  corn- 
in^  ratio  add  i;  multiply  sum  by  period  of  admission  to  ist  cylinder  plus 
cleanuioe,and  term  product  A« 

Divide  ratio  of  both  cylinders,  less  i,  by  ratio  of  expansion  in  ist  cyl- 
inder ;  to  quotient  add  i ;  multiply  sum  by  clearance,  and  term  product  B. 

Subtract  B  from  A,  and  term  remainder  C.  Multiply  area  of  ist  cylinder 
in  so.  ins.  by  total  initial  pressure  in  lbs.  pf'r  sq.  inch,  and  by  remainder  C. 
Proauct  is  net  effect  in  foot-lbs.  for  one  stroke. 

With  Iniermediate  Expansion.  Add  effect  thereof  to  result  obtained  above^ 
and  by  following  formula: 

Or,  i'  I  +  hyp.  log.  R"— c  («  +  -^)  a  P  =  B.    arq^esentimg  ana  insq.im., 

p  initial  pressure  in  lbs.  per  <9.  indi  of  tst  cylinder,  f  length  of  admission  or  poim 
^esMimg  off  plus  dearance,  c  clearance  infect,  and  E  effect  in  foot-lbs. 

3P 


722 


STBAM. 


Iii«svBMioir.'»A8Baineareu  orcyllttden  x  and  3  tq.  Ids.,  length  of  stroke  6  feeL 
pressure  of  steam  60  lbs.  per  sq.  Inch,  cut  off  at  2  feet,  clearance  7  per  cent,  a&4 
area  of  intermediate  space,  as  receiver,  one  Ihtrd  volume  of  ist  cyllfider. 

R"  =  ratio  of  expansion  fn  2d  cylinder  ^         X  3  X  a.  653  =r  5.969  hyp.  log^ 

a. 653  X  a. as  +  i  X  3.4a  —  3  — i-j-a.653  -|-  x  X  4a  X  i  X  60  =  1.7865  +  i  X  a.4«  — 
a-r-a.653-1-1  X  .48X60  =  6.743  — .737X60  =  36a 36 yiK)t-Z6». 

itt  Cylinder, 

Bfl^t  on  piston  60  lbs. X  X  Inch  X  a  feet =x2o     fooitJbt. 

"     of  clearance  60  Ib&x  42  foot =  as.  a        *^ 

Total  initial  effect  =  60 X a X  4a =~i45.a  foUlbt. 

Then  r45.2X  t^-  hyp.  log.  2.653  or  1.976 5s=  286  91 /ooi-ttt 

Less  effect  of  clearance , ».  sx  a5.a_    J^ 

Net  effect  on  piston  above  vacuum  line =  a6i.  71  jbot-lbM. 

Less  effect  of  back  pressure  60-T-a.653sr2a.6x,  whteh,x  3  «!•  I  _  ,e  ^      *» 

in&  and  2  feet  stroke |J___ 

Net  effect  on  piston =  ra6  05  >bo^-^&t. 

2d  Cylinder, 

I45.a  X  I  +  hyp.  log.  a. as  or  x.8x =:a6a.8i/oof-f6t. 

Effectof  clearance  22.61  X3X*4a =  28.49      *'        =t 234.32 ./bof-lftr 

y>o.yf  foot-tbs, 

Tntermediate  reduction  of  pressure,  as  given  at  page  721, =.25  X  22-61  =5.65  Iba 
per  sq.  mch,  which,  x  3  sq.  ins.  and  by  2  per  foot  of  siroke,=  33.9/oo(-26«. 

•  Hence  360. 36  -f  33-  9  =  394-  26  foot-lbs. 

Or,  by  sum  of  the  three  results,  viz. : 

ist  cylinder.     ... 126.05 ybot-/&«. 

Intermediate  expansion 33.9       *'■ 

2d  cylinder.... 834.32      *^ 

394.27  Ji>ot-lb£ 

WOOLS'  BiiGiNB.    D.  K  dark. 

Ratio  of  Expantion.—In  xtt  cylinder  ttc  per  fbrmala,  page  710.    In  2d  cylinder, 

r  -p-  •\-x-i-i-\-x  -  nUio.    r  representing  ratio  of  area  of  ist  cylinder  to  that  of  ad, 

I  and  I  lef^th*  of  stroke  and  of  stroke  added  to  clearance^  in  ins.  orfeet^  and  x  ratU 
oalue  of  intermediate  ^heme. 

iLLtJSTRATioN  —  Assums  ?  =  6  fut,  T  =  7  per  cent. = .  42,  r  =  3,  and  x  = .  333. 

3Xg---  +  .333 

Then '4 =  *-353»  »'fl*M>  ofeapanHon  in  2d  eyUndlT, 

1+  333 

Total  Actual  Ratio  ofBstpansUM.    R'  fr  -^  -f-  a j  1=  ratio. 
Illustration.— Assume  preceding  elements,  R=:  3.653. 

Then  a. 653  (3  x  r f-  •  333)  =  2.653  X  3  i37  =  8. 32a,  total  actual  ratia 

Combined  Ariual  Ratio  of  Expansion.    R'  f  r  77  +  *)  -^  1  -f  *  =  ratto. 
lu.otntATioit.-«iAinime  preceding  elemettts. 
9653  (3  X  ~-  +  333  -^  t  +  333)  ^  j^  =  6.242,  com(>tHM(  4ct«4<  r^Wa 


8TBAK. 


723 


To  A.ttaixx  Combined  Xiatio  of  Sxpanaion  and  :Final 

JPreasixre   in.   2d   Cylinder. 

Assuming  four  cases  as  tpaken  for  Receiver  £ngine  with  a  clearance  Off 
7  per  cent.    The  relations  would  be  as  follows: 


I|it«riD«di4t«  cpMcet  ar« o  .333 

Volame  of  Mt  cylinder o  .357 

Add  to  tbMe  1.07,  tbe  to1uoi«  of  i*t )  ,  __  .  .„_ 

eyllBdor  plua  iU  clmnmce,  and. . . .  C  *' ~  *•  4a7 

To  Mune  valoM  of  interinodiate  apace '\ 
add  ju  tha  volume  of  ad  eylisder,  I 

•■d  Uie  aoioa  tra  the  Anal  voluipet  |  3 

by  ezpaoeion  In  ad  eylindor J 

Ratioa oreznaa4o<i  in  adcyl*?  ar««B»- )  .  a^ .  _  . ^. 

tieoU  of  finalby  initial  volume*. .  f  *'  ^^4  2. 352 


•S 

•535 
1.605 


3-357  3-535 


9. 902 


I 

1.07 


(  part  of  volume  of  lat  cylin- 
1     der  plm  it*  elMrtue*,  or» 


-1 


total  tnittal  volnmea  A»r  eZ' 
pMtion  in  ad  evilnder  91 
timea  volnnie  or  latcyl'r 


.  .-    ( tinea  v^unM  of  «•(  eyl- 
4*°7    \    indar. 


Intermediate  fiille  of  preaanre  are,  io  )   ^^ 
partaof  final  preaanre  in  lat  cylinder  ) 


•25 


•333 


for  flnal  pnMii 
J  anming  Initial 
]  63  lba.,an<t  lli 
I    at  33.75  iba.,  t 


o  5.94       7.9a 

The  initial  preaaorea  for  ezpanaion  in  )    ,  __  fj: 

ad  cylinder  are .\V. f    »  75  -^ 

23-75   «7-8i     «5'83 
BmMtjinaS preumnt  m  a<f  effFr  are. .  8.47      7.57        7. 19 

Combined  Ratios  in  thete  Four  Catet* 
ist  ratio  of  expaasjoii. ...  i  to  3.653         Combined  Rutio. 

. .  I  to  a.8o4=s  S.653  X  2-8o4;;;«7.44. 


X.909  ratioa  of  axpanaion. 

of  flnal  pnenire ;  or,  aa- 
1  preaanre  at 
nal  premure 
they  are 

XI. 87  ^pertf.inek. 

(of  final  preaanre  in  tat  eyl- 
*5     \     ind«r,or 

11.87  fff- ptr  tq.  in^. 

6. 24  /&f.  per  tq.  inch. 


XSt 

2d. 
3<t 

4tb. 


2d 

do. 

do. 

XSt 

2d 

do. 
do. 

do. 
do. 

«st 

2d 

do. 
do. 

da 
do. 

XSt 
2d 

do. 
do. 

do. 
do. 

.  .  .   I  to  2. 653 

, . .  j^lo  2.352  =  2.653  X  2.352  =  6.24. 
...I  to  2.6^3 

.  ..   I  to  2.202  =  2.653  X  2.202  =  5.84. 

. ..  I  to  2.653 

. . .  I  to  1.905  =  2.653  X  X.905  =  5.05. 


iDHial  effeot  of  steam  at  63  lbs.  pressure,  admUted  to  ist  cylinder,  for  2  feet,  or  ooa 
third  of  stroke  of  piston,  ana  with  a  clearance  of  7  per  cent,  or  .43  feet,  is  as  follows: 

Effect  00  piston 63  x  2     feet  x=  1 26/oo^/6«.  ( Total  initial 

do.   is  clearance . .  63 x  . 42 foot  =  36. 46  =  63 x 242  =  1 52. 46/oo^^«.  (     oflMt. 

This  sum  is  initial  effect,  on  which  effect  by  expansion  is  computed,  while  it  is 
0^46  foot-lbs.  in  excess  of  tbe  initial  effect  on  the  piston. 

The  total  effect,  then,  is  computed  as  follows: 

XSt  case.       1 52. 46  x  ( i  +  hyp.  log.  7. 44)  or  3. 0069  =s  458. 27         Net  Eaat%. 
Less  effect  of  clearance 26. 46    431. 81  foot-lbs. 

152-46  X  (i  +  hyp.  log.  6.24)  or  2.831   =  43»-47 
Lms  effect  of  clearance..., 36.46    405.0X 

152.46  X  (1  +  hyp.  log.  5.84)  or  2.7647  =  421-35 
L^  effect  of  clearance 26.46    394.89 


ad  esse. 
3d  case. 
4th  case. 


t( 


it 


152.46  X  (1  +  hyp.  lojf.  5.05)  or  2.6294  =  390. 20 
Less  effect  of  clearance 26.46    373.83 


C( 


The  reductions  of  not  effect  in  2d,  3d,  and  4th  cases  nre  6.2.  8.6,  and  13.7  per  cent 
of  effect  in  ist  case. 

To  Compute  S^ftect  for  One  Stroke  and  a  C3i-iven  Corn- 
bixied  i^ctiial   Ratio  of  Kxpattalon. 

RuLB.-^To  hyp.  lo|^.  of  combined  actual  ratio  of  expansion  (behind  both 
pistons)  add  i ;  multiply  sum  by  period  of  admission  of  steam  to  ist  cylin- 
der, added  to  clearance,  and  from  pft)dact  anbtract  clearance.  ^ 

Multiply  area  of  ist  cylinder  in  sq.  ins.  by  initial  pressure  of  steam  in  Iba. 
per  sa.  mch  and  by  above  remainder.  Product  is  net  effect  in  foot-lbs.  for 
one  soroke. 


^24  STEAK, 

EiiHPLt, — ABsnmadeiDflBlsoriBt  lllnMntttoii 

Hyp.  log.  6.34+1  =".S3r;KbiCll,Xa-43=6,t 
X6o  =  38i8/i»l.»I. 

Or,r(i  +  hyp.1og.R'l-C 


I  uiDia  whoiher  operaied  In  a  nee 
.18  apace  bet»«iii  ttia  l»o  cjlindei 

VooirenglDBi  Uie  el!^  13  greater, 
f  e  elemaiils  or  llio  elTo::!  o(  both  ( 


'  cleanuice  lo  tbe  ptBImis  of  eacb  engine,  the 
biy  reducod,  s>  cempcred  wlib  tba  mtloa  « 

INDICATOE. 


:t  perpendic- 
ulars at  eacb  pmiiC    Measure  by  scale  of 
pails  (alike  to  Uiat  of  diagram)  (he  aclud 
—1°  mean  prCBsure,  as  defined  between  the  two 
Q,     lines  at  (op  anil  bottom  of  diagram,  add  the 
~y    results,  divide  eum  by  number  ot  polnla,  and 
-   x*   quotient  will  give  mean  piesaure  in  lbs.  per 
Eq.  inch  Dpon  putim. 
EuMPt,!.— PresBurea,  ai  above  given,  are : 

iS  +  35  +  35  +  3*  +  3'  +  iS  +  tfi+io  +  8+6  =  a36,wblcb,-=-io,  =  aj,«»t 
NoTt— If  it  Here  preetloaWe  to  run  an  engine  wilhout  any  load,  and  It  BOmo- 


ConcluB 

protecting  It  from  ce 
beating  of  11  prior 
means  Ibat  may  be 
botUrthanltlsBei 

oiiH  on   Actual  Kjnoieiioy  of  Steam. 

of  hiebosl  elHclcnoies  ofatcam,  aa  uacd  In  an  engine.  masnB  tar 
ollngandcondeDBlnglu  tbt^cyliuder  must  be  employed.   Super- 

tbestmeana;  and  nem  la  Ihe  aleiim-Jackel, 

Incasesoriocom 
hour  le  leaa  thao  Ibr 
pan-loo. which  lad 

that  of  Blnglcoylinder  condensing  eaglnefi  for  like  nliae  of  ei- 

It  ladednclbleJhim  theH  reaulis  thnt  the  compound  engine  la  mora  afflolanl  tbui 
the  Bioglecyllnder,  and  Ibal,  of  the  iwo  klnda  of  compound  englnra,  the  reoaivar- 
onglne  IB  more  emcicnt  than  the  Wootf. 

Average  oonsiimp 
lnlongvoyageB,aSB 

own  by  Mr.  Bramweli,  ranged  from  i.j  io  j.3  lbs.  IDK-Oarit} 

STEAM. 


72s 


To   Compute  Voluioae   of*  '^Vater   Svaporated   per  JJ1>. 

of  Coal. 

— ^rg — =i2  volume  of  vkxter^  in  Ibi.    V  and  v  representing  volume  of  steam  and 

relative  volume  ofwaier,  in  cuhefeet,  W  weight  of  cube  foot  ofwaJter,  and  F  weight  of 
fuel  consumed^  both  in  lbs. ,  and  d  dmsity  of  water ^  in  degrees  of  saturation. 

I].LiJ8HUTiON.~>Take  case  at  foot  of  page..   V  =  449887  cube  feet,  vs  838  cUbe 
Jeet,  W  =  64.3,  E  =  1,  and  F  =  4061  lbs. 

449887-^838x64.3^3.,^  ,^,, 

4061  X  I 

Gain  in  Fuel,  and  IniticU  Pressure  of  Steam  required^  token  Acting  Expan- 
siveiy^  compared  with  Non-Expansion  or  Full  Stroke, 

Cntting 
off. 


Point  of 
Catting  off. 

Gain  in 
Fuel. 

Cutting 
off. 

Point  of 

Cutting  off. 

Gain  la 
Fuel. 

Cutting 
off. 

Point  of 
Cutting  off. 

Gain  in 
Fuel. 

Stroke. 

.75 
.625 

Per  Cent. 
22.4 
3a 

Lb«. 
1.03 
1.09 

Stroke. 
•5 
•375 

Per  Cent. 
49.6 

Lbs. 
1. 18 
1.32 

Stroke. 

•25 
•125 

Per  Cent. 
58.8 
67.6 

LlM. 

1.67 

2.6 

Illustration. —What  muBtbe  initial  pressure  of  steam  cut  off  at  .5,  to  be  equiv- 
alent to  100  lb&  per  aq.  inch  at  tall  stroke? 

zoo  at  full  stroke  =  zoo,  and  zoo  X  x.z8  =  zz8  lbs. 

7o  Compute  G^ain.  in   Fuel. 

RuLB. — Divide  relative  effect  of  steam  b}^  namber  of  times  the  steam  is 
expanded,  and  divide  i  by  quotient ;  result  is  the  initial  pressure  of  steam 
required  to  be  expanded  to  produce  a  like  effect  to  steam  at  full  stroke. 

Divide  this  pressure  by  number  of  times  the  steam  is  expanded,  and  sub- 
tract quotient  from  i,  remainder  will  give  gain  per  cent,  in  fuel. 

BxAXFLB.— When  steam  is  cat  off  at  .5,  what  is  gain  in  fuel,  and  what  mechanical 
effect? 

Relative  effect,  inclading  clearance  of  5  per  cent.,=  z.64;  number  of  times  of  ex- 
pansion =  2. 

1. 64  -5-  2  = .  82,  and  z  -T- .  82  =  z.  22  tm'^to^  pressure. 
1.22 ^ a  =B. 61,  and  x -^ .6t = .^g  per  cent 

Mechanical  effects  of  steam  at  full  and  half  strokes  are  2  —  z.64  =  '36  difference. 

Hence,  z.64  ;  .36 ::  50  (half  volume  of  stoam  used) :  zo.07  per  cent  more  fuel  to 
produce  same  effect  at  half  stroke^  compared  with  steam  atpiU  stroke. 

To  Compute   Consumption,  of  Fuel  in  a  F-irnaoe. 

When  Dimensions  of  Qflinder^  Pressure  of  Steam^  Point  of  Culroffy  HevO" 
hitiftnsj  and  Evaporation  per  Lb.  of  Fuel  per  Minute  are  given. 

Rule. — Compute  volume  of  cylinder  to  point  of  cutting  off  steam,  in- 
doding  clearance.  Multiply  result  by  number  of  cylinders,  by  twice  number 
cyf  strides  of  piston,  and  by  60  (minutes) ;  divide  product  by  density  of  steam 
at  its  pressure  in  cylinder,  and  quotient  will  give  number  of  cube  feet  of 
water  expended  in  steam. 

Multiply  number  of  cube  feet  by  64.3  for  salt  water  (62.435  for  fresh), 
divide  product  by  evaporation  per  lb.  of  fuel  consumed,  and  quotient  will 
give  consumption  in  lbs.  per  hour. 

ExAMPLB.-— Cylinder  of  a  marine  engine  is  ^5  ina  in  diameter  by  zo  feet  stroke 
of  piston;  pressure  of -steam  hi  steam-chest  is  Z5.3  lb&  per  sq.  inch,  out  off  at  .5 
stroke;  number  of  revolutions  14.5,  and  evaporation  estimated  at  ?{  5  lbs.  of  salt 
water  per  lb.  of  coal;  what  is  consumption  of  coal  per  hour,  when  density  of  water 
Is  maintained  at  2-32?    (See  Saturation,  page  726.) 

Volnme  of  steam  at  above  pressure,  compared  with  water  (15.3 +  '4: 7)*  =  338* 
Area  of  95  ins.  -f-  2. 5  per  cent  for  clearance  -r-  Z44  =  50.45  cuite  feet    Point  of  cut- 

ting  off  5  feet>f  2.5  per  cent  =  5  t^%  z.5  Ins.,  and  50.45  X  5  ^®t  z.5  tn^  x  Z4.5  x  a 
X  60  :^  449  887  CM6f  feet  steam  per  hour. 

3  P* 


720 


STJfiAM. 


Hettoflv  449  887  -*-  ^3'i  ^  53^-  ^  cuhefut  ybaiir^  whl(Sb,  X  64.3  =«  34  SM  RA ,  whict 
—  8. 5  =  4061  Ibt.  coal  per  Kimr. 

Nora.— ElemeDts  given  are  those  of  one  engine  of  steamer  AreHCy  and  consamp- 
lion  of  clean  fUel  (selected)  for  a  run  of  12  days  (one  engine)  was  3820  lbs.  per  hoar. 

UfilizcUioti  of  Coal  in  a  Marine  Boiler, 

Experiment  gives  from  .55  to  .8  per  cent,  of  the  heAt  developed  m  the 
combustion  of  coal,  as  utilized  in  the  generation  of  steam.  Ordinarily  it 
may  be  safely  taken  at  .65. 

SALINE   SATURATION   IN   BOILEBS. 

Average  seo^water  contains  per  xoo  parts  t 

Chloride  of  sodium  (com.  salt) . .  2. 5  i  Chloride  of  magnesium  •  33. .  *  •  =s  2.83 

Sulphuret  of  magnesium 53;  SalphuretoflTme 01....  =  .54 

Carbonate  of  lime  and  of  magnesia .02 

Saline  matter 3.39 

Water *.... 96.61 

100 

Hence,  sea- water  contains  .0339th  part  oi  its  weight  of  solid  matter  in  solatioa, 
and  is  saturated  when  it  contains  36.37  parta 

Mean  quantity  of  salts,  or  solid  matter,  in  solution,  is  3.39  per  cent,  three  fourtbt 
of  which  is  common  salt 

Removal  of  Inarustation  of  dcale  or  fieditnent. 

PattUoes,  in  proportion  of  .033  Weight  of  water.  Mnlanes^  \u  proportion  of  1.6 
lbs.  per  W  ^t  boiler.  Oak,  suspended  in  the  water,  and  Mahogany  or  Oak  gawdust, 
and  Tanfur^s  and  Slippery  Elm  bark,  renewed  fTeciuently,  according  (o  volume  of  it, 
and  the  evaporation  of  the  water  Muriate  o/Ammontu  and  Carbonate  o/Soda^  in 
quantity  to  be  determined  by  observation. 

BLOWING    OFF. 

To  Compute  I^oaa  of  Keat  toy  Slo-wltig  Off  of  Saturated 

"Water  fVom  a   Steam->l>oiler. 

S^T  Elf 

^   =  proportion  of  keat  logt^  S  — T  X  E  =  heat  required  fromjvdjbr 

t 
water  evaporated  in  degrees^  and  g_«i  tf  .  >  =  2om  9f  heat  per  cent    S  repraeiUing 

turn  of  sensible  and  latent  heats  of  water  evaporated,  T  temperature  of  feed  water, 
t  difference  in  temperature  qf  water  bloum  off  and  UuU  supplied  to  boiler,  E  volmmi 
of  waUr  evaporated,  proportionate  to  that  blown  off^  the  latter  being  a  constant  quan- 
tity, and  represented  by  i. 

Values  of  E  at  following  degrees  of  sataratlon,  and  volames  to  be  blown  off: 


I.  as 

«-5 


^ 

1    ^ 

•3^1 

>  i 

3«- 

1- 

Jk 

1- 

H 

Si* 

h 

•as 

4 

1.65 

.65 

1-54 

a 

1 

t 

a.  75 

«-7S 

•35 

9 

'Z* 

'25 

1.33 

•as 

t.as 

8 

3 

a 

S 

9 

1.85 

«S 

1.18 

a-5 

1.5 

66 

a.  as 

a.  as 

Thus,  when  water  in  a  boiler  is  maintained  at  a  density  of  ~ ,  i  volame  of  it  if 
evaporated,  and  an  equal  volume,  or  z,  is  to  be  blown  off. 

Hence  1  -f  i  —  1  =  i =toAo  of  volume  evaporated  to  tolumf  hUnm  off 

ItxtBTRATioN  I.— Polut  of  blowiug  off  is  2  (3a).  pressuro  of  steam  Is  15  3  lbs.,  men 
Turial  gauge,  and  density  of  feed  water  i  (32);  what  is  proportion  of  heat  lostt 

S=ii57«5       T=ioo«        f=is.3  +  i4.7=25o.40-iooP-isa4<i        Rasi, 

n^  "''^-'^^^-^^r-^^^a^j^rppormofhedtum 


2. — Anume  point  of  blowing  off  1.75  (33);  what  wonld  be  loss  of  heat  per  cent  in 
preceding  caaef 

E  =  .75. ^^^ ; =  15.0  oer  cent  lott  by  blowing  off. 

»I57.8  — I0PX.7S+X5O-4 

3.~AaBume  elemejiu  of  preceding  case.    Wl^at  is  total  heat  required  trsm  tufl 
for  water  evaporated  ? 

1157.8  — 100  X  .75  =  793-35®' 

To  Cpnp&pute  Voluroe  oi*  "W^ter    31o^^rzi  Off  to   tli»t 

Evaporated. 

When  Degree  of  SeUuration  is  Given.  Rule.— divide  1  bv  proportionate 
volaoie  of  water  evaporated  to  that  lilown  off,  or  value  of  £l  as  above,  for 
degree  of  saturation  given,  and  quotient  will  give  number  of  volumes  blown 
off  to  tiiat  evaponted. 

JU.USTB4X10M.— Degree  of  saturation  in  a  nuirine  boiler  is  ^^  ;  what  is  volume 

of  water  blown  off? 

E  S3 1.35.    Then  x  -4- 1.25  =  .8  blown  off. 

Proportional  Volumes  0/ Saline  Af after  in  Sea-^iocUer, 
Baltic X  in  153 


Blaclc  Sea i  ''    46 

Red  Sea ..x  *'  13X 


Atlantic,  South. .  x  in  34 
North..!  "  23 
Dead  Sea i  "    9.39 


British  Channel ...  i  'in  28- 

Mediterranean x  '*  25 

Atlantic,  Equator.. x  *'  35 
When  saline  matter  at  temperature  of  its  boiling-point  is  in  proportion  of  xo  per 
cent ,  lime  will  be  deposited,  and  at  39. 5  per  cent  salt 

Temperature  of  water  adds  much  to  extent  of  saline  depwltA 


STEAM-ENGINE. 
The  range  of  proportions  here  given  is  to  meet  the  requirements  of 
varifttions  in  speed,  pressure,  length  of  stroke,  draught  of  wftter,  etc., 
in  the  varied  purposes  of  Marine,  Biver,  and  Land  practice. 

For  a  R,anse  of  Pressxires  of  from  30  to  80  lb*.  (AiiexroTi- 
rial   Oauere)  po*"   Sq..  IxxcU,  Cnt   Off   at   Half  Stroke. 

}*iglort-rod.  Cylinder  or  Air-pump  {Wrouffkt  /ron),  .1  to  .14  of  its  diaui. ; 
{Steel)f  .08  diam. ;  and  (jCopper  or  Brass),  .11  and  .135. 

Cbndenser  {Jet),  Volume,  .35  to  .6  of  cylinder.  {Surface.)  Brass  tulyes, 
16  to  19  B  W  6,  .625  to  .75  in  diameter  by  from  5  to  10  feet  in  length,  and 
.75  to  1.25  ill  pitch,  condensing  surfaces,  .55  to  .65  area  of  evaporating  sur- 
race  of  boiler  with  a  natural  draught;  .7  to  .8  with  a  blower,  jet,  or  like 
draught.    Or,  for  a  temperature  of  water  of  60°,  1.5  to  3  sq.  feet  per  IBP. 

With  a  very  eflBsctive  and  sufficient  circulating  pump,  aress  may  \>&  reduced  to 
.5  and  .6. 

EiTect  of  vertical  tube  surftice,  compared  to  horizontal,  is  as  10  to  7. 

Air-pump  (Single  acHr^  and  direct  connection).    Volume  from  .15  to  .3 

steam  (^Knder.    Or,  — ^—  2.75.    For  Double  acting  put  4  for  a.  75.    V  and  v 

rmresenting  volumes  of  condensing  and  condensed  water  per  cubejbot,  and  n  strokes 
of  piston  per  minute. 

Foot  and  Delivery  Valves,    Area,  .35  to  .5  area  of  air-pump. 

Delivery  Valve  {Out-board),  With  a  Reservoir.  Area  from  ,5  to  .8  Foot 
vahre. 

NoTc— Velocity  of  water  through  these  valves  should  not  exceed  x3  feet  per 
second. 


728                                       STKAM-ENGINB. 
Steam  and  Exhaust  Valves, — (Poppets. =  area  for  sieam, far 

N      r/'    '»24CX)o  ''  '20000    "^ 

exhaust ;  (Slide)^ for  steam,  and  for  exhaust,    a  representing 

%rea  ofsUam  cylvnier  in  sq.  itM.,  s  stroke  of  piston  in  ins,,  <md  n  nu'mX>er  of  revolu- 
tions per  minute. 

It^edion  Pipes, — One  each  Bottom  and  Suie  to  each  condenser;  area  of 
each  equal  to  supply  70  times  volume  ^ft  water  evaporated  when  engine  is 
working  at  a  maximum ;  and  in  Marine  and  River  engines  the  addition  of 
a  BUge,  which  is  property  a  branch  of  bottom  pipe. 

NoTK  I.— Proportions  given  will  admit  of  a  sufficient  volume  of  water  when  en- 
gine is  in  operation  in  the  Gulf  Stream,  where  the  water  at  times  is  at  temperotare 
of  84O,  and  volume  required  to  give  water  of  condensation  a  temperature  of  100^  is 
70  times  that  of  volume  evaporated. 

2.  Velocity  of  flow  of  water  through  cock  or  valve  20  feet  per  second  fn  river  or  at 
shallow  draught,  and  30  feet  in  sea  or  deep  draught  service. 

Feed  Pump.* — {Single  acting.  Marine),  Volume,  .006  to  .01  steam  cylinder. 
(River  and  Land),  or  when  fresh  water  alone  or  a  surface  condenser  is  used, 
xx)4  to  .007. 

NONtCONDKNSING. 

li''or  a  Range  of*  IPressiires  of  fVom  SO  to  IfSO  lbs.  (Aferca- 
rial  Ghauge)  per  Sq..  Incli,  Cut  Off  at  Kalf  Stroke. 

Piston-rod. — (Wrought  Iron),  Diam.,  .125  to  .2  steam  cylinder.  (Steel)^ 
1.  to  1.6  steam  cylinder. 

Steam  and  Exhaust  Vaives, — Area  is  determined  by  rules  ^ven  for  them 
in  a  condensing  engme,  using  for  divisors  300Q0  and  22  750. 

A  decrease  in  volume  of  cylinder  is  not  attended  with  a  proportionate  decrease 
of  their  area,  it  being  greater  with  less  volume. 

Feed-mtmp.* — (Single  acting,  Marine),  Volume,  .008  to  .016  steam  cylin- 
der.   (River  and  Land),  or  where  fresh  water  alune  is  used,  .005  to  .01 1'. 

Grexieral   lElules. 
Snsines. 

Cylinder.    Thickness,— ^Vertical),  -^  =  < ;  (fforizontat),  ^  ^  =  /  ;    (Tf^ 

clined),  divide  by  2000  m  a  ratio  inversely  as  sine  of  angle  of  inclination. 

D  representing  diameter  of  cylinder,  p  extreme  pressure  in  lbs  per  sq.  inch  that  it 
<ma^  be  suJbijected  to,  and  t  thickness  in  ins. 

Shafts,  Gudgeons,  Joumcds,  etc.  To  resist  Torsion.   See  rules,  pp.  790,  796, 

Coupling  Bolts.    —   /-  i'^^^*     *  representing  number  of  bolts,  D  diameter 

of  shafty  d'  distance  of  centre  of  bolts  from  centre  of  shafly  and  d  diameter  of  bolts, 
ali  in  ins. 

Cross-head,  Wrought-iron,    (Qlinder), - ^-  =  S, and ^y  =: d, or ^s=.b. 

a  representinQ  arta  of  cylinder  in  sq.  ins.,  I  length  of  cross-head  between  centres  of  its 
journals  xn  feet,  arid  ^  product  of  square  of  depth  d,  and  breadth,  b,  ofsajUon,  both 

in  ins.       (Air-pump),  -^  =  S,  and  as  above  for  d  and  6. 

If  section  of  either  of  them  is  cylindrical,  for  S  put  -y/S  X  1.7. 

Diam.  of  boss  twice,  and  of  end  joumab  same  as  that  of  piston-rod.    Sec- 
tion a(  ends  .5  that  of  centre. 

•  — ^j^M^^^^i^— ^— ^— ^^—  ■  -^ . . 

*  See  Formnlfls,  page  736 


STEAH-BN6INB.  729 

Steanhpipe.^lU  area  should  exceed  that  of  steam-valve,  proportionate  to 
its  length  and  exposure  to  the  air. 

Connecting -ivd,  — Lengthy  2.25  times  stroke  of  piston  when  it  is  at  all 
practicable  to  afford  the  space ;  when,  however,  it  is  imperative  to  reduce 
this  proportion,  it  may  be  twice  the  stroke. 

Comparative  friction  of  long  and  short  connecting-rods  is,  for  length  of  stroke  of 
piston,  12  per  cent  additional;  twice,  3  per  cent. ;  and  for  thrice,  1.33. 

Neck. —  Diam.  i  to  i.i  that  of  piston-rod.  Ctnire  of  body  (l/onzontal), 
1.25  ins. ;  ( Verticat)y  ,q6  inch  per  foot  of  length  of  rod. 

With  two  c<>iii:e:tiog-rod8  or  links,  area  of  necks  .65  to  .75  area  of  attached 
piston-rod. 

Straps  of  Connecting-rods,  Links^  etc,  —  (Strap),  area  at  its  least  section 
.65  neck  of  attached  rod ;  {Gib  and  Kejf),  .3  diam.  of  neck,  wiiith,  1.25  times, 
(Slot)  1.35  times  {Draft)  of  keys  .6  to  .8  inch  per  foot.  Distance  of  Slot 
from  end  of  rod  .5  diaiiu  of  pin. 

Pins  {Cranks,  Beams,  etc») .    \/-q  •  355  =  <*•    P  representing  pressure  or  thrust 

of  rod  or  beam,  I  lengUi  0/ journal  in  ins.,  and  C,for  Wrought  iron  =  640,  Cast,  5601 
Puddled  steel,  600,  and  Cast,  120a 

Length,  1.3  to  1.5  times  their  diam.,  and  pressure  should  not  exceeil  750 
lbs.  per  sq.  inch  for  propeller  engine,  and  1000  for  side-wheel. 

Qxinks  {Wrougkt-iron), — Hub,  compared  with  neck  of  shaft,  1.75  diam., 
and  I  depth,  iuye,  compared  with  pin,  2  diam.,  and  1.5  depth.  Web,  at  pe- 
riphery of  hub,  width,  .7  width,  and  hi  depth  .5  depth  of  hub ;  and  at  periph- 
ery of  eye,  width,  .8  width,  and  in  depth,  .6  depth  of  eye. 

{Cast-iron,)  Diameters  of  Hub  and  Eye  respectively,  twice  diam.  of  neck 
of  shaft,  and  2.25  times  that  of  crank  pin. 

Radii  for  fillets  of  sides  of  web  .5  width  of  web  at  end  for  which  fillet  is  designed; 
for  fillets  at  back  of  web,  .5  that  at  sides  of  their  respective  ends. 

Beams,  Open  or  Trussed, — Length  from  centres  1.8  to  2  stroke  of  piston, 
and  depth  .5  length.  If  strapi)ed.  Strap  at  its  least  dimensions  .9  area  of 
piston-rod,  its  depth  equal  to  .5  its  breadth.  End  centre  jownals  each  i,  and 
main  centre  journals  2.5  times  area  of  piston  or  driving-rod. 

This  proportion  for  strap  is  when  depth  of  beam  is  .5  length,  as  above;  conse- 
quently, when  its  depth  is  less,  area  of  strap  must  be  increased;  and  when  dcjtth  of 
strap  is  greater  or  less  than  .5  width,  its  area  is  determined  by  product  of  its  &  (2^, 
being  same  as  if  its  depth  was  . 5  its  width.  

{Ccut-iron).  Area  0/ Section  0/ Centre.  -  '  =A.  p  representing 
extreme  pressure  upon  pisUm  in  lbs. ,  d  depth  in  ins.,  and  I  length  in  feet 

Depth  at  centre  .5  to  .75  diam.  of  cylinder,  and,  when  of  uniform  thick- 
ness, a  thickness  of  not  loss  than  .1  of  depth. 

Vibration  of  End  Centres.— I  -^  2  —  >/(/  -^  2)2  —  («-,-  2)'  =  vibration  at  each 
end  ;  s  representing  stroke  of  piston,  in  feet 

Plumber  BiocJcs  {Shaft). — Binder  d  Wy C  =  depth,    d  representing  (ham. 

oftnats  when  tvoo  to  binder,  I  distance  between  bolts,  b  breadth  of  binder,  all  in  ins., 
and  Cfor  wrought  iron  i,  steel  .85,  and  cast  iron  .2. 

Hdding-down  Bolts.  P  -r-  3  C  =  area  at  base  of  thread  of  each  bolt.  C  for  mild 
steel  for  small  and  large  bolts  6cxx)  and  7000,  for  wi'ought  iron  4500  and  6000,  if  but 
two  are  used. 


d      fl 
Binder  {Brass).    --  ^-^  =  depth 


730 


STSAM-»N6m£. 


Cbeib.— Angles  of  sides  of  plug  trotn  7^  to  8^  f^om  plane  of  ft 

Putnps. — ^Velocity  of  water  in  pump  opeiiiiigs  should  not  exceed  500  feet 
per  liiinute. 

Fiy-tvheels  and  6ovemor$,^-Se6  Rules,  pages  451  and  452. 

'Water-'wrlieelfli. 

Water-wheels  (Amu). — Number  from  .75  to  .8  diam.  of  wheel  in  feet 
{Blatki)  Wood. — For  a  distance  of  from  5  to  5.5  fleet  between  arms,  thick- 
ness from  .09  to  .1  inch  for  each  foot  of  dlatn.  of  wheeL 

Area  of  blades,  compared  with  area  of  immersed  amidship  section  uf  a 
vessel,  depends  upon  dip  of  wheels,  their  distance  apart,  model  and  rig  of 
vessel. 

In  River  service^  area  of  a  sin.e:le  line  of  blade  surface  varies  from  .3  to  4 
that  of  immersed  section ;  In  Bay  or  Sottnd  service^  it  varies  from  .15  to  .2; 
and  in  Sea  set^ce^  it  varies  from  .07  to  .1. 

NoTB.— A  wroaght-iron  blade  .625  inch  thick  bent  at  a  stress  withstood  by  an 
oalc  blade  3.5  ius.  thiclc. 

Radial   and,   Featlierins. 

Radial. — Loss  of  effect  is  sum  of  loss  by  oblique  action  of  wheel  blades 
upon  the  water,  their  slip,  and  thrust  and  drag  of  arms  and  blades  as  they 
enter  and  leave  the  water. 

Loss  by  oblique  action  is  computed  by  taking  mean  of  square  of  sines  of 
angles  of  blades  when  folly  immersed  in  the  water. 

Loss  by  oblique  action  of  blades  of  wheel  of  steamer  Arctic,  when  her  wheels 
were  immersed  7  feet  9  ins.  and  5  feet  9  ins.,  was  85.5  and  18.5  per  cent.,  which 
was  the  loss  of  useriil  eftect  of  the  portion  of  total  power  developed  by  engines, 
which  was  applied  to  wheels. 

Feathering. — Loss  of  effect  is  confined  to  thrust  and  drag  of  arms  and 
blades  as  they  enter  and  leave  the  water. 

Comparative  Effects.— Irx  two  wheels  of  a  like  diameter  (26  fbet,  and  6  fbet  immer- 
sion), like  number  and  depth  of  blades,  etc.,  the  losses  are  as  follows 

Radial 26.6  per  cent.   |  Feathering 15.4  percent 

Loss  of  effect  by  thrust  and  drag  in  a  feathering  wheel,  having  these  elements 
and  included  in  the  above  given  loss,  is  computed  at  2  per  cent. 

Relative  loss  of  effect  of  the  two  wheels  is,  approximately,  for  ordinary  immer- 
sions, 20  and  15  per  cent  from  circumference  of  wheel 

Centre  of  Pressure^  —  -^ — -p-  —  d = c    d  and  d'  repretenting  depths  0/  bmet 

3  a— a  * 

below  surface  of  water^  and  e  centre  of  pressure,  all  in  like  dinunsUmStfrotn  bUtem 
edge. 

In  the  cases  here  given,  centres  of  pressure  are  as  follows: 

Radial 6.4  ins.   |  Feathering 8.51ns. 

Propellers. 

Propellers  (Screw).  —  Pitch  should  vary  with  area  of  circle  described  by 
screw  to  area  of  midship  section  of  vessel. 


ARBA,  TWO-BLADED, 

Area  of  disk  of  propeller  to  mid- ) 
ship  section  being  i  to ) 

Ratio  of  pitch  to  the  diameter  of 
propeller  is  z  to 


} 


.8 


1.02 


4-5 


I.IZ 


1.2 


3-5 


1.27 


1.31 


a- 5 


S.4      1*47 


For  Four-bladed  screws,  multiply  ratio  of  pitch  to  dianu  A0  given  aborCi 
^y  ^•Z5'     l^ngfh^  .166  diam. 


STKiltf-ENGrNB. 


731 


iS!li9i.^^lip  of  a  screw  propeller  is  directly  as  its  pitch,  and  economical 
effect  of  a  screw  is  inversely  as  its  pitch ,  greater  the  pitch  less  the  efl'ect. 

An  expanding  pitch  has  less  slip  than  a  uniform  pitch,  and,  consequently 
is  more  effective. 

To  Compute  Thrust  of  a  Propeller. 
UP  ^  =  T.    8  r^^aeiUing  tpeed  of  vessel  in  knots  per  hour. 

a 

8LIDB  VALYES. 

AU  Dimensions  in  Inches. 

7o  Ooxnpute  X^ap  required,  on.  Steam  Knd,  to  Cut-off  at 
any  given    Part  of*  Stroke   of*  Piutbn. 

Rule. — From  length  of  stroke  subtract  length  of  stroke  that  is  to  be  made 
before  steam  is  cut  off;  divide  remainder  by  stroke,  and  extract  square 
root  of  quotient. 

Multiply  this  root  by  half  throw  of  valve,  from  product  subtract  half  lead, 
and  remainder  will  give  lap  requirea. 

EXAMPLK Having  stroke  of  piston  60  ins.,  stroke  of  valve  16  ins.,  lap  upon  ex- 
haust side  .5  in  =one  thirty-second  of  valve  stroke,  lap  upon  steam  side  3.35  ioa, 
lead  M  ioa,  steam  to  be  cut  off  at  five  sixths  stroke,  what  is  tbe  lap? 

60  —  T  of  60  =  10.    ^  /—  =  .408.     408  X  —  =  3-264,  and  3.264 =  2.264  ins. 

t>  \  00  3  3 

To  i^soertain   Lap   required   on   Steam    Bud,  to  Cut-off 
at  -varioiiis   Portions  of  Stroke. 

Oistuice  of  piston  fVom  end  of  its  stroke  when  steam  is  cut  off, 
in  parts  of  length  of  its  stroke. 


Vaivs 
vritkouA  Lead. 

Lap  in  parts  of 


stroke 


"] 


i 


•354 


6 


323 


i 


3S6 


A 

i 

A 

\ 

i 

iV 

A 

•a? 

328 

.204 

•177 

M4 

102 

iLUTRRATioii.  —Take  elements  of  preceding  ca8& 
Under  \  is  204,  and  .304  X  i6  =  3.264  t>«  lap. 

When  Valve  is  to  have  Lead, — Subtract  half  proposed  leiui  from  lap  as- 
certained by  table,  and  remainder  will  give  proper  lap  to  give  to  valve. 
If,  then,  as  last  case,  valve  was  to  have  2  m&  lead,  then  3.264  —  3 -r-  3  :=  2. 364  t?if. 

'Vo  Ooznpute  at  -vrlxat  Fart  of  Strolca  anjr  given  X^ap  on 

Steam   Side  >vill   Cut  ofi*. 

Rule.— To  lap  on  steam  side,  as  determined  above,  add  lead ;  divide  sum 
by  half  lenc^  of  throw  c^  valve.  From  a  table  of  natural  sines  (pages  390* 
403)  find  the  arc,  sine  of  which  is  equal  to  quotient;  to  this  arc  add  90°, 
and  from  their  sum  subtract  arc,  cosine  of  which  is  equal  to  lap  on  steam 
side,  divided  by  half  throw  of  valve.  Find  cosine  of  remaining  arc,  add  i 
to  it,  and  multiply  sum  by  half  stroke,  and  product  will  give  length  of  that 
part  of  stroke  that  will  be  made  by  piston  before  steam  is  cut  off. 

ExAMPLB.— Take  elements  of  preceding  case. 

Cos.  (8ta.?;^^+'+9o<>-cos.^)  +  «  x|=COSL(330,3'+goP-73^34') 

s=  4«®  39',  and  COB.  48®  39'+ 1  X  —  =  x.66  X  30= 49.8  ins. 

3 

To  .Anoertain   3readtH   of  Porta. 
Half  throw  of  valve  should  be  at  least  equal  to  lap  on  steam  side,  added  to  brsadtb 
of  port.    If  this  breadth  does  not  give  required  area  of  port,  throw  of  valve  must  be 
fnoTMUKd  antU  reqatred  area  is  attained. 


732 

Port 


STBAU-ENtilNB. 


.. 

'", 

>le>l>>>fa 

± 

A 

X 

A 

± 

.178 
,091 

:!is 

! 

i 

.09 

Dnlte<nCDlaiDD9oru 


ctised  ud  Ihfl  on«  bvbluc 

Undor  odc  alilh  in  lul 

wiiglbotBlrolto  =  j.i8in 


Rui.E.— To  twice  lap  add  twice  width  of  a  Bteam  port  iu  ins.,  and  Mini 
wiil  give  stroke  required. 
F'X]>an4loD  by  ^p,  wktb  a  elide  valre  operated  by  an  eccentrli:  iiloao.  cannot  bt 

Bomewbal  compeoBaled.    Whan  lap  a  increased^  throw  of  eccentric  ebould  also  b» 
When  low  eipansion  1b  required,  a  cnt-off  valve  should  be  resorted  to  IL  iddltim 

To   CompntB  Distance  ot  s  Finton  ft-am   Snd  of  i" 

Cjtrolia,  wlien   X.ead  produosH  its   Kftbot. 

Rui.E.  —  Divide  lead  by  wiiHh  of  steam  pral,  ijotli  in  ins.,  and  term  ItK 

quotient  sine :  multiply  its  eorte«ponding  vereed  sine  by  h>l[  Hlroke,  anil 

pro-luct  will  give  diaUnce  of  piston  from  end  of  its  stroke,  when  steani  isti- 

mitted  for  return  stroke  and  exhaustion  ceases. 

PLB— Simke  orpleioD  in  ,s  Ins.,  width  of  port  a. 


„....,™.x'i..,.,. 


steam-e:n  gine.  733 

To  Compute  Distanoe  of*  a  Piston  iVozn  IGxid  of*  its  Stroke, 
-^vliezx  Steam  is  admitted,  fbr  its  Return.  Stroke. 

Rule. — Divide  width  of  steam  port,  and  also  that  width,  less  the  lead,  by 
.5  stroke  of  slide,  and  term  quotients  versed  sines  Jirst  and  second,  Ascer- 
Cain  their  corresponding  arcs,  and  multiply  versed  sine  of  difference  between 
Jirst  and  second  by  .5  stroke,  and  product  will  give  distance. 

ExAMPLK. — Assame  elements  of  preceding  case,  lap  =  .5  tncA,  and  stroke  of 
Elide  6  ins. 

^^  and  %^7~'^  =  •  8333.  and  .667  and  ver.  sin.  80°  24'  <v  70O  33'  x  —  = .  3528  inch. 

O  -r-  20-7-2  2 

To  Compute  X^ap  and   I^ead  of  I^ooomotive  Valves. 

To  cut  off  at  33, .  25,  and  125  of  stroke  of  piston,  lap  ^  289, .  25,  and  .  177  t,  outside 
lead  =  .07  t,  and  Inside  lead  =  .  3  t.    t  representing  stroke  qfvcUvey  all  in  tns. 

HORSE-POWER 

Harne-power  is  designated  as  Nominal,  rndicated,  and  Actual, 

Nominal^  is  adopted  and  referred  to  by  Manufacturers  of  steam-enginea, 
in  order  to  express  capacity  of  an  engine,  elements  thereof  being  confined 
to  dimensions  of  steam  cylinder,  and  a  conventional  pressure  of  steam  and 
speed  of  piston. 

Indicated,  designates  full  capacity  in  the  cylinder,  as  developed  in  opera- 
tion, and  without  any  de-ductions  for  friction. 

A  (^ualy  refers  to  its  actual  power  as  developed  by  its  operation,  involving 
elements  of  mean  pressure  upon  piston,  its  velocity,  and  a  just  deduction  for 
friction  of  operation  of  the  engine. 

To  Compute  Korse-po^ver  of*  an   £Cngine, 

1)2  „  1)3^ 

XS'omiual. — Non-condensinff, ,  and  Condensmg, =  ff.    D  repre- 

Menting  diameter  of  cylinder  in  ins.,  and  v  velocity  of  piston  in  feet  per  minute, 

Noth-condensinff  is  based  upon  uniform  steam-pressure  of  60  lbs.  per  sq. 
inch  (steam-gauge),  cut  off  at  .5  stroke,  deducting  one  sixth  for  friction  and 
losses,  with  a  mean  velocity  of  piston,  ranging  from  250  to  450  feet  per 
minute. 

Condensing  is  based  upon  uniform  steam-pressure  of  30  lbs.  per  sq.  inch 
(steam  -  gauge),  cut  off  at  .5  stroke,  deducting  one  fifth  for  friction  and 
losses,  with  a  mean  velocity  of  piston  of  300  feet  per.  minute  for  an  engine 
of  short  stroke,  and  of  400  feet  for  one  of  long  stroke. 

,        »r  J       •  Al**  — (/t-M4T7)2«r      ^      ^ 

.A-otual. — Non-condensmg,    ^l.-L-ju. =ff.    A  representing 

"  33000 

area  of  cylinder  in  sq.  ins.y  P  mean  effective  pressure  i^pon  cyUnder  piston^  inclusive 
of  atntosphere,  ffriemon  of  engine  in  allits  parts,  addi^  to  friction  of  load,  both  in 
|to.  per  sq.  inch,  s  stroke  of  piston  in  feet  ^  and  r  number  of  revolutions  per  minute. 

Sum  of  these  resistances  is  IVom  12.5  to  20  per  cent.,  accordmg  to  pressure  oC 
■team,  being  least  with  highest  pressure. 

*  This  viUue  is  best  obtained  by  an  Indicator;  when  one  is  not  used,  refer  to  rule 
and  table,  pp.  710-12.  In  estimating  value  of  P,  add  14. 7  Iba ,  for  atmospheric  press. 
are,  to  that  Indicated  by  steam  gauge  or  safety-valve.  Clearance  of  piston  at  each 
end  of  cylinder  is  included  in  tbts  estimate. 

t  This  value  may  be  safely  estimated  in  engines  of  magnitude  at  z.s  to  2  lbs.-  per 
aq.  inch,  for  Ariction  of  engine  in  all  its  parts,  and  friction  of  load  may  oe  taken  at  5 
to  7.5  per  cent  of  remaining  pressure.  Sum  of  these  resistances  in  ordinary  marine 
engines  is  iVom  10  to  20  per  cent ,  according  to  pressure  of  steam,  exclusive  of  powev 
required  to  deliver  water  of  condensation  at  level  of  discharge  or  load-line  of  a  ves* 
8el.  For  pressure  representing  friction  for  different  designs  and  capacities  of  en 
sines  as  estimated  by  English  authority,  see  pp.  473-5  and  662. 

5Q 


734  STBAM-ENGtNE. 

Illustration,— Diameter  of  cylinder  of  a  noD-ooDdensing  engine  is  loins.,  stroki 
of  piston  4  feet,  revolutions  45  per  minute,  and  mean  pressure  of  steam  (steam 
gauge)  60  [bs.  per  sq.  inch. 

A=78.54  gq.  ins.   f =60-^-14.7=74.7 lbs.  /=a.5-f  (6o4- 14  7—2.5) X. 075=7.92 ttt 

Then  7854  X(6o-ht4.7-79«H"»4-7)XaX  4X45  =  . .  g  ff 

33000 
NoTK  t.— Power  of  a  non-condensing  engine  is  sensibly  affiscted  by  chavActer  of  its 
exhaust,  as  to  whether  it  is  into  a  heater,  or  through  a  contracted  pipe,  to  afford  a 
blast  to  combustion. 

2.— If  an  indicator  is  not  used  to  determine  pressure  of  steam  in  a  cylinder,  a 
safe  estimate  of  it,  when  acting  expansively,  is  .9  of  ftiU  pressure,  and  when  at  full 
stroke  flrom  .75  to  ,8. 

Condensing.    ^HEIhll^m 

33000 

Power  required  to  work  the  air-pump  of  an  engine  varies  fh)m  .7  to  .9  lbs.  per  sq. 
Inch  upon  cylinder  piston. 

Illustration. — Diameter  of  cylinder  of  a  marine  steam-engine  is  60  in&,  strolce 
of  piston  10  feet,  revolutions  15  per  minute,  pressure  of  steam  50  lbs.  yer  sq.  inch. 
cat  off  at  25  Btrolce,  and  clearance  a  per  cent 

A  =  2827. 4  *g.  ins.  P  (per  Ex. ,  page  713)  =  28. 62  lbs.  f=  1.5  +  28.62  — 1.5 X. 05 
=  2.467  lbs. 

Then  '8'7.4  X  .8j6- jjsgjO  Xj° >05 ^  ^      ^ 

33000 

From  which  is  to  be  deducted  In  marine  engines  power  necessary  to  discharge 
water  of  condensation  at  level  of  load-line,  which  is  determined  by  pressure  due  to 
elevation  of  water,  area  of  air-pump  piston,  and  velocity  of  its  discharge  in  feet  per 
second.  * 

Ap2*r      __       J  ^3000  S^ 

Indicated. =  ff,  and  ^;—- —  =  A. 

33000  •  P««r 

Britisli   A^dzniraltsr   l^vkle,^ Nominal.     —  —  or^— ^=iff. 

33000       6000 

French. — {Force  de  Cheval.)     1.695  D'  L  r  =  H*.    D  and  L  in  metert 

.Illdstration.— Assume  a  diameter  of  cylinder  of  .254  meters,  with  a  stroke  of 
piston  of  .3  meters  and  250  revolution^  per  minute. 

1.695  X  254*  X  .3  X  250  =  8. 18  H>. 

A  Force  de  Cheval  =  4500  kilometers  per  minute  =  32  549  foot-lbs.  =  .987  57  ff. 

One  IP  =  1.0139  Force  de  Oietaux. 

Compound   Indicated.     A  L  r  i^,  i  hyp.  log.  R"—  M  .000053  =  ff- 

L  representing  length  of  stroke  in  feet^  R"  combined  ratio  of  both  cylinders,  and  b 
back  pressure. 

Illustration. — Assume  area  of  cylinder  3  sq.  ins.,  stroke  6  feet,  one  stfoke  of 
piston,  and  steam  60  lbs.  per  sq.  inch,  cut  offal  .25. 

A  =  3  «^.  ini.,  L  =  efset,  n  =  i  stroke,  P  i=  60  »#.,  R"  =  5.969,  d as  3  ift* 
per  sq.  inch,    and  r  = .  5,    and  1  -f-  **yp  ^og  R"  =  1  -f- 1.7865. 

Then  3  X  6  X  5  X  f— g-  X  1  +  1.7865  —  3)  X  .00005322  9  x  laosa  X  2.7865— J 
X  .000053  =  .0132  IP,  wnich,  X  2  for  t  revolution,  =  .0264  IP  per  rewdmUon. 

To   Compute   Volume   of  AVater   required   to   "be  Kvapo- 

rated    in    aai    JSngine. 

Rule.— Multiply  voliiine  of  steam  expended  in  cylinder  and  8tMtii'K*be8ta 
by  twice  number  of  revolutions,  and  multiply  product  by  density  of  steam 
ftt  given  pressure. 

*  t  For  r«f«rtao*  aea  irt  aad  3d  roe(-pot«  on  prtvloiif  (ag*. 


1 


STBiiM-SNQlNB.  735 

BzAMpLi.— Wbal  Tolume  of  water  will  m  eagin*  roquln*  U)  be  evaporated  per 
revulution,  diam.  of  cylinder  being  70  ins.,  stroke  of  pislun  10  feet,  and  pressure  of 
sloam  34  lb&  per  eq.  iucb,  including  Htntospbere,  cut  off  at  .5  of  stroke  ? 

Area  of  cylinder = 3848, 5  im.   ioXi»-!-as=6o  in*., 6ox  3848-  5  =  »39  9«o  <^^^  *"* 

Add,  for  clearance  at  one  end,  volume  of  nozzle,  steam-chest,  et£.,  17  317  cube  int. 

Then  230010  + 17  317  -j- 1728  X  2  =  287.3  cube  feet,  which,  x  .001 336,  density  of 
flteam  at  34  lbs.  presdure  {9^  Noi«  a),  =^.3838  c^lteftet. 

NoTB  L^Thia  refers  to  expenditure  of  steam  alone;  in  practice,  howeyer,  a  large 
quantity  of  water  ''  foaming,"  differiog  in  diQ'Qrent  c^ses,  is  carried  into  cylinder  in 
combination  with  the  steam ;  to  which  is  to  be  added  loss  by  leaks,  gauges,  etc. 

3. — Volume  of  steam  is  readily  computed  by  aid  of  table,  pp.  708-0.  Thus,  den- 
sity or  weight  of  one  cube  foot  of  steatn  at  above  pressure  =  .0835  lbs.  Hence,  as 
62.5  Vbi,  :  X  cube  foot ::  .0835  Ihi.  :  .001  336  cubefboL 

To  Compute  "Voluxxie  or  Circulating  "Water  reqLuired  by 

'"^T*  '^^  ~  =  V  T  represetUing  temperature  qf  sUam  upon  entering  the  con- 
denser^ i,  f^  and  V  lemperaturet  of  feed  watery  of  water  of  condensation  discharged, 
and  of  circtUaiing  water,  all  in  degrees. 

Illustration. — Assume  exhaust  steam  at  8  lb&  per  sq.  inch,  temperatures  of  dis- 
charge loo^,  feed  water  i2o<^,  and  sea-water  75^ 

Temperature  at  8  lb&  pressure  =  183O.     "'4-t-'3  j^  3—^^  _  ^^^^  times. 

To  Compute  ^Volume  of  FIomt  through  an  Ix^jeotion  i*ipe. 

Rule. — Multiply  square  root  of  product,  of  64.33  ^^^  depth  of  centre  of 
opening  into  condenser,  from  surface  of  external  water,  added  to  height  of  a 
column  of  water  due  to  vacuum  in  condenser,  all  in  feet,  bv  area  of  opening 
in  sq.  ins.  -j  and  .6  product,  divided  by  3.4  ({44  -r  60)  will  give  volume  in 
cube  feet  per  minute, 

ExAMPLB.— Diameter  of  an  ii^ection  pipe  is  5.375  ins.,  height  of  external  water 
above  condenser  6.13  feet,  and  vacuum  24.45  ins. ;  what  is  volume  of  dow  per  min.? 

2^  J  e  Ids 

Area  of  5.375  in&  =  32.69  1n&,  c  =  .6.    Vacuum  -^^^ ^  =  x3  lb& ;  xa  X  0.34 

2.04 

feet  (sea- water)  =  26. 88  feet,  and  26. 88  -f  6. 13  =  33.  i  fset. 
Then2^^  33 X33.XX  22.69 X. 6^628^^ 

2.4  3.4  '^ 

To  Coxnpute  A-rea  of  an  I»vJ option  Pip9« 

Rule. — Ascertain  volume  of  water  required  by  rule,  page  706,  in  cube  ins. 
per  second,  mnltiply  it  by  numb^  of  volumes  of  water  required  for  con- 
densation, by  rule,  page  707,  divide  it  bv  velocity  due  to  now  in  feet  per 
second,  and  again  by  12,  and  quotient  will  give  area  in  sq.  ins. 

EsLAMPUk—An  engine  having  a  cylinder  70  ins.  diam.,  stroke  of  pisUm  ro  feet, 
revolutions  per  minute  15,  and  steam  19.3  lbs.,  mercurial  gauge  cut  off  at  .5;  what 
should  be  area  of  its  injection  pipe  at  its  maximum  operation? 

Volume  of  cylinder  267.25  cube  feet,  cut  off  at .  5  =  133.625  ins. 
Density  of  steam  at  34  Iba  (19.1 4- 14.7)  =  .001' 336.     Velocity  of  flow  of  iidected 
water  (cfMnpated  (hwa  vacoum  ana  elevation  of  condensing  water)  33  feet  per  second 

Then  133.635  X  15  X  3  X  17*8  -5-  60  =  115  452  cube  ins.  steam  per  secondj  and 
115  453  X  .ooi  336  ?=  X54-34  cube  ins.  water  per  second. 

Maximum  volume  of  water  required  to  condense  steam  is  about  70  times  volume 
of  that  evaporated,  which  only  occurs  in  the  Gulf  of  Mexico;  ordinary  requirement 
is  about  40  times. 

«54-a4  +  «i-59  (=  7-5  PW  cent,  for  leakage  of  valves,  etc.)  =  165.83,  which,  X  TC 
3  ti  6ot.i  cube  ins.,  and  xx  608.  x  -r-  33  x  12  =:  &9.3i  iq.  ins. 


73^ 


STEAM-fiNG^INE. 


Coefficient  of  velocity  for  flow  under  like  conditions  ::=  .6;  hence,  29.31 -r-. 6  = 
48.85  iq.  ins. 

NoTK.— This  is  required  capacity  for  one  pipe.  It  is  proper  and  customary  that 
there  should  be  two  pipes,  to  meet  contingency  of  operation  of  one  being  arrested. 

To   Compute  .A.rea.  of  &.   Feed   Pump.    {Sea-tocUer.) 

Rule. — Divide  volume  of  water  required  in  cube  ins.  by  number  of  single 
strokes  of  piston,  both  per  minute,  and  divide  quotient  by  stroke  of  pump,  in 
ins. ;  multiply  this  quotient  by  6  (for  waste,  leaks,  "running  up,"  etc.),  and 
product  will  give  area  of  pump  in  sq.  ins.     / 

ExAMPLK. — Assume  volume  to  be  5  cube  feet  and  revolutions  of  engine  15  per 
minute,  with  a  stroke  of  pump  of  3.5  feet 

5  X  1728 


15 


=  576,  which -7- 3. 5  X  12  =  13.72,  and  13.72X6  =  82.32  sq.  int. 


NoTB.— In  fresh  water,  this  proportion  may  be  reduced  one  half 

STEAM- INJECTOR.       'Wm.     Sellers     &    Co.,    Incorporated, 

Self-acting  Injector,  1887,  Class  iV,  Improved. 

"Volume    of    Water    l>ischarged    per    Hour. 


No. 

F 

60 

Cub.  feet. 

4-3 

57 

5-4 

89 

6.5 

129 

7-5 

172 

Pressure  of  Steam  in  Lbs. 


90 


Cub.  feet. 

67 
107 

»54 

206 

Tligltest  admissib 


120 


180 


Cub.  feet. 
75 

121 

176 

234 


'  Cub.  feet. 
69 

137 
199 

265 


No. 


Pressure  of  Steam  in  Lbs. 


60 


8.5 

9-5 

10-5 

"•5 


Cab.  feet. 
221 
276 
338 
405 


90 


Cob.  feet 
265 

332 

407 
446 


120 


tSo 


Cab.  feet. 
301 

376 
460 

55> 


c  temperature  of  water  supply  at  120  lbs.  steam,  138^. 


Cab.  feet 
340 
425 
520 
623 


Minimum  capacity,  36^  to  40^  of  maximum. 

To  Compute   Size  of*  Ix\Ieotor  re<iuirecl. 

One  H^  per  hour  will  require  from  15  to  40  lbs.  of  water  per  hour,  accord- 
ing to  character  of  engine. 

When  the  lbs.  of  coal  burned  per  hour  can  be  ascertained,  divide  them  by 
7.5,  and  quotient  will  give  the  volume  of  water  in  cube  feet  per  hour. 

When  the  area  of  grate-surface  is  known,  multiply  it  by  i.6  for  IP. 

In  case  of  plain  cylindrical  boilers,  divide  the  number  of  sq.  feet  of  heat- 
ing-surface by  10  for  the  IP.  In  case  of  flue  boilers,  divide  by  la,  and  with 
multi-tubular  boilers,  by  15,  for  the  nominal  H*. 

To   Compute  "Volume  of*  Injeotlori    "Water  required.    x>er 

IH?    per    liovir. 

Operation. — Assame  leinperatiire  of  water  80°,  and  of  condensation  xtxP.  Vol- 
ume of  cylinder  per  IIP  as  per  formula,  pnge  716,  and  illustration,  page  717,  =  3.76 
feet  per  minute. 


Then,  as  per  rule  page  707, 


1 146. 1  —  100 


100— r  80 
2.76  X  52-3X62.5 


=::  52. 3  cube  ins.  per  cube  foot  ofstecun. 


1728 


=  5.22  U)8.y  which,  X  60,  =  313.2  lbs. 


To  Compute   Net  "Volume  of  Feed.  "^Vater  required.    x>ex* 

in*   per   ilHLour. 

Op£ration. —Assume  elements  of  formula,  page  716,  and  illustration,  page  7x7. 

Then.  1154  x  2.76  X  60  =  19.11  lbs. 

Feed  Pipes,    —  Vv  z=  diameter  for  small,  and  —  Vu,  for  large  puiaps. 
d  representing  diameter  qf  plunger  in  ins.,  and  o  its  velocity  infaHper 


STKAM:-£NGIN£. 


737 


Results  of  Operations  of  Steaxn-engixies.    {D.  K.  Clark.) 


OovDiitraie  Ekodik. 


8IN0LB. 

Corliss,  Saltaire 

Pumping,  CrossDess 

"  East  London... 
Snlzer,  GorlisB  valves. .  ■  • . 
Superheated,  Hira 


COMPOUND. 

JEWer&Co {^^.[^kited 

J*^w«>d {s^utsralir-.:::::: 

Donkin {j^teit".r?: 

American,  Woolf { t^'t^^^l^^f  J"; ; ; ; ; 

**  j^'^^^lbSth?'."^^!!;;::; 

NON-CONDENSING. 

Marshall,  Sons,  ft  Co 

Davey,  Paxman,  ft  Co 

liOGomotive  ''Great  Britain" 


it 


(( 


ti 


AeUal 

Steam 

Coal 

Initial 

Ratio  of       per 

Prewura 

Expao- 

IH'ai 

/£. 

at 

sion. 

cut-off. 

cnt-off. 

Lbs. 

Lba. 

Lbt. 

5-2 

1451 

2.5 

34.5 

6.07 

14.27 

2.2 

46 

3.62 

12.92 

'"   "■ 

23-25 

10 

— 

3-3 

1° 

4.132 

"^ 

^~ 

60 

1.85 
1.852 

14-45 
14.85 

i.6z 

56 

4.01 

IO-94 
1334 

2.14 

85.  s 

2.486 

13.18 

— 

50-5 

3.221 

1387 

— 

— 

2.31 

actual 

5.63 

23.21 

~ 

90 

3.77 
9.19 

2a  71 

— 

90 

4.8 

16.87 

.^ 

76 

5 

M-93 

— 

73 

1-45 

31-36 

^ 

102 

2.94 

21.24 

— 

87 

Steam 
per IIF 
per  hour, 

Lb*. 


17 
18 


4 
7 

20.73 
19.6 
18.62 


22.51 
15-37 
14.1 


25-9 

29.6 

3"-36 
21.24 


Fraotioal  Sfficieno^r  of  Steaxn-engines.   Initial  Volume  =  i. 


CrUKDIHS. 


«  it 


00NDEN8INO. 

Single  cylinder,  jacketed. . . 

Single  cylinder 

**  "        superheated 

Ck>mpoand,  Jacketed,  Re- 
ceiver....  

*  From  boiler. 


4^ 


6 

4 

4 

6 


SLg 

GO 


Lbe. 

19.5 

24 
18.5 

»9 


Cylihdkbs. 


Compound,  jacketed,  Woolf 
Compound,  Woolf. 


NON-CONDENBINO. 

Single  cylinder,t  jacketed. 
Single  cylinder,  t 


Ji3  . 


C 


& 


ID 

7 

4 
3 


t  70  lbt.  preMtire. 


X  90  Iba.  prsMure. 


Standard  Operation  of  a  Portable  Engine. 


Grate 5.5 

Heating  surface 220 

Coal  per  H*  per  hour. . . .      6.25  lb& 
»»     **  sq.  foot  of  grate.      9 

hour 50 


sq.  feet 

t4  it 


(( 


(( 


*  M 

s. 

09 


Lbe. 
20.5 
33 


24 
SI 


Ibft 


Water  evaporated  from ) 
and  at  212°  per  hour.  }   •  •  •  •  45o 
"            "    per  H*  per  hour  62.5 
"             "      "   sq.  foot  of  I     a    „    u 
grate J     "* 


<t 


Ratio  of  heating  surfitce  of  grate 40  to  z. 


MIXTURE  OF  AIR  AND  STEAM. 

Water  contains  a  portion  of  air  or  other  uncondensable  gaseous  matter,  and  when 
ft  is  converted  into  steam,  this  air  is  mixed  with  it,  and  when  steam  is  condensed 
It  is  left  in  a  gaseous  state.  If  means  were  not  taken  to  remove  this  air  or  gaseoiii 
matter  fV'om  condenser  of  a  steam-engine,  it  would  fill  it  and  cylinder,  and  obstruct 
their  operation  j  but,  notwithstanding  the  ordinavy  means  of  removing  il  (hy  air- 
pump),  a  certain  quantity  of  it  always  remains  in  condenser. 

90  volumes  of  water  absorb  z  volume  of  air. 

3Q* 


73« 


STBAM-BNGINB. 


s 


It 


g 


^ 


« 


3  .- 


m 


"    •        •    • 

o        «»•«««««»♦>■♦  m  v>  lo  to  m  ir>  1^  r»  r<k  t>oo  oo  oo  0 


£  MHticim'^'^'^'^  mvo  «o\o^NONOcooOQOoo  o  oo 


«m>nr«>e4m  lom  «n  •'^         '9'? 


tn  in 

s     •     •    I 


w)  tf)  in  in  m      m  m  m      m  «n 


5^    "^i^i 


•      O  a  g 


«n  m 
a  ^^  w 
"^  «  oJ  ■«••  m ino  »v\o  tCiOO  ono^w  «  «  w  ^■♦•^♦'>»^t*2* 


m  m 

m           \nin 

n  1^ 

r^           rN.  r<* 

\o  en 

fo  »n  moo  00 

N  c«  n  n 


at 

ma 

rs 

—  a 
bog 

5* 

gX 

m  it 

ta 
^s 

~  a 

52 

>.£ 

i^ 

S  « 

a>  3 

■On. 

0-0 
U  0 

S  O 
2  * 

Oft 


C^ 


II  Hi 


•o  c  "  " 


H    •<    X    •* 

SOQOPOPOOOOOOOOOOOQOOQO 

OO  O  O  O  «no  0  >no  mmininmino  O  O  0  OOOQ 

o  -^  t^ao  5  O  m«  ■«•  •♦NO  >o<ONO  cnroforornromoj 

^  "■        M  M  M  M  M  M  cnrom  (mom  minis- r^r^o 


b  a 


»-      a 
a.- 


o  o  o  o  o  o  o 
mmo  O  ininmN 

N    C4    C4    M    H    M 


m»n»ntointntn«ntnin«nmin«o«pj''" 

-C1PIWC«N««C(CiNW««W«2 


8  0  O  O  0  0  O  ininm'mininmminmmmm«n        '" 
0  O  O  o  O  O  t^r^rN.t^t«.t>.r«.t>.t^»^t^t>t^f^ 


in  mm 
r*  t^  N 


S  s  « 

coo 


«  « 


*:S  I"  a  fee 


1 « ^ 

^    O  O   I 


m«  M  ON«n«vo«o  mmmmt<.t^i«;  ^i  J^5*-2^5    « 
«  m  •♦  mvo  owvOvo  ■♦■^r-^-^mmm  moo  «{">^,    u 


M    K    M    M    M 


•        •        •       •       •       ■      »  .  .  ^ 

ti  «  trt  mmrff*  ♦▼^ 


«vS 


J 


CO 


3  *i 


m 

ts. 

M  fO  ^  mvo  voxoooooooooooooooog 


m 

M      m  u> 

M      Km      m     trtd 


m  m  m  m 
mmmmn  m  n  n 


A   ti  a  d  tri  ^  ■^  tn -i-  mvo  k  koo  ooooooOOOON^S 


m 

tn  <t      m  m  m 

w  jn  ^  mo  ts  r%  K  ON  o  « 


m  m  .   . 

«  >«rvooo  «  '♦«oo  J^^* 


Oo 

«  s 

fl  o 
3  *• 
0«J 

£5. 

P.0 

■Oo 
'S  CI 

ffi  o 

•Sss 
o  a 

It 

s  • 
a  o 

II 

\.  « 


a 

s 


STE  AM-KNQINK.— BOILEB.  7  39 

BOIUBB., 

Its  efficiency  is  determined  by  proportional  quantity  of  heat  of  com- 
bustion of  fuel  used,  which  it  applies  to  the  conversion  of  water  into* 
steam,  or  it  may  be  determined  by  weight  of  water  evaporated  per  lb. 
of  fuel. 

Id  foUowiDg  reaalls  and  oomputatiooB,  water  ia  held  to  be  evaporated  flrom  atand- 
ard  temperature  of  312°. 

Proportion  of  surplus  air,  in  operation  of  a  furnace,  in  excess  of  that  which  is 
chemically  required  for  combustion  of  the  fuel,  is  diminished  as  rate  of  combustion 
is  increased;  and  this  diminution  is  one  of  the  causes  why  the  temperature  in  a 
furnace  is  increased  with  rapidity  of  combustion. 

When  combustion  is  rapid,  some  air  should  be  introduced  in  a  furnace 
above  the  grates,  in  order  the  better  to  consume  the  gases  evolved. 

Natural  Draitght, 

Grate  (Coat)  should  have  a  surface  area  of  i  s^.  foot  for  a  combustion  of 

15  lbs.  of  coal  per  hour,  length  not  to  exceed  1.5  tunes  width  of  furnace,  and 
set  at  an  inclination  toward  bridge-wall  of  i  to  1.5  ins.  in  every  foot  of  length. 

When,  however,  rate  of  combustion  is  not  high,  in  oonsequence  of  low  ve- 
locity of  draught  of  furnace,  or  fuel  being  insuflicient,  this  proportion  of  area 
must  be  increased  to  one  sq.  foot  for  every  la  lbs.  of  fuel. 

Width  of  bars  the  least  practicable,  spaces  between  them  being  from  .5  to 
.75  of  an  inch,  according  to  fuel  used.  Anthracite  requirin£f  less  space  than 
bituminous.  Short  grates  are  most  economical  in  combustion,  but  generate 
steam  less  rapidly  than  long. 

Level  of  grate  under  a  plain  cylindrical  boiler  gires  best  effect  with  a  fire 
5  ins.  deep,  when  grate  is  but  7.5  ins.  from  lowest  point. 

Depth,  Cast-iron,  .6  square  root  of  length  in  ins. 

{Wood),  their  area  should  be  1.25  to  1.4  that  for  coal. 
Autonialic  (Vicar's).  —  Its  operation  effects  increased  rapidity  In  firing 
and  more  effective  evaporation. 

Ath-pit — Transverse  area  of  it,  for  a  combustion  of  15  lbs.  of  coal  per 
hour,  2  to  .25  area  of  grate  surface  for  bituminous  coal,  and  .25  to  .3  for 
anthracite.    Or  15  to  20  ins.  in  depth  for  a  width  of  furnace  of  42  ins. 

Furnace  or  Combustion  Chamber. — (jDoal)  Volume  of  it  from  2.75  to  3  cube 
feet  per  sq.  foot  of  grate  smrfiice.    (  Wood)  4.6  to  5  cube  feet. 

The  hif^her  the  rate  of  combustion  the  greater  the  volume,  bituminous 
coal  requiring  more  than  anthracite.  Velocity  of  current  of  air  entering 
%n  ash-pit  may  be  estimated  at  12  feet  per  second. 

Volume  of  air  and  smoke  (br  each  cube  Foot  of  water  converted  into  steam  Is, 
flrora  coal,  1780  to  1950  cube  feet,  and  for  wood,  3900. 

Rate  of  Combustion,  •^  In  lbs.  of  coal  per  sq.  foot  of  grate  per  hour. 
Cornish  i^m^r«,  slowest,  4 ;  ordinary,  10.    Stationary^  12  to  16.    Marine^ 

16  to  24.    Quickest:  complete  combustion  of  dry  coal,  20  to  23 ;  of  caking 
coal,  24  to  27 ;  Blast  or  Fan  and  Locomotivey  40  to  120. 

Bridge-wall  (CcUorimeter). — Cross-section  of  an  area  of  1.2  to  1.6  sq.  ins. 
for  each  lb.  of  bituminous  coal  consumed  per  hour,  or  from  18  to  24  sq.  ins* 
for  each  sq.  foot  of  grate,  for  a  combustion  of  15  lbs.  of  coal  per  hour. 

Temperature  of  a  furnace  is  assumed  to  range  from  1500°  to  2000%  and 
volume  of  air  required  for  combustion  of  i  lb.  of  bituminous  coal,  together 
with  products  of  combustion,  is  154.81  cube  ftet,  which,  when  exposed  to 
above  temperatures,  makes  volume  of  heated  air  at  bridge-w^all  from  6oq  to 
750  cube  feet  for  each  lb.  of  coat  constuned  upon  gtate. 


740 


STBAM-ENGINE. — BOILER. 


Hence,  at  a  velocity  of  draught  of  about  12  feet  per  second,  area  at  bridge- 
wall,  required  to  admit  of  this  volume  being  passed  off  in  an  hour,  is  2  to  2.5 
sq.  his.,  and  proportionately  for  increased  velocity,  but  in  practice  it  may  be 
X.2  to  1.6  ins. 

When  9o  lbs.  of  coal  per  hour  are  consumed  upon  a  sq.  foot  of  grate,  20  x  1.2  or 
1.6  =  24  or  32  sq.  ins.  are  required,  and  in  a  like  proportion  for  other  quantitiea 

Or,  When  area  of  flues  is  determined  upon,  and  area  over  bridge-wall  is 
required,  it  should  be  taken  at  from  .7  to  .8  area  of  lower  flues  for  a  natural 
draught,  and  from  .5  to  .6  for  a  blast. 

When  one  half  of  tubes  were  closed  in  a  fire-tubular  marine  boiler,  the  evapora- 
tion per  lb.  of  coal  was  reduced  but  1.5  per  cent 

Firing, — Coal  of  a  depth  up  to  12  ins.  is  more  efi^ective  than  at  a  less 
depth.  Admission  of  air  above  the  grate  increases  evax}orative  efiect^  but 
diminishes  the  rapidity  of  it. 

Air  admitted  at  bridge-wall  effects  a  better  result  than  when  admitted  at 
door,  and  when  in  small  volumes,  and  in  streams  or  currents,  it  arrests  or  pre- 
vents smoke.    It  may  be  admitted  by  an  area  of  4  sq.  ins.  per  sq.  foot  of  grate. 

Combustion  is  the  most  complete  with  firings  or  charges  at  intervals  of 
from  15  to  20  minutes. 

With  a  fuel  economizer  (Green's)  an  increased  evaporative  effect  of  9  per 
cent,  has  been  obtained. 

When  external  flues  of  a  Lancashire  boiler  were  closed,  evaporative  power  was 
slightly  increased,  but  evaporative  efficiency  was  decreased;  and  when  25  per  cenk 
of  like  surface  in  setting  of  a  plain  cylindrical  boiler  was  cut  off.  evaporation  was 
reduced  but  1.5  per  cent  When  temperature  at  base  of  chimney  was  630*^,  with  a 
fire  12  ina  in  depth,  it  was  decreased  to  556^^  with  one  9  ina  in  depth,  and  to  539O 
with  one  6  in& 

High  wind  increases  evaporative  effect  of  a  furnace. 

Stationary  or  Land» — Set  at  an  inclination  downward  of  .5  inch  in  10  fe^ 

Smoke  Preventing.— A  test  of  C.  Wye  Williams's  design  of  preventing  smoke,  at 
Newcastle,  1857,  as  reported  by  Messrs.  Longridge,  Armstrong,  and  Richardson, 
gave  an  increased  evaporative  effect  with  the  '* practical  prevention  of  smoke.'* 
Hence  it  was  concluded,  **  That  by  an  easy  method  of  firing,  combined  with  a  due 
admission  of  air  in  front  of  furnace,  and  a  proper  arrangement  of  grate,  emission 
of  smoke  may  be  effectually  prevented  in  ordinary  marine  multi-tubular  boilers, 
with  suitable  coals.  2d.  That  prevention  of  smoke  increases  economic  value  of  fuel 
and  evaporative  power  of  boiler.  3d.  That  coals  fV'om  the  Hartley  district  have  an 
evaporative  power  ftiUy  equal  to  that  of  the  best  Welsh  steam-coals." 

Heating   Surfaoes. 
Marine  {Sea-^ater), — Grate  and  heating  surfaces  should  be  increased 
about  x>7  over  that  for  fresh  water. 

Relative  Value  of  Heating  Surfaces, 

Horizontal  beneath  the  flame =:.z 

Tubes  and  flues =.56 


Horizontal  surfoce  above  the  flame  =  t 
Vertical =  .5 


I^inixxiUTxi  Voluxnes  of  Fuel  Consumed  per  Sq.  Foot  oiT 
Cerate  per  Hour,  for  given  Surface-ratios.    (D.K.Clark,) 


Dbsckiption  of 

BOILBR. 


Stationary. 

Aftarine ..•■••••••. 

Portable 

Locomotive  (coal) . 
(coke). 


(( 


St 

irface-ratios  of  1 

Heating; ! 

Surface  to  Grate. 

10 

15 

20 

30 

40 

SO 

60 

75 

90 

Lba. 

Lba. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Lba. 

•7 

1-7 

3 

6.8 

Z2.I 

Z8.9 

26 

— 

— 

•7 

1.6 

2.8 

6.3 
z.8 

ZZ.3 

175 

24 

— 

— 

.3 

•4 

.8- 

3a 

5 

— 

— 

— 

•3 

•7 

«.3 

2-9 

5-2 

8.1 

'i'7 

18.3 

a6.3 

•4 

z 

Z.8 

4 

7 

zz 

z6 

25 

36 

100 


Lb*. 


3a- S 

44 


At  extreme  consumption  of  fUel  (120  lba)  coke  will  withstand  disturbing  effect 
^f  a  blast  better  than  coal. 


STB  AM-EKGIKE. — BOILBB.  74 1 

A  scale  of  sediment  one  sixteenth  of  an  inch  thick  will  effect  a  loss  of  14.7  per 
<ent.  of  Aiel. 

One  sq.  foot  of ^re  surface  is  held  to  be  as  effective  as  three  of  heating. 

Relation   of  Gyrate,  Heating   Surface,  and   I^uel. 
When  Grate  and  Heating  Surface  are  constant,  greater  the  weight  of  fuel 
consumed  per  hour,  greater  the  voiurae  of  water  evaporated ;  but  £e  volume 
is  in  a  decreased  proportion  to  fuel  consumed. 

In  treating  of  relations  of  grate,  surface,  and  fUel,  D.  K.  Clark,  in  his  valuable 
treatise,  submits,  that  in  1852  he  investigated  the  question  of  evaporative  perform- 
ance of  locomotive-boilers,  using  coke;  and  he  deduced  fl*om  them,  that,  assuming 
a  constant  eflQciency  of  ftiel,  or  proportion  of  water  evaporated  to  fuel,  evaporative 
effect,  or  volume  of  water  which  a  boiler  evaporates  per  hour,  decreases  directly  as 
grate-area  is  increased;  that  is  to  say,  larger  the  grate,  less  the  evaporation  of  water, 
at  same  rate  of  efficiency' of  fuel,  even  with  same  heating  surface. 

3d.  That  evaporative  effect  incretue^  directly  as  square  of  heating  surface,  with 
same  area  of  grate  and  efficiency  of  fuel. 

3d.  Necessary  heating  surface  increases  directly  as  square  root  of  effect — viz.,  for 
four  times  effect,  with  same  effloiency,  twice  heating  surface  only  is  required. 

4th.  Necessary  heating  surface  increases  directly  as  square  root  of  grate,  with  same 
efficiency;  that  is,  for  Instance,  if  grate  is  enlarged  to  four  times  its  first  area,  twice 
beating  surface  would  be  required,  and  would  be  sufficient,  to  evaporate  same  vol- 
ume of  water  per  hour  with  same  efficiency  of  fuel. 

Result  of  40  experiments  with  a  stationary  boiler  (fresh  water),  with  an 
evaporation  of  9  lbs.  water  per  lb.  of  fuel  consumed,  the  coefficient  .002  22 
was  deduced. 

Hence,  (—J  .00222  =  W.    W  representing  volume  of  toater  in  cube  feet^  and  g 

mnd  h  areas  of  grate  and  heating  surfaces  in  sq.  feet. 

Illustration.— Assume  a  heating  sur&ce  of  90  feet,  and  a  grate  of  3;  what  will 
be  the  evaporation? 

Then  90-r-  3  x  .002  22  =  1.998  cube  feet. 

NoTB.— A  Galloway  stationary  boiler,  with  a  ratio  of  grate  area  of  34.3  and  a  con- 
sumption of  21.8  Iba  coal  per  hour^  evaporated  2.9  cube  feet  of  water  per  sq.  foot  of 
grate.    Hence  the  coefficient  in  this  case  would  be  .002  466. 

To  Conapiite  .A^Teas  of  GH?ate  and.  Heating  Surfaces, 

"Volume  of  Water,  and  'Weight  of  JFuel. 

For  a  Temperature  0^281°,  or  Fi'essure  of  50  lbs.  per  Sq.  Inch. 

To   Compute  "freight  of  Fuel. 
When  Water  per  Sq,  Foot  of  Grate  per  Hour  and  Surface  Ratio  are  Given. 

g =:F,  and  a}R»  =  (E  — C)F. 

iLLUflTBAnoir. — Assume  elements  as  preceding. 


goo — .Qg  X  50' 
10 


15,  and  .02  X  50'  =  ( 10)  X  15  =  sa 


To  Compute  Ratio  of  Heating  Surface  to  A.rea  of  Q rate, 
and   to  Sfibct  a  Q-iven.   Evaporation. 


When  Water  and  Fuel  per  Sq.  Foot  of  Grate  are  Given.    ^ — 


*"'=R 


X 

W  representing  water  evaporated  per  sq.  foot  of  grate^  and  F  Jiiel  consumed,  both 
in  UfS.  per  hour.  C  and  x  specific  constants  for  each  type  of  boiler,  and  R  (h-r-g) 
ratio  of  heating  surface  to  grate. 

ILLDSTIU.TIOM.— Assume  W  =  200,  G  s  10,  F  =  15,  and  a;  =  .02. 

/200— 10X15       .           200  — .02X50'                  J      /(»3-33  — io)XiS 
a/—- . ^  =  50;       i_  =  is;  and  ./5-^i-££ '^    ^  =  5a 

V  •<»  «o  V  .02  ^ 


742  STEAM-ENGINE. — BOILEB. 

Wkm  ^fSdene^  of  Fad  and  Fud  eotuumed  per  8q.  Foot  of  Grate  pef 
ffour  core  gwen,    •=-  =  E  or  e^jg^^Mincy  ofjwl  or  weight  of  umter  evaporated  per  Uk 


"f^   y<i^=a 


To  Compute  ITuel  tliat  may  be  oonsumed  per  Sq..  yoot 
or  Gt-rate  per  Hour,  oorrespoudiris  to  a  O-iveix  ICflA— 
cieiicy. 

When  Efficiency  of  Fuel^  that  w,  Weight  of  Water  evaporcUed  per  Lb.  qf 
Fuel,  and  the  Surface  Rcitio,  are  given, 

.    C  4- =  E.  and ^  F. 

Illustration. —Aasame  elemente  as  preceding. 


.o2X5o'H->oXi5  .02X50'  .„^     02X50'  „,. 

1 — ! ^  =  13.33,    xoH =:i3.33,and ~ — szislbi. 

15  15  13.33  —  10 

Combtution  qfCoai  per  sq.  foot  otgrB.io.'—NaturcU  Draughty  froni  20  to  25  ]bs.  can 
be  consumed  per  hour  —Steam-jet^  30  lbs.,  and  Exhaust-blast  65  to  80  lb& 

From  Results  of  Experimonts  upon  Marine  Boilers,  see  Manual  of  D.  E.  Clark, 
page  808 ,  he  deduced  the  following  formula,  As  applicable  (o  all  surface  ratios  in 
such  boilers. 

Newcastle  021 56  B»  +  9.71  F,  and  for  Wigan  01  R=  -f  jays  F  =  W  in  Ufs. 

And  the  general  formolas  he  deduced  fh>m  ait  the  varioos  experiments  are  as 
followa 

From  and  aJt  ^i79 


portable. 008   R«+8.6   F  =  W 

Stationary...  .o222R'-|-9.56  F  =  W 


Marine oi6R«  +  io.25  F  =  W. 

Locomotive,  coal,   009  R*  +  9-7   ^  =  W. 


Locomotive,  coke 0178  R^ -f  7.94  F  =  W, 

As  the  maximum  evaporative  power  of  fuel  is  a  fixed  quantity,  the  preceding 
formulas  are  not  fUUy  applicable  in  minimum  rates  of  its  consumption  and  evi^K)- 
rative  quality. 

With  coal  and  coke  the  limits  of  evaporative  efficiency  may  be  taken  respectively 
at  12.5  and  12  lbs.  water  fh>m  and  at  212°. 

Illustration  1. — Assume  a  marine  flre-tubular  boiler  with  a  surfkce  ratio  of  heat- 
ing surface  to  grate  of  30  and  a  consumption  of  coal  of  15  lbs.  per  aq.  foot  of  grate 
per  hour,  what  will  be  its  evaporation  per  sq  foot  of  grate? 

016  X  3o«-|- 10.25  X  IS  =  168.15  '*« 

2 Assume  a  like  boiler,  using  flreah  water,  to  have  a  ratio  of  heating  sarfkce  to 

grate  of  30  and  an  evaporation  of  165  lbs.  water  per  sq.  foot  of  grate  per  hour,  what 
would  be  consumption  of  coal  per  sq.  foot  of  grate  per  hour? 

165— .016X30'  ^,x. 

=2  14.69  W«. 

10.25 

Tube  Surface  (Iron)  per  lb.  of  coal  1.58,  per  sq.  foot  of  grate  32,  and  per  I^  4.2} 
sq.  feet. 

Locomotive  Boiler  has  fVom  60  to  90  sq.  feet  per  fbot  of  grate,  and  coosamea  6$ 
Ibe.  coal  per  sq.  foot  per  hour. 

Evaporative  Capacitor  oi*  Tubes   of  Varying  X^enstlx. 

By  Temperatures.     {A  J.  Dutton,  Eng. -in- Chief  R.  N,) 
Diameter,  external^  2.75  ins.    Length,  6  feet  8  ins.     Combustion  Chamber,  1644O 

In  Tubes. 

2  ins. . .14260 

3  "  -..1405° 


4   "  ...1412° 


5  infl...i3g8<' 

8  ina. ..1410O 

32  ins..  .11980 

6    "  ...1406O 

14    "  ...1368O 

44    "  ...1106O 

->    "  ...1400° 

2r»     "   ...12950 

56    "  ...iois° 

68  ins 9260 

80  ** 887O 

Connection .  7830 


STKAU-JENaiNB. — BOILEB. 


743 


B.e0ult«  of  Op«v»tioii  ol*  Soil«rs  Tiii<i«v  "Vsivyitig  Propor- 
tions of  Orate,  A.refi,  and  Uenetb  of  Heating  Surface, 
X>rauglit  of  S^uroaoe*  and.  Rate  of  Coxnbnetion. 


DiaCKIFTIOIV. 


Fire- tabular, 

Agricultural  and  Hoisting 

Locomotive 

Ecgliab.' 


(( 


(i 

Marine < .... 
"     ' .... 

"    3.!!! 

stationary  4. 


(i 


Area  of 
Grate. 

Heating 
Surface. 

Grate  to 
Heating 
Surface. 

Coalper 

Sq.F^t 

of  Orate 

per  Hour. 

Evaporation  of 
Water  from  213" 
per  eq.  ft.     per  lb. 
of  grate,    or  Coal. 

FCSL. 

flq.Feet. 

Sq.Feet. 

Ratio. 

Lbe. 

Lbe. 

Lbe. 

4-7 

158 

1^ 

'3« 

119 

9-33 

Welsh. 

3-2 

aao 

69 

12. 8 

151 

11.83 

{fe'' 

9635 
818 

36.7 

30.86 

327 

10.6 

51 

38 

375 

10.47 

10.5 

788 

75 

45 

419 

11.04 

I<x6 

1056 

100 

»57 

1 401 

ia4i 

22 

748 

34 

24.3 

265 

10.7 

18 

749 

41.6 

23.6 

264 

11.2 

10.3 

9«5 

50 

41-25 

468 

11.36 

ia3 

508 

49-3 

27.63 

309.8 

"•54 

Lanc'r 

ia8 

151. 2 

«4 

28.87 

205 

7.39 

Anth'e 

31.S 

945 

30 

«93-7 

10.17 

Welsh. 

31-5 

767 

24.4 

14 

141.4 

10. 1 

(i 

X  New  Castle. 


2  and  4  Wigan. 


*  Eflbet  of  rednelng  tbe  tabe.«aH!Kces  was  tried  b; 
Date  diagpnal  rows,  so  that  tbs  tube  sarfaee  was 
deep  were  as  follows  I 


3  Experimented  at  New  Yoriu 

stopping  one  half  the  number  of  tubes  in  altera 
tvoea  206.5  "l*  f<B«t.    The  results  with  flres  13  ins. 


Coal  per  sq.  foot  of  grate  per  hour  , 
Water  from  212*  per  lb.  of  coal . . . , 
Smoke  per  hour,  ^ery  light 


Tubes  open. 
.  35     lbs. 
.  12.41  " 
1 .    8.8  minutes. 


Tubes  half  closed. 
34     lbs. 
12.23  " 
8  minutes. 


ICvaporati\re   XCfieots  of  Soilers   for  Different   Rates  of 
Cozulmstion,  and   Su.rfaoe   Ratios.    {D  K.  Clark.) 

Water  fi-om  and  at  312°  per  Hour, 

SurfUoe   Ratio  30. 


Foelper 

Sq.  Foot 

of^  Grate 

per  Hour. 

Statiovabt. 
Water 

Masxmk. 
Water 

Fosi 
W( 

per 
Sq.^KH. 

per  lb. 
of  Coal. 

per 
Sq.  foot. 

per  lb. 
of  Coal. 

per 

Sq.  foot. 

JLbe. 

Lbs. 

Lbe. 

LU. 

Lba. 

Lbs. 

XO 

116 

IX.6 

»>7 

IJ.7 

93 

15 

163 

X0.9 

168 

IX.2 

136 

30 

211 

X0.6 

219 

10.9 

179 

30 

307 

ia3 

322 

xa7 

265 

«5 

20 

30 
40 
50 


Lbs. 
9-3 
9 

1.8 


Surface  Ratio  GO. 


per  lb. 
of  Coal. 


LoCOMOTtW. 


Coal. 
Water 

Coke. 

Water 

per 
Sq.Foot. 

per  lb. 

of  Coal. 

per 

Sq.  foot. 

per  lb. 
of  Coal. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

105 

154 
203 

IO-5 
X0.3 

XO.X 

95 
«35 
»75 

9-5 
1.7 

299 

XO 

354 

8S 

X87 

X9.S 

»87.5 

12.5 

M9 

9.9 

168 

XX.2 

x«4 

247 

12.3 

248 

X2.5 

X92 

9.6 

217 

xa'9 

203 

342 

11.4 

348 

XI.6 

278 

9-3 

314 

xa4 

283 

438 

xa9 

450 

".3 

364 

9.x 

4" 

xa3 

362 

534 

xa7 

552 

XX 

450 

9 

508 

xax 

442 

X0.9 

X0.3 

9-4 


Sur 
Water. 

face 

30 

Rati 

Fuel  per 

40 

0   TO 

Sq.Foot 
50 

• 

(ofOrati 
60 

» per  Ho 

75 

ar  in  Lbi 

90 

1. 
xoo 

LocoMomrK,  coal . . 
**            "  .. 
"          coke". 

■  • 

Persq  foot. 
"    lb.  coal. 
*'    sq.  foot. 
<<   lb.  coal. 

Lba. 

342 

338 

"•3 

Lba. 

439 

XX 

418 
10.4 

Lbs. 

536 

497 
9-9 

Lha. 

633 
xol7 

576^ 
9.6 

Lbs. 

778 

695 
9-3 

Lba. 
927 

ia3 
815 
9 

Lbt. 

xo&o 

xa2 
804 
8.9 

When  a  beater  is  used,  and  temperature  of  feed-water  is  raised  above  that  ob- 
taioed  in  a  condensing  engine,  the  proporiioQS  of  surC^^  ma^  be  ooireeponuin^ 
vQcmced* 


744 


STSAM-ENGINB. — BOILER. 


Hesx&lts  of  Operation  of  varioixti  Deelsnci  of  Soilexr,  tiia« 
d.er  varying;  Proportions  of  d-rate.  Calorimeter,  ^rea 
and.  Uengtli  of  ZleatinK  Snrfiusey  I^ranslit,  Firing,  and 
Rate  of  Combustion. 


Stationart. 

Area 

of 
Gnte. 

Heat. 

iog 

Sarface. 

Grate 

to 
Heating 
Soriaoe. 

Lancashire  double ) 
internal  and  ex-  > 
temal  flued ' . . .  ) 

tt              (4       2 

Galloway  verticals 

water-tubular',  i 
u             i(      a 

Fairbaim' V. 

Sq.Ft. 
2<X5 

21 
21 

3'-5 
2a  5 

2a  z 

14.3 

Sq.Ft. 

6l3 

767 

719 

719 

1017 

607 

377-5 

Ratio. 
39.8 

36-5 
23.8 

34-3 
49-5 
30-3 
36.8 

French* 

Cylindrical  flueds. . . 

Circuit  of 
HeatinfT 
Surface. 

1^ 

u 

H  0 

CoaTper 

Su.  Fbot 

ofGrate 

per  Hour. 

Water  Evaporated 

horn  312*  per  Sq.  Foot 
per  lb.  of      of  Grata 
CoaL        per  Hour. 

Feet. 

0 

Lba. 

Lbe. 

Lba. 

79 

5" 

1535 

8.3a 

1354 

80 

505 

21. 5 

za88 

3044 

79 

505 

22.7 

xo-77 

3X3  4 

80 

630 

18.3 

zai7 

1634 

56 

387 
510 
293 

15-27 
16.43 

7-43 

8.67 

8.13 

9.08 

«3S 

«33, 
59* 

Marine. 

Horizontal  fire- tub.' 
ti  t(      3 

it  it       a 

M  tt 

tt  ft 

ti  ft 

li  ft 

(C  Wya  WilUama) 
it  it 

t(  it 

tt  tt 

M  tt 

tt  tt 

tt  ft 


At  Pressure  of  Atmosphere, 


3 
3 


za3 

508 

49-3 

.— 

— 

27-5 

za3 

508 

49-3 

— 

— 

41.25 

ia3 

303 

30 

— 

— 

24 

38!  5 

749 

3? 

— 

— 

3X 

749 

36.3 

— 

^ 

3Z.X5 

28.5 

749 

36.3 

— 

— 

«9 

15- 5 

749 

48.3 

—  ' 

600 

37-4 

23 

749 

34 

— 

600 

Z7.27 

4a 

749 

Z7.6 

— 

— 

z6 

za8 

150 

«3-9 

8.5 

— 

za90 
27.58 

4-32 

147 

34 

8.5 

— 

11.93  338? 

IX.  36  469 1 

Z2.33  368  9 

zo  183 » 

8.94       164  "> 

IZ.13        335" 
ia63        398 

ZZ.7     [    903  n 

9.65         154  «3 

a95         88  ^ 
7.34         40  M 

'  At  Wigan,  1866-68,  height  of  ohimneys  zoo  feet  3  Navy- 
yard,  Washington,  U.  S.,  chimney  61  feet.  4  At  pressure  of  atmosphere,  fires  za  insL 
deep,  at  40  lbs.  pressure,  evaporation  was  reduced  12  per  cent  5  Bituminoue  coal& 
6  Antiirarite,  at  pressure  of  6. 5  lbs.  above  atmosphere.  7  Fires  14  ins.  deep,  air  ad- 
mitted through  furnace  -  doom  8  Ditto  do.,  Jet  blast  9  Half  tubes  closed  ap. 
>o  Air  through  grate  only.  "  Air  through  grate  and  door,  no  smoke.  *'  One  open> 
ing  in  door,  temp.  635°,  with  two  63^^,  with  four  638^^,  and  with  six  6oo<\  '3  Long 
grates,  air  spaces  (Ully  open,  no  smoka  M  One  fUmaoe,  anthracite  cool,  5  ins.  deep. 

iDrauglit. 

Draught  of  Furnace, — Volume  of  gas  varied  directly  as  its  absolute  (em- 

Eerature,  and  draught  is  best  when  absolute  temperature  of  gas  in  chimney 
;  to  that  of  external  air  as  25  to  12. 
T-I-461.20 


I  Trial  in  France. 


32O  +  461.2O      v 


V,  V,  and  V  r^prenemiing  abtohUe  temperotwrtM  at  T 


or  temperature  given^  and  at  32^,  in  degrees  and  volume  ofjumaee  gat  at  tempera- 
ture T  in  cube  feet 

Illustration.— Assume  temperature  of  ftimace  or  T  =  zsoo^,  and  Z3  Ib&  air  per 
lb.  of  IVieL 

Z500   -t-4  1.2    _      g  ^^  as  150  cube  feet  is  volume  of  gasper  U>.  ofjiul  at  la 

320-f"46i.2" 

lbs.  supply  of  air y  150  X  3-  98  =  597  cube  feet 

Vf  V  t 

— =;■  SI  C.     W  representing  weight  of  fuel  consumed  inj^maoe  per  second  in  f&t., 

V  volume  t^air  at  120  supplied  per  lb.  of  fuel  in  cuhefset^  t  absolute  temperature  0} 
gas  discharged  bjf  chimney  in  degrees^  a  area  of  chimney  in  sq.fset,  and  C  velocity  qf 
'"irent  in  diimney  in  feet  per  second. 


STEAM-ENGINE. — ^BOILEB. 


745 


IixinsTRATioM. ^Assame  W  = . i6,    v  =  150,    t  =  1000 o,  and  ass. 

.16x150X1000     34000 


V 


5X493-2° 


3466 


^9.73  feet 


—  .084  to  .087  =  D.    D  rqpraeiUing  weight  of  a  cube  foot  of  gat  discharged  b§ 

dUmmey,  in  ibt,      Iujobolatiov,    ^^—  x  .086  =  .0434  lb, 
'  xooo 

—  ( I  +  ^+ ^)  =  ^    ^  reprewntttinr  a  coegMent  ofretiUanee  andfiridioH  of 

uir  through  grate  and  fiUt^*  f  coefficUnt  ofjriction  of  gas  through  flues  and  over 
Booty  surfaces  A I  length  of  flues  and  chimney ^  m  hydraulic  mean  d^th,t  and  H  height 
^  chimney^  ailinfuL 

Illubtration  I.— Afeume  C  =  9.73,  { =  60,  and  nt  =  .73,  aU  infeeL 

P^(i  +  x3-^ ■ )=z?-'«Xi4  =  2o.6/eet       ■ — j-  =  W. 

64-33  V  1^     I      64.33  «« 

a.— Assume  preceding  elementa    9-73  X  5  X  493-g°  = . ,6  ». 

150  X  1000 


Hf Jl«i»  H  M  9IW5I*.    y(H3jr-5-iH-G+:^=C 


iLLnsTRATioN.  — Assome  precedi  ng  elementa    V3a6x64.33-7-i4 = 9. 73  fed, 
.192  x  pressure  in  Iba  per  sq.  foot=  A«ad  in  ins.  of  water. 

Temperature  at  base  of  smoke-pipe  or  chimney^  or  termination  of  flues  or 
tub^  is  estimated  at  500° ;  and  baBe  of  chimney,  or  its  ailorimetery  should 
have  an  area  of  1.3  to  1.6  sq.  ins.  for  every  lb.  of  coal  consumed  per  honr. 
With  tubes  of  small  diameter,  compared  to  their  length,  this  proportion  may 
be  reduced  to  x  and  1.2  ins. 

Admission  of  air  behind  a  bridge-wall  increases  temperature  of  the  gases, 
but  it  must  be  at  a  point  where  their  temperature  is  not  below  800°. 

I^oss  of*  PreasTire  by  iricw  of  Air  in   Pipes. 
Length  3380  Feet^  or  xooo  Meters, 


Velocity  at  EDtnnea  of 

LiamtUr  «f  Htm  in  Itu, 

Fipo. 
Foot              Meter 

4       1 

6       1        8        1       10      1        x3       1 

«4 

per  Second. 

per  Seeond. 

Jjota  of  Preaeare  In  Lbi.  per  Sq.  Inch. 

3.38 

X 

"4 

.076 

•057 

.057 

.038 

•038 

6.56 

a 

•S^ 

•343 

.25 

.21 

.172 

•»53 

9.84 

3 

I.183 

.8 

•593 

•477 

X 

•343 

13.  X3 

4 

2.06 

x-374 

X.03 

.84 

.6 

16.4 

5 

3.2  ^ 

3.x6 

1.61 

X.29 

X.X 

.923 

X9.68 

6 

4.446 

2.964 

2.223 

X.778 

X.482 

1.28 

At  Mount  Cents  Tunnel,  the  loss  of  pressure  fVom  84  Iba  per  sq.  inch,  in  a  pipe 
7.625  in&  in  diameter  and  i  mile  15  yards  in  length,  was  but  3.5  per  cent 

Artificial  Drauglit. 
In  production  of  draught  in  an  ordinary  marine  boiler,  from  20  to  33  per 
cent,  of  total  heat  of  combustion  of  fuel  is  expended. 

Blast— By  experiments  of  D.  K.  Clark  and  others  it  was  deduced  that  tbe  vacnura 
in  back  connection  is  about  .7  of  blast  pressure,  and  in  the  Aimace  from  .33  to  .5 
of  that  in  back  connection ;  that  rate  of  evaporation  varies  nearly  as  square  root  of 
vacuum  in  back  connection;  that  best  proportions  of  chimney  and  passages  thereto 
are  those  which  enable  a  given  draught  to  be  produced  with  greatest  diameter  of 
blast- pipe;  fbr  the  manifest  reason,  that  the  greater  that  diameter,  the  less  tbe  back- 
pressure dfue  to  resistance  of  oriflce,  and  that  these  proportions  are  best  at  all  rates 
of  expansion  and  speeds. 

•  Wbtch,  In  fnroMee  coDtamioK  from  ao  to  24  Ibe.  co«l  per  m.  foot  of  erete  per  boar,  ie  anigoed  bf 
Pcelet  At  19.  t  Eetlmated  by  tame  aothority  et  .oxs. 

X  Vor  aifMreor  dKslar  flue  !•  .25  ita  dlainetcr. 

3» 


74©   STEAM-ENGINB*— DRAUGHT.— SAFETY  VALVES. 

Velocity  of  Drat^.  Lodomotiife,  36.5  VH(T— Qst  V.  tl  represenHn$ 
height  ofdiimney  or  pipe  in  feet,  T  and  t  temperaturet  of  air  at  base  and  top  of  chim- 
ney^ and  V  velocity  in  feet  per  second. 

Sectional  area  of  tubes  within  ferrules 2    grate. 

*'         "    Of  smoke-pipe , * 066  " 

Area  of  blast-pipe  (below  base  of  smoke-pipe) 015    " 

Volume  of  back  connecttoD, < .  3  fget  X  Artea  of  gfate. 

Height  of  smoke  pipe  4  times  its  diameter. 

i9t<airt^W<— Rings  set  above  base  of  smoke-pipe,  and  shotild  equally  divide 
the  area;  jets  .06  to  .1  inch  in  diameter, 3  ins.  apart  at  centres. 

A  Steam-Jet,  involving  50  per  cent  increased  combustion  of  coal,  produced 
45  per  cent,  more  evaporation'  at  nearly  same  evaporation  per  lb.  of  coaL 

Fan  Blowers. — See  page  447. 

Comparative  Result  of  Experiments  with  a  Steam -jet  in  a  Matine  Boiler^ 
with  BUlmunom  Cool,    (NicoU  and  tynn^  Eng.) 

Without  Jet.  With  Jet. 

Area  of  grate « « . .  sq.  feet 10.3  to. ^ 

Coal  per  sq.  foot  of  grate  per  hour....  lbs 27.5  41.25 

Water          *'              "             "             '* ....293.1  41937 

"    from  212°  per  lb.  of  coal               "    .........    it.9  11*36 

Duration  of  smoke  in  an  hour, )  ^,„„x«„ 
wyMgbt ;JmmBte8. x.i 

Comparative   ICffeot  of  Draught  and    filasts. 

By  late  experiments  in  li^nglandy  with  boilers  of  two  steamers,  to  deter- 
mine relative  effects  of  the  different  methods  of  combustioa,  the  results  were,* 
Natural  draught  i,  Jet  1.25,  and  Blast  z.6. 

iriow  or  .A.ir.    (HawksUy,) 
In  Cylindrical  Pipes.    396^^=^,       -|^  =  A,        3x1^*^=0. 

I^,and-X^^  =  H>. 
135  21200000 

Tn  Conduits  of  Various  Sections,  7^^/%7  =  ^i  r^ •  =  *! 

•^  V  C «  633  006  a      ^ 

,     /a3h      ^  Vah      qh         .       V3Ct        ,^     ,       w    ».      •     ,. 

796 .  /TTT  =  ^'        ~~zr  =  tz^i^^^   2 =  H».    In  which  i  «ch  water  is 

'^    SJ   G I  106        loo  07000000 

taken  as  equivalent  to  a  pressure  of  5.2  lbs.  per  sq.  inch  for  any  passage. 

V  representing  velocity  in  feet  per  sedond,  h  head  of  water  in  tfta.,  d  diameter  of 
pWBy  I  length,  and  C  perimeter,  all  in  feet,  a  area  of  section  in  sq.feetf  Q  (Va)  volume 
ofair  dischajrgedper  second  in  cube  feet,  and  IS  horse-power. 

^afet^r  Valves. 

Up  to  a  pressure  of  100  lbs.  per  sq.  inch,  area  in  sq.  ins.  equal  product  of 
weight  of  water  evaporated  In  lbs.  per  hour  by  .006. 

Aet  of  Cmtffress  (tT.  A).— For  boilers  having  flat  or  Atayed  sffrfaces,  3d  itia.  for 
every  500  sq.  feet  of  effective  beating  iKirface;  for  cylindrical  boilers,  or  cylindrical 
flued,  24  sq.  ina 

Board  of  Trade,  Eng.-^Tvro  of  .5  inch  area  per  sq.  foot  of  grata.    Or,     / — =r 

diameter,    <J  representing  area  of  grate  in  sq.  int. 

Locked  8afety-valve».^FAieci\vt  heating  surface^  less  than  700  sq.  feet,  valve  2  in& 
in  diameter)  leas  than  1300,  3  ia&  in  diameter;  less  than  2000,  4  ins.  in  diameter; 
less  than  2500,  5  ins.  in  diameter;  and  above  2500, 6  ins.  in  diameter. 

Or,  (.05  6  -f-  .005  S)  ^j  "^  =>=  A^'^o  of  each  cf  two  valves.    6  rqtresenUng  jg.  incht 
r  sq.  foot  of  grate,  and  S  sq.  inch^per  tq*fMtqfhecMn§  nnj/SMa 


6TBAM-ENGINS. — FLUBS   AND   TUBES.  747 

ItmsTRATiON.— Assume  6  =  50  sq.  feet,  8=' 1600  sq.  feet,  and  P  =  80  Iba  (m.  g.) 


Then,  (.05  X  50  +  . 005  X  1600)  X  Vxoo-i-80  =^  3.5-1^8  X  11x8  =  11.73  »3-  *»*• 

Pipea. 

AretM.    .95  6  +  01  S  ^/^r  ■    ^  rqtreaefUing  area  of  grate  and  S  area  qfh/eoA- 
iug  surface^  both  in  tq.  /eet,  and  P  pres9ure  per  mercuirial  gauge  in  lbs. 

(Copper),  Thickness.    Steam,  .  xas  -| ^ ;  Feed,  .125  -f-  —^ ;  Blow  (B«ttom 

and  Surface),  .123  — ^  :   Supply,   i-\ ;    Discharge,  .i  H j  Feed,  Suction, 

9000  "^  ^'  200  SCO 

d                                                      d 
and  Bilge  discharge,   09  H ,  and  Steam  Blow  -  off,  .05  H d  representing 

internal  diam.  of  pipe,  and  p  internal  pressure  per  sq.  inch  in  lbs. 

Flanges.  —  Of  brass,  thickness  4  times  that  of  pipe ;  breadth,  2.35  times 
diam.  of  bolt^  hcits^  diaiu.  equal  to  and  pitch  5  times  thickness  of  iiauge. 
For  lower  pressure  or  stress,  pitch  of  bolts  6  tiroes. 

B^ues   and.  Tubes. 

Flues  and  Tubes, — Cross  section,  for  15  lbs.  of  coal  consumed  per  hour, 
an  area  of  from  .x8  to  .2  area  of  grate,  area  being  measurably  inverse  to 
diameter,  and  directly  increased  with  length.  Thus,  in  Horizontal  lobular 
Boilers,  area  .18  to  .3  area  per  sq.  foot  of  grate,  and  in  Vertical  Tubular  .33 
to  .25,  area  decreasing  with  their  length,  but  not  in  proportion  to  reduction 
of  tem|)erature  of  the  heated  air,  area  at  their  termination  being  from  .7 
to  .8  that  of  calorimeter  or  area  immediately  at  bridge-wall. 

Large  flues  absorb  more  heat  than  small,  as  both  volame  and  intensity  of  heat  is 
greater  with  equal  surfaces. 

Tubes.— 8w face  i  sq.  foot,  if  brass,  and  1.33,  if  iron,  for  each  lb.  of  coal 
consumed  per  hour ;  or  30  of  brass  and  27  of  iron  for  each  sq.  foot  of  grate, 
and  2.6  sq.  feet  of  brass  and  3.7  of  iron  per  IH*. 

Set  in  vertical  rows,  and  spaces  between  them  increased  in  width  with 
number  of  the  rows. 

Temperature  of  base  of  Chimney  or  Smoke-pipe,  or  termination  of  the 
flues  or  tubes,  is  estimated  at  500° ;  and  base  of  chimney,  or  its  calorimeter, 
with  natural  draught,  should  have  an  area  of  1.33  sq.  ins.  for  every  lb.  of 
coal  consumed  per  hour.  With  tubes  of  small  diameter,  compared  to  their 
length,  this  proportion  may  be  reduced  to  i  and  1.2  ins. 

When  combustion  in  a  furnace  is  very  complete,  the  flues  and  tubes  may 
be  shorter  than  when  it  is  incomplete. 

Evaporation. 

I  sq.  foot  of  gnile  surface,  at  a  combustion  of  15  lbs.  coal  per  hour,  will 
evaporate  2.3  cube  feet  of  salt  water  per  hour. 

A  sq.  foot  of  heating  surface,  at  a  like  combustion  of  fuel,  will  evaporate 
from  5  to  6.2  lbs.  of  salt  water  per  hour ;  and  at  a  combustion  of  40  lbs.  coal 
per  hour  (as  upon  Western  rivers  of  U.  S.),  from  10  to  11  lbs.  fresh  water, 
exclusive  of  that  lost  by  being  blown  out  from  boilers. 

13.8  to  17.2  sq.  feet  of  surface  will  evaporate  i  cube  foot  of  salt  water  per 
hour,  at  a  combustion  of  15  lbs.  coal  per  hour  per  sq.  foot  of  grate. 

Relative  enraporating  powers  of  Iron,  Brass,  and  Copper  are  as  i,  i  32,  and  1.56. 

Nora— Boilers  of  Steamer  Arctic,  of  N.  Y.,  vertical  tubular,  having  a  surface  of 
33-5  to  1  of  grate,  consuming  13  Iba  of  coal  per  sq.  foot  of  grate  per  hour,  evapo- 
rated 8.56  lbs.  of  salt  water  per  lb.  of  ooal,  locioding  that  lost  by  blowing  out  of 
ffiti^rateq  water. 


74^      STSAM-£NGIN£. — ^SMOK.K-l'XPSS  AND  CHIMNEYS. 

Water  Surface. 

At  low  evaporations,  3  sq.  feet  are  required  for  each  sq.  foot  of  grate  sui^ 
face,  and  at  high  evaporatiun  4  to  5  sq.  feet. 

Steam   Hooni. 

From  15  to  18  times  volume  ttiat  there  are  cube  feet  of  steam  expended 
for  each  single  stroke  of  piston  for  25  revolutions  per  minute,  increasing 
directly  with  their  number.  Or,  .8  cube  feet  per  ISP  for  a  side-wheel  ^igine, 
and  .65  for  an  ordinary  and  .55  for  a  fastr-running  screw-propeller. 

Space  is  required  proportionate  to  volume  of  steam  per  stroke  of  piston 
Thus,  with  like  boilers,  the  space  may  be  inversely  as  the  pressures. 

Steam-drums  and  steam-chimneys,  by  their  height,  add  to  the  effect  of 
their  volume,  by  furnishing  space  for  water  that  is  drawn  up  mechanically 
by  the  current  of  steam,  to  gravitate  before  reaching  the  steam-pipe. 

Grat^,  —  Area  in  sq.  feet  per  lb.  of  coal  per  hour  for  following  boilers. 
Widths  1.5  diameter  of  furnace: 

Ck)mi8h  and  Lancashire,  slow 

combustioQ • 2  sq.  fbot 

Marine,  tubular 0510  066  **     *' 


Portable,  moderate  forced . .    03  aq.  foot. 
Lo<;omoilve  and  like,  strong 
blast 01  ••     •* 


T^ichness  of  Tubes  per  B  W  G. 

External  diameter  in  ln& 3    3.35  3.5   3.75  3  3.35   3.5   3.75   4 

Thicknessforpreasureof  50 lbs., number..  13  is      xi     n      ti  zo      10    xo       9 
"         *»         ♦»      xoo   *♦         "      ..ix  xo       99       98        88        7 

Smoke-pipes  and   Cliixnixeys, 

Area  at  their  base  should  exceed  that  of  extremity  of  flue  or  flues,  to 
which  th^  are  connected. 

In  Marine  service  smoke-pipe  should  be  from  .16  to  .2  area  of  grate.  In 
Locomotive,  it  should  be  .1  to  .083. 

Intensity  of  their  draught  ia  &9  square  root  of  their  height  Hence,  rela^ 
tive  volumes  of  their  draught  ia  determined  by  formula! 

y/h  .  I  a  =  votume  in  »q.  feet  k  representing  height  of  pipe  or  chimnty  in  feet,  and 
a  its  area  in  sq.  feeL 

When  wood  is  consumed  their  area  should  be  1.6  times  that  of  coal. 

Chimneys  (Masonry), — Diameter  at  their  base  shoald  not  be  less  than  from 
.1  to  .11  of  their  height. 

Batter  or  inclination  of  their  external  surface  .35  inch  to  a  foot,  which  is 
about  equal  to  i  brick  (.5  brick  each  side)  in  25  feet. 

Diameter  of  base  should  be  determined  by  internal  diameter  at  topi,  and 
necessary'  batter  due  to  height. 

Thickness  of  walls  should  be  determined  by  internal  diameter  at  top ; 
thus,  for  a  diameter  of  4  feet  and  less,  thickness  may  be  i  brick,  but  for  a 
diameter  in  excess  of  that  1.5  bricks. 

ArecL    -^  =  0.    C  representing  weight  of  coal  consumed  per  hour  ^  lbs,,  and 

V* 

a  area  of  ditto  at  top^  in  sq.  ins. 

(Brick  masonry.)— 2$  tons  weight  per  sq.  foot  of  brickwork  in  height  is 
safe  if  laid  in  hydraulic  mortar. 

Less  the  height  of  a  smoke-pipe  or  chimney,  the  higher  the  temperatore  at 
its  gases  is  required. 


STBAM-KNGINE.— PUMPS. — PLATBS    AND   BOLTS.       749 


VelocUiet  of  Ckrratt  ofBeaied  Air  in  a  Chimn^  100  Feet  in  Height, 

In  Feet  per  Second. 

Air  ftt  BiM  of  ChimD«y. 


Air 

•t  Bate 

of  Chimi 

ley. 

■ctamidAlr. 

ISP' 

asp* 

390" 

4S0* 

F««t. 

Feet. 

Feet. 

Feet. 

loO 

24 

3? 

33 

35 

K 

S3 

38 

3» 

34 

50° 

30 

37 

30 

33 

External  Air. 


60O 
80° 


ISO- 


Feet. 

18 
«7 


«So* 


Feet. 
26 

«S 
24 


3SO* 


Feet. 
29 

2C 
2( 


4SO- 


Feet. 

33 

32 

32 


When  Height  of  Chimney  is  legs  than  xoo  feef, — Multiply  velocity  as  ob- 
tained for  temperature  by  .1  square  root  of  height  of  chhuney  in  feeL 

Draught  consequent  upon  a  steam -jet  in  a  smolie-pipe  or  chimney  id 
nearly  equal  to  that  of  a  moderate  blast. 

The  most  effective  draught  is  when  absolute  temperature  of  heated  air  o^ 
gas  is  to  that  of  external  air  as  25  to  12,  or  nearly  equal  to  temperature  0' 
melting  lead. 

In  chimneys  of  gas  retorts,  ovens,  and  like  furnaces,  the  draup:ht  is  more 
intense  for  a  like  height  of  chinmey  than  in  ordinary  furnaces,  in  con- 
sequence of  the  great  nuiss  of  brick  masonry,  which,  becoming  heated,  adds 
to  intensity  of  draught. 

Chiinixes'-s.    Lawrence  Manufacturing  Co.y  Mass     Octagonal 

Height  above  ground  211  feet.    Diameters  15,  and  10  feet  1.5  Ids.    Wall  at  base 
as- 5.  nod  at  top  11.5  ins.    Shell  at  base  15  Ins.,  at  top  3.75  ina 
Foundation  22  feet  deep. 


EnglatuL  ^Square. —Height 190  feet 

**     300    ** 

Round.         '*    313 


It 


.300 


t« 


Diameter  at  base so  feet 

"         "       29    *» 

»*         **       30    " 

"  »«       ao    " 


Diameter  at  base  usually  i  of  height  above  groand. 

Vacuum  at  base  of  chimney  ranges  from  .375  to  43  ins.  of  water. 

Ciroulating  Puxnps. 

Single-acting,  —  .6  volume  of  single-acting  air-pump  and  .32  of  double- 
acting. 

Dontbterocting.  —  .53  volume  of  double-acting  air-pump^ 

Volume  of  Pump  compared  to  Steam  Cylinder  or  Cylindere, 

Eoglne.  Pamp  Volume^ 

Expansive,  i .  5  to  5  times. Single-acting  .........  .08   to  .045. 

Compound do.  04510.035. 

Expansive,  1.5  to  5  times.. Double-acting. 045  to .025. 

Compound.. do 02510.02. 

Fa/rf«.— Area  such  as  to  restrict  the  mean  velocity  of  the  flow  to  450  feet 
per  minute. 

PLATES  AND  BOLTS. 

l^rouslit-iroii. — Tensile  strength  ranges  from  455cx>  to  70000  lbs. 
per  sq.  inch  for  plates,  and  60000  to  65000  lbs.  for  bolts,  being  increased 
when  sabjected  to  a  moderate  temperature. 

English  plates  range  from  45000  to  56000  lbs.,  and  bolts  from  55000  to 
59  000  lbs. 

D  K.  Chirk  gives  best  quality  of  Yorkshire  56000  lbs,  of  StaflTordshire  44  800  Iba 

Test  or  Plates.  {U.  S.)  —  All  plates  to  be  stamped  at  diagonal  corners  at 
«bout  four  ins.  Prom  edge,  and  also  in  or  near  to  their  centre,  with  name  of  manu- 
Ibcturer,  bis  location,  and  tensile  stress  they  will  bear. 

Plates  subjected  to  a  tensile  stress  under  45000  lbs.  per  sq.  inch,  should  contract 
in  area  of  section  12  per  cent,  45000  and  under  50000, 15,  and  50000  and  over,  25, 
»t  point  of  ruptura 


750 


STBAM-JBNGINE. — ^PLATBS. 


Brands.    (C  No.  i)  Charcoal  No.  i.-^Platety  will  sastiiin  a  stren  of  40000  lb&  ptt 

/4.  inch;  hard  and  unsulted  for  tluDging  or  bending. 

(C  No.  I  R  H)  BefieoUed,  hard  and  durable,  suited  for  furnaces,  unsuited  for  oon« 
tinued  bending. 

(C  H  No.  I  S)  HheU,  will  sustain  a  stress  of  50000  to  ^4  000  lbs.  in  direction  of  fibre, 
and  34000  to  44000  across  it:  hard  and  ausuited  for  flanging  or  even  bending  with 
a  short  radius. 

(C  H  No.  I  F)  Flange^  will  sustain  a  stress  of  50000  to  54000  Iba,  soft  and  suited 
for  flanging. 

(C  H  No.  X  F  B)  Furnace  and  (C  H  No.  i  F  F  B)  Flange  Furnace.  The  first  is 
hard,  but  cl^)abIe  of  being  flanged,  the  other  is  hard,  and  suited  for  flanging. 

The  especial  brands  are  Sligo,  Eureka,  Pine,  etc. 

The  best  English  plates  known  are  the  Yarkthire,  as  Lew  Moor,  Bowling,  FamUy, 
Monk  Bridge  J  Cooper  dt  Co.,  etc.    (See  Steam-boiler*,  W.  H.  Shock,  U.  S.  N.,  x88a) 

Bteel. — ^Tensile strength  ranges  from  75000  to  96000  lbs.  Mr.  Kirkaldy 
gives  85966  lbs.  as  a  mean. 

Wn  n  used  in  construction  of  boiler-plates  should  bo  mild  in  quality,  containing 
but  about  .25  to  .33  per  cent,  of  cart>on',  for  when  it  contains  a  greater  proportion, 
although  of  greater  tensile  strength,  it  is  unsuited  for  boilers,  fh)ni  its  hardness  and 
consequent  shortness  in  its  resistance  to  bending. 

Crucible  steel  may  be  used,  but  that  obtained  by  the  Bessemer  or  Siemens- Martin 
process  is  best  adapted  for  boiler-plates.  Its  strength  becomes  impaired  by  the 
processes  of  punching  and  shearing,  rendering  it  proper  thereafter  to  submit  it  to 
annealing. 

Steel  rivets,  when  of  a  very  mild  character  and  uniformly  heated  to  a  bright  red, 
are  superior  to  iron  in  their  resistance  to  concussion  and  stresa 

Copper. — Tensile  strength  is  33  000  Ibs^  being  reduced  when  subjected 
to  a  temperature  exceeding  120°.  At  aia^  being  3a  000^  and  at  550^  35000  lbs. 

"WrouKh-t-iron   Sliell  Plates. 

Pressvire  and.  Xliickiiess.    \(I.  S.  Law.) 
Bated  upon  a  Standard  of  One  Sixth  of  Tensile  Strength  of  Plates.    Iron  or  Steel 

RmuIU  with  a  Tensil*  Strength  of  50000  Lbi. 
Diameter*  in  Ins. 


Thlck- 

neee. 

36 

38 

40 

Inch. 

Lbe. 

Lbe. 

Lba. 

•as 

116 

110 

104 

•3125 

•375 

.5 

145 
174 
232 

137 

165 

220 

156 
208 

4a 


Lbs. 

95 
it8 
142 
190 


46 

48 

54 

60 

66 

7a 

78 

Lbe. 

Lbe. 

Lbs. 

Lba. 

LU. 

Lbe. 

Lbe. 

9« 

87 

77 

> 

63 

58 

53 

"3 

X09 

96 

»7 

79 

I7 

67 

136 

«3o 

116 

104 

95 

80 

182 

174 

154 

138 

ia6 

116 

106 

Lbs. 

99 
124 

'49 
198 

I03 

TJbs." 
6i 

71 
81 

9« 

I2X 
142 
162 

To  which  20  per  cent  is  to  be  added  for  double  riveting  and  drilled  holea 

Iron  plates  .375  inch  in  thickness  will  bear,  with  stay  bolts  at  4,  5,  and  6  Ina 
apart  fVom  centres,  respectively  170, 150,  and  120  ItNa.  per  sq.  inch. 

Iron  plates,  as  tested  by  Mr.  Phillipa  at  Plymouth  Dockyard,  .4375  Indi  in  thick- 
ness, with  screw  slay  bolts  1.375  ina  in  diameter  riveted  over  heads,  15.75  i^d  15.25 
ins.  fVom  centre  =  240  sq.  ins.  of  surface  for  each  bolt;  bulged  between  bolts  and 
drew  (Vom  bolts  at  a  pressure  of  105  Iba  per  sq.  inch  of  plate. 

Iron  plates  .5  Inch  in  thickness,  under  like  conditions  with  preceding  case,  l)ulged 
and  drew  fTom  bolts  at  a  pressure  of  140  lbs.  per  sq.  inch  of  plate.  Hence,  it  ap- 
pears, resistances  of  plates  are  as  squares  of  their  thickness. 

When  nuts  were  applied  to  ends  of  bqlt  through  .4375  inch  plate,  its  resistaaca  is* 
creased  to  165  lbs.  per  sq.  inch  of  plate. 


84 

90 

96 

Inch. 

Lbs. 

Lbe. 

Lbs. 

375 
•4375 

U 

80 

65 

•5^ 

99 

92 

«7 

.5625 

III 

X03 

98 

•75 

148 

138 

130 

•875 

172 

160 

152 

X 

198 

184 

»74  . 

X08 

"4 

120 

ia6 

13a 

«35 

X40 

144 

Lbe. 

Lbe. 

Lbe. 

Lbe. 

Lbe. 

Lbe. 

Lbs. 

Lbe. 

58 

55 

52 

49 

47 

46 

44 

43 

68 

64 

61 

57 

55 

1? 
69 

5t 

50 

11 

11 

^ 

65 
73 

63 
7» 

1: 

"5 

\2 

103 

97 

94 

9« 

88 

8S 

136 

122 

114 

XIO 

X06 

X02 

100 

'54 

146 

138 

130 

126 

122 

118 

"4 

OylitxAj^iOBLl  SHeUe^    {U.S. law.) 

^To  Compute  Pressure  for  »  <iHven  Tliiokn»«s  and 
IDiaxueter,  ox*  Xlxiclcixess  Ibr  a.  CMven  i:*|:*es8ure  aixd 
IDiarueter, 

For  Pressure,  RuLK.-^Multiply  thickness  of  plate  in  ins.  by  one  siztb 
of  tei^Ue  strength  of  metal,  and  divide  product  by  radiuls  or  half  diameter 
of  shell  in  ins. 

When  rivet^'holes  are  drilled,  and  longitudinal  courses  are  double  riveted, 
add  one  fifth  to  result  as  above  attained. 

ExAMPLx.  —Assume  baiter  8  feet  in  diara.,  and  plates  .5  inch  tbick;  what  work- 
ing pressure  will  it  sustain,  tensile  strength  of  plates  equal  to  a  stress  of  60000  Ib&r 


8  X  12      5000 


.5X6oooo-i-one8ixtb-i =-    -  =  104.16  Ibi. 

3  40 

For  Thickness.    Rule,— Multiply  pressure  by  radius  of  shell,  and  dividi 
product  by  one  sixth  of  tensile  strength  of  metsu. 

ExAKPLS. ^Assume  pressure,  radius,  and  tensile  strength  M  preeedlDg. 

104.16  X96-r  2    __   5000  _      ^^^ 
60000-r-one  Sixtlj       loooo 

For  Evaporation  of  Salt  Water.— Add  one  sixth  to  thickness  of  plates  and  sac 
tiooal  area  of  stay  bolts. 

War  Freiglit  and.  River  Steamboats. 

Standard.  -^  150  lbs.  pressure  for  a  boiler  42  ins.  in  diameter  and  platM 
.25  inch  thick. 

For  Pressure,    Rule. — Multiply  thickness  of  plate  by  12  $00,  and  divide 

re9iiU  by  r«4ius  of  boiler  in  ins. 

ExAXPLK.— Assume  a  boiler  42  ins.  In  diameter,  and  plates  ,25  inch  in  thickness; 
what  working  pressure  will  it  sustain  ?    

.25  X  i»  600 -f- 42  •+•  a  =  150  J6». 

JVoo/!— All  boilers  by  U.  S.  I^aw  to  be  tested  to  a  hydrostatic  pressure  of  50  r^ 
cent  above  that  of  their  working  pressure. 

Relative   Alean.   Strengftli    of  Riveted   OT oiiits    compared 

to  tliat  of  PlateB. 

Allowances  being  mad^for  Imperfections  of  Rivets,  etc. 

Plates^  100;  Triple,  .72  to  .75;  Double  or  Square,  .68  to  .72;  Double 
with  double  abut  straps,  .7  to  .75 ;  Staggered,  .65;  Single,  .56  to  .6. 

.Board  of  Trade^  Enghnd. 

Coefficient  or  Factor  of  Safety.  —  When  shells  are  of  best  material  and 
workmanship,  rivet-holes  drilled  when  plates  are  in  place,  abut  8tra])ped, 
plates  at  least  .625  inch  in  thickness  and  double  riveted,  with  rivets  com- 
puted at  a  resistance  not  to  exceed  75  per  cent,  over  the  single  shear,*  the 
coefl^cient  is  taken  at  5.  Boilers  must  be  tested  by  hydrostatic  pressure  to 
twice  that  of  working  pressure. 

Tepalle  strengths  of  plat«s  are  taken,  with  fibre  47000  /lis.  per  sa.  inch, 
across  it  40000 lbs.,  and  when  in  superheaters  from  30000  to  22400  lus. 

*Z — -— ;j =  P,  and  ^—  =  <.     P  representing  pressure  thai  shell  mil  sus 

1)  1/  47  000  0  2 

Unin  per  sq.  inch  in  lbs.,  B  least  psr  cent,  of  strength  ofriwt  or  pluie  (ufhicheoer  it 

least)  at  lap,  D  diam.  of  shell  and  t  thickness  of  plate,  both  in  tm.,  and  C  cot^gHcient 

^safety- 

•  SbMuiBf  or  detrutlva  ratbtanse  of  wroof  ht  iros  is  from  70  to  80  p«r  cent,  of  it»  tn^ailt  atrwil^ 


752 


STEAM-ENGIKB. — SHELLS. — ^PLATES. 


iLLUSTRATiov.  — Assome  T  =  50000  Z&f.  tensile  strength  of  plate,  B = 7<  fwr  eewL. 
D  =  xaotn«.,  C=5,  and  ^  =  .5.  What  pressure  will  shell  sustain,  and  what  shoald 
be  thickness  of  plates  for  such  pressure  and  diameter? 

5ooooX.75_X^5Xi^6a.5  »..,  and    "0X62.5X5.^      ^^ 
X20X5  50000  X. 75X2 

for  all  practicable  deficiencies  in  drilling,  punching,  and  riveting  in  trans- 
verse courses,  if  existing,  this  coefficient  is  increased  up  to  6.75,  and  in  lon- 
gitudinal courses  to  8.75,  and  when  courses  are  not  properly  broken,  an 
addition  is  made  to  above  of  .4. 

Diameter  of  rivets  should  not  be  less  than  thickness  of  plates. 


at 


:=C.     =:P.  and =rt 

'       d    — '^J*""  2C 


MoUswortK 

d  rqoresenting  diameter  and  t  (hieknttt  of 


metai^  both  in  <«*.,  P  towking  pressure  in  lbs.  per  sq.  inck^  and  C  as  follows : 

single  riveted.  Double  riTelad. 

Best  Yorkshire  plates )  ^«^  „,„.»,  ^f  t^^^,,^  (€  =  6200     and     7800 


one  ninth  of  tensile 


*'    Staffordshire  platea ...  J  """  "IV^*  "'lu''"''""  V*=5ooo       "       6200 
Ordinary  plates )  sirengm.  (u  —  ^^^       a       ^^^ 

Working  stress  not  to  exceed  .2  tensile  strength  of  joint  or  rivated  plate. 

Then  for  a  pressure  of  no  lbs.,  and  a  diameter  of  42  ina,  as  given  for  a  standard 
C.  S.  ttoiler. 

iioX  4a 


Taking  C  as  above  for  best  single-riveted  plate  at  6200, 


=  -37«  +  **W- 


2  X  6200 

in  thicknesSj  or .  122  inch  in  eaceets  0/  U.  S.  Law  for  a  plain  cylindrical  boiler ^  sniifiM 
riveted. 

IJoyd*a, 
Thickness  of  shells  to  be  computed  from  strength  of  longitudinal  joints. 


/JC 
D 


=  P, 


PD 
CJ 


=  <,    —5-  =  D,    — =  SB,  and  — j  =  «.    t  represenhng  fhuac- 


ness  ofvlate,  D  diameUr  ofskeUy  p  piteh  and  d  diameter  of  rivets^  all  tir  ins.  ;  3  per 
cent,  of  strength  of  joint  or  rivets^  the  least  to  he  taken;  C  a  constant  ax  per  taUe; 
P  working  pressure  in  lbs.  per  sq.  inch  ;  n  number  and  a  area  of  rivet;  xper  cent, 
of  strength  ofpkUe  at  joint  compared  vrith  soUd  plate,  and  xper  cent,  of  strength  of 
rivets  compared  vrith  soUd  plate. 

When  plates  are  drilled,  take  .9  of  2;,  and  when  rivets  are  in  double  shear, 
put  1.75  a  for  a. 


J  O  1  M  T. 


T  on  f  punched  holes 

"^P  1  drilled       do 

Double  abut  ^  punched  holes 
strap  ( dribod      do. 


Constants. 

Ibon  Platsk 


.5  inch 

and 
under. 


»55 
170 
170 
180 


.75  inch 

and 
under. 


165 
180 
180 
190 


AbOTA 

.75incli. 


170 
190 
190 
200 


•375  Inch 

and 
under. 


200 


215 


Sm>b  Platu. 
•75  inch 

and 
Oader. 


incn  and 
under. 


2X5 

230 


230 
250 


AhOTA 

.75iBch. 


340 
360 


When  plates,  as  in  steam-chimneys,  superheaters,  etc.,  are  exposed  to  direct  ac- 
tion of  the  flame,  these  constants  are  to  be  reduced  .33. 

Illustrations.  —  Assume  pitch  4  ins.,  diam.  of  rivet  1.375  'ns.,  and  thicknass  of 
plate  I  inch,  both  single  and  double  riveted.     Area  1.375  =:  1.48  sq.  ins. 

4  — '375  __  gjg  ^^  ^g^  strength  of  joint  compared  to  solidplate.    - — ~-  =  .37 


per  cent,  strength  privet  fo  stttid  plate  when  sinjfie  riveted,  and 


».7SXi.48 
4X1 


=  .647 


per  cent,  when  double  riveted, 
by  90  vrith  drilled. 


na 


Rivets  at  Joint,    — ^  X  xoo  with  punched  holes  and 
pt 


8TBAM-EN6INB. — ^PLATES. — ^ABUT  8TBAPS,  ETC.      753 

nates. 

To  CoRfopute  Tliiokness  of*  Plates  fbr  a  Oiven  Pressure 
and  Jr^itoh.,  aixd.  Pressure  and  Pitolx  fbr  d-i-reu  Thiolec- 
zxess* 

<a  C  /!» C  /P  P' 

— 3-~P,       /-r^=Pf  and  a/-^=^-     *  repraenting  thickneu  ofmetdCin 

tixUgi^ths  of  an  inthj  p  pitch  ofilayt  or  diatanee  apart  at  centra  in  \n». ,  P  UHyrkif^ 
prtiturt  in  ttn.  per  tq.  inckj  tmd  C  a  constant^  atJoUows : 

For  a  Tensile  Strength  of  Metal  of  50000  IJbt.  per  Sq.  Inch. 

Screw  Stay-hoUa  toith  Riveted  Headi.^Plates  up  to  .4375  indi  in  thickneu  C =90, 
Mid  above  that  loa 

Screw  Stay-Mts  wUh  NtUs.  —Plates  up  to  .4375  inch  in  thickness  G  =  no,  and 
tsbovethat  laa 

Screw  Stay-bolts  with  Double  Nuts  and  Wcuhen.  —  Up  to  4.375  ins.  in  thickneu 
C  =  140,  and  above  that  i6a 

When  stay-bolts  are  not  exposed  to  corrosion,  these  constants  may  be  reduced  3. 

Resistance  of  a  flat  surface  decreases  in  a  higher  ratio  than  space  between 
stays.  Hence,  C  must  be  decreased  in  proportion  to  increase  of  pitch  above 
that  of  ordinary  boiler-plates. 

iLLUsnunoir  i.— Assume  pressare  no  lbs.  per  sq.  inch,  and  pitch  of  stays  5  ina } 
what  should  be  thickness  of  plate  for  screw-bolts  and  riveted  heads? 

0=95.    Thenyi^=/-^  =  S.38-^«««. 

« 

3.  —  Ateume  thickness  of  metal  5  sixteenths  inch  thick,  stay-bolts  screwed  and 
riveted  over  its  threads,  and  working  pressure  of  steam  80  lbs.  per  sq.  inch. 

C=95.    Then  y5!^  =  5.45  in*.  i»te*. 

A-but  Straps* 

Doubte  Abuts  should  be  at  least  .625  thickness  of  plate  covered.  Single, 
.125  thicker  tbair  plate  covered,  and  IknAle,  .625. 

Stays. 

Direct,  —  Tensile  stress  should  not  exceed  5000  lbs.  per  sq.  inch  for  Iron, 
and  7000  for  Steel. 

Diagonal  or  Oblique.  —  Ascertain  area  of  direct  stay  required  to  sustain 
the  surface;  multiply  it  b}*  length  of  diagonal  stay,  and  divide  product  by 
length  of  a  line  drawn  at  a  right  angle  to  surface  stayed,  to  end  of  diagonal 
stay,  and  quotient  will  give  area  of  stay  increased  to  that  which  is  required. 

Stress  upon  an  oblique  stay  is  also  equal  to  stress  which  a  perpendicular 
•tay  supporting  a  like  surface  would  sustain,  divided  by  cosine  of  angle 
which  it  forms  with  perpendicular  to  surface  to  be  supported. 

Illcstration.  — AsBuroe  pressure  no  lbs.  per  sq.  inch,  area  of  supported  surface 
f6  aq.  ins.,  and  angle  of  stay  45^^;  whatl^ould  be  pressure  or  stress  upon  stay? 

Cosine  45O  =  .707 II.    Then  no  x  36 -r- .707  n  =  5600  lbs. 


754  »TOAJi'»«ttI««.'--GlilJiJ6lta.— FLUES,  «TC. 

Proportions  of  "Eyea  oT  Stajrs,  Rods,  eto. 


DiusnsioMS 


ITo.  z*  a  sod  a  B  z      inch. 
6=   .9     " 

•=   .75    " 

No.  a.  a  and  a  =  z        '^ 


«-   .75 


M 


Ko.  3.  a  and  a  s  z        *' 

*=  -75 :: 

c=?    .875" 


No.  I.  No.  3. 

FOBOBD  AMD  WbLDBD. 


® 


T— » 


l(@ 


w 


Wi 


No.  3 
Drilled  wbou  B, 


When  drilled  flrom  upset  bar,  dime^sioas  mm»  w  for  No.  j.    Pipy  wb«ii  of  Meei 
66  n^ck  of  rod. 

Bt»y'TaQ\tB,-^Tr{mf  j»re  not  to  be  8ttbjecte4  to  «  greater  stress  than 
60GO  lbs.  per  sq.  inch  of  section ;  Steely  8000  lbs.,  both  areas  computs^  from 
weakest  part  of  rod,  and  when  of  steel  they  are  not  to  be  welded. 

To   Compute    I>iaTnetpr    and.    I*itoli    of  Btay  -  t>olts,  anci 
R^ifieitanoe  tUey  M^iU   @ui:*t9m- 

Screwed.    !^  =  a,     ^=p,     ««1  (2^)'  =  P.      Socket,    t^^d 


4  96 


>/P 


p,    and 


Cf)' 


p.    d  rtpntmiHng  dtameUr  in  ins. 


Illustratton.— Assume  pitch  of  stiiy  bolts  6  ins  ,  and  working  pressure  zoo  Iba 
p«r  sq.  iiifib ;  what  should  b«  diaiP«t«rs  of  bolti,  t»oth  sorsw  and  socket  f 

6  X  V'oo  ^  g^y  iJ^cJ^  SQrev>ed,  apd  ^^^^"^  =  .63-f  iwdi  SockeL 


70 


C4l'< 


=  P, 


95 
O-irders.    (Lloyd's.) 


C(i» 


=  t,      ^LiiLZ^  =  a.     LfTPrei^fin^ 


(L— p)DL 
2en^A  of  girder,  d  its  depths  t  its  thickness  git  centre  or  sum  of  its  thicknesses,  D  itr 
distance  apart  from  centre  to  centre,  andppitdk  of  stays,  tM  in  ins.,  and  C  a  constam 
as  per  following  .* 

One  stay  to  each  girder,  C  =  600a    If  two  or  three  =  900a    If  four  =  zo  200^ 

Illustration. — Assume  triple  stayed  girder,  24  ins.  in  length,  3  ina  in  depth,  z 
iQCh  th>ck|  and  stayed  ^i  intervals  of  6  ins. }  what  working  pressure  will  it  sus^^inf 

r.  T>.««     0000  X  6' X I         3?4QOO         •  iw 

C  =  9ooa    Then-* — ^;  ^  v  ^ — aaS-z n  Z25  •*•• 

'  (24  — 6)X6X24        2592 

nues,  Arclied   or  Circular  iF'umaces.     U,  S.  Law, 

,3135  inch  for  each  i(>  ins.  of  4iiimeter.  Ri)gligh  iron,  being  harder  than 
American,  is  better  constructetl  to  resist  compression,  and  conaequeptly  0 
less  thickness  of  inetal  is  required  for  like  stress. 

"XDr^*^»  \/896^  '  ~~Tir-^'^'^^'^9Vr-^  Drepwentnv 
tTBtern^l  di(tm^ie^  <ifjtue  or  furnace,  and  t  ihichuss  qfpUtte,  both  in  im.,  L  lemgtM 
f^ftue  orfiimace  between  its  ends  or  beiv^een  its  rings,  infget,  and  P  working  preff- 
ure  in  lbs.  per  sq,  inch. 

Illustration.— Assume  diameter  of  flue  16  Ins.,  length  6  feet,  and  working  pren 
ma  ofsteAm  8e  Ibf-  per  sq  iooh. 

Then     / — ?^^'   =  y/.oSsj  =  .29  inch.    Furnace.— P  not  to  exceed  ?*^* 


8TBAM-J&NOINB. — BIYBTING.  755 

iLLiTSTRiTiair.^Assiinie  diameter  of  a  circular  ftamaoe  or  width  of  a  seraiclrcoUKv 
one  48  ina ,  working  pressure  of  steam  80  lb& ,  and  length  6  feet 

Then     /?5l^|^i!  =  ^.  257  =;  .507  tik*  ihiekneu, 

RTVETING. 

Plates.— The  strength  of  a  joint  is  determined  by  ascertaining  which 
of  the  two,  the  plate  or  the  rivets,  has  the  least  resistance ;  the  stress  on  the 
first  being  tensile  and  the  latter  detrusive. 

The  tensile  strength  is  to  be  taken  from  that  of  the  article  under  consider- 
ation, making  due  allowances  for  construction  and  location  of  the  joint,  and 
the  ccmsequent  variation  of  stress,  as  with  or  across  the  fibre  of  the  metal, 
or  exposed  to  high  heat  as  in  a  superheater. 

With  or  Across  the  Fibre, — From  experiments  of  Mr.  D.  Kirkaldy  and 
others,  the  difference  in  strength  of  Iron  plates  is  ascertained  to  be  from  6.5 
to  18  per  cent.,  the  average  10  per  cent. 

Steel  Platet. — The  relative  strength  of  plates  with  or  across  the  fibre,  as 
determined  by  Mr.  Kirkaldy,  for  "Fagersta  is  9  per  cent.,  and  for  "Siemens" 
it  is  without  material  difference. 

Holes  — The  relative  strength  of  plates  when  subjected  to  drilled  or 
punched  holes,  as  determined  by  the  experiments  of  Mr.  Kirkaldy,  is  shown 
to  be  15  per  cent. 

In  Riveted  Joint  exposed  to  a  tensile  stress,  area  of  rivets  should  be  equal 
to  area  of  section  of  plates  through  line  of  rivets,  running  a  little  in  excess 
up  to  .5625  inch  diameter  of  rivet,  and  somewhat  less  beyond  that,  area  be- 
ing determined  by  relative  shearing  and  tensile  resistances  of  rivet  and 
plate. 

Note. — For  Riveting  of  Hulls  of  Vessels,  see  pp.  828-301 

Essentially  hy  Nelson   Foley. 
Single   Xjap   Riveting.    . 

^^^^^—  =  bJbrplaU^        ^  =  VJbrrivetSf        ~Z^=Pt        ptty=:etf      and 

'*^^  .  -<  =  d.    p  representing  pUcK^  t  thtckness  ofptaUy  and  d  diameter  oj  rivets^ 

aU  in  tn».,  a  sectional  area  ofHatets  in  «f  ins. «  n  number  nj  rtveto,  and  h  and  h  per 
cent,  of  plate  between  hales  and  of  section  of  rivets  to  solid  ptatCy  I  e.  plate  b^ore 
being  punched. 

Illubtratiox  . — Assume  p  =  3  ins.^   d  =  i  ineh^    a  = .  7854  inehj  and  f  =  5  t'ndi 

^""'  =  66  per  cent  strength  oflap^     _Z_ii  =  .533  per  cent  of  rivet  to  tohdplate, 
3  3X  5 

— ^-j2  =  3  ins. .  and  ^'^^-^  X  5  =  «  »«<*•     3  X  s  X  .523+  =  -7854  o»w. 
I  —  66  1  —  66 

When  Shearing  Strength  of  Rivet  is  not  Equal  to  TensSe  Strength  of  Plate, 
— Then  diameter  of  rivet  must  be  increased  in  ratio  of  excess  of  strength  of 
plate  over  rivet 

Or, ' '^  ■  _  <  =  d.   T  and  S  representing  tensiU  and  shearing  slrengthStiiriiiekmojf 
I  ^o  S 
6e  tak^n  at  5  and  4  for  Iron  and  7  and  tfitr  Steel 

When  ftill  value  of  rivet  aectioa  is  not  allowed  as  by  Lloyd's  rules  for  drill^ 
holes,  b'  =  b'x  .9- 


756 


STEAH-BKGIKB. — BITXTIKa. 


Pitches   aa 

batwaao        JPit«h  = 
Ugaa         Diam.  of 
ofHSlaa.         RiTrtX 

I  Determined 

batiraen        f  *=»»  = 
£d«a          Uiam.  of 
ofllSla..        RivatX 

by   Diameter 

batwaao        JP'teh  = 

Edeea          Diana,  of 

ofHolaa.        WvetX 

of  Ri-vets. 

betwaan         P  *<*  = 

Edgea          Diam.  erf 

of  Hdlaa.         !"▼•*  X 

Par  Cant. 
50 
5a 
55 

2 

2.08 

2.22 

Par  Cant. 
58 
60 
62 

2.38 

2-5 

2.63 

Par  Cent. 

65 

68 
70 

2.86 
3- 13 
3-33 

Par  Cant. 
72 

75 
78 

3  57 

4 
4-55 

Opbration.— If  distance  between  edges  of  holes,  or  p  — d,  =  65  per  cent  %T  solic 
t»laie,  and  diam.  of  rivet  i  inch,  then  2.86  x  x  =  2.86  iru.  pitch. 

When  PUUe  and  Rivets  are  0/ equal  strength  in  lUtimate  tension,  6'  =  6,  =  R 

1. 27  B 
Hence,  -^ — ^  t=id.    In  illustration  of  B,  assume  p  =  3,  d  =  x.  i ,  and  t  =  .$. 


1  — B 


Then  3 


.    I.Q 

I.I  =:  1.9,  and  — -: 


.633  ==bj  or  per  cent.  0/  strength  of  pimched  tc 


•olid  plate.    Area  i.  x  =  .95,  and 


•95 


3X.5 


=  .633  =  6',  or  per  tent  of  section  of  rivet  to 


s(didpkite.    Hence,  B  =  .633. 
iLLusTRATioif.— Assume  as  shown,  B  =  .633. 


Then  ''^X-  33  ^  5  _  ,  q^^  ©,  i.i  int.  diam. 
I— .633 


Di 

B 

Or  Strengtli 
at  Joint. 

ameter  or  ] 

Diam.  =  Thicknam 
of  Plata  X 

rlivets 

B 

Or  Straogth 

at  Joint. 

as  Determix 

Diam.  sThieknaM 
of  Plata  X 

led  Toy 

B 

Or  Stranxth 

at  Joint. 

Plate. 

Diam.  =  Thielmaaa 
of  Plata  X 

Par  Cant. 

52 

53 
54 

T  =  S. 

X.38 

'•44 
'•5 

.9  par  cant. 
ofSaction 
of  Rivet. 

'•53 

'•59 
X.66 

Par  Cant. 

55 
56 
57 

T  =  S. 

X.56 
x.62 
1.69 

.9  mr  cant. 
ofSaction 
of  lUvat. 

[:? 
X.87 

Par  Cant. 

S8 
60 
62 

7  =  8. 

X.76 
1.91 
2.08 

.9Parcaati. 
ofSaetioa 
ofRirai. 

'•95 
2.xa 
2.31 

Opbration.— If  thickness  of  plate  =  .5  inch  and  plate  and  rivet  have  equal  resist 
ance,  or  B  =  62  per  cent.,  then  .5  x  2.08  =  x.04  ins.  diameter. 

Double   Uap   Riveting. 

Preceding  formulas  for  single  lap  riveting  apply  to  this,  with  substitution 
of  2a  for  a  and  .64  for  1.27. 
Illustration.  —Assume  p  =  3  ins. ,  <  = .  5  inefc,  and  6'  = . 589. 


3X.5X.589 


=  .4418  area  (if  d, 


.4418  X  a 


•64X.589y    -_  „d 


75 


=  .75  N  and 


=  .5896'. 


3X5 

Diaxneter  or  Rivets   as   Determined    by.Plate- 


B 

•r  Strangth 

•t  Joint. 


Par  Cant. 

68 

69 
70 


Diam.  =  Thicknaas 
of  Plata  X 


T  =  8. 

'•35 
1.42 

X.48 


.9  par  cant. 
OfSaction 
of  Rivet. 

'•5 

'•57 

X.65 


B 

Or  Strength 
at  Joint. 


far  Cent. 

7' 
72 

73 


Diam.  =  ThicknaM 
of  PlaUX 


T  =  S. 

x.56 
X.64 
1.72 


.9  par  cent. 
ofSaction 
of  Rivat. 

'•73 
1.82 

1. 91 


B 

Or  Strangth 
at  Joint. 


Par  Cant. 

74 

75 
76 


Diam.  =ThlrkinM 
of  PlaU  X 


TssS. 

X.8x 
1.91 


.9  Mr  cant. 
ofSeeiloB 
of  RiTSi. 

a 

a.xa 

2.25 


Opiration. — Assume  <  =  .5  inch  and  B  =  70  per  cent,  tensile  strength  compared 
to  Bhearing  being  as  7  to  6.    What  should  be  diameter  of  the  rivets? 

•5  X  1.48  X  •7* = .863  tscA.    When  rivets  are  in  double  shear,  put  x. 9  a  for  a. 


STBAU-SNaiNK. — DUTY. — £VAPOBATIOS. 


757 


Triple   Lap   Rivetixifir* 
Preceding  formulas  for  single  lap  riveting  apply  to  this,  with  substitution 
*f  3  a  for  a  and  .42  for  1.27. 
Illubtiution.— -Assame />  =  3  int.,  t . 5  inch,  aud  b'  =: .883. 

3-^i-l^^  =  .44X5areao/d,    li^^ x  ■  5  =  •  74  f «•  diam. .    Ir^^.jsb, 

and:^^:i^  =  .883  6'. 
3X.5  ^ 


I— .75 


X>iameter  of  Rivets   as   Determined   "by   Plate. 


B 

>r  Str«D(th 

at  Jolnu 

Diain.  =ThickueM 
of  Plat*  X 

P«r  Cflot. 

70 

7«     . 
72 

T  =  S. 

•99 
1.04 

1.09 

.0  Mr  cent. 

o/Sflctlon 

of  Rivet. 

X.I 

i-iS 

1. 31 

B 

Or  Straofcth 
at  Joint. 


Per  Cent. 

73 
74 
75 


Diam.  =  ThickucM 
of  Plate  X 


T  =  S. 

X.2X 
1.27 


.9  per  cent. 

ofSectloo 

of  Rivet. 

1.27 

1-34 
1.41 


B 

!Or  Strengtb 
at  Joint 


Diam.  =  ThickaM» 
of  Plate  X 


Per  Cent. 

76 

77 
78 


T  =  8. 

1-34 
1.42 

1-5 


.9  per  ceai 
ofSectloB 
of  Rivet. 


X.67 


Upbbation.— As  shown  by  preceding  tablea 


Gheueral   Formulas   and   IllviatratioxiB. 


Bivets  in  Single  Skear. 
Rivets  in  Double  Shear. 
Rivets  in  Triple  Shear, 


1.27  B  T 
x(i  — B)S 
X.27  B  T 
1.75  (I --B)S 


(  =  d,aDd 


ptT 


=  6'. 


.      ,       .a  X.75  S     _ , 
<  =  d,and— J5_^j, 


1.27  BT     ,       ,       .a2.5S      ., 

7      T>vQ « =  d,  and  — -2__=:  ft'. 

2.5(1— B)S        ^  ptT 


ZigxHg  rtivetinff.  Strength  of  plate  between  holes  diagonally  is 
equal  to  that  horizontally  between  holes,  when  diagonal  pitch  =:  .6  and  nor- 
tzonial  =  diameter  of  rivet  +  •4* 

ThoBf. 6  p-\'.  4  p  is.  diagonal  pitch. 

"Dxity  of*  Steaxxi*enginea. 
The  conventional  duty  of  an  engine  is  the  number  of  lbs.  raised  by  it  x 
foot  in  height  by  a  bushel  of  bituminous  coal  (112  lbs.). 

Cm'nish  Engine,^  A^veTSig9  duty,  70000000  lbs. ;  the  highest  duty  ranging 
from  47000000  to  loi  900000  lbs. 

A  condensing  marine  engine,  working  with  steam  at  .75  lbs.  (mercurial 
gauge),  cut  off  at  .5  stroke,  will  require  from  1.75  to  2  lbs.  bituminous  coal 
per  ff  per  hour. 

Relative  Cost  of  Steam-engixxes  fbr  Sq.iial  Bjffeots. 

In  Lbs.  of  Coal  per  B?  per  Hour.  jj^ 

A  theoretically  perftet  engine 66 

A  Cornish  condensing  engine a.  38 

A  marine  condensing  engine x.75  to  3 

Kvaporative   Po-^ver  of  Soilers. 
The  Evaporative  power  of  a  boiler,  in  lbs.  of  water  per  lb.  of  fuel  consumed, 
is  ascertained  approximately  by  formula 

1.833  (  Q  I  p)  e=zlbs.  8  representing  Mai  heating  surface  in  sq.  fut^  F  fuA 
consumed  in  lbs.  per  hour,  and  e  theoretical  evaporative  power  ofthefktd. 

Illustration.  — Assame  evaporative  power  of  the  tael  at  15,  consumption  pef 
boor  800  Iba,  ood  beating  sarface  x6oa 

"^"^  '  '33  (,(i«,x^+8cc)  ^  '5=  •0.998  «»■ 

3S 


758 


BTBAM-ENGIKX. — WEIGHTS. 


M^fidency  ofUnUr.    x.833  [- 


x6oo 


h 


733- 


y,i6oo  X  2  -f-  800^ 

Tbe  evaporative  power  of  diSSerent  fuels,  fVom  and  at  3X2<^,  is,  for  coals,  fW>fn  14.3 
to  16.8  lb&,  the  average  of  Newcastle  being  15.3,  for  patent  fuels  15.66,  Lignite  13.5, 
Coke  13.3,  Peat  10:3,  and  Woods,  when  dry,  8.1.    See  A.  E.  SeaUm^  London^  1883. 

INTotes   on.   Horse-i^o^^^er. 

A  Lancashire  boiler  with  a  heating  surface  of  610  sq.  feet  and  a  grate-area  of  35 
will  evaporate  in  ordinary  operation  50  cube  feet  of  water  per  hour;  3.12  sq.  feet  of 
horizontal  section  per  cube  foot  of  water,  and  .5  sq.  foot  of  grate-area  per  cube  foot. 

!N'ozxiiiial.  Five  Boilers. — Usually  computed  at  5.5  to  6  sq.  feet  of  horizontal 
section,  15  sq.  feet  of  heating  surface,  and  i  sq.  foot  of  grate-area. 

Tbe  IIP  of  such  boilers  will  range  from  3  to  4  times  that  of  the  nominal. 

MttUitubular  Boilers. — .75  sq.  foot  of  grate-area  and  2.5  ofheatiug  surface. 

"Weiglits   of  Steam-engiiies. 
Side-wlxeels. — American  Marine  (Con  lensii^f). 


EMaixs. 

Frame. 

Vertical  beam 

Wood.* 

(t 

Wood.* 

«< 

Wood  * 

ct 

Wood.* 

(( 

Wood.* 

Oscillatlne 

Iron. 

«( 

Iron. 

Inclined 

Iron. 

Water- 

Cylindera. 

Weight  per 

whaels.  - 

No. 

Volume. 

Cube  Fodt. 

Sbbtics. 

Cabe  Feet. 

Lba. 

Wood. 

X 

63 

1 100 

River. 

Wood. 

3 

216 

io4ot 

Coast. 

Wood. 

X 

430 

1225 

Coast 

Wood. 

3 

253 

1480$ 

Coast 

Iron. 

I 

725 

loSgt 

Sea. 

Iron. 

2 

540 

850 

Sea. 

Iron. 

2 

1502 

5508 

Sea. 

Iron. 

2 

535 

xxoo 

Sea. 

Without  frame. 


t  With  frame  1109. 


X  Including  boilers. 


§  Single  fraoM. 


Bore-w  FvoiieU&v»,— American  Marine  (Ctrndensing). 
Enoimb. 


Vertical  direct,  Jet  Condens'g . . 
*'  *'     Surfece  Cond'g . 

"  *'     Jet  "      . 


II  C(  t( 

Horizontal  back-action 

'*        direct 

Vertical  compound. . , . , 


4( 


i( 
t« 
4{ 
t4 
•t 


n 


direct 


be 


Non-Condensing. 

U  (I  <( 


Cylindera. 

Wbiobtc, 

No. 

Volnme. 

Engine. 

Boilers. 

Per  C.  Ft. 

Cylinder. 

Cabe  Fee  t< 

Lbt. 

Lbe. 

Lbs. 

4 

22040 

X2IOO 

8535 
7280 

12. s 

5QOOO 
48130 

32000 

12.5 

35000 

6650 

33 

120450 

98000 

6620 

506 

1 523  c6o 

985600 

4958 

2 

68 

289  680 

200800 

7212 

3 

67 

201000 

200593 

6009 

3 

4.8 

24705 

26373 

10  641 

2 

24-3 

94196 

88050 

7500 

2 

425  ^ 

1 022  400 

840000 

4380 

X 

3.6 

30534 

27301 

X6066 

X 

35  „, 

173028 

100065 

7  774 

X 

1.86 

14  410 

23481 

19834 

X 

2.77 

»4759 

334x7 

13431 

Engligh  Marine  (Condensing). 


DmatirnoK. 


Trunk 

Borizontal  direct 

Vertical  direct 

Oscillating 

Vertical  compound 

Horizontal  compound.  .* . 


Cylinders. 

WsiOHVi. 

Propeller 

Boilers 

Per 
IH? 

LU. 

No. 

Volume. 

Engines. 

and 
Shafting. 

and 
Water. 

Total. 

Cube  Ft. 

Tons. 

Tons. 

Tons. 

Tons. 

3 

230 

121 

47 

257 

425 

465 

3 

382 

223 

85 

303 

611 

338 

2 

393 

165 

48 

144 

357 

781 

2 

440 

117 

43 

135 

29s 

560 

2 

24 

425 

,  -75 

725 

12.25 

60 

6 

707 

497 

167 

656 

1320 

368 

2 

52 

55 

X5 

no 

j8o 

35i 

3 

?« 

x^o 

87 

162 

3x9 

309 

Sbb- 

VtCB. 


Sea. 

Sea. 

Sea. 

Coast 

Sea. 

Sea. 

Sea. 

Coast 

Sea. 

Sea. 

Coast 

Sea. 

River. 

Coast 


Per 

Cabe  Ft 
Cylladei; 

Tona. 
«.8s 
X.6 

•9 
•7 
•Sa 
X.87 

3.44 
a.ag 


STEAM-XNGIKB.— WBIOBT  OF  BOIL£BS. 


759 


I^axid-ensines.— {•^'''■'C'^fi^'^'wtnjjr. ) 


MM«ntt. 


VeittealY  i8  lbs.  X4  feet 
beam  l  30 ina. xs  feel 
Hor)»m%  14  tos.  x  a  feet 
22  ins.  X  4  feet 


it 


Volant 

of 
CyVt. 


7 
a4«5 

a. 2 
10.6 


Eftgifl«. 


Spar-wheel 
»    *^  and 
CoiluecthM8< 


Lbe. 

67200 

105000 

10914 

56000 


Lbe. 
37800 

137  »79 


s«f0*ilm 

BolleT% 

Unh  Vhoi 

Complete. 

Gralee,etc. 

OfCyllhdOT. 

lbe. 

Lbi. 

LW. 

89600 

96880 

960ft 

263879 

79000 

4*90 

— 

8200 

gioo 

— 

30140 

5600 

fI?o  Compute  Weiglit  of  a  Vertio*!  Beam  »nd  8ide-«inrlik»el 
Jet   Coiideiisins  Knslne.    {T.  F.  BowUmd^  A.8.C.E.} 

Including  cUl  MeiaJb^  Boiler  and  A  ttackmenfg^  Smoke-pipef  Orateg,  ttoH  f1<»n, 
and  Iron  in  Wooden  Wat6r-4theeUf  oitiiUing  Coat-bhnkers. 
For  a  Presture  per  Mercurial  Gauge  of^o  Oft.  per  8q.  itKh. 
For  twrface  eondenter  Odd  10  to  15  per  cent  • 

Rule. — Multiply  volume  of  cylinder  in  cube  feet  by  Coefficieni  in  follow* 
ing  table  corresponding  to  length  of  stroke,  and  product  will  give  rough 
weight  in  lbs.    Fof  finished  weight  deduct  6  per  cent. . 


Stfeke. 


Feet. 

5 
6 


CMfflcIent.  ft    ftttoke 


2467 
9340 


Feet. 

I 


CMffident. 


2213 

2000 


\  Stroke. 


Feet. 

9 
10 


Coeflclent. 


1865 
«730 


Strok«. 


Feet. 
It 
19 


Coeflcleiit. 


1619 
«54fl 


Example  l— What  are  the  rough  and  finished  weights  of  a  vertical  beam  engine, 
cgrltoder  80  ios.  in  dtameter  and  12  feet  stroke  ot  piston? 

Are»  of  8a  ins.  rr  5026.56,  which  x  12  feet  =±  419  cuJbefett^  and  X  154^  for  12  fMt\ 
stroke  =  647  774  Vbt.  rough  weight. 

Then  647  774  x  .06  =  38  866,  and  647  774 — 38  866  a  608  908  lh».  finished  weight 


\rKlOHtS  Of  ^OlLlfnA. 

Wtiffhlt  of  Iron  Boilers  {indudintf  Doors  and  PtcUe^^and  exclusive  ofStMik^ 
pipes  and  Grates)  per  8q.  Fi)ot  of  RetUing  BUrfcboe, 

SwrfoLce  Mecuuredfrom  Grates  to  Base  of  Smoke-pipe  or  Top  o/Stsam  CMmney. 


BoiLsm.    For  a  Workiltf  Prtmur*  tf  tp  Lbt. 


Single  return.  Flue  * tvater  bottom. . . . 

•    a*.  ••..4.  <•<•••«.  ••«.««<•...  ^^*  .    .  4   . 

Multi-flue '*'...... water  bottom. . . . 


t» 

i( 

(( 

« 

(( 

(( 

u 

«( 

(( 

(( 


Horizontal  return,  Tubulart water  bottom 

{•••••••••••••••••••••a  "■  •   ■  •  • 

t(  ((  ((         « 

Vertical           "           *'       f!  .*.'..'.*.".*.!.*.'.".'!!..'....  wfttef  bottom!!!! 
Horizontal  direct, Tubokir *......< ''         ''      .... 


Wel«(ttt. 


Lbe. 

25.6  to  32.9 

24  to  30 
27  to  43 

25  to  43 

22-5  to  35 
21   to  33 

17.7  to  26.7 
18.5  to  26.5 

19.8  to  9318 

17   to  21 

23.5  l0  2A 

18. 1  i(f  it.6 
16.3  to  17.3 

24   to  20 


Cylindrical,  external  ftimace,t  36  ins.  in  diam.,  .25  in^^h  thick 

"  Fiae  •'       1 36  to  42      ••       .25    "       *'    

flToffMtttal  direct,  TabtOar Locottiottre. . . . 

Vertittil  CyMftder  direct,  Tabular. — 

W«fctM  of  Cyttndrtcal  FtfrftaCe  and  Shell  Boilers,  at!  complete  for  Sea  Sei^ice  and 
for  a  pressure  of  60  lb&  steam,  200  tlm  pef  IH*. 

^  teeMd*  tff  Untbts  eqiMre*    Melt  «y]fndrleftl.  f  Seeflon  ofhrMaS  «lfd  efiell  Mrtftre. 

t  yfuMflSMmt  heftdf,  .37$  Ifeeli  tkAtkf  ilae»,  .2$  bieb,  maS  mrftM  eempafad  to  hel/dUuiietet  «t»Mt 

Noras.— 1.  The  range  in  the  units  of  weight  arises  f^oni  peculiaflttee  of  cottMrac- 
t«4>iif  eofieeqaent  npon  proportionate  nnmber  of  ftirnaces.  thloktiesees  of  netal,  vol' 
of  shell  compared  wilA  beating  sarftM»,  character  of  staying  etc 

a.  tf  preasute  is  increased  the  above  units  must  be  proportionately  increased. 


760      STEAM-ENGINE. — ^BOILBB-POWEE,  COMBUSTION. 


Soiler-po'wer. 

The  power  of  a  boiler  is  the  volume  or  weight  of  steam  alone  (indepen- 
dent of  any  water  that  it  may  hold  in  suspension)  that  it  will  generate  at  its 
operating  pressure  in  a  unit  of  time. 

Marine  boilers  of  the  ordinary  type  and  proportions,  with  natural  draught,  burn- 
ing anthracite  coal,  produce  3.5  to  5.5  IH*  per  sq.  foot  of  grate  per  hour;  with  a 
ft-ee  burning  or  a  seUii-biturainous  coal,  5  to  7.5  IH*;  and  with  a  forced  draught, 
with  25  to  30  lb&  best  coal  per  sq.  foot  of  grate  per  hour,  8  to  zo  IH^. 

Marine  engines,  operating  with  a  steam -pressure  of  35  lbs.  (m.  g.),and  with  mod- 
erate expansion,  consume  30  Iba  steam  per  Iff  per  hour,  and  with  a  high  rate  of 
expansion,  under  a  pressure  of  70  lbs.,  20  lbs.  steam. 

With  a  blast  draught  and  consuming  30  to  40  lbs.  of  a  fkir  quality  of  coal  per  aq. 
foot  of  grate  per  hour,  7  to  10  £P  per  hour  can  be  attained. 

In  locomotive  boilers,  having  fh>m  50  to  90  sq.  feet  of  heating  surface  per  sq.  foot 
of  grate,  and  at  a  rate  of  combustion  of  flrom  45  to  125  lbs.  of  coke,  an  average  evap- 
oration of  9  Iba  of  water  per  lb.  of  coke  has  been  attained  at  ordinary  temperatures 
and  pressure. 

G?o  Coxxipu.te  'Volume  of  Aiv  and  Oas  in  a  F-arnace. 

When  Volume  at  a  Given  Temperature  is  known.  Rule. — ^Multiply  given 
volume  by  its  absolute  temperature,  and  divide  product  by  the  given  abso- 
lute temperature. 

NoTB.— Absolute  temperature  is  obtained  by  adding  461^  to  given  or  acquired 
temperature. 

ExAMPLX.— Assume  volume  of  air  entering  a  Aimace  at  i  cube  foot,  its  tempera* 
ture^<>,  and  temperature  of  furnace  it^-^^y  what  would  be  the  increase  of  volume? 

I  X  1623°  -}-  461°      2084 


600 -1-4610 


=  — -  =  4  Hma. 

521 


Volume  of  Furnace  Ghas  per  Xjb.  of*  Coal.    {Rankine.) 


T«npM»- 
tor*. 

32O 

68 
X04 

213 

57* 


iUr  Sapplied. 

Tempera- 

Air  Sapplied. 

uLbt. 

18  Lbs. 

24  Lb«. 

fare. 

13  Lbs. 

xSLbe. 

150 

225 

300 

752° 

3^ 

553 

i6z 

241 

322 

XZ12 

'M 

718 

173 

258 

344 

1472 

882 

20s 

307 

n 

1832 

697 

X046 

3»4 

47* 

2500 

906 

1357 

34  Lbe. 

738 

957 

XZ76 

«39S 
x8x3 

Temperature  of  ordinary  boiler  nimaces  ranges  fVom  1500*='  to  2500°. 

The  opening  of  a  Aimace  door  to  clean  the  fire  involves  a  loss  of  firom  4  to  7  per 
cent,  of  fUel. 

For  other  illustrations,  see  antt^  page  744-6. 

Rate  or  Comlsustion. 

The  rate  of  combustion  in  a  furnace  is  computed  by  the  Iba  of  Aiel  consumed  per 
iq.  foot  of  grate  per  hour. 

In  general  practice  the  rate  for  a  natural  draught  is,  for  anthracite  coal  (W>m  7  to 
z6  lbs.,  for  bituminous,  fhim  xo  to  25  lbs.,  and  with  artificial  or  forced  draught  as  by 
a  blower,  exhaust-blast,  or  steam-Jet,  the  rate  may  be  increased  trom  30  to  no  lbs. 

The  dimensions  or  size  of  coal  must  be  reduced  and  the  depth  of  the  firt  incr«aaed 

directly,  as  the  intensity  of  the  draught  is  inereased. 

Temperature  of  gases  at  base  of  chimney  or  pipe  ^ould  be  6o(^,  and  fkictUnal 
resistance  of  surface  of  chimney  is  as  square  vf  velocity  of  current  of  1 


Ordinarily  fjrom  20  to  32  per  cent  of  total  heat  of  combustion  is  expended  in  the 

Koduction  of  the  chimney  draught  in  a  marine  boiler,  to  whieh  Is  to  be  added  the 
3668  by  incomplete  combustion  of  the  gaseous  portion  of  the  fUel  and  the  dilation 
"f  the  gases  by  an  excess  of  air,  making  a  total  of  fUUy  60  per  cent    ISteam-boiUn, 
H.  JSthocky  U.  S.  N.f  x88i.) 


STKBNGTH   OF   MATERIALS. — ELASTICITY.  76I 

STRENGTH  OF  MATERIALS. 

Strength  of  a  material  is  measured  by  its  resistance  to  alteration  of 
form,  when  subjected  to  stress  and  to  rupture,  which  is  designated  as 
Crushing,  DetrusiFe,  Tensile,  Torsion,  and  Transverse,  although  trans- 
verse is  a  combination  of  tensile  and  crushing,  aud  detrusive  is  a  form 
of  torsion  at  short  lengths  of  application. 

ELASTICITY   AND   STRENGTH. 

Strength  of  a  material  is  resistance  which  a  body  opposes  to  a  per- 
manent separation  of  its  parts,  and  is  ^measured  by  its  resistance  to 
alteration  of  form,  or  to  stress. 

Cohesion  is  force  with  which  component  parts  of  a  rigid  body  adhere  to 
each  other. 

Eiasticiiy  is  resistance  which  a  body  opposes  to  a  change  of  form. 

Elasticity  and  Strength^  according  to  manner  in  wbicbr  a  force  is  exerted 
upon  a  boov,  are  distinguished  as  Citishinff  Strength,  or  Resistance  to  Com- 
pression; Detntsive  Strength,  or  Resistance  to  Shearing;  Tensile  Strength, 
or  Absolute  Resistance ;  Torsional  Strength,  or  Resistance  to  Torsion ;  and 
Transverse  Strength,  or  Resistance  to  Flexure. 

Limit  of  Stifftiess  Is  flexure,  and  limit  of  Resistance  is  fracture. 

Neutral  Axis,  or  Line  of  Equilibrium,  is  the  line  at  which  extension  ter- 
minates and  compression  begins. 

Resilience,  or  toughness  of  bodies,  is  strength  and  flexibility  combined ; 
hence,  any  material  or  body  which  bears  greatest  load,  and  bends  most  at 
time  of  fracture,  is  toughest 

Stiffest  bar  or  beam  that  can  be  cut  out  of  a  cylinder  is  that  of  which 
depth  is  to  breadth  as  square  root  of  3  to  i ;  strongest,  as  square  root  of  2  to 
z  ;  and  most  resilient,  that  which  lias  breadth  and  depth  equal. 

Stress  expresses  condition  of  a  material  when  it  is  loaded^  or  extended  in 
excess  of  its  elastic  limit. 

General  law  regarding  deflection  is,  that  it  increases,  caUeris  paribus,  di- 
rectly as  cube  of  tength  of  beam,  bar,  etc.,  and  inversely  as  breadth  and  cube 
of  depth. 

Resistance  of  Flexure  of  a  body  at  its  cross-section  is-  very  nearly  .9  of  ita 
tensQe  resistance. 

Coefficient  of  Ifilastioity. 

Elasticity  of  any  material  subjected  to  a  tensile  or  compressive  force, 
within  its  limits,  is  measured  by  a  fraction  of  the  length,  per  unit  of  force 
per  unit  of  8ecti<»ial  area,  termed  a  con^ant,  and  coefficient  of  elasticity  is 
usually  defined  as  the  weight  which  would  stretch  a  perfectly  elastic  bar  of 
uniform  section  to  double  its  length. 

Unit  of  force  and  area  is  usually  taken  at  one  ib.  per  sq.  inch.  E  represenH- 
ing  denonUnaior  oj" fraction. 

Example. ^1f  a  bnr  of  iron  is  extended  one  12000000th  part  of  its  length  per  llx 
of  stress  per  sq.  inch  of  section,  ^  , 

I3000000  E' 

The  bar  wonld,  therefore,  be  stretched  to  doable  its  normal  length  by  a  (brce  ot 
s 9 000 000  lbs.  per  sq.  inch,  if  the  material  were  perfectly  elastia 

3S* 


762  STEBNGTH   OP   MATSBIAL8. — ELASTICITY. 

The  same  method  of  expressing  coefficient  of  elasticity  is  applied  to  re- 
sistance to  compression,  f  hat  is,  coefficient,  in  weight,  is  expressed  by  de- 
nominator of  fraction  of  its  length  by  which  a  bar  is  compressed  per  imit  of 
weight  per  sq.  inch  of  section. 

Ultimate  extension  of  east  iron  is  500th  part  of  its  length. 

fiSxtexxsioii  of*Ca8t*iron.  Sar8,Avliexi  suspeixded  Vertically- 
I  Inch  Square  and  10  Feet  in  Length.     Weight  applied  at  one  End. 

Set. 


Weight. 

Extension. 

Set. 

Weight. 

Elxtenston. 

Set. 

Weight. 

E^ztension. 

Lb*. 

529 

1058 

Ins. 
.0044 
.0092 

Ins. 
.000015 

Lbs. 
2117 

4234    ^ 

Ins. 
.0190 

•"397 

Ins. 
.000059 
.00265 

Lb*. 

8468 
J4820 

Ins. 
.0871 
.1829 

Ins. 

•OP  855 
.02555 


^Woods.— MM.  Chevaudier  and  Wertheim  deduced  that  there  was  no 
limit  of  elasticity  in  woods,  there  being  a  permanent  set  for  every  extension. 
They,  however,  adopted  a  set  of  .00005  of  length  as  limit  of  elasticity. 
This  is  empirical. 

MODULUS   OP   ELASTICITY. 

Modulus  or  Confident  of  Mcuticity  of  any  material  Is  measure  of  its 
elastic  reaction  or  force,  and  is  height  of  a  column  of  the  material, 
pressing  on  its  base,  which  is  to  the  weight  causing  a  certain  degree  of 
compression  as  length  of  material  is  to  the  diminution  of  its  length. 

It  is  computed  by  this  analogy :  As  extension  or  diminution  of  length 
of  any  given  material  is  to  its  length  in  inches,  so  is  the  force  that  pro- 
duced that  extension  or  diminution  to  the  modulus  of  its  elasticity. 

Or,  9  :  P ::  2 :  u^  =  — .  x  repre$enUng  length  a  substance  x  inch  square  and  i/oot 

in  length  would  be  extmded  or  diminished  byjbroe  P,  and  w  weight  of  modulus  in  lbs. 

To   Compute   "^WTeigHt  of*  Alodulua   of  Klastioity. 
Rule. — As  extension  or  compression  of  length  of  any  material  i  inch 
square,  is  to  its  length,  so  Is  the  weight  that  produced  that  extension  or  com- 
pression, to  nioduUis  of  elasticity  in  lbs. 

ExAMPLK.— If  a  bar  of  cast  iron,  x  inch  sqaare  and  xo  feet  in  length,  \»  extended 
.008  inch,  with  a  weight  of  1000  lbs.,  what  is  the  weight  of  its  modulus  of  elasticity  ? 

.008  :  I20  (10  X  12) ::  looo  j  15000000  Ws. 

To   Compute   !Modulus   of  Klastioity. 
WTien  a  Bar  or  Beam  is  Supported  at  Both  Ends  and  Ijoaded  in  Centre. 
Rule.— Blultlply  weight  or  stress  per  sq.  inch  in  lbs.  by  length  of  material 
in  ins.,  and  divide  product  by  modulus  of  weight. 


Or,  — _E,     -g  _M, 


EM 


:;:;  W.    I  representing  length  in  tiM.,  M  modulus. 


W  umght  in  Ihs.  per  sq.  inch,  and  E  compression  or  ^eUnsion. 

ExAMPLB  1.— If  a  wrought  iron  rod,  60  feet  in  length  and  .2  Inch  In  diameter,  ti 
subjected  to  a  stress  of  150  llis.,  what  will  it  be  extended? 

Modulus  of  elasticity  of  iron  wire  is  38  230  500  lbs.  (see  following  table),  and 

0fit.a2X.7854  =  -3i4»6. 


— i52_  =  477.46  Ua.  per  sq.  inch,  and  60  x  12  =  720  ins. 

.31416 


Then  477.46  x 


_7?o_  ^  3p77}± ^  .^„  ,8  inch. 
28  230  500      28  230  500 


3. — ^Take  elements  of  preceding  case  under  rule  for  weight  of  modnloa 

x2oXxooo           oj    t.      .008  X  X5 000000  j.^ 
C: ss  .008  iw^     = s=  xooo  fM. 


15000000 


f?9 


STBBNGTH   OF   MATERIALS. COHESION. 


763 


l^odtxlns  of  EJlastioity  and  'Weigplit  ofVarioufc*  ^laterials. 


SUBaTAHCKS. 


Ash 

Beech 

Brass,  yellow 

**      wire 

Copper,  cast 

Kim.. 

Fir,  red 

Glasa 

Gun-metal 

Hempen  fibres.... 

Ice 

Iron,  cast 

wrought. . . . . 

wire 


n 


Height. 


Feet. 
4970000 
4600000 
2460000 
4  112000 
4800000 
5680000 
8330000 
4440000 
2790000 
5000000 
6000000 
5750000 
7550000 
8377000 


Weight. 


Lbs. 

1  656  670 

1345000 

8464300 

14632720 

18240300 

1499500 

2016  x>o 

5  55O0OO 

8  844  300 

170000 

2370000 

17  068  500 

25  020  000 

28  230  500 


SUBSTANCBS. 


Height. 


j       Feet. 

Larch 14  415  000 

Lead,  cast '    146000 

Lignum- vitse 1850000 

Limestone 2  400000 

Mahogany 6  570000 

Marble,  white 2 150000 

Oak :  4  750000 

Pine,  pitch ;  8  700000 

*'    white 8970000 

Steel, cast. 8530000 

"     wire 9000000 

Stone,  Portland  . . .    1 672000 

Tin,  cast ;  1 053  000 

Zinc ;  4  480000 


Weight. 


Lbft. 

1074000 

720000 

1080400 

3300000 

207x000 

2508000 

I  7x0000 

2430000 

X  830000 

26650000 

28  689  000 

I  718800 

3510000 

13440000 


"^VeigUt    a   M:aterial    'will    bear   per   Sqt.  Incli,  'witliovit 
I»ermaiieiit   Alteration   of  its   I^eiijStli. 

Lbs. 


Matbkial. 

Metals. 

Brass 

Gun  metal 

Iron,  cast 

**    wrought... 

Lead 

Steel 


Lbs. 


6700 
xoooo 
15  coo 
17800 

I  500 
45000 


M.;tkbiai.. 

Lbe. 

stones^  etc. 
Marble 

4900 
2000 
1500 

3540 

liimestone* 

Portland 

Woods. 
Ash 

Matrkial. 


Woods. 

Beech 

Kim 

Fir,  red.... 

Larch 

Mahogany . 
Oak" 


2360 
3240 
4290 
2060 
3000 
3960 


*  Taotile  atreagtb  2800. 


Coxxiparative   Iriesilienoe   of  "Woods. 


Asb X      j  Chestnut 73 

Beech 86    Elm 54 

Cedar 66  I  Fir 4 


Larch .84 

Oak 63 

Pitch  Pine 57 


Spruce 64 

Teak 59 

Yellow  Pine...  .64 


MODULUS    OF   COHESION. 

Xo  Connpiite  Tjextgth.  of  a  Friaxzi  of  a  ^laterial  -wliichi  -would 
be  Severed  'by  its  owxi  "Weiglit  -wlien   Suspended. 

RuLE.^Divide  tensile  resistance  of  material  per  sq.  inch  by  weight  of  a 
foot  of  it  in  length,  and  quotient  will  give  length  in  feet 

Illustration. —Assume  tensile  resistance  of  a  wrought- iron  rod  to  be  60000  lbs. 
per  sq.  inchu  Weight  of  i  foot  =  3.4  Ws. 

Then  60000-7-3.4  =:  X7  647.06 /eei. 

Ijenffth  in  Feet  required  to  Tear  Amnder  thefdUowing  Substances: 

Rawhid& 15  375  feet.  |  Hemp  twine. . .  75  000  feet  |  Catgut . . . .  25  000  feet 

Elasticity  of  Irory  as  compared  with  Glass  is  as  .95  to  i. 

When  Height  is  given.  Rui.e. — Multiply  weight  of  i  foot  in  length  and 
X  inch  square  of  material  by  height  of  its  modulus  in  feet,  and  product  will 
give  weight. 

To   Compiite    Height  of  ^dodvilus   of  Klaatlcity. 

Rule. — Divide  weight  of  modulus  of  elasticity  of  material  by  weight  of 
X  foot  oi  it,  and  quotient  will  give  height  in  feet. 

Example.  —  Take  elements  of  preceding  case  (page  762),  weight  of  i  foot  being 
3  Wm.  i  what  is  height  of  its  modulus  of  elasticity  ? 

x5  000  000 -^  3  s=  5  000  000 /e€t 


764  STKBNGTH   OP  MATERIALS. — CRUSHING. 

From  a  series  of  elaborate  experiments  by  Mr.  £.  Hodgkinson,  for  the 
Railway  Structure  Commission  of  England,  he  deduced  following  formulas 
for  extension  and  compression  of  Ccut  Iron: 

e       '  e' 

EzUtuion:  13934040  -= 290743200  -=  =  W. 


c» 


Compresnon :  12  931 560  -r —  522  979  200  -y^  =  W.    e  and  c  repretenUng  txtention 

and  compresiiony  and  I  length  in  ins. 

Illustration. --What  weight  will  extend  a  bar  of  cast  iron,  4  ins.  square  and  10 
feet  in  length,  to  extent  of  .2  inch? 

13934040X^-290743200^^^  =  23223.4  — 807.62  =  22415. 78, which  X4tn* 
=  89666.12  lb?. 

CRUSHING   STRENGTH. 

Crushing  Strength  of  any  body  is  in  proportion  to  area  of  its  section^ 
and  inversely  as  its  height. 

In  tapered  columns,  it  is  determined  by  the  least  diameter. 

When  height  of  a  column  is  not  5  times  its  side  or  diameter,  crushing 
strength  is  at  its  maximum. 

Cust  /ron.— Experiments  upon  bars  give  a  mean  crushing^  strength  of 
ICO 000  lbs.  per  s^.  inch  of  section,  and  5000  lbs.  per  sq.  inch  as  just  sufficient 
to  overcome  elasticity  of  metal ;  and  when  height  exceeds  3  times  diameter, 
the  iron  fields  by  flexure.  When  it  is  10  times,  it  is  reduced  as  i  to  1.75 ; 
when  it  is  15  times,  as  i  to  2 ;  when  it  is  20  times,  as  i  to  3 ;  when  it  is  30 
times,  as  I  to  4 ;  and  when  it  is  40  times,  as  i  to  6. 

Experiments  of  IV^r.  Hodgkinson  have  determined  that  an  increase  of 
strength  of  about  one  eighth  of  destructive  weight  is  obtained  by  enlargmg 
diameter  of  a  column  m  its  middle. 

In  columns  of  same  thickness,  strength  is  inversely  proportional  to  the 

**^3  power  of  length  nearly. 

A  hollow  column,  having  a  greater  diameter  at  one  end  than  the  other, 
has  not  any  additional  strength  over  that  of  an  uniform  cylinder. 

Wrought  Iron. — Experiments  give  a  mean  crushing  stress  of  47000  lbs. 
per  sq.  inch,  and  it  will  yield  to  any  extent  with  27000  lbs.  per  sq.  inch, 
white  cast  iron  will  bear  80000  lbs.  to  produce  same  effect 

Effects.— k  wrought  bar  will  bear  a  compression  of  yfy  of  its  length,  with- 
out its  utility  being  destroyed. 

With  cast  iron,  a  pressure  beyond  27000  lbs.  per  sq.  inch  is  of  little,  if 
any,  use  in  practice. 

Glass  and  hard  Stones  have  a  crushing  strength  from  7  to  9  times  greater 
than  tensile ;  hence  an  approximate  value  of  their  crushing  strength  may  be 
obtained  from  their  tensile,  and  contrariwise. 

Various  experiments  show  that  the  capacity  of  stones,  etc.,  to  resist  effects 
of  freezing  is  a  fair  exponent  of  that  to  resist  compression. 

Seasoning. — Seasoned  woods  have  nearly  twice  crushing  strength  of  un- 
seasoned. 

JBlastio   I^imit  ooinpared   to   Crusliiiig   Resistance. 

Wrought- iron  Commerce 545 

Bessemer  steel 615 

Cast  steel - 473 


Cast  BteeL 69a 

Fagersta  steel {  -'5 


8TBBKGTH  OF  MATBBIAL6. — CBUSHINO. 


765 


Oraslilxis  Strength,  of  various  Il^aterialsy  deduced  ftaxa 
Kzperimeiits  of^MaJ.  ^^^ade,  Kodgkinson,  Ca,pt.  AleisSf 
XJ«  6«  A.«f  Stevens  Institute,  and  "by  &•  1^«  Vose* 

flecftioed  to  a  Uh\fbrM  Meetsure  of  One  Sq.  Inch, 

Cast  Iron. 


ftnmm  un  Uaxbbiau 


Gan-metal,  American. 


«t 


M 


•4 


mean. 
liOW  Mfxnr,  Na  i,  Eoglisb. 

"         Naa, 
Clyde,        Na  3, 


i4 


Cntablng 
WeighU 


Lbs. 

174803 
85000 

Z25000 

100  000 

62450 

99330 
106039 


Fkovxn  Avo  MmbbiaIm 


Clyde,  average,  English. 

Stirling,  mean  of  all,  English  .. 
^       extreme,  English  . . . . 

Extreme,  English ] 


Average  (HodgkiDSon),  English 
Blaenavon  Naa 


CnitblBC 

WdghC 


LlM. 

83000 
i2«39S 
134400 

53760 
153300 

84340 
Z09700 


W^BOCGBT  I  BOH 


American,  extrem& 


mean. 


<l    127 

•I  % 


730 
500 
040 


English 


t* 


averaga 


Xi  40 

•I    37 


900 

40000 

850 


Various  Mstals 


AInminiom  bronse,  95  oop. . . , 

Fine  brass.... •••••••... 

Cast  copper. 

Steel,  cast 

Fagersta 


<t 


129  990 
164000 
Z17000 
Z05000 
950000 
154500 


Steel,  Bessemer. . . . . 
**  "  soft. 
"  tempered...., 
"     Siemens 

Tin,  cast... 

Lead 


so  000 

66200 

335000 


15500 

7730 


'     Elastic  Crushing  Strength  of  Wrought  Iron  and  Crucible  Steel  is  equal  to  its  ten 
Bile,  of  Bessemer  Steel,  50  per  cent  of  its  transverse  strength. 


Woona 


Ash... 
Beech. 

Birch. 


Box 

Cedar,  red 

'*     seasoned ;*. 

Chestnut 

Elm 

*'  seasoned 

Hickory,  white 

LArch 


Locust 


6663 

6963 

3300 

7900 

10513 

6000 

6500 

5350 
6831 

lOOOO 

8925 

3200 

5SOO 

9  "3 

Mahogany,  Spanish. 
Maple 


Oak,  American  white. 
'^  Canadian  white.. 
"  *'        live... 


''    Englisii.. 

Pine,  pitch.... 

"     white.... 

"  yellow. . . 
Spruce,  white. 

Teak 

Walnut 


8to8 

8100 

lOOOO 

7000 

5Q82 

6850 

9500 

6484 

8947 

5500 

8000 

6000 

12  100 

6645 


Chestnut 900 

Hemlock. 600 

Pine,  white 800 


Crosawise  of  F^re, 

Pine,  Yellow- South...  1400 

*'     Oregon 1200 

Northern 1000 


(( 


Redwood 800 

Spruce 700 

White  Oak 2000 


Mmcreaae  in  Strengih  of  Cubes  of  Sandstone^  per  8g,  Inch  {under  Bloch 
of  Wo<id\  aa  Area  of  Surface  is  inci'eased.     (OenH  QiUmort^  U.  S.  A.) 


Stohb. 


T'ellow  Berea  sandstone . . 


Inchxs. 


Lbs. 
6080 


LU. 

6990 

9500 


«.5 


LlM. 

8226 


Lbt. 
8955 


10730^1x3000 


2.25 


Lb«. 
9130 
13500 


«-75 


Lbi. 

9838 

Z3200 


Lb*. 
10125 


Lb*. 
11730 


7<5b 


STRENGTH    OF  MA.TEBIAXS. — CBUBHINO. 


Stones*  Cements,  eto.    (Per  Sq.  Inch.) 


Yiwjxam  and  Matbxial. 


Basalt,  Scotcb. 
"       Welsh . 


BetOD,  N.  Y.  S.  Ck>DcretiDg  Co.  | 
Brick,  pressed | 


(I 


GIou(^ester,  Mass. . 
baril  burned. 


(( 

u 
i( 
(( 
(I 


{ 


common 

yellow-faced  burned,  Eug^ 
Stourbridge  fire  clay,  '' 
Staffordshire  blue,       " 

stock,  Kuglisb 

Farcham.  Knglish 

red,  English 

Sydney,  N.S .,.. 

Caen,  France 

Cement,  Hydraulic,  pure,  £ng.  | 

rorllaod,  sand  i 

sand  3 

3  mos 

I  sand,  3  mos 

9  mos 

I  sand,  9  mos. . . . 
12    inch   cubes,  \ 
12  mos.         [ 
I  sand  and  gravel) 

■    • 

Roman 

''       pure,  Eng 

Rosendale 

Sbeppey,  Eng 

Concrete,  lime  i,  gravel  3....  | 

Freestone,  Belleville,  N.  J 

"         Connecticut 

"         Dorchester,  Mass 

Little  Falls,  N.Y.... 

Glass,  crown 

Gneiss 

Granite,  Aberdeen,  Eng 

"        Cornish,       ♦'   

"        Dublin,         •'   

"        Newry,         *'   


(C 

(( 

(I 
(( 
t( 
i( 


(( 
(1 

i( 
(I 


it 
t( 
(i 
(( 
It 
(( 


(I 


Cruskine 
Weight. 


Lba. 

8300 

16800 

800 

I  400 

6222 

10219 

14  216* 

3630 

800 

4000 

1440 

165P 

7200 

2250 

S^oo 

808 

2228 

1543 

17000 

32000 

1280 

600 

3800 

2464 

5980 

3330 

FiapSEs  Aivp  Matbeial. 


Granite,  Patapsco,  Md.. 

Portland,  Eng. 

Quincy,  Uasa. 
Greenstone,  Irish 

Limestone 


t( 


t( 


(I 
(t 
It 


compact,  Eng. 
Uaguesian, '' 
Anglesea 
Irish 


It 
t( 


2650 


i3oo 

343 

750 

3270 

1280 

460 

775 

3522 

3319 
3069 

2991 
31000 
19600 
10760 

6339 
10  450 
12850 


Marble,  Baltimore,  Md j 

East  Chester,  N.  Y.f. . . . 

Hastings,  N.  Y 

Irish 

Italian 

**       white 

Lee,  Mass 

Montgomery  Co.,  Pa.. . . 

Statuary  

Stoclcbridge,  Mass.t 

Symington,  large 

fine  crystal 

strat^  horizontal 

Masonry,  brick,  common | 

"  ••     in  cement 

Mortar,  good 

"       lime  and  sand 


ti 
tt 
ti 
(t 
it 
tt 
tt 
tt 
tt 
It 
<< 


tc 
It 


It 


It 

tt 
II 
tt 
tt 
(t 
it 


Cnihini 
Wrtlfrlii. 


''  "        beaten... 

common 

Oolite,  Portland 

Pottery- pipe,  Chelsea 

Sandstone,  Aquia  Creek  § 

Arbroath,  Eng 

Connecticut  0 

Craigleth,  Eng. 

Derby  grit  "  

Holyh'lHiaartz,  Eng 

Seneca  IT 

Yorkshire,  Eng. 

Slate,  Irish. { 

Terra  Cotta 

Whinstone,  Scotch 

t  PoBt-offlce,  Waih.         J  City  Hall,  New  York, 
Te«t«d  by  J.  W.  ReUIy,  Ordnaac*  Dapl..  UJ3.A.        f  SmithMnian  Inititute. 


5340 

4570 

15583 

15000 

18800 

4000 

9000 

7800 

3 '30 
3600 

14000 

8057 

18  061 

i39'7 
18941 
17440 
12634 

9630 

2270a 

8950 

3360 
1038a 

II 156 

18248 

10 124 

500 

800 

760 

240 

460 

595 
120 

3850 
12000 

5340 
7850 

II 789 

5S25 

3 '36 

95540 

1076a 

5710 

13890 

23744 
5000 
8300 


•  Teated  by  anthor  at  Stavans  Institata,  N.  J 

§  Capitol,  Treaaury  Department^  and  ^tent  Office,  WasjiinKton^  D.  C, 

I  Crumwell,  Conn.  "  "  ....... 


Safe  l^oad   of*  Hollcw,  Oylindrioal,  and  Solid  Ooluinus. 
A.rolies,  Chords,  etc.,  of*  Caat   Iron. 


IloUmo  Columns.     Per  Sq.  Inch.    {F.  W.  Shields,  M.  I.  C.  E.) 


Length. 

Thick- 
neM. 

Load. 

Lenicth. 

Thick- 
neaa. 

20  to  24 
diam's. 

Inch. 
•375 
•5 

Lb*. 
2800 

33^ 

20  to  24 

diam's. 

Inch. 
.625 

•75 

Load. 


Lenirth. 

Thkk- 
neia. 

Load. 

25  to  30 
diam'& 

Inch. 
•375 
•5 

Lba. 

2240 

2800 

Leof^. 


25  to  30 
diam's. 


Tkiek- 
neai 


Inch. 
.625 

•75 


Load 

3360 
39* 


Solid  Ooluznns,  etc.— 3360  Ib&  persq.  inch.    {BrymL) 
.A.roUes>.~56ao  IbA.  per  sq.  incb. 


SntBHOTB  OF  MATBBIALS. — CfttTSUlNG. 


767 


Ctoot^0  And  I>o*tB.— J  inch  dldmeter  waa  not  more  than  is  didmMers  in 
length  .  2  of  breaking  weight  of  metal.  ^  uiamciere  in 

.625  inch  diameter  and  not  more  than  25  diameters  in  length  .5  of  breaking  weight 
01  metal,  and  when  more  than  25  diameters  in  length  from  .i  to  .025  of  brealcing 
weight  of  metal    {Baltimore  Bridge  Co.)  as 


"Wrouglit-iroii    Cylinders   and   Rectangular  Tubes. 


LSNOTH. 


CYUMDKKd. 

10  feet 
10 


10 


RsCTANGULilB  TUBES. 


10 

S 
«o 
io 

75 

10 


feet 

(( 


10      *' 
7.66" 

IO        '* 


> 


J 


}intemal 
dlaphng'4 


ExtetDCl 
Diameter. 


Ins. 

1-495 
2.49 

6.366 


4-x 
41 
4-1 

4-25 
425 

8.4 

8.1 
8.Z 
8.1 
8.1 


Intern  «1 
Diameter. 


X 
X 
X 
X 
X 

X 

X 
X 
X 
X 


Ina. 

1.292 
2.275 
6.106 


4X 
41 
4.1 

425 
425 

425 

8.1 
8.x 
8.1 
8.x 


Thicknesa. 


Ins. 

.1 

.107 

•13 


•03 
•03 
.06 

•134 

•134 
f.26 

(.126 

.06 

.06 

.0637 

.0637 


Area. 


Sq.  Ins. 

•444 
.804 

2-547 

.504 

•504 
1.02 

2-395 
2-395 

6.89 

2.07 
2.07 
3551 
3-55' 


Crashing  Weight 
per  Sq.  Inch. 


Lba. 

1466X 
29779 
35886 

X0980 

"514 
1926X 

21585 
33203 

29981 

13276 

13300 
19732 
33208 


Strengtli  per  Sq.  Incli  of  l^-Iiicli   Cubes  under  Blocks 

of  ^Vood.    {GenH  GiUmore,  U.  A  A.) 


Sur/acei  Worked  to  a  Clear  Bed. 


Grakitb. 

Staten  Island  bind . 

Maine 

Qnincy,  dark 

"       light 

Westchester  Co. ,  N.  Y 

Millstone  Point,  Conn 

New  London,  Conn 

Richmond,  Va. 

•*  "  gray 

Cape  Ann,  Mass { 

Westerly,  R.  L,  gray. 

Fall  River,  Mass. ,  gray 

Garrisons,  Hudson  Riverf gray. , 

Dulath,  Minn.,  dark 

Keene,  N.  H.,  bluish  gray 

Used  In  Central  Park,  N.  Y.,  red 

Jersey  City,  N.  J.,  soap 

Passaic  Co.,     "     gray 


[^MKSTO!^. 

Glen's  Falls,  N.Y 

Lake  Champlain,  N.  Y. 

Cant^oharie,  N.  Y 

Kingston,         **    

Garrisons,        "    

Marblehead,  O. ,  white 

Joliet,  IlL,  white 

Ume  Island,  Mich.,  drab . . . .  { 

Bay,  Wla ,  blaisb  drab 


22250 
X5000 

X7750 
14750 

18250 

16 187 
12500 

21  250 
14  100 
12423 
19500 

"4  937 
15937 
13370 
«7  75o 
1287s 
17500 
20750 
24040 


II 475 
25000 

20700 
*39oo 
18500 
12600 
X6900 
xSooo 
25000 
2x500 


Limestone. 

Bardstown,  Ky.,  dark 

Cooper  Co.,  Mo.,  dark  dttlb. ... 

Erie  Co.,  N.Y.,  blue 

Caen,  Franoe , 

Marblb. 

East  Chester,  N.  Y , 

Italian,  common 

Dorset,  Vt 

Mill  Creek,  111.,  drab 

North  Bay,  Wis. ,  drab 

SANnSTONB. 

Little  Falls,  N.  Y. ,  brown 

Beikrville,  N.  J.,  gray 

Middletown,  Conn.,  brown. . . . . 

Haverstraw,  N.  Y.,  red. , . . 

Medina,  N.  Y.,  pink 

Berea,  0.,  drab { 


Vermillion,  0. ,  drab 

Fond  du  I^c,  Wia,  purple 

Marqoelte,  M  icb. ,        "     

Seneca,  O.,  red  brown 

Cleveland,  O.,  olive  green 

Albion,  N.  Y.,  brmm 

Kasota,  Minn. ,  pink 

Fontenac, Minn.,  lipht  haff. . ... 

Craigleth,  Edinburgh 

Dorchester,  N.  B.,  freestone. . . . 

Massillon,  O. ,  yellow  drab 

Warrendtmrg,  Xc,  MoMb  drab. 


lbs. 

16250 
6650 

12250 
365c 


13504 

13062 

7612 

9687 

20025 


9850 

XI  700 

6950 

4350 

17725 
7af3© 

10390 

8850 
6250 

7450 
9687 
6800 
«3  5oo 
X0700 
6250 

X2  000 

?i5o 
750 
5000 


768  STRENGTH    OF   MATSBIALS. CRUSHING. 

To   Coznpute   Crusliing  'Weiglit  of*  Coliizxixi.s« 

Deduced  by  Mr.  L.  D.  B.  Gordon  from,  Results  of  Experiments  of  various  AtUhors 

METALB. 
Cast   Iron.    {Hodgldnson.) 
SUid  or  UoUow. 
Round,  — ^ — 5-=  W.     Reotetngtilar,     ^   ^^  =  W, 

1+'"-  i+  — 

400  5G0 

For  L,  T,  U,  +,  etc.,  put    '^\-    {Unwm). 


900 
""Wrouglit   Iron.    {Stoneif.) 

SoUd  or  Hollow. 

16  a  x6 «         __ 

Round, =-  =  W.      Rectangular, =  w 

,    r*  ,    ra 


2400  7000 

steel.    (Baker.) 

Solid — Strong  steeL 

Round,  —=zW.      Rectangular, — = ^  =  W. 

goo                                                           1000 
Solid.— mid  SteeL 
30  a                                                       30  a 
Round, Za"  —  ^'      Rectangular, ;:2"="* 

1400  '  2480 

a  representing  area  of  section  of  metal  in  sq.  ins.,  r  ratio  of  length  to  leeut  extemai 
diameter  or  side,  in  like  terms^  atid  W  crushing  weight  in  tons. 

iLtutsTRATioN.— What  Is  the  crushing  weight  of  a  hollow  cylindrical  column  M 
cast  iron,  10  ins.  in  diameter,  20  feet  in  length,  and  i  inch  in  thickness? 


20  X  12 


a  =  area  of  10  ins.  —  area  of  10  —  1  x  2  =  28.28  ins.       r  = =34,  and  24* 

36X28.28       1018.08  ^  ^     ,^'° 

=  576.       Then,  ^2 ■—=— =417.25  fotu  =  934 640  26«. 

.576        I +  1-44 

400 
Safe   T^oads.— Cast  Iron,  one  fifth.    Wrought  Iron  or  Steel,  one  fourth. 

WOODS.     (C.  Shaler  Smith.) 

C  * ^         C  representing  coefficient  of  material^  a  area  of  sedion 

',  f  yT^ in  sq.  ins. ,  I  length,  and  d  diameter  or  least  side^  both  in 

I  -|-  I  —  I  X  .004  Wee  terms,  and  W  crushing  weight  in  lbs. 

CoefBcients.*    For  Crushing  Stress  per  Sq.  Inch  of  Section. 

Hemlock 3100  I  White  Pine 3500  I  Georgia' Pine. 5000 

Spruce 3500  I  Yellow  Pine. 5000  |  Oak,  White. 6000 

{Hodgkinson.) 

Ash 9000  I  Beech 7050  I  Elm 7000 

<^   Canadian 7000  |  Cedar. 5100)     **    rock ....toooo 

Illustratiox. — ^Assume  a  Yellow-pine  column  10  in&  square  and  la  tL  in  lengtlii 

5000  X  »o'  tJOOOOO  ,. 

—  — -. =- =  373373  *ft«- 

/12  X  i2\  =  1 4- 207.36  X  .004 

Safe  Juoad.*    One  fifth.       {J>epartment  of  Buildings,  Oitiy  qf  New  York.) 


STTRENOTII    01"   MATKE1AL8. — CB08HING. 


769 


To   Compute   Safe  Xioad  of  Columns. 


Ca«t   Iron. 
Hound  or 
Hectaiisular 
Solid  or  Hollow. 


)  80000  < 


=w. 


"Wrouglit   Iron. 

40000  a 


=  W 


For  Mild  Steel  put  48  000,  and  for  Strong  or  Hard  put  6000a 
a  representing  area  of  gection  in  sq.  ins.^  I  length  of  column  in  ins.  ^  r  radim  oj 
Gyraiion  =U~,  I  moment  of  Inertia  (see  p.  819),  C  coefficient,  and  W  safe  load  in  Ws. 


Coefficients. 


Cast  Iron 

Wrought  Iron. 

Steel,  Mild.... 

0o.    Strong.. 


Round. 


Solid. 


.000164 
.000047 

—  .000022 

—  .000053 

Iu.c0rRATioN.-~Wbat  is  the  safe  load  for  a  Cylindrical  and  Hollow  Cast-iron  col 
amn,  10  ina  in  external  diameter,  8  ins.  internal,  and  20  feet  in  length  f 


Hollow. 


.000272 
.000059 

—  .000035 

—  .000087 


Rkctakoular. 


Solid. 


.000189 
.000049 

—  .000033 

—  .000096 


Hollovr. 


.000267 
.000047 

—  .000081 

—  .000155 


Area=28.28»g.  in*.  I  =  5* -4*  X  .7854  =  289.8.  r=  /^  =  3.22. 

V  28.28 

80000X28.28 2  262  400 


5x[x+(i^)x.cx)0  27]       5X[.+555oX.ooo27] 


=  i8z  100  lbs. 


2.  Assume  a  aolfd  column  of  Strong  Steel  of  like  diameter  and  15  feet  in  length. 

Area  =  78. 54  sq.  ins. ,  and  r  =  2. 5. 

78.54x60000  4712400  4712400 

r~~ —  = ■_ ■  —  =  — ^ — - —  =  1 624  965 

^x[.+(if^yX-.<»0053]       4X[.v,5.84X-.«x>053]       ^X'*'  &'■ 

For  Relative  Value  ot  various  Woods  and  Comparison  of  Long  and  Short  Col- 
umns, see  page  976.   ~ 

Weiglit  loorne  -writli  Safety  "by  Solid.  Cast-iron  Columns. 

/»  xooo  Lbs.— {New  Jersey  Steel  and  Iron  Co.) 


Lenfftb. 

2 

..V 

44 

Ins. 

I02 

184 

Feet. 

Int. 

5 

12.4 

6 

9-4 

36 

88 

164 

I 

7.2 

30 

76 

146 

— 

24 

66 

J  30 

9 

— 

20 

56 

"4 

zo 

— 

18 

4» 

Z02 

Z2 

— 

.18 

80 

»4 

— 

— 

28 

64 

»6  . 

— 

— 

— 

52 

x8 

— 

— 

— 

44 

30 

— 

— 

— 

— 

DiAMKTVK. 

6  '  7 

8 

9 

10 

II 

12 

»3 

luB.   Ins. 

Ins. 
560 

Ins.- 
728 

Int. 

916 
884 

Ins. 

Ins. 

Ins. 

288  414 

1126 

1354 

— 

264  386 

532 

698 

1082 

1320 

1570 

242  360 

502 

660 

850 

1056 

1282 

1530 

218  332 

470 

630 

812 

1016 

Z240 

i486 

iqS  I  306 
180  282 

440 

596 

774 

974 

1 196 

1440 

410 

560 

658 

932 

1152 

1392 

136  238 

354 

494 

846 

1056 

1292 

122 

200 

304 

432 

586 

774 

966 
878 

1 192 

ZOO 

170 

262 

378 

520 

686 

1094 

84 

144 

226 

333 

462 

616 

796 

1000 

72 

Z24 

196 

292 

410 

552 

720 

912 

»4 
Ins. 


Ins. 


1798  I  2086 


17541 

1706 

1656 

1550 

Z440 

X332 
1228 

1130 


2040 
1992 
1040 
1828 
1712 

1596 
Z482 

1372 


VoT  Tnlies   or  Hollo-w   Columns. 

Subtract  weight  that  may  be  borne  by  a  column,  of  diameter  of  internal 
diameter  of  tuue  from  external  diameter,  and  remainder  will  give  wei^^Iit 
that  may  be  borne.  Thickness  of  metal  should  not  be  less  than  one  twelfth 
diameter  of  column. 

ILLDSTRATTOR. — Required  the  safe  load  of  a  solid  cast-iron  column  6  ins.  in  diam- 
eter und  20  feet  in  length. 

UAder  6  and  in  a  line  with  20  is  72,  which  x  1000  =  72  000  lbs. 

NoTX.— This  is  about  one  sixth  of  destruQtive  weight 

3T 


J  JO         6TRBNGTH   OF  MATJBBIAI^. — DEFLECTION. 

DBFLBCTIOK. 

X>efieotiozi  ojf  Sars,  IB  earns,  GUrders,  etc. 

Experiments  of  Barlow  upon  deflection  of  wood  battens  detenniued, 
that  deflection  of  a  beam  from  a  transverse  strain,  varied  directly  «s  cub< 
of  length  and  inversely  as  breadth  and  qube  of  depth,  and  that  with 
like  beams  and  within  limits  of  elasticity  it  was  directly  as  the  weight. 

In  bars,  beams,  etc.,  of  an  elastic  material,  and  having  great  length  com- 
pared to  their  depth,  deductions  of  Barlow  will  apply  with  sufficient  accu- 
racy for  all  practical  purposes ;  but  in  consequence  of  varied  proportions  of 
depth  to  length,  of  varied  character  of  materials,  of  irregular  resistance  of 
beams  constructed  with  scarphs,  trusses,  or  riveted  plates,  and  of  unequal 
deflection  at  initial  and  ultimate  strains,  it  is  impracticable  to  deduce  any 
exact  laws  regarding  degrees  of  deflection  of  different  and  dissimilar  figurei 
and  proportions. 

From  an  experiment  of  Mr.  Tredgeld  it  was  shown  that  deflection  of  cast 
ircMi  is  exactly  proportionate  to  load  uutii  stress  reaches  a  certain  magnitude^ 
.when  it  becomes  irregular. 

In  experiments  of  Hodgkinson,  it  was  further  shown  that  sets  from  de- 
flections were  very  nearly  as  squares  of  deflections. 

In  a  rectangular  bar,  beam,  etc.,  position  of  neutral  axis  is  in  its  centre, 
and  it  is  not  sensibly  altered  by  variations  in  amount  of  strain  applied.  In 
bars,  beams,  etc.,  of  east  and  wrought  iron,  position  of  neutral  axis  varies  in 
same  beam,  and  is  only  fixed  while  elasticity  of  beam  is  perfect  When  a 
bar,  beam,  etc.,  is  bent  so  as  to  injure  its  elasticitv,  neutral  line,  changes,  and 
continues  to  change  during  loading  of  beam,  untQ  its  elasticity  is  destroyed. 

When  bars,  beams,  etc.,  are  of  same  length,  deflection  of  one,  weight  being 
suspended  from  one  end,  compared  with  that  of  a  beam  Uniformlxi  Loaded, 
is  as  8  to  3 ;  and  when  bars,  etc.,  are  supported  at  both  ends,  deflection  in  like 
case  is  as  5  to  8.  Whence,  if  a  bar,  etc.,  is  in  first  case  supported  in  middle, 
and  ends  permitted  to  deflect,  and  in  second,  ends  supported,  and  middle 
permitted  to  descend,  deflection  in  the  two  cases  is  as  3  to  5. 

Of  three  equal  and  similar  bars  or  beams,  one  inclined  npward,  one  down- 
ward, at  same  an^le,  and  the  other  horizontal,  that  which  nas  its  an^le  up- 
ward is  weakest,  the  one  which  declines  is  strongest,  and  the  one  horiz<Hital 
is  a  mean  between  the-two. 

When  a  bar,  beam,  etc.,  is  Uniformly  Loadedf  deflection  is  as  weight,  and 
approximately  as  cube  of  length«or  as  square  of  length ;  and  element  of  de' 
flection  and  strain  upon  beam,  weight  being  the  same,  will  be  but  half  of  that 
when  weight  is  suspended  from  one  end. 

Deflection  of  a  bar,  beam,  etc..  Fixed  at  one  End^  and  Locuied  at  other, 
compared  to  that  of  a  beam  of  twice  length.  Supported  at  both  Ends,  and 
Loaded  in  Muldle,  strain  being  same,  is  as  2  to  i ;  and  when  length  and 
loads  are  same,  deflection  will  be  as  16  to  i,  for  strain  will  be  four  times 
greater  on  beam  fixed  at  one  end  than  on  one  supported  at  both  ends ;  there- 
&re,  all  other  things  being  same,  element  of  deflection  will  be  four  times 
greater ;  also,  as  deflection  is  as  element  of  deflection  into  square  of  length, 
then,  as  lengths  at  which  weights  are  borne  in  their  cases  are  as  i  to  2,  de* 

flection  is  as  i :  2^  x  4  =  i  to  16. 

Deflection  of  a  bar,  beam,  etc.,  having  section  of  a  triangle,  and  supported 
at  its  ends,  is  .33  greater  when  edge  of  angle  is  up  than  when  it  is  down. 

In  order  to  counteract  deflection  of  a  beam,  etc.,  under  stress  of  its  load, 
where  a  horizontal  surface  is  required,  it  should  be  cambered  on  its  upper 
surface,  equal  to  computed  deflection. 


6TBENGTH  Oy  MATSBIAJ.B. — DBFLJJCTION.  77 1 

8qf€  D^cfioH,— One  fortieth  of  an  inch  for  each  foot  of  span,  with  a 
factor  of  safety  for  load  of  .33  of  destructive  weight  =  Y^m  hut  for  ordinary 
loads  and  purposes, 

Caa  Iron,  Yihu  to  ttAjt  •»  »nd  Wrought  Iron,  t  At  to  ipfViy  or  y^j 
after  heam,  etc.,  has  hecoiue  set. 

When  Length  is  uniform,  with  same  we!<;ht,  deflection  is  inversely  as 
breadth  and  square  of  depth  into  element  of  deflection^  which  is  inversely  as 
depth.  Hence,  other  things  being  equal,  deflection  will  vary  inversely  as 
breadth  and  cube  of  depth. 

lLLuaTBATio>.~-D6lleetioDB  of  two  pine  battens,  of  UDifurm  breadth  and  depth,  add 
equally  loaded,  but  of  lengths  of  3  aud  6  feet,  were  as  i  to  7.8. 

Deflection  of  difierent  bars,  beams,  etc.,  arising  from  their  own  weight, 
having  their  several  dimensions  proportional,  wiU  be  as  square  of  either  of 
their  like  dimensions. 

NoTK.—  In  construction  of  models  on  a  scule  intended  to  be  executed  in  Aill  di- 
mensions, this  result  should  be  kept  in  view. 

When  a  continuous  girder,  uniformly  loaded,  is  supported  at  three  points 
by  two  equal  spans,  middle  portion  is  deflected  downwards  over  middle  bear- 
iiig,  and  it  sustains  by  suspension  the  extreme  portions,  which  also  have  a 
bearing  on  outer  bearings.  Middle  portion  is,  by  deflection,  convex  up- 
wards, and  outer  portions  are  concave  upwards;  and  there  is  a  point  of 
"contrary  flexure,  where  curvature  is  reversed,  being  at  junction  of  con- 
vex and  concave  curves,  at  each  side  of  middle  bearing.  This  point  is  dis- 
tant from  middle  bearing,  on  each  side,  one  fourth  of  span.  Of  remaining 
three  fourths  of  each  span,  a  half  is  borne  by  suspension  by  middle  portion, 
and  a  half  is  supported  by  abutment.  Hence,  distribution  of  load  on  bear- 
ings is  easily  computed,  as  given  above.  Deflection  of  each  span  is  to  that 
at  an  inde|)endent  beam  of  same  length  of  span  as  2  to  5, 

In  a  beam  of  three  equal  spans,  deflection  at  middle  of  either  of  side  spans 
is  to  that  of  an  independent  beam  as  13  to  25. 

In  a  long  continuous  beam,  supported  at  regular  intervals,  deflection  of 
each  span  is  to  that  of  an  independent  beam  of  one  span  as  i  to  5. 

Cylinder. — If  a  bar  or  beam  is  cylindrical.  Barlow  gives  the  deflection  1.7 
times  that  of  a  square  beam,  other  things  being  equal ;  D.  K.  Clark  puts  it 
at  1.47. 

Korxnulas  tov  X>eAeotloxi  of  Seams  of  Heotangular  Sec- 
tion, etc. 

f'^^Loa.UdinMid^   -^  =  D.    Lo<uUa  Uniformly.  J^^^}^  =  n 

Both  in        ,  n..  ^       2TOnW      _ 

End,.)  <t<«^<^P<n«L     ^jj^3c  =  D. 

SuppoHed  at  Both  Ends, 

Loaded  in  Middle,     -Jl^--.-l).      Loaded  Uniformly.     „     ^!\^,  ^  =  D. 

m^  n^  W 
Loaded  at  any  one  Point.      . .  .--^  =c  D. 

Supported  (n  Middle. 

■?  n  W 
End»  Loaded  Uniformly.      — -^  ^  ^  ,-,-==3  0. 

5  X  16  6  d3  c 

{  representing  length  infeH^  b  breadth^  and  J  depth,  both  in  in*.,  W  weight  or  stress 
in  lbs.,  m  and  n-dii^nces  of  weight  between  supports,  C  a  constant,  and  I)  dejlection 
ffitnc 


772  STEBNGTH    OF   MATERlALS.-^DEPLKCTION. 

Deflect  ion    of*  Beams    or    Sairs    of  l%ectan.gula.T* 

tSection.. 

Xo  Compute  IDefleotion.  of*  a  R.eotangular  Beain  ox*  Sap. 

Supported  at  Both  Ends.    Loaded  in  Middle, 

CAST   IRON. 
13  W 

Rectangular  Beams.    -^^ r-Ta  =  D.    Cylindrical.    For  36000  pat  34000. 

36000  Ott^ 

I  representing  length  in  feet^  b  and  d  in  inches. 

Illustration.— Assume  a  rectangular  bar  of  cast  iron,  i  inch  square  and  loaded 
nrith  224  lbs.,  4.5  feet  between  its  supports. 

224  X  4. 53     ^  !^  ^    67  incK 
36  000  X  I  X  1 3       30  000 
By  actual  experiment  of  Mr,  Hodgkinson  the  deflection  waa  .561  inch. 

WROUGHT   IRON. 

Rectangular  Beams. r- -  =  D.    Cylindrical.    For  60000  put  4200a 

60  000  o  a3  ^ 

WOODS. 
13  W 

=  D.     I  representing  length  in  inciies,  and  W  weight  in  tons. 


bd3G 

Mean  <)fLa*lett-s,  Barlow^  etc 


c 

Ash,  Canadian 1476 

"    Eug 2722 

Beech 2418 

Blue  Gum 2559 

Elm 1227 

Fir,  Dantzic 2490 

'*    Riga 2920 

Greenheart 1888 


c 

Iron-wood 4228 

Larch 2100 

Mahogany,  Honduras  21 18 
^^  Mexican.  3608 
'^         Spanish..  3360 

Oak,  Baltimore. 2761 

''    Canadian 3445 

"    Eng 1848 


c 

Oak,  French 2656 

<^    white 2x14 

Pitch  pine 2968 

Red      "    2434 

Rock-elm 2319 

Spruce. 3300 

"     Amer 2669 

Yellow  pine 2084 


Illustration. — What  is  the  deflection  of  a  floor  beam  of  Yellow  pine,  3  by  19  io&, 
13  feet  between  its  supports,  under  a  uniformly  distributed  load  of  3000  lb&? 

8   6  (/J  C  '  8  X  3  X  123  X  2084      86  427  848 

8X3X  i2''X  2084  X. 216       18668  415  , 

■ — := =1.25  tons. 

5X2  985  984  14  929  920 

*  %  for  being  uniformly  distributed. 

By  a  test  of  a  like  beam,  the  deflection  waa  .2Z3S' 

13  "W 

For  Cylindrical  Beams  deduct  one-third  fi*om  these  constants,  or 3t>i  =  D. 

3.1404  c 

For    Torsional    Defleotiou    of*  Iron    Sliaft.    (/>.  K.  Clark.) 

W  rl  Vf  r  I 

Cast  Iron,  ■ ,  =  I).  .  Wrought  Iron,  ■ ,^  =  D. 

644  d4  '  o  .  ^^^^  ^4 

W  in  tons  and  r  radius  or  distance  of  applied  power. 

Deflection    of*  Continuous    Oirders    or    Beams. 

Beams  of  Uniform  Dimensions^  Supported  at  Three  or  More  Bearingu, 

{D.  K.  Clark.) 
I.  Two  Equal  Spans  or  3  Bearings. 
Weight  on  ist  and  3d  hearings . 375  W  I 
'*      "  2d  bearing =  i.25W/ 


2.  Three  Equal.  Spans  or  4  Bearinffs. 
Weight  on  ist  and  4th  bearing  =  .4  W  I 
♦'       "  2d    "3d       ''       =1.1  W I 


bearing =  1.25 

3.  Four  Equal  Spans  or  5  Bearings. 

Weight  on  xst  and  5th  bearings. 39  W  I  \  Weight  on  2d  and  4th  bearing  =  1.14  W  i 

Weight  on  3d  bearing  =  .93  W  J. 


STRENGTH   OF  MATEBIALS. — DBFLBCTION. 


773 


G?o  Compnte  Adaximuxxx  i:4bad  that  may  be  'borne  by  a 

I{.ectai\su.lar   3eaxxi. 

Deflection  not  to  exceed  Assiyned  Limit  of  one  hundred  and  tioentieth  of  cm 

Inch  far  each  Foot  of  Span. 

Supported  cU  Both  Ends.     Loaded  in  Middle.  -^ 


bd* 


=  W.    6  and  d  representing  breadth  and  depth  in  ins.^  I  length  in  feel,  C  wn- 


stant^  and  W  weight  or  load  in  lb*. 

Constants. 

Oak,  white 027 

Ash,  white 03 

Pine,  pitch 033 

"    yellow. 036 


CTast  Iron 0003 

Wroaght  Iron 0021 

Hickory .0x8 

Teak. 024 


Oak,  red 039 

Hemlock .039 

Pine,  white.' 039 

Chestnut,  horse 051 


Illustration. — What  is  maximum  load  that  may  bo  borne  by  a  beam  of  white 
pine,  3  by  12  ins.,  20  fbet  between  its  supports,  and  loaded  in  Its  middle? 


G  =  .039. 


Then 


3  X  123  5,84 

-=^- =  - — ^  =  332.3  lbs, 

20'-' X. 039       15.6       ^^    ^ 


WROUGHT  IRON. 

X>efleotioix   of  "^Troiagbt-iron    Gars. 

Supported  at  Both  Ends.      Wcigkt  applied  in  Middle. 


No. 


FOBM. 


t( 


X.  American. 
2.'  English... 

3- 

4- 


II 


(( 


I 


(( 


1 

• 

1 

n 

1 

a 

3 

Feet. 

Id8. 

Ins. 

Z.83 

I 

I 

2-75 

2 

2 

a.  75 

15 

25 

2-75 

i-S 

3 

Weight  and  Deflection 


by  ActGal 
Ob*9«rvation. 

at  one  eizth 
of  Peel  rue- 

tivc  Weight. 

Lh«. 

Ia«. 

Lbd. 

lUB. 

600 

.06 

266 

.027 

4480 

.08 

1310 

022 

8960 

.104 

2128 

.025 

8960 

.088 

3800 

•037 

at  ^,th  of 

an  Incti  for 

each  Foot  of 

Span. 


Lb*. 
148 

1310 

1873 
2259 


Ina. 
•015 

.022 

.022 
.022 


3  a 


I 


n 


s 


1.29 

1.25 

.88 


To  Compute  T>eflection.  of,  and  "Weiglit  tKat  may  be  borne 
by,  a  Reotangular  Bar  or  Beam  of  'Wroughit  Iron. 

W  i»  ^  W  «3  _  600006  d3  C  D 

l^' 


=  C. 


=  D. 


«  ^^^_^^ 


6oooobd^D      "        Coocobd^C 
Illustration.— What  weight  will  a  beam  2  ina  in  breadth,  5  ins.  in  depth,  and 
15  feet  between  its  supports,  bear  with  safe  deflection  of  y|^  of  an  inch  for  each 
foot  of  space,  or  yAhi  ^^  '^  length  ? 

C  (h)m  table  =  .88.    D  =  y^^  of  15  = . la  inch. 

6ooooX2X5=*X.88x.i2      ,584000 

.5' =-3377- = •"'•"  '*•• 

D.  R.  Clark  gives  for  Elastic  deflection,  47000  for  Rectangular  bars,  and  32000  for 
Cylindrical. 

NoTi.— Deflection  of  ^J^  to  ^^  of  the  length  may  be  allowed  under  special  cir- 
cumstances; but  under  orrinary  loads  the  deflection  should  not  exceed  one  fourth 
of  these,  as  y^\j^  to  ^^. 

Practice  in  U.  S.  is  to  uUow  -1-^(^1^  after  girder  has  taken  its  permanent  set 

In  small  bridges  there  is  a  slight  increase  in  deflection  from  high  speeds^  about 
.z66  or  .  144  of  the  normal  deflection,  with  the  same  load  moving  at  slow  speed. 

In  large  girders  there  Is  no  perceptible  difference  between  the  deflection  at  high 
aad  low  npeedB. 

3T* 


774 


8TREKQTH   OF  MATERIALS. — DEFLBCTIOK. 


Deflection  of  \^t>onglit*iron   Rolled  Beatns« 

Supported  cU  Both  Ends.     Weight  applied  in  Middle. 

W/3 


70000  rf=»  (4  a  + 1.155  a') 

--sC  at  RmluoMl  Weight 
D 

and  Deflection. 

^ 

Flange*. 

Weight  tad  Deflection 

No. 

Foui. 

Width. 

Mean 
Thick- 

Web. 

Depth. 

by  Actual 
Observation. 

at  one  elxth 

of  DestractiTa 
Weiffht. 

0 

I 

Feet. 

Int. 

Inch. 

Inch. 

In*. 

Lbi. 

Ine. 

Lbo. 

Inch. 

•  1. 

10 

3 

.485 

•5 

7 

Z2000 

•4 

3800 

.127 

1.05 

2. 

3- 

it 

it 

20 
20 

4.6 
5-7 

.8 
.643 

•5 
.6 

985 
"•75 

16000 
20000 

«'«5 

.85 

6300 
8000 

•453 
•34 

^0 
.98 

Xo  Compnte  Deflection  of*,  and.  AVeisl^t  tbat  aiay  \>e  'borne 
by,  a  'Wrouglit-iron  Rolled  3eam  orUnifbfui  and  Syzxx— 
metrical  fSeotion* 

Supported  at  Both  Ends.      Weight  applied  in  Middle.     (D.  K.  Clark.) 
WZ» 


=jD, 


70000  d'  (4  a  4*  « •  »5S  <»')  D 


=  W. 


70000  jf*  (4  a-|-  "•'SS  «') 
I  representing  man  infeet^  d  reputed  depths  or  depth  less  thieknest  of  lower  flan fft 
in  ins.y  a  area  of  section  of  lower  flange^  a'  area  of  section  qf  web  for  reputed  depih 
off)eam,  both  in  sq.  ins.^  and  W  weight  or  stress  in  lbs. 

iLLrsTRATiox.-^What  18  deflectioD  of  a  wroaght-iron  rolled  beam  of  New  Jersey 
Steel  and  Iron  To.,  lo  5  ins.  in  depth,  flanges  5  by  .5  inc.,  and  width  of  web  .47 
inch,  when  loaded  In  itH  middle  with  8000  lbs.,  and  supported  over  a  span  of  20  feet? 

d  =s>  10.5  — .5 .2 10  ins.y    o  =  5  X  .5  =  2.5  »g.  tiw.,  and  a'  =  10  X  .47  —  4-7  *3-  <W. 


Then 


8000  X  2o3 


64  000  000  .    . 

— ^ =  .50  inch. 

"O7999  500 


70000 X  io»X(4X  2.5 -(-1. 155  X  4-7) 
If  weight  is  ouiforroly  distributed,  divide  by  112  500  instead  of  70000. 

A  like  beam  6  ins.  in  depth,  loaded  with  2608  Iba,  and  supported  over  a  span  of 
12  feet,  gave  by  actual  test  a  deflection  of  .3  inch,  and  by  above  formuU  it  is  also 
.3  ineh. 

NoTB. — Deflection  for  such  a  beam,  for  a  statical  weight  or  stress  of  17  100  lbs., 
unifrtmUy  distributed,  by  rules  of  N.  J.  Steel  and  Iron  Co.,  would  be  .54  inch,  which, 
with  difftereoce  iu  weights,  will  make  deflections  alike. 

Deflection    of  Wronglit-iron   Riveted   Beams. 

Supported  at  Both  Ends.     Weight  applied  in  Middle. 

W  /S 
,  — -3=r SB  C  at  Redoced  Weight  and  Deflection. 


3__  +  -   j  rfa  D 


No.  FOBM. 

Length. 

Flangee. 

Angles. 

Web. 

a 

4 

1 

Weight  and 

by  Aetna! 
Observation. 

Deflection 

at  one  alztli 

of  DeatmctiTe 

Weight. 

C 

Feet. 

Ina. 

Ins. 
2.125X2 

Inch. 

Ine. 

Lta. 

loch. 

Lbe. 

Inch. 

'1 

7 

45X 

X.28 
2.125X2 

X.29 
2X2 

•35 

1 

7 

4216 

.1 

406a 

.096 

.63 

'  T 

11.66^ 

•5      1       X.3'25 
4-5X    2X2 

.25 

12.5 

77280 

.46 

ia88o 

.075 

1.96 

A 

1 

•375 
4-5X 

X.3ia5 
a    X     a 

1 

t( 

•S.5  ' 

•5 

7    X 

•5 

X.375 
3X3 
X.4375 

•375 

x6-5 

"5584 

.«75 

19165 

.148 

3.86 

STBBNOTB   OF  HATBBIALS. — DSFLSCTION. 


775 


To  Compute  IDefleotion  of,  and  'Weiglit  tb.at  may  "be  "borxxe 
\>y,  a  Hive  ted  Beaxxi  of*  M^rouglit  Iron. 


W/3 


168000 


(^+t) 


r=D. 


d'Cf 


168000  f^      -^Z^jd^C  D 


i3 


W. 


a,  a',  and  a"  representing  areas  of  upper  and  Unoer  flanges  with  their  angle  pieces^ 
and  ofwebfnr  its  entire  dq^lk,  all  in  sq.  ins. 

NoTK. — If  tliare  are  not  any  flanges,  as  in  No.  z,  angle  pieces  alone  are  to  be  eomputed  for  flange 


Illustration.— What  weight  will  a  riveted  and  flanged  beam  of  following  dimen- 
sions sustain,  at  a  distance  between  its  supports  of  25  feet,  and  at  a  safe  deflection 
of.  2  inch  or  j^jf  of  its  length? 

Topflange 6X-5^.     |     Web sins. 

Bottomflauge 6X.5"       |     Depth 17      " 

Angles 2.25  X  225  X. 5  ins. 

a  and  a'  each  =  6  x  .5  =  3  +  2.25-1-2.25— .5  x  .5  X  2  =  7  sq.  ins. 
a"  = .  5  X  17  =  8. 5  <9.  ins.    C,  as  per  No.  a,=  .43,  but  inasmuch  as  flanges  in  this 
are  much  heavier,  assume  .5. 


168000 


Then 


C4^+^) 


i7'X.2X.5 


«5' 


=  44303700^  ,, 

15625 


Strength  of  a  Riveted  beam  compared  to  a  Solid  beam  is  as  x  to  1.5,  while  for 
equal  weights  its  deflection  is  1.5  to  i. 


6. 
7- 


O 
0 


Tu."bvilar  O-irders.    "Wrouglit   Iroxi« 
Supported  ai  Both  Ends.     Weight  apj 


Ex- 
ternal. 

Ins. 

3 

24 
24 

35-75 
12 


Ho. 

Smenou 

• 

X. 

□ 

Thickness 

.03  inch 

3. 

3- 

top 
bottom 

.525  " 
.372  "  ) 
.244  " 

sides        .125  '* 
"    Thickness  .75    " 


thickness  .0375" 


0416" 
.143  " 


H 

n 

Dei 

Inter- 
nal. 

Feet. 

Ins. 

Ins. 

3-75 

1.9 

2.94 

30 

'5-5 

22.95 

30 

16 

23.28 

45 

24 

34.25 

»7 

12 

11.925 

17 
«7 

9- 25 

I  925 

13-535 
14-714 

13.62 
IS 


d  in  Mi 

Iddle. 

1 

• 

g 
t 

2 

Lbs. 

"Ins. 

Inch. 

448 

.1 

.03 

33*85 

-56 

•24 

32538 

X.IZ 

•24 

128850 

1.85 

.36 

9  755 

-6s 

.136 

2262 
16800 

.6a* 
1.39* 

.136 
.136 

o 
I 


^ 


Q 
m 

IS 


C 

288 

473 
224 
362 
62.8 


47-9 
119 


*  Destmetlve  welgiit. 


To  Compute   Deflection,    of,  and  AVelgHt    tliat   may  "bo 
'bori»e  bjr,  a  WrousUt^iron   TiibYilar  Gl-irder. 


16  ft  d*  C  D 


=  W. 


W/» 


=  0. 


Illustkation. — What  weight  may  be  safely  borne  by  a  wrought-iron  tube,  alike 
to  Na  3  in  preceding  table,  for  a  length  of  jo  feet,  and  a  deflection  of  .32  inch  7 

16  X  16  X  243  X  224  X  24  _  190 253 629  _ 

ao3  """        QTrwk  ' 


30 


27000 


rUmged  Rails, 
Deflection  of  Iron  and  Steel  Flanged  Rails  within  their  elastic  limit,  compared 
with  their  transverse  strength,  is  as  17  to  ao,  and  with  double-headed  it  is  as  n  to  a^ 


776 


STBENGTH   OF  MATEBIALS. — DEFLECTION. 


RAILS. 

Supported  at  Both  Ends.     Weight  applied  in  Middle. 

Iron. 


Na  FoBM. 

Head. 

Bottom. 

Weight 
YaJd. 

Feet. 

Ills. 

Ins. 

Lbs. 

'    I 

2.7s 

2.25X1 

2.25X1 

60 

a.        " 
3-        " 

4-5 
5 

2.3  Xi 
2.3  Xi 

2.3  Xi 
2.3  Xi 

55 
82 

^  T 

2.75 

3.5  X  .8 

2.25X1 

60 

=  X 

2.58 

2.23X1 

3-5  X  .6 

57 

Ins. 

4-5 

4.5 

5-4 

4 
3-5 


Area. 


Sq.  Ins. 

6.166 

6.68 
8.25 

6.7 
3-8S 


Observed 
Weight  and 

Dedection. 


OeetmetlYW 

Weight 

and 

Deflection. 


Lbs. 

»3440 

II200 
25760 

II  200 


II  300 


Ins. 

.034 

.11 
.2 

•035 


Lbs. 
26680 

24640 
51520 

26680 


.097    20160 


.065 

.204 
378 

.065 


.138 


Steel. 


No.  FOKM . 

Feet. 

1 

Ins. 

Bottom. 

•*• 

•  a.  < 
^^ 

Lbs. 

Ins. 

-r 

5 

— 

— 

78 

7.  " 

Bessemer. 

3.62 

*"" 

— 

86 

^J. 

5 

2-5 

,«-375X:|^ 

84 

Web. 

Dept 

Centres 

of 
Heads. 

h. 

e 

3 

Ins. 

Area. 

Observed 

Weight  and 
Deilection. 

Deatmetlva 
Weight 

Deflection. 

Inch. 

Ins. 

S.Ins. 

Lbs. 

In. 

Lbs. 

Inch. 

•75 

4-2 

5-4 

7.67 

36086 

•25 

80192 

•55 

— 

— 

5-5 

8.43 

22400 

.14 

26680 

.165 

.65 

3-37 

4-5 

8.24 

27290 

.24 

27290 

.24 

70  Compute  X)efleotioix  of*  I^oii^ble-headed.  Rails  'witla.in 

SlastiQ   ILiimit.    {D.K.Clark.) 

Suppoi'ted  at  Both  Ends.     Weight  applied  at  Middle, 

IRON. 
=  D.    a  representing  area  of  one  head^  less  portion  per^. 


W/8 


57ooo(4ad'=+i.i55<d3) 

taining  to  toeb^  d  whole  depth  of  rail,  d'  vertical  distance  between  centres  of  heads, 
t  thicJmess  of  web,  all  in  ins.^l  length  in  feet,  and  W  weight  in  lbs. 

STEEL. 

F^r  57  000  put  67  400. 

iLLUSTRATiov.^Tftke  oase  No.  3  (Iron),  in  preceding  table,  with  a  weight  of  36000 
Iba ;  what  will  be  its  deflection  between  bearings  5  feet  aiiartf 

0  =  1.911.  •d'  =  4.2.    £{  =  5.4.    {  =  .82. 

26000X5*  3250000 


Then 


57  000  (4  X  1.9"  X  4.2'  + 1.155  X  .82  X  S-4')      S7000X  284 


=  .a  inch. 


To  Compute  Deflection  of  Iron  and  Steel  Rails  of*  XJix— 
Bymmetrioal   Section   -witliin    Slastio   Limits. 

« 

Elastic  Deflection  of  Steel  Flanged  Rails  of  Metropolitan  Railway  of  London,  aa 
ftetermined  by  Mr.  Kirkaldy,  at  a  span  of  5  feet,  and  loaded  in  middle',  was  .03  Incb 
*  ton.     (See  Manual  ofD.  K.  Clar.k,  pp.  667-670.) 


6TKEN6TH  OF  MAT2:BIALS. — ^DBFLECTIOK. 


m 


CAST  IRON. 

Oefleotioxi  of  Reotangrular  IBars  and.  Seams  of*  various 
Seotions,  etc.,  "by  U,  S.  Ordnance  Corps,  Barlo->^» 
Hoclglziuson,  and   Cubitt. 

Supported  at  Both  End*.     Weight  appKed  in  Middle. 


FOBM. 


z.  American. ... 

3.EDgli8lL '' 

3.      **      " 

4-   "  I 

5-      "      [] 


Length  of  Bear- 
ing. 

• 

1 

1 

Feet. 

Ins. 

Ins. 

1.66 

2 

2 

A 

Z 

4 

X 

4 

4-5 

3 

1 

4-5 

z 

{'1 

Weight  and  Deflection. 


By  Actual 
Omervatlon. 


Lbs. 
5000 

212 

1008 

1 120 

2231 


Ins. 
.036 

•33 
•4 

t4a 
•51 


At  one  sixth 

of  Bniftking 

WeiKbt. 


Lbs. 
1666 

80 

5333 

ai5 

422 


Ins. 

.012 

■  12 
2.1  ■ 

.27 
.1 


At  ^th  of 

an  men  for 

each  foot  of 

span. 


Lbs. 
1805 

22 

3370 

30 

156 


Ins. 
.013 

•033 
1-33 

.037 

•037 


^"^i  II 


I 


C 

3.8Z 

4" 

389 

2.37 
2-33 


^o    Compute   33efleotioxa    of,  and    Weigrlit   that    msiy    be 
borne  by,  a  H.eotangular  Bair  or  Beam  of  Cast   Iron. 

Wi».  _  Wis  _  104006^3  CD 


=  C. 


=  D. 


W. 


zo4oo6d*D      "'         10400  &d*C  /' 

Illustration.  — What  weight  will  a  beam  2  ins.  in  breadth,  5  ins.  in  depth,  and 
16  feet  between  its  supports,  bear  with  safe  deflection  of  y-j^  of  an  inch  for  each 
toot  of  span,  or  y^i^  of  its  length  ? 
C  from  table  =:^  3. 89.     D  — .  y^  of  16  =  .  133  ins. 

10400  X  2  X  5*  "x  389  )C.i33  _  I  345  162  „ 

i6i "  "756"  "  ^^^^ 

gives  C  uniform  for  Rectangular  bars  of  2.69,  and  1.85  for  CylindrioaL 


FLAKGED  BBAMS.      Cast  Iron. 
Supported  at  Both  Endt.     Weight  applied  in  Middle. 

To  Compute  Deflection  of*,  and  "%Veiglit  tliat  may  be 
borne  by*  a  ITlanged  Beam  of  Cast  Iron  of  LTniform 
and    Syxnmetrioal   Section. 

_     ^^'  ^p  27000  da  (40-fz.i55«''')D^^ 

37000  d' (4  a  4- 1. 155  a' 2)        *  l^ 

Illitstration.— What  is  deflection  of  a  cast-iron  beam  (Hodgkinson's)  7.15  ins., 
flanges  2.6  x  -86  ins.  and  5  X  z.6  in&,  and  width  of  web  z  inch,  when  loaded  in  its 
middle  with  zi  200  lbs.,  over  a  span  of  15  feet  f 

d  =  7.z5— 1.6  =  5.55  int.,  0=  5  X  i.6±=: 8  tm.,  and  «'  =  7. zs  —  z.6  =  5.55  ini. 

11200X15^  37800000 


Then 


=  .67  ivu. 


27000X  5-55'  (4  X  8+  Z.155  X  5.55')      27000  X  30.8  (32  +  35-57) 
NoTX  z. — ^The  observed  deflection  of  this  beam  was  1.28  ins.,  at  one  sixth  of  its  de- 
structive weight  it  was  .3,  and  at  j^  of  an  inch  for  each  foot  of  span  it  wai 
.135  inch. 

3.— The  mean  ratio  of  elastic  to  destructive  stress  is  73  per  cent. 

Formulas  for  value  of  deflection  signify  that  deflection  varies  Uirectly  as  weight. 
aod  as  cube  of  length ;  and  inversely  as  breadth,  cube  of  depth,  and  coefiBcient  or 
«ta8(iclty. 


778 


8TBENGTH    OF    MATERIALS. — ^DBFLKCTION. 


Elastic  Strength  of  Beams  of  Unsymmeiricai  Section. — Elastic  strength  is 
approximately  dedacible  from  ultimate  streogth,  according  to  ordinary  ratio 
ox  one  to  the  other,  ascertained  experimentally.  Elastic 'strength  and  de- 
flection of  a  homogeneous  beam  of  any  section  is  same,  whether  in  its  nor- 
mal position  or  turned  upside  down. 

Comparative    Strength,   and    X>eflectioii   of  Cast-irozi 

Flax&sfed  Seaxxie. 


DMcriptioD  of  Beam. 


Beam  of  equal  flanges 

**  with  only  bottom  flange. 
"  **  flanges  as  1  to  2.... 
"       *•  "        1 104.... 


Comp. 
Strength, 


.58 
.72 

.63 
•73 


Description  of  Beam. 


Beam  with  flanges  as  i  to  4.5. . 
'*  *'  "  I  to  5.5.. 
"  "  '•  ito6  .. 
♦•         "         "         I  to  6  73 


Comp. 
Streairtb. 


.78 
.83 

.92 


SHAFTS. 

To   Oozxip-ute   Deflection   and   Distributed   Weight  for 

X^imit  of  Deflection. 
'\Vron.ghLt   Iron. 
DeJUction.  Weight. 


Round. 
Square. 

Bound. 
Square, 


Supported  at  Ends. 


66400  d« 
97  500  «* 


39400  d« 
58000  s* 


Round     -r-. 


Wl» 


Square. 


jBSood* 
ii6ooo<* 


and 
and 

and 
and 

and 


Fixed  at  End*. 
Vf  19 


133000  d* 


=  D. 


D. 


Snpported  at  End*. 
664  d« 


195000  s* 

Cast  Iron. 


79000  d* 


=  D. 


=  D. 


116000S* 

Steel. 

=  D. 


Wf« 


' — 7     and 


158000  d* 


=  D. 


I* 

975  «* 

394  d« 
580  «♦ 

788  d* 
«6o»* 


and 


and 


and 


and 


and 


and 


Fixed  at  Enda. 
'330  d* 

1950  «* 

790  d* 
1160  «♦ 


i« 


=  w 
=  w 

S=W. 


— Xrr-—^- 

2320  6* 


/« 


=  w. 


232  000  «♦ 

d  representing  diameter  and  a  Hde  ofshajt,  in  ins.,  I  length  bettoeen  centres  0/ bear- 
ings, in  feet,  tmd  W  weight  in  lbs. 

Deflection  of  a  Cylindrical  Shaft  from  its  Weight  alone, 
-when  Supported  at  Both  Knds. 

007  318  jrc~^'    '  rtgpresenting  length  in  feet,  d  diameter  in  ins.,  emd  C  cms- 

stant,  ranging  from  475  to  550. 

The  greatest  admissible  deflection  for  any  diameter  is  .001 67  ^=  D. 

d 

A.dn>issible  Distauoes  bet-ween  Seetrinfse.     ^.9128  dC^L 


Distance.           1 

Pimm, 
ef  Shaft. 

Wrooght 
Iron. 

Steel. 

Diam. 
of  Shaft. 

IM. 

Feet. 

Feet. 

Im. 

1 

12.27 

is.6i 

5 

9 

15.46 

15-84 

6 

3 

17.7 

18.19 

7 

4 

19.48 

20. 03 

8 

Distance. 
Wronjcht 
Iron. 


Feet. 

90.99 
22.3 
2348 
«4-55 


Steel. 


Feet. 

21.57 

22.92 

2413 

35-23 


Diam. 
of  Shaft. 


Ins. 

9 

10 

II 

X2 


Dbtanca. 
Wrought 


Iran. 


Feet. 

as- 53 
96.44 

97.3 
98.1 


StMl. 


PMi. 

97.  x8 

98.05 
28.88 


When  Bids  of  Shaft  are  rigidly  connected  at  Ends. 
Barlow  gives  D  =  .66  of  results  obteined  by  above  formula:  but  when  d«fleetioi 
of  attached  length  is  considerable,  Navier  gives  I)  ^  25  of  above. 


8TBBNQTH    OF   MATE&IALS. — ^DEFLECTION.  //Q 

X>efleotioix  of  Miill   and   Vmotory   Shafts. 
=  D.    2  representing  length  between  supports  in  ins.,  W  weight  at  middle 


6wd*C 
in  ibs.t  ^  diameter  ofihaji  in  ins.^  and  C  as/oUows : 

BesBemer steel 3800000  j   Wroagbt iron....... 3500000 

a?o   Coxnpute   X>efleotioix  oi*  a  Csrlindrioal    Sliaft. 

RuLE.*-Divide  square  of  three  times  length  In  feet  by  product  of  follow- 
ing Qmtiants  and  square  of  diameter  in  Ins.,  and  qaotient  will  give  deflection. 

Cast  iroa,  cylindrical 1500  |  Wrought  iron,  cylindrical 1980 

**      "     square 2560 1        "  '*     Square 3360 

ExAMPLB.— Length  of  a  cast-iron  cylindrical  shaft  is  30  feet,  and  its  diameter  in 
oontre  15  in& ;  what  is  its  deflection? 


30X3     _   8100   _ 


1500X15      337500 

fiPRIKOB. 
.  Flexure  of  a  spring  is  proportional  to  its  load  and  to  cube  of  its  length* 

Deflection  of  a  Carriagt  Spring* 

A  railway-carriage  spring,  consisting  of  10  plates  .3125  inch  thick,  and  j 
of  .375  inchf  length  2  leet  8  ins.,  wiJth  3  ins.,  and  camber  or  spring  6  ins., 
deflected  as  follows,  without  any  permanent  set : 
.5  ton 5  inch.  1 1.5  tona.........  z.5  ina  |  3  tons...* siaa 


a      " 1      "     |d      »' »     "   14    ••  4" 

Compression  of  an  India-rubber  Buffer  ofs  Tns.  Stroke. 

s     ton 1.3   i&&  I  2  toua 2       ins.  |   5  tons.-. a. 75  Ina 

i-Stona X.7S  •'    I3    "  2.375   "   |to    "  3 

d-enerftl  £>edudtidnB. 

D^cHon  depends  essentially,  upon  form  of  Girder,  Beam,  etc 

A  continuous  weight,  equal  to  that  a  beam,  etc.,  is  suited  to  sustain,  will 
not  cause  deflection  of  it  to  increase  unless  it  is  subjected  to  considerable 
changes  of  temperature. 

Heaviest  load  on  a  railway  girder  should  not  exceed  .x6  of  that  of  de- 
structive weight  of  girder  when  laid  on  at  rest. 

Semi-girders  or  Bcaffw.— Deflection  of  a  beam,  etc.,  fixed  at  one  end  and 
loaded  at  other,  is  32  times  that  of  same  beam  supported  at  both  ends  and 
loaded  in  middle. 

Dtjtection  consequent  upon  Velocity  o/i^arf.— Deflection  is  very  much  in- 
creased by  instantaneous  loading;  by  some  authorities  it  is  estimated  to  be 
doubled. 

Momentum  of  a  railway  train  in  deflecting  girders,  etc.,  is  greater  than 
effect  from  dead  weight  of  it,  and  deflection  increases  with  velocity. 

When  motion  is  given  to  load  on  a  beam,  eto.,  point  of  greatest  deflection 
does  not  remain  in  centre  of  beam,  eto.,  as  beams  broken  by  a  travelling  load 
are  always  fractured  at  points  beyond  their  centres,  and  often  into  several 
pieces. 

Heaviest  running  weight  that  a  bridge  is  subjected  to  is  that  of  a  loco- 
motive and  tender,  which  is  equal  to  2  tons  per  hneal  foot. 

Gurders  should  not,  under  any  oircumstiwicds,  be  deflected  to  e^tceed  tom 
Inch  to  a  foot  in  length. 


78o 


STBEK6TH    OP  MATEBIALS. — ^DEPLECTION. 


A  carriage  was  moyed  at  a  velodty  of  lo  miles  per  hour ;  deflection  was 
3  inch,  and  when  at  a  velocity  of  30  miles  deflection  was  1.5  ins. 

In  this  case,  4150  lbs.  would  have  been  destructive  weight  of  bars  if  ap- 
plied in  their  middle,  but  1778  lbs.  would  have  broken  them  if  passed  over 
them  widi  a  velocity  of  30  luilcs  per  hour. 

Relative  SHaatioity  ox"  various  Alateriald*    {TrunUmU.) 

Ash 3.9  I  Gtifitlron i     |  Pine,  white 2.4  I  Pine, pitch 3.9 

Beech 3.1 1  Elm  and  Oak..  2.9  |    ''    yellow...  2.6]  Wrought  Iron.    .86 

Cast  Iron, — Permanent  deflection  is  from  .33  to  .5  of  its  breaking  weight, 
and  deflection  should  never  exceed  .125  of  ultimate  deflection,  and  it  is  not 
permanently  affected  but  by  a  stress  approaching  if^s  destractive  weight. 

By  oxperiments  of  V.  S.  Ordnance  Corps  (Report,  1852),  set  or  permanent  deflec- 
tion was  .38  of  its  breaking  weight,  ultimate  deflecMun  .133  ins.  Deflection  for 
yj^  of  span  =  .013,  or .  I  of  ultimate  deflection. 

By  experiments  of  Mr.  Hodgkinson  (See  Rep.  of  Comm^*  on  Railtoay  Structures. 
London,  1849),  set  for  English  iron  bore  a  much  greater  proportion  to  its  breaking 
weight. 

A  beam,  etc.,  will  bend  to  .33  of  its  ultimate  deflection  with  less  than  .33 
of  its  breaking  weight,  if  it  is  laid  on  gradually,  atid  but  .16  if  laid  on 
rapidly. 

Chilled  bars  deflect  more  readily  than  unchilled. 

Results  or  Sxperimexite  on  tlxe  Sul::^eotioxi.  of*  Caat-irox& 

Sars  to  ooxxtiuvied.   Strains. 

(Jiep.  of  Commas  on  Railway  Structures^  Ix)ndon,  1849.) 

Cast-iron  bars  .subjected  to  a  regular  depression,  equal  to  deflection  due  to 
a  load  of  .33  of  their  statical  breaking  weight,  bore  10  000  successive  de- 

{)ressions,  and  when  broken  by  statical  weighty  ^ave  as  great  a  resistance  as 
ike  bars  subjected  to  a  like  deflection  by  staticieil  weight. 

Of  two  bars  subjected  to  a  deflection  equal  to  that  carried  by  half  of  their 
statical  breaking  weight,  one  broke  with  28  602  depressions,  and  the  other 
bore  30000,  and  did  not  appear  weakened  to  resist  statical  pressure. 

Hence,  Cast-iron  bars  will  not  bear  continual  applications  of  .33  of  their 
breaking  weight. 

Mr.  Tredgold,  in  his  experiments  upon  Cost  Iron,  has  shown  that  a  load  of  300 
lbs.,  suspended  from  middle  of  a  bar  i  inch  square  and  34  ins.  between  its  sup- 
ports, gaye  a  deflection  of  .16  of  an  inch,  while  elasticity  of  metal  remained  unim- 
paired. Hence  a  bar  x  inch  square  and  x  foot  in  leogtb  will  sustain  850  lbs.,  and 
retain  its  elasticity. 

Wrought  Iron, — All  rectangular  bars,  having  same  bearing,  length,  and 
loaded  in  their  centre  to  full  extent  of  their  elastic  power,  will  be  so  deflect- 
ed that  their  deflection,  being  multiplied  by  their  depth,  product  will  be  a 
constant  quantity,  whatever  may  be  their  breadth  or  other  dimensions,  pro- 
vided their  lengths  are  same. 

A  bar  of  Wrought  Iron,  2  ins.  square  and  9  feet  in  length  between  its  sup- 
ports, was  subjected  to  100 000  vibratory  depressions,  each  equal  to  deflec- 
tion due  to  a  load  of  .55  of  that  which  pormanently  injured  a  similar  bar, 
and  their  depressions  only  produced  a  permanent  set  of  J015  inch. 

Greatest  deflection  which  did  not  produce  any  permanent  set  was  due  to 
rather  more  than  .5  statical  weight,  which  permanently  injured  It. 

A  wrought-iron  box  girder,  6x6  ins.  and  9  feet  in  length,  was  subjected 
to  vibratory  depressions,  and  a  strain  corresponding  to  3762  lbs.,  repeated 
''70  timetti  did  not  produce  any  appreciable  ^flect  on  the  rivetSt 


STBENGTH   OP   MATEBIALS. — ^DEFLECTION.  78 1 

I>eflection  of  Solid  rolled  be^ms  compared  to  Riveted  beams  i9  as  i  to.  1.5. 

Wroughfc-iron  Girders  of  ordinary  construction  are  not  safe  when  sub- 
jected to  violent  impacts  or  disturbances,  with  a  load  equal  to  .33  of  their 
destructive  weight. 

Wood. — ^In  consequence  of  wood  not  being  subjected  to  weakening  by  the 
effect  of  impact,  a  factor  of  safety  of  5  for  single  pieces  is  held  to  oe  suffi- 
cient, but  for  structures,  in  consequence  of  loss  of  strength  in  its  connections, 
a  factor  of  from  8  to  10  becomes  necessary. 

AVorUing    Strength,   or    Factors    of  Safety.* 

Elastic  strength  of  materials  is,  in  general  terras,  half  of  its  ultimate  de- 
structive or  breaking  strength.  If  a  working  load  of  .5  elastic  strength,  or 
.25  of  ultimate  strength,  be  accepted,  equal  range  for  fluctuation  within 
elastic  limit  is  provided.  But,  as  bodies  of  same  material  are  not  all  uni' 
form  in  strength,  it  is  necessary  to  observe  a  lower  limit  than  .35  where 
material  is  exijosed  to  great  or  to  sudden  variations  of  load  or  stress. 

Oast  /»w».— Mr.  Stoney  recommends  .25  of  ultimate  tensile  strength,  for 
dead  weights ;  .16  for  bridge  guxlers ;  and  .125  for  crane  posts  and  machin- 
ery. In  compression,  free  from  flexure,  cast  iron  will  bear  8  tons  (17920 
lbs.)  per  sq.  inch ;  for  arches,  3  tons  (6720  lbs.)  per  sq.  inch ;  for  pillars, 
supporting  dead  loads,  .16  of  ultimate  strength;  for  piUars  subject  to 
vibration  from  machmery,  .125 ;  and  for  pillars  subject  to  shocks  from 
heavy-loaded  wagons  ancf  like,  .1,  or  even  less,  where  strength  is  exerted  in 
resistance  to  flexure. 

Wrought  Iron. — For  bars  and  plates,  5  tons  (11 200  lbs.)  per  sq.  inch  of 
net  section  is  taken  as  safe  working  tensile  stress ;  for  bar  iron  of  extra 
quality,  6  tons  (13440  lbs.).  In  compression,  where  flexure  is  prevented, 
4  tons  (8960  lbs.)  is  safe  limit ;  in  small  sizes,  3  tons  (6720  lbs.).  For  col- 
umns subject  to  shocks,  Mr.  Stoney  allows  .16  of  calculated  breaking  wei^t ; 
with  quiescent  loads,  .25.  For  machinery,  .125  to  .z  is  usually  practised; 
and  for  steam-boilers,  .25  to  .125. 

Mr.  Roebling  claims  that  long  experience  has  proved,  beyond  shadow  of 
a  doubt,  that  good  iron,  exposed  to  a  tensile  strain  not  above  .2  of  its  ulti- 
mate strength,  and  not  subject  to  strong  vibration  or  torsion,  may  be  de- 
pended upon  for  a  thousand  years. 

Sieel, — A  committee  of  British  Association  recommended  a  maximum 
working  tensile  stress  of  9  tons  (20 160  lbs.)  per  sq.  inch.  Mr.  Stoney  rec- 
ommends, for  mild  steelf  .25  of  ultimate  strength,  or  8  tons  (17020  lbs.)  per 
sq.  inch.  Limit  for  compression  must  be  regulated  very  much  by  nature  of 
steel,  and  whether  it  be  annealed  or  unanneided.  Probably  a  limit  of  9  tons 
(20 160  lbs.)  per  sq.  inch,  same  as  limit  for  tension,  would  be  safe  max- 
imum for  general  purposes.  In  absence  of  experience,  Mr.  Stoney  further 
recommends  that,  for  steel  pillars,  an  addition  not  exceeding  50  per  cent, 
should  be  made  to  safe  load  for  wrought-iron  pillars  of  same  dimensions. 

Wood, — One  tenth  of  ultimate  stress  is  aif  accepted  limit  Piles  have,  in 
some  situations,  borne  permanently  .2  of  their  ultimate  compressive  strength. 

Foundations, — According  to  Professor  Kankine,  maximum  pressure  on 
foundations  in  Arm  earth  is  from  17  to  23  lbs.  per  sq.  inch;  and,  on  rock,  it 
should  not  exceed  .125  of  its  crushing  load. 

Mcuonry,  —  Mr.  Stoney  asserts  that  working  load  on  rubble  masonry, 
brick-work,  or  concrete  rarely  exceeds  .16  of  cru&hing  weight  of  aggregate 
mass ;  and  that  this  seems  tobe  a  safe  limit.  In  an  arch,  calculated  pressure 
should  not  exceed  .05  of  crushing  pressure  of  stone. 

*  EMeBtUklly  from  Manaal  of  D.  K.  Clark,  Londoa,  1877. 


782 


STRENGTH    OF  MATBBIALS. — ^DETBUSIVE. 


Hopes, — For  round,  working  load  should  not  exceed  .14  of  ultimate  strength. 
and  tor  flat  .11. 

Dead  Load.       LhrtLoad. 

Perfect  material  and  workmanship 9  4 

Dr.  Rankine  gives    (  Good  ordinary  material  J  w!ltl .i  o  i 

following fectors:  I     and  workmanship...  |JJ[™^- -♦  *^  *  **J*° 

A  Dead  Load  is  one  that  is  laid  on  very  gradually  and  remains  fixed. 
A  Live  Load  is  one  that  is  laid  on  suddenly,  as  a  loaded  vehicle  or  train 
passing  swiftly  over  a  bridge. 

DBTBUSIVE    OB   SHBABIN6   STRENGTH. 

Detrusive  or  Shearing  Strength  of  any  body  is  directly  as  its  strength, 
or  thickness,  or  area  of  shearing  surface. 


H.e«i}lts    of  K: 


Mbtau. 


zperintieiits    upon    X>etmsive    Strength  of 
Aletala  -with,   a   Punob.. 


Diameter 

of 
Punch. 


Brass 

Cast  iron..,.*. 

Copper......... 

Steel 

**    Bessemer. 


Wrought  Iron, 


Ins. 


Thieknflw 

of 

MeUl. 


•5 
.875 

•5 


z 
a 


Ins. 
.04s 


Power 
ex«rted, 


Lbs. 
5448 


•75 

.615 
1.06 


Power  regaired  for  a 

Surface  of  Metal  of  Doe 

8q. Inch. 


Lbs. 

37000 
30000 

30000 
33300 
90000 
51800 
99400 
45000 
43900 
44300 


f  S)i3  O 

-III 

"^  S  I 

^•32 


f»  »  g 

In? 


.08  3  983 

.3  31950 

.25  34720 

{103600 
184800 

8s  870 
297400 

To  Coxnpute   Fewer  to  Piinoli  Iron»  Brass,  or  Copper. 

Rule,— Multiply  product  of  diameter  of  punch  and  thickness  of  metal  by 
150000  if  for  wrought  iron,  by  128000  if  for  brass,  and  bv  96000  if  for 
cast  iron  or  copper,  and  product  will  give  power  requind,  in  Iba. 

ExAMPLa.— What  power  is  required  to  punch  a  hole  .5  inch  In  diameter  in  a  plate 
ofbrass  ,5inchtbiok?         .5X.25Xi28ooo=t6ooolfr*. 

Coznparisoix  betvjreen.   Detrusive   aii<a   Transverse 

Strengths. 

Assuming  compression  and  abrasion  of  metal  in  application  of  a  punch  of 

one  mch  m  diameter  to  extend  to  .135  of  an  inch  beyond  diameter  of  punch, 

comparative  resistance  of  wrou«?ht  iron  to  detrusive  and  transverse  strain, 

latter  estimated  at  600  lbs.  per  sq.  inch,  for  a  bar  i  foot  in  length,  is  as  3  to  i» 


Detrusive 
Lbs. 


Spruoe 470 

Pine,  white 490 


WOODS. 

Strength,  of  ^Woods, 
Lbs. 


Pine,  pitch. . .  510  I  Ash 650 

Hemlock 540  |  Chestnut 690 


Per  Sq,  Inch. 

Lbs.  Lbs. 

Oak 780 

Locust 1180 


To  Oompute  I^eiisth  of  Surface  of  Kesistanoe  of  "W^ood 

to    If  orison  tal    Thrust. 
RuLE;--Divide  4  times  horizontal  thrust  in  lbs.  bv  product  of  breadth  of 
wood  m  ins.,  and  detrusive  resistance  per  sq.  inch  in  lbs.  in  direction  of  fibre, 
and  quotient  will  give  length  required. 

«4?M"^^"*"^''*  u".*  of  a  lifter  is  5600  lbs.,  breadth  of  tie  beam,  of  pitch  orOeorgta 
pme,  is  6  ina  ;  what  should  be  len^h  of  beyond  score  for  raOer? 

Assume  strength  510  as  above.       Then  ^^5^  _>  ''4oo  _        ^ 

,  6  X  510        3060       '"'* 


STSSNGTH   OF  MATERIALS. — DJSTSUSIYJE. 


783 


Sliearins* 
"Wrouglit    Iron. 

Resistance  to  shearing  of  American  is  about  75  per  cent.,  and  of  English 
80  per  cent.,  of  its  tensile  strength. 

Resistance  to  shearing  of  plates  and  bolts  is  not  in  a  direct  ratio.  It  ap- 
proximates to  that  uf  square  of  depth  of  former,  and  to  square  of  diameter 
of  latter. 

Results   of*  Kxperizxients   -upon.    Sliearing   StrengtU   of* 

Various   Aletals   by   I*arallel   Cutters. 

Wrought  /rofi.— Thickness  fh)m  .5  to  i  inch,  50000  Iba  per  sq.  inch. 

Made  by  Inclined  Cutters^  angle  ^  70. 


Platm. 


Brass.. 
Copfier. 
Steel. . . 


Wrought  iron. 


TkickoM*. 

Power. 

lua. 

LU. 

.05 

540 

.297 

II 196 

•24 

14930 

•5x 

I 

39 '50 
44800 

BoLn. 


Brass.. 
Copper. 
Steei... 


Wrought  iron. 


{ 


IMam. 


In*. 
i.ii 
•775 

•775 
.32 

1.142 


Power. 


Lbe. 
99700 
II  310 
28720 

3093 
35  4»o 


K.e8ult  or  Experiments  in  Shearing,  made  at  tJ.  S.  Ne^vy 
Yard,  'Wasliington,  on    '^Vrougllt-iron   Bolts. 


Diam. 

Inch. 
-5 
•75 


Mlaimam. 

Stnee. 
Mazimam. 

PerSq.Incb. 

Diun. 

Minimnm. 

Street, 

Mftziamm. 

Lbe. 

8900 

18400 

Lbe. 

9400 

19650 

Lbe. 

44  "49 

39  553 

Incb. 

.875 

I 

Lbe. 
25500 
32900 

Lbe. 
27600 
35800 

PerSq.lBck. 

Lbe! 
4»5o: 
40 


501 
708 


Mean  41 033  lbs. 


Result  of*  ICxp<eriznents  on   .87C   Inoli   Wrouslit-iron, 

Bolts.    (K  Clark.) 


Lbe. 

Single  shear 54  096 

Doable   **    46904 


Tone. 
24.15 
22.1 


Lba. 
Double  Shear  Of  two  .62S-inch  plates 
riveted  together  (one  section) 45  696 


Tensile  strength 50 176  lbs. 


Tom. 


2a4 


H.iveted  Joints. 
Elxperiments  on  strength  of  riveted  joints  showed  that  while  the  plates 
were  destroyed  with  a  stress  of  43  546  lbs.,  the  rivets  were  strained  by  a 
stress  of  39088  lbs. 

Oast   Iron. 

Resistance  to  shearing;  is  very  nearly  equal  to  its  tensile  strength.  An 
average  of  English  being  24ooo*lbs.  per  sq.  inch. 

Steel. 

Shearing  strength  of  steel  of  all  kinds  (including  Fagersta)  is  about  72  per 
cent,  of  Its  tensile  strength. 

^Treenails. 

Oak  treenails,  i  to  1.75  ins.  in  diameter,  have  an  average  shearing  strength 
of  T.8  tons  per  sq.  inch,  and  in  order  to  fully  develop  their  strength,  the  planks 
into  which  they  are  driven  should  be  3  times  their  diameter. 

'^^ood8, 

When  a  beam  or  any  piece  of  wood  is  let  in  (not  mortised)  at  an  inclina- 
tion to  another  piece,  so  that  thnist  will  bear  in  direction  of  fibres  of  beam 
that  is  cnt,  depth  of  cut  at  right  angles  to  Jibres  should  not  be  more  than  .a 
of  length  of  piece,  fibres  of  which,  by  their  cohesion,  resist  thrust. 


774 


STRENGTH   OF  MAT£BIALB. — DEFLECTIOIT. 


I>efieotlon  ot  Wfouglit-iron   Rolled  Sdatns* 

Supported  at  Both  Ends.     Weight  applied  in  Middle. 

W/3 


70000  rf*  (4  a  + 1.155  a') 

-  a  C  ai  RedncMl  Weight  aad  DeflecUon. 
D 

! 

Fliuigea. 

Weight  and  Deflection 

No. 

FOftM. 

Width. 

Mean 
Thick- 
new. 

Web. 

Depth. 

by  Actual 
Observation. 

at  one  tlxth 

of  Deelractive 

Weight. 

0 

I 

Feet. 

Ins. 

Inch. 

Inch. 

Ine. 

Lbe. 

Ine. 

LU. 

Inch. 

•  I. 

10 

3 

.485 

•5 

7 

12000 

•4 

3800 

.127 

1.05 

2. 

3- 

20 
20 

4-6 
5-7 

.8 
•643 

•5 
.6 

985 
"•75 

16000 
20000 

«'«5 

.85 

6300 
8000 

•453 
•34 

•9a 
98 

To  Comptite  IDefleotion  of^and  Weislxt  that  may  1)6  Isorxie 
V>y,  a  'W rouglit-iron  Rolled.  Seana  of  XJuifbirui  and  Syxu— 
txietrioal  Heotion* 

Supported  at  Both  Ends.      Weight  applied  in  Middle.     (D.  K.  CUark.) 
W19 


=  D. 


70000  d"  (4  a-\-i.  155  a')  D  __ 


i» 


=  W. 


70000  d*  {4  a-f  1-155  <*') 
I  representing  span  in  feet,  d  reputed  depOi^  or  depth  less  Mtcfenect  of  lower /Ian fft 
in  ins.,  a  area,  of  section  of  lower  flange,  a'  area  of  section  qf  web  for  reptded  deptik 
of  (team,  both  in  sq.  ins.,  and  W  weight  or  stress  in  lbs. 

iLLrsTRATiox.— What  is  deflection  of  a  wroaght-iron  rolled  beam  of  New  Jersey 
Steel  and  Iron  To.,  10  5  ins.  in  depth,  flanges  5  by  .5  ins.,  and  width  of  web  .47 
inch,  when  loaded  in  it8  middle  with  8000  lbs.,  and  supported  over  a  span  of  20  feet? 

(2=a  10.5  — .5^2 10  i««.,    a=5  X  .5  =  2.5  «g.  in«.,and  a' =  10  X  .47  —  4-7  «9-  ^ns. 


Then 


8000  Xao3 


64000000  .    . 

.=  —^ =  .50  inch. 

»o7999  5a> 


70000  X  «o*  X  (4  X  2.5  -f  1. 155  X  4-7) 

If  weight  is  uniformly  distributed,  divide  by  112  500  instead  of  7000a 

A  like  beam  6  ins.  in  depth,  loaded  with  2608  lbs.,  and  supported  over  a  span  of 
I  a  feet,  gave  by  actual  test  a  deflection  of  .3  inch,  and  by  above  formula  It  is  also 
.3  ineh. 

NoTB.— Deflection  for  such  a  beam,  for  a  statical  weight  or  stress  of  17 100  lbs., 
unifornUy  distributed,  by  rules  of  N.  J.  Steel  and  Iron  Co.,  would  be  .54  inch,  which, 
with  diSterence  iu  weights,  will  make  deflections  alike. 

Deflection    of  "Wrouglit-iron   Riveted   IBeaxns. 

Supported  fit  Both  Ends.     Weight  applied  in  Middle. 

W  /3 

-r^  —^ as  C  at  Reduced  Weight  and  Deflection. 


• 

Weight  and  Deflection         | 

No.  FOBM. 

Length. 

Flange*. 

Anglee. 

Web. 

1 

by  Actual 
Obeerration. 

at  one  sixth 

of  DeetractiTe 

Weight. 

Feet. 

In*. 

Ine. 
2.125X2 

Inch. 

• 

Int. 

Lba. 

Inch. 

Lb*. 

Inch. 

■I 

7      ' 

> 

4-5X 

X.28 
2.125X2 

X.29 
2X2 

•25 

7 

4216 

.1 

406a 

.096 

•I 

ix.66^ 

•5 
4-5X 

•375 
4-5X 

X.3125 
2X2 

X.3«a5 
a   X     a 

■.25 

< 

".5 

77380 

.46 

12880 

.075 

3.  " 

••.5 

•S 
7    X 

X.375 
3X3 

•375 

16.5 

"5584 

.«75 

X9a65 

.i4« 

•5 

X.437S 

, 

• 

•63 


1.96 


3.86 


STBByOTB  OF  UAT£BIALS. — DEFLECTION. 


775 


Ta  Conapixte  IDefleotion  of,  and  Weiglxt  tliat  masr  lae  'borne 
1t>y,  a  liiveted  Beazn  of  "Wrought  Iron. 


168000 


(^+t) 


=  D. 


d'Cf 


168000  f— 5^ 1 Jda  C  D 


i3 


W. 


a,  a',  and  a"  representing  arecu  of  tipper  and  loioer  flanges  vrith  tkeir  angle  pieces^ 
and  ftfwehfnr  its  entire  dqpik,  aUinsq.  ins. 

NoT«.— If  there  are  not  any  flange*,  aa  in  No.  x,  angle  pieces  alone  are  to  be  oomputed  for  flange 


Illcstratxon.— What  weight  will  a  riveted  and  flanged  beam  of  following  dimen- 
sions sustain,  at  a  distance  between  its  supports  of  25  feet,  and  at  a  safe  deflection 
of  .2  inch  or  j^^j^  of  its  length? 

Top  flange 6X.5^'W.      |     Web sifu. 

Bottom  flange 6X.5  "       |     Depth 17      ** 

Angles 2- 25  X  2.25  X  .5  tn«. 

aanda'each  =  6x.5  =  3H-8.25-f  2.25— .5X.5  X  2  =  7  sq.  ins. 
a"  = .  5  X  17  =  8. 5  sq.  ins.    G,  as  per  No.  2,=  .43,  but  inasmuch  as  flanges  in  this 
CUM  are  much  heavier,  asBumo  .5. 

168000  f^i^  +  ?^^  i7»X  .2  X.5 

Then 5l2 4; =^3°3-722=,835.4'ft«. 

25>  15625  ^^^ 

Strength  of  a  Riveted  beam  compared  to  a  Solid  beam  is  as  i  to  1.5,  while  for 
equal  weights  its  deflection  is  1.5  to  i. 


I'u'bu.lar  GUrdera.    Wrowglit   Iron, 
Supported  at  Both  Ends.     Weight  applied  in  Middle. 


Ho.                 Sionov 

• 

«.  n  Thickness 

.03  inch 

s.      "            " 
top 

3.  "        bottom 

sides 

4.  "    Thickness 

.525  " 
.372  "  ) 

.244  "  { 
.125") 

.75    " 

5.  ^j  Thickness 

.0375" 

^0    " 

04x6" 
.«43  " 

a 


Feet. 
3-75 
30 
30 
45 
"7 


»7 
»7 


i 

Dei 

m 

Inter- 
nal. 

Ina. 

Ins. 

1.9 

2.94 

15-5 

22.95 

16 

23.28 

24 

34.25 

12 

11.925 

9-25 
I  9- 25 

13.535 
14.714 

Ex- 
ternal. 

Ine. 

3 
24 
24 

35-75 
12 

13.6a 
15 


1 

• 

1 

^ 

a 

Lbe. 

•Ine. 

448 

.1 

33685 

.56 

32538 

X.ll 

128850 

1.85 

9755 

.65 

3262 

.62* 

16800 

1-39* 

•n  u  S 


Inch. 
.03 

.24 

•24 
.36 
.136 

.136 
.136 


I 


C 

288 

473 
224 

362 

62.8 


47-9 
119 


*  DestmctWe  welglit. 


fPo  Compute   Deflection    or,  and   '^^eiglit    th.at   znajr  lae 
borike   bsr,  a  WrougUt^iron   Tiibxilar  Q-irder. 

i6ftc|sCD      _  Wl» 


W. 


=  D. 


/>  iSbd^C 

fLLuaniATiON.— What  weight  may  be  safely  borne  by  a  wrought-iron  tube,  alike 
io  No  3  in  preceding  table,  for  a  length  of  30  Ibet,  and  a  deflection  of  .32  inch? 

16  X  16  X  24S  X  224  X  .24  _  190 253 629  _ 


305 


27000 


=  7046  lbs. 


flanged  Rails. 
Deflection  of  Iron  and  Steel  Flanged  Rails  within  their  elastic  limit,  compar«d 
with  their  transverse  strength,  is  as  17  to  20,  and  with  double-headed  it  is  as  n  to  a^ 


776 


STBEN6TH    OP  MATERIALS. — DEFLECTION, 


RAILS. 

Supported  at  BoGi  Ends.     Weight  applied  in  Middle. 


Iron. 


Na  FoBM. 

5i 

Head. 

Bottom. 

WelRbt 

vS^d. 

Feet. 

Ins. 

Ina. 

Lba. 

'   X 

2-75 

2.25X1 

2.25X1 

60 

a.        " 
3.        " 

4-5 
5 

2.3  Xi 
2.3  Xi 

2.3  XI 
2.3  Xi 

82 

^  T 

2-75 

3-5  X  .8 

2.25X1 

60 

'  J. 

2.58 

2.23X1 

3.5  X  .6 

57 

I  o 
Ins. 

4-S 

4.5 
5-4 

4 
35 


Area. 


Sq.  los. 
6.166 

6.68 
8.25 

6.7 
5.85 


Obserred 
Weieht  and 
Deaection. 


DMtrnetiTtt 

WeiKht 

and 

Deflection. 


Lbe. 

13440 

1 1  200 

25760 

II  200 


ZI200 


Ins. 

•034 

.11 
.2 

•035 
.097 


Lba. 
26680 

24640 
51520 

26680 
30160 


Ilsa. 

.065 

.204 
•378 

.065 
.138 


Steel. 


No.  FoBU. 

Feet. 

1 

X 
Ina. 

-X 

5 

— 

7-     " 
Beaaemer. 

3.62 

— 

-1 

5 

2-5 

Bottom. 


Ins. 


37 


6.375X:g^ 


« 


^ 


Lba. 
78 

86 
84 


Web. 


Inch. 
•75 

.65 


Depth. 

Centres 

of 
Heada. 


Ina. 
4-2 


3-37 


S 

o 


Ina. 
5-4 

5-5 

4-5 


Area. 


S.Ina. 
7.67 

8.43 
8.24 


Observed 
Weirht  and 
Deflection. 


Lba. 
36086 

22400 

27290 


In. 

•25 

•«4 
.24 


Deatmcttw 

Weffcfat 

and 

Deflection. 


Lba. 
80192 

26680 

27290 


Inch. 

•55 

.165 


To  Coxnpute  Deflection  of  Doxilale-headed.  Hails  -witliii^ 

Slastio   Xjiixiit.    (/>.  K.  Clark.) 

Suppoi'ted  at  Both  Ends.     Weight  applied  aJl  Middle, 

IRON. 
=  D.    a  representing  area  of  one  head^  leu  portion  per^ 


W^s 


57 000  (4 ad'* +1.1 55  <d3) 
taining  to  ttteb^  d  whole  depth  of  rail,  d'  vertical  distance  between  centres  of  keadt^ 
t  thicJmess  ofweb^  all  in  tna.,  I  length  infeet^  and  W  weight  in  lbs. 

STEEL. 

For  57  000  put  67  400. 

Illustration.— Take  case  No.  3  (Iron),  in  preceding  table,  with  a  weight  of  36000 
lbs. ;  what  will  be  its  deflection  between  bearings  5  feet  aimrt? 

0  =  1.911.   -d'  =  4.2.    (2  =  5.4.     ^  =  '82. 

26000X5'  3250000  ,    . 

=  •  ^-   = . 3  xncn. 


Then 


57000  (4  X  1.9"  X  4.2«+ 1.155  X  .8-2  X  5-4^)       57000X284 


To  Compute  Deflection  of  Iron  and.  Steel  Rails  of  XJxi- 
syxnmetrioal   Section   -witlxin   Slastio   Xjimita. 

Elastic  Deflection  of  Steel  Flanged  Rails  of  Metropolitan  Railway  of  London,  as 
determined  by  Mr.  Kirkaldy,  at  a  span  of  5  feet,  and  loaded  in  middlej  was  .03  incb 
per  ton.     {See  Manual  ofD.  K.  Clar.k,  pp.  667-67a) 


STBKKGTH  OF  UA.TBBIAI.S. — ^DBFLBCTIOIf. 


m 


CASFT  ntON. 

Oefleotion  of  Reotangnlar  Hara  and  Seams  of  -various 
Seotions,  etc.,  "by  U.  S.  Ordiiazice  Corps,  BarloMr, 
Xiodglzlusoii,  and   Oubitt. 


Supported  at  Both  Ends.     Weight  applied  in  Middle. 

Weight  and  Deflection. 

At^thof 


FOBX. 


I.  American. ... 

3.EDgli8b '' 

3.      "      " 

4-      '•      I 

s-     "    O 


k 

1 

M 

• 

1 

n 

1 

3 

Feet.  Ins. 

Int. 

1.66 

2 

2 

4 

X 

z 

16 

4 

4 

4-5 

3 

z 

45 

z 

(2.5 
I   -5 

By  Actoal 
ObeerTatloD. 


Lbs. 

5000 

212 
1008 

1 120 
2231 


Ins. 
•036 

.32 
•4 

X.42 
•5» 


At  one  sixth  | 
of  Braaliinj; 
WetKht. 


Lbs. 

z666 

80 
5333 

215 
422 


Ins. 
.012 
■  12 

2.1  ' 
.27 

.1 


an  inch  for 

each  foot  of 

span. 


Lbs. 

1805 

22 
3370 

30 
156 


Ins. 
.013 

•033 
1-33 

•037 

•037 


5fl  ^ 


1^1 


^ 


•  5 


I 


c 
3.8Z 

4-zi 

389 

2-37 
2-33 


Vo    Compute    IDefleotion    of*,  and    AVeight    tliat    may    be 
"borne  'by,  a  H>eotangular  Bar  or  Beazxi  of*  Cast   Iron. 


=  C. 


=  D. 


-^  W. 


zo40o6d3D      "'         lo^oobd^C  /' 

Illustration. — What  weight  will  a  beam  2  ins.  in  breadth,  5  ins.  in  depth,  and 
16  feet  between  its  supports,  bear  with  safe  deflection  of  ^-j^^  of  an  inch  for  each 
ftx>i  of  span,  or  j^fji  ^^  '^  length  ? 
G  from  table  =.  3. 89.     D  — .  y^  of  16  =  .  133  iiu. 

10400  X  2  X  5*  X  389  X.133  _  I  345 1<)2 
16« ~ ~J556-  -  343-5  lbs. 

QariL  gives  C  uniform  for  Rectangular  bars  of  2.69,  and  1.85  for  Cylindrical 

FLAKGED  BBAMS.      Cast  Iron. 
Supported  at  Both  Ends.     Weight  applied  in  Middle. 

To  Compute  I>eflection  of*,  and  "^Veiehit  tliat  may  be 
"borne  "by,  a  Flanged  Beam  of*  Cast  Irozi  of  Uniform 
and   Symmetrical   Section. 

_     ^.^L  ^p  2700od«Uo-H'i55a'')D^^ 

a7oood'(4  a+i.zssa^')        '  P 

iLLCBTRATioif.^What  is  deflcctlon  of  a  cast-iron  beam  (Hodgkinson's)  7.15  ins., 
flanges  2.6  x  86  ins.  and  5  X  z.6  ins.,  and  width  of  web  z  inch,  when  loaded  in  ita 
middle  with  zz  200  Iba,  over  a  span  of  zs  feet  ? 

d  =  7.15 — z.6 =5.55  ifUL,  as=  5  X  z.6 ±=  8  tn*.,  and  a*  =  7. 15  —  z.6  =  5.55  inL 

__  1x200X15^  37800000  .    . 

Then = ^'   „,  — 1 -  =  .67 in* 

27000X555'  (4  X  8  +  Z.155  X  5-55')      27000  X  308  (32  +  35-57) 

VoTB  z.— The  observed  deflection  of  this  beam  was  x.28  ins.,  at  one  sixth  of  its  de- 
structive weight  it  was  .3,  and  at  y|^  of  an  inch  for  each  foot  of  span  it  was 
.125  inch. 

2.— The  mean  ratio  of  elastic  to  destructive  stress  is  73  per  cent. 

Formulas  for  value  of  deflection  signify  that  deflection  varies  directly  as  weight, 
and  as  cube  of  length ;  and  inversely  as  breadth,  cube  of  depth,  and  coefficient  or 
•iaaticity. 


788 


STRENGTH   OF  MATERIALS. — ^TENSILE. 


A.verage   Xexxsile 


Klastioitsr  of*  Steel  Sara 

LCom.  qf  Civil  Engineerif  z870>), 


and  Platei 


DucBiPTioir. 


Barg. 

Crucible,  hammered  and  rolled. . . . 
Bessemer,        "  "         . . . . 

Fagcrsta,  rolled 

'^        uoannealed 

hammered  and  rolled — 
"  *'    annealed. 

plateSf  unannealed 

'*       annealed 

"       unannealed 

«'      annealed 

tires 

Krupp^s  shaft 


« 


Siemens, 


(( 


Elaiiicity  per 
Sq. loch. 


LiM. 

50557 
43814 
56560 
34048 

55  574 
40858 
30710 
26940 
32500 
28780 
40174 
42  112 


Elastic  Exteo- 

RaUoofElM- 

sioii  in  PsrU  of 

tic  to  DMtmc- 

Length. 

tiv9  Strength. 

Parta. 

Percent. 

I  in  485 

58.2 

1  in  675 

55 

— 

64.8 

— 

55.6 

— 

64.7 

— 

54 

X  in  980 

59-2 

I  in  1020 

565 

— . 

46.4 

— 

44-4 

__ 

58.8 

I  in  185 

Tensile  strength  of  steel  increases  by  reheating  and  rolling  up  to  second 
operation,  but  decreases  after  that. 

Tensile  Strexigtli  of  Various  JVCaterials,  dedtioed  fvozxx 
IiixperiiTieiits  of*  TJ.  S.  Ordnance  Uepartment,  ITair^ 
bairn,  IrlodgkinsoUy  Kirkaldy,  and   \>y   tlie   i^utlaor. 

Power  or  Weight  required  to  tear  asunder  One  Sq.  Jnchj  in  Lbs. 


i( 
(( 
tt 
(( 

(( 

Ci 

(t 
<( 
(( 
(( 


(( 

(/ 
(< 
l( 
(( 
(( 
(( 


Metals.  Lb*. 

Antimony,  cast z  053 

Bismuth,  cast 3  248 

Cast  Iron,  Greenwood 45  970 

mean,  Msyor  Wade. . .  31 829 

gun-metal,  mean. ....  37  232 

malleable,  annealed . .  56  000 

Eng.,  strong 29000 

*^     weak 13400 

*^«™««« (  21280 

gun-metal 23257 

mean* 19484 

Low  Moor,  No.  2  1 4  076 

Clyde,  No.  i.. . .  16 125 

"      No.  3....  23468 

Stirling,  mean..  25764 

Copper,  wrought 34000 

rolled 36000 

cast 24250 

bolt 36800 

wire 61  200 

Cold 20  384 

Lead,  ^Bst 1 800 

pipe 2240 

*'    encased 3  759 

rolled  sheet 3320 

Platinum  wire 53000 

Silver,  cast 40000 

Steel,  cast,  maximum 142000 

"    mean 88560 

puddled,  maximum 173817 

Amer.  Tool  Co '79980 

^i»^  (  210000 

wire < 

(  300  ouo 

plates,  lengthwise 96  300 

''      crosswise 93700 

Chrome  bar 180000 


t( 
ii 
(( 


«{ 


Rni 

(( 


(( 


(I 


{( 


(( 


(i 


Mktals.  Lba. 

Steel,  Pittsburgh,  moan 94  450 

"     Bessemer,  rolled. j    ^6650 

'  (  135000 

hammered 152  900 

Eng.,  cast 134000 

"   plates,  mean....    93500 

plates 86800 

puddled  plates 62  720 

crucible 91  570 

homogeneous. 96  280 

blistered,  bars 104000 

Fagersta  bars 80600 

'*       plates 98560 

Whitworth's. (    !^^^ 

X  152000 

Siemens's  plates. .  I    ^^ 

Knipp'B  shaft 93  243 

Tin,  cast 5000 

''    Banca , a  100 

Wire  rope,  \)er  lb.  w't  per  fathom  4480 

u       i(     galvanized  steel,    **  6720 

Wrought  Iron,  boiler  plates. . .  J    J5  500 

rivets 65000 

bolts,  mean '60  500 

*'     inferior 30000 

hammered 54  000 

Shalt 44  750 

wire 73  600 

No.  9 xooooo 

No.  20. 120000 

diam.  .0069  inch  301 168 

galv'ized  .058  **    64  960 

Eqg. ,  heavy  foiling.    33  600 

plates,  lengtbw'e   53  800 

'*      crosswise  48800 


u 
i( 
i( 
(( 
(( 
(( 

(C 

(( 
t( 

(( 
(t 
({ 


(I 
<( 
It 
(( 


(< 


By  Comm's  on  application  of  Iron  to  Railway  Structare. 


STRENGTH    OF   MATEBIALS. — ^TENSILE. 


789 


MbTALS.  Lbs. 

WroQghi  Iron,  EDg.,  mean 51 000 

"        Eng.,  Low  Moor 57  600 

'*  ''    Lancashire 48800 

"  "    Thames 65920 

"  "    armor  plates  ....  40000 

"  "    bar j  31300 

(  56000 

"  •'      **  charcoal 63000 

"  "    rivet,  scrap 51 760 

*'       Russian,  bar,  best 59  500 

*'  "  "    ...49000 

"       Swedish,    "    best 72000 

"  ''  "    48900 

Zinc. . . .' 3  500 

"    sheet '. I    7000 

(  16000 

Allots  or  Cowpositions. 

Alloy,  Ckip.  60,  Iron  2,  Zinc  35, Tin  2 .  85 120 

'*     Tin  10,  Antimony  1 11 000 

Alaminium,  Cop.  9a 71 600 

"  maximum 96320 

Bell- metal 3  670 

Brass,  cast 18000 

"     wire 49000 

Bronze,  Phosphor,  extreme 50915 

"  "        .  mean 34464 

"       ordinary 23500 

'*       Cop.  10,  Tin  1 33  000 

"         "      9,   "    1 38080 

"      8,    "    1 36000 

"         *•      2,  Zinc  1 29000 

Gnn-metal,  ordinary...... 18000 

"         mean 33  600 

**         bars 42  040 

Speculum  metal 7  000 

Yellow  metal 48  700 

Woods. 

Ash,  white 14000 

*'    American 9500 

**    English 16000 

Bamboo 6  300 

Bay 14000 

Beech,  English 11 500 

Birch 15000 

**     Amer.,  black 7000 

Box,  African 23000 

Bullet 19000 

Cedar,  Lebanon 11 400 

*'     West  Indian 7500 

"     American u  600 

Chestnut. 12  500 

'*      horse. loooo 

Cypress , 6000 

Deal,  Christiana 12  400 

Ebony 27000 

Elm {    ^«» 

(  13000 

Gum,  blue 18000 

**     Alabama 15860 

Hackmatack 12  000 

Hickory 11 000 

Holly x6  000 

Uince (  '7350 

**^  (33000 


Woods.  Lbs. 

Larch |    4200 

(    9500 
Lignum  vitae n  800 

Locust i  ^^°°° 

{  20500 
Mahogany,  Honduras 21 000 

Spanish {    ^«» 

(  12000 
Oak,  Pa. ,  seasoned bo  ^la 

^  »■ )  25  22e 

"     white 16  500 

'*     live,  Ala 16  380 

"     red 10250 

"     African 9500 

"     English i    4500 

u     T^    .  ,                                  1    7571 
"    Dantzic 4200 

Pear 9  860 

Pine,  Va 19000 

"     Riga 14000 

"     yellow. X3000 

*'     white ii8co 

'^ 13000 

Poon ,3  300 

Poplar 7  000 

Redwood,  Cal 10833 

Spruce,  white i  '^^90 

(  12400 

Sycamore i    9600 

(  13000 

Teak,  India 15000 

"      African 21 000 

Walnut,  Eng 7  800 

"        black 16633 

"        Mich 17580 

Willow 13000 

Yew 8000 

Across  Fibre. 

Oak 2  300 

I'ine 550 

MfSCELLANECUS. 

Basalt,  Scotch 1469 

Beton,  N.  Y.  Stone  Con'g  Co. . . .  (      3oo 

(500 

Blue  stone 77 

Brick,  extreme 750 

*'     inferior. i       '°° 

\      290 

Cement,  Portland,  7  days {      4oo 

"              *'    pure,  I  mo. 393 

*'  '*    sand 2, 320  days..  713 

"  "       "J       "        ..  948 

"  "    pure,        "       ..  1152 

'*  *'    sand  I,  in  w^ater  ) 

1  mo.  I  *°' 

"  "       "    1    "   ly'r..  319 

"              '*       "    3.  I  year 310 

"       "    5,1     "   ....  214 

"  "       "    7,1    "   ....  163 

"       Hydraulic, 284 

"  Rosedale,  Ulst.  Co. ,  7  days  104 

"  "       sand  1,  30    "  X02 

«•  "       91008. {      560 


790 


ST££NOTH    OF  MATERIALS. — TOBSION. 


MlSCELIJLNBOUS.  Lb». 

Cement,  Roman,  in  water  7  days .  90 

"            ♦'             "       I  mo...  115 

"            "             "       I  year .  286 

"            "       sand  1, 42  days. .  284 

"            "          "    2,      "     ..  199 

"            "          "    3,      »     ..  160 

Flax..... 35000 

Glass,  crown 2  546 

Glue 4000 

Granite 578 

Gutta  Percba 3  500 

Hemp  rope {  J^^ 

Ivory 1 000 

Leather  belting. 330 

Limestone |  ^sJo 

Marble,  statuary 3  200 

*'      Italian 5200 

Marble,  white 9  000 

"      Irish 17600 


MlSCKLLANBOUa  IJm. 

Mortar,  i  year {      ^^ 

"      hydraulic |      ^^^ 

"      ordinary 35 

Oxhide ....'  6300 

Rope,  Manila 9000 

*■*    tarred  hemp 15000 

Sandstone 150 

'*        fine  green ij6o 

Arbroath {    ^563 

"        Caithness {    ^  J^ 

»        Portland I    ^^ 

"        Craigleth 453 

Silk  fibre 52  000 

Slate {,1^ 

Whalebone 7  000 


TORSIONAL    STRENGTH. 
SHAFTS  AND  GUDGEONS. 

Shafts  are  divided  into  Shafts  and  Spindles,  according  to  their  mag- 
nitude, and  are  subjected  to  Torsion  and  Lateral  Stress  Combined,  or  to 
Lateral  Stress  alone. 

A  Ouclffeon  is  the  metal  journal  or  Arbor  upon  which  a  wooden  shaft 
revolves. 

Lateral  Stiffness  and  *S<rtfn^<A.— Shafts  of  equal  length  have  laXeral  stiff- 
ness as  their  breadth  and  cube  of  their  depth,  and  have  lateral  strength  as 
their  breadth  and  square  of  their  depths. 

Shafts  of  different  lengths  have  lateral  stiffness  diroctly  as  their  breadth 
and  cube  of  their  depth,  and  inversely  as  cube  of  theur  length ;  and  have 
lateral  strength  directly  as  their  breadth  and  as  square  of  their  depth,  and 
inversely  as  their  length. 

Hollow  Shafts  having  equal  lengths  and  equal  quantities  of  material  have 
lateral  stiffness  as  sc^uare  of  their  diameter,  and  have  lateral  strength  as  their 
diameters.  Hence,  in  hollow  shafts,  one  having  twice  the  diameter  of  an- 
other wiU  have  four  times  the  stiffness,  and  but  double  the  strength ;  and 
when  having  equal  lengths,  bv  an  increase  in  diameter  they  Increase  in  stiff- 
ness in  a  greater  proportion  than  in  strength. 

When  a  solid  shaft  is  subjected  to  torsional  stress,  its  centre  is  a  neutral 
axis,  about  which  both  intensitp^  and  leverage  of  resistance  increase  as  radius 
or  side ;  and  the  two  in  combmation,  or  moment  of  resistance  per  sq.  inch, 
increase  as  square  of  radius  or  side. 

Round  Shaft, — Radius  of  ring  of  resistance  is  radius  of  gyration  of  sec- 
tion, being  alike  to  that  of  a  circular  plate  revolving  on  its  axis,  viz.,  .7071 
radius.  The  ultimate  moment  of  resistance  then  is  expressed  by  product 
of  sectional  area  of  shaft,  by  ultimate  shearing  resistance  per  sq.  inch  of 
material  by  radius,  and  by  .7071. 

Or,  .7854  da  r  S  X  .7071  =  .278  d»  S  =  R  W.      (D.  K.  dark.) 

d  represerUing  diameter  of  shaft  omd  r  radius,  S  ulHmate  shearing  streu  ofmoU- 
rial  in  lbs.  per  sq.  inch,  R  radtus  through  which  streu  is  applied,  in  ins.,  and  W 
moment  of  load  or  destritctive  stress,  in  Ws. 


ence. 


.278  d*  S 


=  W; 


RW 

.278  d' 


=  S;  and 


V"^ 


X  1.534=* 


8TREKGTH   OF  MATERIALS. — TORSION.  79 1 

Rinind  Jhajt. — Strength,  compared  to  a  square  oi!  equal  sectional  area, 
is  about  as  I  to  .85.  Diameter  of  a  round  section,  compared  to  side  of 
square  sectioti  of  equal  resistance,  is  as  i  to  .96. 

Square  Shaft, — Moment  of  torsional  resistance  of  a  square  shaft  exceeds 
that  of  a  round  of  same  sectional  area,  in  consequence  of  projection  of  cor- 
ners of  square ;  but  inasmuch  as  material  is  less  disposed  to  resist  torsional 
stress,  the  resistance  of  a  square  shaft,  compared  to  a  round  one  of  like  area 
of  section,  is  as  i  to  1.18,  and  of  like  side  and  diameter,  as  1.08  to  i. 

H.nco.Si2i^!i!i  =  w.     aoUowHo^  Shaft..  :2Zi<!?l^£!l5  =  w. 

When  Section  is  comparatively  T%in,    ''^^    =  W.     *  representing  tide^ 

d,  and  d'  extemcU  and  internal  diameters,  and  t  thickness  of  metal  in  ins. 

Torsional  Atwle  of  a  bar,  etc^  under  equal  stress,  will  vary  as  its  length. 
Hence,  torsional  strength  of  bars  of  like  diameters  is  inversely  as  their 
lengths. 

Stress  upon  a  shc^ft/rom  a  weight  upon  it  is  proportional  to  product  of  Vie  parts 
€>ftkafl  nuUtiplied  into  each  other.  Thus,  if  a  shaft  is  10  feet  In  length,  and  a  weight 
upon  centre  of  gravity  of  the  stress  is  at  a  point  2  feet  from  one  end,  the  parts  2 
and  8,  multiplied  together,  are  equal  to  16;  but  if  weight  or  stress  were  applied  in 
middle  of  the  shaft,  parts  5  and  5,  mqltiplied  together,  would  produce  25. 

When  load  upon  a  shaft  is  uniformly  distributed  over  any  part  of  it,  it  is  consid- 
ered as  united  in  middle  of  that  (lart;  and  if  load  is  not  uniformly  distributed,  it  is 
considered  as  united  at  its  centre  of  gravity. 

Deflection  of  a  shaft  produced  by  a  load  which  is  uniformly  distributed  over  its 
length  is  same  as  when  .625  of  load  is  applied  at  middle  of  its  length. 

-  Resistance  of  body  of  a  shaft  to  lateral  stress  is  as  its  breadth  and  square 
of  its  depch ;  hence  diameter  wiU  be  as  product  of  length  of  it^  and  length 
of  it  on  ome  side  (fa  given  pointy  less  square  of  that  length* 

iLLrsTRATioN. — Length  of  a  shaft  between  centres  of  its  Journals  is  10  feet;  what 
should  be  relative  cubes  of  its  diameters  when  load  is  applied  at  1,  2,  and  5  f^t 
from  one  ebd?  and  what  when  load  is  uniformly  distributed  over  length  of  it? 

IXl^  — £»=  d3;  and  when  uniformly  distributed,  d3 -i- 2  =  d'. 

10  X  i  =  io— i2  =  9  =  cu6c  qf  diameter  at  i  foot;  10  X  2  =  20  —  2^  =  i6=zcube  / 
qf  diameter  at  sfeet ;  10  x  5  =  50  —  5'  =  25  =  cube  of  diameter  at  sfeet. 

.  When  a  load  is  uniformly  distributed,  stress  is  greatest  at  middle  of  length,  and 
is  equal  to  half  of  it ;  25  -f-  2  :i=  1 2. 5  =  cuJbe  of  diameter  at  5  feet. 

Torsional  Strength  of  any  square  bar  or  beam  is  as  cube  of  its  side,  and 
of  a  cylinder  as  cube  of  its  diameter.  Hollow  cylinders  or  shafts  have  great- 
er torsional  strength  than  solid  ones  containing  same  volume  of  material. 

To   Coxnpxxte    Diameter    of.  a   Solid.    SHaft   of  Cast   or 
l?^rovig;lit   Iron   to    Resist   ILjateral    Stress    alone. 

When  Stress  is  in  or  near  Middle,  Rule. — Multiply  weight  by  length  of 
shaft  in  feet;  divide  product  by  500  for  cast  iron  and '560  for  wrought  iron, 
and  cube  root  of  quotient  will  give  diameter  in  ins. 

ExAXPLK.^-Weight  of  a  water-wheel  upon  a  cast-iron  shaft  is  50000  lbs.,  its  length 
30  feet,  and  centre  of  stress  of  wheel  7  feet  from  one  end ;  what  should  \ye  diameter 
of  its  body  ? 

3/  /5ooooXjo\  _  ^^^^  ^.^^  ifweigM  was  in  middle  of  its  length. 

Hence  diameter  aft  7  feet  from  one  end  will  be,  as  by  preceding  Rale,  30  x  7  — 
7«  =  x6i  =  relative  cube  of  diameter  at  7  feet ;  30  X  15  —  is''  =  ««5  =  relative  cube 
i»f4iamettr  at  15  feet^  or  at  middle  of  its  length. 

Then,  as  ^a^s  :  14.43  *.:  -^161 :  12.89  iiu.,  diameter  ofshafl  at  7  feet  from  one  end. 


792  STBENGTH   OF  MATERIALS. — TOBSION. 

For  Bronze,  420 ;  Cast  steel,  1000  to  1500 ;  and  Paddled  steel,  500. 

When  Stress  is  unifornUy  laid  along  Length  of  ShcLfl.  Rule.  —  Divide 
cube  root  of  product  of  weight  and  length  by  9.3  ftx  Cast  iron  and  10.6 
for  Wrought  iron,  aud  quotient  will  give  diameter  in  ins. 

Example.— Apply  rule  to  prccediDg  case.     — —  =  12.31  ins. 

9-3 

For  Bronze,  8.5  ;  Cast  steel,  18.6  to  27.9 ;  and  Puddled  steel,  9.3. 

When  Diameter  fw  Stress  applied  in  Middle  is  given.  Rule. — Take  cube 
root  of  .625  of  cubie  of  diameter,  and  this  root  will  give  diameter  requued. 

ExAJiPLE. — Diameter  of  a  shaft  when  stress  is  uniformly  applied  along  its  length 
is  14.4a  ina  \  what  should  be  its  diameter,  stress  l>cing  applied  in  middle? 

i^.62S  X  14-423  =  i/.625X  3000  =  12.33  to*.  ~~ 

To  Compute  Diameter  or  a  Solid  Slia^t  of  Cast  Iron  to 

Resist  its   AVeigh.t  alone. 

Rule. — Multiply  cube  of  its  length  by  .007,  and  square  root  of  product 
will  give  diameter  in  ins. 

Example.— Length  of  a  shaft  is  30  feet;  what  should  be  its  diameter  in  body? 

V(3o»  X  .007)  =  V»89  =  13.75  ins 

HOLLOW  SHAFTS. 

To  Compute  Diameter  of*  a  Hollo'pe  Sliaf^  of  Cast  Iron 
to   Sustain   its   I^oad.  in   A.ddition   to  its   "Weigbt. 

When  Stress  is  in  or  near  Middle,  Rule. — Divide  continued  praduct  of 
.012  times  cube  of  length,  and  number  of  times  weight  of  shaft  in  lbs.,  by 
S(iuare  of  internal  diameter  added  to  i,  and  twice  square  root  of  quotient 
added  to  internal  diameter  will  give  whole  diameter  in  ins. 

Example. —Weight  of  a  water-wheel  upon  a  hollow  shaft  30  feet  in  length  is  2.5 
times  its  own  weight,  and  internal  diameter  is  9  ins. ;  what  should  be  whoie  diam- 
eter of  shaft? 

To  Compute   Diameter   of  a  H.ound  or  Square  Slistft    to 
licuist  Combined  Stress  of  Torsion  and  Weigbt. 

Rule. — Multiply  extreme  of  pressure  upon  crank-pin,  or  at  pitch-line  of 
pinion,  or  at  centre  of  ellect  upon  the  blades  of  a  water-wheel,  etc.,  that  a 
sliafl  may  at  any  time  be  subjected  to ;  by  length  of  crank  or  radius  of 
wheel,  etc.,  in  ft*et  *,  divide  the  proiiuct  by  (^efficient  in  following  Table,  and 
cube  root  of  (quotient  wUl  give  diameter  of  shaft  or  its  journal  in  ins. 


0'.^/  =  '^ 


ExAMPLK.— What  should  be  diameter  for  journal  of  a  wrongbt-iron  water-wheel 
shaft,  extreme  pressure  upon  crauk-pin  being  59  400  lbs.,  and  crank  5  feet  in  length? 

When  T\to  Shafts  are  used,  as  in  Steam-vessels,  etc.,  foiih  One  Engine. 
Rule. — Divide  throe  times  cube  of  diameter  for  one  shaft  by  four,  and 
cube  root  of  quotient  will  give  diameter  of  shaft  in  ins. 


0.^^  =  ^ 


RxAMPLa.— Area  of  journal  of  a  shaft  is  113  ins.;  what  should  be  diameter,  two 
shaOs  being  used  ? 

Diameter  for  area  of  113  =  19.       Then  ^ =  1396,  and  Vx^gG  =  1019  ' 


STBEKGTH   OF  MATXBIAX8. — TOBSION. 


793. 


torsional   Strengtii   of*  VcM-ioup  -  IMEdtals.  ^ 

(Mqj.  Wm.  Wade,  U.  S.  Ordnance  Corps,  1851,  Steel  Committee  [England,  1B68],  and 

Stevens  Institute,  /V.  J.,  1878.) 

Rediiced  to  a  Uniform  Measure  of  One  Inch  in  Diameter  or  Side. 
Stress  applied  at  One  Foot  from  Axis  of  Body  and  at  Face  of  Axis. 

I  Torsional 
Computed  Strength 


Bamb  ako  Mbtals. 

TonaUe 
Strangtb. 

De«truc 

Rt 

35  Ids. 

Cast  Iron. 

Lb«. 

Lbs. 

^^   Area  i  sq.  inch  ) 

45000 

520 

Area2.97  8q.  ins. ) 

^5v    Diam.  )  I^east . , . 
§3     =1.9}  Mean... 
^^     ins.     )  Greatest. 

■■   Side  X  inch : . . .  > 
■1     Area  x  sq.  inch ) 

9000 
31  829 

45000 

(t 

3800 

1550 
2145 
2840 

350 

Wrought  Iron. 

„afc,   Diam.   (  Least . . . 

gH    =  1.9  >  Mean — 

^^    ins.     (Greatest. 

Area  2.83  sq.  in& 

38027 
56300 

74592 

1250 

1375 
1500 

Bbonzi. 

^^  Diam.=  ( Least 

1.9  ins.  (Greatest. 
Area  2.83  sq.  ins. 

X7698 
56786 

500 
650 

Ckfvt  Stbbl. 

*-  ((  Diam.c=  (I^asi.... 

X.9  ins.  (Greatest. 

Area  2.83  sq.  iD& 

41 000 
128000 

2600 
7760 

BSSSBMKK  STKRL. 

tt  Diam.  =  1.382  ins.  ^ 
AreaI.sBq.  ins.) 

36960 

1568 

at 

12  Ins. 


Lbs. 
xo8a 

7904 

3664 
4462 

5907 
728 


2600 
2860 
3120 


1040 
135a 


5408 
161 40 


326X 


d9 


=  T. 


492 


330 


530 

65 

85 


•! 


728 


376; 
416 1 
452. 


152 
X97 


788 
2353 


1236 


O  /is 

Coefflci«nt^^^=::W. 


7 

Ids. 


100 


45 


130 


125 


120 


30 
38 


160 

475 


iL 

10 
Int. 

95 

90 

40 

35 

«25 

120 

X20 

"5 

"5 

no 

28 

26 

36 

34 

»S5 
470 

550 
465 

K 

'  is 
In*. 


85 


30 


"5 


1 10 


105 


10 
1m. 


8b 


25 


ixo 


105 


100 


245    340    835 


230  1  225 


Xo   Coxnpvite   X>iameter  oT  Shafl^B   or  Oak   and    Fine. 

Multiply  diameter  ascertained  for  Cast  Iron  as  follows:  Oak  by  1.83, 
Yellow  Pine  by  1.7 16. 

IMetals  and.   "Woods. 

Ultimate  Tornonai  Strejigth. — Of  Cast  Iron  may  be  taken  as  equal  to  its 
tranAverse  strength  for  American  and  .9  for  En<;Ush,  or  as  .a6  of  its  tensile 
strength  for  American  and  .23  for  Kn^lish.  Of  Wrouf^ht  Iron,  as  .7  to  .8  of 
its  transverse  strength  for  American  and  .7  to  i  for  English,  and  of  Steel,  as 
.73  of  its  tensile  strength. 

JClasfic  Torsional  Strength. — Of  Cast  Iron  may  be  taken  as  equal  to  its 
transverse  strength,  of  Wrought  Iron  40  per  cent,  of  its  ultimate  torsional 
strength,  of  Steel  44  per  cent,  of  its  tensile  strength,  and  45  per  cent  of  its 
ultimate  torsional  strength. 

Bessemer  Steel. — Has  a  torsional  strength  of  6670  lbs.  per  sq.  inch  at  a  ra- 
dius of  one  foot,  being  somewhat  less  than  ihat  of  Cast  Iron,  Fagersta  has  50 
r  cent,  of  its  ultimate  transverse  strength,  and  Siemens  44.5  per  cent,  of 
U  ultimate  tensile.  _. 


794  BTBKITGTH  OF  HATBBIALS. — T0B8I0K. 

NoTB.— Exampltt  b«re  given  are  deduced  ftrpm  iDstencea  of  sQcceatftil  practice; 
wbert  diameter  bas  been  less,  fkacture  bas  almost  universally  taken  place,  strev 
being  increased  beyond  ordinary  limit- 

2.— Wben  sbafls  of  less  diameter  tban  12  ins.  are  required.  Coefficients  bere  given 
may  be  sligbtly  reduced  or  increased,  according  to  quality  of  tbe  metal  and  diame- 
ter of  sbaft;  but  wben  tbey  exceed  tbis  diameter,  CS>efficientz  may  not  be  increaaed, 
as  strengtb  of  a  shad  decreases  very  materially  as  its  diameter  incr^SSea. 

Order  of  shafts,  with  reference  to  degree  of  torsional  stress  to  which  they 
may  be  subjected,  is  as  follows : 

z.  Fly-wbeel.      |    2.  Water- wheel     |    3.  Secondary  shaft.    |    4.  Tertiary,  etc 
Hence,  diameters  of  their  journals  may  be  reduced  in  this  order. 

To  Compute  IDiameter  of  a  "^VroviBlit^iron.  Oeixtte  Sltctf^ 
for  conueotiiig   X>vo   Kiigpiiies   at  a   Riglit  A-nsle. 

Conditions  of  such  a  sbaft  are  as  follows : 

Greatest  stress  that  it  is  subjected  to  is  when  leading  engine  is  at  .75  of 
its  stroke,  and  following  engine  .25  of  its  stroke ;  heqce,  position  of  each 
crank  is  as  sin.  22,°  jo'  x  2  ;=  .7074  of  length  of  crank  or  radius  of  power. 

Consequently,  3  /   -  "-^-^ —  =  d.    P  representing  extreme  pressure  on  piston. 

NoTR.~In  computing  P  it  is  necessary  to  take  very  extreme  pressure  that  piston 
may  be  subjected  to,  bowever  sbort  tbe  period  of  time.  Average  presspre  does  not 
meet  requirement  of  case. 

iLLUSTaATiox. -^Extreme  pressure  upon  each  piston  of  two  engines  connected  at 
a  rigbt  angle  wiis  m  502  lbs.,  and  stroke  of  pistons  10  feet;  what  should  have  been 
diameter  of  centre  sbaft?  and  what  of  each  wheel  or  driving  shaft? 

For  ordinary  mill  purposes,  driving  shafts  should  be  as  cube  root  of  .75  cube  of 
centre  shaft. 


Thus  3yi!^i?!2<3  =  , 6.79  <«. 


To  CoiDpute  Toraioxial  Btrensth  o£  Hollo^w  Sliafta  aud 

Gy-lixxdema. 
RuLE.--From  fourth  power  of  exterior  diameter  subtract  fourth  power  of 


quotient 

ExAifPLR.— What  torsional  stress  may  be  borne  by  a  hollow  cast-iron  shaft,  hav* 
ing  diameters  of  3  and  2  in&,  power  being  applied  at  one  foot  fh>m  its  axis? 

C  =  13a     3«  —  2*  X  130  =  8450,  which  -^-  3  X  I  =  -*^-  =  2816.6  lbs, 

3 

To  Coiapute  Torsional  StrenstU  of  Round  And  Sq.viar« 

SUaits. 

Rule.— Multiply  Coefficient  in  preceding  Table  by  cube  of  side  or  of 
diameter  of  shaft,  etc.,  and  divide  product  by  distance  from  axis  at  which 
stress  is  applied  in  feet ;  quotient  will  give  resistance  in  lbs. 

iLLCRTRATioN.— What  torsloual  stress  may  be  borne  by  a  cast-iron  shaft  of  beat 
material,  a  ina  in  diameter,  power  applied  at  2  feet  (Tom  its  axis. 

C  from  table  =  ,30.     iSoXj* ^  1040 ^  ^  ^^ 

a  a 

For  steamers,  when  Trova  heeling  of  vessel  or  roughness  of  sea  the  stress  may  ba 
tonfined  to  one  wheel  alone,  diameter  of  Journal  of  iu  abaft  should  be  eoual  to 
hat  of  centre  shaft  ^ 


8TBENGTH  OF  MATJSBIALS. — TOBBION.  795 

GTTDGSONS. 

rro  CoixkputA  I>iAniet6r  of  a  tSingle   Q^udgeoti   of  Cast 
Iroii,  to   Support  a  given   "WeiKlit   or   Stress. 

Rule.—  Divide  square  root  of  weight  in  lbs.  by  25  for  Cast  iroD,  and  a6 
for  Wrought  iron,  and  quotient  will  give  diameter  in  ins. 

ExAMPLK.— Weight  upon  r  gudgeon  of  a  ca8t*iron  water-wheel  shaft  it  62  500  iba ; 
what  should  be  its  diameter  t 

as  85 

7o  Compute  I>iameter  or  T-wo  GI-udfl;eotis  oi*  Cast  Iron, 
to   Support   a  gi-ven    Stress   or   'Weigh.t. 

Rule.— Proceed  as  for  two  shafts,  {«ge  79a. 

'X*o  Compute  XJltimate  torsional  Strength,  of  Round  and 

Square    Shafts*    {D.  K.  Clark.) 

Cast  Iron.   Mound,    —^ —  =  W;   1.534  3/-^  =  di^and  ^-g^x=S. 

Square.     ^^     =  W,  and  1.36  3/—-  =  t.        HoUaw,    ■    ■      ^^-^ ^  =  W 

S  rtpre^nting  uUimate  sharing  strength,  and  W  mometU  of  load,  both  in  26f.,  s  tide 
qfiquare  sh^,  and  R  radius  of  stress,  b^tk  in  ins. 

Illustration. — What  is  ultimate  torsional  strength  of  a  round  cast-iron  shall 
4  in&  in  diameter,  stress  applied  at  5  feet  from  its  axis  ? 

«.i-      .278  X  4*  X  20000  -. 

Assume  S  =  20000  lbs.       Then  — ^ — ^-^ =  5930  Vbt. 

5  X  12 

By  experiments  of  Msjor  Wade,  ordinary  fbnndry  iron  has  a  torsional  strength 
of  7725  lbs.,  or  644  lbs.  per  sq.  inch  at  radius  of  one  foot. 

772 K  X  a' 

Thus,  take  preceding  illustration.      Then  ^^  ^     ^   =  8240  Vbs. 

5  X  ta 

*Wroueh.t  Iron.    Bpund,   —4 =  W-     Square,    -^^ —  =  W. 

When  Torsional  Strength  per  sq.  inch  for  radius  of  i  Jnch  is  ascertained, 
substitute  C  for  .278,  wi,  .2224,  or  .32. 

Stress  which  will  give  a  bar  a  (>ermanent  set  of  .5*^  is  about  .7  of  that 
which  will  break  it,  and  this  proportion  is  quite  uniform,  even  when  strength 
of  material  may  vary  essentially. 

Wrought  Iron,  com^uired  with  Cast  Iron,  has  equal  strength  under  a  stress 
which  does  not  produce  a  permanent  set,  but  this  set  commences  under  a  less 
force  in  wroiignt  iron  than  cast,  and  progresses  more  rapidly  thereafter. 
Strongest  bar  of  wrought  iron  acquired  a  permanent  set  under  a  less  strain 
than  a  cast-iron  bar  of  lowest  erade. 

Strongest  bars  give  longest  Sractures. 

£214.^  1      D^.^j     «»<^'^     rsr        When  S  is  not  known,  substitnte  for 
Hteel.    Hound.    ^^— =  w,    g  ^a,-.  ^3  per  cent  of  tensile  strength. 

Torsional  Strength  of  Cast  Steel  is  from  2  to  3  times  that  of  Cast  Iron. 

•  Followmg  rules  are  purposed  to  apply  in  all  instances  to  diameters  of 
joamals  of  shafts,  or  to  diameter  or  side  of  bearings  of  beams,  etc,  where 
lenfilh  <^  journal  or  distance  npon  which  strain  bears  does  not  greatly  ex- 
ceed diameter  of  journal  or  side  of  beam,  etc. ;  hence,  when  length  or  distance 
is  greatly  increased,  diameter  or  side  must  be  correspondingly  increased. 

Coefficientt  for  torsional  breaking  stress  of  Iron,  Bronise.  and  Steel,  as  de- 
termined by  Major  Wade, are:  Wrought  Iron,  640;  Cast  Iron,  560:  Bronze, 
460 ;  Cast  Steel,  i iso  to  i68a  Puddled  Steel  does  not  differ  essentially  from 
that  of  caat  iron. 


796 


BTBKNQTH  OF  MATEKIALS.tHTOBSION. 


Formulas  for  Minimum  and  Maximum  Diam.  of  Wrovghi-iron  Shafts. 
(X  E.  Seatony  London,  1883,  and  Board  0/ Trade,  Eng.) 

Compound  Engines,  y  -  -'  -—  S = diameUr.  V  and  d  representing  diam- 
eter of  law  and  high  pressure  cylinders,  and  6  hal^f  stroke,  aU  in  ins.,  p  pressure  of 
sUam  in  boiler,  in  lbs.  per  sq.  inch,  and  C  a  coefficient,  atfbUows  : 


Ancle 

Crwik. !  ^"°^- 


Shaft*. 

Pro- 
peller. 


90O 


(2468 


\ 


4000 


2880 
5400 


Ansle 


f 

Crank. 


Of      I 


Shafta. 
^'"•'•!,^r. 


lOC- 


(2279 
I4000 


2659 
5400 


Crank. 


1 10^ 


ShiAa. 


Cnnk. 


1 4000 


Pro- 
peller. 


2487 
54<» 


Aosle 
Ciaak. 


180^ 


Cnnk. 


Pro- 
peller. 


{20l6 
4000 


»352 
5400 


if-^ 


C  =  diameter.    A.  E.  Seaton,  London,  1883. 


Side'Wfuel  Engines,  Sea  Sertriee. — One  cylinder  erank  journal,  G  =  8o;  outboard 
too;  Two  cylinder  crank  journal  50;  outboard  65;  and  centre  shaft  58. 

Propeller  Engines. -^Onn  cylinder  crank  journal  150;  Tunnel  130;  Two  cylinder 
comiwund  crank  130;  Tunnel  no;  Two  cranks,  crank  100;  Tunnel  85;  Three  cranks, 
crank  90;  and  Tunnel  78. 

River  Service. — C  may  be  reduced  one  fifth. 

iLLrHTRATiox.— With  a  compound  propeller  engine,  steam  cylinders  20  and  40 
Ins.  in  diameter,  by  40  ins.  stroke,  operating  under  a  pressure  of  80  lbs.  steam 
(mercurial  gauge),  what  should  be  the  diameter  of  the  shafts  of  wrought  iron? 


{/^ 


20' X  80  +  40*  X  15 


4000 


X40 


=</ 


56000 
4000 


X  40  =  8.24  ins.  crank  shaft; 


and  3/?—°^  X  40  =  7.46  ins.  propeller  ^aft 


Journals  or  6hai\;s,  etc. 

Journals  or  bearings  of  shafts  should  be  proportioned  with  reference  to 
pressure  or  load  tu  be  sustaine<i  by  the  journal.  Simplest  measure  of  bear- 
ing ca))acity  of  a  journal  is  product-  of  its  length  bv  its  diameter,  in  sq.  ins. ; 
and  axial  area  or  section  thus  obtained,  multiplied  by  a  coefficient  of  pressure 
per  sq.  inch,  will  ghe  bearing  cajyacity. 

8ir  William  Fairbairn  and  Mr.  Box  give  instances  of  weights  on  bearings  of 
shafts,  etc.,  from  which  following  deductions  are  made,  showing  pressure  per  sq. 
inch  of  axial  section  of  journal : 

Crank  pins,  687  to  1150  lbs.  per  sq.  inch. 

Link  bearings,  456  to  690  lbs.  per  sq.  inch. 

Frossuro  on  bearings,  as  a  general  rule,  should  not  exceed  750  Iba  per  sq.  inch  of 

axial  area. 

Length  of  Journals  should  bo  i.  xa  to  x.5  times  diameter. 

Journals  of  Locomotives  or  Like  Axles  are  usually  made  twice  diameter,  and  to 
sustain  a  pressure  of  300  lbs.  per  sq.  inch  of  axial  area,  or  xo  sq.  ins.  per  ton  of  load. 

Solid.   Cyliudrioal   Couplixxgs  or   Sleeves. 

<^4- V5-5<*=i^;  3<i=L;  .8d=2;  .35(1+. 12  =  ]:.  d  representing  diameter, 
and  L  length  ofdeeve,  I  length  of  lap  or  scarf  of  shaft,  k  breadth  of  key,  its  dqM  be- 
ing ha^fits  biieadth,  and  D  diameter  of  conning  or  sleeve,  att  in  ins. 

ITlauged   Oouplixigs. 

<*4-V3.5d  =  T>;  3d4-i=F;  .3<i  +  .4=<;  d^-i^L;  Z-r-4=«.  D  repre- 
senting diameter  ofbmlt/  of  coupling,  F  diameter  qf flanges,  I  thickness  ofbotkfiangee, 
I,  length  of  each  coupling,  .?  projection  of  end  of  one  shaft  and  retrocession  of  other 
from  centre  <ifcoupUng,  and  d  diameter  of  shaft,  aU  in  ins. 

Supports   for   Sliafts.     (Molesworth.) 
5  ^d^  =  L.    L  represetUing  dista$»ce  of  supports  apart,  infest 


STSBM6TH   OF  HA-TSSUlIA — ^TOBSIOK.- 


797 


^ 


/Xi  w 
To  RetUt  Lateral  Stress,     l/'-c*^  ^-    ^  repretenting  weight  or  pressure 

%t  cerOte  cf  length  in  lbs.,  and  D  diameter  or  side,  if  square,  in  ins. ' 

Value  o^C— Wrought  Iron,  560;  Cast  Iron,  500;  Cast  Steel,  zooo  to  1500;  Bronze, 
(2o;  and  Wood,  4a     When  Weight  is  distributed  put  2  C. 

Values  cf  G  for  Shafting  of  Vdricus  Metals^  as  observed  by  different 
AiUhoritieSj  and  deduced  from  FommloH  of  Navier,    — -r^  =  0. 

VUvmate  Besistanee. 


MXTAI. 


Wrought  Iron. 

American,  Pembc,Me. 

**        Ulster.... 

"        inean..w. 

English,  re&ned 


Swedish , 


4t 


61673 
61  815 
66436 
49148 

54585 
61909 


Mktal. 


Cast  Iron. 

American,  mean  I 

««        18  trials 
English,  mean. .  | 


36846 
38300 
42831 

44957 
22132 

38217 


MCTAL. 


Stbel.    ■ 

American,  Conn.. 
"  Spindle 
«*    Nash.  I.  Co. 

English,  Shear. . . . 

Bessemer < 


82926 
102131 

95213 

III  19X 

73060 

79663 


16  WR      ^ 


Mill  and   Faotory   Sliafter.    (J.  B.  Francis.) 
Cylindrical.  Square 

Mean  value  of  T. 


d»T 
x6R 


=  W 


Coat  Iron {  J*^    Wroughtlron. . . .  |  J9 


33  000 
65000 

"     mean 35000 

Eng.  30000 


4( 


41 


Steel. 


(i 
«( 


1000 
.000 
mean.,..    50000  1     *'  mean. 
'*    Eng  45000  i 


(    76' 

(  'IIK 


000 
000 

86000 

Bessemer  78000 


Illushbation. — Whafc  is  the  ultimate  or  destructive  weights  that  may  lie  borne 
by  a  Round  Cast-iron  shaft  2  ins  in  diameter,  and  by  a  Square  shaft  1.75  ins.  sido, 
stress  applied  at  25  ins  fh>m  axis  ?  Aissume  T  =  36  00a 

Round  Square. 

3.1416  X  2»  X  36000  _  /i.75*X  36000       \   .    ' 

16X25  ^^  V  25 

Their  lengths  should  be  reduced,  and  diameter  increased,  in  following  cases : 

,  I  St  At  high  velocities,  to  admit  of  increased  diameter  of  journals,  thereby 
rendering  them  less  liable  to  heating?.  2d.  As  they  approach  extremity  of  a 
line  of  shafting.    3d.  Attachment  of  intermediate  pulleys  or  gearing. 


3)  -rry/2—  X819  i{&«. 


Prime  Movers  of  Power.  Transmitters  of  Power, 

^;^^*^3y!«^  =  d,and.otnd»  =  Iff.    ^J^^ ^ d,  tm^i  .02 n d^ ^l^. 
Steel,   l/^^J^  =  <^.  and  .016  n  d»  =  Iff.  3/3'asIH*  ^  ^  ^^^^j  ^^^  ^  ^„^  j^ 


Ca^ 


Tron    ^^^^^  =  *>and.oo6nd»  =  Tff.   3/?^i^^  =  d,  and  .012  nd«  =  IH». 

IH*  representing  horse-power  transmuted,  n  numl}er  ofrevohUiens,  and  d  diameter 
of  shaft  in  ins. 

Illustration  i.— What  should  be  diameter  of  a  wroaght-iron  shaft,  to  simply 
traosmit  128  ff  at  100  revolutions  per  minute  r 

/50X  128 


V      100         V  i°o 


9. —What  W  will  a  steel  shaft  of  4  ins.  diameter  transmit  at  100  revolutions  per 
(Dioutef 

.032  X  100  X  4  '  =  204.8  horses. 

3X* 


TSAKSTSRSB  STRKNGTH. 

TVansverse  or  Lateral  Strenffth  of  any  Bar,  Beam,  Bod,  etc.»  U  ux  propor 
tion  to  product  of  its  breadth  (ind  sauare  of  its  depth;  in  like-sided  l^r& 
beams,  etc.,  It  is  as  cube  of  aide,  and  ia  cylinders  as  cube  of  diameter  os 
section. 

When  One  End  it  Fixed  and  the  Other  Projecting,  strength  ia  inversely  m. 
distance  of  weight  from  section  acted  upon ;  and  stress  upon  any  section  ii 
directly  as  distance  of  weight  from  that  section. 

When  Both  Ends  are  Supported  only,  strength  is  4  times  greater  for  an 
equal  length,  when  weight  is  applied  in  mid^e  between  supports,  than  if  one 
end  only  is  fixed. 

When  Both  Ends  are  Fixed,  strength  is  6  times  greater  for  an  equal  length, 
when  weight  is  applied  in  middle,  than  if  one  end  only  is  fixed. 

When  Ends  Rest  merely  upon  Two  Suppotis,  compared  to  one  When  Ends  or* 
FHxedf  strength  of  any  bar,  beam,  etc,  to  support  a  weight  in  centre  of  ft,  is 
as  2  to  3. 

When  Weight  or  Stress  is  Uniformly  Distributed,  weight  or  stress  that  can 
be  supported,  compared  with  that  when  weight  or  stress  19  applied  at  one  end 
or  in  middle  between  supports,  is  as  2  to  i. 

In  Metals,  less  dimension  of  side  of  a  beam,  etc.,  or  diameter  of  a  cylinder, 
greater  its  proportionate  transverse  strength,  in  consequence  of  their  having 
a  greater  proportion  of  chilled  or  hanimere^l  surface,  compared  tc  their  de- 
ments of  strength,  resulting  from  dimensions  alone. 

Strength  of  a  Cylinder,  compared  to  a  Square  of  like  diameter  or  sidea,  is 
as  5.5  to  8.  Strength  of  a  HoUow  Cylinder  to  that  of  a  Solid  Cylinder,  ot 
same  area  of  section.  Is  about  as  1.65  to  i,  depending  essentially  upoc  the 
proportionate  thickness  of  metal  compared  to  diameter. 

Strength  of  an  Equilateral  Trian(/ular  Beam,  Fixed  at  One  End  and 
fjoaded  at  the  Other,  having  an  edge  up,  compared  to  a  Square  of  the  same 
area,  is  as  22  to  27 ;  and  strength  of  one,  having  an  edge  doum,  compared  to 
one  with  an  edge  up,  is  as  10  to  7. 

NoTK^In  Barlow  and  other  authors  the  comparison  In  this  case  Is  made  whan 
the  beam,  etc.,  restet)  upoa  supports.    Hence  the  stress  is  contmriwise. 

Strongest  rectangukr  bar  or  beam  that  can  be  cut  out  of  a  cylinder  is  one 
of  which  the  squares  of  breadth  and  depth  of  it,  and  diameter  of  the  cylinder, 
are  as  i,  2,  and  3  respectively. 

Cast   Irou. 

Mean  transverse  strength  of  American,  as  4etermined  by  Major  Wade,  U 
681  lbs.  per  sq.  inch,  suspended  from  a  bar  fixed  at  one  end  and  loaded  at 
the  other ;  and  mean  of  English,  as  determined  by  Fairbaim,  Barlow,  and 
others,  is  500  lbs. 

Experiments  upon  bars  of  cast  iron,  x,  2,  and  3  ins.  square,  give  a  reanlt 

of  transverse  strength  of  447,  348,  and  338  lbs.  respectively ;  being  in  the 

ratio  of  I,  .78,  and  .756. 

■^i^ood.8. 

Beams  of  wood,  when  laid  with  their  annular  layers  vertical,  are  stronger 
than  when  they  are  laid  horizontal,  in  the  proportion  of  8  to  7. 

Relative  Stiffness  of*  iMlaterials  to  Resist  a  rTraixsverse 

Stress. 

089  I  Cast  Iron. ...  1        |  Oak 095  I  Wrought  Iron  i.  3 

073  I  Ww. 0731  White  pioe,.,  .1  "  |  Yellowpin^.    .98; 


STBBNGTB  OF  UATBBIALS. — TRAKBVXBSX. 


799 


Strength  of  a  Rectangular  Beam  in  an  Inclined  pontion,  to  resist  a  vertical 
stress,  is  to  its  strengthln  a  liurizontal  ]H)sition,  as  square  of  radius  to  square 
of  cosine  of  elevation ;  ttiat  is,  as  square  of  length  of  beam  to  square  of  dis- 
tance between  its  points  of  support,  measured  upon  a  horizontal  plane. 


Woods. 

tntimaU  Resiitance. 


Caiifornia  Red  Tine. 
California  Spruce. . . 
Canadian  Red  Fine.. 
Cedar 


4500 
5000 

5000 

5000 


Cbestnat 

Georgia  Pine... 

Hemlock 

Northern  fine. 


LbB. 

5000 

7000 

3500 
6000 


Oregon  Piue. 

Spruce 

White  Oak... 
White  I'ine. . 


Lb«. 

6500 
^000 
6000 
4000 


rrransverse    Strengtii    or  Various    JVIaterials. 


(U.  S.  Ordnance  Departmenty  Hodgkinton,  Fairhaxm^  Kirkaldj/,  by  the  Author ^  and 

Digest  of  Pkyncol  TesU. ) 

Bower  reduced  to  uniform  Measure  of  One  Inch  Square,  and  One  Pool  in  Length; 

Weighl  suspended  from  one  End. 

Safe  Stress* 

Woons  {Continued). 

Gum,  blue 136 

Hackmatack tos 

Hemlock «  100 

Hiokorjr sto 

r^rch,  Russian 118 

Lignumvft«9 i6> 

Locust 295 

Mahogany 112 

Maple 20s 

Oak,  white 150 

live. 160 

African 207 

Rnglish 130 

French 160 


Metals. 

Brass 260 

Cast  Iron,  mean  (MaJ.  Wade) 681 

ordinary 373 

extreme,  West  P't  F'dry    980 

gun -metal,*    "        "         740 

Kng ,  I.0W  Moor,  ooli  blast.    472 

'*    Ronkey,  "  581 

"    Ystalyfera,       *♦  770 

"    mean,  65  kinds 500 

^'  15  kinds, cold  blast   641 

planed  bar. 518 

Copper. 244 

sSteel,  hammered,  mean 1500 

cast,  soft 1540 

*'    bard 4200 

hematite,  hammered 1620 

Krupp*s  shaft 2096 

Kagersta,  hammered 1 200 

Wrought  Iron,  mean 6cx> 

English 475 

Swedisht 665 


(C 

i( 
tt 
ti 
n 

4< 
«( 

i( 


(( 
ti 


it 


t( 


It 
41 


^^ 

u 
tt 

(t 
it 
tt 


(t 
tt 
tt 


Canada. 146 

Spanish 105 

Fine,  white 123 

pitch 137 

yellow 130 

Georgia 200 

Poon 184 

Spruce,  Canada ta) 

"      black 87 

Sycamore 125 

Tamarack 100 

Teak 165 

Walnut 112 


Woods. 

Ash 220 

**  English t6o 

"  Canada. lao 

Balsam,  Canada 87 

Beech 130 

"     white 112 

Birch 137  !  Brick,  common,  mean 

Cedar,  white. 160 

*'     Cuba,  mean. 84 

Chestnut 160 

Elm 125 

"  Canada,  red. 170 

Fir,  Baltic,  mean 13 


isaiuc,  mean 13^ 

Canada,  yellow {  ^J 

*'        "       red 120 

9reenheart,  Guiana 160 


Stonxs,  Bricks,  stc. 

20 

*'     pressed,       "     40 

Cement,  mean T5 

"  "    Portland i  '®"' 

I  37- 5 
hydraulic,  Porlliiud. .    5 

Roman 2 


It 
It 


ti 

tt 


tt 

tt 


Puzznolana. 

Portland,  i  year 

Concrete,  Eng.,  flre-brick  beam,) 
cement ) 


t 


3" 


•  This  WM  with  a  lmsll«  itrMictk  of  97000  lU. 

t  With  840  n«.  tfa*  fUflMiioo  WM  1  iaeh,  aad  th«  4a«tkUy  of  Uia  m«Ul  dmtsofmA. 


Boo         HtRltNViTH   UK  MATKKIALS.- 


-TBANSVEESE. 


TV    %    S.-*»' 

X   ^  V  

,    ^       kI 


*N» 


"^-'is 


*.?<. 


•«M<^ 


«ll. 


3-4 

«3 

I0.8 

'9 
24 
10.7 

1-3 
4-3 

42-5 

18 

26 
25 


•  •••••• 


iNteMn 


22 
II  to  15 

IZ 

....  9a 


Stobsb,  Bricks,  xtc 

Marble,  Adelaide 4.5 

"     Italian,  white u.S 

Mortar,  lime,  60  dajTE 2.$ 

X  iirae,  T  sand 3 

1    "     2    "   1.7s 

I     "      4     "    i.aS 

Oolite,  English,  Portland 21.3 

Paving,  Scotch,  Caithness 68 

Ireland,  Valentia. 68. 5 

Welsh 157 

English,  Yorkshire,  blue.,  zo.4 

*'       Arbroath ty 

Slate 8z 

"    Bangor. '.....  90 

"    English,  Llangollen 43 

Stones,  English,  Bath. 5.3 

Kentish,  Rag 35.8 

Yoiicsh ire,  landing  23. 5 


4i 
(( 
{( 


14 
U 


Caen 


12.5 


«^v 


•WM<««IW  Strength  of  Woods,  compared  with  their  Breaking  Weighty 

is  as  jfcUows : 


♦  --k^ 


•*^' 


Fvr  Cent. 

..  29 
..  25 
••  32 
..     38 


Per  Cent. 

Norway  Spruce....  30 

Oak,  Dantzic 36 

''     English 33 

Pitch  Pine 24 


Percent. 

Red  Pina 39 

RigaFir 3S 

Teak 33 

Yellow  Pine 30 


,^^4V*»*   i»   Strength,   of  several   "Wciods   "by   Seasoning. 

Per  Cent. 
^^    ,^.44,7  I  Beech 61.9  I  Elm 12.3  |  Oak.  ..-,.26.1  |  White  pine.... 9 

Concretes,  Cements,  etc. 
Matsbials. 


vxvNCKBTES  (English). 

<>c^^k'k  beam,  Portl'd  cement 

^^      sand  3  parts,  lime  i  part 

CKMBNTS  (English). 

^{^  c)i^  and  chalk 

•MUoid I 

^•«*i»i>«y 


Breaking 
Weight. 

Matkbialb. 

Bnainc 
Weight: 

LbB. 

31 
•7 

BRICKS  (English). 
Best  stock 

Lb*. 
11.8 

Fire-brick 

14 
10.7 

5-8 
2-5 

New  brick 

5-4 
37-5 
10.2 

5 

Old  brick 

Stock  brick,  well  bnrned. 

"          inferior,  burned. : . 

|^«*»n8verse    Strengtlx   of  Varions   ITigures   of  Cast  Iroxi. 

4(^cect  to  Uniform  Measure  of  Sectional  Area  of  One  Inch  Square  and  One  Foot  in 
Length.    Fixed  at  one  End  ;  Weight,  suspended  from  the  other. 

Brenkins 
Woigki: 


Form  of  Bar  or  Beam. 


Square 


♦ 


Square,  diagonal  vertical. . . 
Cylinder 


3W  cylinder;  greater) 
meter  twice  that  of  [ 
»r ) 


Breaking 
Weight. 


Lba. 
673 

568 
573 

794 


Form  of  Bar  or  Beam. 


I 

CI 


Rectangular  prism. 
2X.5   ins.  in  depth.. . 
3X.33   "   in  depth... 
4X.25    '^    in  depth... 

▲  Equilateral  triangle,  an 
edge  up 

▼  Equilateral  triangle,  an 
edge  down 

2  ins.  in  depth  X  2  X ) 
.268  inch  in  width..  ] 

2  ins.  in  depth  X  2  X ) 
.868  inch  in  width..) 


I 


Lbs. 

1456 
2393 
2652 

560 

958 
ao68 

I   555 


STBBKGTH    OF  MATERIALS. — TBAN6VER8E. 


80k 


Solid  and   HoUoiiv  Csrlinders  of  various   :MaterialBo 
One  Foot  in  Length.    Fixed  cU  one  End  ;  Weight  suspended  from  Oie  other. 


Matbkiau. 


WOODS. 

Ash 

(t 


Fir* 

White  pino. . 


ti 


u 


External 
Dmm. 


Ins. 

2 
2 
2 
Z 
3 


Internal 
Diam. 

Breaking 
Weight. 

Matcruls. 

Inch. 

X 

Lbs. 

685 
604 
772 

610 

HKTAL. 

Cast  iroD,  cold) 
blast ( 

STONE-WARE. 

Rolled  pipe  of  ) 
fine  clay ) 

External 
Diam. 

Interna) 
Diam. 

Breakiiift 

Weijcbt. 

Ids. 

Ins. 

Lbs. 

3 

— 

12000 

2.87 

X.928 

19c 

*  An  inch^sqaare  batten,  from  same  plank  as  this  specimen,  broke  at  139  Ibt. 

f^oxrxxiulae   ibr   Xraxis-verse   Stress  of*  fLeotaiigixlar   Sars» 

SeaxxiB,  Cylinders,  etc. 

Fixed  at  One  End,    Loaded  at  (he  Other, 

Bars.  Beams,  etc.     =  S:    =;W: =^l\    - —  =  6:      / —  —  d: 

IW 


Bars,  Beams,  etc. 


JlW 

and  Cylinder  3  /  — -  =  b  and  d. 

fixed  at  Both  Ends,    Loaded  in  Middle, 

6S  bd' 


IW  enbd' 


w 


=«;. 


JJL-h 

6iid''-   * 


.  /2-5-r  =  d\    and  Cylinder  3 /— —  =  b  and  d. 

V  0  o  O  Y    0  o 


Fixed  at  Both  Ends.    Loaded  at  any  Othet'  Point  than  in  Middle, 

2*»»W 


Bars,  Beams,  etc.    ^^^^-,  =S;    ^__^    =W;    ^^^775  =  i; 


2  mn 


VTs?-ft-  =  ^'    and  Cylinder  3^ 


3S6da 

2  m  n  W      .       ,  _ 
— —J—  =  6  and  d. 

3  St 


3  Sid 


,=&i 


Supported  at  Both  Ends.    Loaded  in  Middle, 


Bars,  Beams,  etc. 


IW 


=  S; 


I 


=  W; 


4Sbd^ 
W 


4  6d=» 

^  /—rr-r=  d ;    and  Cylinder  3  /— -  =  6  and  d. 

V  4  o  ^  V  4  ^     . 


=  li 


IW 

4Sd' 


=  fr. 


8uj}ported  at  Both  Emh.    leaded  at  awf  Other  Point  than  in  Middle. 
m  n  \\      ..  ^Ibd^      _.        vi  nW      .         mnW 


/ 


m  n 


=  W; 


S6d2 


=  «; 


Bars,  Beams,  etc.      ,  -  -—  =  S : 
'  lb  d^ 

fmnW      _         j«ij      .  /mnW 
— ^  =  d;    and  Cylinder  3/  .  ~  &  and  d. 


S/d' 


=  6; 


In  Square  Beams, etc.,  for  b  and  d  put  ^^  =  -VgT"  =  *  In  Cylinders,  for 
&  d'  pot  d*  as  abova 

jrA«n  «w.9A«  M  uniformly  distributed,  same  formulas  will  apply,  W  r<7>rc- 
setUing  only  half  required  or  given  loeight, 

S  representing  stress  in  a  Bar,  Ream,  or  Cylinder,  one  foot  in  length,  and  one  inch 
square,  side,  or  in  diameter  ;  and  W  weight,  in  lbs. ;  b  breadth,  and  d  depth,  in  ins.; 
I  length,  m  distance  of  toeight  from  one  end,  and  nfrom  the  other,  all  in  feet 

Briok-worli- 

A  brick  arch,  having  a  rise  of  2  feet,  and  a  span  of  15  feet  9  ins.,  and  2 
feet  in  width,  with  a  depth  at  its  crown  of  4  ins.,  bore  358400  lbs.  Lp^id  along 
itib  centre. 


802         STBENGTH   OF  MATERIALS. — TEANSYBBBS. 

Coelfioient  or  B^aotor  of  Safety. 

CoeffieieiU  or  factor  of  safety  of  different  materials  must  be  taken  in  view 
of  importance  of  stnicturef  or  instrument,  probable  or  required  period  of  du> 
ration  of  it,  and  if  it  is  to  bear  a  quiescent,  vibratory,  gradiutl,  or  percussive 
stress,  and  to  meet  these  varied  conditions,  it  will  range  from  .125  to  .3  of 
the  maximum  or  ultimate  strength  here  given  or  ascertained. 

To  Compute  Transverse  Strength,  of  a  Rectangular  Bar 

or   Geaixi. 

When  a  Bar  or  Beam  is  Fixed  at  One  End,  and  Loaded  at  the  Other. 
Rule. — Multiply  Coefficient  of  material  in  preceding  Tables,  or,  as  luay  be 
ascertained,  by  breadth  and  square  of  depth  in  ins.,  and  divide  product  by- 
length  in  feet. 

Note.  —When  a  beam,  etc.,  is  loaded  uniformly  tbroaghont  ita  length,  result  must 
be  doubled. 

ExAMPLK. — What  weight  will  a  cast-iron  bar,  3  ins.  square  and  projecting  30  ina 
in  length,  bear  without  permanent  injury  ? 

Assume  strength  of  material  at  660,  and  its  elasticity  at  one  fifth  or  .3  of  its 

strength. 

_.  ^^  660  X  .2  X  2  X  2»     1056  ,. 

Then  =  — ^  =  422. 4  to*. 

V  2.5  2.5 

f^  Dimensions  of  a  Beam  or  Bar  are  Required  to  Support  a  Given  Weight 
at  its  End,  Rui.k. — Divide  product  of  weight  and  length  in  feet  by  Confi- 
dent of  material,  and  quotient  will  give  product  of  breadth  and  square  of 
depth. 

ExAMPLK. — What  is  the  depth  of  a  wrought- iron  beam,  2  ina  broad,  necessary  to 
support  576 II0S.  suspended  at  30  ins.  fh>m  fixed  endt 

Assume  strength  of  iron  at  15a 

Then  ^^-^2^=g6, and     /^=2.tg ins. depth. 

When  a  Beam  or  Bar  is  Fixed  at  Both  Ends,  and  Loaded  in  the  Middle, 
RuLR. — Multiply  Coe^ieni  of  material  by  6  times  breadth  and  square  of 
depth  in  ins.,  and  divide  product  by  length  in  feet 

NoTK.— When  beam  is  loaded  uniformly  throughout  its  length,  result  most  be 
doubled. 

ExAMPLK.— What  weight  will  a  bar  of  cast  iron,  3  ina  square  and  5  feet  in  length, 
support  in  middle,  without  permanent  injury? 

Assume  strength  of  material  as  in  a  previous  case  at  .2  of  660- 

Then  66oX.2X2X6X2^^6336^^^        ^ 

5  5 

If  Dimensions  of  a  Beam  or  Bar  are  Bequired  to  Support  a  Given  Weight 
in  Middle,  bcttoeen  Fixed  Ends,  Rule. — Divide  product  of  weight  and 
length  in  feet  by  6  times  Coefficient  of  material,  and  quotient  will  give  prod- 
uct of  breadth  and  square  of  depth. 

Example.— What  dimensions  will  a  square  cast-iron  bar,  5  feet  in  length,  require 
to  support  without  permanent  injury  a  stress  of  2160  Iba  ? 

Assume  strength  of  material  at  .2  of  660  or  132,  as  preceding. 

Then  ''  °  ■ }  =  ^ —  =  13.64,  vffdeh,  divided  hvifor  assumed. hreadlh  =s 6.89, 
13a  X  6         79a         J    T>  .  ^    ^  -1 

and  V6.8a=:  a.6x  ins.  dqi>tk. 

When  Breadth  or  Depth  is  Bequired.  Rule. — Divide  product  obtained 
by  preceding  rules  by  square  of  depth,  and  quotient  is  breadth;  or  by 
breadth,  and  square  root  of  quotient  is  depth. 

^.XAMPLK.— If  128  is  the  product,  and  depth  is  8;  then  ia8-^8*  =  3,6reaMk 

128  -i-  2  =  64,  and  V'64  =  8,  depth. 


STRENGTH   OF  MATEBIAL6. — TRANSVEBSE.  803 

When  Weight  is  not  in  Middle  between  Ends,  Rule. — ^Multiply  Coefficient 
of  material  by  3  times  length  in  feet,  and  breadth  and  square  of  depth  in 
ins.,  and  divide  product  by  twice  product  of  distances  of  weight,  or  stress 
from  either  end. 

EzAXPLB.— What  weight  will  a  cast-iron  bar,  fixed  at  both  ends,  e  ina  square  and 
5  feet  in  length,  bear  without  permanent  iujury,  a  feet  Irom  one  end  J 

Assume  strength  of  material  at  .2  of  660  or  133,  as  preceding. 

mh^  «32X3XSX2X2»      15840  „ 

Then  — — = — ; =  -=—^-  =  1320  iw. 

2X(2X3)  >2 

When  a  Beam  or  Bar  is  Sunported  at  Both  Ends^  and  Loaded  in  Middle. 
Rule. — Multiply  Coejficient  of  material  by  4  times  breadth  and  square  of 
depth  in  ins.,  and  divide  product  by  length  in  feet. 

Note. — When  beam  is  loaded  uniformly  throughout  its  length,  result  must  be 
doubled. 

ExAMFLK. — What  weight  will  a  cast-iron  bar,  5  feet  between  the  supports,  and  a 
Jna  square,  bear  in  middle,  without  permanent  ipjury? 

Assume  strength  of  iron  at  133,  as  preceding. 

Then  132  X  2  X  4  X  a'  =  4224-7-5  =  844.8  lbs. 

If  Dimensions  are  Required  to  Support  a  Given  Weight.  Rule. — Divide 
product  of  weight  and  length  in  feet  by  4  times  Coefficient  of  material,  and 
quotient  will  give  product  of  breadth,  aind  scjuare  of  depth. 

When  Weight  is  not  in  Middle  between  Sitjworts.  Kulk. — Multiply  Coef- 
fidenl  of  material  by  length  in  feet,  and  breaath  and  square  of  depth  "in  ins., 
and  divide  product  by  product  of  distances  of  weight,  or  stress  u-om  either 
support 

ExAXPLK. — What  weight  will  a  cast-iron  bar,  a  ins.  square  and  5  feet  in  length, 
aupport  without  permanent  ii\jury,  at  a  distance  of  2  feet  fVom  one  end,  or  support  f 

Assume  strength  of  iron  at  13a.  as  preceding. 

2X(5  — 2)  6 

To  Compute  PresHure   upon.  Snds   or  upon    Supports. 

Rule  i. — Divide  product  of  weight  and  its  distance  from  nearest  end  or 
support,  by  whole  length,  and  quotient  will  give  pressure  upon  end  or  sup- 
port farthest  from  weight. 

a. — Divide  product  of  weight  and  its  distance  from  farthest  end,  or  sup- 
port, by  whole  length,  and  quotient  will  give  pressure  upon  end  or  support 
nearest  weight. 

ExANPUL^What  is  pressure  upon  supports  in  case  of  preceding  example? 

=  352  Ihs.  upon  support  farthest  from  the  weight; —  528  lbs.  upon 

support  nearest  to  weigfU. 

When  a  Bar  or  Beam,  Fixed  or  Stmported  at  Both  EndSy  bears  Two 
Weights  at  Unequal  Distances  from  Ends. 

mW  ,  Iw  .  ,  ,^ .  nw  ,  I'  W  * «,     ^ 

-= —  -}-  -7-  =  pressure  at  w  end^  and  — —  4.  — -—  •■=  pressure  at  W  end. 

L  I4  L  L 

IK  and  n  representing  distances  of  greatest  and  least  weights  from,  their  nearest 
end,  W  and  w  greatest  and  least  weights^  L  whole  length,  I  distance  from  least  weight 
to  farthest  end,  and  V  distance  of  greatest  weight  from  farthest  end. 

iLLUSTRATioif. — ^A  beam  10  feet  in  length,  having  both  ends  flxeU  in  a  wall,  bears 
two  weights— viz.,  one  of  1000  lbs.,  at  4  feet  from  one  of  its  ends,  and  the  other  of 
3000  lbs,  at  4  feet  from  the  other  end;  what  is  pressure  upon  each  end? 

4  X  2000  .  6  X  1000  ,1       A  4  X  1000  ,  6  X  aooo        .      ,.       .  _. 

VO. 4-  -ii —  ,400  lbs.  atw: — 1600  Iht.  at  W. 

10  xo  xo  xo 


8CH         STEENGTH    OP  MATEBIAIiS. TBANSVBBSA. 


/ 


When  Plane  of  Bar  or  Beam  Pi^ojectB  OtHiquely  Upward  or  Downward, 

When  Fixed  at  One  End  and  Loaded  at  the  Other.  Rule. — Multiply  Ooi 
efficient  of  material  by  breadth  and  square  of  depth  in  ins.,  and  divide  product 
by  product  of  length  in  feet  and  cosine  of  angle  of  elevation  or  depression. 

NoTK— When  beam  is  loaded  uniformly  along  its  length,  Yesult  must  be  doubled. 

ExAVPLB. — What  is  weight  an  ash  beam,  5  feet  in  length,  3  ina  square,  and  pro- 
jecting upward  at  an  angle  of  7*^  15',  will  bear  without  permanent  injury? 

Assume  breaking  weight  of  ash  at  160,  and  its  elasticity  at  .25  of  its  strength,  a&i 
cosine  of  70  15'  =  .993. 

TK^^  160X. 25X3X3*      1080  ,, 

Then — - — --  =:  — -  =  217.74  los. 

5X.993  4-96 

To  Compute  Transverse  Strengtla  of  an.  lCq,xiilateral  Tri 

angle  or  T   Seani. 

RuLK. — Proceed  as  for  a  rectangular  beam,  taking  following  proportioaf 
of  Coefficient  of  material : 

Fixed  at  One  or  i  Equilateral  triangle,  edge  op 6  X  d»  X  2    C 

J^nfh  l^,       \  Equilateral  triangle,  edge  down 6  X  d«  X  .34  " 

isoin  Jijnas.      (  f  beam,  flange  up b%d^x.^^' 

Sunnortfid     at  (  Equilateral  triangle,  edge  up 6  X  d«  x  .34  '* 

au^riea     at,  1  Rqajiateral  triangle,  edge  down ft  x  d=^  X  •  2    " 

DOtn  HMOS,     (  J  beam,  flange  up : 6xd=X-42" 

To  Compute  Transverse  Strength,   of  a   Solid  Cylinder 
RuLK. — Proceed  as  for  a  rectangular  beam,  and  take  .6  of  Coefficient  or 

of  product. 
A  mean  of  z8  results  with  cold  blast  gun-metal,  gave  a  coefficient  for  740  lbs. 

W/ien  Fixed  at  One  End^  and  Loaded  at  the  Other,  RuLB. — Multiply 
weit^ht  to  be  supported  in  lbs.  by  length  of  cylinder  in  feet ,  divide  product 
by  .6  of  boefficient  of  material,  and  cube  root  of  quotient  will  give  diameter. 

Note.— When  cylinder  is  loaded  uniformly  throughout  its  length,  cube  root  of 
half  quotient  will  give  diameter 

Ex  AMPLR.  —What  should  be  diameter  of  a  cast-iron  cylindrical  beam  of  gun  -metal, 
8  ins.  in  length,  to  break  at  15  000  lbs.  ? 

,   /150OOX  8-r-I2         _   /lOOOO  _       . 

I  ^     =  I    =  2.8ain«. 

V         6X740  V    444 

When  Fixed  at  Both  Ends,  and  Loaded  in  Middle,    Rule. — ^Multiply 

weight  to  be  supported  in  lbs.  by  length  of  cylinder  between  supports  in 

feet ;  divide  product  by  .6  of  Coefficient  of  material,  and  cube  root  of  one 

sixth  of  quotient  will  give  diameter. 

NoTK.— When  cylinder  is  loaded  uniformly  alCDg  its  length,  cube  root  of  half  the 
quotient  will  give  diameter. 

Example. — What  is  the  diameter  of  a  cast-iron  cylinder  of  gun-metal,  2  feet  be> 
tween  supports,  that  will  break  at  35964  Iba  ¥ 

35  964  X  a 

.6X  740 

Mean  results  of  cylinder  and  square  bars  gave  444  and  740  Iba  Hence,  strength 
of  a  cylinder  compared  to  a  square  is  as  444  to  740  or  .6  to  i. 

Then  4X33X444  ^ ^y  ^ j2  lbs. 


=  163,  and  ? /^  =  3  <»M. 


X 


To  Compute  Diameter  of*  a   Solid  Cylinder  to  Support 

a  given    'Weisl^t. 

When  Supported  at  Both  Ends,  and  Loaded  in  Middk,  Rule.— Multiply 
weight  to  be  supported  in  lbs.  by  length  of  cylinder  between  supports  in 
feet ;  divide  product  by  .6  of  Coefficient  of  material,  and  cube  root  of  one 
fourth  of  quotient  will  give  diameter. 


STESNGTH   OF  HATJBBIALS. — TBANSVEESE.         805 

NOR.'-WheD  cylinder  is  kntded  uniformly  along  its  length,  evbe  toot  of  hAlf  the 
potient  will  give  diameter. 

ExAMPLs.— Wiiat  is  diameter  of  a  cast-iron  gun-metal  cylinder,  i  foot  between  Its 
lapports,  that  will  break  at  4&000  lbs.  f 

48000  X  I         o      ^  *  A08 
^^—  =  108,  and  3  / —  =3 1«* 
.6X740  V   4 

Heotangular,    (i>.  K.  Clark.) 

{t)  Loaded  at  Middle.    2-y^  =  W.      (q)  Loaded  at  One  End.    l~.zs^ 

Cylindrioal. 

(3)  Loaded  oLMiddU.    5Ji^  =  w.    (4)  Loaded  at  One  End.    iiZi^^W. 

W  representing  vUimaJte  stress  in  tons. 
Above  Coefficients  are  for  iron  of  a  tensile  strength  of  7  tons  per  sq.  inch. 

(0      (2)     (3)     (4)  (1)     (2)      (3)     (4) 


Hence,  for  8  tons  put   9.3    3.3   6.3    x.6 
9       **        X0.4    2.6    7.x    X.8 


XI       "        X2.7    3.3    8.6    3.3 


10      "        1 1. 5    2.9    7.9    3 

8.r 


For  IS  tons  put  13.8    3.4     9.4    3.4 
13       **       14.5    3.6    10.3    3.6 


14 

it 

16 

4 

IX         3.8 

«s 

u 

17.3 

4-3 

IX.8    3 

!I?o  Ooxapixte  JDeetxructive  "Weisb-t,  or  l^oads  tliat  xnay  "be 
l>oriie  'by  ^Vroue^t-iroix  Rolled  Beams  and  Ghirders, 
or   Riveted  Xixbes  of*  various   IT'ig^iires   and  Sectioxis. 

Supported  at  Both  Ends,    Load  applied  in  Middle. 

When  Section  of  Beam  or  Girder  is  that  of  any  of  the  Figures  infoUofw- 
ing  Table,  Rule. — Divide  product  of  area  of  section,  depth,  and  Coej^ient 
lor  girder,  etc,  from  following  Table,  by  length  between  supports  in  feet, 
and  quotient  will  give  deatractive  weight  in  lbs. 

NoTB.— The  Coefficients  given  are  based  upon  experiments  with  English  iron. 

Solid   Beams. 

IzJiUSTRATioir. — What  load  will  destroy  a  wrought  iron  grpoved  beam  of  following 
dimensions,  10  feet  in  length  between  supports,  and  loaded  in  its  middle? 

Flanges,  5.7  x  -6  inch;  Web,  .6  inch;  Depth,  11.75  ins. ;  Area,  13.34  sq.  ins. 

AflBume  Coefficient  463^  ds  for  like  case  (xx)  in  following  table,  page  806. 

'3-34  X  11.75X4638     726983 

= =  7a  090.3  UfS. 

xo  10  ^ 

Ultimate  stress  for  such  a  beam  by  experiment  was  estimated  at  97  997  lb& 
Formulas  of  Various  Authors  give  foUowing  Results: 

D.  K.  Clark.       ■       "r'-'SSS^;  _  ^     ^  representing  area  of  section  of  lower 

.0  * 
JUmge^  a'  area  of  section  of  web,  less  onejlange^  d  depth  of  beam,  less  average  depth 
ilfoneflangefoil  m  ins.,  I  length  in  feet,  and  W  ultimate  deslructine  weight  in  tons. 

This  formula  is  based  upon  the  assumption  that  the  beam  has  lateral  support 

11.75  — .6(4X^7^-6H-»i55Xxi.75  — -^X.e)      238-69      _  ,0  „v:,v  ^ 
-__ =  =E  39. 78,  which  x  2340 

^  _  .0  X  xo  O 

.s  89  X07  lbs. 

If OLBSWOETH.     ^-^^—  =  W.    C  =  7616  Ibs. ,  and  for  hd»  put  6  d'  —  3  6'  d'». 

5  =  5.7  •  ft'  =  S-7— •6-^a  =2.55  :  d  =  ii.75  :  d' =  11.75— ^6 X  2=10.55  ' 
and  5.7  X  11.7s"  — 2  X  2.55  X  icss'-'^  786.94  —  567.63  =  219.31. 

-_.         4X7616X210.31      6781060       ^     „  „  ,. 

Then,  - — — ^-^  =  — ^- =  56  508.8  lbs. 

'  loX  12  120  ^  ^ 

b  and  d  representing  exterior  and  b'  and  d'  interior  dimensions,  and  I  Imgth  aU  in  ins. 
Fairbaim's  formula  would  give  a  result  less  than  half  of  the  first,  and  Hodgkir 
son^s  alike  to  that  of  Molesworth. 

•  V 


8o6 


PLATS   AND   BOX   GIBDEBS. 


Steel    Plate    Grirders- 


Steel   Box    G-iTd.eTm, 


Safe  Loads  in  Tons  of  2000  lbs.     Uniformly  DisfribtOed, 
Tensile  Strength^  15000  lbs. 


Plate. 


Carnegie  Steel  Co. 


Sox. 


30X.6  Ins.         33X.6  Ixis. 
Web  Plate. 

Flanges,  1 2  X  .  375  in*-    AngUs,  s  x .  s 
X  3-5  »»»*• 


.  J 

Load.         | 

|28 

.added 
plates. 

Centre 
tre  of  1 

i|2 

Feet. 

Ton*. 

Tons. 

20 

9367 

4.62 

21 

89.2a 

4.38 

22 

85.15 

4.19 

23 

81.46 

4 

24 

78.07 

3?3 

25 

74-94 

3.68 

26 

72.06 

3-54 

^l 

69.4 

342 

28 

66.91 

329 

29 

64.6 

3- 17 

30 

62.45 

3.07 

31 

60.44 

:m 

32 

58.55 

33 

56.77 

2.79 

34 

55" 

2.7 

3? 

52.04 

2.50 

38 

49.3 

2.42 

40 

46.83 

2.31 

nil 
III 

Q-go 
Si 


Feet. 
20 
21 
22 

23 
24 
25 
26 

2 

29 
30 
31 
32 

33 
34 
36 
38 
40 


Load. 


^ 


Tons. 

105.82 
ioa78 
96.2 
2.01 
8.18 

84.65 

81.3. 

78.3 

75-58 

72.98 

70-55 
68.26 

66.14 

64.13 

62.24 

58.79 

55.7 

52.9 


Ik 


Tons. 

5.08 

4.85 
4.62 

4.42 
4.23 
4.06 

3.9' 

376 

3-63 

3-5 

3.39 

3.29 

3.1 

3.0 

2-99 
2.83 

2.67 
2.55 


30X.3  Ins.        33X.6  Ins. 
"Web  Plates. 

FUmges^  16  X  .  375     Flanges,  20  X  •  437J 
ins.  ins. 

Angles,  3.5  x  3-5  X  .5  *»«• 


si's 
^1 


Feet. 
20 
ai 

22 

23 
24 
25 
a6 

27 
28 

29 

30 
31 
32 

33 
34 
36 
38 
40 


o    . 

^^5 


liOAD. 


Tons. 
1 13.6 

107.24 

102.37 

97.02 

93.83 
90.08 
8^  6a 

83.4» 
8a  12 

77-05 
75.07 
72.65 
7a  38 
68.24 
66.23 
62.56 
59.26 
56.31 


Tods. 

6.61 

6.3 
6 

5-75 
5.52 

5-3 
5.09 

4-9 


73 
57 
41 
27 

»3 

02 

9 

% 


1    .  . 

Load. 

Distance 
Centre  to  Cen- 
tre of  Bearfoga 

With 

Weight  of 

Girder. 

?co 

Feet. 

Tons. 

Tons. 

20 

150.2 

9.17 

21 

143- 1 

8.75 

22 

>36.5 

8.33 

23 

i3a6 

7.96 

24 

135.2 

7.64 

25 

12a  I 

7.33 

26 

"5-5 

7.06 

27 

XII. 2 

6.8 

28 

107.3 

6.54 

29 

103.6 

6.3a 

30 

xoaa 

6.1 

3« 

96.9 

592 

32 

93-9 

573 

33 

2J 

5.56 

34 

88.4 

5-39 

36 

83-4 

509 

38 

79        4-82 

40 

75-1 

4-58 

3ex.6  Ins.       48X.6aO  Ins. 

Web. 


Flanges,  12  X -375 
ins.  Angles,  5  X 
3.5X.5«»». 


ao 
ai 

22 
23 
24 

25 

26 

27 
28 

29 
30 
31 
32 

33 
34 
36 
38 
40 


"8.35 

1X2. 7 

107.57 
102.9 

98.61 

94.66 

91,03 

87.65 

84-53 
81.61 

78.89 

76.34 
7396 
71.72 
69.61 

65-75 
62.28 

59-14 


5.54 

5.28 

5- 04 
4.82 

4-63 
4-44 
4.27 
4.11 

3-q6 
3.82 

3-7 

3-58 

3.46 

3-36 

3.27 

307 

2.91 

2-77 


FUmges,  14  X  625 
ins.  Angles,  6  X 
6  X  .625  ins. 


ao 
21 
22 
23 
24 

25 

26 
27 
28 

29 
30 
31 
32 
33 
34 
36 
38 
40 


176.01 
167.63 
160.02 
153.06 
146.68 
14a  82 

135-3 
130.3 
125.73 
121.38 

"7-35 
"3.56 
III. ox 
106.67 

103.55 
97.78 
2.64 
8 


ti 


7-74 
7-37 
7-03 
6.73 

6.44 
6.18 

5.95 
5-73 
5.52 
5.34 
5.17 
)8 

4-7 

4-55 

4.3 
4.07 

387 


4.98 
4. 8  J 


Sex.a  Ins.         4aX.G  ins. 
"Webs. 

Flanges,  24  X  .5625    Flanges,  30  x  .6875 

ins.    Angles,  5  X 
3.SX.5«*u> 


ins.    Angles,  4  X 
3.5  X  .5  *ns. 


ao 

21 
23 

23 
24 

25 

26 

27 
28 

29 
30 
31 
32 

33 
34 
36 
38 
40 


213.3 
203.3 
194. 1 

185-5 
177.0 
17a  8 

164.3 
158. 1 

152.4 
147.2 
142.3 

"37 

133 
129. 

125 


1x8.6 
1Z2.4 
X06.7 


I  a.  22 
11.65 
IX. la 
X0.64 
io.a 
9.78 


I 


8.43 
8.15 


88 

65 
42 

a 
81 

44 

12 


30 
21 
22 

23 

24 

25 
36 

27 
28 

29 
30 

3> 
32 
33 

36 
38 
40 


329.2 
313.5 

274-3 
263-3 
2532 
2438 
235.2 
227 

2x9.5 
212.3 
205.7 

'99-5 
3.6 

2.9 

173-2 
164-5 


;i 


18.29 
1.7.41 
16.63 

15.9 

15. 24 

14-63 
14.07 

'355 
13.06 

X3.6x 
13.  x8 
11.79 
XX- 43 

XO.08 

"0-7S 
10.15 

9.63 

9.X4 


Bdcklino.— To  arrest  the  bockling  of  these  girders,  strips  of  plate,  termed  Fltttrt,  are  let  vertical 
on  the  outer  sides  onlv  of  a  web  plate,  together  with  other  ▼ertieal  angles,  termed  Biiftiiur;  both  of 
which  are  riveted  to  the  web  plate,  and  both  of  these  •dditiou  an  Ml  at  itttarvala,  deps^deot  Qpo«  th« 
length  of  the  girder  and  the  character  of  its  stress. 


STBEN6TH   OF   HATEBIALS. — TBANSYEB8E. 


807 


X^olled    Steel    Seameu 

SiqfR  Load  for  One  Foot^  Uniformly  Distributed  and  Supported  Sideunge. 
Carnegie    Steel    Co.,    Pittsburg,    Pa. 


[nd«z. 

Depth. 

B77 

3 

B23 

4 

B  21 

5 

B  19 

6 

B17 

7 

Bzs 

8 

B.3 

9 

Bii 

10 

B   9 

13 

B    8 

za 

B    7 

15 

B    s 

15 

B    4 

IS 

B80 

18 

B    3 

30 

B   3 

30 

B    I 

M 

DMicnaUon. 


Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 
Light 
Heavy 

Standard 


Width. 


Flaage. 


Ina. 

3.423 
2.521 

2.33 

tw 

2.66 


»47 
294 

4S« 
575 
33 

t^ 
3.66 
4.087 
4.271 

4 

4446 

4.772 

4-33 
4-805 

t^ 
5- 086 

5 

S.366 

5.612 

5.25 

5-55^ 

5-746 

5.5 

6.096 

6.293 

6 

6.479 

6.774 

6.4 

6.095 

6.259 

6 

6.325 

6.399 

6.25 

7.063 

7.284 

7 
7.07 

7-254 
7 


W«b. 


Ins. 
.263 
.361 

•17 

.363 

•4* 
.19 

•357 

.504 
.21 

•352 

•475 

•23 

•353 

.458 

•25 

•357 

•541 

.37 

.406 

•732 

.29 

•455 
•749 
•31 
•436 

.576 
.822 
.46 

^^56 

•41 
.686 

.882 

is^ 

1. 184 
.8x 

•555 
.7x9 
.46 

•575 
.649 

•5 

.663 
.884 
.6 

.57 

•754 

-5 


Area. 

BflCttOB. 


I  Weight 


Sq.Ine. 
1.91 
2.21 
1.63 
2-5 
3-09 

3.31 

4-34 
3.87 

4^34 
5.07 

3-0i 

S-«5 
5.88 

6.03 

7-5 

S-33 

7-35 

10.39 
6.31 
8.83 

11.76 

7-37 

10.39 

9.36 

13.24 
16.18 

11.84 

13.24 
16.18 
13.48 
19.12 

23. 06 
17.67 

25 

29.41 

23.81 

»7-65 
20.59 
'5-93 
20.59 

33. 06 
19.08 

25 

29.41 

23-73 

25 

29.41 

33.33 


Foot. 


LU. 

6-5 
7-5 
S-S 
8.5 
IO-5 
7-5 

13.35 

14-75 

9-75 

14-75 

"7-25 

13.35 

»7S 

30 
15 

SO.  5 

18 

25 

35 

3X 
30 
40 
25 

35 

31- : 

45 
55 
40 
45 
55 
42 
65 

75 
60 

85 
100 

80 

60 

70 

55 
70 

65 

85 
100 

80 

85 

too 

80 


Teoeile  Strength 

per  Sq.  Inch. 
13500     16000 


Lbs. 
15000 

10  300 

13800 

36500 

29800 

34900 

45400 

50500 

40300 

66600 

73800 

60500 

93300 

100400 

86300 

136300 

143600 

1x8  500 

X70300 

'  207000 

157300 

223600 

264500 

203500 

317000 

299700 

396800 

445800 

373500 

506400 

567800 

490800 

706700 

768000 

676600 

908600 

Z000600 

883900 

779600 

853000 

736700 

X  016600 

1 057  400 

974700 

X  257  200 

1379800 

X  222 100 

X  505  900 
X  653  300 

1449900 


Lbs. 
19  100 
20700 
17600 

33900 

38  100 

31  800 

58x00 

64600 

51600 

86300 

93x00 

77500 

XX9400 

128600 

XX0400 

x6i6oo 

182500 

X5X700 

3x7000 

365000 

30I  300 

386300 

338500 

260500 
405800 

383700 
507900 

570600 

478  100 

648200 

726800 

628300 

904600 

983000 

866100 

1 163000 

I  280700 

I  X3I  300 

997700 

X09I  900 

943000 

X  301 200 

X  353  500 
1247600 

X  609  300 
X 766  100 
1 564  300 
1927600 
21x5900 
X  855  900 


Index  refen  to  lUuBtration  in  Catalogue. 

For  safe  load  of  Iron  deduct  25  per  cent 

For  permanent  stress,  absolately  (Vee  fVoni  vibration,  a  greater  strain  would  be 
allowable,  and,  contrariwise,  If  the  stress  is  vibrative  or  mainly  that  of  a  live  load, 
the  loads  here  given  should  be  relutively  redOced. 


8o8 


STRKNGTH   OF   MATKBIALS. — TBANSVERSB. 


A  difltorenoe  ot  35  per  cent  to  ettber  directtan  sbonld  be  made,  according  to  char- 
acter of  load  to  be  supported  or  stress  to  be  borne. 

Elastic  Transverse  Strength  of  Wrought-iron  Bars  is  about  45  per  cent,  of  their 
transverae  strength,  of  Solid  rolled  beams,  50  per  cent. ;  and  of  double  •  headed 
rails,  46  per  cent,  of  their  transverse  strength;  of  Fagersta  Steel,  56  per  cent,  of 
its  transverse  strength;  of  double- beaded  Steel  rails,  47  per  cent ;  of  Beasemer 
Steel,  37.5  to  48  per  cent. ;  and  of  Steel  flanged,  68  per  cent 

Transverse  strength  of  Solid  Cast-iron  Beams  or  Girders  is  aboat  50  per  cent,  of 
ultimate  strength. 

NoTR.— Actual  breaking  weight  of  a  xa  5  ins.  beam  of  New  Jersey  Steel  and  Iron 
Co.,  weight  35  lbs.  per  foot,  for  a  length  of  span  of  20  feet,  is  60000  lbs. 

Rolled    Steel    X>eok   Seazns. 

Safe  Load  for  One  Foot,  Uniformly  DistritnUed,  Supported  Sidewise. 

Add  to  Web 

for  each 
lb.  increate. 

Ids. 
049 

042 

037 
033 
029 
026 


Depth. 

Web. 

Flange. 

Area. 

Int. 

Ins. 

Int. 

Sq.  Int. 

6 

2.8 

4.38 

41 

6 

4-3 

4-53 

5 

7 

31 

487 

|-3 

7 

5-4, 

51 

6.9 

8 

31 

5 

5-9 

8 

4-7 

5. 16 

7.2 

9 

4-4 

4-94 

It 

9 

S'Z 

5-«>7 

8.8 

xo 

3.8 

5.2s 

8 

10 

6.3 

5-5 

10.5 

"•5 

42 

5»7 

95 

"•5 

5-5 

5-3 

10.9 

I.mu1ii. 

Weight. 

Tensile 
perSq 

Btrencth 
.  Inch. 

12000 

x6uuu 

Lbs. 

Lbs. 

Lba. 

14. 1 

48800 

65  100 

17.16 

57600 

76800 

18.  zx 

77300 

X03000 

23.46 

93400 

124600 

2ai5 

97400 

X29800 

24.48 

112600 

X  50x00 

26 

141800 

X89X00 

30 

156400 

908500 

27.23 

169600 

226x00 

35-7 

205600 

274100 

32.2 

221000 

294700 

37 

244800 

326500 

Steel    Sull>    A.Tigle8. 


5 
6 

6 

6 

7 

7 
8 

9 
10 

xo 


.31 

2-5 

2.94 

— 

10 

.31 

3 

3.62 

— 

12.3 

.38 

3 

5.00 

— 

13-75 

.50 

3 

— 

17.2 

.34 

3 

4.71 

— 

16 

•44 

3 

5- §7 

— 

18.25 

•41 

3-5 

5.66 

— 

19.23 

•44 

3-5 

6.41 

— 

21.8 

.48 

3-5 

7.8 

— 

26.5 

.63 

3-5 

9.41 

— 

32 

32500 

43300 

45300 
52800 
60400 
69600 

60400 
70400 
80500 
92800 

76700 
93600 

X02300 
124800 

115  700 
158800 

154200 
2x1700 

172500 

230000 

Operation,    of  Tallies. 


To  Cozxipixte  Depth,  of  a  Beaxxx  to  Support  a  TJxiiforxnly 

distributed    Load. 

Rule. — Multiply  load  in  lbs.  by  length  of  span  in  feet,  and  take  from 
table  the  beam,  load  of  which  is  nearest  and  in  excess  of  product  obtained. 

Illustration. — What  should  be  depth  of  a  steel  beam  to  sustain  with  safety  a 
UDiformly  distributed  load  of  30000  lbs.,  over  a  span  of  15  feet? 

30000  X  15  =  450000,  which  is  load  for  a  beavy  beam  12  ins.  in  depth. 

Weight  of  beam  should  be  added  to  load. 

Inversely.-^U  the  load  is  required,  divide  load  in  table  by  span  of  beam  in  fee4, 
and  subtract  weight  of  beam. 

"Po    CoxKipute    Deflection    of  Like    Beaxxis. 
Rdle. — Divide  square  of  span  in  feet  by  70  times  depth  of  beam  in  ins. 
Illustration. — Assume  beam  as  preceding. 


>5" 


*'^5 


70X12.25      857.5 


=5.962  ins. 


STBBKatB   OP   MATBB1AL8. — TBANSVSltSB.         6oQ 


Compsurative    Strexig^tli    and    I3eii«otion    o^  Cast-iron 

Flanged   Beams. 


DncximoN  or  Bsam. 

Comp. 
StfeDfi^ha 

DBRCKimoR  or  Bbam. 

Conp. 
StrMifftht 

Beam  of  equal  flanges 

.58 
.73 

Beam  with  flanges  as  i  to  4. 5 . . . 
'*     withflaiige8a8it0  5.5... 

t 

* '     with  only  bottom  flange. . 

"     with  flanges  as  1  to  2..  1. 

•63 

"     with  flanges  as  I  to  6 

X 

**     with  flanges  as  i  to  4. .'. . 

•73 

"     with  flanges  as  i  to  6. 73 . . 

'9* 

Rolled   'Wroue*hit-lron    Seams— Snglislx, 

8qfc  Stress  for  a 

Span  of  XO  FtA,    {D,  K.  Clark.) 

1 

Ultimftto 

'  Safe^lnM 

Dqith. 

Brwidtb 

of  FlangM. 

ThieknaM.                Weight  p«r 
Lineal  Foot. 

Strength. 
Londed 

Unlfortnly 

Web. 

Flaiigw. 

In  Middle. 

DUtriboled. 

Ilia. 

In*. 

Inch. 

Inch. 

Lbs. 

Lbe. 

Lbe. 

3 

a 

.1875 

.3187 

5-5 

3800 

9x0 
x86o 

3 

3 

.25 

•3"5 

10 

5600 

3.125 

X.635 

.1875 

.3x87 

§•5 

2490 

830 

4 

3 

■25 

.3«2S 

8 

5490 

1830 

4 

3 

35 

•375 

12 

8510 

3830 

4-75 

3 

.25 

.3125 

8 

6940 

3310 

5 

3 

.3125 

•4375 

»3 

«3440 

4480 
6420 

5 

4-5 

•375 

•  5 

23 

'9?Z° 

5-5 

3 

.375 

•4375 

10 

X1880 

3960 

6 

S 

•4375 

.5625 

30 

23830 

7940 

6.35 

3 

.3"5 

.4375 

XX 

13440 

4440 

6.35 

3.35 

.3"5 

•375 

x8 

X3000 

4330 
5820 

6.35 

335 

.3"5 

.4002 

X2.5 

X7470 

7 

3.35 

.281 

•375 

14 

14790 

4930 

7 

3.35 

•3125 

•4375 

14 

17020 

5670 

7 

3.62s 

.3125 

•4375 

»9 

33300 

7760 

7 

3-^5 

•3«25 

•5 

'9 

35980 
30830 

8660 

8 

«.375 

•3125 

•4375 

15 

6940 

8 

a- 5 

•375 

•375 

«5 

21  280 

7090 

8 

4 

•37S 

•5 

3X 

34  5a> 

XI 500 

8 

5 

•375 

•5625 

39 

44800 

itm 

8 

5x25 

4375 

.5625 

29 

47040 

9.25 

3-75 

•4375 

•5 

24 

41560 

13850 

9-5 

4*5 

•375 

.6875 

30 

59360 

19750 
18660 

xo 

4-5 

4375 

•5625 

32 

56000 

xo 

4.75 

4375 

.5625 

32 

58240     • 

19410 

xo 

4-75 

75 

.625 

36 

76160 

35390 

X3 

5 

5625 

•817s 

43 

X00800 

33«oo 

X3 

6 

5625 

.9375 
•875 

56 

136  640 

45530 

«4 

5-5 

5625 

60 

150  020 

50000 

■4 

6 

5635 

8»75 

60 

153360 

50750 

x6 

5625 

75 

.8175 

63 

188160 

( 

53730 

'^^^ro-ach.t-iron  Reotangular  Grirders  or  Tubes.  (Siffd.) 

Sufportsd  fU  Both  Ends.    Loaded  in  Middle. 

A  d  C 

— - —  ==  W.    A  representing  area  of  section  in  sq.  int.,  d  dqpM  in  ifu.,  I  lenglh  be- 
tween supports  infui^  and  W  destructive  weight  in  lbs. 

iLLUsriuTioK.— What  is  the  destructive  weight  of  a  rectangular  girder,  35.75  ins. 
ID  depth  by  34  in  breadth,  metal  .75  inch  thick,  and  length  between  supports  45  fbetr 

Assume  C  or  ooefBoient  =:  37  00,  as  per  cause  (x8)  in  preoediog  table,  page  806, 
imd  area  =  87.375  ins. 

Then  «y-37SX3S.75Xyoo^xx5S7528^     68339 ^ 
45  45  ^     ^^y 

W  {  I  w 

By  experiment  it  was  257  080  lbs.     By  Inversion  ^j-r  =  A,  and  -— ■= A 

HoDGKiMBOM's  formula  would  give  a  result  of  259373  lbs.,  and  Molmwobts'c 


8lO        ST&ENGTH   OF  MATBBIALS. — TBAKSVBBSBi 

..  ^  XJiieq.ually   ILioaded   Beoxna,  etc. 

i"  W 

■  =  to.    2  representing  length  between  suppwtt,  and  m  and  n  dixtancet  from 

points  of  support^  aU  in  like  denominatum^  and  W  and  w  destructive  and  safe  voeights^ 
also  in  like  denomination. 

To  Coxnp^ute  l^estruotive  AVeiglit  and  A.rea  of  Sottozn 

l>late. 
AdC      «♦      Wl      ^  ^    Wwin        .       , 

— V  ^     »     Cd  ~    *  ^^  .  =  A.    A  r^^itenting  area  ofplaie  in  sq. 

uu.,  d  and  I  d^rih  and  length,  m  and  n  diskunees  of  load  at  other  points  than  in 
middlet  aU  infeet^  and  W  weight  in  lbs. 

NoTB.~-^ufflcl6at  metal  staoald  be  provided  in  sides  to  resist  tranBverse  and 
■hMuriog  stress,  and  in: upper  flange  to  resist  crushing. 

Illustration — What  area  of  wrought  iron  is  necessary  in  bottom  plate  of  a  rec- 
tangular tubular  girder,  3  fbet  in  depth,  supported  at  both  ends,  and  loaded  in  middle 
with  130000  lbs.  f 

C,  ascertoined  tqr  experiment  for  destructive  stress,  180000  lbs. ,  and  area  7.  x  sq.  tns. 

Z30000  X  30  . 

—5 rr —  =  7. 22  sq.  ins. 

180000X3      '        * 

"Wroueh-t-iron   Oylindrioal  Seams  or  Tubes. 

=  W         iLLusTRATioir.— What  is  destructive  weight  of  a  cylindrical  ttib«, 

19.4  in,  in  diameter, .  131  Inch  in  thickness,  and  10  feet  between  its  supports? 
Area  of  metal  s=  5.05  sq.  ins.,  and  G  =  2856,  as  in  the  19th  case  of  table,  page  806. 

Then  S-°SX.».4Xrf56^     3        ^ 
10 
^tAd'  tS 

D.  K.  GlaAk.      '      J =  ^>    ^  representing  diameter^  i  thickness  of  metal,  and 

I  length,  aU  in  ins.,  S  tensUe  strength  qfmetat  per  sq.  inch,  and  W  weight,  both  in  lbs, 

».  «        3.14  X  1 2.4«X.  131X45000      2846x43  „ 

S  =  45000  26<.     ^   '      ^2    ^      ^^ —  =  ^-^— ^  =  a37«7-9^ 

^'  toXia  xao  ^'  '  y 

Molssworth'S  formula  gives  a  result  of  23286.x  lbs. 

"WroTiglit^iroii  Ejlliptioal  Seaxns  or  Tubes. 

A.d*C 

— ^^TsVf.      Illu8Tra.tiok.~  Assume  diameter  of  tube  9.75  and  15  in&,  metal 

.X43  inch  in  thiokneflfl^  and  distance  between  supports  10  feet 
A  =s  1^  56  «9.  im.    0  •=  3147,  as  per  case  (20)  in  preceding  table,  page  806. 
ThOB  5-56X.5X3.47^»fe452J^^  a^ 

10  10 

'J^K.Oi*AWL     ''^^^     ^ — ' — £::W.    b anddr^artsentingcoi/^vgaile ondtrmU' 

verse  diameter,  I  length  between  siwpportM,  t  thickness  of  meial,  aU  in  ins.,  8  tensile 
strength  of  metal  pmsq.  inch,  and  W  destructisie  weight,  both  in  lbs. 
8  =  44«»»..     '•57(9-75'+.5')X.M3X440°o^^^6^^^ 
^  10  X 12  120 

NoTK.~B.  Baker,  in  his  work  on  Strength  of  Beams,  etc.,  I^ondon,  1870,  page  a6, 
shows  that  ordinary  method  of  computing  transverse  strength  of  a  hollow  shaft  1^ 
difference  of  diameter  alone  is  erroneous,  in  consequence  of  Joes  »f  resistanoe  to 
flexure  in  a  hollow  beam. 

Grirders  aixcL  Seaxn.8  of  TJnsyxninetrical  Section. 

4Sd 

2— .  =  W.    Srepresmting  tensile  resistance  of  metal,  and  W  destruUive  weight, 

both  in  lbs.,  d  distance  between  centres  of  compression  and  extension,  or  crushina  and 
-taMOc  resislances,  in  ins. ,  and  I  length  between  st^pmis,  in  feet. 

NoTB.~To  ascertain  d,  see  Rale,  page  8x9, 


STBBNOTH   OF  MATBSIAL&. — TBANSVSBSS.         8lf 

ILLU8TRATI027.— Dimensions  of  a  rolled  wrought- Iron  girder,  xi  feei  in  lengUi  li» 
tween  its  supports,  is  as  follows  : 

Top  flange 2.5  X  i  inch.  1  Bottom  flange 4X38  inch. 

Web. 325       '*     I  Depth 7  ina 

What  is  its  destructive  weight? 

d  =  5.23  ins     S  assumed  at  45000  iba    Then  - — 45000  x  5- ««  _      g^g  ^^^ 

n  X  12 

Strength  of  Riveted  Beams  or  Qirders,  compared  with  Solid,  is  less,  and  deflec- 
tion is  greater 

'WYouslit-lron.  Ixiolined  3 earns,  etc.  ■ 

L  W 

-y.  =10     ii  and  I  representtng  Ungtht  or  indvMlion^  and  horixonUd  /tne,  in  lihf 

denominations^  and  W  and  w  dettruetive  and  safe  toeights  on  horiamtcU  line  cmd  ui* 
dination^  also  in  like  denominaUont. 


JPlate  Grirders. 

A  d  C 

-=  W     A  rqnresenttng  section  in  sq.  tfu.,  d  depth  in  int.^  aand  I  Umf^  te< 


T  . 

^  tween  supports  in  fiet. 

iLLDSTRATioir     What  load  will  destroy  a  wrought- iron  plate  girder  or  beam  of 
following  dimensions,  10  feet  in  length  between  its  supiwrts? 


Width  of  web 375  inch. 

Deplhof  web 23.5     in& 

Depth  of  beam ..14.35     ** 


Top  flange    4.5  X  375  inch 

Bottom  flange 4-5  X  -375    " 

Angle  pieces  a    X-3i25'* 

Area  of  Section  =  13  <g.  ins. 

Aasame  coefficient  of  5180  as  per  case  (14)  in  preceding  Table,  page  80& 

Then  ii2<i±fSil5;5»2525?5=95.j55„J6t 

MoLBSwoRTH.    r-j  =  5-    L  rtpresenivng  load  equaUy  distributed,  and  S  stress  on 
o  a 
centre,  both  in  tons,  and  d  effective  depth  of  girder  in  feet. 

By  actual  ex{)erimeni  L  =  48  tons  for  16.5  feet  1)etween  supports;  hence, 
10:  x6  51:48  79.2  fotu  =  39.6  when  supported  in  middle,  and  14.25  ins.  =  X.1875./ML 

Then  ag^^io  _  396  _      ^g  ^^iSch  x  2240  =  03  363.3  Ua. 
8x1.1875      9.5  •»       yjJ  :» 

D.  K.  Clabk.      _ifLjLiil55^  =  W.     d  representing  depth  of  girder  or  beam 

.6  ( 
letM  depth  of  lower  flange  in  ins.,  a  and  a'  areas  of  sections  oj  bottom  flange  and  of 
«oe6,  ai  its  reputed  depths  both  in  sq.  ins.^  and  I  length  between  supports  inject 

({=1425— .375=3x3.87517111     a  S3,  and  a  s  5  49.  tut. 

Then  '3-875(4X3±j-x55_X5)  ^  £4^  ^  ^,  ,^5  ^hj^h  X  2240  =  9ao75.«  ibi. 
.6  X  xo  o 

Mr  Clark  assumes,  however,  that  for  girders  of  like  ooastruction  the  destructive 
should  be  taken  at  two  thirds  of  that  deduced  by  the  formula. 


IOwden  or  Beams  without  Upper  and  Lower  Flanges. 
ILU78TRATI0H.  —  Assume  angles  2.125  X  28  above,  2.125  x  3  below,  web 
.25,  depth  7  Ins.,  and  length  between  supports  7  feet 

Area  of  section  =  6.35  sq.  in«.,  and  C  z=.  3840,  as  per  case  (15)  In  preceding  TaUe^ 

page  806. 

Then?-3SX7X384o^»72688^ 

7  7 

•^  +  .a5a'Xs<l 
Approximate.    ^ 1 =  W*     a  representing  area  of  sections  ofupptt 

mnd  lower  angles,  a'  area  of  section  of  web  for  toted  depth,  both  in  sq.  ins.,d  dq^  <^ 
^rder  in  in$.,and  W  load  or  stress  in  lbs. 


8l2         STRENGTH   OF  MATBKIALS. — TBANBYEBfiS. 

«  =  4.6  »q.  int,^  and  a'=  7  x  -95  =  1.75  «g.  tni. 

Tlien  -^ ^ =51:--:=  13.687,  which  x  2340=  30658.8  Ibt. 

7  7 

mON  AND  8TBBL  RATLa. 

Symznetrical    Seotiou. 

To  Compute  Transverse   Streujetli.    {D.  K,  CUurk.) 


•nd  7 — ^ ^  =  S.  ^repruenHngtim 

HU  itrenglh  in  lbs.  or  torn  per  sq.  tndk,  a  area  o/one  head  or  flange  exdusive  0/ cen- 
tred portion  eomporing  loeb,  in  sq.  ins.^  cC  depth  or  distance  between  centres  of  heads, 
d  depth  of  rcUl,  t  thicleneu  of  ioe5, 1  distance  between  supports^  all  in  ins.^  ani  W 
weight  in  lbs.  or  tons,  alike  to  S. 

Illustration  l— What  is  destructive  weight  of  a  wrought-iron  double-headed 
rail,  5.4  ios.  deep,  having  a  web  of  .8  Ids.,  an  area  of  head  of  i.o  sq.  in&,  distance 
between  centres  of  its  heads  4.3  in&,  and  between  its  supports  5  feet? 

S  assumed  at  50000  lbs. 


Then 


50000  f  4  X  J.9  X  ^^  +  »•  155  X  .8  X  5-4') 


_  50000  X  (24.8a  -f-  36.93) 

5X12  ~  60  " 

43i25aa 

3.— What  is  destructive  weight  of  a  Bessemer  steel  double-headed  rail,  5.4  ioa 
deep,  having  a  web  of  .75  inch,  an  area  of  head  of  2  sq.  ina,  and  distance  between 
beads  4.3  ins.  ? 

S  assumed  at  80000  lbs. 

80000  (4  X  2  X  ^+  1.155  X  .75  X  54')      8o««v«*« 

Then !^^ ^ /  ^80 ooox  51.39^^3  ^^^ 

5X12  60 

NoTB.— Tnuuvenc  •tnofcth  of  BewtiMr  Baili  lacreMct  rery  generally,  in  direct  proportion  witk 
IIm  proportion  of  Carbon  in  it. 

XJusytnmetrioRl   Section. 

'  =  W.     d"  representing  vertical  distance  betvueen  centres  of  tension 

w  ft 

and  compression,  h  height  of  neutral  axis  above  base  of  section,  and  I  length  between 
supports,  all  in  ins.,  and  A.  sum  of  products,  obtained  09  multiplying  areas  of  strips 
of  reduced  section  under  tensile  Hreu,  by  their  mean  distances,  ra^ectivebf,  that  ii, 
Uu  distanott  of  their  centres  of  gravity,  fi-om  the  neutral  axis,  in  ins. 

Bovrstring  Grirder. 

To  Compute  Diameter  of  a  V^roiiglit-iron  Tie-rod  of  an 
A-rohed.  or   BoA^strine   d-irder  of  Cast   Iron. 

/ r  =  <t    W  representing  weight  distributed  over  heam  in  lbs.,  I  length 

V45ooXfc  -r  » 

between  piers  or  tupporte  in  feet,  and  h  height  between  centre  of  area  ofseetian  qf 
girder  and  centre  of  rod  in  ins. 

Illustration. —Required  diameter  of  tie-rod  for  an  arched  girder,  25  feet  be- 
tween its  piers,  and  30  ins.  between  centres  of  its  area  and  of  rod,  to  safely  support 
a  uniformly  distributed  load  of  25  000  lbs.  f 

/25000X25  7625  000        .   ^ 

-  /— ~ — -  =  ,  /— ^ =  V4-62  =  a.  IS  »fW. 

V    45<»X30         V  135000       ^'  ^ 

If  two  rods  aw  used     Then  */—  =  i-  5?  »nf  5=  diameter  of  each  rod. 


STBENGTU   OF  MATBSl^ALS. — XJE(ANSV£BS£.         SlJ 


CAST  IBON» 
Transverse  Strenstli  of*  GMrdera  axid  Seama. 

{ptimxdfrum  EajperimieniU  pf  BarUno,  Hodgkinton,  Hvghett  Bramah,  Cubitt, 

Tredgoldy  and  o^r*.) 

Bediueed  to  a  Vnififrm  Meature  of  One  Foot  in  Length. 
Supported  ai  Both  Endi.    Strest  or  Weight  tqtpUed  in  Middle. 

DMtracttT«  W«i|sht 
Difttane*. 


SSCXIOH* 


1 1 

+ 

D 

J. 

T 
± 

T 

X 
H 


I 

± 


FIjuikm. 


Int. 


4       X2 

1.52  X   .78 
i-S  X  .5 
i-S   X   .5 

1-5   X   .5 

«S  X  .5 
1-53  Xx 

2     X  .51 

_ 


W»b. 


Im. 

I 
z 

3 

z 
z 


Z.56 

•5 
•5 

.5 

•5 
•5 


«t 


aaSX   .53 
23-9   X3-I2 

Z.76X   .4 

z.7^X  .26 

1.78  X  .55 

X-07X  .3 

2.1    X  -57 

«-54X  .32 

6.5   X  .5t 

2.5   X  1.5 
3-75X1.4 


{: 


3 

425 
3.29 


.29 

}    -3 
.32 

•34 

I.2S 


Depth. 


Ink 
Z 

z 

3 

3 

4 


4.07 

3 
3 

4 


3.04 
a.oa 
2.52 

2.83 

5x3 
36.1 

5*3 

5-13 
5- 13 
5«3 
8.18 


Fe«(.  Im. 

I 

4    6 
13    6 

4  6 
5 

4  6 
3  « 
3    « 

3    I 

3    « 

4 
4 
5 


4  6 

20 

4  6 

4  6 

4  6 

4  6 

iz 


ArM. 


Sq.Iu. 

I 
I 

9 

3 

4 

Z2 

2.35 

2 

a 


2.6 

t.59 
4.98 

4 

2.28 

183-5 

2.82 

2.87 
3.02 
5.4X 
15 


FwDto- 
taact. 


Lb>. 
2240 
500 
5080 

5100 
Z0300 

6720 

6666 
5208 
4536 
7104 

33" 

4004 

2569 

4x43 

2988 

9503 
403  3x« 

6678 

7368 
8270 

2ZCXI9 

3S62d* 


ofOneFooilAtf 


Lbt.       i 

a  240  2240 

2250  j  2250 

63  580  I  2540 

2550 
2896 

700 

3x36 

2676 

233X 
5475 

2553 

30x9 
X963 
1650 

X320 

3656 
1220 

2077 

2250 
2402 
3406 
3x93 


22950 
463^0 

33600 


30  coo 

X6I45 

14  062 
22420 

10267 

x6oi6 
X0276 
207x5 

Z4940 

42763 
8066240 

30512 

33200 
372x5 
94540 

39«  853 


A<2G 


*  Stirling  Iron. 

Hence,  ^=y^  =  W.    A  rq»retenting  area  of  section,  d  dqpih  in  int. ,  { length  infset, 

and  W  detlruetive  weight  in  lbs. 

NoTB. — When  lengths  are  less  than  those  instanced,  breaking  weight  will  be  in- 
Ij  in  consequence  of  increased  stability  of  girder. 


8 14  STKENGTH   OP  MATERIALS. — tBANSVERSE. 

To  Compute  Transverse  Streiigtli  or  Destrtiotive  Stress 
of  Cast-iron.   See^ns  or   GhircLers,  of*  various   BH^nres. 

Supported  at  Both  Bnds.     Weight  applied  in  Middle. 

When  Section  of  Beam  or  Girder  is  alike  to  any  of  Examples  given  in 
preceding  Table.  Rule  i.* — Divide  product  of  area  of  section  and  deptb 
in  ins.,  and  Qt^^dent  for  girder,  etc.,  from  preceding  Table,  by  length  be- 
tween supports  in  feet,  and  quotient  will  give  breaking  weight  in  lbs. 

'  ExAMPLK.— Dimensions  of  a  beam,  having  top  and  bottom  flanges  in  proportion 
of  I  to  6,  give  an  area  of  section  of  25.6  sq.  ins.,  a  depth  of  15.5  ins.,  and  a  length 
between  its  supports  of  18  feet;  what  is  its  destructive  weight? 

NoTK.— In  consequence  of  increased  area  of  metal  over  case  No.  ax  ia  Table,  Coef- 
ficient of  3402  is  reduced  to  330a 

-  Dimensions.— Top  flange,  3  x  .75  ins.  ;  bottom,  18  X  -75  0=  13.5  sq.  ins.  ;  web, 
15.5  X  .7  a'  =  io.8  sq.  ins. ,  and  d'  =  15.5  — .75=  14.75  ins. 

j^^^  25-6  X  15.5X3300  ^ i30|440 ^  ^^  ^^g  g  ^ 
10  18 

D.  K.  Clark.     — — — r^^i — -'  =  W.    a  representing  area  of  bottom  flange,  a' 

oftoeb  at  depth  d*  of  beam,  less  depth  of  bottom  fUmge  in  sq.  ins.,  I  length  between 
supports  inject,  and  W  destructive  weight  in  tofu. 

Then    ^  ^^  ^^  ^   ^  ^^ =  — — ~  =  31.71,  which  X  2240  =  71 030.4  lbs. 

Hodgkinsom's  formula  would  give  a  result  of  53491.2  lbs.,  and  Molbsworth's 
54248.3  »«. 

Rule  2.  —  From  product  of  breadth  and  square  of  depth  in  ins.  of  rec- 
tangular solid,  the  dimensions  of  which  are  the  depth  and  greatest  breadth  of 
btam  in  its  centre,  subtract  product  of  breadths  and  square  of  deptlis  of 
that  part  of  the  beam  which  is  required  to  make  it  a  rectangular  solid,  and 
then  determine  its  resistance  by  rule  for  the  particular  case  as  to  its  being 
supported  or  fixed,  etc. 

This  rule  is  applicable  only  in  case  referred  to,  vie.,  when  area  of  section  is  great 
compared  With  area  of  extnyne  dimensions. 

Mr.  Baker,  in  case  of  a  hollow  cylindrical  shaft,  where  thickness  of  metal  is  but 
one  eighth  of  extreme  diameter,  computes  result  at  but  .4  of  that  of  a  solid  beam. 
This  is  in  consequence  of  resistance  to  flexure  in  hollow  beam  being  more  than 
proportionally  greater  than  in  solid. 

Example.— Take  7th  case  Arom  preceding  Table,  page  813,  for  length  of  one  foot 

Coefficient  for  cold-blast  iron  =  500. 

Then  1.53  X  4.07"— x. 52  X  a. 51 «  X  4  X  500  =  (aS- 17  —  9.58)  X  2000  =  31  i8o  lbs. 

Result  as  by  experiment,  30000  lbs. 

NoTB  L — These  rules  are  applicable  to  all  cases  where  flange  of  beam  is  as  shown 
in  Table,  and  beam  rests  upon  two  supports,  or  contrariwise,  as  to  position  of  flange, 
when  beam  is  fixed  at  one  end  only. 

a. — When  case  under  consideration  is  alike  in  its  general  character  to  one  in 
Table,  but  differs  in  some  one  or  more  points,  an  increase  or  decrease  of  metal  is  ob- 
tained by  an  increase  or  reduction  of  the  Coefficient,  according  as  the  diflferences  may 
affect  resistance  of  beam. 

^— The  Co^cients  here  given  are  based  altogether  upon  experiments  with  Eng- 
lish iron. 

•  Utility  of  thMC  roles  in  preferenr«  to  thoM  of  Hodgkincon,  Fairbairu,  Tr»dfco)d,  Hugbw,  nnd 
Barlow  is  manifest,  as  in  one  case  the  Co«ffiHent  of  th«  metal  is  considered,  and  in  the  other  cases  the 
metal  Is  assumed  to  be  of  a  nniform  Tshie  or  strength. 

Onlj  Tsriable  element  not  embraced  in  this  rule  is  that  consequent  upon  any  pecollality  of  fora  of 
MeUoB ;  as,  for  Insiaaee,  in  that  of  a  Hodgkinson,  or  like  beam,  where  area  of  one  flange  ip-eatly  as- 
eeeds  the  rest  ef  section,  and  this  flanf^e  is  other  than  below,  when  beam  rests  upon  two  supports  or  is 
fixed  at  both  ends,  or  than  above,  when  beam  is  fixed  at  onu  or  both  ends. 

This  deficiency  is  met  to  som^  extent  by  the  three  cases  in  table,  where  proportion  of  flangw  aro  i  to 
•f  X  to  3,  and  r  to  6.5. 

i  For  thick  castings  put  7,  and  pat  Co^feunt  same  as  tensile  strength  of  metal  in  tons  par  aq.  ineh. 


STSSNGTH   OF  MATERIALS. — TSAKSVBBSB.         gl5 

9*l*zi«ed  Hollow  or  A^nnnlaf  Beams    of  Symnaet'lo^l 

Beotions.    {D.  K.€la»'k.) 

When  Depth  is  Great  Ocmpared  with  Thickness  of  Flanges,-^¥igs.  i,  2,  and  3. 
X.  2.  3'  <txS(4aH-ii55aT^^y    a  representing  area  o/ane 

II  I^I  flange,  a'  area  of  web  or  ribs,  both  in  sq.  ins.,  d  depth  of 

I  II  beam,ltssd^of<meflange,anAldistWMebett»eein9up' 

I^B    LmJI  pvrts,  both  in  ins.y  S  tensile  strength  of  metai,  and  W 
weight  between  supports,  both  in  lbs. 

When  Depth  of  Flanges  ia  Great  Compared  with  Depth  of  Beam,—¥lgs» 

4  and  5. 


4-  5- 

II 


d'» 


S(4a-^  +  i.i55<(l«) 

- — J =  W.    a  representing  area  of  one  flange  less 

thickness  qfweb,  in  ag.  ins.,  t  thickness  of  web,  d'  reputed  depth  or 
distance  between  centres  of  flanges,  and  d  deptfi  of  beam,  all  in  ins. 

When  Section  of  Circular  or  Elliptic  Beam  is  Small  Compared  with  Diam- 
eter,— Figs.  6, 7,  and  8. 


O"'^"  o  '0 


I 


-=w. 


b  and  d  representing  mean  breadth  and  d^pth. 

Illustration  i.— Assume  Figs,  i,  2,  and  3,  20  ins.  In  depth,  width  of  flanges  on 
top  and  bottom  ribs  5  ins.,  thickness  of  flanges  and  webs  i  inch,  and  of  sides  of 
Fig.  3  .5  inch;  length  between  supports  10  feet,  and  S  20000  lbs. ;  what  would  be 
breaking  weight  of  each  ? 

-.       20-1  X  20000  (4X54-»'55X  18)  ^  38oo?M20  +  2?iZ?)  =  „9 168.4  »*• 

10  X  12  '** 

2.— Assume  Flga  4  and  5, 6  ms.  in  depth,  area  of  flanges  3  Ins.,  widths  of  webs  i 
inch,  and  length  and  S  as  in  preceding  case. 

^2 

10  X  12  '2° 

^-Assume  Fig.  6  10  ins.  in  diameter,  Fig.  7, 7. 5  ^ns.  in  depth  and  12  ins.  in  width, 
and  Fig  8, 12  ins  in  depth  and  7.5  ina  in  width,  and  thickness  of  all  metal  x  inch. 

Then  Fiir  6  3MX  lo'X  «  X  20000^6280000^  ^^^^^^^  ,j,^  ^hich  is  .4  of 

inen,  rig.  D  10X12  "o 

that  of  solid  cylinder. 

dS?  to  difference  between  it  and  section  of  beam  under  computation,  will  be  suf- 

flcientiy  accurate.    See  Illustration,  page  814. 
If  greater  accuracy  is  required,  see  page  810,  or  D.  K.  Clark's  Manual,  pp.  5i3-»7- 
N<yrB.— To  compute  loaatton  of  neutral  axis  of  beams  of  unsymmetrlcal  section, 

te«  also  D.  K.  Clark,  pp.  5i4'«S- 

5Sk?P  ti'SSilliVm^rlyoSrSJhtb  TdU^^Sr.    H.  -r».  tU  .tr.«g»h  «  low  «  .4  «/ 
that  ofMUd  cjlindw,  ia  oopm^imbm  of  k>M  «f rMteUaeo  to  flozura. 


8l6         STBSN6TH  OP  MA7BSIAL8. — TBAKSYBBSB. 

Oeneral   fnorznnlas   for  X^estnioti-ve   MTeli^lxt  of  Soli4 
JBeama  of  S3rxx&zxieti.-ioal   Section. 

Supported  at  Both  Ends.     WeigM  applied  in  Middle, 

Une  ofNeutrca  Axis  runs  through  centre  of  gravity  of  section. 

aodrS      «.        .      /  W         „     , 

J =  W,  and  ^^^^  =  S.    In  square  beams  for  ad  pat  dK    a  and  d  ftp 

resenting  area  and  depth  of  section,  r  radius  of  gyration  {hal/daOh  o/tea»  =  il 
I  length  of  beam  between  iU  supporU  in  ins.,  W  destrueUve  weight  in  tons  or  lbs., 
and  S  tensile  strength  of  material  m  Wee  tons  or  Vbs.  per  sq.  inch. 

Illustration.— Assume  dimensions  of  cast-iron  beams,  Figs,  x,  a,  3,  4,  and  5  as 
Ibllows,  via. :  t  and  2,  5  x  5  *&& ;  3i  a-S  X  10;  4,  5.64  diameter;  and  5,  7.25  x  a-'sq, 
or  equal  areas;  distance  between  sapporU  60  ina.  and  tensile  strenffth  of  iron  = 
26  000  Iba 


♦  *■  'm  ^9 


Areu  of  each  25  sq.  ina    Radius  of  gyration,  No.  i,  .5775;  a,  .4083;  3,  .5775;  4, 

_       a  X  25  X  10  X  -5775  X  26000  ^ 

«•     ^ '  =  125  las  tbi. 

,      •Xa5X707*X.4o83Xa6ooo      ^  „ 

■•     ~ 6r =62545  »fc 

_       •X5*tX.5775X  26000      .     ^^ 
3*     ^ —  =Oa56aat. 

4.  For  formula  for  square  beams  substitute  "^^  =  W 

Then  m    »S  X  564  X  26000  -854  hd'Q 

"*•"*•  g^ =oiioo»».;  andfi>r5.    /  a^*^**  ^W. 

•7854  X  4-39  X  7.25*  X  26000 

6i =  78  53a  »«. 

•  SSf/^r°*°^*'r  f  ^^?}  ®^"**  ^  *  transverse  strength  tor  Cast  iron  of  550  fbf 
a  tensile  strength  of  26000  Iba,  and  of  Wrought  iron  of  600  Iba  for  a  like  str^ 
of  50000  Iba  (as  per  table,  page  788). 


O    a   ^    jk.   + 

4C  bd^ 

— J —  =  W.    0  representing  coefficient  of  strength  of  metal  in  lbs.,  b  and  A 
breadth  and  dtpth  in  ins. ,  I  length  in  feet,  and  W  destructive  weight  in  tons. 

^  — R — 4-7  =  6a'.    ^ondr  representing  external  and  internal  raditu. 

7-  5 =  6d«     h'  and  dT  representing  interior  breadlh  and  depth, 

tt  «f  2 
a  .38R3  =  6d2  5.  ~  =  ^'    ^  representing  d^th  or  height. 

'5^  ^.<'!  +  »  6'tf'*  =  W.    b  and  d  representing  breadth  and  death  ofe^bvt  <m/I 
vesical  rib,  and  b'  and  d'  breadth  and  ^^^^hSrS^rx^!tJSSal  to  (SS^  rii 

Values  of  C  550  for  a  tensile  strength  of  Caa  Iron  of  26000  Iba.  ner  an  innh  o»<f 
^for  ^ike  strength  of  Wrought  Iron  of  sooo^ba,  and>o^  ^'  ^^  '^ 

•  Dlagoosl  oraqom.  t  In  aaqM.  tom  ^a.xA 


STBEN6TH   OP  MATERIALS* — TBANSVEBSB.         817 
Flaxxsed  Beams  of*  XJnssrxxxnaetrioal  Beotion*    (Z>.  K.  Clark.) 


"Ezj     35       o        c^^ 


^-^  =  W.    S  repramiing  total  tentiU  strength  of  KCtion  in  U».  per  sq.  inch,  d 

nertieal  duitanoe  between  centres  of  tension  and  compression  in  ins.,  I  length  in  ins., 
'  and  W  weight  in  lbs. 

iLLFSTRjiTioN. — If  the  aectional  area  of  a  beam  of  cast  iron  is  5.9  sq.  ins.,  the 
depth  or  distance  between  centres  of  tension  and  compression  5.6  in&,  distance  be- 
tween 8U)>port8  5.5  feet,  and  tensile  strength  of  metal  30000  lbs.  per  sq.  inch. 

Then  4  X  5-9  X  30000  X  5-6  ^  3.964 800 ^  ^^ 

5-5  X  12  66 

STEEL. 
Xo  Compute  Q^raiiaverse   StrengtH  of  Steel    Bars. 

Supported  at  Both  Ends.     Weight  applied  in  Middle. 

i.iSS  S  bd' 

— i-T =  W.    S  representing  tensile  strength  in  Ibs.^  I  length  between  support* 

in  ins.  J  and  W  weight  in  lbs. 

Illustration.— What  is  ultimate  destrnctive  stress  of  a  bar  of  Cracible  steel, 
9  I0&  square,  and  3  feet  between  supports?  8=190000  IbB. 

TK««     I- 155X90000X2*         831600 

Then  1- = .  =  34  650  Ibt, 

2  X  12  24 

To  Compute  Seotioix  of*  Louver  Flange  of*  a  Q-irder  or 
Cylindrical  Shaft  of  Cast  Iron  to  Sustain  a  Safe  Load 
in  its  lifiddle.    (Baker.) 

/  d  W 

—3^—  =  M.    I  representing  distance  between  supports  in  feet,  d  d^th  of  girder,  etc. , 

in  ins.,  W  xoHght  in  tons,  C  coefficient,  and  M  moment  of  weight  around  support. 

iLLrSTRATioN.— What  should  be  section  of  a  girder,  12  ins  deep,  to  sustain  a  safe 
load  of  10  tons  in  its  middle,  between  supports  16  feet  apart? 

Stress  assumed  2  tons  per  sq.  inch,  and  Factor  of  safety  4.    —  =480=  M. 

4 

And  -T— =  =  0.    S  representing  stress  assumed  in  tons,  and  a  area  of  section  of 

flange  in  sq.  ins.  _.         480 

*  Then  — =z2osq.%ns. 

12X2 


IT'or  R,ectang;ular,  I>iagonal«  or  Circixlar  Beam  or  Sliaft. 

♦ 


10.8  ^^       8.4 


Gheneral  Formulas  fbr  Computation  of*  Destructive 
^Veiglit  of*  a  Beam  or  a-irder  of*  any  form  of*  Cross 
Section   and   of*  any   IVlaterial.     (B.  Baker,) 

Load  applied  at  Middle. 
S  M  (i  +  QO 
~^ =  W.    S  representing  tensile  strength  of  material  per  sq.  inch  in  tons, 

If  moment  of  resistance  of  section  sc  product  of  elective  depth  of  girder  or  beam,  and 
effective  area  of  flange  portion  of  section,  in  sq.  tns.,Q  resistance  due  to  flexure,  I  dis- 
tance between  supports  in  feet,  and  Q'  =  Q  x  thickness  of  web  of  section,  both  in  ins. 

Average  Values  of  Sfor  Various  MaterialB. 


torn. 

CMt  Iron 7 

V^roogbt  Iron •  •  ai 


Total. 

Steel 40  to  50 

Pi»tes 35 

3Z 


ti 


Tom. 
Oak .'9.5104.5 

Pine a     "3.5 


8l8         STRENGTH   OF  MATERIALS. — TBANSYEBSB. 

Svbstituting  Values  of  S  and  Q  in  a  General  Equation. 


Sacnoir. 

CMt  Iron. 

Wrought 
Iron. 

Steel. 

Oak. 

Pfa*. 

■ 

W=.875-^ 

d«6 
=1.75  — 

=3  to  5  -j- 

d«6 
=.1410.25-^ 

=  .II  tO.2— =— 

♦ 

W==.75-j- 

(23 
=2.635104.25  — 

d' 

=.1  t0.l6-r- 

— .08  to. 14  — 

• 

<Z3 

W=.562Sy 

=X.I25    ^ 

_2t0  3.25y 

— .08  to,  14  — 

=:.o6tO.II  — 

d  representing  depth  of  a  rectangular  bar^  tide  of  a  square,  or  diameter  of  a  rounds 
b  breadth  of  a  vertietU  bar,  all  in  ins.,  and  I  distance  between  supports  in  feet 

DMoment  of  Resistance. 
Moment  of  Resistance  of  a  cross  section  is  the  static  force  resisting  an  ex- 
ternal force  of  tension  or  compression,  and  it  is  equal  to  moment  of  Inertia, 
divided  by  distance  of  centre  of  effect  of  the  area  of  fibres  which  are  respec- 
tively^the  most  extended  or  compressed  from  the  neufnU  axis  of  the  section. 

Xo   Coxupnte   ACoxuent  of  ftesistaiioe. 
-T  =  M.    I  representing  moment  of  inertia,  and  d  distance  of  centre  oj  effect  of 
area  offJbres  of  extension  or  compression. 

Work   of  fiesistanoe. 
Under  a  Quiescent  Load. — Intensity  of  Elastic  resistance  increases  uni- 
formly with  total  space  through  which  action  of  stress  operates ;  hence,  it 
may  be  defined  by  a  triangular  section. 

Consequently,  .  5  s  L  =  R.    s  representing  spa^e  passed  through,  L  load,  and  R  re- 
sistance. 

To   Compute   Adoment   of  fiesistance. 

— ^-   and  —r-  =  R    Q  a  coefficient  =  one  siaUk  of  destructive  weighty  I  moment 

of  inertia,  h  height  of  neutral  axis  from  base  of  section,  R  moTnent  of  resistance,  and 
M  modulus  of  rupture. 

Note.— Neutral  axis,  for  all  practical  purposes,  is  at  centre  of  gravity  of  anp 
section. 

For  Radius  of  GyrcUion,  see  Centre  of  Gyration,  page  609. 

For  other  rule  for  computation  of  Moment  of  Resistance,  see  Strength  of  Beama^ 
B.  Baker,  London,  1870. 

M!oxiaent  of*  Inertia. 

Moment  of  Tnertia  is  resistance  of  a  beam  to  bending,  and  moment  of  any 
transverse  section  is  equal  to  sum  of  products  of  each  particle  of  its  area  into 
square  of  their  distance  from  neutral  axis  of  section. 

,  A  B       Illustration.— If  transverse  section  of  a  beam.  A  B  C  D,  Fig.  i,  is 

8  X  20  ins.,  its  neutral  axis  will  be  at  middle  of  its  depth,  o  r;  divide 
A  B,  o  r,  into  any  number  of  equal  spaces,  as  shown,  then  each  s|iace 
will  be  2  X  2r7=4  sq.  ins.,  and  the  distances  of  the  centre  of  each 
square  ftova  neutral  axis  will  be  as  follows " 


• 

• 

. 

• 

• 

• 

• 

• 

• 

. 

• 

• 

• 

• 

• 

• 

I,  I. 

2,2. 

3.  3- 


2X2X4X1*=   i6 

2X2X4X3^=144 
2X2X4X5'  =  40o 


4,4.     2X2X4X7'=   784 
5,  5-     2  X  2  X  4  X  9'=  1296 

2640  X  2  for  low> 
p  er  half  =  5280  =  moment. 

Note.— If  the  area  of  the  figure  in  illustration  had  been  more  minutely  divided, 
the  result 'Would  have  ^proximated  more  nearly  to  the  above  result. 

For  Moment  of  Inertia  of  a  Revolving  Body,  see  Centre  of  Gyration,  page  609. 


STfiSNGTH   OP  MATfiBIALS. — THANSVBRSE.        "819 


To  Compute  AComent  of  Ixxeirtia  of  a  Solid  Seaxxi.— iri^.  9. 

2.^    bd* 


12 


=  M. 


IU.U8T&ATI0N.— Take  elements  of  preceding  case. 


Then 


8X20S     64000 


12 


12 


=  5333-33  moment. 


Or,  .  3  f  >  n»  fr  =  M.     t  representing  breadth  of  vertical  divinonSy  n  number  ofhori- 
tontal  divisiom  from  plane  o/netUrut  axis,  b  IrreatUk^  and  d  dqtUi  o/beam. 

iLLUSTRATioy.— Take  elements  of  preceding  case. 

« =  2,  n  =  5,  and  fc  =  8. 
Then  .3Xa»X5'X8  =  2400  X  2  for  lower  half=.  4800  =  moment 

5-  Beams  of  Various  Figures. — Figs.  3, 4, 5. 

t      ■                 6(j3_6'd'»            ^       6rf3  — 26'd'»      „ 
k!.»ft'»       1       ■>**>        3-  -7Z »  4  and  5. =  M 


* 


r 


.12  12 

_  b'  and  d'  representing  respectively  breadth  less 

V  </t»dlme««  ofweby  and  depth  less  Viickness  of  flanges. 


^ 


.7854  r4  =  M. 


• 


.7854C<3=pM. 


6d3 


•e-*-* 


'  !!-=«■ 


o 


.7854(r*— r'*)  =  M. 


♦ 


12 


♦•r# 


.iir«  =  M. 


r  representing  radius^  t  transverse  and  c  conjugate  diameters,  and  s  side. 

To  Compute  Common  Centre  of  G^ravity  and.  Vertical 
Distance  'bet'>v-een  Centres  of  Crusliine;  and  1?enaile 
Stress   of  a   G-irder   or   3eam. 

Rule.  —  Multiply  surface  of  section  of  each  part  or  Hp^xre  composing 
whole,  by  distance  oi  its  centre  from  centre  of  one  of  tho  two  extreme  parts 
or  figures,  as  • ;  divide  sum  of  their  products  by  sum  of  surfaces  of  sec- 
tion, and  result  will  give  distance  of  common  centre  of  gravity  from  centres 
of  each  extreme  part  or  figure.  ~ 

EzAMPLB.— Take  annexed  figure. 

2-5     X  1X0  =^2.5     Xo      =    .0 


■h.» 


8 


Above 


•335  X 


(^  +  jj  =   .335  X  3-3'  =  '076 
38   X4X  (-|--}-5  62  +  ^)  =  i.52   X  6.31  =9.591 


4.34s  10.667 

Dividing  10.667  ^7  4-34S  =  2.455  =  <li«tonc«  qf  common  cemtrefrom  centre  of  upper 
part. 

X.52   Xo  =1.52   Xo      =     .0 


BeUno  • 


325  X  5.62  X     (^  +  ^)    =1-826x3    =  5.478 

a.5  X         f~-|-5.6a  +  '-|-]=a.5     X6.31si5.775 


5.846  21.253 

Dividing  21.225  by  5.8465=3.631  =s  distance  of  common  centre  from  centre  ofUnoer 
part 

HeDc«,  3.631  +  ^  =  3.821  =  distance  of  common  centre  from  bottom^  and.  3.631  -f 

2 

1.65a  s  6.983  3s  distance  between  centres  qfgrcnoitjf. 


820        STB£KGTH   of  MATSBIAL8. — TBAJTSVBBSJi. 


8. 


h^ 

r* 
I 


To  Cozxipixte  TO'entral  A.xis  of*a  Seaxxi  of  XJn-s^rmzxietrioal 
Bectioxx.— Figs.  3,  -^^  a,  6,  r^  8,  and.   &.     (Z>.  iC.  CterA;.) 

Operation. — Divide  section  as  reduced  into  its  simple  elements,  and 
assume  a  datum-line  from  which  moments  of  elements  are  to  be  computed. 
Multiply  area  of  each  element  by  distance  of  its  own  centre  of  gravity  from 
datum-line,  to  ascertain  its  moment.  Divide  sum  of  these  moments  by  to- 
tal reduced  area ;  and  quotient  is  distance  of  centre  of  gravity  of  redbiced 
section,  or  of  neutral  axis  of  whole  section,  from  datum-lue. 

Illustration.— Ftg.  8  annexed  is  la  in&  deep,  i2  ins.  wide,  and  i  inch  thick. 
Extend  web,  c  d,  to  the  lower  surface  at  d*  and  d",  leaving  5.5  in& 
of  web,  a  d'  and  d"  6,  on  each  side.  Reduce  this  width  in  the  ratio 
of  1.73  to  I,  or  to  (s-s-r-  i.73=r)  3.2  ins.,  and  set  oflf  d'  a'  and  d"  b* 
each  equal  to  3. 2  ins.  Then  reduced  flange,  a'  6',  is  (3. 2  X  2  =  6. 4  4- 
I  =)  7.4  ins.  wide,  and  reduced  section  consists  of  two  rectangles, 
a'  b'  and  c  d.  Assume  any  datum-line,  as  «/,  at  upper  end  of  sec- 
tioD,  and  bisect  deptlis  of  rectangles,  or  take  intersections  of  their 
diagonals  at  g  and  o,  for  their  centres  of  gravity.    Distances  of  Uieee 

^_ 1  from  datum-line  are  5.5  and  11.5  ins.  respectively,  and  areas  of  the 

9,'d,'d*hf  b  rectangles  are  xi  X  x  =  zi  sq.  ina,  and  7.4  x  z =7.4  sq.  in& 

Then,    <;d=:ii    x   5.5=  60.5 
a'y=  7.4Xii-5=«  ^5-1 

x8.4  x45.6rr7.91  inf. 

Showing  that  centre  of  gravity  of  reduced  section,  being  neutral  axis  of  wbola 
section,  is  7.91  ins.  below  upper  edge,  in  line  ii.  Centre  of  gravity  of  entire  section 
at  • ,  it  may  be  added,  is  8.65  ins.  below  upper  edge,  or  .74  inch  lower  than  that  of 
reduced  section. 

Neutral  axes  of  other  sections,  Figs.  3  to  7,  found  by  same  process,  are  marked  on 
the  figures.  Section  of  a  flange  rail.  No.  7,  which  is  very  various  in  breadth,  may  be 
treated  in  two  ways;  either  by  preparatorily  averaging  projections  of  head  and 
flange  into  rectangular  forms,  or,  by  taking  it  as  it  is,  and  dividing  ii  into  a  con- 
siderable number  of  strips  parallel  to  base,  for  each  of  which  the  moment,  with  re- 
spect to  assumed  datum-line,  is  to  be  ascertained.  First  mode  of  treatment  is  ap- 
proximate; second  is  more  nearly  exact 

To  Coznpvite  Ultimate  Stren^li  of  Hoxnogren.oo'as  Beams 

of  XJnsy-xnixietrioal  Seotion. ' 

Operation. — Resuming  section,  Fig.  9,  for  which  neutral  axis  has  been 
ascertained, 

To  Comptde  Tentile  Resistance, 

Divide  portion  below  neutral  axis  t  t,  Fig.  9,  with  reduced  width  of 
flange,  a'  b\  into  parallel  strips,  say  .5  inch  deep,  as  shown, 
and  multiply  area  of  each  etrip  by  its  mefin  distance  from 
neutral  axis  for  proportional  quantity  of  resistance  at 
strip.    Divide  sum  of  products,  amounting  in  this   case 
to  31.3,  by  extreme  depth  below  neutral  axis =4.09  ins., 
„        and  multiply  quotient  by  1.73  S  (ultimate  tensile  resist- 
y     I    I  ance  at  lower  surface).    The  final  product  is  total  tensile 
w  V     resistance  of  section ;  or, 

31-3X1.73    _  g  ^^  tcnsiOt  retittance. 

4.09 
S  rqtresentif^  tdtimate  temiU  strength  of  material  per  sq.  inch. 

Again,  multiply  area  of  each  strip  by  square  of  its  mean  distance  from  neu- 
tral axis,  and  divide  sum  of  these  new  products,  amounting  to  104.6^  by 
sum  of  first  products.  The  quotient  is  distance  of  resultant  centre  of  tensiie 
stress,  <f ,  from  neutral  axis.    Or,  resultant  centre  is, 

=  3.34  ins.  below  neutral  oasis, 
31-3 

This  process  is  that  of  ascertaining  centre  of  gravity  of  all  the  tensile  re6isv*nc6A 


— t 

d' 


BTBENGTH   OF  MATSfilALS* — T&ANBY£BS£. 


821 


By  a  slmilAr  process  for  upper  portion  in  compression,  sum  of  first  products  is 
Ascertained  to  be  same  as  for  lower  portion  =  31.3. 

But  maximam  compressive  stress  at  upper  portion  is  greater  than  maximum 
tensile  stress  at  lower  portion,  in  ratio  of  tbeir  distances  firom  neutral  axis,  or  as 

1.73  8x^^  =  3-34  S,  and  ^^ — ^^ —  =  13.24  S  total  compressive  resistance, 

which  is  same  as  total  tensile  resistance,  in  conformity  with  general  law  of  equal- 
ity  of  tensile  and  compressive  stress  in  a  section. 

Sum  of  products  of  areas  of  stress,  divided  by  squares  of  their  distances  irespec- 

tively  from  neutral  axis,  is  164.9,  ^^^  resultant  centre  c,  Fig.  9,  Is  ^^-^  =  5.27 

31-3 
int.  above  neutrai  axis. 

8am  of  distances  of  centres  of  stress  or  of  resistance  ft-om  neutral  axis,  3.34  4- 
5.27  ::=  8.61  in*.  =:  distance  apart  of  these  centres  as  represented  by  central  line,  c'  d  . 

Abbretfiated  Computation.— -Ab  upper  part  of  section  is  a  rectangle,  its  resultant 
centre  =  |  of  height,  or  7.91  X  #  =  5.37  ins.  above  neutral  axia  Average  resist- 
ance is  half  maximum  stress,  viz.,  that  at  upper  portion,  which  is  3.34  S  per  sq. 
inch. 

Area  of  rectangle  therefore  =:  7.91  x  i  =  7.91  sq.  ins.,  and  7-9'  X334    _.  j^^^^  g 

2 
compreuive  resistance,  as  before  determined. 

Uomentof  tensile  resistance  =  13.21  X  8.61  ins.=  113.76  S,also  =  — ,  or  ^-t—  =» 

4  ' 

W.     S  representing  total  resistance  of  section  in  lbs.,  d  vertical  distance  apart  of 

centres  of  tension  and  compression^  arid  I  length  between  supports,  all  in  ins. 

Strength  of  Beam  Inverted. — When  inverted,  maximum  tensional  resistance  of 
beam  at  its  lower  surface  c.  Fig.  8,  is  1.73  S. 

Area  of  rectangle  i  i  0=7.91  sq.  Ins.,  and  ^-^ — LZL-  -i  6.79  S  totai  tensile  re- 
sistance, or  about  one  half  of  beam  in  its  normal  position. 

Non.— For  other  rule  for  eompatation  of  caotre  of  gravity,  see  Strength  of  Beanu,  etc.  B.  Baker, 
I^ndoB,  xS/a 

Ooxnparative  Qualities  of*  "Various   ^letals. 


IdnAM. 


!  Least. . . . 
Greatest. 
Mean. . . . 

Wrought  Iron  ^  ^'^^^ 


Cast  Steel. 
BroiMse . .  • 


Greatest. 
liOast. . . . 
Greatest. 
L<ea8t.  •  •  • 
Greatest. 


Doniity. 


6.9 

7-4 
7.225 

7.704 

7.858 

7.729 

8.953 
7.978 

8-953 


Comprei 
■Ion. 


Sq.  Ids. 

84529 
174  120 
144^x6 

40000 
127  720 
198944 
391  985 


TentiU. 


Major  Wade. 

Tentil* 
to  Com- 
preuioD 


Hftrd. 

ness. 


4-57 
S94 


ITaotors  of*  Safet^^. 
Girders^  Beams,  etc.,  of  cast  iron  should  not  be  subjected  to  a  greater  stress 
Ihan  one  sixth  of  their  destructive  weight,  and  they  should  not  be  subjected 
to  an  impulsive  stress  greater  than  one  eighth. 

The  following  are  submitted  by  English  Board  of  Trade,  Commission- 


ers, etc 


SniUOTDBB. 


Cast  Iron. 
Girders... ..<•.. 

Colamna 

tanks.. . 

Macblaery...... 


Stms. 


Dead 
t« 

<i 

Live 
Shock 


Factor. 


3  t06 

4 
8 
10 


Stkccturb. 


Wrought  Iron. 
Girders 


Bridges. .... 

Stsel. 

Brtdgea.... 


stress. 


Dead 

Live 

Mixed 

Mixed 


Factor. 


822         8T&£N6TH   OF  liATBAIALS. — TSANSVBBSE. 

Grirders,  Beams,  Xjintels,  eto. 

Transverse  or  Lateral  Strength  of  any  Girder^  Beam,  Breast-summer^ 
Lintel,  etc.,  is  in  proportion  to  product  of  its.  breadth  and  square  of  its 
depth,  and  area  of  its  cross-section. 

Best  form  of  section  for  Cast-iron  girders  or  beams,  etc,  is  deduced 
from  experiments  of  Mr.  E.  Hodgkinson,  and  such  as  have  this  forpi  of 
section   T  are  known  as  Hodgkinson^s. 

Rule  deduced  from  his  experiments  directs,  that  area  of  bottom  Jktnge 
shmdd  he  6  times  that  of  top  flange — flanges  connected  i>y  a  thin  ver- 
tical web,  sufficiently  rigid,  however,  to  give  the  requisite  lateral  stiff- 
ness, tapering  both  upward  and  downward  from  the  neutral  axis ;  and 
in  order  to  set  aside  risk  of  an  imperfect  casting,  by  any  great  dispro- 
portion between  web  and  flanges,  it  should  be  tapered  so  as  to  connect 
with  them,  with  a  thickness  corresponding  to  that  of  flange. 

As  both  Cast  and  Wrought  iron  resist  compression  or  crushing  with  a 
greater  force  than  extension,  it  follows  that  the  flange  of  a  girder  or  beam 
of  either  of  these  metals,  which  is  sutnected  to  a  crushing  strain,  according 
as  the  girder  or  beam  is  suppoHed  at  both  ends,  orflxed  at  one  end,  should  be 
of  less  area  than  the  other  flange,  'which  is  subjected  to  extension  or  a  ten- 
sile stress. 

When  girders  are  subjected  to  impulses,  and  sustain  vibrating  loads,  as  in 
bridges,  etc.,  best  proportion  between  top  and  bottom  flange  is  as  i  to  4 ;  as 
a  general  rule,  they  should  be  as  narrow  and  deep  as  practicable,  and  should 
never  be  deflected  to  more  than  .002  of  their  length. 

In  Public  Halls,  Churches,  and  Buildings  where  weight  of  people  alone 
are  to  be  provided  for,  an  estimate  of  175  lbs.  per  sq.  foot  of  floor  surface 
is  suflicient  to  provide  for  w^eight  of  flooring  and  load  upon  it.  In  comput- 
ing other  weight  to  be,  provided  for  it  should  be  that  which  may  at  any  time 
bear  upon  any  portion  of  their  floors ;  usual  allowance,  however,  is  for  a 
weight  of  280  lbs.  per  sq.  foot  of  floor  surface  for  stores  and  factories. 

In  all  uses,  such  as  in  buildings  and  bridges,  where  the  structure  is  ex- 
posed to  sudden  impulses,  the  load  or  stress  to  be  sustained  should  not  ex- 
ceed from  .2  to  .16  of  breaking  weight  of  material  employed;  but  when  load 
is  uniform  or  stress  quiescent,  it  may  be  increased  to  .3  and  .25  of  breaking 
weight. 

An  open-web  girder  or.  beam,  etc.,  is  to  be  estimated  in  its  resistance  on 
the  same  principle  as  if  it  had  a  solid  web.  In  cast  metals,  allowance  is  to 
be  made  ror  loss  of  strength  due  to  unequal  contraction  in  cooling  of  web 
and  flanges.- 

In  Cast  Iron,  the  mean  resistances  to  Crushing  and  Extension  are,  for 
American  as  4.55  to  i,  and  for  English  as  5.6  to  7  to  i ;  and  in  Wrought  Iron 
are,  for  American  as  1.5  to  i,  and  for  English  as  1.3  to  i ;  hence  the  mass  of 
metal  below  neutral  axis  will  be  greatest  in  these  proportions  when  stress  is 
intermediate  between  ends  or  supports  of  girders,  etc. 

Wooden  Girders  or  Beains,  when  sawed  in  two  or  more  pieces,  and  slips 
are  set  between  them,  and  whole  bolted  together,  are  made  stiffer  hj  the 
operation,  and  are  rendered  less  liable  to  decay. 

Girders  cast  with  a  face  up  are  stronger  than  when  cast  on  a  side,  in  the 
proportion  of  i  to  ,96,  and  they  are  strongest  also  when  cast  with  bottom 
flange  up. 

Most  economical  construction  of  a  Girder  or  Beam,  with  reference  to  at- 
taining greatest  strength  with  least  material,  is  as  follows:  The  outline  of 


8TSSNOTH  OF  MATBBIALS. — TBANSVBBSB.         823 

tapi  bottom,  and  sides  should  be  a  curve  of  vaiioos  fbrmsv  according  as 
breadth  or  depth  throughout  is  equal,  and  as  girder  or  beam  is  loaded  only 
at  one  end,  or  in  middle,  or  uniformly  throughout 

Breaking  Weights  of  Similar  Beams  are  to  each  other  as  Squares  ofiheis 
Uke  Linear  Dimensions, 

By  Board  of  Trade  regulations  in  England,  iron  may  be  strained  to  5  tons 
per  sq.  inch  in  tension  and  compression,  and  by  regulation  of  the  Pouts  et 
Chaussdes,  France,  3.81  tons. 

Bivets  .75  and  x  inch  in  diameter,  and  set  3  ins.  from  centre  in  top  ol 
girder,  and  4  ins.  at  bottom. 

Character  of  fracture,  as  to  whether  it  is  crystalline  or  fibrous,  depends 
upon  character  of  blows ;  thus,  sharp  blows  wUl  render  it  crystalline,  and 
slow  will  not  disturb  its  fibrous  structure. 

For  spans  exceeding  40  feet^  wrought  iron  ia  held  to  be  preferable  to 
cast  iron. 

Biveting,  when  well  executed,  is  not  liable  to  be  affected  by  impact  or 
velocity  of  load. 

A  Coupled  Girder  or  Beam  is  one  composed  of  two,  fastened  together,  and 
set  one  over  the  other. 

n?rujssecl  Seazns  or  G^irders. 

Wrought  and  Cast  Iron  possess  diflTerent  powers  of  resistance  to  tcDsion  and  com- 
pression; and  wlien  a  beam  is  so  constructed  that  these  two  materials  act  in  uni- 
son with  each  other  at  ttress  du«  to  load  required  to  be  ttome,  their  combination  will 
effect  an  essential  economy  of  material,  tn  consequence  of  the  difficulty  of  ac^ust- 
fbg  a  tension- rod  to  the  stress  required  to  be  borne,  it  is  held  to  be  impracticable  to 
conetruct  a  perfect  truss  l>eam. 

Fairbalm  declares  that  it  is  better  for  tension  of  truss  rod  to  be  low  than  high, 
whtob  position  is  fblly  supported  by  fbUowing  elements  of  the  two  metals  * 

Wrought  Iron  has  great  tensile  strength,  and,  having  great  ductility,  it  undergoes 
much  elongation  when  acted  upon  by  a  tensile  force.  On  the  contrary,  Cast  Iron 
has  gre«t  rnrehing  strength,  and,  having  but  little  ductility,  it  undergoes  but  little 
elongation  when  acted  upon  by  a  tensile  stress;  and,  when  these  metals  are  re 
leas^  (Vom  the  action  of  a  high  tensile  stress,  the  set  of  one  differs  widely  fYt)m 
that  of  the  other,  that  of  wrooghi  iron  being  the  greatest. 

Under  same  increase  of  temperature,  expansion  of  brought  is  considerably  great- 
er than  (bftt  of  cast  iron;  x.8i*  tons  per  sq.  inch  is  required  to  produce  in  wrought 
iron  same  extension  as  in  cast  iron  by  i  ton. 

FairlNlim,  in  his  experiments  upon  Englirii  metals,  deduced  that  within  limits 
of  stress  of  13440  lbs.  per  sq.  inch  for  cast  iron,  and  30340  lbs.  per  sq.  inch  for 
wrought  iron,  tensile  foroe  applied  to  wrought  iron  must  be  2.25  times  tensile  force 
applied  to  cast  iron,  to  produce  equal  elongations. 

Relative  tensile  strengths  of  oast  amd  wrought  iron  being  as  i  to  x.35,  and  theii 
resistance  lo  extension  as  x  to  2.95,  therefore,  where  no  initial  tension  is  applied  to 
a  truss-rod,  cast  iron  most  be  ruptured  before  wrought  iron  is  sensibly  extended. 

Resistance  of  cast  iron  in  a  trussed  beam  or  girder  Is  not  wholly  that  of  tensils 
strength,  but  it  is  a  combination  of  both  tensile  and  crushing  strength^  cm*  a  trans- 
verse strength ;  hence,  in  estimating  resistance  of  a  trussed  beam  or  girder,  trans- 
verse strength  of  it  is  to  be  used  in  connection  with  tensile  strength  of  truss. 

Meaui  transverse  strength  of  a  cast-  iron  bar,  one  inch  square  and  one  foot  in 
length,  supported  at  both  ends,  stress  applied  in  the  middle,  vnthoul  set,  is  aboui 
900  Iba ;  and  as  mean  tensile  strength  of  wrought  iron,  also  udthout  set^  is  about 
20000  1d&  per  sq.  inch,  ratio  between  sections  of  beams  and  of  truss  should  be  in 
mtlo  of  transverse  strength  per  sq.  inch  of  beam  and  of  tensile  strength  of  truss. 

Girders  under  consideration  aro  those  alone  in  which  truss  is  attached  to  beam 
Kt  its  lower  flange,  in  which  case  it  presents  following  conditions: 

*  EkogiUioii  of  GMt  and  wioq^t  Iroa  bdqc  5500  and  zoooo,line»  wooo  H-  SSOO^ 


824        BTKBNGTU   OF  MATKBlALd. — T&AKSVEBSB. 

X.  When  fnui  rmuparaUel  to  lower  JUmge.  a.  Whm  truu  runt  of  cm  indUnoHtm 
5o  lower  flange^  being  dqnreaed  betow  itt  centre.  3.  fl^en  beem  it  arched  v^UMurd^ 
and  truss  runs  as  a  choid  to  curve. 

Consequently,  in  all  these  cases  section  of  beam  is  tbat  of  an  open  one  with  a 
cast-iron  upper  flange  and  web,  and  a  wrougbt-iron  lower  flange,  increased  in  its  re- 
sistance over  a  wbolly  cast-iron  beam  in  proportion  to  the  increased  tensile  strength 
of  wrought  iron  over  cast  iron  for  equal  sections  of  metals. 

From  various  experiments  made  upon  trussed  beams,  it  is  shown  : 

I.  That  their  rigidity  far  exceeds  that  of  simple  beams;  In  some  cases  ft  was  fh)m 

?r  to  8  times  greater,  s.  That  when  truss  resists  rupture,  upper  flange  of  beam  be- 
ng  broken  by  compression,  there  is  a  great  gain  in  strength.  3.  That  their  strength 
is  greatly  increased  by  upper  flange  being  made  larger  than  lower  ona  4.  That 
their  strength  is  greater  than  that  of  a  wrought-iron  tubular  beam  containing  same 
area  of  metoi 

Comparative    Value    of  "^Vrouglit-iron    Sars,  HolloTV 
O-irders,  or  1*111368   of*  Various   ir<ig>xireis  {Engliik), 


Circular  tul)es,  riveted ••  z 

Flanged  beams. ... • ••»•••  1.3 

Elliptic  tubes,  riveted. •..•••• 1.3 

Rectangular  tubes,  riveted 1.5 


Circular,  uniform  thickness  •••• z.7 

Plate  beams..... ..•...•• • 1.7 

Elliptic,  uniform  thickness •••  x.8 

Rectangular,  uniform  thicknesa a 


General  Deductions  from  Exper-imenis  of  Stephenson,  Fairbmrn^  OUntl, 

Hughes,  etc. 

Fairbairn  shows  in  his  experiments  that  with  a  stress  of  aboot  xa  330  Iba  per  sq. 
inch  on  cast  iron,  and  38000  Iba  on  wrought  iron,  the  sets  and  elongationa  are 
nearly  equal  to  each  other. 

A  cast-iron  beam  may  be  bent  to  .3  of  its  breaking  weight  if  load  is  laid  on  grad- 
ually; and  16  of  it,  if  laid  on  at  once,  will  produce  same  effect,  if  weight  of  beam 
is  small  compared  with  weight  laid  on.  Hence,  beams  of  cast  iron  should  be  made 
capable  of  bearing  more  than  6  times  greatest  weight  which  will  be  laid  upon  them. 

In  beams  of  cast  or  wrought  iron,  if  fixed  or  supported  at  both  ends,  flanges 
should  be  in  proportion  to  relative  resistances  of  material  to  crushing  or  extension. 

Breaking  weights  in  similar  beams  are  to  each  other  as  squares  of  their  like  linear 
dimensions;  that  is,  breaking  weights  of  beams  are  computed  by  multi|4ying  to- 
gether area  of  their  section,  depth,  and  a  Constant^  determined  flrom  experimenta  on 
beams  of  the  particular  form  under  investigation,  and  dividing  product  by  distance 
between  supporta 

Cast  and  wrought-iron  beams,  having  similar  resistances,  have  weights  nearly  as 
a.44  to  X. 

A  box  beam  or  girder,  constructed  of  plates  of  wrought-lron,  compared  to  a  single 
rib  and  flanged  beam  X  o^  equal  weights,  has  a  resistance  as  xoo  to  93. 

Resistance  of  beams  or  girders,  where  depth  is  greater  than  their  breadth,  when 
supported  at  top,  is  much  increased.    In  some  cases  the  difference  is  fhlly  one  third. 

When  a  beam  is  of  equal  thickness  throughout  its  length,  its  curve  of  equilibrium, 
to  enable  it  to  support  a  uniform  stress  with  equal  resistance  in  every  part, 
should  be  an  ElUpse^  and  if  beam  is  an  open  one,  its  curve  of  equilibrium,  for  a  nni- 
form  load,  should  be  that  of  a  FarabolcL  Hence,  when  middle  portion  is  not  wholly 
removed,  its  curve  should  be  a  compound  of  an  ellipse  and  a  parabola,  approaching 
nearer  to  the  latter  as  the  middle  part  is  decreased. 

Girders  of  cast  iron,  up  to  a  span  of  40  feet,  involve  a  less  cost  than  of  wrought 
iron. 

C^ist-fron  beams  and  girders  should  not  be  loaded  to  exceed  .3,  or  sutjected  to  a 
greater  stress  than  .  166  of  their  destructive  weight ;  and  when  the  stress  is  attended 
with  concussion  and  vibration,  this  proportion  must  be  increased. 

S^nplo  cast-iron  girders  may  be  made  50  feet  in  length,  and  best  form  Is  that  of 
Hodgkinson ;  when  subjected  to  a  fixed  load,  flanges  should  be  as  i  to  6,  and  when 
to  a  concussion,  etc.,  as  x  to  4. 

Forms  of  girders  for  spaces  exceeding  limit  of  those  of  simple  cast  Iron  are  vari- 
ous; principal  ones  adopted  are  those  of  straight  or  arched  oast-iron  girders  in 
separate  pieoes,  and  bolted  together— Trussed,  Bowstring,  and  wrought-iron  Sox 
and  Tabular. 


STBXKGTH    OF  HATSBIALS. — TSANSVBBSB. 


825 


Straight  or  Ardied  Girder^  formed  of  separate  castingS)  la  entirely  dependent 
apoa  bolls  of  connection  for  its  strength. 

TruMed  or  Bowstring  Girder  is  made  of  one  or  more  castings  to  a  single  piece, 
and  its  strength  depends,  other  than  upon  the  depth  or  area  of  it,  upon  the  proper 
adyustment  of  the  tension,  or  the  initial  strain,  upon  the  wrought- iron  truss. 

Box  or  Tubular  Girder  is  made  of  wrought  iron,  and  is  beat  constructed  with 
cast-iron  tops,  in  order  to  resist  compression:  this  form  of  girder  m  l>est  adapted  to 
aflbrd  lateral  stiflhess. 

When  a  ffirder  has  four  or  more  supports,  its  condition  as  regards  a  stress 
upon  its  middle  is  essentially  that  of  a  beam  fixed  at  both  ends. 

The  following  results  of  the  resistances  of  materials  will  show  how  they 
should  be  distributed  in  order  to  obtain  viaximum  of  strength  with  mimmum 
of  dimensions : 


Cast  Iron, 


(t 


English.. 

Granite 

Limestone 


To  Tension, 


21000 
32000 
13000 
23000 

578 

670 

2800 


To  Crushing. 


90300 

140  500 

5800D 

Z16000 

15000 

4000 

9000 


Oak,  white,  mean. 
♦♦     English    "    . 

Wrought  iron 

English 


It 


To  Tension. 


IIOOO 

6500 
45000 
59000 
(31000 
53000 
t6ooo 


To  CriMh'ff. 


7500 
3100 
47000 
83000 
4POOO 
65000 
4000 


Yellow  pine 

The  best  iron  has  greatest  tensile  strength,  and  least  compressive  or  crushing. 

Conditions  oi^  H'arxus  and  Dimensions  of  £fc  S^^iinmeti^ioa] 

Seam   or  Oirder* 

When  Fixed  at  One  Mid,  and  Loaded  at  the  Other. 

1.  When  Depth  is  uniform  throughout  entire  Length,  section  at  eyery  point 
must  be  in  proportion  to  product  of  length,  breadth,  and  square  of  depth,  and 
as  square  of  depth  is  in  every  point  the  same,  breadth  must  vary  directly  as 
length ;  consequently,  each  side  of  beam  must  be  a  vertical  plane,  tapering 
gradually  to  end. 

2.  When  Breadth  is  umform  throughout  entire  Length,  depth  must  vary 
as  square  root  of  Length ;  hence  upper  or  h>wer  aides,  or  both,  must  be  deter- 
mined by  a  parabolic  curve. 

3.  When  Section  at  every  point  is  similar,  that  w,  a  Circle,  an  Ellipse,  a 
Square,  or  a  Rectaiigle,'8idR8  of  which  hear  a  fixed  Pistportion  to  each  other, 
the  section  at  every  point  being  a  regular  figure,  for  a  circle,  the  diameter 
at  every  point  must  be  as  cube  root  of  length;  and  for  an  ellipse  or  a  rec- 
tangle, breadth  and  depth  must  vary  as  cul^  root  of  length. 

Illustration. — A  rectangular  beam  as  above,  6  ins.  wide  and  i  foot  in  depth  at 
its  extreme  end,  and  a  feet  in  length,  is  capable  of  bearine  6480  Iba ;  whai  abooM 
be  its  dimension  at  3  feet?  i^^  _  ^^87,  dnd  ^3  =  1.4^ 

Then  1.587  .  1.442  ::  i :  9086,  and  6  and  12  x  .9^86  =  5.452  and  ia9. 

Hence  5.45a  X  10.9'^        ^^  l>i52!  =  ..A 
3  4 

When  Fixed  at  One  End,  and  Loaded  unifomdy  throiighon:  its  Length, 

I.  When  Depth  is  umform  throughout  its  entire  Length,  breadth  must  in- 
crease as  the  sqiutre  of  length. 

3.  When  Breadth  is  uniform  throughout  its  entire  Length,  depth  will  vary 
disectly  as  length. 

3.  When  Section  at  every  point  is  nmHar,  as  ct  Circle',  Ellipse,  Square,  and 
Bectctngie,  section  at  every  point  being  a  r^ular  figure,  cube  of  depth  must 
be  in  ratio  of  square  of  length. 


826         STBBNGTH   OF   MATEBI1.LS. — TBANSYSXaS, 

iLLvntuTios.—Take  preceding  cue. 

Then  4'  :  3'  ::  12*  :  973,  and  ^979  s  9.9  til  dt^^ 

When  Supported  at  Both  Ends. 

1.  When  Loaded  in  the  Bliddle,  Ooeficieni  w  Factor  of  Safety  of  the  beam, 
or  |iroduct  of  breadth  and  sqnare  of  depth,  must  be  in  proportion  to  distance 
from  nearest  support ;  consequently,  whether  the  lines  forming  the  beam  are 
straight  or  curved,  they  meet  in  the  centre,  and  of  course  the  two  halves  are 
alike. 

3.  When  Depth  is  Uniform  throughonty  breadth  must  be  in  ratio  of  length. 

3.  When  Breadth  is  Uniform  throughout,  depth  will  vary  as  square  root 
of  leiij^h. 

4.  When  Section  at  every  point  is  similar^  as  a  Circle,  Ellipse,  Square,  and 
Rectangle,  section  at  every  point  being  a  regular  figure,  cuue  of  depth  will 
be  SLA  square  of  distance  from  supported  end. 

When.  Supported  at  Both  Ends,  and  Loaded  uniformly  throughout  its 

Length. 

z.  When  Depth  is  Uniform,  breadth  will  be  as  product  of  length  of  beam 
and  length  of  it  on  one  side  of  given  point,  less  square  of  length  on  one  side 
of  given  point. 

2.  When  Breadth  is  Uniform,  depth  will  be  as  square  root  of  product  of 
length  of  beam  and  length  of  it  on  one  side  of  given  point,  less  square  of 
length  on  one  side  of  given  point. 

3.  When  Section  at  every  point  is  similar,  as  a  drcle,  EXUpse^  Square^  and 
Rectangle,  section  at  every  point  being  a  regular  figure,  cube  uf  depth  will 
be  as  product  of  length  of  beam  and  length  of  it  on  one  side  of  given  point, 
less  square  of  length  on  one  side  of  given  point. 

Tniliptioal-sided  Seams. 
To  Determine  Side  or  Cvirve  of*  an  Klliptioal-sided  Beaxn.. 

/— ^  =3 d     L  represenHmg  load  in  lbs.,  I  length  in  feet,.C  eoefficienty  and  b 

breadth  in  ins. 

Illfstratiom.— What  should  be  depth  iu  centre  of  abeam  of  white  pine,  10  fcei 
m  length  between  its  sapiMrts,  and  5  ins.  in  breadth,  to  support  a  load  of  zoooo  lbs.? 

A8SumeC=:ioa    Then  ^  / — -— =  ^/ zstoins. 

Hence,  outline  of  beam  is  that  of  a  semi-ellipse,  ha\'iog  10  feet  for  its  transverse 
diameter,  and  9  ina  for  its  semi-coi^Jugate. 

Note.— Weight  of  6ir()er,  Beam,  etc.,  should  In  all  cases  be  added  to  stress  or  loai. 

lilisoellaneouM  lUvistrations. 

I.— What  should  be  side  of  a  rectangular  white  oak  beam,  2  ina  in  width,  and  6 
feec.  between  its  supports,  to  sustain  a  load  of  360  Iba  ? 

Assume  stress  at  .3  of  breaking  weight  of  150  lbs.  =  3a 

V4XaX39      Va40 
9.  -  -What  should  be  breadth  and  depth  of  such  a  beam  if  squarsi' 

V     4X30         V     >20 

3.— What  should  be  diameter  of  a  cylinder? 

360  X  6  . ,  /lao  . 

^^-— —  =  xao,and3/ —  =  3.1  ina 
.6X30  V   4 


8TSSN6TH   OF  MATERIALS. — ^TBANSVEBSB.  82/ 

STEEL. 

To   Coizipute   Transverse  Strength,   of  Steel   Bars. 

Supported  at  Both  Ends.     Weight  applied  in  Middle. 

'''^^ =  W.    S  repreientif^  tensile  strength  in  lbs. ^  I  length  between  supports 

in  ins.i  and  W  weight  in  lbs. 

Illustration. — What  is  ultimate  destructive  stress  of  a  bar  of  Crucible  steel, 
2  ins.  sqaare,  and  2  feet  between  supports  ?  S  =  90000  lbs. 

__        1.155X90000X2*     831600  ,     ,. 

Then  — ^2Jl^ Ci —  =  -2. ~  34650  lbs. 

2  X  12  24 

ElaHic  Transverse  Strength  is  50  per  cent,  of  its  ultimate  strength. 

JJardeinnff  iu  oil  increases  its  strength  from  12  to  56  per  cent.    Thus, 

Soft  steel,  131 520  lbs. ;  soft  steel,  cooled  in  water,  90 160  lbs. ;  soft  steeli 
cooled  in  oil,  215  120  lbs. 

Krupp's  is  about  .45  of  its  tensile  breaking  weight,  .24  of  its  compressive 
or  crushing  strength,  .38  of  its  transverse,  and  .39  of  its  torsional. 

Friction  of  a  steel  shaft  compared  to  one  of  wrought  iron  is  as  .625  to  i. 

Capacity  of  steel  to  resist  a  transverse  stress  is  much  less  than  to  resist 
torsion. 

Relative  diameters  of  steel  and  wronglit-iron  shafts,  to  resist  equal  trans- 
verse stress,  are  as  .98  to  i,  and  weight  of  such  a  proportion  of  steel  shaft 
compared  with  one  of  wrought  iron  will  be  about  4  per  cent,  less,  and  friction 
of  bearing  wiU  be  6  per  cent.  leas. 

CYLINDERS,  FLUBS,  AND  TUBES. 

Hollow   Cylinders.    Cast   Iron. 

To   Compute   lillements'or  XIollo'^v   Cylinders   viritLin 

l^imits  or  IQlastio   Btrengtli.    (D.K.  Clark.) 

P  P 

S  X  hyp.  log.  R  =  P.  r^ — -  =  a  —  =  hyp.  log.  R.     S  representing 

nyp.  log,  A  B 

elastic  tensile  strength  of  metal  in  lbs.  per  «g.  inchj  R  ratio  0/ external  diamettr  to  tn- 

d'      r' 
temal^  =  -r  =  — ,  and  P  internal  pressure  in  Uts.  per  sq.  inch,    d  and  d'  representing 

internal  and  external  diameter^  and  r  and  r'  internal  and  external  racist,  all  in  ins. 
NoTB.— Hyperbolic  Logarithm  of  «  number  is  equal  to  product  of  it*  common  lopirltbm  and  3.3036 

Illustration  i.  —  Diameters  of  a  hydroetailc  cyHoder  5.^  by  13.125  ins. ;  what 
pressure  within  its  elastic  strength  will  it  sustain  per  sq.  inch? 

Aflsome  S  =  loooo  Ws.    Hyp.  log.  R='?  "^  x  2.3026  =  log.  2.5  X  3.3036  =:  .oa. 

5-3 
Then  10 000  X  -92  =  9200  lbs.  per  sq.  inch. 

Noes.— For  Bunting  Strength  take  maximum  itrength  of  metal. 

3 — A  water-pipe  .75  inch  thick  has  an  internal  diameter  of  10  Ins.,  what  i^  its 
bursting  pressure  r  

S  =  30000  lbs.     fiyp.  toflr.— -^^^^=.1398. 

Then  30000  X  •  1398  =  4x94  lbs. 

3. — If  it  were  required  of  a  hydrostatic  praes  to  sustain  a  pressure  of  589050  lbs. 
upon  a  ram  of  «  ins.  in  diameter,  what  would  be  pressure  on  ram,  and  what  should 
be  thickness  of  metal,  assuming  it  equal  to  an  elastic  tensile  stress  of  15000  lbs. 
per  aq.  inch  f 

Area  of  5  ins.  =  X9-635.       ^°     =  30000 = pressure  per  sq.  inch  on  rasik, 

19.035 

Then  ^°°°°asa,  which  =hyp.  log.  11  =  739,  Md  7.39  X  s  =  3695  sT«Bfemal  4i 
15000 

umeler.    36.95 — 5  =  31.95,  which  -r-  3  =  15.975  *»•*•  thickness  of  metal 


S28        STBBKGTH  OF  MATBBIAL9. — TBAKSVB&SS. 


'^^rouglxt  Iron,  and  Steel* 

2  P  ^        2  P 


S=P. 


=  & 


4- 1  =  (P + hyp.  log.  S) 


B,  +  hVP.log.  —  —  i 


Illustration  i.— If  diameters  of  a  wroagbt  iron  cylinder  are  5  and  15  ins.,  and 

altimate  or  destructive  strength  of  metal  is  4ocxx>  lbs.  per  sq.  inch,  what  is  its  break- 

ioig  pressure?  »5  ♦r      »  ^  r.^ 

—  =  3-    SyP-  log.  2  =  .477 1?  X  2.3026  =  1.0986. 
5 


Then 


3  +  1.0986  —  1 


X  40000  =  61 972  Vbt.  per  »g.  inch  =  61 972  X  5  -?- 15  —  5  = 


30  986. 2  Ubi.  per  sq.  inch  of  tection  of  metal. 

2.— A  steam-boiler  6  fi^i  in  internal  diameter,  of  wrougbt-iron  fyiates  .375  fncb 
thick  and  double  riveted  longitudinally,  burst  at  a  joint  by  a  pressure  of  300  Iba  pel 
6q.  inch;  what  was  resistance  of  joint  per  sq.  inch  of  its  section? 


72 -f- -375X2 


72 


Then 


=  Z.0104.    ffyP'  log.  1. 0104  =  .010345. 
2  X  900  600 


1.0104  -|-. 0x0  345  —  I      .020745 


=  29  405  lbs.  per  sq.  inch  of  section  of  joint 


SHIF  AlfD  BOILEB  PLATES. 
(Seepages  751-^57  for  Boiler  Ritfeting.) 

tntimate  Tensile  Strength  of  X^iveted  and.  'Welded 
Joints   of  Wronglit-iron   Plates.    (D  K.Clark.) 

Entire  Plate  =  loa 


J01NT8. 


Plate. 

•375 


50 
40 


Scarf- welded 

Lap-welded 

Single  hand  riveted 
♦'        "     snap-)  j  ^^ 

headed ]  '  5° 

««     "by machine!  40 
'•     *•    counter-) 
sunk  head . . .  }  '  *^ 


102 
66 
60 

56 

52 

52 


■4375 


106 
69 
SO 

52 

54 

50  J 


Aver- 


Z04 
62 

SO 
53 
49 
49 


^   Joints, 


Double  rit'd,  snap-  \ 

headed ) 

*'  "  counter-  ^ 
sunk  and  snap-  [ 

headed ) 

"  ^*  with  single) 
welt,  counters'k  S 
and  snap-headed) 


Plate. 

Avar. 

.5 

•375 
72 

•4375 
70 

•«•• 

S9 

67 

53 

69 

73 

65 

52 

6S 

60 

59 

Strength  of  Riveted  Joints  per  Sq.  Inch  of  Single  Plate,    ( Wm.  Fairbaim.} 

Single  Lapped. — Machine  riveted.    Pitch  3  times,  25  000  lbs. 

Hand  riveted.    Pitch  3  times,  24000  lbs. 

Rivets  "  staggered,"  and  equidistant  from  centres,  30  500  lbs. 

Abut  Joints. — Hand  riveted.    Rivets  not  "staggered,'*  and  equidistant 
from  centres,  single  cqver  or  strap,  30000  lbs. 

Rivets  "  square,*'  single  cover  or  strap,  42  000  lbs. ;   doable  covub  Of 
straps,  55  000  lbs. 

Comparative   Strength,   of  H.iveted  Joixsitfl. 

Entire  Plate  .375  ins.  thick  =  zoa 

Double  riveted,  double  strap,  or  fish- )  „ 

plated  joint j  '^^ 

Double  riveted  lap  Joint 72 


Double  riveted,  single  strap,  or  fish- )  ^ 

plated  joint J  05 

Single  riveted  lap  joint 60 


For  all  joints  of  plates  over  .  5  inch,  other  than  double  welded,  these  proporiioiM 
are  too  high. 

A  closer  pitch  of  rivets  should  be  adopted  in  single  than  in  double  riveted  abnte 
etc. 


STRENGTH   OF  MATEBIALS. — TBANSYSBSB. 


829 


X>iTxieiisionB   of*  liivetSy  Pitcl^^  I^ap,  eto. 


Plsto. 

Diwn. 

Leneth 
from  Head. 

Pitch, 

Lap. 

fhickiMM. 

of  Rivet. 

SingU. 

DoubU. 

Staggerad. 

Inch. 

Ids. 

Ina. 

Ins. 

Ins. 

Ins 

Ins. 

.25 

•5 

1.125 

i.S 

1.5625 

2.75 

2.4375 

•3"5 

.625 

1-375 

1.625 

2 

3-4375 

3  ^ 

•375 

'P         ] 

1.625 

'•75 

2.4375 

4-125 

3.625 

•5 

.8125 

2.25 

2.125 

2.625 

4  4375 

3-9375 

.5625 

•9375 

a. 75 

2-375 

3 

5- 1875 

4-5625 

.625 

z 

3 

2.625 

3-25 

5-5 

•  4.8125 

•Z5 

1.12$ 

3-25 

3 

3.625 

6.1875 

5.4375 

.875 

1.25 

4 

3-375 

4  „ 

6.875 

6.0625 

1 

1.5 

4-5 

4-375 

4  875 

8.25 

7-25 

Straps.  —Single,  .125  thicker  tbun  the  plate;  Double,  each  625  of  thickness  of 

>late. 

To  Compute   X>iaxxiet«r  of*  Rivet. 

Ordinarily^ Ti.25-|-.i875  =  (L    t repretenting tkicknes* ofplaU^ and d diameter 
}f  rivet 


Pitch   of*  R.ivet0.    (Nelson  Foley.) 


PlatML 

Single 

Staggered. 


MetAl  between  the 
.  Holes. 


52  to  62  per  cent. 

68  to  75   "      " 


Diam. 
of  RiveU. 

l.4*<>«-3 

1.4  to  2.  J 


Plates. 


Square. 
Triple. . 


Metal  between  tb6 
Holes. 


70  to  78  per  cent 
761080   " 


ii 


Diam. 
of  Rivet*. 


.99  to  1.7 
.77  to  I 


I*roportionB   of*  Single   Rivet   "Wrought-iron   tTointa. 

(French.) 


Thidraesa 

Diameter 

Pitch  of 

Width  of 

Thickness 

Diameter 

Pitch  of    1 

Width  of 

of  Plau. 

of  RiveU. 

~  Rivets. 

Lap. 

of  Plate. 

of  Rivets.         Rivets.' 

Lap. 

■il'a 

Inch. 

Mil's 

Inch. 

Mil's 

Ins. 

Mil's 

Int. 

Mil's 

Inch. 

Mil's 

Ins. 

Mil's;  Ins.  !m{1's    Ins. 

3 

.»8 

8 

.3>5 

27 

1.06 

30 

1.18 

10 

•394 

20 

.787 
.827 

56     2.2       58     2.28 

4 

-i5« 

10 

•394 

32 

1.26 

34 

^H 

11 

-433 

21 

57     2.24!  60 

2.36 

5 

.197 

12 

.472 

37 

1.46 

40 

1.58 

12 

.472 

22 

.866 

58 

2.fi8     Co 

2.36 

6 

.236 

14 

-551 

43 

1.69 

44 

1.73 

13 

.512 

23 

.906 

60 

si<  36    62 

2-44 

7 

.276 

16 

.63 

48 

1.89 

50 

1.97 

"4 

•55« 

24 

•945 

62 

2.44     64     2.52 

8 

-3«5 

17 

■^ 

51 

2.01 

51 

2.13 

«5 

•59» 

25 

-984 

63 

2.48 

66 

2.6 

9 

.354 

»9 

54 

2.13 

56 

2.2 

16 

.63 

26 

1.024 

65 

2.56 

68 

2.68 

IDouTale-Riveted   and   Doulale-S trapped   Plate-  Joints. 

(Mr.  Brunei. ) 

Plates,  20  ins.  in  width,  .5  inch  thick,  Abut  jointed,  with  a  Strap  or  Fish-plate  on 

each  side,  10  ins.  in  width.    Holes  punched 

20  .6875  inch  rivets,  4  ins.  pitch,  set  ''square,"  tensile  8ti-engUi.77  per  cent 
,8  .75       "       "  "      "      "Staggered,"      "  *'  .      78.6     " 

24.75       "    ^i      5    'i      '<  "square,"      "  "•      84        " 

To   Compnte   IP   and   Economy  of*  a   Steazn-Boiler. 

Steam  at  70  lbs.  m.  g.,  and  Evaporation  ofyt  lbs.  of  Water  per  Hour  from  212°. 
(T+32<^)-FxW  ^^^  (Tjh_320)-FxW^^ 

«-f32°)-2l20X3O  (*-2120)XC 

T  representing  total  heat  fr&ni  the  water  at  32°  at  pressure  of  steam,  t  total  heat  from 
the  ufoter  at  70  lbs.,  and  F  temperature  of  feed  water,  all  in  degrees,  W  weight  of 
water  evaporated,  C  weight  of  fuel  consumed,  and  E  evaporaiUm,  all  in  lbs.  per  hour. 

iLLCsTRATioy.— Assume  steam  at  98  lbs.,  water  at  135°,  evaporation  10505  lbs., 
and  consnmption  of  fuel  1105  Iba  per  hour. 

xi84.i°4-  32°- 1^  X  10  505  ^  ^      1 ,84.  lO-f  32°- 135°  X  TO  505  ^  ,^64  Ws 

37y^      '         (ii77.90-2i20)Xiio5  ^atex. 


(«i77-9°+  32°)  —  212°  X  30 


4A 


830        STBBNGTH   OF  MATERIALS. — ^TRANSYSBSS, 


Hulls  of*  ATessels. 


U.S.  and 

Plato. 

British 

Lloyd*. 

iDCh. 

Inch. 

•3»as 

.625 

•375 

.625 

•4375 

.625 

•5 

•75 

•5625 

.75 

.625 

:^s 

.6875 

•75 

.875 

.8125 

.875 

875 

I 

•9375 

X 

1 

K 

Diameter 

of  Rivets. 

LiTMrpooI 

Admiralty, 
Eng. 

Millwall, 
EoK. 

Pitch 
of  Rivets. 

Length  of  Rtrala. 
CooDtur-           Snap- 
sank,           headed. 

Ins. 

Ins. 

lacb. 

IBS. 

Ins. 

Ins.- 

•5 

.5 

.625 

1-75 

Z.I25 

x-5 

.625 

.625 

.625 

2 

i-a5 

Z.625 

.625 

•75 

.625 

2.Z25 

1375 

1-75 

•75 

•75 

•75 

2.25 

15 

a 

•75 

•875 

•25 

2^437 

1.6875 

2.1875 

.8125 

.875 

.875 

a.  56 

19375 
2.1875 

2.375 

•^5 

•875 

.875 

2.812 

2.625 

.875 

z 

•?75 

3-125 

2375 

2.75 
2.875 

•9375 

I 

.875 

3375 

2-5 

I 

Z-I25 

z 

3^625 

2.625 

3 

1.0625 

1.125 

z 

3.875 

2.75 

3125 

1.125 

1. 125 

z 

4-125 

2.875 

325 

Lap  of  Joint  or  Course  should  be  .5  pitch  of  rivets  added  to  .3  diam.  of  rivet. 

NoTB  — Lloyd^s  requires  a  spacing  of  4.5  diameter.  Liverpool  Registry,  4.  Ad- 
miralty, 4.5  to  5  in  edges  and  abuts  of  bottom  and  bulkhead  plates,  and  5  to  6  in 
other  water-tight  work.  Bureau  Veritas,  4  diameters  for  single  riveting,  and  4.5 
for  double. 

STEEL  PLATES. 

Steel  Plates,  according  to  M.  Barba,  .354  inch  thick  are  equal  to  wrought 
iron  .AJ2  inch  thick,  or  as  3  to  4 ;  consequently,  when  iron  rivets  are  used, 
their  diameter  should  be  in  proportion  to  an  iron  plate. 

It  is  ascertained  also  that  they  are  best  united  by  iron  rivets. 

A  steel  plate  .3125  inch  thick  requires  an  iron  rivet  .5625  inch  in  diam- 
eter, and  1.375  ^^^  apart. 

Bridge  I'lates  and   Rivets. 

Plates  .25  to  .5  inch  thick.  Rivets  .75  to  i  inch  diameter,  and  3  ins.  apart 
from  centres  in  upper  flange  or  girder,  and  4  ins.  in  lower 

Bivet  Heads. 

i-/<T7\       tMiptoideUf  Fig.  i.  —  D  diameter,  R  radius  of  head  =  D,  r  radius  of 

a    flange  3=  .4  D,  c  d^^  at  centre=.s  D. 
Segmentaly  Fig.  2. — D  diameter,  e  depth  at  centre  =  .625    /^35s.** 
D,  R  radius  of  head  =  ,75  D,  o  depf  Jk  below  head  = .  Z25  D.  " 


Countersunk, — Head  1.59  3,  angle  60°.    Countersink  .45  diam.  ot  plate. 

Cheesehead  or  heads,  section  of  which  is  a  parallelogram.    Head  .45  D^ 
diameter  1.5  D. 

Rivets. 

Shearing  strength  of  a  Lown  oor  rivet  =s  40  320  d^  or  18  (x*  in  tons. 
d  representing  diameter  of  rivet  n  ins. 

IV)  -txnoranda. 

PnnchlDg  holes  for  riveting  weakens  plates,  varying  fh>m  zo  to  20  per  oenk,  ac- 
eording  to  their  temper,  hardest  losing  most 

Countersunk  riveting  does  not  impair  strength  of  Joint,  as  compared  with  ex 
temal  head. 

Diagonal  abut  Joints  are  stronger  than  M|uare. 

Shearing  strength  of  rivets  should  not  exceed  that  of  plates. 

Maximum  strength  of  Joint  is  attained  at  90  to  zoo  per  cent  of  net  aectfon  of  plate. 

Shearing  strength  of  Eqglisb  wrought  Iron  is  taken  at  80  per  cent  of  Its  teosili 
strength. 


STRENGTH   OF  HATBBIALS. — ^TKAKSYEBSE. 


^31 


LEAD  TJfU. 
Xiesistauoe  of  Xjead.  Fipe  to  luternal  f^ressvire. 


(iCirXM2<2y,  Jardine,  ojuI  i^atr&atm.) 

Dtem. 

Thkk. 
Inch. 

Wcigbt 
LU. 

BtmtiBg 
Pr«M«». 

DUm. 

Thick. 

I1«M. 

Weight 

Foot. 

Bonting 
PreMQVv. 

DUm. 

Thick, 
new. 

Inch. 

Weight 

iBCh. 

Lb*. 

Id*. 

Ineb. 

Lbs. 

Lb*. 

Int. 

Lbs. 

•5 

.2 

2-3 

"579 

1.25 

.21 

5-3 

683 

2 

.21 

9.2 

.625 

.3 

2.6 

"349 

1-5 

.24 

71 

734 

2 

.2 

.^ 

•75 

.22 

3.« 

1191 

1-5 

.2 

— 

528 

3 

•25 

— 

I 

.3 

4«« 

91  * 

IS 

.2 

— 

626 

a 

•25 

— 

Bunti    ' 
Pl«Mur«. 

I       .        I      H      I  11 

Lbs. 
498 
448 
364 
374 


Tensile  strength  of  metal  =  2240  lbs.  per  sq.  inch. 


To  Compnte  Tliickixees  of*  a  IL«ead  fipe  -wlien  IDiameter 
and.   Pressure  in   XjI>s.  per   fdq..  Inch,  is  given. 

Rule. — Multiply  pressure  in  lbs.  |>er  sq.  inch  by  internal  diameter  of  pipe 
In  ins.,  and  divide  product  by  twice  tensile  resistance  of  metal  in  lbs.  per  sq. 
inch. 

iLLrsTBATioir.^Diameter  of  a  lead  pipe  is  3  fna,  and  pressure  to  which  it  is  to 
be  submitted  is  370  lbs.  per  sq.  inch ;  what  ehouUt  be  thiulcuess  of  metal  f 

17^X3  ^  if  lo^.^ 

0240  X  3         4480 

Difference  in  Weight  between  Pipes  of  *' Common,"  "Middling,"  and  "Strong" 
(8  12  per  cent 

To  Oompnte  Weiglit  of  I^ead   IPipe. 


0>  _  d'  3. 86 = W.    D  and  d  rtpreimUng  extemcU  and  inUmat  diamtten  in  ins. , 
and  W  weigM  of  a  lineal /boi  in  Ibi. 

To  Cosnpate  ^MCajtimunx  or  Gurstins  Pressure  tbat  iia*3r 

be  lyorne  \>y  a  Uead  Pipe. 

Rule. — Multiply  tenoile  resistance  of  metal  in  lbs.  per  sq.  inch  by  twice 
thickness  of  pipe,  and  divide  product  by  internal  diameter,  both  in  ins. 

Illustration.— What  is  bursting  pressure  of  a  lead  pipe  3  ins.  in  diameter  and 
.5  inch  thiclc?  

"*°=,  746.6  »*. 


3340  X -5X2 


3  3 

Assume  a  column  of  water  34  feet  in  height  to  weigh  15  lbs.  per  sq.  inch;  what 
head  of  water  woatd  such  a  pipe  sustain  at  point  of  rupture? 

15  '•  34  ••  746<6  :  1693.3/eei 

Resistance  of  GJ-lass  GJ-lobes  and.  Cylinders  to  InternsUl 
Pressure  and   Collapse.    {Flint  GUiu.) 

Burtting  Preuure. 


OLOREa 

CTUNDBR. 

DUoMttr. 

Tbirkn«M. 

Per  Sq.  Inch. 

Piameter. 

Length. 

Thicknew. 

Inch. 
.079 

own  Glass). 

Per  Sq.  Inch 

laa. 

4 
5 

Inch. 
.034 

.033 

Lbe. 
84 
90 

Int. 

4 

E 

Ina. 

7 

lliptioal  (Ol 

Lb4. 
383 

6 

.059 

IS*' 

4.1         1          7         \      ,999       \ 

109 

CoUapting  Pntture. 

5 

i 

.0x4 
.035 
.059 

393 

1000* 

900* 

3 

4 
4 

«4 

7 

«4 

.014 

.034 
.064 

85 

303 
397 

\ 


832         STSEKGTH   OF  MATEBIiLLS. — TBAKSVSBSB* 

^langaneee  Sronze. 

Manganese  Bronze,  No.  2,  has  a  Tensile  strength  of  72000  to  78600  Iba, 
\ier  sq.  inch,  its  elastic  limit  is  from  35000  to  50000  lbs.,  its  ultimate  elm- 
gation  IS  to  23  per  cent.,  and  its  hardness  alike  to  thstt  of  mild  steeL 

T^-ansverse  Strength. — Destructive  stress  of  a  bar  i  inch  square,  supported 
at  both  enda  at  a  distance  of  i  foot  =  4200  lbs.,  bending  to  a  right  angle  be- 
fore breaking,  and  requiring  1700  lbs.  to  give  it  a  permanent  seL 

HEM0RA17DA. 
Cast  Iron. 

Beams  cast  horizontally  are  stronger  than  when  cast  vertically. 

Relative  strength  of  columns  of  like  material  and  of  equal  weights  is*. 
Cylindrical,  100 «  Square^ 93;  Cruciform,  98*,  Triangulartiio.  {ffodgtdnson,') 

If  strength  of  a  cylindrical  column  is  100^  one  of  a  square,  a  side  of  which 
is  equal  to  diameter'of  the  cylinder,  is  as  150. 

Repetitum  cf  Stress.  —  A  piece  submitted  to  transverse  stress  broke  at 
1956th  strain,  with  a  stress  .75  of  that  of  its  original  ultimate  resistance. 

Resistance  to  Bursting  of  TMck  QffUnders, — Mean  resistance  to  bursting, 
of  chambers  of  cast-iron  guns  is  as  follows  {Bfajor  Rodman,  U.S.A.') : 

Thickness  of  metal  =  x  calibre,  length  =  3  calibres,  52  217  Ibt.  per  sq.  inch. 
Thickness  of  metal  =  .5  calibre,  length  =  3  calibres,  49  zoo  lbs.  per  sq.  inch. 
The  tensile  strength  of  the  iron  being.  x8  820  U)S. 

Diam.  of  cylinder  2  ins.,  length  12  ina,  metal  2  ina,  80229  lbs.  per  sq.  inch. 
Diam.  of  cylinder  3  ina,  length  12  ina,  metal  3  in&,  93702  lbs.  per  sq.  inch. 
Tensile  strength  of  iron  being  26  866  Uis. 

Sudden  Applications  of  Stress. — Loss  of  strength  by  sudden  application 
of  load  was,  oy  experiment,  18.6  per  cent  in  excess  of  load  appliod  gradually, 
and  its  elongation  20  per  cent,  greater. 

Lotif  Ternperaiwe. — ^Tensile  strength  at  23^  nnder  sudden  application  of 

load,  was  reduced  3.6  per  cent.,  and  elongation  z8  per  cent 

"Wrou-gh-t   Iron. 

Increased  Hammering  gives  20  per  cent  greater  strength  with  decreased 
elongation. 

Hardening. — Water  increases  strength  more  than  oil  or  tar.  A  bar  .87 
inch  in  diameter,  forged  and  hardened  in  water,  attained  a  tensile  strength 
of  73  448  lbs.    (ifr.  Kirkaidy.) 

Case  Hardening. — Loss  of  tensile  strength  4950  lbs.  per  sq.  inch. 

Cold  Rolling  added  18.5  per  cent  to  tensile  strength,  and  when  plates 
were  reduced  .33  in  thickness,  strength  was  nearly  doubled,  with  but  .x  per 
cent  elongation.    Specific  graivity  was  reduced. 

Fibre. — Plates  are  about  12  per  cent,  stronger  with  fibre  than  across  it 

A  ngles,  Tees,  etc.,  have  from  2200  to  4500  lbs.  less  tensile  streogth  than 
rectangular  bars. 

Galvanizing  does  not  perceptibly  affect  strength. 

Welding. — Strength  as  affected  by  welding  varies  by  experiment  from  a.6 
to  43.8  per  cent,  less,  average  being  19.4. 

Elcutic  Strength  is  about  .45  of  its  tensile  breaking  weight,  .15  of  its  com- 
pressive or  crushing  strength,  i^nd  .5  of  its  transverse  strength. 

Effect  0^  Screw  Threads. — i  inch  bolts  lose  by  dies  6. 11  per  cent,  and  by 
chasing  28  per  cent 

Steel. 
Sled  can  be  hardened  in  water  at  a  temperature  of  310**. 


8TBBNGTH  OF  HATBBI4X8.— rTBANSYBilSS. 


833 


WOODS. 
rro  Coxnptxte  TransTrerse  Btrengtli  of*  JUarge  Timber* 

J)e8linictive  Stress. 

F%xed  at  One  End,  and  Loaded  at  the  Other,    '-^—^ —  =  W. 

O  ^j   |.    JJ 

Fixed  at  Both  Ends,  and  Loaded  in  Middle,    - — ^ =  W. 

♦  Siqtported  at  Both  Ends,  and  Loaded  in  Middle,    ^^^ =  W. 

Fixed  at  Both  Ends,  and  Loaded  at  any  other  point  than)  -45  8  5  <!»_■--. 
the  Middle.  }        I        " 

Suppojted  at  Both  Ends,  and  Loaded  at  any  other  point \  -38  fed' I __ ^ 
than  the  Middle,  j      m  n  ' 

*  Hence,  — ^-^,  =  S,  and  —  =  ,.2  8. 

h,  d,  and  I  representing  breadth^  depth,  and  length  to  or  between  supports,  dU  in 
ins.,  S  mean  of  tensile  and  crustiing  strengths  of  material  at  two  thirds  of  its  Valve, 
as  determined  by  experimeiUs,  W  ultimate  weight  or  stress  in  lbs.,  and  m  and  n  dis- 
tances oftoeudfrom  nearest  supports  in  ins. 

When  a  beam  is  uniformly  loaded,  the  stress  is  twice  that  if  applied  in  its  middle 
or  at  one  end. 

Values   of  1.S   S. 


Hence,  for  other  coefficients,  as  .3, 1.8,  etc.,  the  values  will  bo  proportional 


Wood*. 


Ash,  white. 

**    Canadian 

'*     English. 

Beech 

Birch 

Cedar 

*'    Cuban 

Chestnut 

Cypress , . 

Eun,  English , 

"     Rock,  Canada. , 

Fir,  DantEic , 

Greenheart , 

Gum,  blue , 

Hackmatack 

Iron  wood , 

Larch 


1.38 


3.38 

2-4 

2.46 
a- 55 

2-5 

1.6 
1.6 

»-53 

.8s 

Z.12 

2.63 

2.5 
3.81 
2 
1.36 

364 
1.77 


Woods. 


Locust , 

Mahogany,  Honduras. 

Oak,  Pa. , 

"    Va !.., 

"    white , 

"    English , 

*'    Dantzic. , 

"    French , 

Pine,  Va. , 

pitch , 

white 

"     yellow 

•'        "      Canada.. 

Redwood,  Cal 

Spruce 

Teak 

Waluut,  black 


i.a  s 


3-7 

2-3 
2 

2-3 
2.5 

1-7 

1-35 

2.44 

3 
2.2 

2.71 

3-87 
1.8 

X.I 

1.2  ' 

3J7 
1.25 


iLLnsTRATiON  I.— What  is  destructive  stress  of  a  beam  of  English  oak,  2  ins. 
square,  and  6  feet  between  its  supports? 

1.2  flrom  table  =  1.7,  and  S  =  .66  of  5700  (mean  of  tensile  and  crushing  strength) 
=  3762  tbs. 

6X12  72 

By  experiment  of  Mr.  Tiaslett  it  was  688  lbs. 

2.— Wh.'it  is  destructive  stress  of  a  beam  of  yellow  pine,  3  ins.  by  12,  and  14  fiBet 
between  its  supports? 

X.  2  from  table  =  3. 87,  and  S= .66  of  10  200  (mean  of  tensile  and  crushing  strengtlnj 
s's6733  tbs. 

3^87X_3X  i2»  X  6732  ^  111254^27  ^  „ 

14  X 12  168  ^^ 

If  the  twain  was  fixed  at  both  ends  then  3.87  would  be  5.8. 

Or,  as  1.2  :  x.8  ::  3.87  :  5.8. 
4A* 


834 


BTBBNQTH   07  HATXBIAL8.— TBANSVKB6B. 


mom 


o  m  o  m  O 
o  r^  o  r>.  o 
000  mm  0 


m  Q  »rt 


O  Q  m 
o  t> 


I  00   CMO 


•  rN,or».or^or>.oi^_ 
00  m«o  o  00  m  m  0  00  mpe 

i-i  «  cn  ■♦  m  t^oo  o  «  ■♦  r^  pv  2 

M    M     M     M     M    M 


>ii8j§iiij§iiy§i 


N  m  ON  m  ■-•  ONOo  oo 
»«  «  ci  en  ^ 


\o  tvoo  o  M  ro  m 


M  «  N  »o  ♦  mvo  00  o*  M  «  ^ 


Q       . mo  m  Q 


m  o  m  O  m 


8&S 

mvo  >♦ 


m  O  >n  o 
m  «  '    "" 


ro  M  moo  0\  0  0«B  m  c^  t^  ct 
r^  f»vo  •♦00  00  mvo  '♦■oo  oo  r*i  m 

M  ^  t>.  O  ■♦oo  en  ov  m  «  o>  b«.vo  m 


•^Nooeo  8  0  NOOmSo  n<»o5  ctOA 


m  r^  o  « \o  O  ■♦00  m  o\  m  m 
MMfiwMfom^m 


0  0   0  0^ 

m  »»«  «  w  moo 
M  e«  '♦xooo  o 


%S 


O   Q   0  0   O   O   O   O 

t^O  m^t>.i*j«  m 

m  t*  o  ♦oo  moo  m 
MMWNMcnm^ 


iv8§.§.>8  8vg3.^>8  8^^3..8  8>8 

4  w  «o  ♦  m  O  »^oo  wOvOfnoomoo^ 


M    M 


♦  mo.0  «NO  osmf^wvo  o 


c8 

h 

00.4 

«2 
*.« 
<S 

0 

1 

•H 

c8 

■«-» 

QD 
& 


;:2 

0 

PQ 

9 
0 


o"  5         .   . 


8 

m 


g"S.i  8  o 


I 


^ 


ns  g  « 


« 


c2 

n 


m      m 


m 


m 


«n 


m 


m 


m 


.t«.0  t^Q  t^O  tN.O  i*.Qt»iO  r>.0  r«.0 

JmmroQ  mmmo  m\f>  m  Q  roinroQ 
.  M  m  M  N  ♦  ov  r>.oo  M  (^NO  oo  n  0\  ov  m 


►«  «  m  ♦vo  00  M 


mo  o»mvo 
M  M  M  M  e*  n 


9  m  «  r^i 
•^  H  m  M 


III 


g.8^- 


m  I 
CO  fj  m  i 


P,  g  Q  O  O^ 


m  n  ♦©©  moo 
Is.  rv  ♦  ♦  «  « 

m  ^o  00  o  (*)  t'^oo  o  m  a«  m 
MMMMCtMnm 


•   nOMQNOMQMOetQMOMQ 

*^  M  «  m  ♦vo  00  o  «  moo  m  ♦oo  « 

MMMHNMCim 


c« 


tn      m      m      m      m      m      m 

wOe«Qc«Oc«QC«0(«Qc«Oc«0 
•  MmHO  MmM  A  KmMO  MmMO 
^M^OoBoeOmetMnoocioo  mod 
^  MHC«^mt<«ovM  mvo  o\ «  moo 

M  H  H  H  C4  et  M 


i8888888888888888 

2  **   ♦  OvvO   mvo   Ov  ♦  M   0   «   ♦  OvvO   mvo 

"  w  «  m  ■♦o  00  o  «  ♦vo  O'^tt  \n 

M    w    N    M    M    M   « 


««2 


i 


■3 


.momomomomOtnomo 
•  tN.0  t«»0  t^O  rs.Q  t.0  i>0  t'sO 
•^       mvo  «  00  t».vo  00  o  m  o  00  vo  i>-.i 


j^  H  M  m  ♦■  m«o  t^oo  ov  o  M  ft  m  ♦  mvo 


9 


m 


5  «       a 

♦      M  ^ 


5 


»A 


I 


a 


<§ 


to 


9WcinmQcdn«o5  5eB»ciw8m 
2       mr».«oo0O\H^0vom  m^  0  ♦ 

M  M  M  m  m40  OQ  Qt  M  m  moo  o 

M     M    M     M     ei 


^n 


8§. 


m  o 
t«»  0 

1-.00    « 
K  M  N  m  ♦vo  t«  Os  O  C4  ♦vo  Os 


m 


STBBNGTH    OF  MATERIALS. — ^TBANSYEBSS.  S3  5 

Floor    SeaxxiB    of*  "Wood- 
Condition  of  stress  borne  by  a  Floor  beam  is  that  of  a  beam  supported  at 
both  ends  and  uniformly  loaded. 

1?o    Cocupute   Cetpaoity   of*  Floor   Geaxns,  d-irders,  etc. 

Supported  at  Both  Ends. 

Rule. — Divide  product  of  breadth  and  square  of  depth,  in  ins.,  and  Coeffi- 
cient for  material,  by  length  in  feet,  and  result  will  give  weight  in  lbs. 

Or,  — ^  =  W.     When  Fixed  at  Both  Ends.     ^'^^''^ ^  w. 

BxAMPLK.— The  dimensions  of  a  white-pine  floor  timber  are  4  by  12  ins.,  and  its 
length  between  aopports  15  feet;  what  weight  will  it  sustain  in  its  centre? 

C,  as  per  preceding  table  =  112. 5.    Then  ^-^^- — ^}?:1  -.  _L_2?  —  ^330  jbj. 
When  Uniformly  Loaded,    Multiply  the  result  by  2. 

Xo    Compute    IDeptli   of*  a    Floor    Seaxn    or   GMrder. 

Sujyported  at  Both  Ends. 

When  Length  between  Supports  and  Breadth  are  Given.    Rule. — Divide 

Croduct  of  length  in  feet,  and  weight  to  be  borne  in  lbs.,  by  product  of 
readth  in  ins.,  and  Coefficient  for  material,  and  square  root  of  quotient  will 
^ve  depth  in  ins.,  for  distance  between  centres  of  one  foot 

When  the  ComputatUm  is  made  Independent  of  the  Preceding  Table, 

J~T^^^-     When  Fixed  at  Both  Ends.    Jl^^d. 
V  4 oC  V " "^ 

C  as  may  be  assumed  or  ascertained. 

When  Distance  befween  Centres  of  Beams  is  greater  or  less  than  one  Foot, 
Rule. — Divide  product  of  square  uf  depth  of  the  beam,  when  distance  6e- 
tween  centres  is  onefoot^  and  distance  given,  by  12,  and  square  root  of  quotient 
will  give  depth  of  beam. 

ExAMPLB. —Assume  beam  in  preceding  case  to  be  set  15  ins.  from  centres  of  ad- 
Joining  beams;  what  should  be  its  depth  ? 


/122  X  15         /3160 


To    Compute    Breadth,    of*  a    F'loor  Beam    or    Gl-irder. 

1 

Supported  at  Both  Ends. 

When  Length  and  Depth  are  given.  Rule. — Divide  product  of  length  in 
feet,  au<l  weight  to  be  borne  in  lbs.,  by  product  of  square  of  depth  in  ins., 
and  Coefficient  for  material,  and  quotient  will  give  breadth  in  ins. 

Or,  i-^  =  6.     When  Fixed  at  Both  Ends.        '^  ^  =  b. 
'd'C  •  1.5  da  C 

When  Uniformly  Loaded,  multiply  the  result  by  2. 

Example.— Take  elements  of  a  preceding  case,  page  834. 

15  X  4330       64800 

....  ....   .,    ...  sg'    I  ....     =4.  YtlC.. 

la'*  X  112.5       1O200 

When  Distance  between  Centres  of  Beams  is  greater  or  less  than  One  Foot, 
RvLK, — Divide  product  of  breadth  for  a  beam,  when  distance  between  centres 
it  omfootf  and  distance  given,  by  X2,  and  result  will  ^ve  breadth. 


836 


STRENGTH    OF   MATBJEIALS. — TBANSYEBSS. 


'  ExAMPLS.— Assame  beam,  ag  in  preceding  case,  to  be  set  15  ins.  firom  centre  of 
adjoining  beams;  what  should  be  its  breadth  ? 

12  12 

WhenWdght  is  Suspended  or  Stress  home  at  any  other  point  than  the  Middle, 
See  Formulas,  page  801. 

Header    and    Trimixier    Beams. 
Conditions  of  stress  borne,  or  to  be  provided  for  by  them  are  as  follows : 

Header  supports  .5  of  weight  of  and  upon  tail  beams  inserted  into  or  at- 
tached to  it,  and  stress  upon  it  is  due  directly  to  its  length,  weight  of  and 
that  upon  tail  beams  it  supports,  alike  to  a  girder  loaded  at  different  points. 

Tiimmer  beams  support,  in  addition  to  that  borne  by  them  directly  as 
floor  beams,  each  .5  weight  on  headers. 

KoTK. — In  consequeDce  of  efTect  of  mortising  (when  stirrups  or  bridles  are  not 
used),  a  reduction  of  fkilly  one  inch  should  be  made  in  computing  the  capacity  of 
depth  of  headers  and  trimmers. 

rro    Compute    Breadtlx    of  a    Itleader    Beam. 

When  [Tntfarmhf  Loaded,  Rule. — Compute  weight  to  be  borne  in  lbs.  by 
tail  beams,  divide  it  by  two  (one  half  only  being  supported  by  header),  mul- 
tiply result  by  length  of  beam  ip  feet,  and  divide  product  by  product  of 
twice  CoeJkierU  of  material  and  square  of  depth,  and  result  will  give  breadth 
in  ins.  

Or,  — TT  7F  =  ^'    W  r^pregenting  weight  in  lbs.  per  sq.  foot 
2  C  (I 

Example. —What  should  be  breadth  of  a  Georgia  pine  header,  13  ins.  in  depth, 
10  feet  in  length,  supporting  tail  beams  12  feet  in  length,  bearing  200  lbs.  per  sq. 
fbotof  area? 


C,  as  per  preceding  table,  1x2.5,  and  depth  =  13  ^  i  =  12  mi 
la  X  10  X  200 -r- 2  X  10      120000 


2X112.5X122  32400 


=  3.7m«. 


To  Conapu-te  th.e  Capacity  of*  a  PUoor  XJnirornaly  loaded 
'^rlieix  one  of  ita  Sides  rests  upon  a  Header  Beam. 

1.  Determine  the  capacity  of  a  trimmer  and  header  beam  at  the  point 
of  their  coimection.  Assume  the  less,  as  tliis  limit  of  their  capacitv  to  sus- 
tain a  load,  and  twice  tliis  capacity  will  represent  that  of  one  half  of  the 
floor  at  the  points  of  connectibn  of  the  header  and  trimmers,  the  other  half 
resting  on  the  walL 

2.  Compute  area  of  floor  in  square  feet,  first  by  its  length  from  wall  of 
building  to  face  of  header  beam,  and  its  width  from  the  centre  of  the  spaces 
between  the  trimmers  and  the  beams  beyond ;  thep  add  that  determined  by 
the  width  of  the  trimmer  and  the  centre  of  the  space  between  it  and  the 
beams,  and  the  length  of  it  by  the  widtli  of  the  opening  between  the  face  of 
the  header  and  the  wall,  as  hatch  or  stairway,  and  this  combined  area  will 
be  that  which  rests  upon  the  header  and  trimmer. 

3.  Divide  the  capacity  of  the  header  and  trimmers  as  obtained,  by  the  half 
area  of  the  floor  resting  thereon,  less  the  area  reauired  or  allotted  for  passage 
way  (but  not  considered  by  the  Department  of  Baildings),  and  the  quotient 
wifl  give  the  capacity  of  the  floor  in  lbs.  per  square  foot,  from  which  is  to 
be  deducted  the  weight  |)er  square  foot  of  the  beams,  flooring,  ceiling,  etc 


8TBBN6TH  OF  H&TBBIAIiS.-- TB1.!NSVEBBB. 


837' 


Xo    Comp'ate    IDeptli    or  a    Header    3eani. 

KuLE. — See  rule  for  depth  of  a  floor  beam,  page  835,  with  the  exception 
that  a  header,  alike  to  a  trimmer,  is  assumed  to  be  always  uniformly  loaded. 


/ 


46C 


=  d. 


To    Compute    Breadth    of    a    Triinmer    Beaxxx. 

With  One  Header  and  One  Set  of  Tail  Beams.    RuLE.-^Proceed  as  for 
oomputation  of  dimension  of  a  beam  loaded  at  any  other  point  than  middle. 


m 


Untformiy  Loaded.   H  +  c'x  — K**  cX  W  =  L,  product  of  area,  ofjloor  and  load 

per  sq.foot,  and  L  -. —  =  breadtk. 

I 

H  representing  length  of  header,  c  dUlanee  between  centres  of  beams,  m  and  n, 

lengths  of  tail  beams  and  width  of  hatch  or  stairway,  c*  twm  of  half  distance  ofc, 

added  to  half  of  an  assumed  width  of  trimmer,  and  I  length  of  trimmer^  cUl  in  feet, 

W  load  per  sq.  foot  on  floor,  and  C  coefficient  in  lbs.,  b  breadth  of  one  sq.  inch  of  the 

material,  and  d  depth  of  beam  in  ins. 

ExAMt'LM.— What  should  be  breadth  of  a  trimmer  or  carriage  beam  of  Georgia 
pine,  23  feet  in  length,  15  ins.  in  depth,  sustaining  a  header  10  feet  in  length,  with 
tail  beams  19  feet,  distance  between  centres  one  foot,  and  designed  for  a  load  of  270 
lbs.  per  sq.  foot  of  floor? 

Assume  C  =  275,  as  assigned  by  the  Department  of  Buildings,  N.  Y.,m  and  nr=  19 
and  4  feet,  d  =  15  —  1  =  14,  and  c'  =  .75. 

10  +  .  75  X  2  X  4-75  +  4  X  273  =  15  828.75  and ^ 111 =  6-75  ins. 

I  X  196X275-^23 

NoTK  I.  —Depth  of  trimmer  beams  is  usually  determined  by  depth  of  floor  beams; 
where  not,  proceed  to  determine  it  as  for  a  header. 

a. — ^When  a  trimmer  beam  is  mortised  to  receive  headers,  it  is  proper  to  deduct 
X  inch  from  its  depth,  as  in  preceding  illustrations.  When  bridle  or  stirru))  irons 
are  used  to  suspend  headers,  a  deduction  of  the  thickness  of  the  iron  only  is  neces- 
sary, usually  .5  inch. 

With  Two  Headers  and  One  Set  of  Tail  Beams.^Yig.  i. 

Operation. — Proceed  for  each  weight  or  load  as  for  a  beam,  when  weights 
are  sustained  or  stress  borne  at  other  point  than  the  middle. 

ah      ^ 

=  W  and  w.    a  representing  area  of  floor  in  sq.  feet,  L  load  per  sq.foot,  and 

W  and  w  weights  or  loads  at  points  of  rest  on  trimmers. 

KoTK.— Halfleid  and  some  other  authors  give  complex  and  extended  formulas, 
to  deduce  the  dimensio'^s  of  a  Girder  or  Beam,  under  a  like  stress. 

Upon  consideration,  bowcvor,  it  will  be  readily  recognized  that  a  beam  loaded  at 
more  than  one  point  is  simply  two  or  more  beams  of  proportionate  width,  as  the 
case  may  be,  loaded  at  different  points,  and  connected  together. 


Fig.  I. 


^ /.. 

KB 

B 

■^_.  W.M«^    ..^ 

_n 

1 

w    W 

12  X  to  — 5X300         18000 


Illustration.  — •  What  should  be  breadth  of  a 
trimmer  beam  of  Yellow  pine  25  feet  in  length,  it 
ins.  in  depth,  sustaining  two  headers  12  feet  in 
length,  set  at  15  feet  from  one  Wall  and  5  feet  from 
the  other,  to  support  with  safety  300  lbs.  per  sq. 
foot  of  floor?  •^       ^ 

1  =  2$,  w  =  i5,  n  =  io,  r  =  2o,  »  =  5,  0=125, 
and  d  =  1 1  —  i  =  10  for  loss  by  mortising. 

12  X  5  X  300       »8ooo 

= =4500  lbs.  at  W,  and 

4  4         ^-^ 

=.4500  lbs.  atw. 


838 


STRENGTH   OF  MATERIALS. — TBANSVBBSB. 


Then    '3X10X4500^675000^^  ^g  ^^    ^^    5X20X4500^450000^, 


25  Xio'X  «25      3"  500 
in#.,  and  3. 16  ~|-  1-44  =  36  ins.  combined  breadth. 


25  X  10' X  125      312500 


44 


Fig.  2. 


( 


■m 


With  Two  Headers  and  Two  Sets  of  Tail  Btams.-^F\g.  2. 

Opekation. — Proceetl  as  directed  for  Fig.  i. 

Illustration. — What  should  be  breadth  of  a 
trimmer  beam  of  Yellow  or  Georgia  pine,  25  feet  in 
length,  13  iDS.  in  depth,  sustaining  two  headers  12 
feet  in  length,  one  set  at  15  feet  from  one  wall 
and  the  other  at  5  feet  from  the  other,  to  support 
with  safety  300  lb&  per  sq.  foot  of  floor? 

1  =  25,     m  =  i5,      n  =  io,      *  =  s,      r  =  2o,      C  = 


-r--- 


-n 


W 


Iff 


Z12. 5,  and  <2=i2  —  i=sii  for  lost  by  morUting. 


15  X  12  X  300 54000 

4  "~     4 

Then'5X'°X'3  5oo 


=  i3  5ool6«.  atW. 


12  X  5  X  300      18000 


=  4500  Vbs.  at  Iff. 


2025000 
25  X  11"  X  112.5""  340312 
20X5X4500        450000 


3=  5.94  im,  breaiihfor  load  on  header  at  isfeet 


— 1.33  ins.  breadth  for  load  on  header  at  5  feet,  and 


25  X  II*  X  112.5      340312 
5.94  -^  X.32  =  7-  26  ins.  combined  breadth, 

WUh  Three  Headers  and  Two  Sets  of  Tail  Beams* — Fig.  3. 
Fig.  s-  Operation. — Proceed  as  directed  for  Fig.  1. 

Illustration.— What  should  be  breadth  of  a  trim- 
mer beam  of  Yellow  pine,  20  feet  in  length,  13  ins.  in 
depth,  sustaining  3  headers  15  feet  in  length,  set  at  3, 
7,  and  13  feet  from  one  wall,  to  sustain  a  load  of  300 
lbs. 


p^"^* 

.... 

...(-.. 

_ 

^" 

I           JVf 

— 

m — 

n  - — ^ 

m 

w' 

1 

^o- 

\      ^ 

per  sq.  foot  of  floor? 

i  =  20,    TO  =  13,    n  =  7, 
=  12  ins.,  and  C=  125. 


7,     0  =  3,     <i=:=Z3  — X 


to'    to 


W 


15  X  7  —  3  X  200      12  OOP 


Then  7-^  'l><i25o  ^477_75o^^        . 
20X122x125      360000 
3X  17  X3000       153000 


15X7X200      21000  „       ^  ,„ 

— — — = ■  =  5250  Ws.  at  W; 

4  _4 

=  3ooo»«.  at  to;  and  -'^-^-^-~A^  *°°.  ^joooHw.  at  iff'. 


7  X  13  X  3000 
20  X  12*  X  125 


273000 


and 

20  X  12=  X  125 

bined  breadth. 


=s.43%ns. 


360000 
Hence,  i.33-H.76  4--43  =  2'5a  *»*. 


=  .76  ins.; 


360000 

Stirruips    or    Bridles. 

Stirrups  are  resorted  to  in  flooring  designed  for  heavy  loads,  in  order  to 
avoid  the  weakening  of  the  trimmers  by  mortising. 

Average  wrought  iron  will  sustain  from  40  000  to  50  000  lbs.  per  sq.  inch. 

Hence  45  000  lbs.  as  a  mean,  which  -4-  5  for  a  factor  of  safety,  =  9000  lbs. 

A  stirrup  supports  one  half  weight  of  header,  and  being  doubled  (looped), 
the  stress  on  it  is  but  .5-^3=:  .25  of  load  on  header. 

To    Coznpvite    IDixxiensiouis    o£  Stirrups   or   Bridles. 


W 


=  area.     Hence 


area 


■=:  width. 


2  X  C  thickness 

Illustration. — What  should  be  area  and  width  of  .75  inch  wronght-iron  stirrup 
irons  for  a  weight  on  a  header  beam  of  240  000  lbs.  ? 

240  000  -f-  2 


€  =  9000 


2X9000 


120000      ,  ,,        .  .6.66      __  .  .,../' 

— =6.66  sq.  ins.,  and  —  =  8.8  ins,  z=zwidth, 

18000  .75 


6TBENGTH   OF   MATXSIALS. — TRANSYSSSX.         839 

GUrder. 

Condition  of  stress  borne  by  a  Girder  is  that  of  a  beam  fixed  or  supported 
at  both  ends,  as  the  case  may  be,  supitorting  weight  borne  by  all  beams 
resting  thereon,  at  the  points  at  which  tliey  rest. 

To   Compute   X>ixxiensions  of  a  Oirder. 

RuLK,— Multiply  len^h  iii  feet  by  weight  to  be  borne  in  lbs.,  divide 
product  by  twice*  the  CoeJficietU,  and  quotient  will  give  product  of  breadth 
and  square  of  depth  in  ins. 

ExAXPLK.— It  is  required  to  determine  dimensions  of  a  Yellow-pine  girder,  15  feet 
between  its  supports,  to  sustain  ends  of  two  lengths  of  beams,  at  distances  of  5  feet, 
each  resting  upon  it  and  ndjoining  wall,  15  feet  in  length,  having  a  superincumbent 
weight,  including  that  of  beams,  of  aoo  lbs.  per  sq.  foot. 

Condition  of  stress  upon  such  a  girder  is  that  of  a  number  of  beams,  15  feet  in 
length,  supported  at  their  ends,  hihI  sustaining  a  uniform  fitress  along  tlieir  length, 
i>r  ?()o  \\v*.  u|K>n  each  superficial  foot  of  their  supporting  area. 

Coefficient  =.  137. 5. 

15  X  15  X  200  -¥■  a  (for  half  support  on  the  uall)  —  22  500  Un. 

IS  X  22  ^OO  /1227  2 

Then  -^ =  1227.2  =  6  and  d^.    Assume  6  =  12  in».,  then    / — ^=10.1 

2X1375  V       12 

in».  the  depth. 

'Vo  Compute  O-reateat  X^oad  upon  a  Oirder,  aitd  Uixueii- 

sions   tliereof.— FiK.  1. 

]Vhen  a  Beam  is  Lotuhd  at  T100  Points. 
Flfr  I   < ^ »  ^  ^  ^ffgct  of  weight  at  1, 


'S^^p^^^^ 


r  s 


---  =  effect  of  weight  at  2, 

if 


m 


1  ^  _  (W  u-\-ws)  =  the  two  effeU* 

W  w  * 

if  1,  and  —  (w  r -\- \\  m)  =z  two  effects  at  2. 

Then,  for  weight  and  dimensions,  same  formulas  will  apply. 

Illustration.— Assume  weight  of  8000  lbs.  at  3  feet  fi-om  one  end  of  a  white  pine 
beam  10  inches  in  depth  und  12  feei  in  length  between  its  bearings,  and  anotlior 
weight  of  3000  lbs.  at  5  feet  from  other  end.  0=  112.5. 

8000  X  3  X  12  —  3  =  2t6ooo  effect  of  weight  at  location  i,  and  3000  X  5  X  12  —  5 
B  105  000  effect  of  weight  at  location  2.     Hence  i,  being  greatest,  =  W,  and  2  =  w. 

Then,  ^^  x  8000=  18000  at  W,  and  5-^  X3ooo  =  875o  at  w;  and 

^  (8000  X  9  +  3000  X  s)  =  21 750  =  ^'a'  «#^c/  at  W,  and  —  (3000  x  7  +  8000  x  i 
ta  12 

:=  18  750  =  total  effect  at  w. 
Hence,  to  asoertain  total  elTect  and  dimensioni. 

_2X75oX3X.2..^         ^,.  breadth, 
12  X  io«  X  1 12.5      ^  ^"^ 

rm/!ca/i(m.— Breadth  at  W.       i8oooX3Xg   _  ^  ^^^     ^^^  ^^       — 18000 

12  X  10^  X  iia.5 

=  3750  and      ^^° X  3  X  9    _       ,„^  as  3. 6 4-. 75  =  4-35  »«*• 

^^^  12X102X112.5       '^  ^      '    ' 

*  Fwr  bdBK  oBlfenaly  1(m4«4. 


840 


STBSN6TH  OF   MATERIALS. — TBANSYEB8B. 


JBeazxx    I^oaded    Uxxifbrznly   aud    at    Several    f  oints. 

To  Determine  EqucU  Weight  at  Centre  Fig.  2. 


Fig.  a. 


Illustration. — What  shoald  be 
breadth  of  a  beam  of  Georgia  pine, 
20  feet  in  len{;tb,  15  ins.  in  depth, 
uniformly  loaded  with  4000  Ibe., 
and  sastaining  3  headers  or  con- 
centrated loads  of  6000  lbs.,  at  re- 
spective distances  of  4  and  9  feet 
firom  one  end  and  7000  lbs.  at  6 
feet  fVom  the  other  end  ? 


TO  =  9,   n=z:ii,   r=r6,   0  =  4,    « —  20=1*14,    ^=15-^1  =  14,    L  =  4ooo,   and 
0  =  800-7-4  =  200.      — J— z=w;       -y-  =  W;      --=10';     and -7 — i-2  =  toad  tn 


I 


centre  uniformly  distributed. 
4X  16x6000 
20 


•=  19  200) 


9X  II  X6000 

2 — =  29700; 

20 


6  X  14  X  7000 


20 


29  400  lbs. 


Then  — {6000X  11  +  7000 X  6) +  6000 ^^ — i=-2-X  108 coo -f- 13200  =  61 800 /!>«. 
20  20         20 


omitting  uniformly  distributed  load 


4000 


=  2000  lbs.  concentrated  at  centre  of  A  B. 


Then  to  obtain  total  effect  at  W,  10  :  9'::  2000  :  iBoo=:  effect  of  load.     Hence, 
92<  _.i  X  1800^  ^^.^^  ^^^^  ^  61  800  =  707x0  lbs.,  and  7-'7ioX9Xii 

20  ^  '  '    '  '  20  X 142  X  aoo 

=  8.93  ins.  breadth  ofhetm. 

Operation  deduced  by  Graphic  Delineation  of  Greatest  Stress  without  uni- 

form  Lomd, 

Fig.  3.  <- ^ > 

A 


Momenta  of  weights  = 


w'or       W  mn 


and 


Vf  su 


I     >         I      ' I 

19200,  29700,  and  29400,  and 
let  fall  perpendiculars  i,  2,  and  3 
proportionate  thereto. 

Connect  10',  W.  and  «o  with 
A  B,  and  sum  of  distances  of  in- 
tersections of  these  lines  upon  perpendiculars,  from  z,  2,  and  3,  respectively,  will 
give  stress  upon  A  B  at  these  points. 
Whence,  greatest  stress  at  greatest  load  will  be  ascertained  to  be  61 800  lb& 

When  Loaded  at  Three  Points,    '!^  ^wn-^w  s)-^v>^'^  =  Greatest  Stress, 
as  in  rig,  2.  i  ^        '       '  '        4 

Illustration.— Take  elements  of  above  case,  omitting  uniformly  distributed  load. 

-2.(6oooX  II  X70ooX6)4-6ooo-i^-^=~  X  108000+13200  =  61800 /6«. 


ao 


W«» 


20         20 

Deflection,  oi*  GMrdera   and   Seams. 

^      Cbd^      „,.      ,/W«»       ^  ^,/C6dSD      ,      - 

D;     -^^=W;    ^^^  =  d;    and^-^— =1.     Z  rg»re«««. 


Cbds 
ing  length  in  feet,  b  and  d  breadth  and  depth,  and  D  deflection  in  ins. 

Values  of  C  for  Various  Woods,    {Haifidd,) 


Ash 4000 

Chestnut 2550 

Hemlock 2800 

Hickory 3850 


Pine,  Geoi^ia. 
''     pitch... 
«     white. . . , 
"     red 


-  SQoo 
.  3836 
.  2900 

4959 


Larch 2093 

Oak,  white 3100 

"•    English,  mean. .  2686 

Spruce 3500 

Illustration. — ^What  would  be  deflection  of  a  floor  beam  of  white  pine,  xo  feet 
in  length,  4  ins.  in  breadth,  and  8  in  depth,  with  4000  lbs.  loaded  in  its  middle? 

_  4000X10*        4000000       -      .    . 

C  =  290a         ~ ~ — r^  = =  .674  xneh. 

^^         2900X4X8=      5939200        '^ 


•  Load  luifonnljr  dUtribntod. 


STBEN6TH   OF  MATERIALS. TBANSVBBSE.  84I 

When  Weight  is  Uhiforrnhf  Distributed, 

I^SWZ.  £^»  =  w;        3P^M1J>  =  1,  and  3/^'^''''  =  ^ 

Cbd*  '         .625i»  '        V   •625W         '  V       C& 

Hence,  Deflection  in  preceding  illustratioD  would  oe  674  x  •625  =  .421  ins. 

Illustration. — What  should  be  length  of  a  white-pine  beam  3  by  10  Ins.,  to  sup* 
port  6000  lbs.  nniformly  distributed,  with  a  deflection  of  2  in&  ?  C  =  290a 

V      -625  X  6000         V     3750 
A  fair  allowance  for  deflection  of  floor  beams,  etc.,  is  .03  inch  per  foot  of  length; 
.04  inch  may  be  safely  resorted  to. 

"Weiglits  of*  inioors  and.  of  ILioad.8. 

DtoelUngs, — Weight  of  ordinary  floor  plank  of  white  pine  or  spruce,  3  lbs. 
per  sq.  foot,  and  of  Georgia  pine,  4.5  lbs. 

Plastering,  Lathing,  and  Furring  will  average  9  lbs.  per  sq.  foot. 

Clay  Blocks  (Flat  Arch)  5.25  X  7.25  ins.  in  depth  and  i  foot  in  length, 
ai  lbs.  =  80  lbs.  per  cube  foot  of  volume. 

Floors  of  dwellings  will  average  5  lbs.  per  sq.  foot  for  white  pine  or  spruce, 
and  on  iron  girders  will  average  from  17  to  20  lbs.  per  sq.  foot 

Weight  of  men,  women,  and  children  over  5  years  of  age,  105.5  ^bs.,  and 
one  third  of  each  will  occupy  an  average  area  of  12  x  16  ins.  =  192  sq.  ins. 
=?  78.5  lbs.  per  sq.  foot. 

Of  men  alone  15  x  20  ins.  =:  300  sq.  ins.  =48  in  100  sq.  feet 

Bridges,  etc, — Weight  of  a  body  of  men,  as  of  infantry  closely  packed,  = 
138  lbs.  each,  and  they  will  occupy  an  area  of  20  x  15  iiis.  =  300  sq.  ins.  = 
66.34  lbs.  per  sq.  foot  of  floor  of  bridge,  and  as  a  live  or  walking  load,  80  lbs. 
per  sq.  foot. 

Weight  of  a  dense  and  stationary  crowd  of  men,  120  lbs.  per  sq.  foot 

Bridging  of  Floor  Beams  increases  their  resistance  to  deflection  in  a  very 
essential  degree,  depending  upon  the  rigidity  and  frequency  of  the  bridges. 

\^eigli.t  on  Floors,  etc.,  in.  addition  to  Weiglit  oCStmct- 

lire,  per  Sq..  Foot. 


Ball  rooms 85  lbs. 

Brick  or  stone  walls 115  to  150  '' 

Churches  and  Theatres. . .  80  " 

Dwellings 40  " 

Factories. aoo  to  400  " 

Grain.... i zoo  " 


Roel^,  wind  and  snow. ...     30  to  35  lb& 

Slate  roofs 45  " 

Snow,  per  inch .  5  lb. 

Street  bridges 80  lbs. 

Warehouses 250  to  500  '* 

Wind 50  " 


Sicarfei* 
Relative  resistance  of  scarfs  in  Oak  and  Pine,  2  ins.  square,  and  4  feet  in 
length,  by  experiments  of  Col.  Beaufoy. 

Scarf  13  ins,  in  Length  and  13  ins,  from  End,  or  1  inch  from  Fulcrum, 

Vertical, — no  lbs.  gave  away  in  scarf. 

Horizontal,  large  end  uppermost  and  towards  fulcrum, —  loi  lbs.  fHstenings 
drew  through  small  end  of  scarf ;  small  end  uppermost,  etc.,  87  lbs.  gave 
away  in  thick  part  of  scarf. 

Factors  of  Safety. 

Statical  or  Dead  Load  at  .2  of  destructive  stress,  but  for  ordinary  pur-« 
poses  it  may  be  increased  to  .25,  and  in  some  cases  with  good  materials  to  .3. 

1am  Load  at  .1  to  .125  of  destructive  stress. 

See  also  page  802. 

'  B 


94^ 


SUSPENSION  BBIDGB. 


SUSPENSION  BRIDGE. 
To   Coxnpute   Klexxient*. 

C  L      Q  a*      „ 
-—or  ^^ —  =  8; 

8«  2  t» 


vm* 


(5  0) 


3  =  »i 


sy(5jv;=-s 


—  :=^  tan.  angle  0] 

2  X 


L 


n  —  I 


=  S'; 


iy(.5C)='+-^t,»  =  J;         ^  =  co<.'-; 


C 

L-^2 


«V(Vt+'='>'"^'='' 


CI, 

2  t> 


8 


M^r+'='" 


=  X,  aad 


L-=-2  xcoa  « 


Bin.  c 


V(2t')*+(C-^2)« 

=  Stress  at  • .  C  representing  chord  or  span,  a  hcdf  chord^  and  v  versed  sine  of 
chord  or  curve  of  deJUiUion,  in  feet,  L  distrUntUd  load  inalunve  of  suspended  ttriict- 
ure  Q  load  per  UneaL  foot,  and  S  stress  at  centre,  all  in  tons,  x  distaw;e  ofanymnnt 
from  centre  of  curve,  and  h  height  of  chain  at  x  above  centre  of  it,  both  m/e<  « 
stress  on  chain  at  any  point,  as  x,from  centre  of  span,  «  stress  on  anytenn^n-roO, 
and  t  Hress  at  aJbutvientSy  aU  in  tons,  n  number  of  tensim-rods,  o  angle  qf  tangent 
of  chain  with  horizon  at  any  point,  asx,r  angle  of  chain  with  vp-tu>at  at  abtUmtnUy 
I  length  of  chain,  in  feet,  and  z  angle  of  direction  of  chain. 

Assume  C  =  300  feet,  L  =  1000  tons,  v  =  2$  feet,  x  =  100  feet^  n  =  30,  r  =  71°  34', 
and  a  =12°  32'. 


Then, 


3g°X'^=^,Soo«mg  =  S; 


8X25 


1500  ;y7^^y+ X  =  1536.56  tow  =t:«; 

tan.^o;  2  -^(5  X  300)'  + -j25'  =  305-5/«'=^; 


25  X  100'  -   .      - 

(.5X300^' 

4X11.11  -     , 

sc  .2233  =  12°  3a  —  = 

2X100 


300  X  1000 

8X1500 


=  25  =  «; 


121^  =  .3333  =  yi''  34'— = <»^  <^^^  »•  J 
306 

1500 


zooo 


//i2<15y_^,_,^23,  ^,^_^.  and 


30—1 

2X25 


=  34.48  ton«  =  »'; 


.3162  =  18026'. 


V(2X25)2  +  (300-=-2)« 

For  a  deflection  of  .125  of  span,  horizontal  stress  is  equal  to  total  load. 
To  Construct  curve,  see  Geometry,  page  230. 

To  Compute  Ratio  -wliich.  Stress  on  Chains  or  Cal>les  at 
eitlier  Foint  ofSxispension  Bears  to  wh.ole  Suspended. 
"Weiglit  of  Strnotvire  and  ILioad. 

- —  .    -  z=  R.    R  representing  ratio. 
2  X  sin. »  ^  " 

Illustration.— Assume  elements  of  preceding  case. 

=  I.  s8  ratio.    By  a  preceding  formula  ft  would  be  i.  536. 

2  X .3162 

Stress  on  Back  Stays, — The  cables  being  led  over  rollers,  baving:  free  mo- 
tion, tension  npon  them  is  same,  whether  angle  i  is  same  as  that  erf  r  or  not 

Stress  on  Piers. — When  angles  r  and  i  are  alike,  stress  on  piers  wDl  be 
vertical,  but  when  angle  of  i  is  greater  or  less  than  r,  stress  wiU  be  oblique. 

To    Compute    Hoi:^zontal   Stress   and   "Vertical   Pre88-a.re 

on  I*iers, 

Scos.  e;=;=Si»,  ScoahtsSo,  Ssio.  «  =  Pt\  andSsio.  n=Pa  SiondSo 
representing  stress,  and  P  i  and  P  o  pressure,  inioard  and  outward. 

Note.— Span  of  New  York  and  Brooklyn  Bridge  1595.5  feet,  deflection  zaS  feet» 
angle  of  deflection  at  piers  from  horizontal  15O  10'. 


TBACTION. 


843 


TBACTION. 

Hesults   of   SjxperixnezLtB    oxi   'Praotion.   of  Itoads 

and.   r*avexxien.ts.    {M.  Morin.) 

ist.  Traction  is  directly  proportional  to  load,  and  inversely  proportional 
to  diameter  of  wheel. 

ad.  Upon  a  paved  or  Macadamized  road  resistance  is  independent  of 
width  of  tire,  when  it  exceeds  from  3  to  4  ins. 

3d.  At  a  walking  pace  traction  is  same,  under  same  circumstances,  for 
carriages  with  or  without  springs. 

4th.  Upon  hard  Macadamized,  and  upon  paved  roads,  traction  increases 
with  velocity :  increments  of  traction  being  directly  proportional  to  incre- 
ments of  velocity  above  velocity  of  3.28  feet  per  second,  or  about  2.25  miles 
per  hour.  The  equal  increment  of  traction  thus  due  to  each  equal  increment 
of  velocity  is  less  as  road  is  more  smooth,  and  carriage  less  rigid  or  better 
hong. 

5th.  Up(Hi  soft  roads  of  earth,  sand,  or  turf,  or  roads  thickly  gravelled) 
traction  is  independent  of  velocity. 

6th.  Upon  a  well-made  and  compact  pavement  of  dressed  stones,  traction 
at  a  walking  pace  is  not  more  than  .75  of  that  upon  best  Macadamized 
roads  under  similar  circumstances ;  at  a  trotting  pace  it  is  equal  to  it. 

7th.  Destruction  of  a  road  is  in  all  cases  greater  as  diameters  of  wheels 
are  less,  and  it  is  greater  in  carriages  without  springs  than  with  them. 

Experiments  made  with  the  carriage  of  a  siege  train  on  a  solid  gravel 
road  and  (m  a  good  sand  road  gave  following  deductions : 

I.  That  at  a  walk  traction  on  a  good  sand  road  is  less  than  that  on  a  good 
firm  gravel  road. 

3.  That  at  high  speeds  traction  on  a  good  sand  road  increases  very  rapidly 
with  velocity. 

Thus,  a  vehicle  without  springs,  on  a  good  sand  road,  gave  a  traction  2.64t 
times  greater  than  with  a  similar  vehicle  on  same  road  with  springs. 


Results  ^^th,  a  Dynamometer. 
Wagon  and  Load  2240  lbs.* 

Relat'e  nam-l 


BOADWAT. 


On  railway,  8  lbs 

On  best  stone  tracks,  12.5  lbs. 
Good  plank  road,  32  to  50  lb& 
Stone  block  pavement,  79. 5  ** 
Macadamized  road,  65  Ibe. . . . 


b«r  of  boi 
forlik«eff6ct. 


X 

1.56 

4  to  6.25 

4.06 

8.12 


Roadway. 


Telford  road,  46  lbs 

Broken  stone  or  conte,  46  lbs. 

Gravel  or  earth,  140-147  Iba  { 

Common  earth  road,  200  lbs. . 


Rebt'a  nam> 
b«r  of  borMS 
for  like  Affect. 


5-75 
5-75 
>7-5 
18.37 
as 


NoTX. — By  recent  experiments  of  M.  Dapuit,  he  dedaced  that  traction  is  inverselv 
proportional  to  square  root  of  diameter  of  wheel. 

Relation  of  force  or  draught  to  weight  of  vehicle  and  load  over  6  different  con- 
ttmctions  of  road,  gave  for  different  speeds  as  follows: 

Walk.      Trot.    .      ^       .  '  Walk.     Trot 

Stage  coach,  5  tons. .  1.3  x     (     Carriage,  seats  only,  on  springs..  1.29       x 

lieBistanoe   to   1?raotion.   0x1   Common   R,oads, 
On  Macadamized  or  Uniform  Surfaces.    (M.  DupuU.) 

z.  Resistance  is  directly  proportional  to  pressure. 
a.  It  is  independent  of  width  of  tire. 

3.  It  is  inversely  as  sauare  root  of  diameter  of  wbeeL 

4.  It  is  independent  of  speed. 

^— ^~  ~^^'™—  0 

•  gu  TVeo/tM  <m  Boathf  8tr««t$,  and  PavMMnU,  hf  Brt*.  Mc^.-6«n'l  ^.  A.  GUlmort,  U.  B.  A, 

t  Talford  Mtimated  it  at  3.5. 


844 


TBACnON. 


On  Paved  and  Rough  Roads, 

Resistance  increases  with  speed,  and  is  diminished  hy  an  enlargement  of 
tire  up  to  a  moderate  limit. 

Traction  on  Various  Roads. — Traction  of  a  wheeled  vehicle  is  to  its  weight 
upon  various  roads  as  follows : 


Per  Ton. 

Stone  track,  best  12.5  to  15 

'♦        "      38    to  39 

♦*    pavemoDt.  14 

Asphalted 22 

Plank 22 

Block  stone       ) 
pavement....)  ^ 


to  36 
to  28 
to  45 

to  35 


Per  zoo  Ibe. 

.55  to   .58 
1.25  to  1.3 

•5    to  1-5 
I       to  X.25 
.98  to  2 

1.4   to  Z.6 


Per  Ten. 

Telford  road. ...    46  to   78 

Macadamized...    4610   90 

"''       loose    67  to  Z12 

Gravel.........  134  to  180 

Sandy ^.,  14010313 

Earth 2cx>  to  290 


Per  ISO  lbs. 
2. z  to  3.5 
3  to  4 
3  to  5 
6  to  8 
6.3  to  14 
9     to  13 


Hence,  a  horse  that  can  draw  140  Iba  at  a  walk,  can  draw  upon  a  gravel  road 

6-fB 


z40-=- 


X  100  =  2000  lbs. 


Resistance  on   Common   Roads   or   Fields. 

{Bedford  EzperimenUy  1874.*) 


Oravillbd  Road. 
{Hard  and  dry^  rising  i  in  430.) 


2  horse  wagon  without  springs. 

2     ♦♦        •'      With  " 

z     "     cart     without      '' 

Abablb  Fikld. 

{Hard  and  dry,  rising  i  in  locxx) 
a  horse  wagon  without  springs. 

a     "         **       with 
z     **     cart     without 


Mazl- 

mum 

Draft. 

AT«rHr« 

H»d«- 

AT«r«iw 
Dr«ft. 

Speed 
l£ar. 

Teloped 

Lb*. 

Lta. 

MUm. 

W. 

320 

*59 

a.5 

Z.06 

400 

251 

2.6 

'•a 

300 

133 

2.47 

z8o 

49-4 

2.65 

•35 

zooo 

700 

a.  35 

A.3tf 

6.7 

Z200 

997 

2.53 

ZOOO 

7ZO 

2-35 

4-45 

400 

2Z3 

2.6z 

z.4a 

Draft  per  Tod 
00  Level. 


43.50r.oz93 
44.5  "  .02 
34.7  "  .ozs 

28       '*  .OZ35 


axo 
»94 

2ZO 


or 


099 
0625 


Wofk 
per(P 

Ho%a. 


IF. 

•53 
.87 

•44 
•35 


a.  18 
3-35 

Z.23 

Z.48 


Fore  wheels  of  wagons  were  39  ina,  and  hind  57  ina  in  diam. ;  tires  varying  fTooa 
2.35  to  4  ina ;  and  wheels  of  cart  were  54  ina  in  diam.,  and  tires  3.5  and  4  ins. 

Springs  reduced  resistance  on  road  20  per  cent,  but  did  not  lessen  it  m  the  field. 

From  these  data  it  appears,  that  on  a  hard  road,  resistance  is  only  from  25  to  .  16 
of  resistance  in  field.  Lowest  resistance  is  that  of  cart  on  road  =  28  Iba  per  ton ; 
due,  no  doubt,  to  absence  of  small  wheels  alike  to  those  of  the  wagons. 

Assuming  average  power  without  springs  to  be  .6  H*  on  road,  aa  average  for  a 
day^s  woric,  it  represeuta  .6  X  33000  =  19800  foot-lbs.  per  minute  for  power  of  a 

horse  on  such  a  road. 

Resistance  of  a  smooth  and  welMaid  granite  track  (tramway),  alike  to  those  id 
London  and  on  Commercial  Road,  in  (Tom  Z2.5  to  Z3  lbs  per  ton. 


Omnibus. t    ( Weight  5758  Ibt.) 

Average  Speed  per  Hoar.     Per  Ton. 

Granite  pavement  (courses  3  to  4  ina ) 2. 87  milea  Z7.41.  Iba 

Asphalt  roadway 3.56     "  ^-^i 

Wood  pavement 3.34     '*  4Z.6 

Macadam  road,  gravelly 3.45     ''  44-48 

granite,  new 3.51     "        zoz,o9 


ti 


ii 

(t 

t( 


Tout 

44.75  Iba 

69-75    " 
106.88    " 
ti 

tc 


ii4.3« 

359-8 


Note.— The  resistance  nqtad  for  an  asphalt  roadway  is  apparently  incoDaisteni 
with  that  for  a  granite  pavement,  for  when  it  is  properly  constructed  it  is  least 
resistant  of  all  pavements. 


*  Bh  r*port  in  Enffi»t*rittg,  Juif  ro,  Z874,  pojf*  23. 


t  A^poK  8tc.  ArU,  Limde»,  1879. 


TKACTIOK.  S4S 


Wagon  •    (Sir  Jckn  MaeneU. ) 
Weight  2342  lbs.    Speed  2.5  MiUi  per  Hour. 


RMisUnce. 
Per  Ton.  Total. 

Well-made  stone  pavement 31.2  lbs  33  lb& 

Road  made  with  6  in&  of  broken  hard  stone,  on  a  foundation)              «,  ^   ^ 

of  stones  in  pavement,  or  upon  a  bottom  of  concrete f     ^^  ^ 

Old  flint  road,  or  a  road  made  with  a  thick  coating  of  broken  I     ^       ^  ^     «( 

stone,  on  earth )  ^ 

Road  nutde  with  a  tbi<;k  coating  of  gravel,  on  earth. 140     **  147   " 

Stage   Coach..    (Sir  Jofin  Macneil.) 
Weight  3192  lbs.      Gradients  1  to  20  to  doa 
Speed.  Metftlled  Road. 

At  6  miles  per  hour 62  lbs.  per  ton. 

«t     g  it  u  ^^^ ^^ ...,,,....,...,,   73      *•  " 

«'  10     "     '*     .!..,! !!*.!!!.!!!!!!!!.!!!.!.!!  79  **     *' 

Man. — It  waa  foand  that,  from  ■oma  anezplained  caaM,  tt\e  net  frictlonal  reiittAnre  at  •QUtl  apeeda 
varied  conaidarabiv,  according  to  gradient,  reaiatanoea  being  a  maziniom  for  ateepeat  gradient,  and  a 
mlDiRinm  for  gradienta  of  t  in  30  to  i  in  40 ;  for  theae  they  Are  leaa  than  i  In  600.  Mom  of  action  of 
the  boraea  on  the  carriage  may  have  been  an  inllueotial  eleioeat.    (J),  K.  Clark.) 

To  Compute  Resist&uioe  to  "Praotion  on  Various  Roads. 

[Sir  John  Macneil.) 

OH  ▲  LEVEL. 

Rule. — Divide  weight  of  vehicle  and  load  in  lbs.  by  its  unit  in  following 
table,  and  to  quotient  add  .025  of  load ;  add  sum  to  product  of  velocity  of 
vehicle  in  feet  per  second,  and  Coefficient  in  following  table  for  the  particular 
TtMid,  and  renult  will  give  power  required  in  lbs. 

Or.  — -  -  -  -4-  u>  .025  4-  C  t>  =  T.    W  and  w  representing  weights  ofveliicle  and  load. 

unit  •  -'      ■  *  w  n,  % 

Coefficients  Jor  Traction  of  Various  Vehicles. 


Stagecoach 100 

Heavy  wagon 93 

4  horse  wagon  without  springs 55 


2  horse  wagon  without  springs 54 

2     "         "      with  "      42 

1     ♦'     cart      without       "      36 


Coefficients  for  Roads  of  Various  Construction. 

Pavement 2 

Broken  stone,  dry  and  clean 5 

"  "      covered  with  dust....    8 

"  *♦      muddy 10 


Macadamized  road 4.3 

Gravel,  clean 13 

*' .     muddy 32 

Stone  tramway 1.2 


Sand  and  Gravel 12.1 

iLLtTSTKATiON.— What  is  the  traction  or  resistance  of  a  stage  coach  weighing  2200 
lbs.,  with  a  load  of  1600  lbs.,  when  driven  at  a  velocity  of  9  feet  per  second  over  a 
dry  and  clean  broken  stone  road? 

2200 -|- 1600 


100 


+  1600  X  .025  +  5  X  9  =  123  H«. 


7o  Compute  I'o'^ver  neoe8sar3rto  Sustain  a  Veliicle  upon 
AH  Inclined  H.oad,  and  also  its  Pressure  tliereon,  oniit>-- 
ting  £fieatr  or  ITriotioxi. 

AT  AN   INCLINATION. 

W  :  A  C  ::  o  :  B  C,  and  W  :  A  C  ::  p  :  A  B. 

Or,  r  «  :  «  o  ::  A  B  :  B C:  W  :  e  0  ::  I :  h;  whence, 

Affiume  A  B  of  such  a  length  that  vertical  rlsQ 
B  C  =:  I  foot;  then, 

j^  =  --    ^     -=W«iii  A=o,aDd^^  =  -^'^AJL^  =  WcoB.A=|K 
^^      VaB»4-i  ^^         V^AB^^+i 


r^ 


846  TRACTION. 

Or,  -7-  =  P;     — ;— =  0;    or,  —3:^^  =  P,  and   —3^:^:=::::  =  0.     W  ranresentina 

Vfeighct  ofvehicU  and  load  o,  and  P  power  or  force  n/toettary  to  sustain  load  on  road, 
p  pressure  qfload  on  surface^  all  in  Ibs.j  h  height  of  plane,  I  inclined  length  of  road 
or  plangy  and  I'  horizontal  lengthy  ail  in  feet 

Illustration. — Wbat  is  power  required  to  sustain  a  carriage  and  its  load,  weigh- 
ing 3800  lb&,  upon  a  road,  inclination  of  which  is  i  in  35,  and  wbat  la  its  pressure 
upon  road? 

Sin.  A  ^  :o98  56.    Cos.  A  =r  .999  59.    I = 35*0x4. 

Then  3800 x .028 56=108.53  U>s.z=: power, and 3800 X .999 59=3798.44 lln. pressure- 
To  Compute  litesistaxioe  of*  a  X^oad  011  an.  Inclined  Road. 

Rule. —  Ascertain  the  tractive  power  required,  and  add  to  it  the  power 
necessary  to  sustain  load  upon  inclination,  if  load  is  to  ascend,  and  subtract 
it  if  to  descend. 

Example  i.— In  preceding  example  tractive  power  required  is  123  lbs.,  and  sus- 
taining power  for  that  inclination  108.53;  beuce  123  +  108.53  =  331.53  lbs, 

3. — If  this  load  was  to  be  drawn  down  a  like  elevation. 

Then  123  -^  108.53  =  14.47  ^'' 

7o  Compute  Po'^ver  necessary  to  Alove  and  Sustain  a 
Veliiole  eitlier  A^scending  or  II>e8cending  an  li^levation, 
and  at  a  fciven  Velocity,  omitting  Rfieot  of  ITriotion. 

f  — j^  +  —  \  COS.  L  T  (W  +  w)  sin.  L.  -f  re  =  B.     I.  representing  angle  of 

elevation  for  a  stage  wagon  and  a  stage  coach,  and  t  units  as  preceding;  upper  sign 
taken  when  vehicle  descends  the  planCy  and  lower  when  it  cucends. 

Illustration.— Assume  a  stage  coach  to  weigh  2060  lbs.,  added  to  which  is  a 
load  of  1 100  lbs.,  running  at  a  speed  of  9  feet  per  second  over  a  broken  stone  road 
covered  with  dust,  and  having  an  inclination  of  t  in  30;  what  is  power  necessary 
to  move  and  sustain  it  up  the  inclination,  and  what  down  it  ? 

0  =  9,    0  =  8,    sin.  of  L_  =  sin.  of  i<^  54'-|- T^  .0333,    and  cos.  L.  =3 .9995. 

_,         /2o6o-4-noo   ,    iioo\  , — : , 

\ i^ "^  ~i^)  ^  -9995+  (2060+  iioo)  X  .0333  +  8  X  9  =  5907  + 

Z05.23  -|-  72  =  236.3  lbs.  up  inclination. 

.       .    /2060  +  1 100    ,     1 100\  , ; : . 

\ 1^ ^  ~4o  /  ^  '^^^  +  8X9  —  (2060  +  iioo)  X  .0333  =  59.07  +  7« 

•^  105. 33  =  25. 84  Ws.  down  indination. 

Tractive  and  Statical  Resistance  ofli^levations.    {GiUmore.) 

T 

--  =  flr'.    T  rqfn-esenUng  traction  in  lbs  per  ton^  W  vKight  of  load  in  Ibt.. 

and  g^  grade  of  road. 

Illustration. — Assume  traction  as  per  preceding  table,  page  844, 200,  and  weight 
of  vehicle  3  tons;  wbat  should  be  least  grade  of  road? 

200X2  I 

=0897  =  — +• 

2  II 

4480'  —  200  X  2 

Showing  that,  for  a  road  upon  which  traction  is  300  lbs.  per  ton,  the  grade  should 
not  exceed  one  in  height  to  one  eleventh  fall  of  base;  hence,  generally,  the  proper 
grade  of  any  description  of  road  will  be  equal  to  force  necessary  to  draw  load  upon 
like  road  when  level. 

Practically,  greatest  grade  of  a  Telford  or  Macadam ize<l  road  in  good  condition 
=  .05,  and  a  horse  can  attain  at  a  walk  a  required  height  upon  this  grade,  without 
more  fatigue  and  in  nearly  same  time  that  he  would  require  to  attain  a  like  height 
over  a  longer  road  with  a  grade  of  .033,  that  he  could  ascend  at  a  trot. 

For  passenger  traffic,  grades  should  not  exceed  .033. 


v: 


TBACTIOH. 


847 


R*si«t«ziO«   of*  Oravitjr    »t   Different   Inolinations    of 

O-raule.    For  a  Load  of  100  Lbs. 


Grad«. 

R 

Grade. 

Lbt. 

1  in    5 

19. 6z 

I  in  35 

X  in  zo 

9-95 

I  in  30 

z  in  15 

6.65 

X  in3s 

X  m  20 

4.99 

z  in  40 

R 

Lta. 

4 

3-33 
2.85 

2.5 

Grade. 

R  • 

Lb*. 

1  10  45 

2.22 

I  in  50 

I  in  55 
z  in6o 

2 

1.82 
Z.67 

Grade. 

R 

Lbe. 

I  in    70 
I  in   80 

1.43 
1.25 

z  m   90 

z.zz 

I  in  100 

z 

Indination  Of  Roadt.^¥o^et  of  dradght  at  dilTerent  inclinations  and  velocities 
la  as  follows  {Sir  John  MacneU) : 


Inclination. 

Angle. 

Feet 
per  Mile. 

z  in  20 
X  in  a6 
X  in  30 
X  in  40 
X  in  60 

205a' 

aO„' 

1^55' 
ZO26' 

57.5' 

264 

903.4 

176 

Z32 

88 

Traction  at  Speed 

•  of  per 

Frictional  Resistance  per 

Hour  of 

Ton  at  Speeds  of  per  Hour  oi 

6  Miles. 

8  Miles. 

10  Miles. 

6  Miles. 

8  Miles. 

10  Miles. 

268 

296 

3x8 

76 

96 

1X2 

2Z3 

2x9   . 

225 

63 

68 

7a 

«65 

X96 

2O0 

41 

63 

66 

z6o 

166 

X72 

56 

6x 

65 

zzz 

X20 

128 

72 

78 

8x 

G-rade. 

Grade  of  a  road  should  be  reduced  to  least  of  practicable  attainment,  and 
aa  a  general  rule  should  be  as  low  as  i  in  33,  and  steepest  grade  that  is  ad- 
missible on  a  broken  stone  road  is  i  in  20. 


The  condition  of  traction  Is  /-f-siu.  a  L,  which  should  not  exceed  F,  and  sin.  a 
p 
should  not  exceed  j f  or/   f  representing  coefficient  of  friction,  a  angle  ofin- 

dinaiion^  L  load,  and  P  power  in  lbs. 

Illustration.— In  case,  page  846,  weight  or  load  =  2060 -f- "00=3x60  lbs.,  Co- 
efficient of  friction  for  such  a  road  =  .042  pet  xoo  lbs.,  and  sin.  x°  54'  =  .033  x6. 

Then  .042  -|-  .033 16  x  3160  =  237. 5  lbs. 

Traction  of  a  Vehicle  compared  to  ite  Weight  on  Diffei^ent  Roads* 

{F.  Robertson,  F.  R.  A.  S.) 

Stone  pavement x  in  68  I  Flint  foundation x  in  34 

Macadamized  road z  **  49  |  Gravel  road z  ''  15 

Sandy  road x  in  7. 

Assuming  a  horse  to  have  a  tractive  force  of  X40  Iba  continuously  and  steadily  at 
a  walk,  be  can  draw  at  a  walk  on  a  gravel  road  15  x  x 40= 2x00  lbs. 

!F*rictioii   of  R^oads. 
Friction  of  Roads. — According  tp  Babbage  and  others,  a  wagon  and  load 
weighing  1000  lbs.  requires  a  traction  as  follows : 

Of  Load. 

Loose  sand 25 

fresh  earth 125 

Common  side  roads x 


or  Load. 

Macadamized 033 

Dry.  high  road 025 

Well  paved  road 0x4 

Railroad (    ^^SS 

I    0059 

Sled,  bard  snow,  iron  shod 033  of  load. 

Coefficients  of  Friction  in  Proportion  to  Load. 


Gravelled  road. {  '^^S 


067 


Per  100  lbs.  Per  Ton. 

Ontvel  nmd,  new 083  186 

Oooimon  road,  bad  order. .  .07  Z57 

Band  road 063  Z4z 

Broken  stone,  rutted 053  z  17 

**          "    fair  order...  .028  63 

*•         "    pertlBct  order  .0x5  34 

tlAoadamized,  new. .......  .045  zoz 

*'          033  74 

"          gravelly 03  4^ 

^jirth,  f  ood  ord^r. 0*$  ^6 


Far  zoo  lbs. 

Wood  pavement 0Z9 

Asphalt  roadway oza 

Stone  pavement ozs 

Granite     ''       008 

Stone         ''    very  smooth  .006 
Plank  road ot 

««"»»y {-^ 

Stone  track 05 


P«rTon 
4a 

27 

34 
18 

13 

92 

8 

«3 
zzs 


848 


TBACnON. 


To    Ooxnpxate    Frlotlonal    Reeistaxioe    to  TFraotlon    of  a 
Stage  Coaoli  on  a  NLetalled  Roa<l  in.  Grood  Coxxdition. 

30  -f  4  V  -f-  y/io  o  =  R.  V  representing  speed  in  miles  per  hour^  and  R  Jridionai 
resistance  to  traction  per  ton. 

NoTE.~Formula  is  applicable  to  wagons  at  low  speeda 

Canal,  Slacfe^water,  and.  River, 

On  a  canal  and  water,  resistance  to  traction  varies  as  square  of  velocity, 
from  that  of  2  feet  per  second  to  that  of  11. 5  feet. 

When  velocity  is  less  than  .33  miles  per  hour,  resistance  varies  in  a  less 
degree. 

In  towingf  velocity  is  ordinarily  i  to  8.5  miles  per  hour. 

Resistance  of  a  boat  in  a  canal  depends  very  much  upon  the  comparative 
areas  of  transverse  sections  of  it  and  boat,  it  being  reduced  as  difference 
increases. 

In  a  mixed  navigation  of  canal  and  slack-wat-er,  3  horses  or  strong  mules 
will  tow  a  full-built,  rough-bottomed  canal  boMi  with  an  immersed  sectional 
area  of  94.5  sq.  feet,  and  a  displacement  of  240  tons,  1.75  to  2  miles  per  hour 
for  periods  of  12  hours. 

With  a  section  of  but  24.5  sq.  feet,  or  a  displacement  of  65  tons,  an  aver- 
age si)eed  of  2.5  miles  is  attained  for  a  like  period. 

By  the  observations  of  Mr.  J.  F.  Smith,  Engineer  of  the  Schaylkill  Navigation 
Co.,  a  canal  boat,  with  un  immersed  section  alike  to  that  above  given,  can  be  towed 
for  10  hours  per  day  as  follows: 

Per  Hour. 


By  I  hone  or 
mule. 

By  2  hones  or 
malea. 

By  3  horaee  or 
moles. 

By  4  hones  or 
males. 

By  8  horses  or 
mules. 

I  mile. 

X.5  miles. 

1.75  miles. 

Z.875  miles. 

2.5  milea 

Assuming  then,  the  tractive  power  of  a  horse  as  given  in  table,  page  437,  the  above 

elements  determine  results  as  follows: 

TrsctioD 
Tractive  Power 
divided  by  Load. 


Horses. 


Miles. 


I 

250- 

-240 

1-5 

165X2- 

r  240 

1-875 

140X3- 

r-240 

132X3- 

■-240 

3 

125X3- 

r240 

a- 5 

100X3- 

^    65 

in  Lbs.  per  Ton. 

in  Lbs.  per  Sq.  Foot  of 
immersed  SecUon. 

Z.04 

2.65 

1.38 

3-49 

X.7S 

4-44 

2.65 

4.19 

1.56 

3.98 

4.61 

12.24 

z 

3 

3 

3 

3  (iigbV); !;!!'.;! 

Upon  a  canal  of  less  section  and  depth,  a  displacement  of  Z05  tons,  with  v:n  im- 
mersed section  of  43  sq.  feet,  a  speed  of  2  miles  with  2  horses  was  readily  obtained, 
which  would  give  a  traction  of  2.38  lbs.  per  ton,  and  of  5. 72  lbs.  per  sq.  foot  of  im- 
mersed section. 

Alaximuzxz   Powex*  of  a  Horse  on  a  Canal.    (MoUtworfk.) 

33-545678  9 


Miles  per  hour 2.5 

Duration  of  work  in 


hours 


10 

•IS 

6.5 


ZZ.5        8       5.9       4.5      2.9      2       z.5    X.X35      .9 
Load  drawn  in  tons '. .  520       243    Z53       zo2       52       30     19     13  9 

Street  Railroads   or  Trazn^vays.    (OtnH  QiUmcTt.^) 

Upon  a  level  road,  and  at  a  speed  of  5  miles  per  hour,  the  power  required  to  dran 
a  car  and  its  load  is  firom  -^^  to  -m^  of  total  weight,  varying  with  condition  of 
rails  and  dryness  or  moisture  of  their  surface. 


*  TreatiM  on  Roads.  Streets,  and  Pavemento.    D.  Van  Nostrand,  18761  K.  T. 


TBACTION. — WATEJB. 
T*o   Compute   ReBistaxice  of*  a  Car, 


849 


T  V  ti               ft'  ^^  it. 
TX6=/;    =  c;    =r;  and /+c4-r  =  R.    T  representing  toeighi 

<«  Um$. /friction  tn  Ite., «  speed  tn  miie<  ji«r  ibour,  a  area  qfjront  or  section  of  ear 
Ml  sq.fiutf  c  coneuttiony  r  resistance  of  atmosphere,  and  R  total  resistance,  all  in  lbs. 

iLLnsTRATiov.— Assume  a  car  and  load  of  8960  lbs.,  with  an  area  of  section  of  56 
sq.  feet,  and  a  speed  of  5  miles  per  hour. 

Then  -5^  =  4  tons;     4X6  =  24  lbs.  friction ;     1^=6.66  lbs.  concussion: 
2240  ^         -^  '         3 

5 5-  =  3. 5  Ibt.  retistance  of  air  ;    and  24  +  6.66  +  3. 5  =  34. 16  Ths. 

400 

In  average  condition  of  a  road,  the  resistance  of  a  car  may  be  taken  at  -j^,  which, 
in  preceding  case,  would  be  74.66  lb&  On  a  descending  grade,  therefore,  of  i  in 
74  66,  the  application  of  a  brake  would  not  be  required. 


WATER. 
Fresh  Water.    Constitution  of  it  by  weight  and  measure  is 

By  Weight.        By  MeMON.    {  By  Weifcbt.  By  MaMUV. 

Oxygen...  88.9  i        |    Hydrogen.,  ii.i  2 

Cube  inch  of  distilled  water  at  its  maximum  density  of  39.1°,  barom- 
eter at  30  ins.,  weighs  252.879  grains,  and  it  is  772.708  times  heavier 
than  atmospheric  air. 

Cube  foot  (at  39.1^)  weighs  998.8  ounces,  or  62.425  lbs. 

Note. — Yor  facility  of  computation,  weight  of  a  cube  foot  of  water  ia 
asually  taken  at  1000  ounces  and  62.5  lbs. 

At  a  temperature  of  32°  it  weighs  62.418  lbs.,  at  62°  (standard  tem- 
perature) 62.355  lbs.,  and  at  212°  59.64  lbs.  Below  39.1°  its  density 
decreases,  at  first  very  slow,  but  progressing  rapidly  to  point  of  conge- 
lation, weight  of  a  cube  foot  of  ice  being  but  57.5  lbs. 

Its  weight  as  compared  with  sea-water  is  nearly  as  39  to  40. 

It  expands  .085  53  its  volume  in  freezing.  From  40°  to  12°  it  ex- 
pands .00236  its  volume,  and  from  40^  to  212°  it  expands  .0467— 
times  =  .000  27 1  5  for  each  degree,  giving  an  increase  in  volume  of  i 
cube  foot  in  21.41  feet 

Volumes,   Heielit,   and.    Pressure    or   Pure    >Vater. 

Cnb«  Ids.        FMt. 
At   32°        27.684  =  2.307    \  1  Lb. 

**    39-1°   «7.68    =  2.3067  f_.  Pressure 
•*    62°      27.712  =  2.3093  i"  per 

•«  212°      28.978  =  2.4148  )      sq.  inch. 


At  62°  1  Ton         =  35.923  cube  feet 

"    "  I  Lb.  =27.71        "    ina. 

"  39.1°  I  Tonneau  =  35.3156    "    feet. 

"     "  1  Kilogr.    =      0353    "      " 


H^gfU  of  a  Column  of  Water  at  62°  or  62.355  Ibt. 

I  lb.  per  sq.  inch  =  2. 3093  feet,  and  at  pressure  of  atmosphere  =  33.947  feet  = 
«X347  meCen. 

loe  and   Snoi^. 

Cube  foot  of  Ice  at  32°  weighs  57.5  lbs.,  and  i  lb.  has  a  ydume  of 
30^067  cube  ins. 

Volume  of  water  at  32**,  compared  with  ice  at  32®,  is  as  i  to  1.085  53,  ««- 
ponsion  being  8.553  per  cent 

Cube  foot  of  new  fallen  snow  weighs  5.2  lbs.,  and  it  has  12  times  bulk  of 
water. 


850 


WATBB. 


if^ainfkll. 
Annuai  Fall  at  different  Places, 


LocAnoH. 


Alabama 

Albany 

Algiers  

Alleghany 

Antigua 

Archangel 

Aiibarn 

B<ahamas 

Bi  Jtimore 

Barbadoes 

B^th,  Me 

Belfast 

Biskra 

Bombay 

Bordeaux 

Boston 

Brussels 

Buflalo 

Burlington,  Vt 

Calcutta 

Cape  St.  Francois. . 

CajieTown 

Cbarloston 

Cherbourg 

Cologne 

Copenhagen 

Cracow 

Demerara 

"       1849 

DDver  (EngL) 

Dublin 

DumfVies 

East  Hampton  . . . . 

Edinburgh | 

Fairfield 


Ins. 


30-17 
4«-35 

7-75 
46.66 

45 
14-52 

30-17 
42.19 

39-9 

55-87 
3458 

39-46 
.2 
no 
29.7 

39-23 

29 

27.27 

32 
81 

150 

23-31 

54 

39-7 

24 

23 

13-33 
91.2 

132.21 

37-52 

30.87 

36.92 
3852 

24-5 

29 

3293 


LocATtoir. 


Ft.  Crawford,  Wis.. 

Ft  Gibson,  Ark 

Ft.  Snelling,  Iowa. 
Fortr.  Monroe,  Va.. 

Florence 

Frankfort,  Oder... 
^'         Main... 

Geneva 

Gibraltar. 


.i 


Glasgow 

Gordon  Castle,  Sc 

Granada | 

Great  Britain 

Greenock 

Halifax 

Hanover 

Havana 

Hongkong » . 

Hudson 


India. 


Jamaica 

Jerusalem 

Kefy  West 

Khassaya,  India. . . 

Lewistbn 

Liverpool 

London , . 

Louisiana 


Madeira 


Manchester 
Marseilles. . . 


Int. 


2954 
30.64 

30.32 

52.53 

35-9 

21.3 

16.4 

32.6 

47.29 

21.3 

31 

293 
105 

126 

32 
61.8 

33 
22.4 

52 

81.35 

J9-32 


130 

34-31 
65 

34-39 
610 

23-15 
3412 
25.2 

5J.85 
22 

36.14 

43 

18.2 


Locmow. 


Michigan 

Mississippi 

Mobile,  1842 

Naples 

Newburg. 

New  York 

Ohio 

Palermo 

Fari&...., 

Philadelphia 

Plymouth  (Kngl.).. 

Port  Philip 

Poughkeepsie 

Providence. 

Rochester. 

Rome 

Santa  Fe. 

Savannah 

Schenectady 

Siberia 

Sierra  Leone 

Sitka 

St.  Bernard  .....<. 

St,  Domingo 

St.  Petersburg 

State  of  N.Y 

Sydney 

I^mania 

Trieste 

Ultra  MuUay,  India 

Utica 

Venice 

Vera  Cruz 

Vienna 

Washington 

West  Point 


33-5 

45 

54-94 
41.8 

40.5 

36 

36 

23.8 

23.  z 

49 
44 

29.16 
32.06 
36.74 
29 
39 
74.8 
55 

47-77 
7-75 
84 

85-79 
48 

120 

17.6 

33-79 
49 
35 
46.4 

263.21 

39-3 
34-1 
62 

r9.6 

34- 6« 
48.7 


Average  rainfall  in  England  for  a  number  of  years  was,  South  and  East,  34  ins.; 
West  aud  hilly,  43.02  to  50  Ins.,  and  percolation  of  it  was  estimated  at  30  per  ceut. 

Mean  volume  of  water  in  a  cube  foot  of  air  in  England  is  3.789  gnxins.    . 

Globe,  mean  depth 36     ins. 

Cape  of  Good  Hope  in  1846 T in  3  hours.  6.2 

At  Khasdaya,  in  6  rainy  months 550  ins. ;  in  i  day,    25. 5 

JEvaporation. — Mean  daily  evaporation,  in  India  .^  inch;  greatest  .56;  in  Eng- 
land .08.  At  Dijon,  when  mean  depth  of  rainftill  was  26-9  ins.  in  7  years,  evapora- 
tion  was  for  a  like  period  26.1  ins.,  and  in  Lancashire,  Eng.,  when  full  was  45.96 
ins.,  evaporation  was  25.65. 

Voluirie   of  R,ainfall. 

Bainfall,  depth  in  ins. ,  X  2  323  200  =  cube  feet  per  sq.  mile. 

X  17. 378  74  =:  tniiliont  of  gallons  per  sq.  mila 
X  3630  =  cube  feet  per  acre. 
X  27 154-3  =&  gaUoQs  per  acre. 

Mineral  Waters  are  divided  into  5  groups,  viz. : 

1.  Carbonated,  containing  pure  Carbonic  acid  — as,  Seltzer,  Germany;  Spa,  Bel- 
gium ;  Pyrmont,  Westphalia;  Seidlitz,  Bohemia;  and  Sweet  Springs,  Virginia. 

2.  Sulphurous,  containing  Sulphuretted  hydrogen— as,  Harrowg<Ue  and  Chelten- 
ham, England;  Aix-la-Chapelle,  Prussia;  Blue  Lick,  Ky. ;  Sulphur  Springs,  Va,,  etc 

3.  AlKaliqe,  coatalning  Carbonate  of  soda— these  are  rare,  as,  Vichy,  Emg. 


t( 

l( 

11 

ti 

(t 

t» 

i( 

(I 

(( 

WATEB. 


851 


4.  Chalybeole,  oontaining  Carbonate  of  iroB-^as,  Hampsteod,  Tunbrldge,  Chelten- 
ham, and  Brighton,  England;  Spa,  Belgium;  Ballston  and  Saratoga,  N.  Y. ;  and 
Bedford,  Penn.  * 

5.  Saline,  containing  salts — as,  Epsom,  Cheltenham,  and  Bath,  England;  Baden- 
Baden  aud  Seltzer,  Germany;  Kissingen,  Bavaria;  Plombiiiree,  France;  Seidlitz, 
Bohemia  -  Lucca,  Italy  ;  Yellow  Springs,  Ohio;  Warm  Springs,  N.  C. ;  Congress 
Springs,  N.  Y. ;  and  Grenville,  Ky. 

Brief  Rules  for  Qualitative  Analysis  of  Mineral  Waters, 

First  point  to  be  determined,  in  examination  of  a  mineral  water,  is  to  which  of 
above  classes  does  water  in  question  belong. 

1.  If  water  reddens  blue  litmus  paper  before  boiling,  but  not  afterwards,  and  blue 
color  of  reddened  paper  is  restored  upon  warming,  it  is  Carbonated. 

2.  If  it  possesses  a  nauseous  odor,  and  gives  a  black  precipitate,  with  acetate  of 
lead,  it  is  Sulphurous. 

3.  If,  after  addition  of  a  few  drops  of  hydrochloric  acid,  it  gives  a  blue  precipitate, 
with  yellow  or  red  prussiate  of  potash,  WHt«r  is  a  Chalybeate. 

4.  If  it  restores  blue  color  to  litmus  paper  after  boiling,  it  is  Alkaline. 

5.  If  it  possesses  neither  of  above  properties  in  a  marked  degree,  and  leaves  a 
Wge  residue  upon  evaporation,  it  is  a  Saline  water. 

River  or  canal  water  contains  .05 1  ^  u      ^i      ^   ^  ».*. 

Spring  or  well  water       "       .07  j  °*  ***  '"'"™*  "^  8"^""  """*"■• 

R,e*ageiit8« 

When  water  is  pure  it  will  not  become  turbid,  or  prodace  a  precipitate 
with  any  of  following  Re-agents: 

Baryta  Water^  if  a  preripitiite  or  opaqueness  appear.  Carbonic  Acid  is  present. 

Chloride  of  Barium  indicates  Sulphates,  Nitrate  of  Silver^  Chlorides,  and  Oxalate 
of  Ammonia,  Lime  salts.  Sulphide  of  Hydrogen,  slightly  acid,  Antimony,  Arsenic, 
Tin^  Copper,  Gold,  Platinum,  Mercury,  Silver,  Lead^  Bismuth,  and  Cadmium;  Sul- 
phide of  Ammonium,  solution  alkaloid  by  ammonia.  Nickel,  Cobalt,  Manganese, 
Iron,  Zinc,  Alumina,  and  Chromium.  Chloride  of  Mercury  or  Gold  and  Sulphate  of 
Zinc,  organic  matter. 

ITilter   I3eds. 
Fine  sand,  2  feet  6  ins. ;  Coarse  sand,  6  ins. ;  Clean  shells,  6  ina ,  and  Clean  gravel 
2  feet,  will  filter  700  gallons  water  in  24  hours  per  square  foot,  by  gravitation. 

Sea  Water.     Composition  of  it  per  volume  : 


Chloride  of  Sodium  (common  salt)..  3.51 

Sulphurct  of  Magnesium 53 

Chloride  of  '*        33 


02 


Carbonate  of  Lime        ) 

"        of  Magnesia  ) 

Sulphate  of  Lime 01 

Water. 96.6 

By  analysis  o£  Dr.  Murray,  at  specific  gravity  of  1.0291,  it  contains 

Muriate  of  Soda a^aoi  I  Muriate  of  Magnesia 42.08 

Sulphate  of  Soda 33- 16  |  Muriate  of  Lime 7.84 

Or,  I  part  contains  .030  309  parts  of  salt  x=  ^  part  of  its  weight 

Mean  volume  of  solid  matter  in  solution  is  3.4  per  cent.,  .75  of  which  is 
common  salt. 

Soiling   Points   at   Different   Degrees,  of  Saturation. 


Sftit,  by  Weight, 
in  100  ParU. 


3-03  =  A 
6.06  =  A 

"•"-A 


Boilinf? 
Point. 


2x3. 2^^ 
214. 4« 

216.7^ 


Salt,  by  WelRbt, 
in  100  Parta. 


'5- 15  = /if 

i8.i8  =  A 

21.22  =  ^ 

24.25= A 


Boiling 
Point. 


217.9"^ 
2x9° 
220.2^ 
221.4^ 


Salt,  by  Weijfht, 
in  100  Parts. 


«7-28  =  A 

30.31  =J4 

33.34  =  H 

♦36.37 =H 


Boiling 
Point. 


222.5^ 
223.7^ 
234.9^ 
3360 


852  WATER. — WAVES   OP   THE  SEA. 

De]^o«ita  at  Difierent  IDefirrees  of  Saturation  and  Vein 

peratvire. 

When  1000  Parts  are  reduced  by  Evaporation, 


Yolam*  of  Water. 

Boiling  Point. 

Salt  in  xoo  ParU. 

Natura  of  DepodL 

1000 

"99 
X02 

2X4° 
217O 
228O 

3 
xo 

29.5 

None. 

Sulphate  of  Lima 

Common  Salt 

It  contains  from  4  to  5.3  ounces  ol  salt  in  a  gallon  of  water. 
SaUne  ConterUt  of  Water /rom  tetteraL  Localities. 


Baltic...... ^.6 

Black  Sea 21.6 

Arctic 28.3 


South  Atlantic 41  a 

North  Atlantic  . . . . ,    43.6 
Dead  Sea. 385 


British  Channel....  35.5 

Mediterranean 39.4 

Equator 39-42 

There  are  62  volume?  "f  carbonic  acid  in  xooo  of  sea- water. 

Cube  foot  "*  62^  weighs  64  lbs.    Its  weiglit  compared  with  fresh  water 
being  very  nearly  as  40  to  39. 

Height  of  a  Column  of  Water  at  60°  or  64.3x25  lbs. 

At  62°,  X  Ton  =  35  cube  feet    x  Lb.  per  sq.  inch  =  2.239  ^^^y  ^°^  ^^  pressure  of 
atmosphere  =  32.966  feet  =  xao48  metera 

■WeiglitB. 
A  ton  of  Aresh  water  is  taken  at  36,  and  one  of  salt  at  35  cube  feet 


WAVES   OP   THE   SEA. 

Arnott  estimated  extreme  height  of  the  waves  of  an  ocean,  at  a  distance 
ftom  land  sufficiently  great  to  be  freed  from  any  inflaence  of  it  upon  their 
culmination,  to  be  20  feeL 

French  Exploring  Expedition  computed  waves  of  the  Pacific  to  be  22.  feet 
in  height 

By  observations  of  Mr.  Douglass  in  1853,  he  deduced  that  when  waves  had 
heights  of 

8  feet,  there  were     35     in  number  in  one  mile,  and  8  per  minnta 
x5    "  "        sand 6  "  "  5         " 

20    "  "  3  "  "  4         " 

J.  Scott  Russell  divides  waves  into  2  classes — viz. : 

Waves  of  Translation,  or  of  ist  order ;  of  Oscillation,  or  of  2d  order. 

"^^aves   of  the   B^irst   Order. 

1.  Velocity  not  affected  by  intensity  of  the  generating  impulse. 

2.  Motion  of  the  particles  always  forward  in  same  direction  as  wave,  and 
same  at  bottom  as  at  surface. 

3.  Character  of  wave,  a  prolate  cycloid,  in  long  waves,  approaching  a  true 
cycloid.    When  height  is  more  than  one  third  cl  length,  the  wave  breaks. 

JATavett  of  the   Seooncl   Order. 

1.  Ordinary  sea  waves  are  waves  of  second  order,  but  become  waves  of  the 
first  Older  as  they  enter  shallow  water. 

2.  Power  of  destruction  directly  proportional  to  height  of  wave,  and  great- 
est when  crest  breaks. 

3.  A  wave  of  10  feet  in  height  and  32  feet  in  length  would  only  agitate 
the  water  6  ins.  at  10  feet  below  surface ;  a  wave  of  like  hei^t  ana  100  feet 
in  length  would  only  disturb  the  water  18  ins.  at  same  depth. 

Average  force  of  waves  of  Atlantic  Ocean  during  summer  months,  as  de« 
termined  by  Thomas  Stevenson^  was  611  lbs.  per  sq.  foot;  and  for  winter 
months  ao86  lbs.    During  a  heavy  gale  a  force  of  6983  ll».  was  observed. 


Wi.ySS  OS*  TBB  SEA. 


8S3 


Jl  Scott  Russell  deduced  tbat  a  wave  30  feet  in  height  exerts  a  force  of  i 
Con  per  sq.  foot,  and  that,  in  an  exposed  position  in  deep  water,  1.75  tons 
may  be  exerted  upon  a  yertieal  surface. 

At  Cassis,  France,  when  the  water  is  deep  outside,  blocks  of  15  cube  me- 
ters were  found  insufficient  to  resist  the  action  of  waves. 

Breakwaters  with  vertical  walls,  or  faces  of  an  angle  less  than  i  to  i,  will 
rdiect  waves  without  breaking  them.  Waves  of  oscillation  have  no  effect 
on  small  stones  at  22  feet  below  the  surface,  or  on  stones  from  1.5  to  3  feet, 
12  feet  below  surface. 

A  roller  20  feet  high  will  exert  a  force  of  about  i  ton  per  sq.  foot. 

Greatest  force  observed  at  Skerryvore,  3  tons  per  sq.  foot ;  at  Bell  Rock, 
1.5  tons  per  sq.  foot. 

Waves  of  the  second  order,  when  reflected,  will  produce  no  effect  at  a  depth 
of  12  feet  below  surface. 

Action  of  waves  is  most  destructive  at  low^water  line. 

Waves  of  first  order  are  nearly  as  powerful  at  a  great  depth  as  at  sui&oe 

To'  Compute  Velocity, 

When  I  is  less  Gian  d.    .55  y/l  or  1.818  y/l  =  V. 

When  I  exceeds  1000  d.  V32.17  <i=  V,  and  When  Height  of  Wave  becojnes  a  sen- 
sible Proportion  to  Depths  yj z^- ^7  ('  +  3  ~i)  =  ^• 

Xo  Ooxnp-ute  Keiglit  of  AVaves  in   Reservoirs,  etc. 

I.  sv'L  -|-  (2-  5  —  V^^)  =  ^^9^  »»>  f^^f-  L  representing  length  of  Reservoir ^  Pundf 
etc,  ccpoMd  to  direction  of  windy  in  miles. 

Tidal  Waves. 

Wave  produced  by  action  of  sun  and  moon  is  termed  Free  Tide  Wave, 
Semi-diurnal  tide  wave  is  this,  and  has  a  period  of  12  hours  24 -|-  minutes. 

Professor  Airy  declared  that  when  length  of  a  wave  was  not  greater  than 
depth  of  the  water,  its  velocity  depended  only  upon  its  length,  and  was  pro- 
portionate to  square  root  of  its  length. 

When  length  of  a  wave  is  not  less  than  1000  times  depth  of  water,  velocity  of  it 
depends  only  upon  depth,  and  is  proiiortionate  to  square  root  of  it;  velocity  being 
same  that  a  body  &Uing  free  would  acquire  by  falling  through  a  height  equal  to  half 
depth  of  water. 

For  intermediate  proportions,  velocity  can  be  obtained  by  a  general  equation. 

Under  no  circumstances  does  an  unbroken  wave  exceed  30  or  40  feet  iu  height 

A  wave  breaks  when  its  height  above  general  level  of  water  is  equal  to  general 
depth  of  it 

Diurnal  and  other  tidal  waves,  so  far  as  they  are  fVee,  may  be  all  considered  ag 
ruDDing  with  the  same  velocity,  but  the  column  of  the  length  of  wave  must  be 
doubled  for  diurnal  wave. 

XjmgCti  of  Wave. 


Depth  of  WaUr. 

F««t. 

I 

FMt. 

xo 

FMt.                     FMt. 
lOQ                      1000 

FMt. 

10  000 

FMt. 

100  000 

- 

Velocity  per  SMond. 

Faet. 

FMt. 

Faet 

FMt. 

FMt 

FMt. 

FMt. 

I 

a.  26 

5-34 

5-67 

— 

— 

— 

10 

3.d6 

7«5 

z6.88 

17.9a 

»7-93 

— 

100 

— . 

7»5 

22. 6a 

53- 19 

fS-S^ 

56.71 

aooo 

«. 

32.6a 

7»-54 

168.83 

179.31 

lOOOO 

-«• 

— 

— 

71-54 

aa6.94 

533-9 

40 


854  WHfiSL  GJEASma 

WHEEL  GEARINa 

Pitch  Line  of  a  wheel  is  circle  upon  which  pitch  is  measured,  and  it 
is  circumference  by  wiilch  diameter,  or  velocity  of  wheel,  is  measured. 

Pitch  is  arc  of  circle  of  pitch  line,  is  determined  by  number  of  teeth 
in  wheel,  and  necessarily  an  aliquot  part  of  pitch  Una 

True  or  Chordial  Pitch,  or  that  by  which  dimensions  of  tooth  of  a 
wheel  are  alone  determined,  is  a  straight  line  drawn  from  centres  of 
two  contiguous  teeth  upon  pitch  line. 

Line  of  Centres  is  line  between  centres  of  two  wheels. 

Radius  of  a  wheel  is  semi  -  diameter  bounded  by  periphery  of  the 
teeth.    Pitch  Jtadivs  is  semi-diameter  bounded  by  pitch  line. 

Length  of  a  Tooth  is  distance  from  its  base  to  its  extremity. 

Breadth  of  a  Tooth  is  length  of  face  of  wheel. 

Depth  of  a  Tooth  is  thiclt ness  from  face  to  face  at  pitch  line. 

Face  #/  a  Tooth,  or  Addendum,  is  that  part  of  its  side  which  extends 
from  its  pitch  line  to  its  top  or  Addendum  line. 

Flank  of  a  Tooth  is  that  part  of  its  side  which  extends  from  pitch 

line  to  line  of  space  at  base  of  and  between  adjacent  teeth ;  its  length, 

as  well  as  that  of  face  of  tooth,  is  measured  in  direction  of  radius  of 

wheel,  and  is  a  little  greater  than  face  of  tooth,  to  admit  of  clearance 

between  end  of  tooth  and  periphery  of  rim  of  wheel  or  rack. 

Cog  Wheel  is  general  term  for  a  wheel  having  a  number  of  cogs  or  teeth  set  in  or 
upon,  or  radiating  from,  its  circumference. 

Mortice  Wheel  is  a  wheel  constructed  for  reception  of  teeth  or  cogs,  which  ar9 
fitted  into  recesses  er  sockets  upoja  fac^  of  the  whe«L 

PliUe  Wheels  are  wheels  without  arms. 

Rack  is  a  series  of  teeth  set  in  a  plane. 

Sector  is  a  wheel  which  reciprocates  without  forming  a  full  revolution. 

Spur  Wheel  is  a  wheel  having  its  teeth  perpendicular  to  its  axia 

Bevel  Wheel  is  a  wheel  having  its  teeth  at  an  angle  with  its  axia 

Croum  Wheel  is  a  wheel  having  its  teeth  at  a  right  angle  with  its  axia 

.  Mitre  Wheel  is  a  wheel  having  its  ieeth  at  an  angle  of  450  with  its  axia 

Face  Wheel  is  a  wheel  having  its  t6eth  set  upon  one  of  its  sides. 

Annular  or  Internal  Wheel  is  a  wheel  having  its  teeth  convergent  to  its  centre. 

Spur  Gear. — Wheels  which  act  upon  each  other  in  same  plane. 

Bevel  Gear  —Wheels  which  act  upon  each  other  at  an  angle. 

Inside  Gear  or  IHn  Gearing. — Form  of  acting  surfaces  of  teeth  for  a  pitcb-cirGle 
in  inside  gearing  is  exactly  same  with  those  suited  for  same  pitch-circle  in  outside 
gearing,  but  relative  position  of  teeth,  spaces,  and  flanks  are  reversed,  and  adden- 
dum-circle is  of  less  radius  than  pitch-circle. 

A  Train  is  a  series  of  wheels  in  connection  with  each  other,  and  consists  of  a 
series  of  axles,  each  having  on  it  two  wheels,  one  is  driven  by  a  wheel  on  a  preced- 
ing axis  and  other  drives  a  wheel  on  following  axia 

Idle  Wh^el.—A  wheel  revolving  upon  an  axis,  which  receives  motion  ftrom  a  pro. 
ceding  wheel  and  gives  motion  tQ  a  following  wheel,  used  only  to  affect  direction  of 
motion. 

Trundle,  Lantern,  or  WaMower  is  when  teeth  of  a  piniob  are  constructed  of  round 
bars  or  solid  cylinders  set  into  two  disks.  Trundle  with  less  than  eight  staves  can- 
not be  operated  uniformly  by  a  wheel  with  any  number  of  teeth. 

Spur,  Driver,  or  Leader  is  (erm  for  ft  wbeej  tbat  impels  another:  one  impelled  ia 
Pinion,  Driven,  or  FoUotuer.  - 


Teeth  of  wheels  shoald  be  as  enuUl  and  nnmerouB  as  is  consistent  with 
strength. 

When  a  Pinion  is  driven  by  a  wheel,  number  of  teeth  in  pinion  should  not 
be  less  than  8. 

When  a  Wheel  is  driven  by  a  pinion^  number  of  teeth  in  pinion  should  not 
be  less  than  lo. 

When  2  wheels  act  upon  one  aootber,  greater  is  termed  Whul  and  lesser  Pi$non. 

When  the  tooth  of  a  wheel  is  made  of  a  material  different  from  that  of  wheel  it  is 
termed  a  Cog;  in  a  pinion  it  is  termed  a  Leaf,  in  a  trundle  a  Stave,  and  on  a  disfc 
a  Pin. 

Material  of  which  co^  are  made  is  about  one  fourth  strength  of  cast  iron. 
Hence,  product  of  their  bd^  should  be  4  times  that  of  iron  teeth. 

Number  of  teeth  in  a  wheel  should  always  be  prime  to  number  of  pinion ; 
that  is,  number  of  teeth  in  wheel  should  not  be  divisible  by  number  of  teeth 
in  pinion  without  a  remainder.  This  is  in  order  to  prevent  the  same  teeth 
^coming  together  so  often  and  uniformhf  as  to  cause  an  irregular  w€Ar  of  their 
faces.  An  odd  tooth  introduced  into  a  wheel  is  termed  a  Hunting  tooth  or  Cog. 

The  least  number  of  teeth  thai  it  is  practicable  to  give  to  a  wheel  is  regu- 
lated by  necessity  of  having  at  least  one  pair  always  in  action,  in  order  to 
provide  for  the  contingency  of  a  tooth  breaking;  and  least  number  that  can 
be  employed  in  pinions  having  teeth  of  following  classes  is :  Involute,  25 ; 
Epicycloidal,  12 ;  Staves  or  Pins,  6. 

Velocity  Ratio  in  a  Train  of  Wkeels.^-To  attain  it  with  least  number  of 
teeth,  it  should,  in  each  elementary  combination,  approximate  as  near  as 
practicable  to  3.59.    A  convenient  practical  rule  is  a  range  from  3  to  6. 

IlxusraATiON.        I        6        36        216        1396  velocity  ratio. 

z       2         3  4  elementary  combinaiion. 

To  increase  or  diminish  velocity  in  a  given  proportion,  and  with  least 
quantity  of  wheel-work,  number  of  teeth  in  each  pinion  should  be  to  number 
of  teeth  in  its  wheel  as  i :  3.59.  Even  to  save  space  and  expense,  ratio 
should  never  exceed  i :  6.    {Buchanan.) 

To  Compute  Pltoli. 
RuLS.-^ Divide  circumference  at  pitch-line  by  number  of  teeth. 

ExAMPLS.— A  wheel  40  ins.  in  diameter  requires  75  teeth;  what  is  its  pitch f 

3.1416  X  4o-i-75  =  16755  ins. 
To   Compixte   True   or   Clxordial    Pitch. 
RuiJt. — Divide  180°  by  number  of  teeth,  ascertain  sine  of  quotient,  and 
multiply  it  by  diameter  of  wheel. 
EzAMPLB. — Number  of  teeth  18*75,  and  diameter  40  ins. ;  what  is  true  pitch? 
i8o-f-  75  =  2°  24',  and  Bin.  of  2°  24'  =  .041 88,  which  X  40  =  16752  ins. 

To   Cozxipute   Diameter. 
Rt7LE. — Multiply  number  of  teeth  by  pitch,  and  divide  product  by  3.1416. 
Example. —Number  of  teeth  in  a  wheel  is  75,  and  pitch  1.6755  ins. ;  what  is  di. 
'  meter  of  it?  ^g  ^  1.6755 -r-  3. 1416  =  40  ins. 

When  the  True  Pitch  is  given,    Ruul— Multiply  number  of  teeth  in  wheel 
by  true  pitch,  and  again  by  .3184. 
.  EzAXPLB.— Take  elements  of  preceding  case. 

75  X  1.675a  X  .3184  =»  40  ins. 

Or,  Divide  180°  by  number  of  teeth,  and  multiply  cosecant  of  quotient  by 
pitch. 

i8o-i-  75  =  aio  24',  and  coa  2^  24'  =  23.88,  which  X  1.675a  =  40  *^ 


856  WHEEL  6EABIN6. 

To  Compute  Nxaca.\>eir  of  Teetlu 
Rule. — Divide  circumference  by  pitch. 

To  Coxupute  r^umber  of  Teeth  in  a  Pixxion  or  ITollO'^^ev 

to  b.ave  a  given  Velocity. 

Rule. — Multiply  velocity  of  driver  by  its  number  of  teeth,  and  divide 
product  by  velocity  of  driven. 

EXAMPLK  I.— Velocity  of  a  driver  is  16  revolutions,  number  of  its  teeth  54,  and 
velocity  of  pinion  is  48 ;  what  is  number  of  its  teeth  ? 

16X54-5-48=18  teeth. 

3.— A  wheel  having  75  teeth  is  making  16  revolutions  per  minute;  what  is  num- 
ber of  teeth  required  in  pinion  to  make  24  revolutions  in  same  time? 

16  X  75 -j- 24  =  50  ^«**- 

To  Compute  Proportional  Radius  of  a  "Wlieel'or  Pinion. 
Rule.— Multiply  length  of  line  of  centres  by  number  of  teeth  in  wheel, 
for  wheel,  and  in  pinion,  for  pinion,  and  divide  by  number  of  teeth  in  both 
wheel  and  pinion. 

ExAMPLK.— Line  of  centres  of  a  wheel  and  pinion  is  36  in&,  and  number  of  teeth 
in  wheel  is  60,  and  In  pinion  x8;  what  are  their  radii? 

|^^  =  27.69  in*.  to*«J.   ^^  =  8.z  int.  pinion. 
60+18        '  ^  6o-|-x8 

To   Compute   IDiameter  of  a  Pinion. 

When  Diameter  of  Wheel  find  Number  of  Teeth  in  Wheel  cmd  Pinion  cere 
given.  Rule. — Multiply  diameter  of  wheel  by  number  of  teeth  in  pinion, 
and  divide  product  by  number  of  teeth  in  wheel 

EzAXPLB.— Diameter  of  a  wheel  is  25  in&,  number  of  its  teeth  210,  and  number 
of  teeth  in  pinion  30;  what  is  diameter  of  pinion? 

25  X  30-7-  210  =  3.57  ins. 

To  Compute  dumber  of  Teeth    required  in  a  Train  ot 
TViieels   to  produce   a  g;iven  Velooitjr. 

Rule. — Multiply  number  of  teeth  in  driver  by  its  number  of  revolutions, 
and  divide  product  by  number  of  revoluticms  of  each  pinion,  for  each  driver 
and  pinion. 

ExAMPi,!.— If  a  driver  in  a  train  of  three  wheels  has  90  teeth,  and  makes  2  revo- 
lutions, and  velocities  required  are  2,  xo,  and  x8,  what  are  number  of  teeth  in  each 
of  other  two? 

xo  :  90  ::  2  :  x8  =:  teeth  in  ad  wheel.         x8  :  90  ::  2  :  xo  =  teeth  in  yi  wheel 

To  Compute  Velocity  of  a  Pinion. 

Rule. — Divide  diameter,  circumference,  or  number  of  teeth  in  driver,  as 
case  may  be,  by  diameter,  etc.,  of  pinion. 

When  there  are  a  Series  or  Train  of  Wheels  and  Pinionit.  Rule. — Divide 
continued  product  of  diameter,  circumference,  or  number  of  teeth  in  wheels 
by  continued  product  of  diameter,  etc.,  of  pinions. 

Example  i  —Tf  a  wheel  of  32  teeth  drives  a  pinion  of  10,  npoD  axis  of  which  there 
Is  one  of  30  teeth,  driving  a  pinion  of  8,  what  are  revolutions  of  last? 

—  X  ^  =  ^  =  la  revolutions. 
10       8        80 

2. — Diameters  of  a  train  of  wheels  are  6, 9, 9,  xo,  and  12  ina ;  of  pinions,  6, 6, 6, 6, 
and  6  ins. ;  and  number  of  revolutions  of  driving  shaft  or  prime  mover  is  xo;  what 
are  revolutions  of  last  pinion  ? 

1><_9_X_9X  10  Xj2^Xjo_  583200  _^^^^^ 

6X6X6X6X6  l^^^*'*^"**^ 


WHESL  OBABINO. 


857 


To   Compute   Proportion    that  'Velocities  of*  'Wh^ls    iu 
a  Xraiu   slxould   'bear   to   oue   another. 

Rule. — Subtract  less  velocity  from  greater,  aud  divide  remainder  by  one 
less  than  number  of  wheels  in  train ;  quotient  is  number,  rising  in  arithmet- 
ical progression  from  less  to  greater  velocity. 

EXAMPLK.-— What  should  be  velocities  of  3  wheels  to  produce  18  revolutioos,  the 
driver  making  3? 

__  —  =  7.5  =  number  to  be  added  to  velocity  of  driver  =  7. 5  +  3  =  10. 5,  and 
'o^S  +  7-5  =  >8  revolutiong.    Hence  3,  10. 5,  and  18  are  velocities  of  three  toheeh. 

I»itoh   of  TVlieels. 

^o  Ooxnpute   Diameter  of  a   Wheel    for   a  given   Pitoli, 

or   :Pitoh  fbr  a  given    Diameter. 

From  8  to  192  Teeth. 


No.  of 

Diame- 

No. of 

Diama- 

TMth. 

ter. 

Teeth. 

tor. 

8 

2.61 

45 

14.33 

9 

2.93 

46 

14.65 

10 

3'24 

47 

14.97 

II 

3-55 

48 

15.29 

12 

3-86 

49 

15.61 

13 

4.18 

SO 

15.93 

14 

4.49 

51 

16.24 

15 

4.81 

52 

16.56 

16 

5-12 

53 

16.88 

17 

5-44 

54 

17.2 

18 

5-76 

55 

17.52 

19 

6.07 

56 

17,8 

90 

6-39 

57 

18.15 

21 

6.71 

58 

18.47 

22 

703 

59 

18.79 

23 

7.34 

60 

I9.II 

24 

7.66 

61 

1942 

ss 

7.98 

62 

19.74 

26 

8.3 

63 

20.06 

27 

8.61 

64 

20.38 

28 

8.93 

6S 

20.7 

29 

9-25 

66 

21.02 

30 

9-57 

67 

21.33 

31 

9.88 

68 

21.65  1 

32 

10.2 

69 

21.97  1 

33 

10.52 

70 

22.29 ; 

34 

10.84 

71 

22.61 

35 

II. 16 

72 

22.92 

36 

11.47 

73 

23.24 

37 

11.79 

74 

23.56 

38 

12. II 

75 

23.88 

39 

12-43 

76 

24.2 

40 

I2.t4 

77 

24.52 

41 

13-06 

78 

24.83 

42 

13.38 

79 

2515 

43 

137 

80 

2547 

44 

14.02 

81 

25.79 

No.  of 

Diame- 

1 No.  of 

Diame- 

Teeth. 

ter. 

Teeth. 

ter. 

82 

26.11 

1  "9 

37.88 

83 

26.43 

1  120 

38.2 

84 

26.74 

121 

38.52 

85. 

27.06 

122 

38.84 

86 

27.38 

123 

39.16 

87 

27.7 

124 

39-47 

88 

28.02 

125 

39-79 

89 

28.33 

126 

40.11 

90 

28.65 

127 

40.43 

91 

28.97 

128 

40.75 

92 

29.29 

129 

41.07 

93 

29.61 

130 

41.38 

94 

29^3 

»3i 

41.7 

95 

30.24 

132 

42.02 

96 

30-56 

133 

42.34 

97 

30.88 

134 

42.66 

98 

31.2 

135 

42.98 

99 

31.52 

136 

4329 

100 

31.84 

137 

43.61 

1  lOI 

32.15 

138 

43-93 

102 

3247 

«39 

44-25 

103 

32.79 

140 

44-57 

104 

3311 

141 

44.88 

105 

33.43 

142 

45.2 

106 

33-74 

143 

45.52 

107 

34.06 

144 

4584 

108 

34.38 

145 

46.16 

109 

34.7 

146 

46.48 

no 

35.02 

147 

46.79 

III 

35-34 

148 

47.11 

112 

3565 

149 

47-43 

"3 

35-97 

150 

47-75 

1  "4 

36.29 

151 

48.07 

"5 

36.61 

152 

48.39 

116 

36.93 

153 

48.7 

117 

37.25 

'  154 

49-02 

118 

37.56 

155  ' 

49-34 

No.  of 
I'eeth. 


156 

157 
158 

159 
160 

161 

162 

163 
164 

165 
166 
167 
168 
169 
170 
171 
172 

173 

174 

»75 
176 

177 

178 

179 

180 

181 

182 

183 
184 

185 
186 

187 
188 
189 
190 
191 
192 
Pitch  In  this  table  is  true  pitch,  as  before  described. 

1?o  Compute   Cirouxnferenoe  of  a  "Wheel* 
Bulk. — Multiply  number  of  teetb  by  their  pitch. 

4C* 


Diame- 
ter. 


49.66 

49-98 

50.3 
50.61 

50.93 
51-25 
51.57 
51.89 
52.21 

52.52 
52.84 

53- »6 
53-48 
53.8 
54-12 

54-43 

54-75 

55-07 

55-39 

55-71 
56.02 

56.34 
56.66 

56.98 

57-23 
57-62 

57-93 
58.25 

5857 
58.89 

59-21 

59-53 

5984 
60.16 
60.48 
60.81 
61.13 


858  WHBBL  GEABING. 

Xo  ^onapute   Revolvitloixa  of*  a  '\Vb.eel   or   Pinion. 

RuLU. — Multiply  diameter  or  circumference  of  wheel  or  number  of  its 
teeth  in  Ins.,  as  case  may  be,  by  number  of  its  revolutions,  and  divide  prod- 
uct by  diameter,  circumference,  or  number  of  teeth  in  pinion. 

ExAXPLK.— A  pinion  10  ins.  in  diameter  is  driven  by  a  wheel  a  foet  in  diameter, 
making  46  revolutions  per  minate;  what  is  number  of  revolutions  of  pinion  t 

2  X  12  X  46 -t- 10  =  1Z0.4  revoltUums. 

To  Compute  dumber  oi*  GTeetli.  of  a  "^^heel   for  a  gi-vewk 

IDiameter   and   Pitoli. 

Rule. — Divide  diameter  by  pitch,  and  opposite  to  quotient  in  preceding 
table  is  given  number  of  teeth. 
EiAMPLB.-^Diam.  of  wheel  is  40  ins.,  and  pitch  1.675;  what  is  number  of  its  teeth? 
40  -r- 1.675  =  23.88,  and  opposite  thereto  in  table  is  75  =3  number  0/ teeth. 

To  Compute  Diameter  of  a  "Wlieel  for  a  given  I*itclx  and 

JS'vimber  of  ITeetli. 

Rule. — Multiply  diameter  in  precetling  table  for  number  of  teeth  by 
pitch,  and  product  will  give  diameter  at  pitch  circle. 
Example.— What  is  diameter  of  a  wheel  to  contain  48  teeth  of  2.5  Ins.  pitch? 

1 5. 29  X  2. 5  =  38. 225  »'♦»*• 

To  Compute  Pitoli  of  a  "^Vlieei  fbr  a  giveii  Dian&eter  and 

Number  of  Teetli.  ' 

Rule. — Divide  diameter  of  wheel  by  diameter  in  table  for  number  of 
teeth,  and  quotient  will  give  pitch. 

ExAMPLB.— What  is  pitch  of  a  wheel  when  diameter  of  it  is  50.94  ina,  and  num- 
ber of  its  teeth  80?  ^^^^  ^  25.^7  _,  ^  ,,„. 

G-eneral   Illustratioia,8. 

z.— A  wheel  96  ins.  in  diameter,  making  42  revolutions  per  minute,  is  to  drive  0 
shaft  75  revolutions  per  minute;  what  should  he  diameter  of  pinion? 

96  X  42-^75  =  53"  76  »«* 
2.— If  a  pinion  is  to  make  20  revolutions  per  minate,  required  diameter  of  an- 
other to  muke  58  revolutions  in  same  time. 

58  -7-  20  =  2.9  =  ratio  of  their  diameters.  Hence,  if  one  to  make  20  revolutions  is 
given  a  diameter  of  30  ins.,  other  wilt  be  30-7-2.9  =  10.345  *'^'- 

3.— Required  diameter  of  e  pinion  to  make  12.5  revolutions  in  same  time  as  one 
of  32  ins.  diameter  making  26.  . 

32  X  26-1-12.5  =  66.56  iriM. 

4.— A  shaft,  having  22  revolutions  per  minate,  is  to  drive  another  shaft  at  rate 
of  15,  distance  between  two  shafts  upon  line  of  centres  is  45  in& ;  what  should  be 
diameter  of  wheels  ? 

Then,  ist.  22  -f  15  :  22  ::  45  :  26.75  stru.  in  radius  of  pinion. 
2d.  22  4-15  '  '5  ''-  45  '  i8.24  =  tn«.  in  radius  of  spur. 
5.~A  driving  shaa,  having  16  revolutions  per  minute,  is  to  drive  a  shaft  81  revo- 
lutions per  miuut«,  motion  to  be  communicated  by  two  geared  wheels  and  two  pul- 
leys, with  an  intermediate  shaft;  driviag  wheel  is  to  contain  54  teeth,  and  driving 
pulley  upon  driven  shaft  is  to  be  25  ins  in  diameter;  required  number  of  teeth  in 
driven  wheel,  and  diameter  of  driven  pulley. 

Let  driven  wheel  have  a  velocity  of  V16  x  81  =  36,  a  mean  proportional  between 
extreme  velocities  16  and  81. 

Then,  ist  36  :  16  ::  54  :  24      =  teeth  in  driven  tohe^ 

2d.   81  :  36  : :  25  :  II.  II  =  ins.  diameter  of  driven  pulley. 
6.— If,  as  in  preceding  case,  whole  number  of  revolutions  of  driving  shaft,  num- 
l>er  of  teeth  in  its  wheel,  and  diameters  of  pulleys  are  given,  what  are  revolutiona 
of  shafts? 

Then,  ist  18  :  16 ::  54  :  4S  ^rewkUions  of  intermediate  thafL 
34.    15  :  48  ::  45  :  ^^rwokUions  of  driven  «^ft. 


WBBBI.  GBABINa— T££TH   OS  WUtiBLS. 


859 


Q?eetli  of  "^^Hieels. 

Kpiosroloidal. — In  order  that  teeth  of  wheels  and  pinions  should  work 
evenly  and  without  unnecessary  rubbing  friction,  the  face  (J'l-am  pitch  litte 
to  top)  of  the  outline  should  be  determined  by  an  epicycloidal  curve  (see 
page  228),  and  that  of  the  dank  {from pitch  line  to  base)  by  an  hypocycloidal 
(see  also  page  228). 

When  generating  circle  is  equal  to  half  diameter  of  pitch  circle,  hypocy- 
cloidal described  by  it  is  a  strai;;ht  diametrical  line,  and  consequently  out- 
line of  a  flank  is  a  right  line,  and  radial  to  centre  of  wheel 

If  a  like  generating  circle  is  used  to  describe  face  of  a  tooth  of  other  wheel 
or  pinion  respectively,  the  wheel  and  pinion  will  operate  evenly. 

Illustration.— Determmo  all  elements  of  wheel 
—viz.,  Pitch  circle,  Number  of  teeth,  Pitch,  Length, 
Face,  and  Flauk. 

Cut  a  template  A  to  pitch  circle  c  c  of  wheel,  and 
secure  it  temporarily  to  a  board. 

Having  determined  depth  of  tooth,  set  it  off  on 
pitch  line,  as  a  o,  Fig.  i,  and  above  it  apply  a  sec- 
ond template,  a;  radius  of  wheel  is  equal  to  half 
radius  of  pinion;  insert  into,  or  attach  exactly  at  its  edge,  a  tracer  .,  roll  template 
a  along  A,  and  tracer  will  describe  un  epicycloidal  curve,  a  r,  and  by  inverting  a 
describe  o  r,  and  faces  of  a  tooth  are  delineated. 

To  describe  flanks,  define  pitch  line  c  c,  Fig.  2,  and  arc  n  n, 
drawn  at  base  of  teeth  or  board  A  (as  in  Fig.  1),  secure  a  strip 
of  wood,  u;,  equal  in  length  to  radius  of  wheel,  and  locate 
centre  of  it,  a;,  draw  radii  x  a  and  z  o,  and  they  will  define 
flanks,  which  should  be  filleted,  as  shown  at  s  s.  Define  arc 
X2,  and  length  of  tooth  is  determined. 

Proceed  m  like  manner  conversely  for  teeth  of  pinion,  and 
wheel  and  pinion  thus  constructed  will  operate  truly. 

In  construction  of  the  teeth  of  a  wheel  or  pinion  in 
the  pattern-shop,  it  is  customary  to  construct  the  wheel 
or  pinion  complete,  out  to  face  of  wheel  at  base  of  teeth, 
and  then  to  insert  the  teeth  in  rou^h,  approximately 
shaped  blocks,  by  a  dovetail  at  their  base,  fitting  into  face  of  wheel,  and  then 
the  outline  of  a  tooth  is  described  thereon ;  the  block  is  then  removed,  fin- 
ished as  a  tooth,  replaced,  fastened,  and  filleted. 

Involxite. 

Teeth  of  two  wheels  will  work  truly  together  when  their  face  is  that  of  an 
involute  (see  page  229),  and  that  two  such  wheels  should  work  truly,  the 
circles  from  which  the  involute  lines  for  each  wheel  are  generated  must  be 
concentric  with  the  wheels,  with  diameters  in  same  ratio  as  those  of  the  wheels. 

Assume  A  c.  B  c,  Fig.  3.  pitch  radii  of  two  wheels  designed 
tc  work  togetner,  through  c,  draw  a  right  line,  e  t,  and  with 
perpendiculars  e  c,  i  c,  describe  arcs  no^rg,  and  involutes 
n  CO  and  res  define  a  face  of  each  of  the  teeth. 

To  describe  teeth  of  a  pair  of 
wheels  of  which  Ac,  Be,  Fig.  4, 
are  pitch  radii,  draw  c  t,  c  e,  per- 
pendicular to  radials  B  t  and  A  «, 
and  they  are  to  be  taken  as  the 
radials  of  the  involute  arcs  from 
which  the  faces  of  the  teeth  are 
to  be  defined ;  then  fillet  flanks  at 
base,  as  before  described,  Fig.  2. 

Tovolnte  teeth  will  work  with  truth,  even  at  varying 
distances  apart  of  the  centres  of  the  wheels,  and  any  wheels  of  a  like  pitch  will  work 
in  anion,  however  varied  their  diametera 


86o 


WHSiEL  OBABING. — TSJSTH   OF  WHBiBLS. 


— 4 


Ciroixlar  teeth  are  defined  as  follows : 

Assume  A  A,  Fig.  5,  pitch-line^  b  b  line  of  baae 
of  teeCh,  and  t  i  face-line.  Set  off  on  pitch-line 
divisions  both  of  pitch  and  depth  of  teeth,  then 
with  a  radius  of  1.25  pitch  descril)e  arcs  as  o  s 
upon  pitch  line  for  faces  of  teeth,  then  draw  ra- 
dial lines  ov^rtt^  to  centre  of  wheel  for  flanks, 
strike  arc  it  Ui  define  length  of  tooth,  and  fillet 
flanks  at  base  as  before  described. 

proportions  of  Teetli. 
In  computing  dimensions  of  a  toothy  it  is  to 
be  considered  as  a  beam  fixed  at  one  end, 
weight  suspended  from  other,  or  face  of  beam  ,• 
and  it  is  essential  to  consider  the  element  of  velocity,  as  its  stress  in  opera< 
tion,  at  high  velocity  with  irregular  acti(m,  is  increased  thereby. 

Dimensions  of  a  tooth  should  be  much  greater  than  is  necessary  to  resist 
direct  stress  upon  it,  as  but  one  tooth  is  proportioned  to  bear  whole  stresv 
upon  wheel,  although  two  or  more  are  actually  in  contact  at  all  times ;  but 
this  requirement  is  in  consequence  of  the  great  wear  to  which  a  tooth  is  sub- 
jected, shocks  it  is  liable  to  from  lost  motion,  when  so  worn  as  to  reduce  its 
depth  and  uniformity  of  bearing,  and  risk  of  the  loss  of  a  tooth  from  a  defect 

A  tooth  running  at  a  low  velocity  may  be  mat^ially  reduced  in  its  dimen- 
sions, compared  with  one  running  at  a  high  velocity  and  with  a  like  stress. 

Result  of  operations  with  toothed  wheels,  for  a  long  period  of  time,  has 
determined  that  a  cast-iron  (Eng.)  tooth  with  a  pitch  of  3  ins.  and  a  breadth 
of  7.5  ins.  will  transmit,  at  a  velocity  of  6.66  feet  per  second,  power  of  59.16 
horses. 

Xo  Conoipute   IDizxiensions   of*  a  Tooth,  to  Resist  a  gi-ven 

Stress. 

Rule. — Multiply  extreme  pressure  at  pitchrline  of  wheel  by  length  of 
tooth  in  decimal  of  a  foot,  divide  product  by  Coefficient  of  material  of  tooth, 
and  quotient  will  give  product  of  breadth  and  square  of  depth. 
SI 


Or, 


b  d^.    S  repreitnting  stress  in  lbs.,  and  I  length  in  feet 


The  Coefficient  of  cast  iron  for  this  or  like  purposes  may  be  taken  at  from  50  to  70. 


Pitch  A  B  =  1. 
Length  co  =  .  75. 
Working  longtn  c  c  =  .7. 
Clearance  e  to  o  r=  .05. 


Depth  r»  =  .  45. 
Space*  ©=.55. 
Play  «i»— r«  =  .i. 
Face  B  c  =  .35. 


Nor.  —  It  \»  Deoessary  fint  to  detsnnine  pitch,  in 
order  to  obtain  either  length  or  depth  of  a  tooth. 

Example. — Pressure  at  pitch-line  of  a  cAst- 
iron  wheel  (at  a  velocity  of  6.66  feet  per  sec- 
ond) is  4886  lbs. ;  what  should  be  dinensions 
of  teeth,  pitch  being  3  ins.  f 
3  X  75  =  2-  25  length  of  tooth,  which  -s- 12  = .  1875  =  length  in  decimal  of  afoot 
Coefficient  of  material  is  taken  at  6a 
4886  X.I  875 


60 


=  15. 27.    If  length  =  2. 25,  pitch  =  3,  and  depth  =  j.  35  in». 


PUches  of  Equivalent  Strength  for  Cast  Iron  and  Wood.— Iron  i.    Hard  wood  x.a& 

Then  ^^^  =  8.39  ins.  breadth. 
1.35=^        ^^ 

When  Product  ofbd^is  obtained,  and  it  is  required  to  ascertain  elthef 
dimension,     yj—r-  =  d^ptt,  and  -— -  =  breajdih. 


WBBKL  GBAXINO. — TBKTH   OF   WUEBtS. 


86 1 


T^  Coznpnte  IDeptlk  of  a  Tooth. 

I.  Wken  8tru$  is  given.  Rule.— Extract  square  root  of  stress,  and  mul- 
tiply it  by  .02  for  cast  iron,  and  .027  for  hard  wood. 

a.  When  IP  ig  given.  Rule. — Extract  square  root  of  quotient  of  ff  di- 
vided by  velocity  in  feet  per  second,  and  multiply  it  by  .466  for  cast  iron, 
and  .637  for  hard  wood. 

ExM.TtFut.—W  to  be  transmitted  by  a  tooth  oiT  cast  iron  is  60,  and  velocity  of  it 
at  its  pitch-line  is  6.66  feet  per  second ;  what  should  be  depth  of  tooth  ? 

60 


V  6-66 


X  .466  =  1.398  ins. 


To   Compute   H?   of  a  Tooth. 

Rule. — ^Multiply  pressure  at  pitch-line  by  its  velocity  in  feet  per  minute^ 
and  divide  product  by  33cxx>. 

EXAVPLB.— What  is  ]^  of  a  tooth  of  dimensions  and  at  velocity  given  in  preced- 
ing example. 

4886  X  6.66  X  60"  -7-33000  =  59.16  horses. 

To  Oompute  Stress  that  may  be  borne  by  a  Tooth. 

Rule. — ^Multiply  Coefficient  of  material  of  tooth  to  resist  a  transverse 
fftnun,  as  estimated  for  this  character  of  stress,  by  breadth  and  square  of  its 
depth,  and  divide  product  by  extreme  length  of  it  in  decimal  of  a  foot. 

•ExAMPLB. — Dimensions  of  a  cast-iron  tooth  in  a  wheel  are  1.38  ins.  in  depth,  2.x 
in&  in  length,  and  7.5  in&  in  breadth;  what  is  the  stress  it  will  bear? 

6oX7.5Xi.38»^^3j^jj, 


Coefficient  assumed  at  6a 


2.1-:- 12 


Following  deductions  by  the  rules  of  (''Terent  authors  for  like  elements  are  sub- 
mitted for  a  cast-iron  tooth: 

Pitch 3  ins.  I  Depth....  x.j8  tna.  |  Braa(!th...  7.5  itu.  \  Length....  s.i  ins. 


Actual  Powsb  in  Sthem  Exibrd 
at  m  MA>etty  </4oo/Mf  ptr  min.,  4886  Ibi. 


/H 
By  Above  Bute     /—  x  .446 

"  Fairbaim  .025  y/W. 

••  Imperial  Journal  ^  I — p  . . 

V  1576 


Depth  of 
Tooth. 


Ins. 
1. 398* 

1.76 


Actual  Powbr  in  Sivkss  Exkrtid 
<rt  a  vdoeitjf  0/ ^00  feH  jitr  min.,  4886  Ibt: 


I  W 

By  Bankine  ,  / . 

V  1500 


-Tredgold  i-^ 


"  Buchanan 


V- 


556  H 


Depth  of 
Tooth. 

X.8 


2.25 


2.24 


H  rqpretentinff  horsepower  (60),  W  Hress  in  26«.,  and  v  velocity  in  feet  per  second. 

Depth,  Pitch,  and   Breadth.    (M.  Morin.) 

Cast  iron .o28-/W=:d  .057^^  =  ?. 

Hard  wood 038  -/W  =  d.  .079  v'W=  P. 

W  rqpresetUing  weight  or  stress  upon  tooth  in  Vbs.^  d  depth  of  toothy  and  P  pitch 
in  ins. 

When  velocity  of  pitch -circle  does  not  exceed  5  feet  per  second  bzs^d^ 

when  it  exceeds  5  feet  6  =  5  c^,  and  if  wheels  are  exposed  to  wet  6  =  6  d. 

b  represetUing  breadth. 

iLLrsTEATioN. — Assomc  pressurc  at  pitch-line  of  a  cast-iron  wheel  upon  a  tootb 
equal  6000  Iba,  and  velocity  5  feet  per  second. 

Then  .028  ^^6000= 2. 17  ins.  Depth,  and  .057  v'6ooo  =  4.4x  ins.  Pitch. 

NoTB.  —  For  farther  niaatratioM  of  Fornmtlon  of  Teeth,  Berel  Gefirliifr,  Wiilis'i  Odontoftrapi.. 
SteToe,  Tmodlee,  etc.,  see  Motely's  Engineeriog,  Shelton'a  MechkDic's  Gaide,  Fiurbaim's  M^wattn 
and  IbebiiMrjr  ofCoaatroction,  etc. 


09 


•  ThU  depthi  with  •  hrwdth  of  7.5  in*.,  is  .z  of  nltimato  atrtDfth  of  vrmf  ttMBg th  of  Aneikaa 
CMt  Iroo. 


^C>2  TESTH   OF  WHEELS. — WINDING  ENGINES. 

FROPOBTIONS  OF  WHEELS.     ^ 

With  six  flat  A  rms  and  RU)8  upon  one  ride  of  them^  at  *■■■( ;  or  a  Weh 
in  centre,  as  ■■j^* 

JHm. — Depth,  measured  from  base  of  teeth,  .45  to  .5  of  pitch  of  teeth,  hav- 
ing a  web  upon  its  inner  surface  .4  of  pitch  in  depth  and  .25  to  .3  of  it  in 
width. 

NoTS.~-When.f3uw  of  wheel  is  mortised,  depth  of  rim  shoald  be  1.5  times  pitch, 
and  breadth  of  it  1.5  times  breadth  of  tooth  or  cog. 

IltA. — When  eye  is  proportionate  to  stress  upon  wheel,  hub  should  be 
twice  diameter  of  eye.    In  other  cases  depth  aroimd  eye  should  be  .75  to  .8 
•  of  pitch. 

Arm. — Depth  .4  to  .45  of  pitch.  Breadth  at  rim  1.5  times  pitch,  increas- 
ing .5  inch- per  foot  of  length  toward  hub. 

Rib  upon  one  edge  of  arm,  or  Web  in  its  centre,  should  be  from  .35  to  .3 
pitch  in  width,  and  .4  to  .45  of  it  in  depth. 

When  section  of  an  arm  differs  from  those  above  given,  as  with  one  with 

a  plane  section,  as  ■■■■■,  or  with  a  double  rib,  as  laaJt  i^  dimensions 

should.be  proportioned  to  form  of  section. 

In  a  wheel  of  greater  relative  diameter,  length  of  hub  and  breadth  of  arms, 
or  of  the  rib  or  web,  according  as  plane  of  arm  is  in  that  of  wheel,  or  con- 
trariwise, should  be  made  to  exceed  breadth  of  face  of  wheel  (at  the  hub) 
in  order  to  give  it  resistance  to  lateral  strain. 

Number  of  arms  in  wheels  should  be  as  follows*. 

z.  5    to  3. 25  feet  in  diameter. .........  4  I  5     to    8. 5  feet  in  diameter 6 

3.25  ''5        "  *'       5 1 8.5  "16      "  "         8 

16  to  24  feet  in  diameter 10 

With  light  wheels,  number  of  arms  should  be  increased,  in  order  better  to 
sustain  rigidity  of  rim. 

Mortise  Wheels. — Their  rim  or  face  should  be  .9  pitch  of  tooth,  and  twice 
depth  of  rim  of  a  solid  wheel. 


WINDING  ENGINEa 

With  Winding  Engines,  for  drawing  coals,  etc.,  out  of  a  Pit,  wher«  it 
is  required  to  give  a  certain  number  of  revolutions,  it  is  necessary  to 
have  given  diameter  of  Drum  and  thickness  of  rope,  which  is  flat  made, 
and  contrariwise. 

To   Compute   IDiaxneter  of*  a  IDruxn. 

Where  Flat  Ropes  art  used,  and  are  wound  One  part  over  the  other,  Rulk; 
—Divide  depth  of  pit  in  ins.  by  product  of  number  of  revolutions  and  3.1416L 
and  from  quotient  subtract  product  of  thickness  of  rope  and  number  of  rev- 
olutions ;  remainder  is  diameter  in  ins. 

Example.— If  an  engine  makes  20  revolutions,  depth  of  pit  being  600  feet  and 
rope  I  inch,  what  sbouid  be  diameter  of  drum  ?  ' 

600  X  J2        7300 

— ^  —  I  X  20  =  ^— r 20  =  94.59  xns, 

30X3.14IO  62.832  yr-^Pir 

To   Compute   I>iaxueter  of  Roll. 

Rule. — To  area  of  drum  add  area  or  edge  surface  of  rope ;  then  asceitain 
by  inspection  in  table  of  areas,  or  by  calculation,  diameter  that  fives  thia 
area,  and  it  is  the  diameter  of  RolL  ^^ 


WINDING   ENGINES. — WINDMILLS.  863 

ExixnjL — What  )8  diameter  of  roll  in  preceding  example? 

Area  of  94.50  =  7027.2-4- (&rea  of  7200  x  1)^=7200  =14097-31  &D<i  ■>/'4^^7'^~*~ 
.7854  =  151.85  int. 

Or,  Radius  of  drum  is  increased  number  of  revolutions  multiplied  by  thickness 
of  rope ;  as  ^^^  +  20X  1  =  67. 295  ins. 

To   Compute  Nixmbeir  of  R.evolu.tious. 

RVLE.^-To  area  of  driim  add  area  of  edge  surface  of  rope ;  flrom  diameter 
of  the  circle  having  that  area  subtract  diameter  of  drum,  and  divide  re- 
mainder by  twice  thickness  oi  rope ;  quotient  will  give  number  of  revolutions. 

Example.— I<ength  of  a  rope  is  2600  ins.,  its  thickness  i  inch,  :jid  diameter  of 
dram  20  ina ;  what  is  number  of  revolutions? 

Area  of  ao-f  area  of  rope =314. 16-^2600=2914.16,  diameter  of  which  is  6a9i, 

.  60.91  — 20  ,  ,. 

and  — =  20.45  revoltUunu. 

1X2 

Or,  subtract  diameter  of  drum  from'  diameler  of  rolU  and  divide  remainder  by 
twice  thickness  of  ro]Yc;  as6a9i  —  2o  =  4a9i,  and  40.91-7-1  x  2  — 2o.45rei7o/u^ton<. 

Xo   CompTite   Point  of  l^eetlns    of*  A.8oeiidiiie  and   IDe- 
soeiidiiig   Suokets   Avlien    two   or   more   are   iised. 

To  Compute  Point  of  Meeting  of  Buckets.  Rulk. — Divide  sum  of  length 
of  turns  of  rope  by  2,  and  to  quotient  add  length  of  last  turn ;  divide  sitin 
by  2,  multiply  quotient  by  half  number  of  revolutions,  and  product  will 
give  distance  from  centre  of  drum  at  which  buckets  will  meet, 

NoTK  I.— Meetings  will  always  be  below  half  depth  of  pit 
2. --At  half  number  of  revolutions  buckets  will  meet 

ExAMPLK.— Diameter  of  a  drum  is  9  feet,  thickness  of  rope  1  inch,  and  revolu- 
tions 20;  what  is  depth  of  pit,  and  at  what  distance  nrom  toQ  will  buckets  meet? 

■8.544-3B.48  ,  -r — zn —  .30     71499X10  -  , 

a       ^-^ 4- 38.48 -S- 2  X  -  =  ^    ^^         =35  995  X  10  =  359.95/ee<. 

To  ComptUe  this  Depth.  Ritle. — To  diameter  of  drum  add  thickness  of 
rope  in  feet,  and  ascertain  its  circumference ;  to  diameter  of  drum  add  quo« 
tient  of  product  of  twice  thickness  of  rope  and  number  of  revolutions  less  i, 
divided  oy  12  for  a  diameter,  and  circumference  of  this  diameter  is  length 
of  last  turn,  also  in  feet ;  add  these  two  lengths  together,  multiply  their  sum 
by  half  number  of  revolutions,  and  product  will  give  depth  of  pit 

9  +  thickness  of  rope  =:9-f.,2^ofx=9. 083,  which  x  3- 1416  =  28. 54  feet  =  length 

ofp^ twm.    9.0833 ■\ • — ^~'  X  3-1416  =  38.48 /«et  =  ltri9th ofUut turn. 

Then  28.54+38.48  X  —  =  67.02  X  lo  =  67o.2/e6^,  depth  qfpit 


WINDMILLS. 


Drimn^  8hc{ft  of  a  vertical  windmill  should  be  set  at  an  elevating  angle 
with  horizon  when  set  upon  low  ground,  and  at  a  depressing  angle  when  set 
upon  elevated  ground.  Range  of  these  angles  is  from  3^  to  15°.  A  velocity 
of  wind  of  10  feet  per  second  is  not  generally  sufficient  to  drive  a  loaded 
mill,  and  if  velocity  exceeds  35  feet  per  second  the  force  is  generally  too 
great  for  ordinary  structures. 

Angle  of  Sails  should  be  from  18^  to  30®  at  their  least  radius,  and  from 
7^  to  17°  at  their  greatest  radius,  mean  angle  being  from  15^  to  17°  to  plane 
of  motion  of  sails.  Length  of  a  whip  (arm)  is  divKled  into  7  puts,  saiu  ex- 
tending  over  6  parts. 


864  Wind-mills. 

Whip  in  parts  of  its  length :  Breadth  .055,  at  top  ^16 ;  Depth  .025,  at  top 
.0125;  Width  of  sail  .33,  at  axis  .2.  Distance  of  sail  from  axis  .014  of 
length  of  whip,  and  cross-bars  16  to  18  ins.  from  centres. 

To   Compute   A.nglea   of  Sa^ia* 

18  d' 
930 i—  =  angle  of  sail  with  plane  of  its  motion  at  any  part  of  it    d  repn^ 

wenUng  distance  qfpart  ofsaUfrom  its  aaas^  and  r  extreme  radius  ofsaily  both  in  feet 

Illustration.— Assame  r  =  14,  and  length  of  sail  la  feet,  £{  =  .5  of  is  or  three 
sixths  of  sail  =  .5  X  18 + (14  — 12)  =  2  =  8  feet. 

18  X  8* 
Then  23° ^—  =  23  —  5. 88°  =  17. 12O. 

Hence,  angle  of  sail  with  axis  =  90°  — 17.  la**  =  73.88°. 

If  radius  of  sails  is  divided  into  6  eqnal  parts,  angles  at  each  of  these  parts  will 

be  as  follows: 

Dbtanoe  from  /.ids. 

X  a  3  4  S  6 

Angle  of  sail  with  axis 67.5O    69O    71.5O    75O    79.5O    85° 

"       "       with  plane  of  motion 22.5°    21°    18.5°    15*     x<xs®     5° 

To   Compute   Klemeuts  of  Windmills. 
3.16 »  11.5 »  A  t>s  .^^ 

r'sm.  a;        '  r  '  -^#  »  1080000  • 

ffX  1080000      .  /R«-fr«       .  ..      _,_.-      -     .    . 

=^- =  A;        ^ ' — =.r^.    V  representing  velocUif  of  unnd  per  see- 

ondy  r'  radius  of  centre  of  percussion  of  sails,  and  R  and  r  outer  and  inner  radii  of 
sails,  cUl  in  feet,  x  mean  angle  of  saU  to  plane  ofmoUoUy  n  wumber  ofreooluiiont  oj 
ariM  per  minuU,  a  v  angular  velocity,  A  area  tfsaUs  in  sq.feet,  and  W  horse-power. 

Illustration.— If  a  windmill  has  4  arms  of  28  feet,  with  a  mean  angle  (a;)  of  16°, 
with  an  area  of  sail  of  150  sq.  feet  each,  having  an  inner  radius  of  4  (bst,  and  is  op- 
erated by  wind  at  a  velocity  of  40  feet  per  second;  what  are  its  elements? 

_.       11.5X40  /28*'-f-4*       ,  ,_.        3.16x40 

Then  — ^—^-  =  n =83;   ./ ^^-^=sr'=z 20 feet;     -^l_ai_=n  =  82.95; 

20  "''  V       2  aox.27564  ^"" 

4Xi5oX64ooo_       _  3555  X  io8oooo_     ^        ^ 

X>ed.u.ctioii8  fVom  'Velocities  -varying  fVoxxi  4  to  O  ITeet  per 

Second.    {Mr.  SmecUon.) 

1.  Velocity  of  windmill  sails,  so  as  to  produce  a  maximum  effect,  is  near- 
ly as  velocity  of  wind,  their  shape  and  position  being  same. 

2.  Load  at  maximum  is  nearly,  but  somewhat  less  than,  as  square  of  ve- 
locity of  wind,  shape  and  position  of  sails  being  same. 

3.  Effects  of  same  sails,  at  a  maximum,  are  nearly,  but  somewhat  less 
than,  as  cubes  of  velocity  of  wind. 

4.  I^ad  of  same  sails,  at  maximum,  is  nearly  as  squares,  and  their  effect 
as  cubes  of  their  number  of  turns  in  a  given  time. 

5.  In  sails  where  figure  and  position  are  similar,  and  velocity  of  wind  the 
same,  number  of  revolutions  in  a  given  time  will  be  reciprocally  as  radius  or 
length  of  sail. 

6.  Load,  at  a  maximum,  which  sails  of  a  similar  figure  and  position  will 
overcome  at  a  given  distance  from  centre  of  motion,  will  be  as  cube  of  radius. 

7.  Effects  of  sails  of  similar  figure  and  position  are  as  si^uare  of  radius. 

8.  Velocity  of  extremities  of  Dutch  sails,  as  well  as  of  enlarged  sails,  in 
all  their  usual  positions  when  unloaded,  or  even  loaded  to  a  maximum,  ia 

"tnsiderably  greater  than  that  of  wind. 


WINDMILLS. — ^WOOD  ADTD  TIUBBB. 


865 


Rentilt»  of*  Experiments  on  BJfieot  of*  'Windmill   Sails. 
When  a  vertical  windmill  is  employed  to  grind  com,  the  millstone  usu- 
ally makes  5  revolutions  to  i  of  the  saiL 

1.  When  velocity  of  wind  is  19  feet  per  second,  sails  make  from  11  to  12 
revolutions  in  a  minute,  and  a  mill  will  grind  from  880  to  990  lbs.  in  an 
hour,  or  about  22  440  lbs.  in  24  hours. 

2.  When  velocity  of  wind  is  30  feet  per  second,  a  mill  will  carry  aU  sail, 
and  make  22  revolutions  in  a  minute,  grinding  19^  lbs.  of  flour  in  an  hour; 
or  47  616  lbs.  in  24  hours. 

Reairdts  of  Operation  of*  'Windmills.    (A.  M.  Woo^,  M.  S.) 

Vdocity  of  Wind  15  to  20  Miles  per  Hour. 

BevohUioni  of  Wheel  and  OaUons  of  WaUr  raised  per  Minute. 


nation 

of  Mm. 

AVTVininnn 

of 

WhMl. 

asFMt. 

er  nlMd  to 
50  Feet. 

an  ElcTatu 
ICO  Fe«t. 

>nof 
200  Feot. 

Power 
doTeloped. 

Cost  per  Hoar. 
Actual.*      Per  IP. 

Feet. 

No. 

Gallons. 

Gallons. 

Gallons. 

Gallons. 

IF 

CenU. 

CenU.. 

8.5 

701075 

6.16 

3.02 

— 

— 

.04 

.60 

>5 

10 

601065 

19.18 

9-5.6 

4-75 

— 

.12 

.70 

5.8 

»4 

SO  to  55 

97.68 

22.57 

XI. 25 

5 

.28 

1.63 

5-? 

18 

40  to  45 

52.16 

24.42 

ia.2i 

.61 

2.83 

4.6 

20 

35*040 

124.95 

63 -75 

3'-25 

'5-94 

.78 

3- 56 

4-5 

25 

30  to  35 

212.38 

106.96 

49-73 

36.74 

«-34 

4.26 

3-« 

•  Inel 

odiog  InterMt  at  5  per 

oeBt.p«r  ai 

umm. 

WOOD  AND  TIMBER. 

Selection  of  Standhig  Trees. —  Wood  grown  in  a  moist  soil  is  lighter, 
and  decays  sooner,  than  that  grown  in  dry,  sandy  soil. 

Best  Timber  is  that  grown  in  a  dark  soil,  intermixed  with  gravel. 
Poplar,  Cypress,  Willow,  and  all  others  which  grow  best  in  a  wet  soil, 
are  exceptions. 

Hardest  and  densest  woods,  and  least  subject  to  decay,  grow  in  warm 
climates ;  but  they  are  more  liable  to  split  and  warp  in  seasoning. 

Trees  grown  upon  plains  or  in  centre  of  forests  are  less  dense  than 
those  from  edge  of  a  forest,  from  side  of  a  hill,  or  from  open  ground. 

Trees  (in  U.  S.)  should  be  selected  in  latter  part  of  July  or  first  part 
of  August;  for  at  this  season  leaves  of  sound,  healthy  trees  are  fresh 
and  green,  while  those  of  unsound  are  beginning  to  turn  yellow.  A 
sound,  healthy  tree  is  recognized  by  its  top  branches  being  well  leaved, 
bark  even  and  of  a  uniform  color.  A  rounded  top,  few  leaves,  some  of 
them  turned  yellow,  a  rougher  bark  than  common,  covered  with  parasitic 
plants,  and  with  streaks  or  spots  upon  it,  indicate  a  tree  upon  the  -de- 
cline. Decay  of  branches,  and  separation  of  bark  from  the  wood,  are 
infallible  indications  that  the  wood  is  impaired. 

Green  timber  contains  37  to  48  per  cent,  of  liquids.  By  exposure  to 
air  in  seasoning  one  year,  it  loses  from  17  to  25  per  cent.,  and  when 
seasoned  it  retains  from  10  to  15  per  cent. 

According  to  M.  Leplav,  green  wood  contains  about  45  per  cent  of  its 
weight  of  moisture.  In  Cfentral  Europe,  wood  cut  in  winter  holds,  at  end  of 
following  summer,  fully  40  jMjr  cent,  of  water,  and  when  kept  dry  for  sev' 
eral  years  retains  from  15  to  20  per  cent,  of  water. 

Felling  Timber. — Most  suitable  time  for  felling  timber  is  in  midwinter  and 
In  midsummer.  Recent  experiments  indicate  latter  season  and  month  of  July 

4D 


i^ 


866  WOOD    AND   TIMBEB. 

A  tree  should  be  allowed  to  attain  full  maturitr  before  being  felled.  Oak 
matures  at  75  to  100  years  and  upwards,  according  to  circumstances ;  Ash, 
Larch,  and  Elm  at  75 ;  and  Spruce  and  Fir  at  80.  Age  and  rate  of  growth 
of  a  tree  are  indicated  by  number  and  width  of  the  rings  of  annual  increase 
which  are  exhibited  in  a  cross-section  of  ita  body. 

A  tree  should  be  cut  as  near  to  the  ground  as  practicably  as  the  lower 
part  furnishes  best  timber. 

Dressing  Timber. — As  soon  as  a  tree  is  felled,  it  should  he  stripped  of  its 
bark,  raised  from  the  ground,  reduced  to  its  require<l  di.ucusious,  and  its 
sap-wood  renmved. 

ImpecUon  of  Timber. — Quality  of  wood  is  in  some  degree  indicated  by  its 
color,  which  should  be  nearly  uniform,  and  a  little  deeper  towards  its  cen- 
tre, and  free  from  sudden  transitions  of  color.  White  spots  indicate  decay. 
Sap-wood  is  known  by  its  white  color ;  it  is  next  tu  the  bark,  and  soon  rots. 

Dereots   of*  Timber. 

Witid-ahakes  are  serious  defects,  being  circular  cracks  separating  the  con- 
centric layers  of  wood  from  each  other. 

Splits,  Cfiecks^  and  Criicks^  extending  toward  centre,  if  deep  and  stronely 
marked,  render  tinibiT  unfit  for  use,  unless  purpose  for  which  it  is  intended 
will  admit  of  its  being  split  through  them. 

Brash  is  when  woo<l  is  porous,  of  a  reddish  color,  and  breaks  short,  with- 
out splinters.     It  is  generally  consequent  u{H>n  decline  of  tree  fiom  age. 

Belled  is  that  which  has  been  killed  before  being  felled,  or  which  has  died 
from  other  causes.    It  is  objectionable. 

Knotty  is  that  containing  many  knots,  tliough  sound ;  usually  of  stinted 
growth. 

TtoiHed  is  when  grain  of  it  winds  spirally ;  it  is  unfit  for  long  pieces. 

Dry-rot  is  indicated  by  yellow  stams.  Elm  and  Beech  are  soon  afifected, 
if  left  with  the  bark  on. 

Large  or  decayed  knots  injuriously  affect  strength  of  timber. 

Heart-shake. — Si)lit  or  cleft  in  centre  of  tree,  dividing  it  into  segmen^ 

Star-shake, — Several  splits  radiating  from  centre  of  timber. 

Cup-shake, — Curved  splits  separating  the  rings  wholly  or  in  part. 

Rind-gaU. — Curved  swelling,  usuaUy  caused  by  growth  of  layers  over  spot 
where  a  branch  has  been  removed. 

Upset. — Fibres  injured  by  crushing. 

Foxiness. — Yellow  or  red  tinge,  indicating  incipient  decay. 

Do€Uin€S9,^A,  speckled  stain. 

Seasoiiins  and   FreBerviixs  Timber. 

Seasonmg  is  extraction  or  dissipation  of  the  vegetable  juices  and  moisture 
or  soliditication  of  the  albumen.  When  wood  is  exposed  to  currents  of  air 
at  a  high  temperature,  the  moisture  evaporates  too  rapidly,  and  it  cracks ; 
and  when  temperature  is  high  and  sap  remains,  it  ferments,  and  dry-rof 
ensues. 

Wood  requires  time  in  which  to  season,  very  much  in  proporti(H3  to  density 
of  its  fibres. 

Water  Seasoning  is  total  immersion  of  timber  in  water,  for  purpose  of 
dissolving  the  sap,  and  when  thus  seasoned  it  is  less  liable  to  warp  ana  crack, 
but  is  rendered  more  brittle. 


WOOD  AND  TIHBEB.  86/ 

For  purpose  of  teasontng,  it  should  be  piled  under  shelter  and  kept  dry ; 
should  have  a  free  circulation  of  air,  without  being  exposed  to  strong  cur> 
rent«.  Bottom  pieces  should  be  placed  upon  skids,  which  should  be  free 
from  decay,  raised  not  less  than  2  feet  from  ground ;  a  space  of  an  inch 
should  inten'ene  between  pieces  of  same  horizontal  layers,  and  slats  or  piling- 
strips  placed  between  each  layer,  one  near  each  end  of  pile,  and  others  at 
short  distances,  in  order  to  keep  the  timber  from  winding.  These  strips 
should  be  one  over  the  other,  and  in  large  piles  should  not  be  less  than  i  inch 
thick.  Light  timber  may  be  piled  in  upper  portion  of  shelter,  heavy  timber 
upon  ground  floor.  Each  pile  should  contain  but  one  description  oi  timber, 
and  they  shoidd  be  at  least  2.5  feet  apart. 

It  should  be  replied  at  intcr\'als,  and  all  pieces  indicating  decay  should  be 
removed,  to  prevent  their  affecting  those  wnich  are  still  sound. 

It  requires  from  2  to  8  years  to  be  seasoned  thoroughly,  according  to  its 
dimensions,  and  it  should  be  worked  as  9oon  as  it  is  thoroughly  dry,  for  it 
deterionrtes  after  that  time. 

Gradual  seasoning  is  most  favorable  to  strength  and  durability  of  timber. 
Various  methods  have  been  proposed  for  hastening  the  process,  as  8teamiiig^ 
which  has  been  applied  with  success;  and  results  of  experiments  of  various 
pnxjesses  of  saturating  it  with  a  solution  of  Cofrosive  suldimtUe  and  Anti- 
tepUc  ^uids  are  very  satisfactory.  Such  process  hardens  and  seasons  wood, 
at  the  same  tlmye  that  it  secures  it  from  dry<rot  and  from  attacks  of  woru)s. 

Woods  are  densest  and  strongest  at  the  roots  and  at  their  centres.  Their 
strength  decreasing  with  the  decrease  of  their  density. 

Oak  timber  loses  onB  fifth  of  its  weight  in  seasoning,  and  about  one  third 
in  becoming  perfectly  dry. 

Pitch  pine,  from  the  presence  of  pitch,  requires  time  in  excess  of  that  due 
to  the  densitv  of  its  fibre. 

Mah(^any  should  be  seasoned  slowly,  Pine  quickly.  "VHiitewood  should 
not  be  dried  artificially,  as  the  effect  of  heat  is  to  twist  it 

Salt  water  renders  wood  harder,  heavier,  and  more  durable  than  fresh. 

Condition  of  timber,  as  to  its  soundness  or  decay,  is  readily  recognized 
when  struck  with  a  quick  blow. 

Timber  that  has  been  for  a  long  time  immersed  in  water,  when  brought 
into  the  air  and  dried,  becomes  brashy  and  useless. 

When  trees  are  barked  in  the  spring,  they  should  not  be  felled  until  the 
foUagft  is  dead. 

Timber  cannot  be  seasoned  by  either  smoking  or  charring ;  but  when  it 
is  exposed  to  worms  or  to  the  production  of  fungi^  it  is  proper  to  smoke  or 
char  it,  and  it  may  be  partially  seasoned  by  being  boiled  or  steamed. 

Timber  houses  are  best  provided  with  blinds  which  keep  out  rain  and 
snow,  but  which  can  be  turned  to  admit  air  in  fine  weather,  and  the  houses 
should  be  kept  entirely  free  from  any  pieces  of  decayed  wood. 

Kiln-drj^ng  is  suited  only  for  boards  and  pieces  of  small  dimensions,  as  it 
is  apt  to  cause  cracks  and  to  impair  the  strength,  unless  performed  very 
slowlv. 

Chairing,  Pfiinting^  or  covering  the  surface  is  highly  imirious  to  any  hut 
seasoned  wood,  as  it  efleotunlly  prevents  drying  of  the  inner  part  of  the 
wood,  in  consequence  of  which  fermentation  and  decay  soon  take  place. 

Timber  is  subject  to  Common  or  Dry-rot,  former  occasioned  by  alternate 
exposure  to  inojsturc  and  dryness,  and  as  pro;;ress  of  it  is  from  the  exterior 
covering  of  the  surface,  if  seasoned,  with  paint,  tar,  etc.,  is  a  preservative 


u 


868  WOOD   AKD   TIMBSB. 

Common-rci  is  the  conseqaence  of  its  being  piled  in  badly-ventilated  sheds. 
Outward  indications  are  yellow  spots  upon  ends  of  pieces,  and  a  yellowish 
dust  in  the  checks  and  cracks,  particularly  where  the  pieces  rest  upon  pil- 
ing-strips. 

Dry  or  Sap-rot  is  inherent  in  timber,  and  it  is  the  putrefaction  of  the  veg- 
etable albumen.  Sap  wood  contains  a  large  proportion  of  fermentable  ele- 
ments. 

Insects  attack  wood  for  the  sugar  or  gum  contained  in  it,  andyVifi^  subsist 
upon  the  albumen  of  wood ;  hence,  to  arrest  dr^'-rot,  the  albumen  must  be 
either  extracted  or  solUlilied. 

Most  effective  method  of  preserving  timber  is  that  of  expelling  or  ex- 
hausting its  fluids,  solidifying  its  albumen,  and  introducing  an  antiseptic 
liquid. 

Strength  of  impregnated  timber  is  not  reduced,  and  its  resilience  is  improved. 

In  desiccating  timber  by  expelling  its  fluids  by  heat  and  air,  its  strength 
is  increased  fully  15  per  cent. 

The  saturation  of  wood  with  creosote,  tar,  antiseptics,  etc,  preserves  it 
from  the  attack  of  worms.  Jarrow  wood,  from  Australia,  is  not  subjected 
to  their  attack. 

In  a  perfectly  dry  atmosphere  durability  of  woods  is  almost  unlimited. 
Rafters  of  roofs  are  knovm  to  have  existed  1000  years,  and  piles  submerged 
in  fresh  water  have  been  found  perfectly  sound  &»  years  from  period  of 
their  being  driven. 

Resistance  of  woods  to  extension  is  greater  than  that  of  compression. 

Impregnation   of*  'Wood- 
Several  of  the  successful  processes  are  as  follows : 

Kyan^  1833. — Saturated  with  corrosive  sublimate.  Solution  z  lb.  of  chlo- 
ride of  mercury  to  4  gallons  of  water. 

Burnett  {Sir  Wm.)^  1838.  —  Impregnation  with  chloride  of  zinc  by  sub- 
mitting the  wood  endwise  to  a  pressure  of  150  lbs.  per  sq.  inch.  SoluticHi, 
I  lb.  of  the  chloride  to  4  gallons  of  water. 

Boucheri, — Impregnation  by  submitting  the  wood  endwise  to  a  pressure 
of  about  15  lbs.  per  sq.  inch.  Solution,  i  lb.  of  sulphate  of  copper  to  ia.5 
gallons  of  water. 

BetheL — Impregnation  by  submitting  the  wood  endwise  to  a  pressure  of 
150  to  200  lbs.  per  sq.  inch,  with  oil  of  creosote  mixed  with  bituminoos 
matter. 

Robbins^  1865. — Aqueous  vapor  dissipated  by  the  wood  being  heated  in  a 
chamber,  the  albumen  solidified,  then  submitted  to  vapor  of  coal  tar,  resin, 
or  bituminous  oils,  which,  being  at  a  temperature  not  less  than  325°,  readily 
takes  the  place  of  the  vapor  expelled  by  a  temperature  of  212*^. 

H(iyford^  1 87-. — Aqueous  vapor  dissipated  by  the  wood  being  heated  in  a 
chamber  to  a  temperature  of  from  250*^  to  270^,  the  albumoa  solidified,  then 
air  introduced  to  assist  the  splitting  of  the  outer  surfaces.  When  vapor  is 
dissipated,  dead  oils  are  introduced  under  a  pressure  of  75  lbs.  per  sq.  inch. 

PlankSj  Deals^  and  Battens. — When  cut  from  Northern  pine  {Pinus  St/lve^ 
stria)  are  termed  yellow  or  red  deal,  and  when  cut  from  spruce  {Abiesj  aUfo, 
etc.)  they  are  termed  white  deal. 

Desiccated  wood,  when  exposed  to  air  under  ordinarv  circumstances,  ab- 
sorbs 5  per  cent,  of  water  in  the  first  three  days ;  and  will  continue  to  al^orh 
it  until  it  reaches  from  14  to  16  per  cent,  the  amount  varying  according 
to  condition  of  the  atmosphere. 


WOOD  XSt>  TIUBBB. 


869 


X>Tirabilit3r  of  Various  "Woods. 
jRteeet  2  feet  in  Lengthy  1.5  int.  Square,  driven  38.5  ins.  into  the  JSarth. 

Coodition 


Wood. 


Acacia 

Asb,  Amer 

Cedar,  Va 

*^  Lebanon. 
Elm,  Eng 

*'      Can 

Fir 


Larch 


Oak,  Can 

"     Memel . 
**     Dantaic 


"    Chestnut 


Pine,  pitch. . 

"     yellow 

"    white. 

Teak 


After  3.5  Years* 


Good 

Much  decayed. 

Very  good 

Good 

Much  decayed. 

attacked 

Surface  only  attacked. . . . . 

Very  much  decayed 

^(        ((  II 


It 


it 


u 


Very  good 


Surface  only  attacked. « . , 

Attacked 

Very  much  decayed 

Very  good.. . ., 

Jfififeot  of  Oreosotiixg. 
RetuUt  of  Eseperiments  wWi  Various  Woods  {E.  R.  Andrewsy 


After  5  Years. 


( Externally  decayed,  rest  per 
(     fectly  sound. 

Decayed. 

Sound  as  when  driven. 

Tolerable. 

Entirely  decayed. 

Decayed. 

Much  decayed. 

{Attacked  in  part  only,  rest  fair 
condition. 
Very  rotten. 


it 


tt 


{Some  moderately,  most  very 
much,  decayed. 
{Attacked  in  part  only,  rest  fair 
condition. 
Much  decayed. 
Very  rotten. 
Somewhat  soft,  but  good. 


Wood. 


Oak  [^^eia 

I  creosoted . . , 

Cotton-wood  Y^^- 


Water 

absorbed. 


Per  cent. 
•2543 

.026x 

.2 

.0 

•714 
.347 


Wood. 


Hard  pine....  {^„,ii;; 


Gum,bl«k..{2;^-^; 


B'""."""*- {created.. 


Water 

absorbed. 


Per  cent. 
.16 
.0 
z 
•"5 

•43 
.124 


Sesquoia  Gigantea  of  California,  dried,  .4722;  creosoted,  .0. 

Fluids  will  pass  with  the  grain  of  wood  with  great  facility,  but  will  not 
enter  it  except  to  a  very  limited  extent  when  applied  externally. 

.A.bsorptiozi  of  f^reservingf  Solution  "by  different  Woods 
for  a  I^eriod   of  T  T>a.yH,    Average  Lbs.  per  Cttbe  FooL 

Black  Oak. 3.6  |  Hemlock 2.6  I  Rock  Oak 3.9 

Chestnut. 3     |  Red  Oak 3.9  |  White  Oak 3.1 

Proportion   of  "^^ater   in   various   "Woods. 


Pine  (Pinus  Sylvestris  L.) 39. 7 

Red  Beech  {Fagus  sybfcUica) 39.7 

Red  Pine  [IHnus  picea  dur) 45. 3 

Spruce  {Abies,  cUba,  nigra,  rttfrra, ) 

excelsa) )    ^5 

Sycamore  {Acer  pseudo-pUUamu) . .  27 

White  Oak  {Quercus  alba) 36. 2 

White  Pine  {Finus  abies  dur) 37. 1 

White  Poplar  {Populus  alba) 50.6 

Willow  {SaUs  caprea) 26 

X)iinensions   of  Timber  \>y   Seasoning. 

Woods.  Ins.  Ins. 

Pitch  Pine,  South 18.375  to  18.25 

Spruce 8.5     to   8.375 

White  Pine,  American..  12        to  11.875 
Yellow  Pino,  North. . . , .  x8        to  17. 875 


Alder  {Bettda  cUnus) 41.6 

Ash  {Fraxintu  excelsior) 28.7 

Beech  {Fagtu  sylvaiica) 33 

Birch  {Betula  alba) : 30.8 

Elm  {Ulmus  campestris) 44.5 

Horse-chestnut  (^<cu^tMAtj>poca<t.)  38.2 

Larch  ( Pintu  larix) 48.6 

Mountain  Ash  {Sorbus  aucuparia). .  28.3 

Oak  {iluercus  robur) 34. 7 


m 


I>ecrease 

Woods.  Ins.  Ins. 

Cedar,  Canada 14    to    13.25 

Elm XX    to    10.75 

Oak,  English X2    to    11.625 

Pitch  Pine,  North. . .  lox  10  to  9. 75X9- 75 


Weight  of  a  beam  of  English  oak,  when  wet,  was  reduced  by  seasoning 
ftook  972.35  to  630.5  lbs. 

^40 


870 


WOOD   AND   TIMBEB. 


^Weiglit  or  ei  CiiDe   Woot  of  Oak  and  Yello-w  Pine. 


AOB. 


Green. . . 

1  Year. 

2  Years. 


White  Oak,  Va. 
Round.  Square. 


64.7 
53-6 
46 


67.7 

53-5 
49.9 


Yellow  Fiae,  Va. 
Round.  Square. 


47.8 
39-8 
34-3 


39-2 
34- a 
33-5 


LiveOdL 


78^7 
66.7 


In  England,  Timber  sawed  into  boards  is  classed  as  follows : 


6.5  to  7  ins.  in  width,  Battens f  8.5  to  10  ins.,  Deals;  and  11  to  12  ina^ 
Planks.     {See  also  paye  62.)  ^ 

Distillation. — From  a  single  cord  of  pitch  pine  distilled  by  chemical  ap- 
paratus, following  substances  and  in  quantities  stated  have  been  obtained : 


Charcoal 50  bushels. 

Illuminating  Gas. . .  .about  1000  cu.  feet. 
IllumiDating  Oil  and  Tar. . .  50  gallons. 
Pitch  or  Resin 1.5  barrels. 


Pyroligneous  Acid 100  gallona 

Spirits  of  Turpentine -  ao      " 

Tar I  barrel 

Wood  Spirit 5  gallons. 


Streiigtli   of  TixnlDer. 

Results  of  experiments  have  satisfactorily  proved:  That  deflection  was 
sensibly  proportional  to  load ;  That  extension  and  compression  were  nearly 
the  same,  though  former  being  the  greats ;  That,  to  produce  equal  deflection, 
load,  when  placed  in  the  centre,  was  to  a  load  uniformly  distributed,  as  .638 
to  I ;  That  deflection  under  equal  loads  is  inversely  as  breadths  and  cubes 
of  the  depths,  and  directly  as  cubes  of  the  spans.     {M.  Morin.) 

It  has  also  been  shown,  that  densitv  of  wood  varies  very  little  with  its  age. 
That  caefficient  of  elasticity  diminishes  after  a  certain  age,  and  that  it  de- 
pends also  on  the  dryness  and  the  exposure  of  the  ground  where  the  wood 
is  grown.  Woods  from  a  northerly  exposure,  on  dry  ground,  have  a  high 
coefficient^  while  those  from  swamiM  or  low  moist  ground  have  a  low  one. 
That  tensile  strength  is  influenced  by  age  and  ex|wsure.  The  coefficieiU 
of  elasticity  of  a  tree  cut  down  in  full  vigor,  or  before  it  arrives  at  this 
condition,  does  not  present  any  sensible  difference.  That  there  is  no  limit 
of  elasticity  in  wood,  there  being  a  ])ermanent  set  for  every  extension. 

Average  Result  of  Experiments  on  Tensile  Strength  of  Wood  in  Various 
Positions  per  Sq.  Inch.     {MM.  Ckevandier  and  Werlheim.) 

With  the  fibre,  6900  lbs.    Radially,  683  lbs.,  and  Tangentially,  723  lbs. 


To   Cotnpute  "Volume   of  an   Irregular   Socl;sr. 

By  " Simpsons  Rule." 

Operation.— Take  a  right  line  in  the  Qgure  for  a  base  line,  as  A  B,  divide  the  fig- 
ure into  any  number  of  equal  parts,  and  compute  the  areas  of  their  plane  sections 
as  I,  2,  3,  etc. ,  at  the  points  of  division,  by  rules  applicable  to  area  of  a  plane.  Then, 
operate  these  areas  as  if  they  were  the  ordinates  of  a  plane  curve  or  figure  of  same 
length  as  the  figure,  and  result  will  give  volume  required. 


Illustration. 


-Assume  a  figure  having  areas  as  follows,  and  A  B  =  24  feet 

Sections,  i     Areas,  3  feet     Multiplier,  x     Products, 


a 

3 
4 
5 


5 
7 
9 

XX 


4 

3 

4 

X 


3 
ao 

36 


and  84  X  a4-t-4-»-3  =  168  cubefosL 


HISCBLI.ANEOUS  MIXTURES.  8/1 

MISCELLANEOUS   MIXTURES, 
Cexnents. 

Much  depends  upon  manner  in  which  a  cement  is  applied  as  upon  the 
cement  itself,  as  best  cement  will  prove  worthless  if  improperly  applied. 
Following  rules  must  be  rigorously  adhered  to  to  attain  success : 

1.  Bring  cement  into  intimate  contact  with  surfaces  to  be  united.  This  is  best 
done  by  heating  pieces  to  be  joined  in  cases  where  cement  is  melted  by  beat,  as 
with  resin,  shellac,  marine  glue,  etc.  Where  eoiutions  are  used,  cement  must  be 
well  rubbed  into  surfaces,  either  with  a-  brush  (as  in  case  of  porcelain  or  glass), 
or  by  rubbing  the  two  surfaces  together  (as  in  making  a  glue  joint  between  pieces 
of  wood). 

2.  As  little  cement  as  practicable  should  be  allowed  to  remain  between  the  united 
surfaces  To  secure  this,  cement  should  be  as  liquid  as  practicable  (thoroughly 
melted  if  used  with  heat),  and  surfbces  should  be  pressed  closely  into  contact  until 
cement  has  hardened. 

3.  Time  should  be  allowed  for  cement  to  dry  or  harden,  and  this  is  particularly 
the  case  in  oil  cements,  such  as  copal  varnish,  boiled  oil,  white  lead,  etc.  When 
two  sorftices,  each  .  5  inch  across,  are  joined  by  means  of  a  layer  of  white  lead 
placed  between  them,  6  months  may  elapse  before  cement  in  middle  of  joint  be- 
comes hard.  At  the  end  of  a  month  the  joint  will  be  weak  and  easily  separated:  at 
end  of  2  or  3  years  it  may  be  so  firm  that  the  material  will  part  anywhere  else  tnan 
at  joint  Hence,  when  article  is  to  bo  used  immediately,  the  ouly  safe  cements 
are  those  which  are  liquelied  by  heat  and  which  become  hard  when  cold.  A  joiut 
made  with  marine  glue  is  firm  an  hour  after  it  has  been  made.  Next  to  cements 
that  are  liquefied  by  heat  are  those  which  consist  of  substances  dissolved  in  water 
or  alcohol.  A  glue  Joint  sets  firmly  in  24  hours;  a  joint  made  with  shellac  varnish 
becomes  dry  in  2  or  3  days.  Oil  cements,  which  do  not  dry  by  evaporation,  but 
harden  by  oxidation  (boiled  oil,  white  lead,  red  lead,  etc.)  are  slowest  of  all. 

Stone.— Rcs'm,  Yellow  Wax,  and  Venetian  Red,  each  i  oz. ;  melt  and  mix.  - 

Aqviarium. 

Litharge,  fine  white  dry  Sand,  and  Plaster  of  Paris,  each  z  gill;  finely  pulverized 
Resin,  .33  gill. 

Mix  tborooKbly  and  make  into  a  paat*  with  bc4led  Unwed  oil  to  which  drier  has  been  added.  Best 
weU,  and  let  stand  4  or  5  hoan  before  naine  it.  After  it  ha*  stood  fur  15  hours,  however,  it  loses  iU 
atreoKth.    Olaai  eeinented  into  a  frame  with  this  cement  will  resist  percolation  for  either  salt  or  fresh 


A.dtieaive   for  Fractures  of*  all   Kinds. 

White  Lead  ground  with  Linseed-oil  V^arnish,  and  kept  from  contact  with  the  air. 
Requires  a  few  weeks  to  harden. 

Stone  or  Iron. 

Compound  equal  parts  of  Sulphur  and  Pitch. 

Brass   to  Olass. 

Electrical.— Res\n,  5  ozs. ;  Beeswax,  i  oz. ;  Red  Ochre  or  Venetian  Red,  in  pow- 
der, I  oz.  Dry  earth  thoroughly  on  a  stove  at  above  212°  Melt  Wax  and  Resin 
together  and  stir  in  powder  by  degreea  Stir  until  cold,  lest  earthy  matter  settle 
to  bottom. 

Used  for  fastening  bniM-work  to  glass  tubes,  flasks,  etc. 

Chinese   Waterproof. 

Schioliao.'^To  3  parts  of  Fresh  Beaten  Blood  add  4  parts  of  Slaked  Lime  and  a 
little  Alum;  a  thin,  pasty  mass  is  produced,  which  can  be  used  immediately. 

Materials  which  are  to  be  made  specially  waterproof  are  painted  twice,  or  at  most  three  time*. 
IVooden  public  bnildinn  of  China  are  painted  with  tchw4i«o,  which  irives  them  an  unpleasant  red- 
dish appearance,  but  adda  to  their  durability.  Pasteboard  treated  with  it  receives  appearance  and 
•trength  of  wood. 

Clxina. 

Curd  of  milk,  dried  and  powdered,  10  ozs. ;  Quicklime,  i  oz. ;  Camphor,  2  drachma 

Mix,  and  keep  air-tight.    When  need,  a  portion  is  to  be  nixed  with  a  little  water  Into  a  paste. 

Cisterns  and   'Wat#r»-caslcs. 

Melted  Glae,  8  parts;  Linseed  oil,  boiled  into  a  varnish  with  Litharge,  4  part& 

This  cement  hardeot  in  aboot  48  honrs,  and  renders  the  joints  of  weoden  cisterns  and  casks  air  «b4 
wAter  tight. 


8/2 


MISCELLANEOUS  MIXTUBES. 


Clotb.  or  I^eatlxer. 

ShellM,  X  part;  Pitch,  a  parts;  India  Rubber,  a  parts;  and  Gatta  Percha,  lo 
parts;  cut  small;  Linseed  oil,  2  parts;  melted  together  und  mixed. 

£Cartb.en   and   Ghlass   "Ware. 

Heat  article  to  be  mended  a  little^above  212°,  then  apply  a  thin  coating  of  gum 
Shellac  u|K>n  both  surfaces  of  broken  vessel 

Or,  dissolve  gum  Shellac  in  alcohol,  apply  solution,  and  bind  the  parts  firmly  to- 
gether until  cement  is  dry. 

Or,  dilute  white  of  egg  with  its  bulk  of  water  and  beat  up  tborongbly.  Mix  to 
consistence  of  tbin  paste  with  powdered  Quicklime. 

Um  immedUtely. 

XCntozxiologistB*. 

Thick  Mastic  Varnish  and  Isinglass  size,  equal  parta 

Q-ixtta   Perolia* 
Melt  together,  in  an  iron  pan,  2  parts  Common  Pitch  and  i  part  Gutta  Percha. 

Stir  well  toflwther  until  thorouKfaly  ineorpomted,  and  then  poor  liquid  Into  cold  wat«r.    MTben  cold 
it  is  black,  soud,  and  elastic ;  but  it  aoflana  with  beat,  aud  at  km*  la  a  thin  fluid,    it  may  be  aaed  aa  » 
•oft  paste,  or  in  liquid  state,  and  answers  an  excellent  purpose  In  cementing  metal,  glaMj  poroelatn, 
■ivory,  etc.    It  may  be  used  instead  of  putty  for  glasing. 

Olass. 

SoreVs.—Vxx  commercial  Zinc  White  with  half  its  bulk  of  fine  Sand,  add  a  sola- 
tion  of  Chloride  of  Zinc  of  1.26  spec,  grav.,  and  mix  thoroughly  in  a  mortar. 

Apply  immediately,  as  it  hardens  very  quickly. 

Holes   in   Castiiiss. 

Sulphar  in  powder,  i  part;  Sal-ammoniac,  2  parts;  powdered  Iron  tumiogs,  80 
parts.    Make  into  a  thick  paste. 

Make  only  aa  required  for  immediate  ose. 

Hydraialio  iPaint. 

Hydraulic  cement  mixed  with  oil  forms  an  incombustible  and  waterproof  paint 
for  roofs  of  buildings,  outhouses,  walls,  etc. 

Iron   "WavB. 
Sulphar,  a  parts;  fine  Black-lead,  x  part     Heat  sulphur  in  an  iron  pan  until 
it  meits,  then  add  the  lead;  stir  well,  and  remove.    When  cool,  break  into  pieces 
as  required.    Place  upon  opening  of  the  ware  to  be  mended,  and  solder  with  an 
iron. 

Kerosene   !L«amps,  etc. 

Resin,  3  parts;  Caustic  Soda,  i;  Water,  5,  mixed  with  half  its  weight  of  Plaster 
of  Faria 

It  sets  firmly  in  about  three  quarters  of  an  honr.  Is  of  irreat  adbesiTe  power,  not  permeable  to  kero- 
sene,  a  low  conductor  of  beat,  and  but  superficially  attacked  by  hot  water. 

Xjeatlier  to   Iron,  Steel,  or  O-lass. 

X.— Glue,  z  quart,  dissolved  in  Cider  Vinegar;  Venice  Turpentine,  x  oz. ;  boil  very 
gently  or  simmer  for  12  hours. 

Or,  Glue  and  Isinglass  equal  parts,  soak  in  water  10  hours,  boil  and  add  tannin 
until  mixture  becomes  ''ropy;"  apply  warm. 

Remove  surface  of  leather  where  it  is  to  be  applied. 

a. — Steep  leather  in  an  infusion  of  Nutgall,  spread  a  layer  of  hot  Glue  on  8ar> 
fiice  of  metal,  and  apply  flesh  side  of  leather  under  pressure. 

Xjeatlier  Selting;. 

Common  Glue  and  Isinglass,  equal  parts,  soaked  for  10  hours  in  enough  water  to 
cover  them.  Bring  gradually  to  a  boiling  heat  and  add  pure  Tannin  until  whole  be- 
comes ropy  or  appears  alike  to  white  of  egg& 

Clean  and  rub  sur&ces  to  be  joined,  apply  warm,  and  clamp  firmly.  ' 

^loldins  and   rreznporar3r   A-dliesion. 

SoJl^Velt  Yellow  Beeswax  with  its  weight  of  Turpentine,  and  color  with  finely 
powdered  Venetian  red. 

WImb  cold  it  has  the  hardness  of  MMp,  bat  it  Malbr  wrfteDed  and  molded  with  the  floftn. 


ICISCELLANEOUB   MIXTUSSS.  8/3 


l^altha,  or  Ghreek   IMastio* 

Lime  and  Sand  mixed  in  manner  of  mortar,  and  made  into  a  proper  consistency 
with  milk  or  size  without  water. 

Plaster  of  Paris,  in  a  saturated  solution  of  Alum,  baked  in  an  oven^  and  reduced 
to  powder.    Mixed  with  water,  and  color  if  required. 

IMetal  to   GMaaa. 
GopctI  Varnish,  15  parts;  Drying  Oil,  5 ;  Turpentine,  3.    Melt  in  a  water  hath  and 
add  10  of  Slaked  Lime. 

IMending   Sliells,  etc. 

Gum  Arabic,  5  parts;  Rock  Candy,  2;  and  White  Lead,  enough  to  color. 

Xjarge   Ol^jects. 

WolUuton's  TrAi<«.— Beeswax,  i  oz. ;  Kesin,  4  ozs, ;  powdered  Plaster  of  Paris,  5 
oz.     Melt  together.  1 

Warm  the  edges  of  the  object  and  apply  warm. 

By  means  of  thlB  cement  a  piece  of  wood  may  be  fiwtened  to  achnck.  which  will  hold  when  cool ;  and 
when  work  !■  finished  it  may  be  removed  by  a  smart  stroke  with  tool.  Any  traces  of  cement  may  be 
vtmoTed  by  Bcnuine. 

IMCar'ble    Workers   and.   Ooppersmitlis. 

White  of  egg,  mixed  with  flnely-sifled  Quicklime,  will  unite  objects  which  are 
not  submitted  to  moisture. 

Foroelain. 

Add  Plaster  of  Paris  to  a  strong  solution  of  Alum  till  mixture  is  of  consistency 
of  cream. 

It  seta  readily,  and  is  salted  for  cases  in  which  large  rather  than  small  surfaces  are  to  be  united. 

Rust  Joint. 
(Quick  ifiSetttn^ir.)— Sal-ammoniac  in  powder,  z  lb. ;  Flour  of  Sulphur,  a  lbs. ;  Iron 
borings,  80  lbs.    Made  to  a  paste  with  water. 

(Slow  iSrettm^.)— Sal-ammoniac,  2  lbs. ;  Sulphur,  i  lb. ;  Iron  borings,  300  lbs. 

The  latter  cement  is  best  if  joint  is  not  required  for  immediate  use. 

SteaxTL   Boilers,  Steam-pipes,  etc. 
Finely  powdered  Litharge,  2  parts;  very  fine  Sand,  z;  and  Quicklime  slaked  by 
exposure  to  air,  i. 

This  mixture  may  be  kept  for  any  leOKth  of  time  without  injuring.  In  using  it,  a  portion  is  mixed 
Into  paste  with  Unseed  oil,  boiled  or  crude.    Apply  quickly,  as  it  soon  becomes  hard. 

Soft— Red  or  White  Lead  in  oil,  4  parts;  Iron  borings,  2  to  3  parts. 

JTard— Iron  borings  and  salt  water,  and  a  small  quantity  of  Sal-ammoniac  with 

firesh  water. 

rrransparent— d-lass. 

India-rubber,  i  part  in  64  of  chloroform ;  gum  Mastic  in  powder,  16  to  24  parts. 
Digest  for  two  days,  with  frequent  shaking. 

Or,  pulverized  Glass,  10  parts;  powdered  Fluor-spar,  20;  soluble  Silicate  of  Soda, 
60.  BoUi  glass  and  fluor-spar  must  be  in  finest  practicable  condition,  which  is  best 
done  by  shaking  each  in  fine  powder,  with  water,  allowing  coarser  particles  to  de- 
posit, and  then  by  pouring  off*  remainder,  which  holds  finest  particles  in  suspension. 

The  mixture  must  be  made  very  rapidly,  by  quick  stirring,  and  applied  Immediately. 

TJiiitins   Xjeatlier   and   HVIetal. 

Wash  metal  with  hot  Gelatine;  steep  leather  in  an  infusion  of  Nutgalls,  hot, 
and  bring  the  two  together. 

"Waterproof  UMastio. 

Red  Lead,  i  part;  ground  Lime,  4  parts;  sharp  Sand  and  boiled  Oil,  5  parts. 
Or,  Red  Lead,  x  part;  Whiting,  5;  and  sharp  Sand  and  boiled  Oil,  10. 

Wood   to   Iron. 

Litharge  and  Glycerine. — ^Finely  powdered  Oxide  of  Lead  (litharge)  and  Concen- 
trated Glycerine. 

The  compoeitlon  is  insoluble  in  most  acids,  is  unaffected  by  action  of  moderate  heat,  sets  rapidly, 
■ad  acquires  an  extraordinary  hardness. 

7V«m«r'«.— Melt  i  lb.  of  Resin,  and  add  .25  lb.  of  Pitch. 

While  boiling  add  Brick  dust  to  give  required  consistency.  In  winter  it  may  be 
necessary  to  add  a  little  Tallow. 


g^4  MISCELLANEOUS   MIXTUEBS. 

GLUES. 

!&£arine. 

Disflolve  India  Rubber,  4  parts,  in  34  parts  of  Coal-tar  Naphtha;  add  powdered 
Shellac,  64  parts. 

While  mixture  is  hot  pour  it  upon  metal  plates  in  aheeta.  When  required  for 
use,  heat  it,  and  apply  with  a  brush. 

Or,  India  Rubber^  x  part;  Coal  Tar,  12  parts;  heat  gently,  mix,  and  add  powdered 
Shellac,  20  parts.    Cool.    When  used,  heat  to  about  250° 

Or,  Glue,  12  parts;  Water,  sufflciMit  to  dissolre;  add  Yellow  Resin,  3  parts;  and, 
when  melted,  add  Turpentine,  4  parts. 

Strong  Glue. — Add  Powdered  Chalk  to  common  Glue. 

Mix  thoroughly. 

Afuoilage. 

Curd  of  Skim  Milk  (carefully  freed  lh>m  Cream  or  Oil),  washed  thoroughly,  and 
dissolved  to  saturation  in  a  cold  concentrated  solution  of  Borax. 

Thia  madUge  ke0p«  well,  and,  w  regards  adfaeslTe  power,  far  raqMuM  ^m  Arabic. 

Or,  Oxide  of  Lead,  4  lbs. ;  Lamp-black,  2  lb& ;  Sulphur,  5  ozs. ;  and  India  Rubber 
dissolved  in  Turpentine,  10  lbs. 

Boll  together  until  they  are  thoroughly  combined. 

Pre$ervation  of  Mucilage.— A  small  quantity  of  Oil  of  Cloves  poured  into  a  bottle 
containing  Gum  Mucilage  prevents  it  from  becoming  sour. 

To   Resist   !N£oisture. 

Glue,  5  parts;  Resin,  4  parts;  Red  Ochre,  2  parts;  mixed  with  least  practicable 
quantity  of  water. 

Or,  Glue,  4  parts;  Boiled  Oil,  i  part,  by  weight,  Oxide  of  Iron,  i  part 

Or,  Glue,  i  lb.,  melted  in  2  quarts  of  skimmed  Milk. 

Pafclim  eut. 
Parchment  Shavings,  x  lb. ;  Water,  6  quarts. 

Boil  nntil  dlMolred,  th«o  itrain  and  evaporate  alowly  to  pioper  camlataace. 

Rion,  or  Japanese. 

Rice  Flour;  Water,  sufficient  quantity. 

Mix  together  cold,  then  Ixrfl,  etlrrlDg  It  during  the  tliaa. 

I^iquid. 

Glue,  Water,  and  Vinegar,  each  2  parts.  Dissolve  in  a  water-bath,  then  add  Al. 
cohol,  I  part 

Or,  Cologne  or  strong  Glue,  2.2  Iba ;  Water,  i  quart;  dissolve  over  a  gentle  heat; 
add  Nitric  Acid  36^^,  7  ozs.,  in  small  quantities. 

RemoTe  from  over  fire,  and  cool. 

Or,  White  Glue,  16  ozs. ;  White  Lead,  dry,  4  oz& ;  Rain  Water,  2  pinta  Add  Al- 
cohol, 4  ozs.,  and  continue  heat  for  a  few  minute& 

Klastio   and   Street.-" Stamps   or   Rolls. 
Elastic.— DiBBoWe  good  Glue  in  water  by  a  water-bath.    Evaporate  to  a  thick  con- 
sistence, and  add  equal  weight  of  Glycerine  to  Glue;  submit  to  heat  until  all  water 
is  evaporated,  and  pour  into  molds  or  on  platea 

Sioeet^-SubstHute  Sugar  for  the  Glycerine. 

Xo  A-dlxere   Sxigravings  or  Xjitliographs  upoix  "^^ood. 

Sandarach,  250  parts;  Mastic  in  tears,  64  parts;  Resin,  125  parts;  Venice  Tor 
pentine,  250  parts;  and  Alcohol,  xooo  parts  by  measure. 

BROWNING,  OR  BRONZING,  LIQUIB. 
Sulphate  of  Copper,  x  oz. ;  Sweet  Spirit  of  Nitre,  x  oz. ;  Water,  x  pint 

Mis.    Let  etand  a  few  dayt  before  aee. 


MISCELLANEOUS   MIXTURBB.  g^J 

Gun  33arrei». 

Tfncture  of  Mariate  of  Iron,  i  oz. ;  Nitric  Ether,  i  oz.  •  Sulphate  of  Copper,  a 
Acmples;  rain  water,  i  pint  If  the  prooess  is  to  be  hurried,  add  2  or  3^raius  or 
OxymariaCe  of  Meroury. 

Wbmi  bami  b  finUbed,  let  it  remain  •  short  time  in  lime-water,  to  neutralize  any  acid  which  may 
have  penetrated ,  then  rub  it  well  with  an  iron  wire  acrHtch-brwb. 

Afler  Browning.  — Shellac,  i  oz. ;  Dragon's-blood,  .25  oz. ,  rectified  Spirit,  i  qt. 
Dissolve  (tnd  filter. 

Or,  Nitrio  Acid,  spec.  grav.  1.2;  Nitric  Ether,  Alcohol,  and  Muriate  of  Iron,  each  i 
part    Mix,  then  add  Sulphate  of  Copper  3  parts,  dissolved  in  Water  xo  parta 

LACQUERS. 

Small   Arms,  or   Waterproof  Paper. 

Beeswax,  13  lbs.-.  Spirits  Turpentine,  13  gallons;  Boiled  Linseed  Oil,  i  gallon. 

All  ingredienta  should  be  pure  and  of  beet  quality.  Heat  them  together  in  a  copper  or  earthen  tM' 
■el  over  a  gentle  fire,  in  a  water-bath,  until  they  are  well  mixed. 

I5riglit   Iron.    Worlc. 

LinseedOil,  boiled,  80. 5  parts;  Litharge,  5.5  parts;  White  Lead,  in  oil,  11.35  parts; 
Resin,  pulverized,  2.75  parts. 

Add  litbarice  to  ol| ;  eimmer  over  a  alow  fire  3  honn ;  itnUn,  and  add  rMln  and  white  lead ;  keep  it 
fently  warmed,  and  etir  until  resin  is  disatilvwl. 

Or,  Amber,  6  parts;  Turi>entine.  6  parts;  Resin,  i  part;  Asphaltum,  i  part;  and 
Drying  Oil,  3  parts;  heat  and  mix  well. 
Or,  Shellac,  z  lb. ;  Asphaltum,  6  lbs. ;  apd  Turpentine,  i  gallon. 

Iron   and.    Steel. 

Clear  Mastic,  10  parts;  Camphor,  5  parts:  Sandarae,  15  parts;  and  Elimi  Gum, 
5  parta    Dissolve  in  Alcohol,  filter,  and  apply  cold. 

13rass. 

Shellac,  8  ozs. ;  Sandarac,  3  oz&  ;  Annatto,  2  oz& ;  and  Dragon's-blood  Resin,  .25 
oz. ;  and  Alcohol,  i  gallon. 

Or,  Shellac,  8  oza ;  and  Alcohol,  i  gallon.  Heat  article  slightly,  and  apply  lacquer 
with  a  soft  brush. 

■^Tood,  Iron,  or  ViTalle,  and  rendering  Olotli,  Paper,  etc., 

"Waterproof. 

Heat  120  lbs.  Oil  Varnish  in  one  vessel,  33  Iba  Quicklime  in  32  lbs.  water  in  an- 
other. Soon  as  lime  eflTervosces.  add  55  Iba  melted  Indii^  Rubber.  Stir  mixture, 
and  pour  into  vessel  oC  hot  Varnish.    Stir,  strain,  and  cool. 

When  used,  thin  with  Varnish  and  apply,  preferably  hot 

To   Clean   Soiled    Kngravings. 
Ozone  Bleach,  x  part;  Water,  lo;  well  mixed. 

Indelilsle,  fbr  ^arising   Uiiien*  etc. 

z.— nJuice  of  Sloes,  i  pint;  Gum,  .5  oz. 

This  requires  no  "  preparation  "  or  mordant,  and  Is  very  durable. 

2  — ^Nitrate  of  Silver,  i  part^  Water,  6  parts.  Gum,  1  part;    Dissolve. 

3. — Lunar  Caustic,  3  parts;  Sap  Green  and  Gum  Arabic,  each  i  part ;  dissolve  with 
distilled  water. 

'■'^ Preparation.^^ — Soda,  x  oz. ;  Water,  i  pint;  Sap  Green,  5  drachm.  Dissolve, 
and  wet  article  to  be  marked,  then  dry  and  apply  the  ink. 

Perpetualy  for  Tomb-Hones,  Marble,  <<c.— Pitch,  n  parts;  Lamp-black,  i  part; 
Turpentine  sufficient.    Warm  and  mix. 

Copying  /nX^— Add  x  oz.  Sugar  to  a  pint  of  ordinary  Ink- 

SOLDERING. 
Base   for   Soldering. 

Strips  of  Zinc  in  diluted  Muriatic,  Nitric,  or  Sulphuric  Acid,  until  ns  much  is  de- 
composed as  acid  will  eflTeot.  Add  Mercury,  let  it  stand  for  a  day;  pour  off  the 
Water,  and  bottle  the  Mercury. 

WbeQ  rM|uirt<|,  rub  snrface  to  b«  soldered  with  a  cloth  dipped  in  the  Mercury, 


8/6  MISC£LLANBOUS  KIXTUSB8. 

YAKNISHES. 

"^Vat  erp  roof. 

Flour  of  Sulphur,  i  lb. ;  Linseed  Oil,  z  gall. ;  boil  tbem  until  they  are  thoroughly 
combined. 

Good  for  waterproof  textile  fkbric& 

Karness. 
India  Rubber,  .5  lb. ;  Spirits  of  Turpentine,  x  gall. ;  dissolve  into  a  Jelly ;  then  mix 
hot  Linseed  Oil,  equal  parts  with  the  mass,  and  incorporate  them  well  over  a  slow  fira 

17'astenine   I^eather  on   "Pop   Rollers. 

Gum  Arabic,  a.75  oz&,  and  a  like  volume  of  Isinglass,  dissolved  in  Water. 

To   Preserve  Q-lass  from   the   Sun. 

Reduce  a  quantity  of  Gum  Tragacanth  to  fine  powder,  and  dissolve  it  for  34  hours 
in  white  of  egg  well  beat  up. 

"^Tater-oolor  IDra^^vines. 

Canada  Balsam,  i  part;  Oil  of  Turpentine,  2  pftrt& 
Mix  and  size  drawing  before  applying. 

Oladeots   of  Katural   Kistorsr,  SKells,  ITisli,  etc. 

Mucilage  of  Gum  Tragacanth  and  of  Gum  Arabic,  each  i  ox. 
Mix,  and  add  spirit  with  Corrosive  Sublimate,  to  precipitate  the  more  stringy  por- 
tion of  the  Gum. 

Iron   and    Steel. 

Mercury,  120  parts;  Tin,  10  parts;  Green  Vitriol,  20  parts;  Hydrochloric  Acid  of 
X.3  sp.  gr.,  IS  parts,  and  pure  Water,  120  parts. 

Blaokl>oards. 

Shellac  Varnish,  5  gallons;  Lampblack,  5  ozs. ;  fine  Emery,  3  ozs. ;  thin  with 
Alcobfd,  and  lay  in  3  coats. 

Black. 

Heat,  to  boiling,  Linseed  Oil  Varnish,  10  parts,  with  Burnt  Umber,  a  parts,  and 
powdered  Asphaltum,  x  part 
When  copied,  dilute  with  Spirits  of  Turpentine  as  may  be  required. 

Balloon. 

Melt  India  Rubber  in  small  pieces  with  its  weight  of  boiled  Linseed  OIL 
Thin  with  Oil  of  Turpentine. 

Transfer. 
Alcohol,  5  0x8. ;  pure  Venice  Turpentine,  4  ozs. ;  Mastic,  i  ox. 

To  render   Canvas   "Waterproof  and   Flial>le. 

Yellow  Soap,  i  lb ,  boiled  in  6  pints  of  Water,  add,  while  hot,  to  ixa  Iba  of  oil  Psaintt 

Waterproof  Bags. 

Pitch,  8  parts.  Wax  and  Tallow,  each  i  part 

To  Clean  VarnisH. 

Mix  a  lye  of  Potash  or  Soda,  with  a  little  powdered  Chalk. 

STAINING. 
"W^ood   and   Ivory, 

Tdlow.—DWate  Nitric  Acid  will  produce  it  on  wood. 

Red.— An  infusion  of  Brazil  Wood  in  Stale  Urine,  in  the  proportion  of  x  lb.  to  a 
gallon,  for  wood,  to  be  laid  on  when  boiling  hot,  also  Alum  water  before  it  driea 
Or,  a  solution  of  Dragou^s-blood  in  Spirits  of  Wine. 

Btacik.— Strong  solution  of  Nitric  Acid. 

B2«e.— For  Ivory:  soak  it  in  a  solution  of  Verdigris  in  Nitric  Acid,  which  will  turn 
it  green;  then  dip  it  into  a  solution  of  Pearlash  boiling  hot 

Purpfe...^Soak  Ivory  in  a  solution  of  Sal-ammoniac  into  four  times  its  weight  of 
Nitrous  Acid. 

ifoftoyany. —Brwil,  Madder,  and  Logwooa,  aiewlved  in  water  and  put  on  lioi, 


MISCELLANBOUS  MIXTUBBS.  8/7 

BOBCELLANEOUS. 
Slacking  fbr  Hamess. 

Beeswax,  .5  lb. ;  Ivory  Black,  2  ozs. ;  Spirits  of  Tarpentine,  i  oz. ;  Pmssian  Blue 
ground  in  oit,  z  oz. ;  Copal  Varnish,  .25  oz. 

Melt  wax  and  stir  it  into  other  ingredients  before  mixture  is  quite  cold;  make  it 
into  balls.  Bub  a  little  upon  a  brush,  and  apply  it  upon  harness,  then  polish  lightly 
with  silk. 

rFo   Olestii    Srass    Ornaments. 
Brass  ornaments  that  have  not  been  gilt  or  lackered  may  be  cleaned,  and  a  very 
brilliant  color  given  to  them,  by  washing  them  in  Alum  boiled  in  strong  Lye,  in  the 
proportion  of  an  ounce  to  a  pint,  and  afterwards  rubbing  thiem  with  strong  Tripoli. 

rro  Harden   Drills,  Cliisels,  etc. 
Temper  them  in  Mercury. 

To   Clean   Coral. 

Brush  with  equal  parts  Spirits  of  Salts  and  cold  water. 

Or,  dip  in  a  hot  solution  of  Potash  or  Chloride  of  Lime.  If  much  discolored,  let 
it  remain  in  solution  for  a  few  hours. 

Slaclcing,  "^vitliont   Folisbiing. 

Molasses,  4  oz&  ;  Lamp-black,  .5  oz. ;  Yeast,  a  table-spoonful;  Eggs,  2;  Olive  Oil, 
a  teaspoonftil;  Turpentine,  a  teaspoonAiL    Mix  well 
To  be  applied  with  a  iponge,  without  bruahlng. 

J>u.bl>ing. 

Resin,  2  Iba ;  Tallow,  i  lb. ;  Train-oil,  z  gaUoo. 

Anti-fViotion  Gl-rease. 

Tallow,  100  lbs. ;  Palm-oil,  70  lbs.   Boiled  together,  and  when  cooled  to  80°  strain 
through  a  sieve,  and  mix  with  28  lbs.  of  Soda,  and  1.5  gallons  of  Water. 
For  Winter,  take  25  lbs.  more  oil  in  place  of  the  Tallow. 
Or,  Black  Lead,  i  part;  Lard,  4  parts. 

To   Attacli   Hair   Felt   to   Boilers. 

Red  Lead,  i  lb. ;  White  Lead,  3  lbs. ;  and  Whiting,  8  lbs.  Mixed  with  boiled  Lin- 
seed Oil  to  consistency  of  paint. 

Ir'astils  fbr  Fuxnisating. 

Gum  Arabic,  a  ozs. ;  Charcoal  Powder,  5  ozs. ;  Cascarilla  Bark,  powdered,  .75  oz. ; 
Saltpetre,  .25  drachm.    Mix  tc^ether  with  water,  and  make  into  shape. 

Ifor  "Writing  -upon   Zino   Labels.— Horticultural. 

Dissolve  100  grains  of  Chloride  of  Platinum  in  a  pint  of  water;  add  a  little  Mu- 
cilage and  Lamp-black. 

Or,  Sal-ammoniac,  i  dr. ;  Verdigris,  x  dr. ;  Lamp-black,  .5  dr. ;  Water,  10  drs.   Mix. 

To   Remove   old   Ironmold. 

Remoisten  part  stained  with  ink,  remove  this  by  use  of  Muriatic  Acid  diluted  by 
5  or  6  times  its  weight  of  water,  when  old  and  new  stain  will  be  removed. 

To   Cut   India  Hubber. 

Keep  blade  of  knife  wet  with  water  or  a  strong  solution  of  Potash. 

.A.dliesive  fbr   Rubber   Selts. 

Coat  driving  surface  with  Boiled  Oil  or  Cold  Tatlow,  and  then  apply  powdered 
Chalk. 

T^iard. 

jo  parts  of  finest  Rape-oil,  and  z  part  of  Caoutchouc,  cut  small  Apply  heat  until 
it  is  nearly  all  dissolved. 

To  Preserve  Leatlier  Ij  el  ting  or  Home, 
Apply  warm  Castor  Oil.    For  hose,  force  it  through  iL 

To   Oil    X^eatlxer   Selting. 

Apply  a  solution  of  India  Rubber  and  Linseed  OIL 

a£ 


8^8  MISCSLLANEOUS   MIJtTUBJSS. 

I>res8ins  for  Zjentlner  Selts. 

I. ^Beef  Tallow,  i  part,  and  Castor  Oil,  2  parts.    Apply  warm. 

2.— Beef  Tallow,  3  lbs.  *,  Beeswax,  i  lb.    Heaiea  and  applied  warm  to  botL  sides 

Files. 
Lay  dull  flies  in  diluted  Sulphuric  Acid  until  they  are  bitten  deep  enoogb. 

To   Remove  Oil  fVom   I^eatlxer. 

Apply  Aqua-ammonia. 

To   Clean    Faint. 
Wash  with  a  Solution  of  Pearlash  in  water.    If  greasy,  dse  QuicUima 
Or,  Extract  of  Litherium  diluted  with  from  200  to  300  parts  of  water. 

To   Remove   Faint. 

Mix  Soft  Soap,  2  ozs.,  and  Potash,  4  ozs.,  in  boiling  Water,  with  Quicklime,  .5  Ih 
Apply  hot,  and  let  remain  for  i  day. 
Or,  Extract  of  Litherium,  thinly  brushed  over  the  surface  2  or  3  times. 

To   Clean   I^arble. 

Chalk,  powdered,  and  Pumice-stone,  each  i  part;  Soda,  a  parta     Mix  with  water. 
Wash  the  spots,  then  clean  and  wash  off  with  Soap  and  Water. 

Paste   fbr   Cleaning;   ^letals. 

Oxalic  Acid,  i  part;  Rottenstone,  6  parts.  Mix  with  equal  parts  of  Train  Oil  and 
Spirits  of  Turpentine. 

"Watclxmalser's  Oil,  -wlxieli  never  Corrodes  or  Thickens. 

Place  coils  of  thin  Sheet  Lead  in  a  bottle  with  Olive  Oil  Expose  it  to  the  sun  for 
a  few  weeks,  and  pour  off  the  clear  oil 

Durable  Paste. 
Make  common  Flour  paste  rather  thick  (by  mixing  some  Tlour  with  a  little  cold 
water  until  it  is  of  uniform  consistency,  and  then  stir  it  well  while  bot7tnp  water  is 
beiug  added  to  it);  add  a  little  Brown  Sugar  and  Corrosive  Sublimate,  which  will 
prevent  fermentation,  and  a  few  drops  of  Oil  of  Lavender,  which  will  prevent  it  be- 
coming moldy.    When  dried,  dissolve  in  water. 

It  will  keep  for  two  or  three  yenr*  In  «  covered  veoMl. 

To  XCxtraot  G-rease   from    Stone   or   !N£arl>le. 

Soft  Soap,  I  part ;  Fuller's  Earth,  2  parts ;  Potash,  1  part.    Mix  with  boiling  water. 
Lay  it  upon  the  spots,  and  let  it  stand  for  a  few  hours. 

Stains. 
To  JB^fftoM.— Stains  of  Iodine  are  removed  by  rectified  Spirit;  Ink  stains  by  Ox- 
alic or  Superoxalate  of  Potash;  Ironmolds  by  same;  but  if  obstinate,  moisten  them 
with  Ink,  then  remove  them  in  the  usual  way. 

Red  spot*  upon  black  cloth,  ttom  acids,  are  removed  by  Spirits  of  Hartshorn,  or 
other  solutions  of  Ammonia. 

Stains  of  Marking-ink,  or  Nitrate  of  SUDer.—Wet  sta^n  with  fresh  solution  ol 
Chloride  of  Lime,  and,  after  10  or  15  minutes,  if  marks  have  become  white,  dip  the 
part  in  solution  of  Ammonia  or  of  Hyposulphite  of  Soda.  In  a  few  minutes  wash 
with  clean  water. 

Or,  stretch  the  stained  linen  over  a  basin  of  hot  water,  and  wot  mark  with  Tinc- 
ture of  Iodine. 

Preservative   Paste  for  Otgects   of  IN'at'ural   History. 
White  Arsenic,  i  lb. ;  Powdered  Hellebore,  2  lbs. 

To  Preserve   Bottoms  of  Iron    Steaxn-l>oilers. 

Red  Lead,  75  parts;  Venetian  Red,  17  parts;  Whiting,  6.5  parts;  and  Litharge, 
1.5  parts  by  weight. 

To  Preserve    Sails. 

Slacked  Lime,  2  bushels.  Draw  off  the  lime-water,  and  mix  it  with  120  gaUons 
water,  and  with  Blue  Vitriol,  .25  lb. 


MISCELLANEOUB  OPBEATIONS  AND  ILLUSTRATIONS.      8/9 

'Wh.ite'waah.. 

For  oatside  exposure,  slack  Lime,  .5  bushel,  iu  a  barrel;  add  common  Salt,  i  lU; 
Sulphate  of  Zinc,  .5  lb. ;  and  Sweet  Milk,  i  gallon. 

To   Preserve   'WTood^vorlc. 

Boiled  Oil  and  finely  powdered  Charcoal,  each  i  part;  mix  to  the  cousistence  of 
paint    Apply  2  or  3  ooatSL 

Thii  composition  ii  well  adapted  for  cask*,  water-aponta,  ate. 

To  Polieli   AVood. 

Rub  surface  with  Pumice  Stone  and  water  until  the  rising  of  the  grain  is  removed 
Then,  with  powdered  Tripoli  and  boiled  Linseed  Oil,  polish  to  a  bright  surface. 

Paiut    for    Wind.o"vv   Grlass. 
Chrome  Green,  .95  oz.;  Sugar  of  Lead,  t  lb. ;  ground  fine,  in  sufficient  Linseed  Oil 
to  moisten  it    Mix  to  the  consistency  of  cream,  and  apply  with  a  soft  brash. 

The  fflaaa  ■hoold  be  well  cleansed  before  the  paint  is  applied.    The  above  quantity  is  sufficient  for 
abont  200  feet  of  glass. 

To   IVIalce   I>raixi   Tiles   Porous. 
Mix  sawdust  with  the  clay  before  burning. 


MISCELLANEOUS  OPERATIONS  AND   ILLUSTRATIONS. 

I. — It  is  required  to  lay  out  a  tract  of  land  in  form  of  a  square,  to  be  en- 
closed with  a  post  and  rail  fence,  5  rails  high,  and  each  rod  of  fence  to  con- 
tain 10  rails.  What  must  be  side  of  this  square  to  contain  just  as  many 
acres  as  there  are  rails  in  fence  ? 

Opbration.  I  mile  =  330  rocb.  Then  320  x  320  -f- 160,  sq.  rods  in  an  cure  =  640 
acres;  and  320  X  4  tides  and  X  10  rails  =;  12  800  rails  per  mile. 

Theo,  as  640  acres  t  12  800  rails  : :  12  800  acres  :  256  000  raUs,  which  mil  enclcse 
356000  acres,  and  v^256ooo  x  6^.5701  =  number  of  yards  in  side  of  a  sq.  acre,  and 
-T-  1760,  yards  in  a  mUe  =.  30  miles. 

2.<^How  many  fifteens  can  be  counted  with  four  fives? 

OPERATION.      ^^AX^Xi^^^^. 
1X2X3  6       ^ 

3. — What  are  the  chances  in  favor  of  throwing  one  point  with  three  dice? 

Opbration. — Assume  a  bet  to  be  upon  the  ace.  Then  there  will  be  6x6x6  =  216 
different  ways  which  the  dice  may  present  themselves,  that  is,  with  and  vxithout  an  ace. 

Then,  if  the  ace  side  of  the  die  ts  excluded,  there  will  be  5  sides  left,  and  5X5X5 
s=  Z25  ivays  without  the  ace. 

Th/srefore,  there  will  remain  only  216  — 125  =3  91  ways  in  which  there  cotdd  be  an 
9ce.  The  chance,  then,  in  favor  of  the  ace  is  as  91  to  125 ;  that  is,  out  of  216  throws, 
the  probability  is  that  it  will  come  up  91  times,  and  lose  125  times. 

4. — The  hour  and  minute  hand  of  a  clock  are  exactly  together  at  la; 
when  are  they  next  together  ? 

OraiATiOK.— As  tiie  minute  hand  runs  xi  times  faster  than  the  hour  hand,  then, 
as  II  :  60  ::  I  :  5  min.  27j'j  sec.  =  time  past  1  0^ clock. 

5. — Assume  a  cube  inch  of  glass  to  weigh  1.49  ounces  troy,  the  same  of 
sea-water  .59,  and  of  brandy  .53.  A  gallon  of  this  liquor  in  a  glass  bottle, 
which  weighs  3.84  lbs.,  is  thrown  into  sea-water.  It  is  proposed  to  deter^ 
mine  if  it  will  sink,  and,  if  so,  how  much  force  will  just  buoy  it  up? 

Opsration.     3.84  X  12  -f- 1.49  =  30.92  cube  ins.  of  glass  in  botUe. 
231  cube  ins.  in  a  gallon  X  '53  =  122.43  ounces  of  brandy. 

Then,  bottle  and  brandy  weigh  3.84X  12  +  122.43  =  168.51  ounces,  and  contaiD 
S61.92  cube  ins.,  which  x  -59  =  i54-53  ounces,  weight  of  an  equal  bulk  of  sea-water 

And,  168.51  — 154.53  =  13-98  ounces,  weight  necessary  to  support  it  in  the  water 


880     MISCBLLANEOUS  OPBSATIONS  AND  ILLUSTBATIONS. 

6. — A  fountain  has  4  supply  cocks,  A,  6,  C,  and  D,  and  under  it  is  a  cis* 
tern,  which  can  be  filled  by  the  cock  A  in  6  hours,  by  B  in  8  hours,  by  C  in 
10  hours,  and  by  D  in  12  nours ;  now,  the  cistern  lias  4  holes,  designated  E, 
F,  6,  and  H,  and  it  can  be  emptied  through  E  in  6  hours,  F  in  5  hours,  G  in 
4  hours,  and  U  in  3  hours.  Suppose  the  cistern  to  be  full  of  water,  and  that 
all  the  cocks  and  holes  were  opened  together,  in  what  time  would  the  cistern 
be  emptied? 

Ofkr^tioh.— Assume  the  cistern  to  hold  190  gallona 

hn. 
If  6 

5 


hn.    gall.     bn.    gsU. 

If  6  :  Z30  ::  X  :  20  <jrf  A 

8  :  120  ::  I  :  15  at  B. 

so  :  X90  ::  X  :  la  a<  G. 

IS  :  X90  ::  X  :  10  at  D. 


■Bun  in  in  x  hourj  57  gaUont. 


8>U. 

hn. 

CiOL 

I20 

::  X  : 

ao 

atE. 

xao 

24 

at  F. 

xao 

.  .  A   < 

:  30 

at  6. 

Z20 

••  T 

:  40 

at  H. 

4 

3  

Bun  out  in  1  hour^  114  gaUcns, 

57 
Bun  out  in  I  hour  more  than  run  in,  57  galiont. 

Then, as  57  ffaUom :  x  hour::  xao gaUom :  2. 105+  howrt. 


7. — A  cistern,  containing  60  gallons  of  water,  has  3  cocks  for  discharging 
it ;  one  will  empty  it  in  i  hour,  a  second  in  a  hours,  and  a  third  in  3  hoars ; 
in  what  time  will  it  be  emptied  if  they  are  all  opened  together? 

Opkration.— xst,  .5  would  run  oat  in  x  boar  by  the  ad  cock,  and  .333  by  the  3d; 
consequently,  by  the  3  would  the  reservoir  be  emptied  in  x  hour.  .5  -)-  .333  -|-  x  = 
{^-f-  f  +  f  >  ^ng  reduced  to  a  common  denominator^  the  turn  0/ these  3  =  J^ ;  whence 
the  proportion,  xz  :  60 ::  6 :  32^^  minutes. 

8. — A  reservoir  has  2  cocks,  through  which  it  is  supplied ;  by  one  of  them 
it  will  fill  in  40  minutes,  and  by  the  other  in  50  minutes ;  it  has  also  a  dis- 
charging cock,  by  which,  when  full,  it  may  be  emptied  in  25  minutes.  If 
the  3  cocks  are  left  open,  in  what  time  woiud  the  cistern  be  filled,  assuming 
the  velocity  of  the  water  to  be  uniform  ? 

Operation.— The  least  common  multiple  of  40,  50,  and  25,  is  aoa 

Then,  the  zst  cock  will  fill  it  5  times  in  aoo  minutes,  and  the  ad,  4  times  in  aoo 
minutes,  or  both^  9  times  in  aoo  minutes;  and,  as  the  discharge  cock  will  empty  it 
8  times  in  aoo  minutes^  hence  9 — 8  =  x,  or  once  in  aoo  mumtes=z^a  hours. 

9. — The  time  of  the  day  is  between  4  and  5,  and  the  hour  and  minnte 
hands  are  exactly  together;  what  is  the  time? 
Opxration. — Difference  of  speed  of  the  hands  is  as  x  to  xa=:xx. 
4  hours  X  60=  240,  which  -i-  zx  =  ax  min.  49.09  mc,  loAicA  istobe  added  to  4  Aoura 

la — Out  of  a  pipe  of  wine  containing  84  gallons,  10  were  drawn  off,  and 
the  vessel  refilled  with  water,  after  which  10  gallons  of  the  mixture  were 
drawn  off,  and  then  10  more  of  water  were  poured  in,  and  so  on  for  a  third 
and  fourth  time.  It  is  required  to  compute  how  much  pure  wine  remained 
in  the  vessel,  supposing  the  two  fluids  to  have  been  thoroughly  mixed. 

Opsration.    84  — 10  =  74,  quantity  after  the  isl  dra/ught 
Then,  84 :  10  : :  74  :  8.8095,  and  74  —  8. 8095  =  65. 1905,  quantity  after  ad  drau^U. 
84 :  10 : :  65. 1905 : 7. 7608,  and  65. 1905  —  7. 7608  =  57. 4297,  quantity  etfier  3d  drctught^ 
84 :  10 : :  57. 4297 : 6. 8367,  and  57. 4297  —  6. 8367  =  5a  593,  ^^umtity  after  4th  drauffht, 
=  result  requiroi. 

II. — ^A  reservoir  having  a  capacity  of  10  000  cube  feet,  has  an  influx  of 

750  and  a  discharge  of  1000  cube  feet  per  day.    In  what  time  will  it  b» 

emptied?  ^  xoooo  ^ 

Operation.     =  40  daya 

xooo — 750     ^ 

Cfonirariwise :  The  discharge  being  xooo  and  the  inflax  xaso  cube  feet  per  hone 
In  what  time  will  it  be  filled? 

_  zoooo  » 

Operation.  =  40  hours  =  x  day  i6  hours, 

1250  —  xooo  ^  ' 


MISCELLANEOUS  OPEBATIONS  AND  ILLUSTSATIONS.      88 1 

12. — A  son  asked  his  father  how  old  he  was.  His  fiither  answered  him 
thus :  If  you  take  away  5  from  my  years,  and  divide  the  remainder  by  8, 
the  quotient  will  be  one  third  of  your  age ;  but  if  you  add  2  to  your  a^e,  and 
multiply  the  whole  by  3,  and  then  subtract  7  from  the  product,  you  will  have 
"Jie  number  of  years  of  my  age.    What  were  the  ages  of  father  and  son  ? 

Opebation.— Assume  &iber's  age  37. 

Then  37  —  5  =  32,  and  32 -;- 8  =  4,  and  4  X  3  =  12, «)n'»  atf«.  Again:  i2-l-2  =  x4, 
and  14X3  =  42,  and  42  —  7  =:  35.    Therefore  37  —  35  =  2,  error  too  lilUe. 

Again:  Assume  fktber^  age  45;  then  45  ~  5  =  40,  and  40  -^  8  =  5.  Therefore 
5  X  3  =  15, wn'« o^.  Again:  i5  +  2  =  i7,andi7X  3  =  51. and 51  — 7  =  44.  Tbere- 
fore  45  —  44  =:  I,  error  too  little. 

Hence  (45  sup.  x  2  error)  — ■  (37  sup.  x  i  error)  =  90  —  37  =  53,  and  2  —  1  =  1. 

Ck>n8oquently,  53  uJiUher^s  age.  Then  53  —  5  =  48,  and  48  -J-  8  =  6  =  .  333  0/  son^s 
age^  and  6  X  3  =  18  years^  son^s  age, 

13. — Two  companions  have  a  puree!  of  guineas.  Said  A  to  B,  if  you  will 
give  me  one  of  your  guineas  I  shall  have  as  many  as  you  have  left.  B  re- 
plied, if  you  will  give  me  one  of  your  guineas  I  shall  have  twice  as  many  as 
you  will  have  left.    How  many  guineas  had  each  of  them  ? 

Opxration.— Assume  B  had  6. 

Then  A  would  have  had  4,  for  6  —  1  =  4  4- 1  =  5.  Again :  4  (A's  parcel)  —  i  =.  3, 
and  64-1  =  7,  and  9x2  =  6.    Therefore  7  —  6  =  1,  error  too  Utile. 

Again :  Assume  B  had  8. 

Then  A  would  have  6,  for  8  —  i  =  6  + 1  =  7<  Again :  6  (A's  parcel)  —  1  =r  5,  and 
8  + 1  =  g,  and  5  x  2  =  low    Therefore  10 — 9  =  1,  error  too  great. 

Hence  8 X  1  =  8,  and  6x  1=6.  Then  84-6  =  14,  and  1  + i  =  2.  Whence,  di- 
▼idiog  products  by  sum  of  errors,  x4 -7-2  =  7  =  B's  parcel,  and  7  —  1  =  54-1=6 

for  A  when  he  had  received  i  o/B\  also  5  —  1  X2  =  74-'=8  =  B'8  parcel  when  he 
had  received  i  0/ A. 

14. — If  a  traveller  leaves  New  York  at  8  o'clock  in  the  morning,  and  walks 
towards  New  London  at  the  rate  of  3  miles  per  hour,  without  intermission; 
and  another  traveller  starts  from  New  London  at  4  o'clock  in  the  vening, 
and  walks  towards  New  York  at  the  rate  of  4  miles  per  hour  continuously ; 
assuming  distance  between  the  two  cities  to  be  130  miles,  whereabouts  upon 
the  road  will  they  meet  ? 

Oprkation.  —From  8  to  4  o'clock  is  8  hours;  therefore,  8  x  3  =  24  miles,  per- 
formed hy  A  b^/mre  B  tet  out  from  New  Lomdon ;  and,  consequently,  130  —  24  =  106 
are  the  miles  to  he  travelled  between  them  after  that. 

Hence,  as  (3  4-  4)  7  :  3  : :  106  •  *^  =  45^  more  miles  travelled  by  A  at  the  meeting i 
consequently,  24  -f-  45^  =  69^  miles  from.  New  York  is  place  of  their  me^ng. 

15. — If  from  a  cask  of  wine  a  tenth  part  is  drawn  out  and  then  it  is  filled 
with  water ;  after  which  a  tenth  part  of  the  mixture  is  drawn  out ,  again 
is  filled,  and  again  a  tenth  part  of  the  mixture  is  drawn  out:  now,  assume 
the  fluids  to  mix  uniformly  at  each  time  the  cask  is  replenished,  what  frac- 
tional part  of  wine  will  remain  after  the  process  of  drawing  out  and  replen- 
ishing has  been  repeated  four  times? 

Opkration.— Since  .  i  of  the  wine  is  drawn  out  at  first  drawing,  there  must  remain 

9.     After  cask  is  filled  with  water,  .1  of  whole  being  drawn  out,  there  wiU  remain 

9  of  mixture;  but  .9  of  this  mixture  is  wine;  therefore,  after  second  drawing,  there 

o* 
wUl  remain  .gof.g  of  wine,  or  -^ ;  and  after  third  drawing,  there  utill  remain  .9 

of  .9  of.g  of  wine,  or  ^. 

Hence,  the  part  of  wine  remaining  Is  expressed  by  the  ratio  .9,  raised  to  a  pawei 
tapomnt  of  which  is  number  of  timet  cask  htu  been  draxonfrom. 

Therefore,  ^odumoZ  part  of  wine  is  ■  —  =  .6561. 


882     MISCBLLAXEOUS  OPERATIONS  AND  ILLU6TBATIONS. 

i6.— Tnere  is  a  fish,  the  head  of  which  is  9  ins.  long,  the  tail  as  long  as 
the  head  and  half  the  body,  and  the  body  as  long  as  both  the  bead  and  tait 
Required  the  length  of  the  fish. 

Opkratiox.— Assume  body  to  be  24  ins.  in  length.  Then  24 -7-24-9  =  21,  lengtM 
of  taiL 

Hence  21  -f  9  =  30,  length  of  body,  which  is  6  ins.  too  great 

Again :  assume  the  body  to  be  26  ins.  in  length.  Then  26-f-  2  +  9  =  22,  length  of 
taiL     Hence  22  -{-  9  =  31,  length  of  body,  whicb  is  5  ins.  too  great. 

Therefore,  by  DotUtle  Position,  divide  difference  of  products  (see  rule^  page  99) 

by  diffei-ence  of  errors  (the  errors  being  alike),  26  x  6  —  24  X  5  =  36  =  difference  of 
products^  and  6  —  5  =  1=  difference  of  errors. 

Consequently,  36  -r- 1  =  36,  length  of  body,  and  36  -f-  s  -f-  9  =  27,  length  of  tail,  and 
36  4-  37  4~  9  =  72  ifu. ,  length  required. 

17. — A  hare,  50  leaps  before  a  greyhound,  take.s  4  leaps  to  the  greyhound's 
3,  but  2  leaps  of  the  hound  are  equal  to  3  of  the  hare's.  How  many  leaps 
must  the  greyhound  take  before  he  can  catch  the  hare  ? 

Oprkation. — As  2  leaps  of  the  greyhound  equal  3  of  the  hare,  it  follows  that  6  of 
the  greyhound  equal  9  of  the  hare. 

While  the  greyhound  takes  6  leaps,  the  hare  takes  8;  therefore,  while  the  haro 
takes  8,  the  greyhound  g^tins  upon  her  i. 

Hence,  to  gain  50  leaps,  she  mnst  take  50  X  8  =  400  leaps  ;  but,  tohUe  hare  takes 
400  leaps,  greyhound  takes  300,  since  number  of  leaps  taken  try  them  are  ai4to  2. 

18. — If  a  basket  and  1000  eggs  were  laid  in  a  right  line  6  feet  apart,  and 
10  men  (designated  from  A  to  J)  were  to  start  from  basket  and  to  run  alter- 
nately, collect  the  eggs  singly,  and  place  them  in  basket  as  collected,  and 
each  man  to  collect  but  10  eggs  in  his  turn,  how  many  yards  wtnild  each 
man  run  over,  and  what  would  be  entire  distance  run  over  ? 

Operation.  —  A's  course  would  be  6  x  2  feet  {first  term)  +  lo  x  6  X  2  feet  {last 
term)  =  132  =  sum,  of  first  and  last  terms  of  progression. 

Then  132  -=-  2  X  10  =  660  feet  =  number  of  times  X  half  sum  of  extremes  =  turn  of 
all  the  terms,  or  the  distance  run  by  A  in  his  first  turn. 

B'b  course  would  be  Fi  x  6  x  2  =  1 32  feet  {first  term)  -f  30  X  6X2  =  940  feet  (last 
term)  =  372  =  sum  of  first  and  last  terms. 

Then  372  -^  2  x  lo  :=  i860  =  sum  of  all  the  times,  or  Ws  first  turn. 

A's  last  course  would  be  901  x  6  x  2  =#10 812 /«c« /or  thefirtt  term,  and  910x6x2 
=  10  g2o  feet  for  the  last  term  of  his  last  turn. 

Then  10  812  + 10  920  -?-  2  X  10  =  108  660  =  sum  of  the  terms,  or  distance  run. 


B's  last  course  would  be  911  x  6  x  2  =  10^-^2  feet  for  the  first  term,  and  920X6X2 
r=  II  0^0  feet  for  the  last  term  of  his  last  turn. 

Then  10  032  -|- 11 040  -?-  2  x  10  =  109  860  =  sum  of  the  terms  or  distance  run. 

Therefbre,  if  A's  first  and  last  runs  =  660  and  108  660 /r«^  and  the  number  of 
terms  10,  then,  by  Progression,  the  sum  of  all  the  terms  =  sa66oo  feet. 

And  if  B's  first  and  last  runs  =:  i860  and  iog96o  feet,  and  the  number  of  terms  10, 
then  the  sum  of  all  the  terms  =  558  6oo/««<. 

Consequently,  558  600  —  546  600  =  12  000  =  common  difference  of  runs,  which,  be- 
ing added  to  each  man's  run  —  sum  of  all  runs,  or  entire  distance  run  over. 


A's  run,^466oo  =  182  200  yds. 
B's    "    558600  =  186200    " 
C's    "    570600=190200    '* 
D's    "    582600  =  194200    " 
E's    "    594600  =  198200    " 


F's  run,  606600  =  202  200  yds. 
G'8    "     618600  =  206200    ♦' 
H's    "    630600  =  210200    " 
I's     "    642600  =  214200   " 
J's    "    654600  =  218200   " 


6  006  000  ^e<,  wh  ich -f- 5280  =  1 1 37. 5  miZ«t. 

i9> — If,  in  a  pair  of  scales,  a  body  weighs  90  lbs.  in  one  scale,  and  but  4c 
lbs.  in  the  other,  what  is  the  true  weight? 

V(4oX9o)  =  6o»J. 


MISCELLANEOUS  OPEBATIONS  AND  ILLUSTBATIONS.       883 

do.-— If  a  steamboat,  mnning  uniformly  at  the  rate  of  15  miles  per  hour 
through  the  water,  were  to  run  for  i  hour  with  a  current  of  5  miles  per  hour, 
then  to  return  against  that  current,  what  length  of  time  would  she  require 
to  reach  the  place  from  whence  she  started  ? 

Opemation.     15  -f-  5  =  20  mileSy  the  distance  run  durinff  the  hour. 

Then  15  —  5  =  10  miles  is  her  effective  velocity  per  hour  when  returning^  and 
20-^  10  =  2  hoto's^  Uie  time  qfreturning^  and  2  -f  i  =  3  hours,  or  the  whole  time  oc- 
cupied. 

Or,  Let  d  represent  distance  in  one  direction^  t  and  t'  greaier  and  lets  times  of  run- 
ning in  hours,  and  c  current  or  tide. 
t-\-t' 

2  t)  X  C    d 

Then,  - — -;=  velocity  of  boat  throu^fh  the  toater,  and -7 =  c. 

'  X  '  t 

21. — Flood-tide  wave  in  a  given  river  runs  20  miles  per  hour,  current  of 
it  is  3  miles  per  liour.  Assume  the  air  to  be  quiescent,  and  a  floating  body 
set  free  at  commencement  of  flow  of  the  tide ;  how  long  will  it  drift  in  one 
direction,  the  tide  flowing  for  6  hours  from  each  point  of  river  V 

Operation. — Let  x  be  the  time  required;  20a;  =  distance  the  tide  has  run  up,  to- 
gether with  the  distance  which  the  floating  body  has  moved;  3X  =  whole  distance 
which  the  body  has  floated 

Then  2ox^3X:=::6X20f  or  the  length  in  tHilei  of  a  tide. 

20 
X  =  — — -  X  6  =  7  hours,  3  minutes^  31- 7^5  seamds. 

22. — A  steamboat,  running  at  the  rate  of  10  miles  per  hour  through  the 
water,  descends  a  river,  the  velocity  of  which  is  4  miles  per  hour,  and  re- 
turns in  10  hours ;  how  far  did  she  proceed  ? 

X  X 

OPERATiOM.^Let  09  =  distance  required,  -    ,--  =  time  of  going. =  time  of 

104-4  *o  —  4 

X  X 

returning.    Then, — (----=10;  6a>-f-i4*  =  84o;  2005  =  840;  840-^20=42  mite*. 
14        6 

23. — From  Caldwell's  to  Newburgh  (Hudson  River)  is  18  miles ;  the  cur- 
rent of  the  river  is  such  as  to  accelerate  a  boat  descenciing,  or  retard  one 
ascending,  1.5  miles  i>er  hour.  Suppose  two  buats,  running  uniformly  at  the 
rate  of  15  mdes  per  hour  through  the  water,  were  to  start  one  from  each 
place  at  the  same  time,  where  will  they  meet  V 

Operation.— Let  a;:^the  distance  fVom  N.  to  the  place  of  meeting;  Us  distance 
from  C,  then,  wilt  be  18  —  x. 

Speed  of  descending  boat,  1 5  -|-  x .  5  =  1 6. 5  miles  per  hour  ;  of  ascending  boat,  15  — 
1.5  =  13.5  mtte«j70rAour.   ~-r--=ztimeof  boat  descending  to  point  of  meeting.    

=  time  of  boat  ascending  to  point  of  meeting. 

X        18 — X 

These  times  are  of  course  equal ;  therefore,  -j—  = .    Then,  13. 5s  =  297  — 

10.5       13.5 

x6. 5X,  and  13. 5X  4- 16. 5X  =  297,  or  30X  =  297. 

Hence  x  =  — = 9.9  mUes,  the  distance  from  Newburgh. 
30 

24. — There  is  an  island  73  miles  in  circumference;  3  men  start  together 

to  walk  around  it  and  in  the  same  direction :  A  walks  5  miles  per  hour,  B  8, 

and  C  10 ;  when  will  they  all  come  aside  of  each  other  again  ? 

Operation.— It  is  evident  that  A  and  C  will  be  together  every  round  gone  by  A ; 
bence  it  remains  to  ascertain  when  A  and  B  will  be  in  conjunction  at  an  even  round, 
as  3  miles  are  gained  every  day  by  B.  Therefore,  as  3  :  1  ::  7^  :  24.33-I-;  ^"'1  *« 
the  coDjanction  is  a  fractional  number,  it  is  necessary  to  ascertam  what  number  of 
a  multiplier  will  make  the  division  a  whole  number. 

73-4-  24.33-I-  s  3,  {^  number  of  days  required  in  which  A  wiU  go  round  $  timei^ 
B  8,  and  C  xo  times. 


884      HISGSLLANBOUS  OPBBATIONS  AND  ILLUSTBATIONa 


25. — Assume  a  cow,  at  age  of  a  years,  to  bring  forth  a  cow-calf,  and  then 
to  continue  yearly  to  do  the  same,  and  every  one  of  her  produce  to  bring 
forth  a  cow-calf  at  age  of  2  years,  and  yearly  afterward  in  like  manner ; 
how  many  would  spring  from  the  cow  and  her  produce  in  40  years  ? 

Opkration.— The  increase  in  ist  year  would  be  o,  in  2d  year  i,  in  3d  i,  in  4th  3, 
in  5th  3,  in  6th  5,  and  so  on  to  40  years  or  terms,  €04^  term  being  =  mm  of  the  two 
preceding  ones.  The  last  term,  then,  will  be  165580x41,  fVom  which  is  to  be  sub- 
tracted X  for  the  parent  cow,  and  the  remainder,  X65  580x40,  wUl  represent  increcue 
required. 

26. — The  interior  dimensions  of  a  box  are  required  to  be  in  the  propor- 
tions of  2,  3,  and  5,  and  to  contain  a  volume  of  1000  cube  ins. ;  what  should 
be  the  dimensions  r 

^                       -  /IOOOX23      -          _  /xoooXs*         ,           .  ,  /ioooX5'        ,  . 
Operation.— 3/-     =  6.43;  3/ ^-  =  9.65:  and  3/ i^^  =  i6in«. 

VaXsXS  'V2X3X5      ^    ^'  V2X3X5 

And  what  for  a  box  of  one  half  the  volume,  or  500  cube  ins.,  and  retaining 
same  proportionate  dimensions  ? 


.   ^o 
Operation. — 2  X  3  X  5  =  30,  and  —  =  X5. 

15  X  9-65' 


Then 


,3/ii>^'  =  ,.;      3/: 


7.66;    and 


V^ 


x5  X  i6» 


=  la  tnt. 


30  V        30  V       30 

27. — The  chances  of  events  or  games  being  equal,  what  are  the  odds  for 
or  against  the  following  results? 


Odds. 


Five  XCvents. 

Against.  In  favor. 


31         to  I 

4  33  to  1 


All  the  5        X  out  of  5 
4  out  of  5        2  out  of  5 

5  to  3  in  &vor  of  the  5  events  result- 
ing 3  and  3. 

G?lxree   Kvexxts. 


Four  Kvezits. 


Odds. 


15     to  X 
2.2  to  X 


Af^ainst. 


In  favor. 


Odds. 


7  to  X 
Even 


Against. 


In  favor. 


I  out  of  3 
( 2  or  all  out 
I  of3 


All  the  4        I  out  of  4 
3  out  of  4         2  out  of  4 

5  to  3  against  2  events  only,  or  that 
the  4  events  do  not  result  2  and  a. 

T-wo   Bvexits. 


Odds. 


3tox 
Even 


Against. 


Both  events 
only  out 

2 


(i  on 

I    of; 


In  ftiTor. 


X  out  of  a 
( X  only  out 
I  of  2 


AH  the  3 
[  2  or  all  out 
I  of3 
3  to  I  in  favor  of  the  3  events  result- 
ing 2  and  I. 

28. — Required  the  chances  or  probabilities  in  events  or  games,  when  the 
chances  or  probabilities  of  the  results,  or  the  players,  are  equal. 


Even  that  the  events  result  x  and  x. 


Events 

or 
Games. 


2X 

ao 


17 

x6 

15 

X4 

13 

X2 


That  a 
named  erent 

occurs  a 
majority  or 

more  of 
times. 

Even 

1.33  ^  I 
Even 

X.55  to  X 

Even 
x^  to  I 

Even 
X.5  to  I 

Even 
X.6  to  X 


Against  a 
named  event 

Against  each 

occarring 
an  exact 

event  occur- 
ring an  equal 

miyority  of 
times. 

number 
of  times. 

5  to  X 

^.M 

— 

4.66  to  X 

4.5  '0 » 

— 

— 

4.4  to  X 

4.4  to  I 

— 

— 

4.1  to  I 

4  to  X 

^— 

— 

3.8  to  X 

3.7  to  X 

— 

-~' 

3-44  to  X 

Events 

or 
Games. 

Tliat  a 
named  event 

occurs  a 
majority  or 

more  of 
Umee. 

Against  a 

««»»<«(  event 

occurring 

an  exact 

majority  of 

times. 

XI 

Even 

3-4  ^0» 

xo 

I 

X.7  to  X 
Even 

3tOx 

X.75  to  X 
Even 
2  to  I 
Even 

^^^        *» 

I 

5 

2.7  to  X 
2.2  to  X 

4 
3 

2 

2.2  to  X 
Even 
3  to  I 

x.66tox 

Agaiuat  each 
event  occur- 
ring an  equal 
number  of 
timea. 


3.06  to  I 

2.66  to  x 

2.2  to  X 

1.66  to  I 
Even. 


29. — The  chances  of  consecutive  events  or  results  are  as  follows ; 
jii. — 2047  to  I.  I  la — 1023  to  I.  I  9. — 5ixtOi.  I  8. — 255  to  I.  I  7. — 127101.  I  6. — 63101. 

Hence  it  will  be  observed  that  the  chances  increase  with  the  number  of  eventa 
very  nearly  in  a  duplicate  ratio. 

Illustration.— The  chances  of  xx  consecutive  events  compared  with  10,  are  as 
9047  to  1023,  or  2  to  X. 


MISCELLANEOUS  OPEBATIONS  AND  ILLUSTBATIONS.    885 

30. — Required  the  chances  or  probabilities  of  events  or  results  in  a  given 
number  of  times. 

The  numercUor  of  a  firaction  expresses  the  chance  or  probability  either  for  the  re- 
sult or  event  to  occur  or  fail,  and  the  denominator  all  the  chances  ^r  probabilities 
both  for  it  to  occur  or  fail. 

Thus,  in  a  given  number  of  events  or  games,  if  the  chances  are  even,  the  proba- 
bility of  any  particular  result  is  as  — ■, —  =  —  ;   — ~  ;    —7— ,  etc.,  being  i  out  of 

i-f-i      2      2  +  2     3  +  3 

3, 3  out  of  4,  etc.,  or  even. 

If  the  number  of  events  or  games  are  3,  then  the  probability  of  any  par- 
ticular result,  as  2  and  i,  or  i  and  2,  is  determined  as  follows : 

Number  of  permutations  of  3  events  are  i  x  2  X  3  =  6,  which  represents  number 
of  times  that  number  of  events  can  occur,  2  and  i,  or  i  and  2,  to.  which  is  to  be 
added  the  2  times  or  chances  they  can  occur  all  in  one  way  or  the  reverse  thereto. 

Hence,  —7—^  =  ^  =  — ^  =  — ,  or  3  to  i  in  fevor  of  result;  and  probability  ot 
♦2-1-6      4      4-3       1'       ^  ,  F  J 

one  party  naming  or  winning  two  precise  events  or  results,  as  winning  2  out  of  3, 
is  determined  as  follows:  Number  of  permutations  and  chances,  as  before  shown, 

are  8.    Hence,  number  of  his  chances  being  3,     ?    =  4  =  77^—  =  — ,  or  3  to  5  in 

3  +  5      8      8  —  3      5 
fiivor  of  result;  and  probability  of  one  party  naming  or  winning  all,  or  3  events 
or  results,  is  determined  as  follows:  Number  of  permutations  and  chances  being 
also,  as  before  shown,  8.    Hence,  as  there  is  but  one  chance  of  such  a  result, 

— ^  =  4-  =  TT^  =  — ,  or  I  to  7  in  favor  of  result. 
1  +  7      8      8  —  1      7'  ' 

If  number  of  events,  etc.,  are  4,  then  probability  of  any  particular  result, 
as  2  and  2,  or  of  winning  2  or  more  of  them,  is  determined  as  follows : 
Number  of  permutations  and  chances  of  4  events  are  16.    Hence,  as  number  of 

chances  of  such  a  result  are  11,  —. —  =  -?  =  -2 =  — ,  or  as  11  to  5  in  favor 

S  +  ii      16      16  —  II       5 

of  the  result,  and  that  the  results  do  not  occur  precisely  2  and  2.    The  number  of 

chances  of  such  a  result  being  10,  ^-J —  =  -f-  =  5 =  — ,  or  5  to  3  against  it. 

6  + 10      8      8  —  5      3 

If  number  of  events,  etc.,  are  5,  then  probability  of  any  particular  result, 
as  3  and  2,  is  determined  as  follows : 
Number  of  permutations  and  chances  being  32,  and  number  of  chances  of  such 

a  result  being  20,  — ~ —  =  ^  =  -r^ —  =  ^  =  — ,ora85t03in  favor  of  the 

12  +  20      16      10  — 10      0       3 

result;  and  that  it  may  occur  precisely  3  out  of  5,  the  number  of  chances  are 
«o     __'o_5_      5      =5.^  or  II  to  5  against  it 


jo-f-22      32      x6      16  —  5      XX 

31. — ^What  is  the  dilatation  of  the  iron  in  a  railway  track  per  mile,  be- 
tween the  temperatures  of  —20°  and  +130°? 

Opbbation. 20°  +  i3o<^  =  150°.    The  dilatation  of  wrought  iron  (as  per  table, 

page  519)  is,  from  32^'  to  312**  =  iSaP  =  .001 357  5  times  its  length. 

Hence, as  x8o :  150 :;  .cox  357  5 :  .001 047 9  =  °"'Q47  9  ^f  ^^^  ^f^^^  jjj  ^  ^j|gj  _. 

33. — A  steamer  having  an  immersed  amidship  section  of  125  sq.  feet,  has 
a  speed  of  15  miles  per  hour  with  300  H*.  What  power  would  be  required 
for  one  of  like  model,  having  a  section  of  150  sq.  feet  for  a  speed  of  20  miles? 

As  power  required  for  like  models  is  as  cube  of  speeds. 

Then  i^S  —  f.a  relative  Meetions.  and  — r— *=  2.37  relative  poweri 

135  '5' =^3375        ^' 

Besot,  1 : 1.9 ::  8.37 :  3.844  iime9  W> 


886 


MARINE    8T«:AM£BS   ANP   SNGIinCS. 


CO 

H 
IS 

H 

00 

3 


•J 

> 

O 


< 


M 


(B 


03 


« 


^ 


<  B  a— 


y§!?i 


00 


00  '*■ 


o2«^KHg;M05.„>p«^Spoj-5 


00 


o  go 


o  « 


I  .T  o  I "  I  «!r  *" 

I  NO  in  I   in  I  "S 


■>•■  O  M 

O^Q«_VO    "lO    IOWA'S 


,H  in 


1*^ 


5(2  I   m 


O   O 
(>  in^ 

000  O 

M     M     " 


s 


5 


■xs  a 


»n® 


*«  ro  «* 


O 

^m  o  SC 


'  -,:   rt  «-  00  o\oo 


00     -  *♦ 


s.'i  s.'s  ll" »;  a"8- *^  s  >s  ^  ^  »  +  ?  1 2«  I 


S"" 


«  in 


oo    O 

>^  -,.  in  ii  v<  vo  «« 
'  J.  ^  •fc  i«  (^    . 


00    i/^  •» 


I  ^«';«ooooso  o  KdxS-^^^o^d  8^  -J 


« 


m 

N  NO 

vo  VO 


« 2 


O 
■ 

a 

9 


CO  3 


in« 


2  8  K«  5  -^«  ttx^^*§;^  !2'^  8«vo^ 


e 

Q 


1 2  ??»°5.?;2^^'  ^'  ^*^"»-^::sv««jr3;ii>^ji 


00 

N 

r« 


vO, 


Ov 


ro 


m 


«    M    O    O 


1 


:| 


O  vo 


^  in  r    •    I   lA  M  ►<  "<-^  m  t^  <='  ;r  r>«  £•  00 


•l^*- j 


■    '.  Woo 


o  _a   H  m  I   •-  vT'S  lA  Kgg  %  ATI  fo  »oo5  o  ^  4^  I*,  a  « 

•4    k« 


a—    ''^ 


•»2e   fo  ^  I 


•n 

m  en  ro  «  •"  g 


Ov 


M 


^  «  _ 

M      W     Q 


.n^P  '?Sȣ?>0  cnin^o'Tg    3 


M   "o  ^  jr     .   inwi**   •••-•ir- 

«-««fn^^2«'4-od« 


M     M 


a 


M  A 


•a  .© 


o 


00 


^ 


*  tea  tt>^ 
^  o  2 .2  g  5; 


S  Qi  ^"  f^  s  2  :  g 


4) 


o  S  g 


^    v* 

2*  d 


iS   ^^   C   C;   5 


MAKINE   STEAUERS   AND   BNGINKS. 


887 


00 
H 


>5 

< 


CO 

H 


C 
ft 


:j  ^ 


a 

c6 


o 

CO 
H 

< 

55     _ 


0 

u 

H 


QD 
Pi 

OD 


0 


8 


K    fO 


^S  «  rn  u>  m 


en  osM 


'^S>3 


I  CO  I  M  \o  o  xo  a  «  I  o  .00  8  «  m  a 

MM  »^ 'O    >*< 


I    gai  d.2.1  ^>|^%8^ 


00 


8  8^ 


o   I    I    I   "5^1 


5-        <^ 


{?w, 


ts  i^ 


1 


•^O  CI     M  M 


Q  2  » 


51  "^l*^-  |<;?S'2.S^Ss?i,§o;?^-;^J 


N  in^  «  a 


«  i».2, 


H,?iii*is'2&H|i»s:^mi 


«  M 


OS 


iSit'gSitsSili! 


I 

I 

o 

s. 

o 
H 


w  9  • 


>o 


•M    W 


fO   .*•   M 


I     I    ■♦  OS  OS   .  m<*  '*i^  o 
I     I    m  ro  •>*■  C*  m  '^  *" 


0>  m'  e«     M    « 

M  ^  m 


ili' 


so  ^0  00  «  O  - 
J  J  V)  *^  »«  a 

O    O  00  M     •*    J 


to  8  avo  tn^  t<«i    t    I    I    101    |Rc*R.8 


"vo 


^00        00        so         n   A    M    8        %-i 

1<2"  I  ^   I   '^^^  8  S-  OS  -   I  o 


M     M 


2*^  8  a 

fO  !>.  O  o  X  jS 
«  M  •*  «  ih  fl) 


00  so  >n 


M     ON<m 


_  .  00     M      M     0« 

•  SO   l>.Os|    «oo    IVlinOv-^O 


I     I  »o  \0   '^SJ 

^  mso  (a 


^    ^5 


11   gvo   I   m  S- ISO  ».  rx  ^00,^8  l§©   I   't'S.Oso'l 


50      M„  f*>«fnj,„  '*'^M« 


■  ®  -: 
."O  o 


£ 


g  -s 


=*    3    S 

02  ~  s; 


M) 


■  rt  ti  SS  •  ^  «  OD  SPfl     — 


a 
o 
'■S 

SQ 

9 


888 


MAKIKE,  BIVBB, 


er 


Coxxi pound    Guid. 

Lengths  and  HuU^  in  fed  cmd  teniht ;  DnxugJU^  PropeUer^  and  Side  Whede 

Sur/aoeSt  in  sq.fset;  WeigMs  and  Displacements,  in  Tons  (/a34o  At.; 


DimnBioMS 

AND 

Capacitibs. 


Tons. 


Service 

Length  on  deck  . . . 
"  bet.  perp"™ 
"      tonnage  . . . 

Beam,  do 

Hold,  do. 

Decks 

{•  •  •  • 
•  •  •  • 

Draught,  load 

Displacement  do. . . 
Imm'd  Sec-n  at  do. 

Freeboard 

Cylinders,  W 

"        Int 

"  L.  P. . . . . 
Stroke  of  piston... 
Steam  pressure. . . . 

Revolutions 

Boilers 

Grate  surface 

Heating  do 

Condensing  do 

Propeller,  diam. . . . 

Pitch 

Side  wheels,  diam.. 

Breadth 

Coal,  weight 

Consumption. . . . 

Combustion 

Cargo 

Passengers 

Crew 

IH> 

Speed 

Rig 


Speed   in,   Knots  per   Kotxr. 


City  of 
Paris 
and 

New 
York. 


1. 

Steol 

PandF 

527.6 

525 
527.6 

63.2 

32 

4 

5581 
10499 

as 


2  of  45 

2"  71 

2"lX3 

150 

86.5 

9 
X293 

50625 
33000 


3300 
Blut 

1372 

395 

1917s 
20 

Bark'Ds 


Colombia. 


8. 

StMl. 

PandF 

474 
463 

4635 
SS-6 
3S8 

4 

3737 

7363 

24 

10000 


ao: 

«  it 


14.7 
of  41 
66 


2  "  zox 

66 

150 

74 

9 

X320 

35  000 
2  0f  x8 

3a 


Natural 

X096 

X3000 

20 

3-ia  Scli'r 


Naim- 
■hire. 


8. 

StMl. 

RefriK'tor 

350.5 

350 

35a  6 

47-7 
24.3 

2 

2438 

3720 

34-3 
7880 

1058 

4 
37 

44 

71 

48 

z6o 

70 

3 

30p 
6963 

303a 

«6.5 
18.5 


X366 

3000 

Natural 

5360 

SO 

48 
2000 

xx.s 

Brig 


Br«m«r- 
havflD. 


4. 

StMl. 

PetroUam 
350 
340 

339-6 
42.6 

37.3 

3 

a  179 
3393 
3X.3 

6600 
870 

5 
as 

40 

66 

4a 

x6o 

63 

3 

X54 
4800 

3383 

X7.6 

X7.6 


821 

Nataral 
4000 

^S 

1550 

10 

3-in  Seh'r 


Tyne- 
•idoY. 


Simon 
Duiaoia 
aadMa- 

na((va. 


6. 

Iron, 

FandP 

26a5 

360 

360 

33-7 
IS- a 
3 
693 
1390 

174 
3560 

530 

38.5 

46 

75 
4a 
160 

74 
3 

3X6 

6618 
3450 

z6 

3Z 


130 
2400 

Natural 
1080 

1389 

as 

3400 

X5.X 
3-mSeh 


6. 

StMl. 

Fruit 

184 
174.8 
x7Sa 

37.8 

«9 

3 

S14 
7x7 

16.3 

X463 

404 

\i 

36 

40 

33 
160 

90 

z 

63 

30I0 

ZO 
14s 


Electric 

and 
nolk. 


143 
1005 

Natural 

936 

16 

30 
670 
13.5 
Sch'r 


7. 

Iron. 
Flailing 
III. 9 
X06.9 
107.4 

30.S 

IX.5 

k 

xx.s 
330 
«3S 

13.75 
30 
3a 

23 

ISO 
X34 

X 

800 
390 

I 


I 


Natural 


X3 

388 

ia35 
Dandy 


DSoL 


8. 
Iron. 

FandP 

388.75 

377- a 

375 

48 

24 

3 
3oai 

3Z 

6760 
934 
*3 
3a 
Sa 
84 
54 
x6o 
76 

3 

X0500 
6400 

18 

23 


1000 

5000 

NaadB 

4000 

50 
3500 

»4.5 
4-inSck 


R.eniarl^s. No.  1.  J.  &  G.  Thomson,  Glasgow,  Scotland;  Area  of  Immersed 

Horizontal  Section  at  Load-line,  16  500  O  foot  =  coefficient  .5.  No.  S.  Laird 

Bros.,  Birkenhead,  Eng. No.  8.    R.  &  W.  Hawthorn,  Ledie  it  Co.,  New- 

No.  4.  RusseD 


castle,  Eng. ;  Hull  3375  tons.  Engines  180,  and  Boilers  X56. 

&  Co.  and  6.  Stewart  ft  Co. ,  Greenock,  Eng. ;  Hull  1950  tons,  Engines  and  Boilers 

330. >Xo.  6.  Tyne  Steam  Shipping  Co.,  Newcastle,  England;  Engines  135 

tons,  Boilers  220,  and  Water  60,  "Well- deck." No.  6.  Grangemoath  Dock- 
yard Co.  k  Hudson  &  Gorbett,  Glasgow,  Scotland;  Hull  391  tons,  Engines  53,  Boilers 

40,  and  Water  27;  Area  of  Load-line  3850  nfect,  and  of  Sails  .231a Na  7. 

Earless  Co.,  Hull, Eng. ^No.  8.  The  Wm.  Cramp  k  Sons  S.  and  E.  B.  Co.,  Phil- 

Wa,  Pena  No.  f  and  10.  Delaware  River  L  &  B.  and  E.  Co., Chester 


AKD   INLAND   STKAUSBS. 


889 


and.  IiVeislit. 
Xiriple  Sxpaxxsion* 

in  feet  cauX  ins.;  Engines,  in  ins.;  Pressure,  in  lbs.  ;  RevoltUions,  per  minute ; 
Fuel,  in  lbs.  per  Hour;  P  Passengers  and  F  Freight. 

Speed   in.   AdCiles   pex>   Hour. 


8miU 
lUaa. 

Paritan. 

Tnaearo- 
ra. 

Racina. 

Jofan  F. 
Smith. 

New 
York. 

Ata- 
Unto. 

Suaque 
hauna. 

9. 

10. 

11. 

IS. 

18. 

14. 

16. 

1«. 

Iron. 

steal. 

Steel. 

Iron. 

Iron. 

Iron. 

Iron. 

Iron. 

PandF 

PandF 

F 

FandP 

PandF 

P 

Yacht 

Yacht 

343-5 

— 

306.7 

330 

130 

3x5 

240 

166.5 

326 

40a 

396.7 
389.3 

— • 

X22 

^      — 

228.5 

150 

33a- 5 

403-5 

203.5 

X22 

30X 

223.9 

164 

4a6 

52 

40 

35 

4a 

4a  2 

a6.33 

32 

as 

18.x 

23 

— 

9 

XI 

15-2 

»3 

a 

X 

a 

X 

1 

X 

3 

I 

1335 

3075 

1937 

80a 

X42.39 

X092 

284 

117 

3416 

4593 

2669 

X04X 

X35.60 

«553 

568 

233 

»3-7 

13 

16 

— 

5-3 

6-33 

X2 

9-3 

3"5 

4775 

3570 

— 

X55 

xooo 

XO42 

310 

511 

643 

634 

2x8 

83 

235 

246 

138 

8.5 

7 

9-7 

— 

3 

6 

4-75 

4-5 

45 

75 

li 

a8 

X4 

— 

30 

"7 

— — 

— 

aia 

•^ 

^— 

^— 

38 

86 

xxo 

6x 

SO 

26 

75 

60 

42 

54 

9aiuix4 

t* 

36 

x8 

xa 

30 

22 

t 

xxo 

x6o 

1x0 

"5 

50 

XX5 

x6o 

24 

90 

xoo 

30 

X28 

X64 

4 

8 

3 

a 

I 

3 

a 

I 

480 

850 

i6a 

90 

— 

230 

X46 

65 

Z3  000 

36000 

5574 

4000 

1258 

5360 

4534 

2z8o 



i5ooo< 

Jet 

— 

624 

5700 

3226 

1470 

15 

— 

14 

10.5 

6.4 

— 

^ 

8 

»4 

— 

»7-5 

«6.5 

9 

— 

— 

— 

— 

35 

— 

— 

— 

3a  x6 

— 

— 

— 

«4 

— 

— 

— 

X2.5 

— 

— 

aoo 

300 

230 

xxo 

15 

50 

170 

50 

I75^H• 

X.9  p.  H? 

3340 

X400 

4 

3.5 p.  BP 

— 

— 

ffataral 

Nateral 

Natural 

Nataral 

Nataral 

Blaat 

Blaat 

Blast 

600 

900 

3140 

310 

— 

— 

— 

«6S 

1 300 

— 

— 

ISO 

2100 

x8 

— 

— 

aoo 

o^ 

— 

8 

50 

45 

— 

3000 

7500 

1800 

750 

300 

3700 

1950 

925 

«9 

31 

16 

«4-5 

13 

»3 

1745 

18 

Sch'r 

— 

Sch'r 

Snh'r 

— 

— 

3-m  Sch'r 

Sch'r 

Robert 
E.  Ue. 


17. 

Wood 
PandF 

315 
306 

315.8 

48.5 
9.3 

I 

1479 


2  of  40.5 


10 
148 
21 

.?8 

3360 


39 
17 


Nfltural 

1425 
300 

150 
21 


Mary- 
land. 


18. 

Steel. 

Fandl 

332 

316.4 

42 

20.4 

2 
1892 
2419 

16 

4690 

650 

8 

33 

35 

56 

160 

85 

2 

152 

4656 

13.3 
16 


300 

Natural 

3100 

8 

'9 

I200 
13.5 

Sch'r 


Penn.,  and  W.  and  A.  Fletcher  Co.,  Hoboken,  N.  J. No.  11.  Globe  Iron 

Works,  Cleveland,  Ohio;  Hull  1240  tons,  Engines  200, and  Boilers  70  tons. 

Xo.  IS.  Cha&  F.  Elmes,  Chicago,  111.,  and  Burger  k  Burger,  Wis. ;   Freight  and 

Cabin  on  deck  ;  Hull  350  tons,  Engines  40,  Boilers  36,  and  Water  23.— ^ No. 

IS.  Pusey  &  Jones  Co.,  Wilmington,  Del No.  14.  W.  &  A.  Fletcher  Co., 

Hoboken,  K.  J. ;  Water-wheel  blades,  13  of  45  in& ^No.  16.  Same  builders 

as  No.  8. ^No.  16.  The  Harlan  &  Hollingworth  Co.,  Wilmington,  Del. ;  Hull 


136  toss,  Engines  20,  and  Boilers  25. 


No.  17.  Jas.  Howard  k  Co.,  Jef- 


fersonviUe  and  American  Foundry,  New  Albany,  Ind. ;  Water  •  wheel  blades,  23 
of  35  Ins. Na  18.  Detroit  Dry  Dock  Co.,  Detroit,  Mich.  *,   Hqll  1250  tons, 


Engines  140,  and  Boilers  70. 


4F 


890 


STEAM-VESSELS. FERRT    AND   TOWING. 


IFerry  Passenger  and  Team,  and  To-w-Tjoats- 
Single,   Compound,  and   Triple   Expansion, 
Length  and  Hull,  in  feet  and  tenths;  Draught,  l*ropeller,  and  Side  Wheels,  in  feet 
and  ins. ;  Engines,  in  ins. ;  Pressure,  in  lbs.;  Revolutions,  per  minute  ;  Surfaces, 
in  sq.  feet ;    Wei^ts  and  Displacements,  in  Tons  of  2240  tbs.  ;  Fuel,  in  tbs.  per 
Hour;  P  Passengers  and  T  Teams. 

Speed   in    Aliles   per   Hour. 


DlMKHSIONS 
AND 

Capacitibs. 


Tons. 


Montank 

and 

WhiUball. 

Ferry. 


1. 

Iron. 

PandT 
209 

195 

196 

37-4 

65 

14.1 

839 
1088 

"880 
a»5 
7-5 


in 

Jotin  G. 
McCul- 
lou^h. 
Ferry. 


20.5 

8.66 

5 

Natural 
loio 
3500 
4130 

470 

104 

5« 

29.5 

X2 


2. 

Steel. 

TwdP 

915 

'98.5 
198.5 

45 
62 

»4-5 

X 

1008 

i3»o 
II 

»340 
450 
7-75 

3S 

50 

36 
IQD 
I30 

9 
140 


a  of 


Berf^n. 
F^rry. 


8. 

steal. 

Paii4T 
203 

2CX> 

220.4 

37 
63 

16.6 

I 

734 
J117 

9.5 
560 

235 

6.9 

18.5 

27 

4a 

24 
160 
169 

3 

81 

3463 

3  of 

8 
8.91 

4 


SeiTice 

Leugtb  OQ  deck 

'•      bet.  perp're. . 

"      tonnage 

Beam  do. 

"     over  guards. . . 

Hold,  tonnage 

Decks 

{•  «  •  • 
•  ■  •  • 

Draught,  load 

Displacement  do 

ImmersedSec'n  at  do. 

Freeboard  

Cylinders,  H* 

Int 

LP 50 

Stroke  of  Piston so 

Steam  Pressure 50 

Revolutions 33 

Boilers i 

Grate  surface 168 

Heating  do. 1380 

Condensing  do jat 

Propeller,  diam.  . .  { 

Pitch 

Blades 

Side-wheel  diam 

"         width... 

Coal,  weight 

Consumption 

Combustion   Natural     Natural 

IBP 

Team  space 3500       4530 

Passenger  do 4130       5200 

Weight,  Hull 

Engine 

Boilers 

Water 

Speed 12  12         14.6 

Remarks. No.  1.  Side  wheel,  T.  S.  Marvel  k  Co.,  Newburgh,  and  Quintard 

Iron  Works,  N.  V.;  Double  ends. No.  2,  Ncafie  and  I^vy,  Penn  Works, 

Pbila.,  Pa. ;  Propeller  at  each  end. No.  S.  Hull  same  as  1,  and  Ilelamater 

Iron  Works,  N.  Y. ;  Propeller  at  each  end ;  Weights :  of  Hull  as  launched ;  Knginea.  not 
including  steering  and  ventilating;  donkey  pum))s,  piping  and  chimney;  augmented 
surface,  7524  Gfo«t. \os.  4.  and  5.  The  Harlan  and  Hollingsworth  Co.,  Wil- 
mington, Pel,  Propeller  nnd  Side-wheel. No.  6.  Neafie  and  Levy,  Phila. ; 

one  Wrecking  pump,  16  and  20X 18  ins.,  three  8-inch  suctions  on  each  side,  caiNicity 

f'oo  tons  water  per  hour;  one  fire  pump,  eight  2.5-inch  streams ;   Electric  search- 
igbts,  6000  candle  power,  several  of  2000  candle  arc-lfgbts. No.  7.  The 

Puscy  k  Jones  Co.,  Wilmington,  Del. — No.  8.  Hull  same  as  Nos.  1  and  8,  and 

engines  W.  k  A.  Fletcher  Co.,  Hoboken.  N.  .1. ;  Propeller  at  each  end:  No.  8  and 
these*  designed  bv  r.oi  v   a  Steveqs,  Hoboken.  N.  J. 


IS 
1580 

Natural 
1007 

3448 

4330 
321 
177 

48.5 
«5 


In- 
trepid. 

Maine. 
Ferry, 

Inter- 

natiop- 

al. 

Meteor. 

Pat- 
•raon* 

and 
M»t«. 

4. 

$. 

6. 

1. 

sEcl. 

Iron. 

Iron. 

IroB. 

Iron. 

Towtofr 

TandP 

'Howiatr-  Tawiiife. 

PaadT 

118 

189.3 

140 

95 

933 

XIO 

'75 

129.6 

87.66 

2x7 

"4 

174 

X30 

9»-5 



33.5 

36.5 

26 

18.5 

40 

— 

63.5 

— 

— . 

63 

II. 6 

1J.3 

x6.9 

8.6 

16.6 

I 

I 

I 

x 

3 

108.0 
317.8 

545-7 

400 

55-6 



850.3 

300 

95.6 

— 

9-5 

7.3 

12 

8 

xo.6 

303 

678.5 

530 

150 

750 

164 

206 

260 

4 

5*6.5 

5-5 

— - 

6.9 

33 

46 

16 

>6 

3  of  20 

— 

••— 

24 

— 

— . 

40 

^ 

41 

32 

2  of  36 

36 

130 

30 

cB 

38 

100 

32 

160 

100 

X25 

90 

»4 

— 

100 

X20 

X 

z 

2 

z 

3 

71-5 

76 

80 

45-5 

91 

3503 

2»59 

3400 

1318 

333« 

1105 

Jet 

IIOO 

553 

3224 

9-5 

— 

9-5  • 

8 

2  of 

■— 

— 

— 

8.6 

14^16 

-^ 

— 

»4 

XX 

4 

— 

4 

4 

4 

— 

20.5 

— 

-»— 

— 

_ 

8,6 

-.— 

.^ 

-_ 

60 

40 

370 

z6 

13 

-— 

— 

— 

430 

— 

Natural 

Natural 

Natural 

Nataral 

Natural 

— 

650 

800 

380 

X350 

— 

3420 

— 

— 

3760 

450 

2896 

— 

4750 

— 

— 

-~' 

50 

^80 

13 

13 

26 

vxo 

20.5 

39-75 

— 

3X 

80 

17.6 

39.6 

— 

— 

40 

»3-5 

13 

15 

13 

M-5 

MABlNlfi   BTJfiAM   VB8SfiL8   AUTD   BNOINBS.  89! 

"Wood.  Propelleris. 

HzRRnHOFFt  R  N.,  Vertical  Dibkot  Eitginb  (Compound).— Length  on  deck,  46 
feet;  over  aUf^B/eei;  beam,  g  feet;  hald^sfeet. 

DUpiacement  at  load-line,  7.44  torn.  Area  of  tection  at  Umd-Une,  2x7.8  iq.feet 
Area  of  wetted  iurface,  365. 5  iq.  feet.     Coefficient  offineneu, .  396. 

cytMder.— 8  and  14  ins.  in  diam.  by  9  ine.  stroke  of  pistoa 

Conden$er,  External.— Surface. 

Propeller.—^  blades,  3  feet  in  diam.  by  4  feet  z  inch  pitch. 

Blower,  42  ins.  in  diam. 

BvUer  ^vertical  coil).    Heating  surface,  174  sq.  feet.    QrcUe»,  12.5  sq.  feet. 

Preature  of  Steam,  53  lbs.  per  sq.  inch.  Revolutions,  333  per  minute.  IIP,  68.4. 
Speed,  xai8  knots  per  hoar.  With  129  lbs.  and  466  revolutions,  14.26  knots.  IWt 
169.5.     Weight  of  Engines,  Boiler,  and  Water,  5300  lt)& 

Hbrrbshoff,  Vbrtical  Dirbct  Engine  {Compound).  —  Length  over  all,  96  feet; 
beam,  1 1  feeL     Displacement,  27  tons. 

Cylinder.— 13  and  22  ins.  in  diam.  by  12  nns.  stroke  of  piston. 

Surface  Condentimg. 

Pressure,  130  lbs.  per  sq.  inch. 

Revolutions,  460  per  minute.    Speed,  20  knots  per  hour.    IW,  425. 

Propeller,  3  bladea     Pitch,  5  feeL 

Hbrrbshoff,  R.  I.  N.— Vertical  Direct  Enuixe  {Compound).— Length  over  aU, 
60  feet ;  beam,  Tftet;  hold,  5. 5  feet.  Displacement  at  load-draught  of  yz  inx.,  7  Urns 
(2240  lbs.). 

Cylinders. — 8  and  14  ins.  in  diam.  by  9  ins.  stroke  of  piston.  Surface  condenser. 

Pressure  of  Steam.— 140  lbs.  per  sq.  inch,  cut  off  at  .5. 

RevolmUons,  600  per  minate.    Speed,  19.875  knots  per  hoar. 

Cable   or   K,ope   To"%ving. 

''NrrrRA."— Horizontal  Direct  Engines  {Condensing).— Leimth  of  boat,  i^B  fset; 
beam,  24. 5  feet ;  hold,  7. 5  feet. 

Immersed  section,  74.4  sq.feet.  Displacement,  200  tons  at  load  line  of  ^ysfseL 
Immersed  section,  263. 7  Sq.  jeet    Displacement,  949  tons.     Tow. —3  barges. 

Cylinders. — 2  of  14.18  in&  in  diam.  by  23.625  ins.  stroke  of  piston. 

IH*,  net  effective,  loa     Speed,  7.73  miles  per  hour. 

Propellers.— Tyf in,  4  feet  2  ins.  in  diam. 

/SXreM.— Gable,  7485  lbs.  Per  ton  of  displacement,  6.5  Iba  ;  per  sq.  foot  of  Im. 
menied  section,  22  Ibe. 

PueL-Per  mile  and  ton  of  displacement  (1149),  -^7^  ^^^■ 

To-wiiig.    "Wood.   Side   "Wheels, 

*'Wx.  H.  Webb.'*— Harbor  an'd  Coast.— Vertical  Beam  Engines  {Condensing). 
-^Length  upon  deck,  1 85. 5  fe^t ;  beam,  3a  25  fe^  ;  hold,  to.  8  feet. 

Immersed  Section  at  load-line,  194  sq.fDeL  Displacement  498.35  tons,  at  load- 
draught  of  y.  as  feet. 

Cylinders. — 2,  of  44  ina.  in  diam.  by  10  feet  stroke  of  piston ;  yolume,  211  cube  feet 
Condensers. — Jet,  2,  volume  105  cube  feet.    Airpumj».—2,  volume  45  cube  feet. 

WeUer-uiheeli.—  Disan.,  30  feet.  Blades  (diTided),  21;  breadth  of  do.,  4.6  feet; 
depth  of  do.,  2.33  feet    Dip  at  load-line,  3.75  feet. 

Boilers.— 2  (return  flue).    Heating  surface,  3280  sq.  feet.     Orates,  147.5  sq-  feet 

8nuke-pipe.—kTes^  11.6  sq.  feet,  and  35  feet  in  height  above  the  grate  leveL 

Preuure  ^  Steam.— 2s  lbs.  per  sq.  inch,  cut  off  at  .5  stroke.  Revolutions,  zi  pel 
minute.    IIP,  1500. 

/\i^.~AntbracHe  or  Bitnminoua.    Consumption,  1680  lbs.  per  hour. 

Speed.— 20  miles  per  hour. 

H'eiyA<«.— Engines,  Wheels,  Frame,  and  Boilers,  310579  lb& 


892    BIVSB  6TBAHB0ATS,  sms  AND  6TBBN  WHBBL. 

"Wood.  Side  "Wlieele. 
Passexigrer. 

"  Mart  Powell,"  Hudson  Ritbp.— Vertical  Beam  Engine  {Condensing).— Lenfj^ 
on  water-line^  2'^  feet;  over  all,  ig^feet ;  6eam,  34  feet  3  tiw. ;  over  all,  6^  feet;  Ao&t, 
gfeeL    Deck  to  promenade  dedc,  10  feet. 

Immerged  section  (U  load-line  of  6  feet^  soo  tq.  feet  Displacemisnt,  800  tons  at 
mean  load-araught  of  6  feet-. 

Area  of  transverse  head  surface  ofkuU  a^Hfve  water,  2000  sq.  feet 

Cylinder— 72  ins.  in  diam.  by  12  feet  stroke  of  piston*,  volume,  338  cube  feet 
Clearance  at  each  end,  12.5  cube  feet. 

Steam  and  Exhanut  Valves,  14.75  ins.  in  diam.  Air-pump,  40  ins.  in  diam.  by  5 
feet  2  ins.  stroke  of  piston.  Condenser. — Jet^  128  cube  feet  Crank-piny  8.75  iD&  in 
diam.  x  10.75  ins. 

Beam,  22.5  feet  in  length;  centre,  9.75  in  diam. 

Water-wheels — Diam.  31  feet;  blades  (divided),  26;  breadth  of  do.,  10  feet  6  in& ; 
width,  I  foot  6  Ins. ;  immersion,  3  feet  6  ins.    5^/ia/ls.— Journal,  15.625  ins.  by  17  ina 

Boilers.— 2  (flue  and  return  tubular),  of  steel,  u  feet  fVont  by  26  feet  in  length; 
shell,  10  feet  in  diam.  and  16  feet  i  inch  in  length.  Furnaces,  2  in  each,  of  4  feet 
10  IBS.  by  8  feet  in  length.  Healing  Surface,  2660  sq.  feeC;  and  Superheating,  340 
sq.  feet  in  each.  Grates,  152  sq.  feet.  Flues,  10  in  each,  transverse  area,  n  feet 
7  ins.  I*ubes,  80  in  each,  4.5  ins.  in  diam.,  6  feet  6  ins.  in  length,  and  8  feet  7  ins. 
in  transverse  area. 

Steam  Chimneys,  8  feet  in  diam.  X  12  feet  in  height.  Smoke-pipe,  4  feet  6  ins.  in 
diam.  and  68  feet  in  height  fk'om  grates. 

Combustion,  Blast.  Blowers,  4  feet  in  diam.  and  3  feet  in  width.  Revolutions,  78 
per  minute.  Fuel  (anthracite),  6280  lbs.  per  hour,  or  40  lbs.  per  sq.  foot  of  grate 
per  hour.    Per  sq.  foot  of  heating  surface,  2.25  lbs. 

Speed,  23.65  miles  per  hour. 

Pressure  of  Steam,  28  lbs.  per  sq.  inch,  cut  off  at  .47  stroke;  terminal  pressure, 
16.4  lbs. ;  throttle,  .625  open.     Vacwwn,  25  ins.    BevolMitMns^  32.75  P^i*  minute. 

Temperatures.— Reservoir,  120°.  Feed  water ^  120°.  Chimney,  740°.  EP.— Total, 
1900.    IBP,  1560.    Net,  14501 

EvaporalMn.— Water  per  lb.  oTcoal,  from  120°,  7  lbs.;  per  lb.  of  comhnstible, 
fl-om  120°,  8.2  lbs.   ^eam  per  total  BP  per  hour,  21. i  lbs.   Coal  per  do.  do.,  3.14  Iba 

Weights.  Engine.  —  Frame,  keelson,  out  -  board  wheel  -  f^mes  donkey  engine, 
and  boiler,  blower  engines  and  blowers,  all  complete,  360000  lbs.  Botters.— Iron 
return  flue.  120000  lbs.    Steel  return  tubular,  116  000  lbs.    Water,  128000  lbs. 

Capacity.— 21000  passengers  and  their  baggage. 

Memoranda.— 1h\B  vessel  was  originally  but  266  feet  in  length,  and  when  length- 
ened the  cylinder  of  62  in&  in  diam.  was  removed  and  replaced  with  one  of  72  ins. 
Engine  designed  throughout  for  original  cylinder  and  a  pressure  of  trota  50  to  55 
lbs.,  cutting  ofl'at  .625  of  stroke,  with  throttle  wide  open. 

Engines  and  Boilers  built  by  Fletcher,  Harrison,  k  Co.,  New  York,  1861  and  1875. 

Iron.   Stern.   W heels. 
Passenger  eind    iF'reigUt. 

Horizontal  Engines  {Non-emidensing).  — Length  upon  deck,  no  feet;  beam,  14 
feet  {deck  prqjecting  over,  4  feet) ;  hold,  3.  sf^' 

Immersed  section  at  load-Hne,  10.25  sq.  feet  DispUteement  at  load-draught  of  x.  i 
feet,  33  Urns. 

Cylinders.— Two,  of  10  ins.  in  diam.  by  3  feet  stroke  of  piston;  volame  of  piston 
space,  1.6  cube  feet 

WheeL—msLva.  13  feet.    Blades,  13;  breadth  of  do.,  8.5  feet;  depth  of  do.,  8  ins. 

Revolutions,  33  per  minute.  Boiler.--One  (horizontal  tubular).  Tubes,  xoo  of  a 
ins.  in  diam. 

Fuel.— BliuminoMS  coal.    Consumption,  4480  lbs.  in  24  hours. 

HulL-Plates,  keel,  No.  3;  bilges,  No.  4;  bottom,  Na  5;  sidoB,  N06.  6  and  7. 
Frames,  2.5  X  .5  ins.,  and  30  in&  apart  firom  centrea 


BIVER  STEAMBOATS,  STEBN  WHEELS.— -OIL  LAUNCH.   893 


"Wood.  Stem  "^riieels. 

Passenger  and   I^eok   F'reigh.t. 

"MoHTANA.*'— HoRizoNTAi.  Enoinbs  (Non-condensifig) — Length  vpon  deck  {over 
alt)y  248  Jiet ;  al  waUr-line,  345  feet ;  beom^  48  feet  8  ins.  {over  aU,  50  feet  4  int.); 
hold,  6  feet;  draught  of  water  ai  load-line,  5.5  feet. 

Immersed  seetion  at  load-line^  344  sq.  feet    Displaeement  ai  mean  light  draught 
ofaa  inf.,  594  tons  (aooo  lbs.) 
Cylinders.— Two,  18  ins.  in  diam.  by  7  feet  stroke  of  piston. 

ValveSy  4.5  and  5  ins.  In  diam.  Piston-rod,  4  ins.  Steam-pipe,  4.5  ina  Oormeet* 
ing-rodf  30  feet  in  length. 

Waier-wheel,  19  feet  in  diam.  by  35  feet  face;  blades,  3  feet  in  depth.  Shaft, 
xa25  in&  in  diam. 

Boaers.—Yoxxr  (horizontal  tubular),  4a  ins.  in  diam.  by  26  feet  in  length.  Two 
floes  in  each,  15  in&  in  diam.  Heating  surface,  effective,  1023,  total  1431  sq.  feet 
Furnace,  6.5  X  17  feet  Orales,  4.16  X  17  fe«t;  surface,  70.8  sq.  feet  Smoke-pipes. 
—Two,  3  feet  in  diam.  by  55  feet  3  ins.  in  height    Exhaust  or  Blower  draught 

Calorimeter.— Ot  Bridge,  15.27;  of  Flues,  0.82;  and  of  Chimneys,  14.14  sq.  feet 
Areas  of  grate,  compared  to  calorimeter  of  flues,  7.2;  to  ditto,  of  chimneys,  5;  and 
of  bridge,  4.6  sq.  feet 

Steam-room^  562;  and  water  space,  294  cube  feet 

Hull.— Frames,  4X6  ins.  and  15  ins.  apart  at  centrea  Intermediate  do.,  4x6 
ins.,  and  running  for  7.5  feet  each  side  of  keelson.  Flanking. —BotXom,  oak,  4  ina  ; 
side  do.,  2.5  to  4  ina  Deck  beams,  pine,  3X6  ina  Deck  plank,  2.5  ins.  Keelson^ 
oak ;  side  do. ,  eight  each  side,  one  each  7, 8. 75,  and  9  ina ,  and  five  6. 75  ins.  Wales, 
one  each  side,  9  and  7  ina  by  3,  and  one  10  X  2.5  ina  Deck  posts,  3.5  X  3  ina  and  4 
feet  apart  D^  beams,  5.5  X  3  ina  Knuckles,  oak,  6  x  12  ins.  Bulkheads,  one 
longitudinal  and  one  athwartsbip  at  shear  of  stem.  Sheathing  of  wrought  Iron, 
.o6as  to  .135  inch  fh>m  Just  below  light  to  load-line. 

Hog  iVctf.— White  pine,  8.5  and  xz  Ina  square.    Chains,  z.5  ina  in  diam. 

Weif^.  — Boilera  29  264 ;  water,  x8  351 ;  and  boilers,  chimneys,  grates,  and  wat^^r, 
55 672  Iba  Hull,  oak,  520 560;  Pine,  91 437 ;  Bolts,  spikes,  etc,  8000,  and  Deck  and 
guarda  76000  Iba ;  Hull  alone,  310  tona 

Weight  of  hull  compared  to  one  of  iron  as  8  to  5,  efltectlog  a  difilnrence  of  abonk 
sootona 

•'PiTTSBCBOH."— HoEizoNTAL  Enoinu  {Non-condensing).  —  Length  on  deoky  35a 
feci;  beam,  39  feet;  hold,  6  feet;  draught  ofwaUr  al  load-line,  afeeL 

Immersed  section  at  load-Une,  75  sq.feeL  Displacement  at  load-draught  of  a>%e^ 
380  tons  (2000  Iba). 

^Kndcr*.— Two,  ax  Ina  in  diam.  by  7  feet  stroke  of  piston. 
WaUr-wheeL—ai  feet  In  diam.  by  28  feet  fece. 

BoOers.—  3  (horizontal  tubular),  47  Ina  In  diam.  by  28  feet  in  length.  Two  flra 
in  each. 

Oil  Kngine  Zjaiancli. 

Slements  or  Snsine  and   Dimensions  of  X^aunolu 

Consumption  .9  pint  ordinary  Mineral  Oil  per  Iff  per  Hour. 


TfP^ 

w 

No. 

6 

No. 

■    X 

5 

4 

a 
3 

LMIDch. 

Leofth.  I  Breadth. 


Feet 

4 

5 
6 


FceU 
16 
az 
27 

*  I>«V«io|>«i  bjr  Brake 


Welghtf 


Lbe. 
896 

1568 


Type. 


No. 

3 

2 
I 


H?» 


No. 

5 
10 

IS 


Laoncfa. 


LcbkUi. 


Feet 
30 

40 
45 


Bfcadth. 


Feet. 
7 
7 
7-5 


Weigktl 


Lba. 
1848 
2688 
3136 


4F* 


t  Of  «agf^«  withoot  «0« 


894  BIVBB   STSAMBOATS.— ^AILINGt   YfiSSKLSa. 

Passenf^ev  »n4  7)^ol^   ^peisht. 

"PiTTflBUROH."— HojiizoNTAL  E9GINB9  {Non-condensitig).  —  Length  on  deeky  asa 
'  fset;  beam,  sgfeet;  hold,  6  feet;  draught  ofwcUer  at  load-line,  2  feet. 

Immersed  tection  ai  load-Une,  75  nq.feet    DispUuxment  at  load-draught  ofa/M^ 
380  tofM  (2000  IbB.). 

(;^{tfider«.— Two,  ai  ins.  in  diam.  by  7  feet  stroke  of  piston. 

Watcr-tvJiccl. — 21  feet  in  diam.  by  28  feet  face. 

Boilers.—  2  (horizontal  tubular),  47  ins.  in  diam.  by  a8  fe«t  in  length.    Two  fires 
in  each. 

Iron.   Stem   Wheels. 

Horizontal  Engines  {Non-condenstng).  —  Length  upon  deck,  no  feet;  beam^  14 
feet  {deck  pnyectimg  over,  4  feet) ;  hold,  3. 5  fett. 

Immersed  section  at  load-line,  10.25  ^qfeet.    Displacement  at  load-draught  ofi.x 
feet,  33  tons. 

Cylinders.— Tvro,  of  10  ins.  in  diam.  by  3  foet  stroke  of  piston;  volame  of  piston 
space,  1.6  cube  feet 

Wheel— Di&m.  13  feet.    Blades,  13;  breadth  of  do.,  8.5  feet;  depth  of  do.,  8  in«. 

BevoluHons,  33  per  minate.    Boiler. -^i^e  (horizont^  tubule).     ^6m,  100  of  a 
ins.  in  diam. 

J*u«;.— Bituminous  coal.    Consumptiomy  4480  lbs.  in  34  hours, 

HuU.— folates,  keel,  No.  3;  bilges.  No.  4;  bottom,  No.  5;  sides,  Noe.  6  and  7. 
Frames,  a.$  x  .5  ins.,  and  ao  ins.  apart  trofa  centrea 

Steel. 
"CHATTAHOOCffEK."— IsrcuNED  ^xGiNEs  {Honcondensing).— Length  on  deck^  157 
feet;  beam^  3h$f^^i  *<>W,  s/eirf. 
Im^nersed  section  at  load-line,  153  »q.  feet.    Freight  eapaoity^  400  tons  <aooo  lbs.). 

Cylinders. — Two,  15  ins.  in  diam.  by  5  fset  stroke;  volume  of  piston  space,  xa.a6 
cube  feeftk 

Wheel.— Ons,  18  feet  in  diam. ;  blades,  2  feet  in  depth. 

Boilers. — ^Three  (cylindrical  flued).     Diam.  42  ins. ;  length,  22  feet;  2  flues' of  xo 
ins.  in  each.    Heating  surface,  690  sq.  feet.     Orates,  48  sq.  feet 

Pressure  of  Steam,  160  lbs.  per  sq.  inch,  cut  off  at .  375.    Revolutions,  22  per  min. 
Consumption  of  Fuel,  12  tons  (2000  lbs.)  in  24  hours.     Mating  of  HuUy  .1875  to 
.25  inch.    Light  draught,  ax  m& 

Iron   Propellers. 

Vbbtical  Dirbct  Engines  {Non-eondensing). — Length  on  deck,  jofeet;  beam,  10^5 
feet;  draught,  12  ins. 

PropeUers,  2. — 2  blades,  16.  ins.  in  diam.,  set  11  ins.  below  water-Una 

BoUer  (tubular  coil).     Revolutions,  4B0  per  minute. 

Speed,  ia49  miles  per  hour. 

Water  led  to  propellers  through  tunnels  in  bottom  at  sidea 

"Louise."— Vertical  Tandem  Engines  (CompouTid) Length,  60  feet ;  beam^  la 

feet;  hold,  /^.^sfeet. 

Displacement  at  load-draught  of  a.  s  feet,  8  tons. 

Cylinders,  5  and  10  ina  in  diam.  by  8  tna  stroke  of  pistop. 

Surface  Condenser.— BoUer  (vertical  tubular),  4  feet  in  diam.  by  8.5  in  length. 

Iron.    Sailiiifs    "Vessels. 

^passenger  and.    y>'eight« 

English. — Ship — Length  upon  deck,  xjZfeet ;  do.  at  mean  load-line  of  tg.  16  feet,,  tjy 
feet;  keel,  lyt  feet;  beam,  32.88 /«e^;  depth  of  hold,  2i.75/e«<;  keel  (mean),  ^.jsf'oeL 

Immersed  section  at  load-line,  387  sq.  feet.  Displacement  at  load-draught  of  ig.  16 
feet,  1385  tons;  at  deep  load-draught  of  20  feet,  1495  tons;  and,  in  proportion  to  its 
circumscribing  parallelopipedon, .  524. 

Load-line.  —Area  at  load-draught,  4557  sq.  feet  Angle  of  entrance,  57° ;  of  clear 
Hn^,  64O     Area  in  proportion  to  its  circumscribing  parallelogram,  .784. 


YACBTS.-r-OUTTBBS. — PILOT  SOXT.  805 

Cenire  of  Oravity^  6.416  feet  below  mean  load-line.  Centre  of  Displacement  (grav- 
ity of),  6.25  feet  below  loadltfie;  aod  4.33  feet  before  middle  of  length  of  load  line. 

Immersed  Surface. —Bottom^  7370  sq.  feet.  Keei,^  1130  sq.  feet.  Sails^  13  282  sq.  fbet. 

Mcta-centre^  6.66  feet  above  centre  of  gravity  of  displacement.  Centre  of  Slffbrt 
before  centre  of  displacement,  3. 5  feet ;  height  of  do.  above  mean  load-line,  55.  sfoet. 

Steam  Lauhch  ''Hbrbbsboff."— Vkbtical  Engine  {Compound).— Lenffth^  ^2  fi^ 
1  inch;  beam,  S.jsfset. 

Displacement  at  mtan  load-draught  o/(to  rabbet  of  keel)  19  ins.,  8939  Iht. 

W€iffids.—lSLvXL  and  Machinery,  6555  lbs.    Coal,  1120  Iba 

Yaclits.     "Wood. 

*"  America/'  ^BOOV^K.—Lengtk  over  all,  o/i  feet ;  iqwn  deck,  gifi^t ;  cU  load-Ktte^ 
90. 5  fuet ;  beam,  22.  $feet ;  at  load-line,  22  /eei  ;  depth  of  hold,  9. 25  feet.  He^t  at 
tide  Jrom  under  side  ofgarboard  stroke,  1 1  feet.    Sheer,  forward,  3  feel ;  q/l,  i.  5  feU, 

Immersed  section  at  load-line,  131. 8  *a.feeL  Displaecmtnt  at  load-droMght  ofB.  5 
^feet,  from  vndir  side  ofgarboard  stroke  and  of  n  feet  ajt^  191  ton*;  andy  in  pro- 
'portion  to  Volume  of  circumscribing  parcUlelopipedon,  .375. 

Displacement  at  4  feet  {from  garboard  strake),  43  tons  ;  at  s  J^  66  tons ;  at6 
feet,  93  tons ;  at  7  feet,  127  tons ;  and  aJt  Sfeet,  167  tons. 

Centre  o/6rart<y.— Longitudinally,  1.75  feet  aft  of  centre  of  length  upon  load- 
line.  Sectional,  2.58  feet  below  load-line.  Of  Fore  body,  14.35  feet  forward;  and 
of  After  body,  19  feet  aft.    Meta-centre,  6. 72  feet  above  centre  of  gravity. 

Centre  of  Effort,  31  17  t<Bet  from  load  line.  Centre  of  Lateral  Resistance,  6.33  feet 
abaft  of  centre  of  gravity.  Area  of  Load-line,  1280  sq.  feet.  Mean  girths  ^im- 
mersed section  to  loadline,  25  feet. 

Load-draught. '-Vorvrax^  4.91  feet;  aft,  ii  5  feet.    Rake  of  Stem,  17  feet 

Spars. —Mainmast,  81  feet  m  length  by  23  ins.  tn  diam.  Foremast,  7^.5  feet  in 
leDgth  by  34  ins.  in  diam.  Main  boom,  58  feet  in  length.  Main  gaff,  28  feet.  Ik>rs 
gaff,  24  feet    Rake^  3.7  Ina  per  foot.    Drag  ofKeel^  3  feet.     Tons,  170.56. 

*'JrMA,"  SuyoT.— Length  Jbr  tannage,  ^2.25  feet;  an  toaler-Hne,  70  feet  7  int.; 
beam^  igfeet  8  ins.;  hold,  tfeet  8  ins.     Tons,  O.  M.  83.4;  N.  M.  43.98. 

Load-draught,  6.2s  feet. 

Hails.— Mainsail,  hotst,  40.75  feet,  foot  54.25,  and  gaff  37. 66;  Jib,  hoist,  49.75  fec^ 
foot  39. 5,  and  stay  63. 5.     Qaff  topsail,  hoists  24. 5  feet. 

.^rAu. —MainsaiU  2333  sq.  feet    Jib,  986,  and  Topsail,  454. 

Cutters, 

''Tara  ''  (English)  ^how.— Length  on  load-line,  66  fest;  beamy  11.$  feet 

Immersed  section  at  load-line,  11.5  sq.  feet.    Displacement,  75  tons. 

Spars.— M€ut,  deek  to  honnds,  42  feet  Boom,  58  feet.  Gaff,  39  feet  BowmrU 
ontaide  of  stem,  30  feet  MaH  to  stem,  26  feet  Tnpmast,  foot  to  hoondi,  35  feet 
BaUoon  topsail  yard,  46  feet    Ca;in)as,  area,  3450  sq.  feet     Tons,  C.  H.,  90. 

BaUaxL  —At  Keel,  38. 5  tone.    HuU,  i.  5  tons. 

*'  Mischief"  (EngUtk),  Sloop. — Length  on  load-line,  61  fset;  beam,  ig.gfeet. 
Immersed  section  at  load-UnCy  60  sq.  feet    Displacement,  55  tons. 

Pilot  Soat. 

•' Wm.  H.  Asmnwall,"  Scboosnn.— Length  of  keel,  74  feet;  upon  deck,  80  yifrt; 
beam,  igffet ;  hold,  7.6  feet.    Draught  of  water,  6  feet  forward ;  aft,  g.5feeL 

Keel,  22  ins.  in  depth.    False  keel.  12  ins.  in  depth  at  centre. 
Spars.— Mainmast,  77  feet  in  length.    Forenuut,  76  feet    Jfotn  boomj  46  feet 
Main  gaffy  31  feet    F^e  gaff,  30  feet 

7Vm«.-~N.  M.,46.^. 


886 


MAKINB   6TBAMEBS   ANP   BNGINSS. 


< 
H 

3 
s: 
< 

o 

CO 


a 


d 


<3s"e 


.a 


a  . 


O  O   Q  00 


» 


n 


8 


0 

A 

IB 
0 

H 


^•2 

3:1 


0- 


9   a 

1-2 


*  2 
n  s 


^1 

OS 


.M  d 


a 


» 

tic 

R 
S 

u 


5  • 

2  •* 

M  -4 


o  at 


00 


i-S    ?^^ 


8 


«b  in  I   tn  I 

w   0\ 


O 
CI 


c* 


*^8 


•^CI    •-•    M    M    «    2    « 


o  o 


si 


_  ^    W  00  Y^ 

0.nl   wjjl  '•■inav -<■«<•«  J^^  „  I    I 


?_:     ft    woo    C3V00 


^  m  o 


NO 


00 


2 


a.  CO 


00   o 


M  an 
CO    - 


I 

a 
a 

5 
S 


>0.|    g^«<Sroiooo^|?2'xgo««?8S.Ov»g 


o  S. 


i^-  c»  Ni  oy»  ' 


\n      m 


M 


2a 

c"5 


CO 


m 


m  o\  w  *o 


Hco  jjjov^l   ^l'P.'ncor.^;n^^«.^3;^^| 


^  00 


vO 


-<«■  0 


„oo 


M     tN. 


CO 


M    o    O 
f>  «n  CO 


1 


18 


CO 


»o 


2  "^M  «• 


«vo  *^^vS  ^'Sv's  ^^<»  •jg  i 

.X CO "^  ■♦^ "o t>. *^  M  r^ "oo S  ^ 


§-3 


CO  C  \0    H    CO 


«RKlgo;tS8*: 

M     M    lOoQ     ^  M  M     ^ 


M^M  0'^mC«q  t^^lN  «M« 


§ 


2  ^ 


C-O  OS 


2 

9 


ll«BiaS|i 
S  s  e  » 


till' a 


-   s 

to  "5 


.ca 


4> 


O  ei 

--^  t  5;  o 


9 


a 
o 

oo 

a 


0^  n 


HABINB   STEAMERS  AND   ENGINES. 


887 


s 

< 
H 
H 

OQ 

K 

o 

00 

< 

P 
H 


OS 

1-4- 
•H 

0 


ill 


« 


?  3. 1 


I 

u 


N-  b: 


h 

P 


-a 


« 


^    OB    K      M 


3    ft— 


1 


(4 

8£ 


9 

P. 

02 


E 


a 

2 

»• 
o 


0 

9         i 


IB      "^ 


61) 


*^ 


«  S 


.*o 


"p-3  8^  iS  K"  '^  '  '^^ 

ft,   t     "'^  WTO 


I 


•n 


M      1^     O 


I  00  moo  c4  mmcn  I    '    '    ' 

*"     »^  MM 


00\o  =; 


f^o 


■  ■■  ■■■  ■■    »*  ^— iw^— ^w^fc— —  III!  ^w—  »i—  n  ■■  ■  -  ■—      I   ■ 

111  ^ 


•o 

•S 

a 
E 


«o 


iǤ.8^ 


■ft&:-'«3:«;  I  I  I  -.^5 


00 


«« 


m  a 


1  "^^l  « 


00 


2  I 


00 


o 
H 


M 

o 


•^  m'co 


M 


llllldll 


n  M  pD 


^■1 


21 

11 


8lMii^&5„^'2:^s.rsMi1ll 


n  M 


i  ?•«  I'^^S'l^'^w  M  ^«  58  80  'T"  -^^  «i 


N 


««  »H  o^'S  "S 


« 


||^|i"Sis^&|s|,^„s;t8ryi 


:so 


00 


I  l5lt-8!Sts!»lll^  =  l?^i| 


o 

s. 

o 


c-g 
p  * 


M 


g    0>  irt*? 

)fi  Q»  I    I    ^  0\  <>  J.  CO 


o\ 


irj  ro  ■^  <*»  ui 


ro  ul  0  rr>  w   <5  d  bo  on   ►«  J 


Zi 


I 


3  Q  00   I  10  8  8**0  v^i^  «^|    I    I    I    101    |gs^9 


e 


«    fO 


00     >o 


51 


"^i»>oo'^»'>  COM'*  o<*-  ft  2<*  • 

P;5^'    ^E^£»'^'    »" '^  '  c*'*  ro  10  „    I    'xovo^'5 


11 

(2^ 


in 


m 


o 


DO 

a 

a 


.•00 


^  5  £  i  s  s  >» 


a 
2d 


o 

.C8 


fc   s 


^: 


CO    ^ 
a    00 


« 


"^ 

M 


9 


«lfl     iJ 


>      - 


£ 


a 
o 

OQ 

A 
S 

o 


898 


JELSMEXTS   OF  MACHINBS  AND  SNGINSS. 


ELEMENTS  OF  MACHINES  AND  SNGINEa 

BLOWING   ENGINES. 

Fumaca^^ThtJO.    Fineries. — Two,    {England.) 

240  Tons  Forge  Pig  Iron  per  Week. 
SCngizie  {tMa-condeoBiaf^-^CyUnder,  20  ms,  in  diam.  by  6  feetstrokeof  piatoa 

Boilers.— Six.  (plain  cylindrical),  36  ins.  in  diam.  and  28  fe^*  in  length.     GrMet, 
100  aq.  feet 

Blowing  Ciff*nders.^TwQ,  63  in&  In  diam.  by  8  foot  stroke  of  pifiton.    Presture, 
ft.  17  lb&  per  sq.  inch.    BevoluiiofUf  23  per  minute. 

Pipes,  3  feet  in  diam.=  168  area  of  cylinder. 

Tuyeres. — Each  I'timace,  3  of  3  ins.  in  diam. ;  1  of  3.25  ins. ;  and  x,  3  of  3  ina 
Each  Finery,  6  of  1.33  ins. ;  and  1,  4  of  1. 125  in& 

Temperature  of  BUut,  600°.    Ore,  40  to  45  per  cent  of  iron. 

Furnacet* — Eight,  diam.  16  to  tS/eet.    Dowlms  iron  Works  {England}. 

1300  Tom  Forge  Iron  per  Week;  discharging  44000  Ctdfe  Fei-t  of  Air  per 

MintUe. 

Siificin.6  (non-condensing).— C^tnder,  55  ins.  in  diam.  by  13  feet  stroke  of  piston. 

Pressure  o/Sleam.-^6o  lb&  peraq.  inch,  out  oSsX  .33  the  stroke  of  piston.     V43ilves, 
I30  ins.  in  area. 

Boilers.— FAght  (cylindrical  flued,  internal  fiirnace),  7  feet  in  diam.  and  42  feet  in 
length;  one  flue  4  feet  in  diam.     Grates,  288  sq.  feet 

Fly  Wheel. — Diam.,  32  feet;  weight,  25  ton& 

Blowing  Cylinder,  144  ins.  in  diam.  by  12  feet  stroke  of  piston. 

RevolMtions,  ao  per  minute.    Bleat,  3.25  lbs.  per  sq.  incb.    Discharge  pipe,  dtenL 
5  feet,  and  420  feet  in  length,    rofvex.— Exhaust,  56  sq.  feet;  Delivery,  16  aq.  fbet 

Furnaces. —  Lackenby  {England), 

800  Tons  Iron  per  W^eek, 

Sn^ne  (horieoMal,  compound  condensing). -~ 32  •»d6o  ins.  in  diam.  by  4.$ 
feet  stroke  of  piston. 

Blowing  Cylinders.— Ttm,  80  ins.  In  diam.  by  4.5  fk»et  £itroke  of  iiistoB.    Pmmrey 
4.5  lbs.  per  sq.  inch.     Revolutions,  24  per  minute. 

Pipe,  30  ins.  in  diam. ;  volume,  12.25  ^imoB  that  of  bkming  cylinders. 

H*. — Engine,  290  lbs. ;  Blowing  cylinders,  258;  efficiency,  89  per  cent 

Totvet.— Area  of  admission, .  16  of  area  of  piston ;  of  exit^ .  125. 

Volume. — 190000  cube  feet  of  air  are  supplied  per  ton  of  iroa. 

BloAver   and    Extiausting   VBXk. 
The  Huyett  <t  Smith  Manufacturing  Co.,  Detroit,  Mick. 


Blower. 

Grate 
Surface. 

Outlet 

Diam. 
Pulleys. 

No. 

Sq.Ft. 

S^,  IM. 

[n«. 

I 

4 

15 

2 

9 

ro 

30 

3 

^    . 

14 

50 

4 

4 

^8 

75 

5 

1 

7 

26 

»25 

6 

56 

280 

7 
9 

Face 
Pulleys. 

Reviola> 

tions 
at  3  01. 

Air  at 
3« 

H?at 
30*. 

flevolv- 
tivm 

at  6  oz. 

Air  at 
60s. 

IP  at 

60B. 

Ina. 

PcrMla. 

OoteFt 

No. 

FwMtai. 

0«k«Ft 

No. 

I 

5500 

930 

■38 

7SOO 

»330 

I.t 

'•5 

3500 

1870 

.76 

5000 

2670 

3.16 

2-5 

27CX} 

3120 

1.27 

4000 

4440 

363 

325 

2000 

4680 

1.91 

30Q0 

6670 

5-5 

425 

1500 

7830 

3-2      , 

2300 

II 100 

^l 

5-25 

1300 

10900 

4-47 

1600 

15600 

13.8 

6.25 

1000 

17500 

7*5 

1400 

24900 

ao.4 

*  40  feet  would  have  afforded  economy  in  f««L 
\tawuaMp.  X015.) 


BI.BMSNTS   OF   MACHINES   AND   JSNaiNSS. 


899 


COTTON  FACTORIES.      (BngKih.) 

For  driving  23060  Hand-mule  SjnndUs,  with  Preparafion^  and  260  Loomt^ 

with  common  Sizir^. 

Bngixie  (condeDSiDg). — Cylinder,  37  ins.  in  diam.  by  7  feet  stroke  of  piston; 
▼olame  of  piston  space,  53.6  cube  feet 

Preitsure  o/iSteam.— (Indicated  average)  16.73  ^^  P^^  <^*  ^^^^-    SevolutumSf  17 
per  minute. 

faction  of  Engine  and  SfAo/ttn^.  — (indicated)  4.75  lbs.  per  sq.  inch  of  piston. 

IH*,  135.    Total  power  =  i.    Available,  deducting  fViction  ==  ■717. 

305  hand- mule  spindles,  with  preparation^ 
or  230  self-acting       "  *' 

or  104  throstle  "  " 

or    Z0.5  looms,  with  common  sizing. 
Including  preparation : 

I  throstle  spindle  =  3  hand-mule,  or  2.25  self-acting  spindlea 
X  self-acting  spindle  =  j. 2  hand-mule  spindlea 


NoTSs.— Each  IH*  will  drive 


DREDGING   MACHINES. 

Dredginff  20  Feet  from  Water-line,  or  180  Tons  of  Mud  or  Silt  per  Hour 

II  Feet  from  Water4ine, 

Length  upon  deck,  123  feet;  beam,  26fxt.    Breadth  over  aU,  41  feet. 

Immersed  section  at  load-line^  60  sq.feet.    Displacement,  141  tons,  at  load-draught 
of  2.  Bj  feet. 

ICngiiie  (non-condensing).~C^2t'mier«,  two,  12.125  ins.  In  diam.  by  4  feet  stroke 
of  piston. 

Boilers. — ^Two  (cylindrical  flue),  diam.  40.5  ins.,  and  length,  90  feet  3  ins.;  two 
flues,  14.625  ins.  in  diam.     Heating  surface,  617  sq.  feet.     Grates,  37  sq.  feet 

Pressure  of  Steam,  25  lbs.  per  sq.  inch;  throttle  .25  open,  cut  off  at  .5  the  stroke 
of  piston.    BevtAutions,  42  per  minute. 

Buckets.— Two  sets  of  la,  2.5  feet  in  length  by  15  ind.  at  top  and  2  feet  deep;  vol- 
ume, 6.35  cube  feet.     Chain  Links,  8  ins.  in  length  by  .5  inch  diam. 

Scaiws  or  Caimds.—¥o\xT,  of  40  tons  cf^xictty  each. 


STEAM   HOPPER  DREDGER.      {Wm,  SimoM  %•  Co,) 

Iron. 

"Neptuwr"  {English).— Length,  lyyfeet;  breadth,  32  feet. 

Dredge  from  6  Ins.  to  25  Feel.    Capacity  of  Hopper,  500  to  600  Tons. 

Kngiiaes — Two  (compound),  375  IP,  for  ^^vAgKtig  and  propulsion,  and  one  for 
raising  bucket-ftume  and  anchor-post& 

A  like  designed  dredger  ot  1000  tons'  capacity  has  dredged  25000  tons  silt  per 
week  and  transported  it  4  miles. 

Dredging  1000  Tons  of  Mud  or  Silt  per  Hour,  5  to  35  FVef  mi  Depth, 

Capacity  of  Hopper,  1000  Tons. 
Mngines.— Two  (comiKtnnd),  ]P  1000.    Speed.— ^  knots  per  hoar. 

Steaxxi   IDredsine   Crane,    {EngUth.) 
Lift,  30  Feet  per  Hour. 


V 

h 


Urn. 
araSo 
34640 


9i 

IS 


Tons. 

as 
3 


Um. 

II20 


1^ 


Tooa. 
25 


»68o  I  37.5 


Tone. 
20 

3« 


ii    -6 
too 

^^% 

M*»  E 

C.  Y<to. 
ao 

»5 


^"5 

Is 

s   i 

a 

•9 
0 

Lb*. 
18000 
33480 

Tona. 
5 
7 

Lba. 

3^40 

3360 

Tons. 

50 
60 

TODI. 

40 

54 

A     -6 


c.yd# 
30 

40 


goo  BLBMBNTS   OF  MACHINBS   AND    BNGHTEB. 

BSleotrio  X«aiixi.oli«     Steel* 

"Hilda,"  "Mart,"  "Flo,"  and  "Thbo."— icw^,  4o/«rf;  Beam,  6.5;  Hold, 
3.x. —  Load-draughty  ^o  passengers,  1.66  feet.  Motor,  ]^  3.5.  Revolutions,  700  per 
minute.    Speed,  6  miles  per  hour. 

Awuimulators,  under  the  seats,  and  when  fblly  charged,  capacity  for  8  hours  at 
fkill  speed.    Charging  is  effected  at  landings  at  termination  of  route. 

BttUders.^J.  B.  Seath  k  Co.,  Glai^ow,  Scotland. 

Hopper  Drkdgbr  ^'  Belfast  No.  3. "  Iron  and  SmL.— -Length  aver  aUy  i^feet, 
on  deck,  189;  between  perpendiculars  and  for  tonnage,  185;  Beam,  2!^.$  feet;  Hold, 
14.1  feet;  Tonnage,  Gross,  760  tons;  Net,  372;  Mean  drat^ght,  g. 5  feet,  loaded,  12.5. 

Displacement,  x86o  tons.    Immersed  Section,  490  OfeeL    Freeboard,  2.7$  feet 

Dredging  Capacity,  1000  tons  per  hoar. 

Cylinders.    Two  of  20  ins.  in  diam.  and  two  of  38. 5  ins.    Stroke  of  piston  30  ina 

Pressure  of  Steam,  90  lbs.  per  Qinch.    Revolutions  per  minute,  80.    B?  850. 

Boilers,  two.  Orate  surface,  81  Qfeet.  Heating  surface  2130,  and  Condensing  1x5a 
Propeller,  9  feet  in  diameter,     f^uel,  capacity  50  tons.     Crew,  13. 

Weight,  Hull,  500  tona     Speed,  8.5  knots  per  hour. 

Builders.— Wm.  Simons  &  Co.,  Renfrew,  Scotland. 


(t ' 


Hbrcules."  Panama  Canal.— Length  on  deck,  100  feet;  beams,  40,  60,  and  45 
feet ;  depth  o/hold,  12  feet.     Slot,  315  feet  in  length  by  6  feet  7  ins.  in  vndth. 

Ways.— Two,  one  40  feet  and  one  60  feet,  by  5  feet  in  width. 

Buckets. — 38;  volume,  1.33  cul)e  yardR    Spuds,  2  feet  in  diam.  and  60  in  length. 

Engines Two  of  100  H*  each,  and  two  of  40  H*  each. 

^ot^rx.— Three  (horizontal  tubular),  16  feet  in  length. 

Elevator  and  Discharge. -^iiaxlmum,  24  cube  yards  per  minute. 

Crane.     (TVood.) 

HulL— Length  on  deck,  iix>fset ;  beam,  44  feet ;  load-draught,  4.$  feet 
Radius  of  crane,  46  feet;  height,  70  feet;  counter-balawx,  70  tons. 
Boiler.— HeaUng  surface,  500  sq.  feet.    Pressure  of  Steam,  80  lbs.  per  eq.  indi 
IIP,  150. 
iVope«er».— Two,  4.25  feet  in  diam.    Bpe^,  5  miles  per  hour. 
Engine  to  operate  crane.    Cylinder. — 10  m&  in  diam.  by  12  ins.  stroke  of  piston. 

FLOUR   MILLS. 
30  BameU  of  Fkfur  per  How. 

"Water-'wlieels,  Overshot- s,  diam.  18  feet  by  14.5  feet  face.  Buckets,  15 
ins.  in  depth.  Water.— Head,  2.5  feet  Opening,  2.5  ins.  by  14  feet  in  length  ovei 
each  wheel. 

5  Barrels  of  Flour  per  Hour,  and  Elevatinff  400  Bushels  of  Grain  36  Feet, 

"^Vater-'wlieel,  Overshot— Di&m.  22  feet  by  8  feet  fiice.  Buckets,  5a  of  i 
foot  in  depth.  Water.— Head,  from  centre  of  opening,  25  ina  Opening,  1.75  in& 
oy  80  ins.  in  length. 

Revolutions,  3. 5  per  minute.    Stones,  three  of  4. 5  feet ;  revolutiooB,  xsa 

T%ree  Run  of  Stones,  Diameter  4  Feet. 

'^Vater-vT'lieel,  Overshot^Diam.  19  feet  by  8  feet  fooe.  Buckets,  14  ins.  in 
d^th. 

Or, 

6teaxxx-exiBine  (non-condensing).— Cy{tiul«r,  13  ins.  in  diam.by  4  feet  stroka 

Boiler  (eylindrical  flued)— Diam.  $  feet  by  30  in  length;  two  flues  90  ins.  in  diani. 


ELEMENTS  OF  MACHINES  AND  ENGINES. 


901 


HOISTING   ENGINES. 


Wor  File  IDriving,  Hoistins,  Miinine,  eto» 


Co.,  New    Yorlc. 


IP 

do. 

4 

6 
10 

»5 

30 

as 


SlNULK  CYUNDBRS. 

DOUBLK  CYUKDERS 

Cylinder. 

Cspacity. 

Coat,  with 
Boiler.* 

tf 

Cylinder. 

Capacity. 

Ins. 

Lba. 

$ 

Ko. 

Ins. 

Lba. 

5X5 

xooo 

600 

8 

5X8 

2000 

6X8 

1250 

675 

12 

6X8 

2500 

7X  10 

x8oo 

825 

20 

7  X  10 

3500 

8X  10 

2800 

1050 

30 

8X  10 

6000 

9X  13 

4000 

1275 

40 

9X  12 

8000 

10  X  12 

5000 

»375 

50 

10  X  12 

9000 

Coat,  with 
Boiler.* 


£BgilM. 


10" 
30 


Dmoit 


Ina. 
12  X-24 
14X26 


*  Complete. 

Details  and.   Operation. 

Boiler. 


DimeB- 

aiona. 


Ina. 

32X75 
40X84 


Tubes. 


No. 

48  of  2  in. 
80  of  2  in. 


Ram. 

Leaders. 
HoUt. 

Lift. 
Ram. 

Blows 

Mmute. 

No. 

25 

29 

Pilea 
per  10 
Hoars. 

Lba. 

»953 
2700 

Feet. 
40 

75 

Feet 
8  tUi2 
8  to  12 

No. 

50 

100 

$ 

950 

1050 

1350 
1550 

2000 

2350 


Fnel 

per 

Hoar. 

Lba. 

70 
80 


*  Weight  complete,  8500  lba. 

Iblinit^g   Gngrines   and   Boilers.    (Variov* Cap€U:itiet.) 
Engine^  Boiler^  eta,  as  given  for  Pile  Driving,  page  90a. 

Operation.  —  250  to  300  tons  of  coal  in  10  hoars.    Fud^  40  lbs.  coal  per  hoar. 
Water,  20  .gallons  per  hour. 

Weight  ofEngint  and  Boiler j  4500  lbs. 

Tlie    HaiicooLc    Inspirator.    For  a  Lift  of  Water  oj  25  Feet. 


Mo. 

Diair 
Steam-pipe. 

leter. 
Soctlon. 

Diaehar|;e 

at  Preasare 

of  60  Lbs. 

Ins. 

Ina. 

G'lU.perh'r. 

10 

•375 

.5 

X20 

12.5 

.5 

•75 

220 

X5 

•5 

•75 

300 

30 

•75 

X 

540 

25 

X 

'.»5 

900 

No. 


30 
35 
40 
45 
50 


Diameter. 


Steam-pipe. 


Ina. 

125 
1.25 

1-5 
x-5 

2 


Saction. 


'•5 
1-5 

3 
3 
2.5 


Discharge 

at  Pressure 

of  60  Lbs. 


G'lls.perh'r. 
1260 
1740 
2230 
2820 
3480 


Temperature  of  feed  water  at  ao  feet  lift,  100° ;  and  on  3  feet  lift,  145O. 

HYDROSTATIC   PRESS.      (Cotton.) 

30  Bales  of  Cotton  per  Hour, 

Kngine  (non-condensing).— Ci^hncfer,  10  ins.  in  diam.  by  3  feet  stroke  of  piston. 

Pressure  of  Steamy  50  lbs.  per  sq.  inch,  full  stroke.    Bewlutions.  45  to  60  per 
minnte. 

Fresses.— Two,  with  13-inch  rams;  stroke,  4.5  feet 
iVmpg.— Two,  diam.  2  ina  ;  stroke,  6  in& 

For  83  BcJes  per  Hour, 
Kngine  ^non  condensing).— CyZinder,  14  in&  in  diam.  by  4  feet  stroke  of  piston. 
Boilers.  —Three  (plain  cylindrical),  30  ins.  In  diam.  and  26  feet  in  length.     Grates, 
33  sq.  feet.     I^rssure  ofSteam^  40  lbs.  ver  sq.  inch.     Revolutions,  60  iwr  minute. 

iVewe*.— Four,  geared  6  to  i,  with  two  screws,  each  of  7.5  ins.  In  diam.  by  1.625 
Ui  pitch. 

^^^  (wrought  iron).— Journal,  8.5  ina    ^y  Wheel,  16  feet  in  diam. ;  weight, 


902  £L£M£]!4TS   OF   MACHINES   AND   ENGINES. 

LOCOMOTIVE. 

*'  Expuuxknt"  [Compound^-^Cylmders^  one  each,  la  and  26  in&  in  diam.,  and 
•ne  26  ins.  by  2  feet  stroke  of  piston. 

BoiUsr. —Heating  mr/acey  1083.5  sq.  feet  Grate,  17.1  sq.  feet.  Pressure  of  Steam, 
150  lbs.  per  sq.  inch,  cut  off  at  .35.  Speedy  50  miles  per  hour.  Weight. —  Empty, 
34.75  tons. 

Street   liailroad   or  Traxxi-wasr   ICxxfi^ne. 

Cylinder,  7  ins.  in  diam.  by  11  in&  stroke  of  piston. 

Boiler,  78  tubes  1.75  ins.  in  diam.  by  4  feet  in  length.  Healing  turface,  160  sq. 
feet.  Grate,  4.25  sq.  feet  Wheels,  3.33  feet  in  diam.  Base,  4.5  feet  Gauge,- 4 
teet  8.5  ins. 

Co<<.— Average  per  mile  in  England,  2.52  pence  sterling  =  4. 48  centa 

PILB-DEIVING. 

Driving  One  Pile. 

Kngine  (non-condensing) Cylinder,  6  ins.  in  diam.  by  i  foot  stroke  of  piston. 

Boiler  (vertical  tubular;.— 32  ins.  in  diam.,  and  6.166  feet  in  height  Grates,  3.7 
•q.  feet    Furnace,  20  ins.  in  height     Tubes,  35,  2  ins.  in  diam.,  4.5  feet  in  length. 

Revolutions,  150  per  minute.  Drum,  la  ins.  in  diam.,  geared  4  to  x.  Leader,  40 
feet  in  height    Mam. — 9000  lbs.,  2  blows  per  mi uute.    /lice^,  30  lb&  coal  per  hour. 

Driving  Two  Piles. 

Kngixxe  (non-condensing).— (7^£tnder«,  two,  6  in&  in  diam.  by  x8  in&  stroke  of 
piston. 

Boiler  (horizontal  tubular). — iSJiell,  diam.  3  feet,  and  6  feet  in  length.  Furnace 
end  3.75  feet  in  width,  3.5  feet  in  length,  and  6  feel  in  height 

Pressure  of  Steam,  60  lbs.  per  sq.  inch.    Revolutions,  60  to  80  per  minute. 

Frame,  8.5  feet  in  width  by  26  feet  in  length.  Leaders,  3  fbet  in  width  by  34  feet 
in  height    Bams.—1yio,  1000  Iba  each,  5  blows  per  minute. 

PUMPING   ENGINES. 

Corliss  Stkam- engine  Co.,  Providence,  R.  /.—Vertical -Beam  Ekginb  {Com- 
pound).— Cylinders.— 18  and  36  ins.  in  diam.  by  6  feet  stroke  of  piston. 

Pumps.— YovLT  plunger,  19  ins.  in  diam.  by  3  feet  stroke  of  piston.  Displacement 
per  revolution  of  engine,  84.96  cube  feet 

Boilers.— Three,  vertical  fire  tubular.  Grate.— g^  sq.  feet  Heating  surface,  1680 
sq.  feet  Pressure  of  Steam,  125  Iba  per  sq.  inch,  cut  off  at  .23  feet  Revolutions^ 
36  per  minute.    IIP  313.    F/y-w/<€«f.— 25  feet  in  diam.,  weight  62 ooolft*. 

/W2.— Cumberland  coal,  486  Iba  per  hour,  inclusive  of  kindling  and  raising  staam. 
Ash  and  Clinkers,  9.4  per  cent    Duty  for  one  week,  113  271 000  foot-lbs. 

Water  delivered,  17  621  gallons  ))er  minute,  against  head  of  180  feet 

Duty,  average  for  1883,  per  100  Iba  anthracite  coal,  106  048  ooo.^t-<&f. 

For  Mevating  200  oc»  Gallons  of  Water  ptr  How. 

Lynn,  Jlfo«s.— Enoine  (Compound).— Cylinders,  17.5  and  36  ina  in  diam.  by  7  feet 
stroke  of  piston;  volume  of  piston  spare,  61.2  cube  feet  Air  Pump  (doable  act- 
ing), 11.25  ^^^-  >°  diam.  by  49.5  ins.  stroke  of  piston. 

Pump  Plunger,  18. 5  ins.  in  diam.  by  7  feet  stroke. 

Boilers.— Tvro  (return  flued),  horizontal  tubvilar;  diam.  of  shell,  5  fteet;  drum,  3 
feet ;  tubes,  3  ins.    Length  of  shell,  16  feet     Grates,  27. 5  sq.  feet 

Pressure  of  Steam.  90.5  Iba  ;  average  in  high-pressure  cylinder,  86  lbs.,  cat  off  at 
t  foot,  or  to  an  average  of  44.5  lbs. ;  average  in  low-pressure  cylinder,  27  Iba,  cut 
off  at  6  ina,  or  to  an  avemge  of  10.8  lbs. 

Revcifdions,  18.3  per  minate.    Fly  Wheel. — Weight,  24000  Iba 

JSvaporation  qf  Water,  4644  Iba  per  hoar.    Loss  of  action  by  I\nnp,  4  per  cent 

Consumption  of  Coal — Lackawanna,  291  lbs.  per  hour. 

I>vly,  205773  gallons  of  water  per  hoar,  under  a  load  and  fHctional  resistanue  of 
73-41  ">a  per  square  inch,  equal  to  103  923  217  foot-lbs.  for  each  xoo  Iba  of  ooaL 


XLSMJBNTS  OF  HAOilNESy  MILLS,  BTC. 


903 


**  GaskiU"  at  Saraiiyga,  N.  F, 

Sngine  {Horizontal  Compound).  Cylinders.  —High  pressure,  2  of  21  ins.  diam. 
Low  pressure,  2  of  42  ins.  ditun.,  aU  3  feet  stroke  of  piston.  Pumps. — ^Two  of  20  ins. 
diam.  by  3  feet  stroke  of  piston. 

Fly  Wheel,  12.33  ^^^  '°  diam. ;  weight,  i2cxw  lbs. 

Boilers  (horizontal  tubular). — Two  of  5. 5  fleet  in  diam.  by  18  fbet  in  length.  Heat- 
ing twrfiut,  2957  sq.  feet.  Grates,  51  sq.  feet  of  grate;  to  heating  surftice,  i  to  58, 
and  to  transverse  section  of  tubes^  i  to  7.    Ckimneys,  75  feet 

Pressure  q/^Veam.— Mean  of  20  hours,  74.25  lbs.  per  sq.  inch.  RtvolutiffM,  17.87 
per  minute.  Iff.— -High  pressure  tylmders,  109. 2 ;  low-pressure,  76  65.  Total,  185,8. 

Puel. — Anthracite,  6.9  lbs.  per  sq.  foot  of  grate  per  hour.  Evapwati<m,  per  sq. 
fixH  of  heating  surface  per  hour,  1.175  lbs. ;  per  lb.  of  coal,  9.25  lbs. ;  per  cent,  of 
uon-combustible,  3.2. 

Duty,  112 899993  foot-lbs.  per  100  lbs.  coaL    Heating  surfaee  per  lEP,  14.9. 

Steam  per  sq.  foot  of  surface  per  hour,  z.  19  lbs. ;  per  sq.  foot  of  surface  per  lb.  ot 
coal  per  hour  from  212*^,  11.28  lbs. 

Sriosson's  Caloric.    For  an  Elevation  of^  Feei. 

COST 


Dixnen- 
•loiu. 


Ins. 

5 
6 
8 

13 
12^ 


occupied. 
Floor.    Helghl. 


Valume 
Hour. 


Iiu. 
34X18 
39X20 
48X21 
54X27} 
48X53^ 


Ina. 

48 

51 

63 

63 

65 


Gall. 
150 
300 

350 

800 

1600 


Kp^ 

Foel 

Sactlon 
and 

per  Hoor. 

Ww 

Die- 

Nut 

ckargv* 

Anthr. 

Oaa. 

Gaa. 

Ina. 

Lba. 

Cub.  ft. 

$ 

•75 

15 

150 

•75 

»-s 

18 

900 

I 

3-3 

as 

235 

i-S 

6 

— 

— 

a 

la 

— 

— 

Coal. 


Daap  W«ll  Panp. 
Extra. 
Pipe*  per  Foot. 


^"^     Plain 


3IO 
250 
330 
450 


10 
15 

ast 


.64 
.80 

.93 


Gal  van 


.86 
"•»5 

1.35 


*  Over  90  feet,  ga  centa. 


t  Duplex. 


TncludiiiK  engine  and  pump,  oil-oan  and  wrench,  complete  in  all  but  suction  and 
discbarge-pii»o. 

SUGAR   MILLS. 

Expressing  40  coo  lbs.  Cane-juice  per  day,  or  for  a  Crop  of  5000  Boxes  qf 

450  Vbs,  each  in  four  Months^  Grinding, 

Kngine  (non-condensing).— Cyh'n<i«r,  18  in&  in  diam.  by  4  feet  stroke  of  pistcoi. 

Bailer  (cylindrical  flued).— 64  ina  in  diam.  and  36  feet  in  length;  two  return  fluea, 
oo  ins.  in  diam.     Heating  surface,  660  sq.  feet     Grates,  30  sq.  feet. 

Pressure  of  Steam,  60  lbs.  per  sq.  inch,  cut  oflT  at .  5  the  stroke  of  piston.  Revolu 
tions,  40  per  minute. 

Rolls.  — One  set  of  3,  28  ins.  in  diam.  by  6  feet  in  length;  geared  i  to  14.  Shc{fUt 
xz  and  12  ins.  iu  diam.  Spur  Wheel,  20  feet  in  diam.  by  1  foot  in  width.  !r/y 
Wheels  18  feet  in  diam. ;  weight,  17  400  lb& 

Weights. -^EngSne,  61 460  Iba  ;  Sugar  Mill,  65730  )b& ;  Spur  Wheel  and  Connect 
ing  Machinery  to  Mill,  28  680  lbs. ;  Boiler,  18  530  lbs. ;  Appendages,  6730  lb&  Total, 
181 120  lbs. 


BTONK   AND   ORE   BREAKBRS. 


(Se«p  957.) 


No. 


A 

I 
3 

3 

4 


Re- 
•elver. 

Ina. 
4X10 
5X10 
7X10 

5X15 
7XZ5 

D'b). 

Feet. 
1.66 
275 

2 

2-33 
233 


•y- 

Face. 

V'loclty 

per 
Minute. 

^  si 

Ins. 

Feet. 

H». 

6 

250 

4 

6 

t8o 

5 

V 

X 

6 
9 

9 

x8o 

9 

Weight. 

LUa. 
4000 
6700 
8000 
9  100 
10490 


No. 


Re- 
ceiver. 


Ina. 

9X15 

11X15 

:«3Xi5 

15X20 

18X24 


Pal 
D'm. 

ley. 
Face. 

Ina 

Weight. 

Feet. 

Feet. 

H*. 

Lba. 

3.5         9 
2.33  '     6 

250 
x8o 

9 
9 

13360 
ziSoo 

2  33  1     8       180 

9 

Z1760 

3  5    ;   10   1   150 

12 

32600 

6 

12 

135 

za 

37500 

NoTx.-^Amonnt  of  product  denends  on  distance  Jaws  are  ael  apart,  and  speed. 
Product  given  in  Table  is  due  when  Jaws  are  set  z.5  ins.  open  at  bottom,  and  ma- 
chine is  run  at  ita  proper  speed  and  diligently  fM.  It  will  also  rar>'  somewhat  witll 
character  of  stone.    Hard  stone  or  ore  will  crush  faster  than  sandstone. 

A  cube  yard  of  stone  Is  about  one  and  one  third  tons. 


904 


ELSMENTS  OF  MACQINSS.— CHIMNEYS. 


STEAM   FIRE-ENGINE. 

A-ZKioalzeag,  IN".  U.     let   Class* 

Steam  Cylinder.— Two  of  7.625  ina  in  diam.  by  8  ina  stroke  of  plaiOB. 

Water  Cylinder. — ^Twoof  4.5  ins.  in  diam. 

Boiler  (vertical  tubalar). — HeaJting  surface^  175  SQ-  feet.     Grates,  4.75  sq  feei 

Pressure  of  Steam. — 100  lbs.  per  sq.  inch.     Revolutions,  200  per  minute. 

Discharges. — Two  gates  of  2.5  Ins.,  through  hose,  one  of  1.25  in&  and  two  of  i  inek 

Projection.— Uorlzonia],  1.25  ins.  stream,  311  feet;  two  i  inch  streams,  256  feet 
Vertical,  1.25  ins.  stream,  200  leet.   Water  Pressure.— With  1.125  ina  nozzle,  200 Iba 
Time  of  Raising  Steam.— From  cold  water,  25  lbs.,  4  mln.  45  sea 
Weights. — ^Engine  complete,  6000  Iba  ;  water,  300  Iba 

SAW -MILL. 
T\do  Verticiil  Saios,  34  Ins.  Stroke,  Lathes,  etc 

Bxksine  (non-condensing).  Cylinder.— 10  ina  in  diam.  by  4  feet  stroke  of  pistoo. 
.Bot'^rf.— Three  (plain  cylindrical),  30  ins.  in  diam.  by  20  feet  in  length. 
Pressure  of  Steam. — 90  Iba  per  sq.  inch.    Revolutions,  35  per  minute. 
NoTS.— This  engine  has  cut,  of  yellow-pine  timber,  30  feet  by  18  ina  in  i  minuta 

STONE   SAWING. 

Kmerson  Stone  Sa-w  Co.  (Diamond  Stone  Saw,  Pittsburgh,  Penn.).— 
to  H*,  150  sq.  feet  of  Berea  sandstone,  inclusive  of  both  sides  of  cut,  in  z  boar. 

CHIMNEYS. 

Lawrence,  Afcus,    Octagonal,  222  Feet  above  Ground,  and  19  Feet  behm. 
Foundation,  35  Feet  square  and  0/ Concrete  7  Feet  deep,  {Hiram  F.  Mills.) 

Shaft.— 224  fe®^  ^°  height,  20  feet  at  base,  and  n. 5  at  top;  7i  ins.  thick  at  base 
and  8  at  top.    Core. — 2  feet  thick  for  27  feet,  and  i  foot  for  154. 

ITorizontal  Flues.— 7.$  feet  square,  and  VerticcU  flue  or  cylinder  of  8.5  feet,  234 
high,  with  walls  20  ins.  thick  for  20  feet,  16  ft>r  17  feet,  12  for  52  feet,  and  8  for  145  feet 

Purpose. — For  700  sq.  feet  grate  surface.     Weight— 2250  tona    Bricks,  550 cool 

New  York  Steam  Heating  Co.    Quadrilateral,  220  Feet  above  Ground 
and  I  Foot  bekw.    (Chas.  E.  Emery,  Ph.D.) 
Shaft.— 220  feet  in  height,  and  27  feet  10  ina  by  8  feet  4  ina  in  the  clear  insidei 
Foundation.—i  foot  below  high  water.    Copod^i^.— Boilers  of  16000  W. 


Cost  of*  Steam -SSngrines  and.  Soilers  ooxnplete,  and  of 
Operation  per  Day  of*  lO  Hours,  inolnsive  of  ILtabor^ 
li^uel,  and  Repairs.    (Cheu.  E.  Emery,  Ph.D.) 


II-P. 


6.25 

12.5 
29 

XI2 
276 

5$« 


EDgine. 


Portable  Verticals  .  u. 

HorizonUI ( ^  8 

Single  Condensing. . . 


M 


M 


Water  Erap- 
oratod  per 

Coal  per 

Labor. 

pile* 
and  Re- 
pairs. 

Coat 
of 

IH?p«r 
Hour. 

Lb.  of 
Coal. 

IIP. 

Day. 

Cod.« 

LU. 

LlM. 

Lbs. 

Lb*. 

1 

$ 

$ 

42 

7-5 

56 

394 

1-75 

•33 

•73 

38 

7-5 

51 

1308 

1-75 

'i^ 

»-33 

32 

8 

40 

2.25 

.60 

2.43 

23 

8.8 

26.1 

3300 

3-75 

1. 17 

14.58 

aa.2 

8.8 

25.2 

7831 

425 

a.xa 

22.2 

8.8 

25.2 

15663 

6 

4.0a 

a9.x6 

•  1 4.43  per  tea  (soio  IbO*  incladipf  cartagt. 


Total 

Coat  of 

Opermfn, 

iocloding 

Coal. 

$ 

3.86 

3-56 

5-45 
XX.66 
33.97 

4»-5« 


ORAPHtC  OPBRATION. 


905 


GRAPHIC  OPERATION. 
6olu.ti(>iL8  of  Questions  "by  a  Grrapliic  Operation, 

I.  If  a  man  walks  5  miles  in  i  hour,  how  far  will  he  walk  in  4  hours? 

Operation. —Draw  borizontal  line,  divide  it  iuto  equal  parts, 
as  I,  2,  3,  and  4,  representing  hours.  From  each  of  these 
points  let  fall  vertical  lines  A  C,  i  z,  etc.,  and  divide  A  C  into 
miles,  as  5,  10,  15,  and  20,  and  fh>m  these  points  draw  equi- 
distant lines  parallel  to  the  borizontal. 

Hence,  the  horizontal  lines  represent  time  or  hours,  and 
the  vertical,  distance  or  miles. 

Therefore,  as  any  inclined  line  in  diagram  represents  both 
time  and  distance,  course  of  man  walking  5  miles  in  an  hour 
is  represented  by  diagonal  A  e;  and  if  he  walks  for  4  hours, 
continue  the  time  to  4,  and  read  off  ft-om  vertical  line  A  G  the  distance  =  20  miles, 

3.  How  far  will  a  man  walk  in  2  hours  at  rate  of  10  miles  in  i  hour  ? 
His  coarse  is  shown  by  the  line  A  o,  representing  20  miles. 

J.  If  two  men  start  from  a  point  at  the  same  time,  one  walking  at  the 
rate  of  5  miles  in  an  hour  and  the  other  at  10  miles,  how  far  apart  will  they 
be  at  the  end  of  3  hours? 

Their  courses  being  shown  by  the  lines  A  r  and  A  0,  the  distance  r  0  represents 
the  difference  of  their  distances,  xo  cx>  20  =  10  mUes. 

4.  How  long  have  they  been  walking? 

Their  courses  are  now  shown  by  the  lines  A  o  and  A  4,  the  distance  3  4  representa 
the  difference  of  their  times,  or  3  fv  4  =  3  hours. 

5.  When  they  are  10  miles  apart,  how  long  have  they  been  walking? 

Their  courses  are  again  shown  by  the  lines  A  r  and  A  0,  the  distance  r  o  repre- 
sents the  difference  of  their  distances  of  10  miles,  and  A  2,  2  hours. 

6.  If  a  man  walks  a  given  distance  at  rate  of  3.5  miles  per  hour,  and  then 
rans  part  of  distance  back  at  rate  of  7  miles,  and  walks  remainder  of  dis- 
tance in  5  minutes,  occupying  25  minutes  of  time  in  all,  how  far  did  he  run? 

A  a    e   t  er        C       Operation.— Dn,w  horizontal  line,  as  AG, 

representing  whole  time  of  25  minutes;  set 
off  point  e  representing  a  convenient  fV-actibn 
of  an  hour  (as  10  minutes),  and  a  i  equal  to 
corresponding  fhiction  of  3.5  miles  (or  .5833); 
draw  diagonal  A  n,  produced  indefinitely  to  O, 

*i jt     ,  .  nf'  /  >  and  it  will  represent  the  rate  of  3.5  miles  per 

^  ^  '     ^  hour. 

Set  off  G  r  equal  to  5  minutes,  upon  same 

a * "••    ®^*^®  ^  ^^'^^  of  A  C;  let  foil  vertical  r  «,  and 

^  '  ^  draw  diagonal  C  u  at  same  angle  of  inclination 
as  that  of  A  n;  then  firom  point  u  draw  diagonal  u  0,  inclined  at  such  a  rate  as  to 
represent  7  miles  per  hour;  thus,  if  i  n  represents  rate  of  3.5  miles,  s  0,  being  one 
half  of  the  distance,  will  represent  7  miles. 

The  whole  distance  between  the  two  points  is  thus  determined  by  G  x,  and  dis- 
tance ran  by  u  «,  measured  by  scale  of  miles  employed. 

Verification.— The  distances  A  e  and  A  t  are  respectively  10  minutes  =r.  166  of  an 
hour,  and  .5833  mile  =  .166  of  3.5  miles.    Hence,  C  aj  =  .875  mile,  and  t«*=.5833 
mile.    Consequently,  the  man  walked  AO  =  .875  mile  =  15  minutes,  ran  Ott  = 
5833  mile  =  5  minutes,  and  walked  u  G  =  .2916  mile. 

7.  If  a  second  man  were  to  set  out  from  C  at  same  time  the  man  referred 
to  in  preceding  question  started  from  A,  and  to  walk  to  A  and  return  to  C, 
at  a  uniform  rate  of  speed  and  occupying  same  time  of  25  minutes,  at  which 
points  and  times  will  ne  meet  the  first  man  ? 

Operaiion.—AB  A  G  represents  whole  time,  and  Cx  distance  between  the  two 
points,  V  i  and  t  x  will  represent  course  of  second  man  walking  at  a  uniform  rate, 
and  he  will  meet  the  first  man,  on  bis  outward  course,  at  a  distance  fVom  his  start- 
^g- point  of  A,  represented  by  A  o,  and  at  the  time  A  a;  and  on  his  return  course 
JA  distance  Av^xm,  and  at  the  time  A  c. 

4G» 


7^ 

/ 

5 

/ 

V 

go6 


MISCfiliiANSOUfL 


UIBCEIuImATSVOXJB.    . 

No.,  Diatn«t©r,  euid   Nuinteer  of  t^hot.    {American  Standard.^ 

CoiTipresaed.    JBuoliL    Sliot. 


No. 


3 

2 


Balls,  .38  Inch,  85  No.  per  lb. ;  .44  Inch,  50  So.  jnrr  lb. 


Diam.  ' 

Shot     1 
per  Lb. 

No. 

Dfcim. 

Shot 
per  Lb. 

No. 

DUun. 

iMk. 

•25 
.27 

No. 
284 
flgt 

a 
0 

lotih. 
•3 
•B2 

No. 

>73 
J  40 

00 
000 

Inch. 
•34 
.36 

8hot 
per  Lb. 

■  ■« 
No. 

"5 

98 


CkiiUedL   iSliot. 


No. 

DUm. 

Inch. 

12 

.05 

IJ 

.06 

10 

Trap 

10 

.07 

9 

ITrap 

Shot 
per  Or. 

No. 

No. 

2385 

9 

1380 

8 

I J  30 

8 

8t>8 

7 

716 

7 

Diaui. 

Shot 
perQt. 

No. 

Inch. 

.08 

Trap 

Trap 

.M. 

Mo. 
585 
495 
409 
345 
299 

6 

I' 

3 
2 

Warn. 
Inofa. 

.IX 

.12 

•13 
.14 


Shot 
periOs. 


No. 
223 
172 
136 
109 
86  : 


No. 

DUm. 

Shot 
per  Ob. 

Inoh. 

Mo. 

I 

.16 

73 

U 

•»7 

6, 

Bll 

.18 

52 

«»B 

.19 

1 

43 

Z>rop   Sliot. 


No. 


Extra  Fine  Post 
Fine  Dust 
Dufit 
la 
11 
10 
10 


Diam. 


Inch. 
.015 

•03 

.04 

.05 

.06 

Trap 

.07 


Pelleto 
per  Os. 

No. 
84021 
10784 

(♦565 
a.  326 

1346 

1056 

848 


No. 


9 

9 
8 

I  8 

i  7 

I  7 
6 


Diam. 

PeHeU 
per  Oe. 

-No." 

■Dfaun. 

Inch. 

No. 

Inch. 

Trap 

688 

5 

.12 

.08 

568 

4 

•13 

Trap 

472 

3 

•»4 

Trap 

B99 
338 

2 
I 

■.M 

.1 

291 

B 

••«7 

.11 

s»i8 

BB 

.a« 

iPtoDete 
perOs. 

No. 
z66 

132 
xq6 

86 
7« 
59 
50 


No. 

Diam. 

BBB 

Inch. 
.19 

T 

.2 

HT 

.2iK 

F 

.22 

FF  . 

.23 

PolMc 
perOa. 

No. 
42 

36 

3« 
27 

24 


The  senile  of  the  T^e  Roy  «tAndard  (adopted  by  the  Sportsman^s  Canvontiou)  com- 
mences with  .24  inch  for  TT  shot,  and  reduces  .01  inch  for  each  size  to  .05  inch  for 
No.  12.     The  number  of  peftlets  per  oz.  being  the  actual  number  in  perfect  shot 

The  number  of  pellets  by  this  standard  is  neaidy  ideniical  with  that  of  ihe  Amer- 
ican Standard. 

Tatham'fi  scale  is  same  as  I..e  Roy's,  but  number  of  pellets  isdeduced  mathemat- 
tcally,  by  com.puting  them  fVom  the  speciflc  gravity  of Ihe  lead. 


DT>aints,  IMameter  and  O-rade   of,  to  IMsoliarge  Rainfall. 


Diam. 

Grade 
one  in. 

Acres. 

Diam. 

Grade 
one  In. , 

Int. 

Ins. 

' 

4 

30 

•S 

40 

JIO 

.6 

20 

S 

80 
60 

•5 
.6 

7 

20 
60 

6 

'iO 

60 

X 

X 

8 

1 

lao 
80 

Acres. 


•1.2 

1-5 
x.s 

i-S 
x-S 
1.8 


Diam. 


Ins. 
9 

x^ 


Grade 

oneiin. 


60 

xao 

80 

12P 
80 


Acres. 

Diam. 

Gnido 

one  in. 

Acna. 

Ins. 

S.I 

80 

5.8 

2.x 

n    . 

240 

7« 

«-S 

ixao 

7« 

a'TS 

80 

9 

4-5 

60 

zo 

5-3 

iS 

240 

10 

British  and  Aletrio  M.c9aBUiree«  CovMinevciial  XBkiixii-vialenti 

OcT.    (<?•  Johrutont  Stonet,  F.  JR.  S.) 


Yard 
'Foot 
Inch. 


■MURmtUtt. 
....  9x4.4 

....30*-8 
....     25.4 


Wti^.  Orutnfiua. 

Pound 453-6 

Oonoe ^8.35 

Grain 0648 


To/vum.  CiA»  Gnili'a 

Gallon 4554 

Quart XX36 

Oonoe 9&4 


HSMOBANDA.  §0^ 


MEMORANDA. 

Pliysioal  and  Mieoliatiical  Sllements.  Cozistructiozis, 

and.   Results. 

Belting.  Double.  —  600  IP  (to  be  transmitted)  -?-  velocity  of  belt  in  feet  per 
minute,  or  191  W-r-  number  of  revolutions  per  minate-i-  diameter  of  pulley  in  feet 
r=  width  in  ins.  Mackine  BeUs.~ isoo  to  2000  ^•i-^loclty  of  belt  in  feet  per 
minute  =  width  in  in&     {Edward  Sawyer.) 

Slast  I*ipe  of  a  Xjooomotive.  Best  height  is  from  6  to  8  diameters 
of  pipe,  and  best  effect  when  expauded  to  full  diam.  of  pipe  at  2  diameters  ft-om  base. 

Boiler  Ftivetiiis.  A  riveting  gang  (2  riveters  and  i  boy)  will  drive  in  shell, 
furnace,  etc.,  a  mean  of  12.5  rivets  per  hour 

Briols  or  Compressed  Fiael  is  composed  of  coal  dust  agglomerated 
by  pitchy  matter,  compressed  in  molds,  and  subjected  to  a  high  temperature  in  an 
oven,  in  order  to  expel  the  moisture  or  volatile  portion  of  the  pitch  and  any  fire- 
damp that  may  exist  in  the  cells  of  the  coal. 

Bridge,  Highest  At  Garabil,  France,  413  feet  from  floor  to  surface  of  water, 
and  1800  feet  in  length. 

Bronze,  M:a.lleal3le.  P.  Dronier,  In  Paris,  makes  alloys  of  copper  and 
Un  malleable  by  adding  from  .5  per  cent,  to  2  per  cent,  quicksilver. 

Buildlxie  13epartznent,  Reqiiirexnenta  of.    (New  York.) 

Fumaae  Flues  of  Dwelling  Houses  hereafter  constructed  at  least  84nch  walls  on 
each  side.  The  inner  4  ins.  of  which,  Arom  bottom  of  flue  to  a  point  two  feet  above 
2d  story  floor,  built  of  fire  brick  laid  with  fire-clay  mortar;  and  least  dimensions  of 
fumaco'  flue  8  ins.  square,  or  4  ins.  wide  and  16  ins.  long,  inside  measure;  and  when 
furnace  flues  are  located  in  the  usual  stacks,  side  of  flue  inside  of  house  to  which  it 
belongs  may  be  4  ins.  thick.  If  preferred,  furnnce  flues  may  be  made  of  fireclay 
pipe  of  proper  size,  built  in  the  walls,  with  an  air  space^of  i  inch  between  them, 
and  4  in&  of  brick  wall  on  outside. 

Boiler  Flues  to  be  lined  with  fire-brick  at  least  25  feet  in  height  from  bottom, 
and  in  no  case  walls  of  said  flues  to  be  less  than  8  ins.  thick. 

All  flues  not  built  for  furnar>es  or  boilers  must  be  altered  to  conform  to  the  above 
requirements  before  they  are  used  as  such. 

Steam  Pipes  not  to  be  laid  within  two  inches  of  any  timber  or  woodwork,  unless 
it  is  protected  by  a  metiti  shield,  and  then  the  distance  not  to  exceed  one  inch.  All 
floors,  ceilings,  and  partitions  to  be  protected  from  beat  by  a  metal  tube  one  inch 
in  diameter  in  e.xcess  of  the  pipe,  and  the  intervening  space  filled  with  mineral 
wool,  asbestos,  or  other  incombURtible  material. 

Horizontal,  and  Hot-Air  Pipes  In  stud  partitions  to  be  double,  with  an  interven- 
ing space  between  them  of  at  lea.st  half  an  inch,  and  a  space  of  tliree  inches  around 
a  pipe:  the  inner  face  of  the  i)artition  to  be  lined  with  tin  plate  and  the  outer  faces 
with  iron  lath  or  slate.  Hot-air  pipes  not  to  be  permitted  in  any  stud  partition  un- 
less it  shall  be  at  least  eight  feet  distant  in  a  horizontal  line  from  the  furnace  To 
shield  the  effect  of  their  heat  in  wood  or  stud  partitions,  to  have  a  double  metal 
collar,  with  two  inches  of  air  space  between  them  and  holes  for  ventilation,  or  to  be 
enclosed  iu  brick  masonry  at  least  four  inches  in  thiokness. 

Cement.  Iron  to  Stone.— Fxne  Iron  filings,  20  parts.  Plaster  of  Paris,  60,  and 
Sal  Ammoniac,  i ;  mixed  fluid  with  vinegar,  and  applied  forthwith. 

Ckiimney  Drauarlxt.  W  —  to  fc  =  D.  W  and  w  representing  weights  of  a 
cube  foot  of  air  <U  eztemeu  and  internal  temperatures,  h  height  of  chimney  or  pipe  in 
feet,  and  D  value  of  draught.     See  Weight  of  Air,  page  521. 

Chinese  or  India  Ink  Improves  with  age,  should  be  kept  in  dry  air, 
and  in  rubbing  it  down  the  movement  should  be  In  a  right  line  and  with  very  little 
pressure. 


909 


MEMOBAKDA. 


Coal,  Efifeotlve  Value  of*.     Theoretical  quantity  of  heat  per  W  is 

2564  units  per  hour,  and  average  quantity  of  heat  in  a  lb.  of  coal  that  is  utilized 
in  the  generation  of  steam  in  a  boiler  is  8500  units;  hence,  theoretical  quantity 


of  coal  required  per  W  per  hour = |^  = 

8500 


3  Iba'j  after  the  water  has  been  heated 


into  atmospheric  steam,  being  theoretically  nearly  7.5  per  cent,  of  total  heat  re- 
quired to  change  30  lbs.  water  at  60°  into  steam  of  60  lbs.  effective  pressura 

The  total  beat  developed  by  the  combustion  of  coal^  when  utilized  evaporatively. 
ranges  Arom  .55  to  .8,  but  in  practice  it  does  not  exceed  65  per  cent 

Coast  and  Bay  Service.  A  velocity  of  current  of  2.5  feet  per  second 
will  scour  and  transport  silt,  and  5  to  6.5  feet  sand.  For  river  scour  the  velocities 
are  very  much  les& 

Cold,  O-reatest.  —220^,  produced  by  a  bath  of  Carbon,  Bisulphide,  and 
liquid  Nitrous  Acid. 


Corrosion,  of*  Iron  and  Steel, 
as  a  mean,  tally  one  third  greater. 


The  corrosion  of  steel  over  iron  is, 


Cost  of*  Family  of*  ^eolianics  in  France  ranges  flrom  $220 
to  $600  per  annum,  of  which  clothing  costs  16  parts,  food  6x,  rent  15,  and  mis- 
cellaneous 8. 

Crnshins  Resistance  of*  Sriok.  A  pressed  brick  of  Philadelphia 
clay  withstood  a  pressure  of  5cx>ooo  lbs.  for  a  period  of  5  minutes. 

Kavtbxvork.  Shovelling.  —  Horizontal,  12  feet.  Vertical,  6  Itet  When 
thrown  horizontal,  12  to  20  feet,  i  stage  is  required,  and  fh)m  20  to  30,  a  Stages. 
When  vertical,  6  to  10  feet,  i  stage  is  required. 

WkeeUarrow.  —Proper  distance  up  to  200  feet 


Nxkxxxbev 


of*  X^oads   and 

One  Laborer. 


Voluxne  of*  HSartli 

(C.  Hersckell,  C.  E.) 


Diatance. 

Trip*. 

Volame. 

Distance. 

Tripe. 

Volume. 

DistauM. 
Feet. 

Tript. 

Feet. 

No. 

Cub.  Yds. 

Feet. 

No. 

Cob.  Yds. 

No. 

20 

120 

23-5 

150 

96 

13-3 

350 

88 

50 

no 

16.9 

200 

94 

12.8 

400 

86 

70 

100 

14.4 

250 

92 

12.4 

450 

^ 

100 

98 

13.8 

300 

90 

X2 

500 

83 

per  "Day, 


VoIuiiml 


Cub.  Yds. 
11.6 
zx.a 
X0.9 
JO.  5 


Volume  of  a  barrow  load,  2.5  cube  feet 

Portable  Railroad  and  Hand  Car«.— For  a  distance  of  550  feet^  60  cube  yards  can 
be  transported  per  day. 


Horse  Cart. — Volume  of*  £artli  transported 

One  Laborer. 


per   X>a3r. 


Diatance. 

Tripe. 

Volume. 

Distance. 

Trips. 

Volume 

Distance. 

Tripi. 

Feet. 
300 
500 

No. 
86 
67 

Cub.  Yds. 
13.6 

Feet. 
1000 
1500 

No. 
43 
31 

Cnb^Yds. 
8.6 
6.4 

Feet. 

2000 

2500 

No. 

25 
21 

VoluD*. 

Cob.  YdiT. 
5 

4.3 
Volume  of  each  load,  8  cube  feet 

Ox  Cart  is  lees  in  cost  at  expense  of  time. 

Bleotrio  J^isht,  Candle  Po-wer  of*.  Maaeim  Ineandacent  Laimp.^. 
Current  with  30  Faure  cells,  74  volts,  z.8i  Amperes,  16  standard  candlea  Wi^  59 
like  cells,  124  volts,  and  3.2  Ampdres,  333  candles.     (Paget  HiUs^  LL.  D.) 

The  elavated  electric  lights  at  Ia)S  Angeles,  Cal.,  are  distinctly  visible  at  sea  for  • 
distance  of  80  miles. 

S^ngine  and  Sugar  ^lill,  Weights  of*.    Enoins  (noneondentdv)' 

—Cylinder. — 30  ins.  in  diam.  by  5  feet  stroke  of  piston.    Boilers  (cylindrical  flue).—* 

70  ins.  in  diam.  by  40  feet  in  length.     Weights. — Engine,  105000  lbs. :  Boiltrty  com* 

plete,  75  000  lbs. ;  Sugar-mill,  40  ins.  by  8  feet,  220050  lbs. :   Omnecttng  Machxntr% 

-"t  179  lbs.    Cane  carriers,  etc. ,  46  787  lbs. 


MEMORANDA.  909 

ITiltering  Stone.  ArtiJieiaX. ^Cl&y,  15  parts;  Levigated  Chalk,  z. 5;  ani 
Glaas  Sand,  coarse,  83.5.    Mixed  in  water,  molded,  and  hard  burned. 

Fire-engine*  IS  team.  Relative  eflfect  for  equal  cost  oompared  with  a 
hand  engine,  as  x  to  113.    Each  IIP  reqaires  about  112  weight  of  engine. 

iriocttins  Bodies,  Velocities  of*.  At  low  speeds  resistance  increases 
somewhat  leas  than  square  of  velocity.  In  a  Canal,  at  a  speed  of  5  miles  per  hour, 
a  large  wave  is  raised,  which  at  a  speed  of  9  miles  disapi>ears,  and  when  speed  is 
BU|ierior  to  that  of  the  wave,  resistance  of  boat  is  less  in  proportion  to  velocity,  and 
immersion  is  reduced. 

Length  of  Veftek—The  proper  length  for  a  vessel  in  feet  (upon  the  wave-line 
theory)  is  nfleen  sixteenths  of  square  of  her  speed  in  knots  per  hour. 

Flo-^v  or  A.ir.  67  y/k  =  VdocUy  per  second  X  G.  h  representing  column 
oj  waler  in  ins. ,  and  C  a  coefficient  ranging  from  56  to  loa 

Circular  orifices,  thin  plate 56  to  .79 

Cylindrical  mouth-pieces,  short •  .81  "    .84 

do.  do.  rounded  at  inner  end .92"    .93 

Conical  converging  mouth-pieces. *.... •  .9    *'  x 

Conoidal  mouth  piece,  alike  to  contracted  vein 97  '•^  x 

Flues,  Corrugated.    ( Wm.  Parker.)    ~ =  Working  stress  in 

lbs.  per  sq.  inch.    T  representing  thickness  in  j6ths  of  an  inch^  and  D  diameter  in  ins. 
Steel,- corrugations  1.5  ins.  deep.     Experiments  upon  a  furnace  31.875  ins.  in 
diam.,  6.75  feet  in  length,  and  with  13  corrugations. 

Foundation  Piles.  When  piles  are  driven  to  a  solid  fbandation,  they  act 
as  columns  of  support,  and  are  designated  Columns,  and  when  they  derive  their 
supporting  power  fVom  the  fViction  of  the  soil  alone,  they  are  termed  Files. 

Authorities  differ  greatly  as  to  the  factor  of  safety  for  Piles,  varying  .1  to  .01  of 
Impact  of  ram.    ( WeisbcKh. ) 

As  columns,  their  safe  load  may  be  taken  at  from  750  to  900  lbs.  per  sq.  inch. 
Authorities  give  a  higher  value  (Rankine  and  Mahon,  1000);  but  it  is  to  be  borne 
in  mind  that  when  piles  are  driven  to  a  solid  resistance,  they  are  frequently  split, 
and  consequently  their  resistance  is  much  decreased. 

As  a  rule,  the  following  coefficients  for  ordinary  structures  are  submitted ' 

When  the  piles  are  wholly  IVee  from  vibration  consequent  upon  external  impulse, 
.33  to  .4,  and  when  the  structures  are  heavy  and  exposed  to  Irregular  loading,  as 
storehouses,  etc.,  .15  to  .3. 

Ordinarily,  the  bearing  of  a  properly  driven  pile  not  less  than  xo  ins.  in  diam.  may 
be  taken  at  10  tons. 

.  Friotion  of*  Bottoms  ofVessels.    At  a  velocity  of  7  knots  per 
hour,  a  foul  bottom  requires  2.42  IP  over  that  for  a  clean  bottom. 

Friotion  of  Planed  Brass  Surraces  Inmuddy  wateris.4pressurei 

G^as,  Steam,  and  IXot-air  Knsines.  Relative  costs  of  gas,  steam, 
and  air  engines  per  H*:  Otto  Gae  engine,  8.75;  Steam  engine,  3.5;  and  Hot-air 
engine,  4. 

Ueat.     Available  heat  I '643' 535 

expended  per  IIP  per  hour  J  Total  heat  of  combustion  x  Coefficient  for  fliel  "^ 
GomnimptioD  of  coal  per  IW. 

Coal  X4000X773  units  =  10808000.    Theoretical  evaporative  power  =15  Ibb. 

water.     Efficiency  of  Aimace  = .  5 ;  then  10  808  000  X  •  5  =  s  404  ooc,  and  ^—^^  — ^^ 

'  5404000 

=  3.04  lbs.  per  IW  per  hour. 

Toe  Boats,  Speed  of.  Mi^-Gen.  Z.  B.  Tower,  U.  S.  A.,  assigns  the  speed  of 
Ice  boats  at  twice  that  of  the  wind,  and  the  angle  of  sail,  to  attain  greatest  speed, 
to  be  less  than  90°. 

Japan  Coal.  Analysis  of  Bitummous. — Specific  Gravity,  i. 231.  Carbon, 
77.50.  Hydrogen,  5.28.  Oxygen,  3.26.  Nitrogen,  2.75.  Sulphur,  1.65  Aab,84^ 
■ndlosa,  98. 

Its  evaporative  efltet = 4.  x6  lbs.  water  per  lb.  of  ooeJ. 


Ooal,  Effeotiv 
2564  units  per  hour,  ai 
in   the  generation  of  - 

of  coal  reqalred  per  W 

into  atmospheric  stcar 
q,uired  to  change  30  lb- 
The  total  heat  devel- 
ranges  from  .55  to  .8,  i 

Cl^oast  and  Kn- 
will  scour  and  transpun 
are  very  much  less. 

Oold,  G^^eatest 
liquid  Nitrous  Acid. 

Oorrosiozi  of  I 
AS  a  mean,  fully  one  th 

Oost  of  Famil 
to  $600  per  annum,  oi 
cellaueous  8. 

OrasHine;  Re^ 
clay  withstood  a  presdi.. 

SZavtl&'w-orlc.  > 
thrown  horizontal,  12  i 
When  vertical,  6  to  10  t 

WheeUarrow.  —Prop. 

I4'iAzxxl>ev  of  X.. 


--  *i- 


Distance. 

Trip.. 
No. 

Voh. 

FmL 

Cub.  ■ 

so 

lao 

2J 

50 

no 

10. 

70 

100 

14 

100 

98 

l.-i 

Volume  of  a  barrow  !■ 

Portable  RaUroad  at- 

be  transported  per  day. 

Horse  Care.— Vo] 

DtaUuce. 

Trip..        Vol.. 

F««t. 

No. 

Cub. 

300 

86 

17- 
11. 

500 

67 

Volume  of  each  load. 

Ox  Car 

i  is  less  i] 

0  coj.; 

SleotT^io  I^i|>ht 
Current  with  30  Paur.- 
like  cells,  124  volts,  auu 

The  elavated  electri. 
distance  of  80  mUea 

B2] 


■C      1" 


»i. 


—  Ilk.  w,l*- 
r  *T    of 


^»  -•t%j':' 


:«c 


«r    li?- 


■     .X 


MBHOBANDJU 


911 


Pftmelter    Steomey,  Ordinary    I>i«€Til3Utioix    of   I><ywer 

in  ».    I'ower  develope*  liy  fOgiJiw,  88  IIF;  Poww  ezpesAed  in  its  operation,  13. 

Percent.   I  ,.        ,  „  ^•"^•"^ 

Friction  of  load 75        Power  expended  by  slip  of  propeller. ...  14 

"       ofpropeller 7.5      I       "  ''         in  propulsion 71 

T>«mT>  Centrifugal,  has  lifted  water  28  to  29  feet,  drawn  it  horizontally  800 
fe^  and  then  lifted  it  15  feet.    Also  drawn  it  24  feci,  and  projected  it  50  feet 

Tiailx^asr  'drains.  Pommot  and  Metistanee.  —  A  railway  ^ain  runaing  at 
raieef  6a  »ites  per  bou*  =  88  feet  per  aeecaid,  and  velocity  a  bo«ky  would  acqaire 

in  fUlinK  from  88  feet  =  88-^8.02  =  120. 3  feet  Consequently,  In  adxHtion  to  power 
expended  in  frictional  and  atmospheric  resistance  to  train,  as  much  power  mnai  be 
expended  to  put  it  in  motion  at  this  speed,  as  woiiM  lift  it  in  mass  to  a  height  of 
121  feet  iD  a  second. 

If  the  train  weighed  100  tons  =  224 000  lbs.,  then  224cx)oX  120.3  =  26747200 
foot-lbs. ,  and  if  tbis  resolt  waa  oMaincd  ift  a  period  of  5  minates,  it  would  require 
120.3^5X224000^33000=163.3  IP  in  addition  to  that  required  tor  frict.onal 

To  ratBotbe  speed  «rfa  train  from  40  ($8.66  feet  per  second)  to  45  (66  feet  per  sec- 
ond) miles  per  hour,  the  power  reqalr^l^in  addition  to  tta»t  of  Irictioo  would  be  as 

5866-^8.02  =  53. 44  feet  is  to  66 -=-8^  =  67. 57  feet  =  67. 57  —  53- 44  =  "4- 1 3  feet. 

Assume  a  train  of  100  tons,  running  at  rate  of  60  miles  per  hour,  ind  total  rotard- 
init  power  at .  i  its  weight  100  -r- 10  =  10.  Then  224  000  X  10  X  120. 3  =  26  947  200  — 
22  400  =  1203  feet,  which  train  would  run  before  stopping.  If,  however,  tram  was 
ascending  a  grade  of  i  in  100,  the  retarding  force  =  ,11  (11  -H  100)  of  weight  = 
24640,  distance  in  which  traiji  would  come  to  rest  would  be  26947200-7-  24640  = 
1093. 6  feet 

Relative   Non-oondnotiloility   oT  ftlaterials. 


Matekiai.. 


Hair  felt 

Mineral  wool.  No.  2 

"         "  and  tar 

Sawdust.... 


Per  cent. 


100 

83.2 

71-5 
68 


MAtneiAl. 


Mineral  wool,  No.  i 

Charcoal 

Pine  wood 

[X..oam« 


Per  ecHt. 


67.5 
63.2 

55-3 
55 


Matkriai.. 


I  Per  cent. 


liime,  ^aeked ....  48 

Asbestos 36.3 

Coal  ashes j  34.5 

Air  space,  2  ins. . . ,  13.J6 


K.esistaiice  to  a  Steam-vessel  in  Air  and  "Water.  4n  air 
10  per  cent  of  IIP.  and  in  water,  at  a  speed  of  ^  miles  per  hour,  90  per  cent.,  or  8 
IH*  per  sq.  foot  of  immersed  amidship  section. 

Saws,  Circular.  30  ins.  in  diameter,  are  run  at  2000  revolotlons  per  minute 
■=:  3.57  miles. 

Spur  0-ear  has  been  driven  ata  velecity  of  i  mile  per  minute. 

Sugar  'M.ill  Rollers.  5  feet  by  28  ins.,  at  2.5  revokrtions  per  minote, 
requires  20  H*,  and  18  feet  per  minute  is  proper  speed  of  such  rolls. 

Surface   CoMdensation,  I^xperiments  on.     (B.  G.  Nichol.) 

Tube  of  Brass,  .75  Indi  External  Diameter.     No.  \Z  B  W  G.     Surface  =  1.0656 
sq.feet.     Duration  of  Experiment,  20  Minutes. 


Steam. 


IVmperatore 

Pressare  per  sq.  inch  per  gauge. . . 

Condensation  by  tnbe  snrfkce 

"persq.  ft.  of      •'    per  hour 


Ver«c«l. 


17.75    lbs, 

18.5835  " 
52.32 


256  o 
18.25    lbs 

299585  " 

84.34      " 

130.4375  " 


Horizontal. 


253° 

16.75    Iba 

24.0835  " 

67.8       " 

24.5625  " 


17.25  Ibt. 

430835" 

121.29     '* 

43.5625" 


Condensed  during  experiment ...  1 19.062^ 

Steamers'  Kn^i^es,  Weiglits  Of.     Engine,  Boiler,  Water,  and  aU 
Fittings  ready  for  Service  per  Iff. 

IMercantilc  iienmet 480  lbs.  I  Light  draught 280  Ib& 

English  Naval  "     360   "    [Torpedoes 60  " 

Ordinary  Marine  Boiler  with  Water 196  lbs. 

1,  Pressure  of.    Estimate  of.  upon  Structures. -^^o  lbs.  per  sq.  Ibof^ 
ot  of  a  locomottre  train  —  10  feet  in  height,  300  lbs.  per  sq.  toQ\. 
^as  developed  a  pressure  of  93  lbs.  pef  lineal  fotff^. 


912  MEMOBANDA. 

"Via  Snez  Canal.  Passages  by  Steamers.— 1^9^  *^  SHrUng  OasUe^^^  Sbaog 
hai  to  Gravesend,  in  29  days  33  hmtrs  and  15  mm. ,  inclading  z  day  33  hours  and  3c 
min.  in  coaling  and  detentions. 

"  Qlenare,^*  Amoy  to  New  York,  N.  Y.,  in  44  days  and  13  hours,  inclading  deten- 
tion at  Suez.    From  Gibraltar  in  11  days. 

Zinu  Foil  in.  Steam-boilers.  Zinc  in  an  iron  steam-boiler  consti- 
tutes a  voltaic  element,  which  decomposes  the  water,  liberating  oxygen  and  hydro- 
gen. The  oxygen  combines  with  fotty  auids  and  maizes  soap,  which,  coating  the 
tubes,  prevents  the  adhesion  of  the  salts  left  by  evaporation.  The  mealy  d^osit 
can  then  be  readily  removed. 

Piles.    To  Compute  Extreme  Load  a  Foundation  Pile  wiU  Sustain. 

.p  ,  j^>        =1*  R  representing  weight  of  ram,  P  weight  of  pile,  and  L  eaUreme 

load,  cUl  in  lbs.;  h  heigfit  of  fall  of  ram,  and  s  distance  of  depression  of  pile  with  lasi 
bUtwi,  both  in  feet 

Illustration. — Assume  a  ram  1000  lbs.  to  fall  30  feet  upon  a  pile  of  400  lbs., 
what  resistance  will  the  earth  bear,  or  what  weight  wiU  the  pile  sustain  when 
driven  by  the  last  blow,  firom  a  height  of  20  feet,  .5  inchV 

«  = .  5  of  12  in&  =  .0416. 

_.  10008X20  30000000  ^  ,. 

Then r  =  — ^ =  343  406  lbs. 

(400 -f  1000)  X. 0416         58.24         ^*^' 

Perim  eter.    The  limits  or  bounds  of  a  figure,  or  sum  of  all  its  sides. 

Of  a  canal  it  is  the  length  of  the  bottom  and  wet  sides  of  its  transverse  section. 

Flood  "Wave.  The  flood  wave  of  the  Ohio  River  In  March  (1884)  was  71 
feet  I  inch  at  Cincinnati,  being  higher  than  that  of  any  previous  record. 

Ice.  Crushing  Strength  of,  as  determined  by  U.  S.  testing  machine,  ranged 
firom  327  to  1000  lbs.  per  sq.  inch 

.A.tm08pliere.  If  pure  air  is  exhausted  of  3. 5  per  cent  of  Hs  oxygen,  it  will 
not  support  the  combustion  of  a  candle. 

Blasting  Paper.  Unsized  paper  coated  with  a  hot  mixture  of  yellow 
prussiate  of  potash  and  charcoal,  each  17. parts;  refined  saltpetre,  35;  potaasium 
chlorate,  70;  wheat  starch,  10,  and  water,  xsoa 

Dry,  cut  into  strips,  and  roll  into  cartridgea 

Circular  Sa^vs.  Speed,  9000  feet  per  minute.  Thus,  for  an  8  Int.,  4500 
revolutions,  and  progressively  up  to  a  72  ins. ,  500  revolutiona    (Emerson.) 

IToods,  Relative  \^alue  of,  compared   i^itli  lOO   I^los.  of 

Q-ood   Hay, 

Additional  to  page  303. 


Lbt. 

Acorns 68 

Barley  and  Rye,  mix'd  179 

Barley  straw • . .  180 

Buckwheat 64 

Buckwheat  straw. . . .  soo 


LiM. 

Linseed 59 

Mangel-wurzel 339 

Pease  and  Beans 45 

Pea-straw 153 

Potatoes.' 175 


Rye 54 

Turnips $04 

Wheat 46 

Wheat,  Pea,  and  Oat- 
chaff 167 


Depth  of  tlie  Ooean.    Mean  depth  is  estimated  by  Or.  Krummel  at 
1877  fathoms  =s  1.85  geographical  miles. 

d-as-engine.    A  gas-engine  1.5  actual  H*  will  cost,  with  ga8.at  8  cents  per 
hour,  10  cents  per  hour  for  10  hours.    (Am.  Engineer.) 

X^ocomotive.    Average  daily  run  100  miles  at  a  cost  of  $  xs.So  for  driver, 
fireman,  ftiel,  and  repairs.    [H,  J.  Central  R.  B,  Co.) 

Consumption  of  Fuel  per  Mile.    Passenger,  2$  to  30  lbs.  ooal.    Frei^,  45  to  55 
lbs.,  or  one  cord  wood  per  40  milea 


HSMOBANPA.  9I3 

iAumotxry.  In  laying  stones  in  mortar  or  cement,  they  should  rest  upon  the 
course  beneath  them,  more  than  upon  the  material  of  joint. 

Steel  Q-vin  (ICrupp's).  Bore,  15.75  ins. ;  length  of  bore,  28.5  feet;  of 
gun,  32.66  feet.  Weight,  72  tons.  Charge,  385  lbs.  prismatic  powder;  projectile, 
chilled  iron,  z66o  Iba,  with  an  explosive  charge  of  22  lbs.  of  powder. 

Moment  of  shot  at  muzzle,  estimated  at  31 000  foot-tons,  and  range  15  miles. 

Sa^ve-AAill.    7723  feet  of  i  inch  Pillar  boardt  in  One  Hour. 

Engine  (Non-condensing).     Cylinder. — 12  by  24  ins.  strolce  of  piston. 

Boilers. — Two  (cylindrical  flued),  38  in&  in  diam.  by  26  feet  in  length,  two  14  Ins. 
return  flues  in  each.    Heating  Surface. — 780  sq.  feet.    (?raf«s.— 42.5  sq.  feet 

Pressure  of  Steam. — 125  lbs.  per  sq.  inch,  cut  off  at  16.5  ins. 

BevoktHons. — 350  to  350  per  minute.  Saws.— Two  circular,  60  and  66  ins.  in 
diam. 

NoTB.—  Grates  set  s8  ins.  Arora  under  side  of  boilers,  without  bridge-wall,  and  a 
combustion  chamber  under  boilers,  4  feet  in  depth.    Fuel,  sawdust. 

Steam  Keating.  62  500  cube  feet  of  space  requires  6000  sq.  feet  of  heat- 
ing Surface  to  attain  a  temperature  of  70*^  in  the  vicinity  of  the  city  of  New  York 
In  its  coldest  weather. 

Or,  One  sq.  foot  of  iron  pipe  will  heat  10.5  cube  feet  of  space  in  an  ordinary  build- 
ing, temperature  of  exterior  air  70^.    {Felix  Campbell) 

Velocity  of*  Steam.  Steam  at  a  pressure  of  60  lbs.  +  atmosphere  has 
avelocity  of  efflux  of  890  feet  per  second,  and  as  expanded,  a  velocity  of  1445  feet. 

Slasting.  In  small  blasts  i  lb.  powder  will  detach  4.5  tons  material,  and  in 
large  blasts  2.75  tons.     (See  page  443.) 

Delta  Metal  (Iron  and  Bronze).  Specific  gravity  8.4.  Melting  point  1800°. 
(See  page  384.) 

Jarrali  'Wood  of  A.vi8tralia.  Impervious  to  insects  and  the  Teredo 
Navalis, 

N'atural  and  Artifioial  Gras.  Relative  water  evaporating  powers 
differ  ill  localities,  bat  are  assumed  at  900^  and  600^  heat  units  (B.T.  U.)  :N'at- 
viral  oorapared  xv-itli  Bituxninous  Coal  is  effective  m  the  ratio 
or2.38toi. 

F'ree  Soard  of  Vessels.  For  each  foot  of  depth  of  hold  (fW>m  ceiling 
lo  under  side  of  main  deck),  .1  inch  added  to  1.5  ina  for  a  depth  of  8  feet    Thus, 

for  24  feet  depth  i. 5  + .  i  x  8  00  24  =  3.  i  ins.    {American. ) 

Or,  3  in&  for  8  feet  depth  and .  i  fbr  each  foot  in  addition  thereto.    {Lloyd^s.) 

Oolors  fbr  "Working   DraMrings. 


Brass Gamboge. 

Bricks Oarmine. 

^ay .Burnt  Umber. 

Toncrete. . .  .Sepia  with  dark  markings 

Copper. Lake  and  Burnt  Sienna. 

Granite India  Ink,  light 

Iron,  cast . .  .Neutral  tint 

**  wrought .  Prussian  Blue. 
Lead lad.  Ink  tinged  with  P.  Blue. 


Steel Neutral  tint,  lighi 

Water Cobalt 

Wood Burnt  Sienna. 

Burnt  Umber. 
Yellow  Ochre. 

"         <'    and  Black. 
"         "    and  B't  Umber. 
Red  and  Indigo. 
Burnt  Sienna  and  Indigo. 


Stones 

and 
Earths 


Stowage  of  Chain  Cal>le.  Square  of  diameter  of  chain  in  ins.  mul- 
tiplied by  .35  will  give  volume  of  space  required  to  stow  i  fothom. 

.A-splxalt  ^4ortar.  Asphaltura  i  part,  powdered  asphaltic  limestone  7.5 
parts,  residuum  oil  .28  parts,  stind  .6  parts. 

Melt  asphaltum  and  add  the  rest  in  order  named. 

i^splxalt  Concrete.    Asphalt  mortar  11  parts  and  broken  stone  9  parts. 

A.sl>e«tos  is  a  fibrous  variety  of  Actinolite  orTremolite,  composed  of  silica, 
alumina,  magnesia,  oxide  of  iron,  and  water.  It  resists  heat,  moisture,  and  many 
acids. 


^14 


JilSlfiCnEMitllllr 


t>atay  WoftiA  dit  eok  K8q.i2ijQaa\ei#  Ffe^  or  a  tea -toner  81,9  «M 
Bread  x.75  Iba,  Soup  1.25,  Spirits  x,  abA  Water  .9  pIM.    (i8*r'  W.  R  F^rry.  f 

Coignefs  Concrete.  For  walls  that  resist  moijt*ttre.~>~S&aiyQTa,'vetBnX 
Pebbles,  7  parts;  Argillaceous  Earth  3  parts,  and  Quicklime  i  pari. 

Hard  and  quick  setting.— ^atid,  Gravel,  and  Pebbfes,  8  parfd;  Eartk,  burned  and 
powdered  Cinders,  each  i  part,  and  Unslacked  hydraulic  Lime  i  5  part&  For  a  very 
hard  mixture,  add  cement  i  part. 

^ransmissloxx  or  ConcLuotivlty  of  'Pempdra.t-aim  ia  tike 

JSartlSK.  At  Edinburgh  therntiometers  set  at  a  depth  of  16  feet  in  the  enrth  ai- 
tained  their  maximum  and  minimum  at  about  six  months  after  the  corresponding 
maximum  and  minimum  of  the  surface,  being  TowcsC  or  coldest  in  July. 

The  average  rate  of  transmission  of  heat,  as  observed  at  Schenectady,  N.  Y.^ 
dowBwarcte,  2.9  feet  per  months  and  upwards  3.4  feet.    (Olin  H.  Landreih,) 

Shaflts.  When  loaded  transversely,  the  diameters  of  the  Journal  should  first 
be  determined,  its  dimensions  tbett-  »t  any  other  point  caiir  be  deducted  from  thfoee 
dlattleters.  It  being  obserted  that  tfte  dfameterg  at  atrf  fwo  poMto  sboortd  be*prob 
portional  to  the  cube  routs  of  the  stress  at  those  points. 

Journals.— For  operation  at  high  speed  a  greater  teBgtb  Is  required  thaa-fer  low 
speed.  The  less  their  length,  the  less  may  be  its  diameter  for  a  given  stress,  and 
coOBeqafftttj  tbe  fri(;tiou  wilt  ber  lesa 

When  in  constant  operation,  a  large  sur&ce  Is  requlfed  to  reduce  heating,  and 
as  ft'iotion  increases  with  diameter,  not  with  length,  for  like  stress,  it  is  best  to 
lengthen. 

Wrougfit  Iron.  — For  50  revolutions  length  to  diameter  as  1.2  to  i,  and  Uttetety 
50  revolutions  additional .  2  ^ouM  be  added.  Thus,  for  1000  nvohiUoins  the  length 
to  diameter  should  be  5  times.  Cast  Iron.  —  Length  to  diameter  as  .9,  and  £iteef 
as  t.  ^5  of  above  value.     ( W.  C.  Unwin. ) 

Noxx-oondiiotiiig  liCaterialis.  By  the  investigations  df  Prof.  J.  M. 
Ordway  of  New  Orleans,  he  determined  the  relative  non-conducting  values  of  the 
following  materials,  compared  with  a  naked  pip^,  to  be : 

Hafr-f^lt,  bfirlap j z       1  Cork  in  strips d 

Asbestos  paper,  hair-felt, duck. ««<<  1,18     Rice-chaff.. •..«<. ..J  a.a 

Pine  charcoal .........4....  i.ao  1  Clay  and  vegetable  fibre  ......... .  a.8 

Airspace , 4       |  Naked  pipe 31 

{EnffineerinQj  vol.  39,  page  206.) 

Miariiie  Transportation  Oi"  Troops.  Heig|bt  fMtlreen  deckn 
(deck  to  under  side  of  beam),  men  6  feet,  horses  7  feet.  ffatchiMtfS.-^EoraeB  at 
least  10  by  10  feet.  Vessels. — H(»^es.  beam  not  lesi^  than  30  feel  Men,  all  ranks, 
2  to  2.5  tons  capacity,  horses,  10  tcM»s.  Rations. — If  biscuit  in  bags,  loooo  reqoire 
950  cube  feet  of  volume;  if  it  is  in  barrels,  1350  cube  feet. 

Cabtm.— Officers,  30  tq.  feet  ai&d  19^  cube  fe^  of  volume,  two  men  42  sq.  feei,  and 
270  cftfbe  feet  of  volume,  and  for  each  additional  nian  lo  sq.  feet,  ei&eluslve  of  bed 
space  of  6  by  2  feet. 

Hammocks.  —To  wmpute  mmkit*  ttuU  can  be  naung  flmeUr  a  deck, 

.  rtj  X  -7  =  n.    { tepresendng  length  under  deck  in  Jkef^  arid  h  breadth  in  Im, 

6  16 

[Sir  G.  WolseUy.) 

Horse -"Povrer  of  Boilers.  —  30  lbs.  water  evaporated  into  dry 
steam,  from  feed  at  loo^,  under  a  pressure  of  70  lbs.  per  sq.  inch  merenrial  gavge 
per  iiour.  (Civntennkxl  Exhibition,  1876.)  34^5  lbs.  water  as  abore  from  frad  at 
212°  into  steam  at  212°.     (Am.  Soc.  Mechanical  Engineers.) 


lfIUCOBAJ<(DA. 


9IS 


]Pen«trati<»n  of  Zjiglit  In  Ttratef.    Mediterranean,  clear  snnlighi 
in  March,  at  a  depth  of  1200  feet;  in  winter,  600  feet    {M.  M.  Fol  and  Sararin,) 

Railroad.    Horse.    First  in  operation  In  1826-7. 

Vina.    First  in  use  In  England  about  145^ 

Iron  Steamers.    First  build  in  183a 

X^noifer  Afatoh,.    First  made  in  x8s(^ 

'Watolie^.    First  constructed  in  1476. 

ILioad  oix  6tone  per  sq.  foot.    Church  of  All  Saints  at  Angers,  86000  Iba 
Pantheon  at  Rome,  60000  lbs 

1''le3til>le    Faint    fbr    Canvae.      Yellow  soap  1.66  parts.      Boiling 
water  i.     Qrind  while  bot  with  .93  parte  oil  pftint. 

B^ixel.    Evaporation  of  9  lbs.  water  flrom  212^: 

1  lb.  good  coal  .75  lb.  petroleum. 

2  lbs.  dry  peat  e.  5  lbs.  dry  wood. 
3.25"  cotton  stalk&  35  '^    brushwood. 

3.75  "  wheat  straw.  4      *^    megass,  or  cane  refuse. 


Tram-ways   or   Street   Railroads. 

Resistance  on  straight  and  level  tracks  15  to  40  lbs.  per  ton,  or  an  average  of 
30  lbs. 

Power  required  on  a  good  track  to  start  a  oar,  as  determined  by  A.  W.  Wright, 
M.W.S.E.,  116.5  lbs.,  and  to  maintain  it  in  motion  17.2  lbs  C.  E.  Emery,  Ph.  D., 
made  it  13  lbs.  On  a  bad  track,  the  power  is  134.6  lbs.  to  start  and  35  to  maintain 
it  m  motion. 

Power  required,  as  determined  by  Mr.  Wright,  to  start  a  car  is  33- 53  H*,  with  an 
average  load  and  day's  work,  and  133.22  to  maintain  it  in  motion. 

Average  work  of  a  car-horse  5.75  hours  per  day  for  a  term  of  service  of  6  yeara 
Strong  draught- horses  will  exert  a  power  of  143  lbs.  (^  3.75  miles  per  hour  for  22 
miles, and  an  ordinary  one  121  lbs.  for  25  milea     {Guyffier.) 

CabU  Railway.    Mr.  Wright  gives  the  power  required  per  ton  *  at  1.92  EP. 

*  All  tons  h«f«  and  tlMwhcr*  are  givaa  at  2240  lbs. 


Ztesnlt  of  Sxperiments  on  IMotors  fbr  Street  B-ailroadsi. 

(1885.) 

At  Antwerp,  by  Capt.  D.  Galton,  F  R.S.,  etc. 

X.  Locomotive  Engine  and  Car,    Ordinary  type  of  steam-engine,  surface  condensei 

(Krauis). 
*•  Surface  condenser,  vertical  boiler,  escape  super- 

heated (Black  and  Hawthorn). 
<*  Compound  engine,  compressed  air,  water -tube 

boiler  (Beaumont). 
**  and  car  combined.    Ordinary  type  of  steam-engine,  water- 
tube  boiler  (Howan). 
**     combined-    Electric  Fausse  Batteriea 


.3- 

4- 
S- 


<t 


M 


M 


ii 


Weight  of  Train  per 

Pi 


Lba. 
5.  Electric... 1. 78 

4.  Steam ,2.3 

3.  Comp'd  air,  3.55 


Fael  oonsumed 


Per  Mile  of  ConrM. 


Lbs. 

4.  Rowan 5.32 

5.  Electric 6.16 

3.  Black  and    )  q  «„ 

Hawthorn. . )  '*'' 

I.  Krauss 9.x 

3.  CompM  air,. 39. 48 


Per  Seat  par 
Mile  of  Course. 


Lba. 
.1 

•23 
•23 

•as 

.66 


Oil,  Tallow, 
eto. 


Lbe. 

.038 
.038 

•073 

.lOX 

•355 


Water 

per  Mile  of 

Course. 


Galloni. 

Rowan 75 

Comp'd  air.  1.06 


Black  and 
Hawthorn 
Krauss.,,..  6. 52 


Hawthorn  f  5  S'' 


ffan.  —  The  •eenomy  «f  tbe  Rowan  motor  ocearred  mainly  from  tk«  aztvit  of  ita  oon( 
fewtft  I9  wtdch  warm  watar  waa  supplied  (0  the  boiler. 


gi6 


MBMOBANDA. 


on  Steel  or  Iron* 


Corrosive  Sfibots  of  Salt-'virater 

(J.  Farqukarton.) 

Lou  of  Hates  Subm^gedjor  Six  Months.    Area  12  Sq-  Fed. 

?^» »53lb.       Steel )  combined 

Iron 233  "        Iron )  w»u»/i«v« 


{: 


07 
445 


Friotioxial   Resistance   or  a  Iiail\^a3r  Train.    (C.  H,  HwiMm.\ 

Resistance  per  ton,  due  to  atmosphere  at  maximum  speed,  .133  lb  \  to  starts 
17.07  1^  i  ^^^^  ^  maintain  in  motion,  5.x  lbs. 

Blasting  Ghelatiue.    ((?  McSdberU, FC.S.) 

Is  composed  ( Nitro  glycerine 93  parts  >  Effective  nower         tat^  rfMi.lbs. 

by  weight. . . .  {  Nitro-cotton 7    "    J  i^neciive  power. . . .  1400  roM-iM. 

It  freezes  hard  at  a  low  temperature  (35  to  40O).  At  ordinary  temperature  above 
flreezing,  it  does  not  explode  by  sbock,  but  when  frozen  it  readily  explodes.  It  is 
insoluble  in  water     Specific  gravity  i  55  to  i  59. 

Effective  Povoer  of  some  other  Explosives. 
Nitroglycerine,  1270  foot-lbs. ;  Dynamite,  No  i,  900:  Gun-powder, extra  strong, 
as  Curtis  and  Harvey^s,  272;  Dynamite,  No.  2,  of  18  nitroglycerine,  71  nitrate  or 
potash,  10  Qfcharcoal^and  i  of  paraffin,  531,  and  Fulminate  of  Mercury,  367. 


Soltfl 

Diam. 
ofBott. 

1   of  AVr 

Tool. 

ouglit  I 
Strength 

strength 
when  cot. 

.ron   a( 

(D.js; 

ijter  Sq^i 
Lots. 

^   .A^fTeo 
Clark.) 

%re  Inch  o^ 

Diam. 
of  Bolt. 

ted  by 

fMetak 
TooL 

tl&e  Tliread. 

StrmKth    1     , 
wfaeticiit.   1     I^»«- 

Iiu. 
125 
X.25 

X 
X 

Dies.* 

Chaser. 

Old  Dies. 

New  Dies. 

Lb*. 

40812 
38528 

55149 
42650 

per  cent. 

25 

29 
II 

30 

lot. 
I 
.625 
.625 
•  625 

Chaser. 
Old  Diea 
New  Diea 

Chaser. 

Lbe. 

44845 
51005 

43613 
41888 

Per  cant. 
28 

14 

26 

33 

*  Die  not  given,  evidently  new. 

^Approximate   Sottoxn   Velocities  of   Vlo^^   of  "'Water  in 
Channels,  at  'wliioli  follcwring  Alaterials  begin  J;o  IbXove. 

{Haupt) 


Feet. 

Milet. 

Sm. 

Honr. 

.25 

•»7 

•5 

X 

!68 

»-75 

1. 19 

9 

«.39 

Microscopic  sand  and  clay. 

Fine  sand. 

Coarse  sand  and  fine  gravel. 

Pea  gravel. 

( Rounded  pebbles,  i  inch  in 

(     diam. 


Feet. 


See. 
3 

3'33 


Milet. 


Hour. 
3.04 

2.3 

3-41 


(Small stones,  x.75  incb 
(     in  diam. 

(Flint  stones,  size   of 
(     hen^B  eggs. 

{2-inch   square   brick- 
bats. 


Scouring  force  of  the  current  is  proportioned  to  the  square  of  its  velocity. 
Transporting  rapacity  varies  as  sixth  power  of  the  velocity.    Hence  the  impor- 
tance of  increasing  botUm  velocities,  both  to  effect  a  scour  and  to  prevent  deposita 

Cliimney.    {Mettemick  Lead  Mining  Co.) 

Foundation  36  feet  square  by  11. 5  in  height;  base  circular  24.6  feet  by  39.37  in 
height;  shaft,  397. 5  feet  In  height,  24.6  feet  at  base,  and  12.48  at  top;  flue  12.48  and 
9.84  feet  in  diameter.    Total  height  441.6  feek 

Evaporation  of  "Water.    Mean,  as  observed  at  BosUm,  Mass. 


loa. 

January 9 

February. 1.2 

March x.8 


April. 
May. . 
June. 


Int. 

4.01 
5.86 


Total. 


Int. 

July 6.28 

August 5.49 

September...  4.09 

...  39.11  ins. 


Iniu 

October a. 95 

November ...  i  .63 
December....  x.a 


MSMOBANDA.  QI^ 

Central  Width,  of  pt  R-oad-way  in  a  Cut. 

Feet.  Feet. 

Ranlwajr,  single  line. i8  to  so  |  Public  road 381030 

"       double  line 30  "■  33  |  Turnpike  road... 38  "  40 

Kydrauliq  H.ara. 

l^ffidency  under  Heads  of  Supply  from  2  to  24  Feet,  and  Ddivery  of  DUcharge  at 

Elemtions  from  15  to  100  feet. 

MeaguremerUs  from  Valves  of  Ram. 

To   Compute  I*er  Cent,  of  Total  Volume  of  "Water  Ex- 
pended. 

-—-  C  =  Par  cent    H  representing  head  of  supply,  and  E  elevation  of  discharge, 
lit 

bo<A  in  feet,  and  0=8. 

Illustration.  —  What  is  volume  of  water  delivered  with  a  head  of  3z  feet  to  an 
elevation  of  60  feet? 

^  X  .8  =  .2S  per  eerU.    Hence,  if  the  volume  of  dischaiige  is  zoo  cube  feet,  vol- 
60 

ume  elevated  is  100  X  -aS  =  28  cube  feet. 

Inversely.    By  formula  of  £.  B.  Weston,  M  Am.  Soc.  C.  R 

S  C  H 

=  V.    S  representing  number  of  cube  feet  expended  in  ram  per  mintUe,  h  dif 

xooA 

ference  in  elevations  of  ram  and  delivery  in  feet,  and  V  volume  raised  in  cube  feet 

C  =±  65  to  JO. 

Assume  as  preceding,  H  =  sx  feet,  E  =  60  feet,  and  S  =  100  cube  feet 

_^       100X65X31      136500  .    -  ^ 

Then, ^^—^-^ —  =  -^-^-  =  35  cube  feet 

100x60  —  31        3900 
Nonk—To  eonferm  t»  tke  precedtiiK  fortoala  C  thoold  be  53. 

To  Compnte   Elements  of  a  Screw  Propeller* 

Plif^T;        ^i^  =  T;        ^^^^  =  1^;     and    1^335^^^, 
p  '  pB.  33000  pR 

P  represerUing  mean  pressure  on  piston  per  sq.  inch  in  lbs. ,  a  area  of  piston  in  sq. 
ins.,  p  pitch  ofpr<^ll^  and  I  length  of  stroke,  both  in  feet,  R  number  ^revolutions 
per  minute,  and  T  thrust  of  propeller  in  Ws. 

Illustration.— The  elements  of  operation  of  a  steam-engine  are:  Mean  pressure 
CD  piston,  having  an  area  of  looo  sq.  ins.,  is  30  lbs. ;  length  of  stroke  3  feet ;  revolu- 
tions of  engine  130  per  minute;  and  pitch  of  propeller  is  feet.  What  is  the  thrust 
of  the  propeller,  and  what  the  power  of  the  engine? 

3oX3X3X-ooo^^^^  ^^^3oX3X3XxoooXi3o^i56ooooo^  ^ 

Z3  33000  33000 

Centrifugal   I*nmp. 

{SoutkuHirk  Foundry  and  Machine  Co.    Non-condensing.) 

Pumps.— f^o  of  43  ins.,  with  runners  68  ina  in  diameter;  discharge  pipe  43  in& 

Engines.— Two  of  38  ins.  in  diameter  of  cylinder,  and  34  ins.  stroke  of  piston. 

Boilers.  — 12  Horizontal  tubular.  Heating  surface,  8568  sq  feet;  QraU,  330  sq. 
feet;  Combustion  natural. 

Pressure  of  Steam  70  lbs.  per  sq.  inch,  cut  off  at  .635. 

devolutions,  130  to  160  per  minute. 

Height  of  Delivery,  o  to  36  feet 

ir«^A<.— Pumping  plant  exclusive  of  boilers  300000  lbs. 

Discharge.— From  Piy-doijk  from  a  depth  of  water  of  o  to  36  feet,  mean  per  mi» 
ate  zzaQ33  gallons, 

4H* 


9i8 


MEMOBANDA. 


Friction  of*  a   Noxi-condensing  Sngine.    (/Vo/  R.  H.  Thur$ton-\ 

Friction  of  a  non  condensing  engine  is  given  at  from  2  to  4.75  lbs.  per  8q.  Inch  of 
piston,  being  least  at  low  pressure.  The  conclusions  drawn  from  a  aeries  of  exper- 
iments are  as  follows: 

I.  It  is  sensibly  constant  at  any  given  sp^ed  of  engine  at  all  loads. 

3.  It  is  variable  with  variation  of  speed  of  engine,  increasing  with  the  speed. 

3.  It  increases  with  increase  of  pressure  of  steam. 

NoTB.— This  p«r  cent,  of  friction  is  somewhat  lees  thftn  that  given  ante  at  p.  7^ 

^iBil>ilit3r  of*  Vessel's  Sidelights.  The  minimum  distance  ol 
visibility  assigned  by  the  International  regulations  for  green  and  red  lights  is  7 

nautical  miles. 

'Weiglit  or  A.iivils.  The  weight  of  an  anvil  for  forging  iron  should  be 
8  times  that  of  the  hammer,  and  for  steel  12  times.     {Prof.  Fi-iedrick  Rich.) 

Temperature  of*  M.iiies.  Temperature  of  copper  mines  of  I^ke  Su- 
perior increases  i**  for  every  100.8  feet  of  depth.  The  usual  gradient  is  from  5c  to 
55  feet.     (H.  A.  Wheeler.) 

Plorse.  In  transportation  by  sea  occupies  the  space  of  10  tons  measurement, 
and  requires  that  of  300  cube  feet  of  air. 

Stalls  6  feet  in  length  in  the  clear  of  padding  and  haunch  piece,  2  feet  2  ins.  in 
clear  width  between  padding,  10  per  cent,  of  this  width  2  ins.  narrower,  and  5  per 
ceilt  of  it  6  ins.  longer. 

Alule.    A  pair  will  draw,  including  cart,  1500  to  2000  lb& 

^ss.    Will  carry  100  to  200  lbs.  15  miles  per  day. 

* 

Camel.  The  Arabian,  or  Dromedary,  has  one  hump  on  back,  the  Bactrian  has 
two.  I^rge  animals  will  carry  1500  lbs.  for  3  or  4  days,  or  xooo  lbs.  for  several 
days,  and  450  to  600  lbs.  for  a  long  march. 

One  has  travelled  115  miles  in  n  hours. 

Klephant.  Weight,  3  to  5  tons;  weight  one  can  carry  about  1450  lbs. ;  2000 
lbs.  have  been  carried.  Occupies  55  sq.  feet;  will  travel  on  a  good  road  at  a  rale  of 
2. 5  miles  per  hour  for  6  hours. 

Wliales.  Greenland  Right,  length  50  to  60  feet.  Finner,  80  feet  Speed,  10 
to  12  miles  per  hour.    Extreme  weight,  74  tons.    IP  estimated  at  145. 

Cliimneys.  Late  experiments  as  to  the  draught  of  chimneys  have  developed 
the  result  that  an  increase  of  its  area  near  to  the  top  increases  the  draught 

Cost   of  ^laintenanoe   of  Street   Itailroads,  1876. 

Average  of  16  roads,  102  mikt  in  lengthy  with  1397  cars  and  10300  horses, 

{H.  HcatpU) 

Cast  per  horsCj  and  average  number  to  a  car  eight 

Repairs  of  harness. $    4.06      Shoeing. $92.77 

Feed x34*39      Stall  expenses. 42.13 

Replacing  horses 22.  i 

Total....  $2is-45 

Cost  per  month  of  each  horse,  $  18.  On  one  of  the  longest  railroads  in  the  City 
of  New  York,  on  the  least  populous  route,  the  daily  cost  per  passenger,  exclusive  of 
general  expenses,  was  2.88  cents,  and  inclusive  of  general  expenses  4.1  cents. 

AHagiiesia    Covering   for    Steam-pipes    and    Soilers. 

Experiments  made  by  Bureau  of  Steam  Engineering,  U.S.N.,  developed  the  fol- 
lowing comparative  results: 

Felt  (as standard)...    xoo  |  Sectiopal  magnesia...,  203.07  |  Sawdust 90.5 


APP»NDi;5, 


919 


APPENDIX. 

River   Steamboat,     "Wood.   Side  Wheels, 
li^reiglit    and.    i^asseng^sr. 
**  BoeroNA. "— floRizoNTAL  Lever  Engines  {Non-co)idetmng). — Length  4m  -deck, 
y)2/eet  10  ins.;  beam,  a  feet  4  ins.;  hoUL,  tfeet.     2^pn«,-993.52. 

Immersed  section  0/ light  draught  of  id  ins.,  83  sq.feet  Capacity  for  freiglU,  120* 
tons  {2000. U>s.). 

Cylinders.— Tvfo  of  25  ins.  in  diam.  by  8  feet  stroke  of  piston. 

Boilers. — Four  of  steel,  47  ins.  in  diam.  by  30  feet  in  length,  6  flues  in  each. 
Heating  surface,  903  sq.  feet.     Grate  surface,  98  s^.  feeU 

I'resture  qf  Steam,  154  Iba  per  sq.  inch,  out  off  at  .625. 

Revolutions, ^per  minute.    Speed,  10  miles  per  hour  against  current  of  upper 

Ohio,  3  to  5  miloa 

To   Coixipute   IVXeta-oeaiitre   of  Hull   of  a  "Vessel. 

Operation  of  Formula  in  Naval  Architecture,  page  660. 

Assume  a  sharp- modelled  yacht,  45  feet  in  length,  13.5  feet  beam,  and  9.5  feet 
hold,  with  an  immersed  aniidship  section  of  42  sq.  feet,  and  a  displacement  of  900 
cube  feet  at  a  mean  draiii^bt  of  water  of  6  feet 

2    py^  dx 

-  /  =  Meta-centre.    See  pages  650,  659. 


3^        O 
Ordinates  (dx)  taken  at  intervals  of  2.5  feet  are  as  follows: 


y 

y 

ys 

v6»_ 


,8 


:=     O      =  .0 

=  .63=      .ai6 

=  1.33=  2.197 

=  2*     =  8 

=  2.83=  21.952 

=  3.53=  46.656 
5'      =125 


y7  =583=195. 


113 


y8*z=  6.5' =  287.496 

ye' =  6.73  =  300.763 

yto' =6.75  =  307.547 

y"'  =  6.5   =287.496 

3 
y"  =6.25  =244.14 

y«'=5.8  =195.1x3 

y'4'^=5      =125 

y»5   =:4.2    s=    7^.088 


yi6  ^3.25  —  3^.328 


y'7-  =  2.4 

yx8'=i.5 
y»9  =  .8 

y»'=  0 

=  13-824 

=    3-375 

=     .512 
=     .0 

2272.814 
2.5 

5082.035 


Sammation  of  function  of  cubes  of  ordinates  for  value  of  /y  >  dx  =  5683.035. 

And  ^  of  55??:^  =  ±  of  6.31  =  4.21  fiet. 
3  900  3 

Note.— The  other  elements  of  this  vessel  are: 

Area  of  load-line,  401. 12  sq.feet ;  JHqffUKement  in  toeight,  27.974  tons ;  do.  at  loud- 
draught,  .9«;5  tons  per  inch ;  Depth  qf  centre  qf  gravity  of  displaccmeut  below  load- 
Une,  i.^g  feet;  Volume  of  displacement,  to  volume  of  immersed  dimewsiqns,  s6.8 
per  cent. 

To   Compute   Height   of  Jet  in   a   Conduit   !Pipe   frora    a 

Constant   IFIead.    {Weisbach.) 


H'^+'^m 


V 

^.0 


h' 


-  =  —  —h.',  and  —  =  A".    A,  h',  and  A"  representing  heiglUs 


due  to  vdoexty  qfejgHux,  loss  of  head  and  ofaseent,  I  length  «fp^  or  conduit,  and  ' 
and  d'  diameters  of  pipe  and  jet,  all  in  feet,  v  relocibg  i^  ed^m  <in  ^eeA  per  seeondy.O 
and  C  coefficients  of  friction  of  inlet  of  pipe  and  outlet,  and  z  a  divisor  determined 
Jjy  experiment  with  diameters  of.^  to  1.25  inf.,  ranging  from  1.06  io  1.08. 

iLLrfiTRATiox.—Tf  conduit  pipe  for  a  foimtnin  is  350  feet  in  length,  and  2  Ins.  In 
diameter,  to  what  height  will  a  Jot  of  .5  inch  ascend  under  a  head  of  40  feet? 

AarameCandr/.S  and  .5,  h=i2sfeet,  (I  =  2tm.  =  .i66,and.5  =  .5->x3=:.04i6 

^5  =4.9/j«fc 


Then 


1  + 


(«+3.V;)(°^4*Y 


920 


APPBKDIX. 


To  Coxnpixte  Kead  and  I>isoliarge  ofWater  in  Pipes  of 

G}-reat   JLteiigth., 

It  becomes  necessarj  first  to  determiue  the  velocity  of  the  flow,  which  iss^ 

A  V  V 

^         =  V  =  S.373  -T^,  independent  of  fViction.    V  rq^reseiUiim  volume  qf  water 


in  cubefeet^  a»d  d  diameter  of  pipe  in  int. 
When  head,  length,  and  diameter  of  pipe  are  given,  — - — - — —  =  «, 


n/'+*'+4 


Coefficients  of  Mction  G,  for  velocity  of  flow,  range  (h)m  .0334  to  .0191  for  velocl< 
ties  fh>m  3  to  13  feet  per  second,  and  c  that  for  the  pipe  as  a  mean  at .  5.  See  Wei» 
bach's  Mechanics,  VoL  i.,  page  431. 

Illustration. — What  head  must  be  given  to  a  pipe  150  feet  in  length  and  5  ina 
in  diameter,  to  dischaige  25  cube  feet  of  water  per  minute,  and  what  velocity  will 
it  atUin  at  that  head  ?  C  =  .024  and  c = .5. 

25  X  12' 
Then  x.373  -^^zj—a  =  '•273  X  2. 4;=  ^055  feet  velocity  per  second,  and 

(rfl+.o24  l^^^j  |^  =  x.5  +  8.64X.i4  =  ..ai/erfA««l 

Vd*  -  /i  v 

Or,  4-72  — _:^=  —  V in cu6c/crtj)cr mittttte, and. 538  f/— r-  =  d»«tia: 
Vl-T-h  V     a 

Illustration.— Assume  elements  of  preceding  case. 


Then 4.7.  -::^^iyi==4.7»X^=.S.67C«»«JH«i'«I-S38f^^^5^ 
Vi50-^i.42  'o-«  ^  '•4a 

5= -538X7^69  607  =  .538X9. 301  =5  ifU. 

To  Coxnpnte   Fall  of  a  Canal  op  Open  Condnit  to  Con- 
duct  and    Discliarge   a  Given  "Volnxne  of  "^Vater   per 
Second. 
Coefficient  0/ friction  in  tuck  case  is  assumed  by  Du  Buat  and  others  ai 

.007  565. 

C  L?x  — =  *.  h  rqn-esenHng  height  qffaU,  I  length  of  eanaly  and  p  net  perime- 
ter, all  in  feet ;  A  area  of  section  of  canal  in  sq.  feet,  and  v  velocity  of  flow  in  feet 
per  sfxxmd. 

iLLrsTRATiON  I.— What  fall  should  be  given  to  a  canal  with  a  section  of  3  feet  at 
bottom,  7  at  top,  and  3  in  depth,  and  a  length  of  2600  feet,  to  conduct  40  cube  feet 
of  water  per  second  ?  

€=.0076,   i>=3  +  (V3»+2«Xa)=iaaiyferf,   A=^^t22il=:,5,g./5e«, and 

«  =  l^  =  2.66>fect 

-,.  ,  3600  X  xo,ax  ^^  2.66*  ^  ,    «  -,^ 

Then  .0076 X> =  13.45 X.  11  =  1-48 /««. 

'  15  64.33 

3.— What  Is  volume  of  water  conducted  by  a  canal,  with  a  section  of  4  feet  at 
bottom,  13  at  top,  and  5  In  depth,  with  a  fall  of  3  feet,  and  a  length  of  5800  feetf 

_i-Xa^ft=«.    A=-i^i^^  =  4o«?.>fe««,andi>  =  4  +  (V?T?X8)c* 
\j  ip  a 

i6.Z  feet 

40  X  3.23  feet  velocity  =  129.2  cube  feet 
For  Dimensions  of  transverse  profile  of  a  canal,  see  Weisbach,  page  493,  voL  L 


Ji 


APPENDIX.  921 

MAGNESIA  COVERING  FOR  STEAM   BOILERS,  HEATED  PIPES,  ETC. 
Ro'bert    A.    Keasbesr,   Jersey   City    and.    Ne'w  York. 
This  covering  is  devoid  of  organic  matter,  hence  it  possesses  great  <?apacit9 
to  resist  a  high  temperature,  combined  with  high  rank  in  the  order  of  non« 
conductors. 

It  is  furnished  for  pipes  in  the  form  of  hollow  cylinders  divided  longitu* 
dinally,  and  covered  with  canvas  *,  for  boilers,  in.  blocks ;  and  for  covering 
odd  fittings,  filling  floors,  etc.,  in  dry  mass  in  bags. 

JElelative  Value  of*  iN'on.  -  Conducting  Coverings  on 
"WrrQu.gh.t-.  Iron  Steam.  I*ipe.  IDetermined  "by.  ^Tests 
at    St.    X^ouis   Watov-Wori^am 

Conderuaiion  in  C?u6«  CmHmeterg  per  Foot  per  Hour.— (John  A.  Laird,  M.  E.) 


Material. 


Magnesia,  SectiODal 

Magnesia,  Plastic 

Asbestos  Fire  Felt,  Sectionai. 
Asbesto-Sponge,  Molded 


Analysis. 


I  Carbonate  of  Magnesia ....  92 .  20 

i  Fibrous  Asbestos 7 . 80=100 

( Carbonate  of  Magnesia 92.20 

i  Fibrous  Asbestos 7 .  80=100 

(Asbestos 82.00 

\  Carbonaceous 18.00=100 

j  Plaster  of  Paria 92. 80 

)  Fibrous  Asbestoa 4. 20=100 

NoTS— The  test  at  the  New  York  Post-Office  gave  Fire-felt  superior  to  Magnesia 

DISTANCES,  VELOCITIES,  AND  ACCELERATION. 
To    Compute   Velocities   of  an    A.ccelerated    Body. 


C,C. 


No. 
33-53 


33-4 

36.75 

37.13 


Vw'  -h  (2 '»'  8)7    Or,  »  +  t »'  =  V.    V  and  »'  reprtunting  original  and  accelerated 

veUtcUies.  and  X  fmil  velocity ^  aJl  in  feet  per  second  :  S  distance  or  space  passed  over 

t»4- V 
infeetj  and  t  time  in  seconds.       — ' —  =  V.    V  representing  average  velocity  in 

feet  per  second,    V  «  =  S,  and  2  V'  —  V  =  w. 

Illustration  l — A  body  moving  with  a  velocity  of  10  feet  per  second,  is  acceler- 
ated at  rate  of  4  feet  per  second,  per  second,  for  a  period  of  6  seconds;  wba.t  are  its 
different  velocities? 

T  =  10,    «'  =  4,    t  =  6. 


10+34 


Then,  10  +  6  x  4  =  34  feet  fined  velocity.      '—^  =  22  feet  average  velocity. 


23  X  6  =  132  feet  distance  passed  over.      Vio'^  -|-  {2  x  4  X  132)  =  V^S^  =  34  /««'» 
and  2  X  32  —  34  =  10  feet  original  velocity. 

And,^  =  r',        I±^x«  =  S,         I^^x<  =  1^S,        i,» -j- 2  d*  S  =  V«, 

V— « 


=  «,  and   VV2_2»'S  = 


V. 


a.— A  body  is  projected  vertically  with  a  velocity  of  200  feet  per  second,  and  is 
retarded  at  the  rate  of  30  feet  per  second,  per  second ;  what  height  will  it  have 
passed  through  when  its  velocity  is  reduced  to  80  feet  per  second,  and  in  what  time? 

v  =  aoo,    »'  =  3o,    and    V  =  8o. 

200  —  80  .       8o-4-2oo  ^    ^  A 

Then  -— — —  =  4  seconds.     —^ X  4  =  56o/«*i 

30  2 

3.— A  vehicle  being  drawn  with  a  velocity  of  25  feet  per  second,  is  accelerated 
5  feet  per  second,  per  second;  what  is  its  velocity  and  time  of  operation  at  the  end 
of  100  feet  ? 

V  =  25,    v'  =  5,  and  V  =  100. 

Then  '°Q  ~  ^S  _  ^^  gfconds.     - — — — x  i5  =  937-5y^*' 


922 


APr£NDIZ. 


4.— A  stream  of  water,  after  flowiag  a  distaaee  of  120  feet,  ia  ascertained  to  have 
a  velocity  of  40  feet  per  second,  with  an  accelerating  velocity  of  2  (ieet  per  secood, 
per  second ;  what  was  its  primitive  velocity  and  time  of  flow  ? 

S=^190,       V  =  40^.    1>'  =  2. 

Then  V4o»  —  2  x  2  x  120  =  33. 47  fui.     ^^""^S-^^  _.  j, ^5  feoonda 


2 


JDeliverjr  And.  SViotion  in.  £Cose. 

{JEL  F,  ffartfvrd,  Am.  Soe.  C.  E.} 
HoK  3. 5  in*,  in  diameter.    Aozde*  not  exeeedinp  z.  5  ins. 

Rubber  or  leather,  .0408  rd»  and  .^gjed'  y/P  =  G;  J^^i^—  and 
y^,_G^^.     ^^^g^^p    ^    ^:-=»;     '-^^=P;    .oJ,7tG'l; 

003 175  6  c»  d«  P I     and       .oooobi  H»»a*  =|»;       P— ^  =  1";       P«  =  P'j 

,  ,„        ,  .  t>»  .        314.06(1— «)  -    46750.89  P(i — x)      _ 

2.306  (P—p)    and    =»;  T^J  ^^         and    ^  ^^  -    ,  /- ^=1: 

^     ^       ^  1.123X2^       *  frc'rf*  bv^d*  * 

hp  _    _- ^ 

■rp-^rH,  1  —  .003  175  6  c^  d*  i  and  •p'  =  »-  G  repreunting  gallons  dis- 
charged per  second^  v  velocity  in  feet  per  second^  P  jnr«teure  of  stream  at  hydrant  or 
source  of  suppky^  p  pressure  last  tn  kose^  and  P'  pressure  at  nozzle,  cUl  in  lbs.  per  sq. 
foot^  d  diameter  of  nozzle  in  ins.,  U  head  of  supply  at  hydrant^  h  head  at  nozzle^  and 
I  length  of  hose,  all  infeet^  x  fraction  of  P*ai  nozzle^  b  coefficient  of  material  of  hose, 
and  cfor  nozzle. 

6  =  I  for  rubber  hose  and  1. 167  for  leathec 
c  =  .82  for  smooth  nozzle  and  .64  for  ring. 

iLLusTRATTOir.— Assume  length  of  a  rubber  hose  200  f^et,  pressure  at  hydrant  100 
lbs.,  diameter  of  ring  nozzfe  r.25  ins.,  and  volume  of  discharge  4.97  gallons  per 
second;  whut  are  the  oilier  elements  to  be  obtained  by  preceding;  formulas? 

.497  X  .64  X  1.25'  X  V»oo  =  4-97  ffoUons.  ^45i  X  4  97  _  jy,^f^ 

/-±.S^^^-97^     /-_:^l2^^,,^,i^,  4-484X4:97!  ^200^^^^ 

V  *  V    .04  V 100  .64' X  1.25*         1 

OI9  857  X  I  X  4.97'  X  200 .-  63.52  lbs.         xoo— 63.52  =  36.48  lbs. 

100  X  3648  =  3'-48  lbs.    2.306  (ioo>-63.52)  =  84.1a  feet     — ^Zli- —  84.i3/«et 

1.123X2^? 

I— .003175  X  I  X.64'X  1.25*  X  200=1— .6352  =  .3648  — X. 

314.96  (I  ~. 3648)  __  200     ^^^     46750.82  X  100  (»~. 3648)  _  2^  f^^ 

IX. 642x1.25*         1  iX77  96»Xi.25«  '' 

36.48         ,  „  84.12X63.52  ^       ^^ 

^  =  .3648  =r  m.  ^         ^      :=  146-47  yfeet 

100  3^*40 

For  vertical  Jets,  see  page  549. 

d-auging   of  Weirs, 

When  there  is  an  Initial  Velocity.  (H  +  A  f  —  ft  I)  ^  =  H'.  H  otid  H'  reprejeirt- 
ing  depth  ofvoater  on  weir,  and  when  corrected  to  include  effect  of  initial  velocity  qf 
approaching  water,  and  h  head  to  which  this  velocity  is  due,  all  in  feet. 

Velocity  in  Pipes.  C  VrT  •=  V.  r  representing  mean  radius  or  hydraulic  mean 
depth,*  I  sine  of  angle  of  inclination  equal  to  loss  rfheadper  unit  qf  lengthy  V  velocity 
mfeet  per  second,  and  C  a  mean  co^cient  ofi^a. 

In  small  Channels.    G  =  30  to  5a 

Note.— lectio 
A*  pipe,  conduit 


Note.— SeetloDkl  unm  1^  »  pip*  or  condaii,  divided  by  perimeter,  le  termed  mmom  ratiimtfSad  wbcf 
,  or  channel  !•  but  partially  tilled,  the  area  is  termed  kydrauKe  Huan  d^pA. 


•  ^  aleo  pat;*  5^. 


APPKNDIX.  923 

■ 

Metric  B^aotors.    In  addition  to  pp.  27-37. 
By  Act  (if  Oongress,  July,  1866.  By  French  Metric  Computation 

I  Liter  per  cube  mtUBt  =s  .007  ^B  ffoUona  per  cube  Jboi . . .  |      .007  48  gallont. 


"^^eiglxts   and   Pressures. 

I  GeDtimeter  of  mercury  per  sq.  inch  = .  192  91  lb.  per ) 

sq.  inch ) 

I  Atmosphere  (14. 7  lbs.)  =  6.6679  kilogranu , 

I  Inch  of  mercury  per  sq.  inch  =  2. 54  centimeters 

I  Pound  \>er  sq.  inch  =  453.6029  gram* , 

I  Cube  foot  per  ton  =  .027^  cu6e  meter , 


.192911 7  lb. 

6.6678  kilogranu. 
2. 54  centimetrei. 
453'  5926  grammes. 
.0379  cubic  metre. 


Heat. 

t  Caloric  per  Kilogram  =  1.8  heat  units  per  lb |     1.8  heat  units. 

"Velocity. 
I  Meter  per  second  =  3. 280 833 /ee£|)cr  second )     3.2808697061 


I*o"sver  and.  "^^orlc, 

I  Kitogrammeter  (X;  x  m)  =  2.2046  x  3- 28083 

1  Po(>t-|)ouQd  =  .  138  26  kilogrammeters 

t  Kiiogmra  per  cheval  ;=  2.2352  lbs.  per  H* 

I  Sq.  foot  per  H*  ==  .091 63  sq.  meter  per  cheval 


7.233  ^t-lbs. 

.138  25  kilogrametre, 
2. 2353  pounds. 

.091 63  sq.  m^re. 


1  Sq.  Foot      =  092  903  sq.  meter, 
"i  Cube  Foot   =  028317  ctdte  meter. 
1  Cube  Yard  =  .  764  559  cube  meter. 


Ailisoellaneous. 
1  Avoirs  Lb.=       .4536  kilogram. 
1  Ton  =      1.016057  tonne. 

I  Sq.  Inch    =  645. 161 29  sq.  millers. 

I  Mile  per  hour  =  26.8225  meters  per  minute. 

1  Knot  "      "    (6086.44  feet)  =  30.9192      "       "        " 

I  Cube  Meter  per  minute       =   7.848  ctite^rcts  per  Aour. 

I    "     Yard     "        "  =45.8718  •'   m^iters  ''      •' 

Z^ooomotive  XS rakes. -r  and  — 5  —distance  in  which  a  train  is 

644./  30/ 

ttopped.    V  and  V  representing  velocity  in  feet  per  second,  and  miles  per  hour,  and 
/proportion  ofreMistanee  of  brakes  to  weight  of  train. 

Brakes,  self  acting,  on  all  wbeel8,/=:; .  14.    Ordinary  hand,/^  .023  to  .031.    As- 
cending I  in  .5  resistance  is/-f-  2  ;  descending  i  in  .5  /—  2'. 

Hydraulic  Kaxus.    Efficiency  decreases  rapidly  as  height  to  which  water 
Vs  to  be  raised  increases  above  the  fall  or  head. 

Number  of  times  the  height  to  which  the  water  is  raiserl  exceeds  that  of  the  head 
of  the  supply  and  efficiency  per  cent.    ( Walter  S.  Button,  C.  and  M.  E.) 

Number  ...    4      5      6      7      8      9    10    iz    13    13    14    15    16    18    19    20    25 
Efficiency . .  75    72    68    62    57    53    48    43    38    35    33    28    33    17    15    xa      a 

Speed  of  water  in  pumps,  900  feet  per  minute. 

To  Compute   "Weight   of  "Water  at   any  Temperature. 

=  W.    W  and  to  representing  weights  of  water  per  cube 


T-I-461.2O  500 


500         •  T-f  46J.90 

foot  at  temperature  T,  and  ai  maximum  density  0/39.2^=162.425  lbs.,  and  461.2^ 
equal  absolute  temperature. 

iLbUBTRATiON. — Required  weight  of  a  cube  foot  of  water  at  temperature  of  60°. 

604-461.2  500 


500        '  60"^ 461.9 


924 


AFPXNDIZ. 


Results   of*  ESxperiments    or   Perfbrmaxioes    of 
Steaxn-engines  ancL   IB  oilers. 

cylinders^  Ctd-off,  Vacuum^  and  Diameters  in  Inches^  Revolutions  per  MimUe^ 
Pressure^  Water ^  and  Coal  in  Ubs.,  and  Surfaces  aind  Areas  in  Sq.  Ins. 


Ei.nniim  or  EMSiwrn. 

Cylinder. 

Revolutions 

Pressure  in  Pipe ...... 

Cutoff 

Mean  effective  Pressure 

IW 

Friction^........... 

Netff 

Water  per  net  W 

per  hour. . . 
Croal  per  do.  . 
Coal  per  Iff  per) 
.  hour .«•.  I 

Vacuum 


\ 

I    •  •  •  I 


Combustible  per) 

IIP  per  hour  .J  * 
Relative  efficiency . 

*  Weight  of  engine,  40  000  At* 


Hakru. 

CoaLiM.          1 

Non-con- 

Con- 

Con- 

denaing. 

deiuiiig. 

densing. 

28X42 

18X42 

24X60* 

74.29 

73-6 

59'$? 

58.5 

76.37 

92.88 

4-74 

7.94 

18.03 

26.93 

29.47 

89.38 

105-47 

"5.43 

270.58 

12.64 

13.07 

13.55 

92.83 

102.36 

18.59 

25.39 

— 

a'34 

3.18 

— 

3.07 

2.82 

x.98 

— 

— 

26.4 

— 

1.83 

1.83 

— 

.753 

— 

BOILBBS. 


Number 

Diameter............ 

Length 

Tubes  50 ,... 

Heating  Surface 

Orate  *♦     

Calorimeter.......... 

Heating  to  Grate 

Grate  to  Calorimeter. . 

Temperature  of  Feed . 
Steam  per  Lb.  of 

Combustiblet . . 
Steam  per  Lb.  of  ^ 

Coal 

Coal  per  Sq.  Foot 

ofGrate  per  hour  ^  " 
Steam  per  Temp.  2x20 


X0.3 
9.64 
t  Steam  per  lb.  of  coal  8.31  Ibt.,  and  oTaporaUoa  9  to  i. 


3 
60 

la 

4 
1536.92 

51.75 
1256.64 
29.7 

5-93 

"4.3** 
8.8s 

8.3X 


WINDMILLS.      (Andre-w  J.   Corooran,  New  Tork.) 

(Improved.    Patented  June  and  August,  1888;  March  and  June,  1889.) 

Volnme  of  "^^ater   "P-umped.  per  Mlinute. 

From  10  io  200  Feet. 


>iaineter 

of 
Wheel 


Vbktkal  Dutamo  fbom  Watbb  to  Podit  or  DntTiav  ni  Fht. 
10  15  25  50  75  100 


Feet.  Gallons. 

8.5  15-242 

10  48.262 

12  86.708 

X4  111.665 

16  155-982 

18  249.93 

20  309.604 

25  532 -5»7 

30  1080. 112 

Factory  in  Jer 


Gallons. 
10.163 

32.175 
57-805 

74-44 
103.98 

'59-954 
206.403 

355  012 
728.828 

sey  City, 


Gallons. 

6.162 

19.179 

33-941 

45.139 
64.6 

97.682 

124.95 

212.381 

430.848 


Gallons. 
3.016 

9-563 
»7-952 
82.569 

31-654 
52.165 

63.75 
166.964 
2x6.172 


Gallona. 


GftUooa. 


6.638 

4.25 

11.851 

8.485 

»5.304 

11.346 

19.542 

16.15 

32.513 

24-421 

40.8 

31.248 

71.604 

49-725 

146.608 

107.7x3 

150 

300 

Gallona. 

Galloiu. 

5.68 

7.807 

4998 

9.771 

8.075 

17-485 

X2.21X 

19.284 

15-938 

37.349 

36.741 

74.8 

54-043 

Velocity   of  "Wind. 


The  average  over  the  United  States,  as  determined  by  the  Signal  Service  of  the 
U.  S.  Army,  is  5769  mileft  per  month,  or  about  8  miles  per  hour. 

Experience  has  determined  that,  to  operate  a  windmill,  there  Is  required  an 
average  velocity  of  wind  of  six  miles  per  hour. 

1^ = pressure  oj  wind  per  sq.  foot  of  surface  in  tbs, 

461.2OX  32-16 

Or,  -—  t)«  and  —  o'«.    v  representing  velocity  of  air  in  feet  per  second^  and  »* 
400  200 

in  miles  per  hour, 

NoTB.— For  Qieftil  Ubles  and  formalaa  see  «  Wfaidmllli  at  a  PrlsM  Mover/*  bj  A.  R.  Wolff,  J.  WUoy 
k  Sons,  New  Tork,  1885. 


APPENBIE.  925 

To  Oompute  Head  In  I^im.  per  Sq.  Inoli  to  Realst  S'fId- 
y-Jig      _.  V'l,        _  H|3.7d>'83..  _     .         /HQ.?  d)t  83..  _ 


a  ^difcAfuvv  in  «f ,  int.,  and  IP  kortt-pouttv  offiT^i 


f3fat,aai  (3,7  X  ^s>'  X  83.3=1 


^/.  9360000 


I'm. 

,.„ 

... 

[        H> 

Ti, 

».'""■ 

nerage... 

Cub  ft 

Chn 

Gburcbea  .. 

>oo 

Cominerolal  H>  of  C 


Hf  ijsr  itf  c*uBB<y  (11  Ftn 


■*:.- 

SO 

60 

;o 

,*". 

go 

iia. 

II4 

75 

I 

z 

r 

^t:* 

^ 

Z 

~ 

~ 

.: 

- 

t:  Sfiun  CbiniHT  iMust  oncDl  ™U  oa>  l^Ru  gTDknicUr  of  BnuDil,  [u  Shi. 

Krlotloii  of 'n'ater  in  £*ipeH.     (irni^acA.) 

i^^^^ C  =  A-    I  TtprtKnting  Itngth  qfpipa  in  ftft,  v  =  —  -^- — , 

infatwrtfand^'V  votumf  ^fiwXfTtn  cube/iel  tiftattd  per  v^^ond,  d  1 
jnpeliniru..  anaC  a  eoeffieienl^  ranging  Jrom  .069  wtf  ' 

fa*,  -ox-iipr  ,,feH,  awt  .dtB=/dp  »/«*, 

iLLDSTBiTioM.— Assume  Tolume  13;  cube  feel,  nised  1;  hel  per  liDur,  Ibrough  ■ 
plp«9  Ids.  Jn  diuaeCer  ud  joo  (eel  la  length;  baw  nuiDf  IMI  of  venlcil  beid  wil 
tlu  IHoltOD  Id  Uia  pipe  be  aquil  Ui  I 

Then  — ^^^—"^  =  3.18  ™iocitr,  «ndO  =  ,oiS. 

Ham:*,-— '-^ '"''*''' X.M»  =  H-6  fat.  "idJi  +  i«.6  =  3»6.^ 


926 


APPENDIX 


'WatejvXu'be  Marine  JBoiler. 

Tests  of  the  United  States  Oavemment  on  a  Boiler  built  ^or  the  U.  3,  Cruun 
*'*' Aterf'    Conducted  by  a  Board  of  Naval  Engineers,  April,  1899. 

Heating  Surface,  2125  sq.  ft.    Orate  Surface,  48  sq.  ft.    Ratio,  44 :  i. 


Tlxe  BcblKJOoU  and  Wiloox  Oompaiasr. 


Elements 


Moisture  in  coal  per  cent . . 
Refuse  in  dry  coal  per  cent. 

Boiler  pressure,  lbs 

Temperature  of  feed- water. 
Draught  at  base  of  pipe. . . . 

Draught  in  furnace 

Blast  pressure,  ash  pit 

Temperature  of  gases  in  flue  . . 


Analyses  of  flue  gases 


(jfCO... 
decimals 


Moisture  in   steam, 

of  one  per  cent,.. 
Dry  coal  per  sq.  ft.  grate  per 

hour,  lbs 

Water  evap.  per  hr.  fr.  k  at  3i2*,  lb«. : 

Per  lb.  dry  coal 

Per  lb.  combustible 

Per  sq.  ft.  heating  surface  . . 
Per  sq.  ft.  grate  surface 


Cumberland  Mine  Run 


8th 


5-25 
9-56 
203 

'57-2 
.61 

•3 
498 


.09 
21. z 

10.97 
12.13 

5.23 
231.9 


nth 


t3th 


4.09      2.77 

7-39,   IO-5 
219       219 

93-4  I  91 
'•43      1-4 


Anthra 
C«t«,eiw 

t4th 


— . 

.26 

+.5 

t-5' 

595 

5<>7 

II. 9 
7.8 

10.9 
8.2 

•5 

^ 

.10 

•x 

45-4 

41.9 

9.41 

XO.06 

10.  t6 

11.24 

9-65 

9-Si 

427.4 

421.3 

.0 

12.33 

2l8 

110.5 

.61 
.07 

+  •53 
520 

II. I 

8.7 
.0 

.05 

28.8 

10.66 
12.16 
6.94 
307-2 


CuDiberland 


90th 


ai«t 


Cardiff 
24th 


2 

IX. 6 
204 
152.6 
•23 
•>5 

410 
10.2 
8.8 


.0 

15-4 

10.93 
12.36 

4 
167.8 


1.63 
10 
204 
160 

•55 
.27 

470 

9-7 

9-3 

.2 

.0 

22.x 

10.70 
It. 89 

5-34 
236.3 


7.88 

204 

160.5 
.26 
•»4 

433 
10.8 
8.x 

.X 

.0 

x6.a 

"•33 
13-8 
4-i.'^ 

183.1 


NoTB.— The  test  of  April  13th  was  made  with  air  heated  ly  the  fine  frases  to  168*. 

Proportions  of  Ghrat«  and.    Heatingr   Surfaces   of*  AVater- 

'J?ul>e  Soilera,  ai*  X)cteirxniiied  \>y  Xests  oi* 

13at>oocl£  and  Wilcox  Boilers 

from  ISrS  to  1884. 

{CommiUu  of  U.  S.  Centennial  EsOribitum  and  Individuals.) 

Water  evapomted  from  and  at  axa^. 


Aah 

per  eeni. 


Combiutible  con- 

Daratlon 

Bar  race  a. 

sumed. 

of 

Per 
Grata. 

Per 

Teit. 

Grate. 

Heating. 

Ratio. 

Heating 
Surface. 

Houn. 

Sq.Ft. 

Sq  Feet. 

Sq.Faet. 

.«^.  Feet. 

8 

44-5 

1676 

37-7 

8.88 

.2^6 

X20 

50.7 

1980 

39- « 

XI. 21 

.26 

2x6 

54.7 

2148 

39- « 

12.22 

.29a 

24 

61.9 

2760 

44.6 

8.22 

.198 

22 

59-5 

2757 

46^3 

14. 25 

•307 

13-5 

39-7 

1680 

42.3 

5.8 

•137 

4 

25 

1403 

56.x 

X2,4I 

.276 

X0.25 

70 

3126 

44-7 

18.15 

.406 

Coal  per 
Grate 

Hour. 

Erapoi 

by  Cotn- 
htt«tible. 

ration 
Cokl. 

Sq.  Feet. 

Lba. 

Lba 

— 

12. 131 

— 

xa.99 

XX. 62 
XX .982 

9.71 

— 

11.626 

10.09 

l^ 

"•43 

12.495 

9.96 
"•53 

»3.44 

12.38 

XX.  5a 

20 

12.42 

11.32 

»3-7 


X3.a* 
xa.9* 
7-5tT 

8.8* 

Coals  :*  Anthracite,  American,  f  Bituminous,  Welsh*  t  Bituminous,  Scotch.  |  Bitunliioo^ 
Powelton.        f  Teat  in  London. 

A  Galloway  boiler  of  standard  efficiency,  at  this  exposition,  having  a  ratio  of  beat. 
ing  surface  to  grate  of  35  to  x,  and  feed  water  at  a  temperature  of  56*^,  gave  the  fol- 
lowing results: 

Consumption  of  coal,  8.87  lbs.  per  hoar  p^r  sq.  foot  of  grate.  Pressare  of  steam, 
70  lbs.  per  sq.  inch.    Water  evaporated  per  hour  per  sq.  foot  of  heating  snifiuM^ 

SI  lbs. ;  water  evaporated  per  lb.  of  combustible,  9.68  lbs.,  and  per  lb.  of  coal,  8.63 
bs. 


APPENDIX. 


927 


To  Oompute  ,A.reft  or  C^lintiei*  of  a   Steam-engine   and. 
Gl-rate    anxl    Ueating    Sttriaceei   of  a    Boiler. 

When  Required  Power  is  Given. —It  is  assumed  that  IP  of  a  sieam-engine  is  at- 
tained by  eTu|)oratiOQ  of  33.6  lbs.  water  per  hour,  at  a  temperature  of  212°  flrom  feed 
water  at  ioq<^. 

N«T«.— Thii  Is  a  dednction  from  the  elements  of  the  estimate  as  given  by  the  Am.  Soc  of  Mech'I 
Engineers,  In  order  to  pat  temperature  of  the  feed  at  100°  instead  of  21a*. 


Man. '  aondenimff  (  Sing/le  Cylinder ). 


V  X  33-6  X  Iff 


X  1728  =  orca  of  cylinder 


60X  2R  X  S 

in  sq.  ins.     V  representing  volume  ef  1  lb.  of  water  ^  terminal  presmre  nf  steam  xn 
cube  feet,  R  numi>er  0/ revolutions  p^  minute,  and  S  stroke  cf  piston  in  feet. 

ILLUSTRATION. — Required  ff  of  an  engine  Is  300,  initial  pressure  of  steam  70  Ihg. 
mercurial  gange,  c«t  off  at  .5  stroke  of  piston  t>f  4  feet,  and  number  of  revolutions 
60  per  minute.  What  should  be  areas  of  cylinder  of  engine  and  grate  and  heating 
surfaces  of  boiler? 

Clearance  in  cylinder  and  steam  passages  =  1.8  ins.  =.15  foot,  point  of  cutting 
off = 4 -i- .5 = 2  ^e^ 


Then  (formula  p.  711),  70  X  (2  + .  15  -i-  4  + .  15)  =  36.26  lbs.  terminal  pressure,  and 
steam  at  thvs  pressure  has  a  density  <>r  volnme,  whinti  is  its  reciprocal  (formula 
table  p.  708)  of  11.26  cube  feet  for  each  lb.  of  water  contained  in  it. 

„  1X26X36.26X300     ^  o         122486        0^.0  L 

Henoe,    —        f m  X  '728  = ^^—  =8.51  X  1728  =  14  705   cuJbe   tns., 


60x60X3  X2 


14400 


which  -^48  ins.  s<rofce  =  306. 35  sq.  ins.,  to  which  is  to  be  added  for  friction  of  en- 
gine and  load  and  waste  of  steam  i  §  per  cent.  =>  45-  95  +  30^*  3S  =  SS^-  3  *"'• 

Grate  Surface  — Evaporation  of  Trush  water  in  an  efllceot  marine  boiler,  f^om  a 
temperature  of  feed  of  ioo<^  as  assumed,  witi)  a  proportion  of  heating  snrlkce  to 
grate  of  30  to  z,  to  be,  with  a  combustion  of  20  lbs.  coal  per  sq.  foot  of  grate  per 
hour,  213  lbs.  per  sq.  foot  of  grate,  and  10. 3  lbs.  per  lb.  of  coal. 


„  Eff 

Hence,  —^—  =.  area. 


L  representing  icaporation  per  sq.  foot  of  grate  per  hour. 


Illustration. 


-Assume  elements  of  preceding,  with  evaporation  as  abova 
33.6X300 


213 


=  47.32#g(.>fee«. 


Heating  Surface.— Then  47. 32  X  30=  1419  sq.feet  area. 

For  the  several  types  of  boilers  the  following  units  should  be  osed: 

Ratio  ef  a«aU$ig  Smf ace  to  OrOU 
T  T  p«. 


Marine , 

Stationary 

Portable 

Looemottve 

"  Ooke. 


30  to  z  i  I  so  to  z 

Coal  oonmimed  per  Sq.  Foot  cf  •Gcate  per  Hoar 
in  Lba. 


J5 


.64 

«S9 
X32 

ISO 
131 


20 


2x4 

207 

»74 

197 
170 


30 


3>4 
299 

257 
290 
247 


«5 

ao 

30 

183 

242 

339 

183 

241 

333 

145 

187 

27  z 

164 

2ZI 

30s 

»59 

X97 

276 

Unit*  of  Heat  izi  S'uels. 


AdUiractte 14500 

Bituminous 14  200 

PtotroteaBB,  4ig|it. 22  600 

heavy 19 440 


(t 


Petroleum,  reined ,....  19960 

"        crude .....•••..  <9vzo 

Coal  Gas ...«.  ..•»■.••»•-.<•  90200 

Water  Gas 8  500 


Tm   R«<9is4:   Oxid«ition   in    CaBt-iroxi    I'ipew- 
A  coating  of  hot  lime,  which  is  much  preferable  to  tar. 


*  Half  atroke  or  point  of  cutting  off. 


928 


APPENDIX. 


To  Compute  Relative  Velocities  of  Steaxki  ITaohte,  fW^xn 
Klexxxents  of*  tlieir  CoiistrvLotioix,  Capacity,  and  Op-* 
eration. 

Rule.  —  Multiply  area  of  their  grate  surfaces  by-  CfmtAant  due  to  the 
character  of  the  combustion  of  their  furnaces,  divide  product  by  cube  root 
of  square  of  their  ^oss  tonnage  (U.  S.)i  and  cube  root  of  quotient  will  give 
their  relative  velocities. 

Or,  3/ — -  =:  y.    G  reprevente'np  arta  of  grate  surface  in  tq,  feet^  T  grou  totmoffe^ 


and  C  a  coMton^  vis.  natural  draught  t.    Jet  or  ea^aust  1.25,  and  blaxt  1.6. 

In  the  application  of  this  rale,  as  alike  to  all  others  when  there  is  material  differ- 
ence in  the  elements,  as  with  large  and  small  vessels,  those  that  approach  each 
other  in  general  dimensions  or  caimcities,  as  determined  by  certain  ranges  or  limits 
of  tonnage,  should  be  classed  together. 

Illustration.  —The  grate  sarface  of  a  yacht  is  27.5  sq.  feet,  her  tonnage  71.24, 
and  the  combustion  in  her  furnaces,  jet. 


Hence,3Mi2<±£5^3/if:^^,,^g^ 


This  result  is  an  index  of  the  capacity  of  the  vessel,  when  compared  with  anothef 
in  like  manner. 

Thus,  assume  one  to  be  a  fkir  exponent  of  her  class,  as  fh)m  40  to  60,  60  to  80, 
or  80  to  100,  etc.,  tons,  and  her  speed  to  be  12  knots  per  hour,  or  60  minutea 

If  then  a  competitor  possessed  the  elements  that  by  the  above  formula  would  give 
a  result  of  1.3,  their  relative  capacities  over  a  like  course  woald  be  as  1.26  : 1.3  :* 
60  :  61.9,  and  61.9  —  60  =  1.9  minute  =  1  minute  54  secondSf  which  is  the  time  the 
yacht  of  greatest  capacity  would  have  to  allow  the  other. 

o_ 

If  the  course  was  for  a  greater  distance,  as  for  80  knots,  than  —  x  i<9  =  za  w^ 

12 

4  tee.  the  allowance. 

For  ILiarge   Steamers. 

3 .  96  -y  -  2  =  V-    S  rq^nresenting  area  of  immersed  amidship  section  in  sq.  meters. 

V&n.—A  »q.  meter  Is  xo.764  sq.  feet. 

This  formula  is  used  in  Europe,  and  is  applicable  only  for  vessels  of  great  capaci- 
ty and  with  a  blast  combustion. 

Simple    Water   Tests. 

For  Hard  or  Soft  TTafcr. —Dissolve  a  small  quantity  of  soap  in  alcohol.  Put  a 
tew  drops  of  it  in  a  vessel  of  water.    If  it  becomes  milky,  it  is  hard,  if  not,  it  is  soft. 

For  Earthy  Matters  or  Alkali.— Dip  litmus  paper  in  vinegar,  and  if  on  immersios 
in  water,  the  pa))er  returns  to  its  true  shade,  the  water  is  free  from  earthy  mattei 
or  alkali.    Syrup  added  to  a  water  containing  earthy  matter  will  turn  it  green. 

For  Carbonic  Acid.— T&ke  equal  parts  of  water  and  clear  lime-water.  Ifcom- 
XiiUed  or  free  carbonic  acid  is  present,  a  precipitate  is  produced,  to  which,  if  a  few 
drops  of  muriatic  acid  be  added,  an  effervescence  occurs. 

For  Magnesia. — Boil  the  water  to  a  twentieth  part  of  its  weight,  drop  a  few  grains 
of  neutral  carbonate  of  ammonia  and  a  few  drops  of  phosphate  of  soda  into  it,  and 
if  magnesia  is  present  it  will  precipitate  to  the  bottom. 

For  Iron. — (i.)  Boil  a  little  nutgall  and  mix  it  with  the  water;  if  it  tarns  gray  01 
slate  black,  iron  is  present— (2.)  Dissolve  a  little  prussiate  of  potash,  and  mix  it 
with  the  water;  if  iron  is  present,  it  will  turn  blue. 

For  Lime.  — Into  a  glass  of  water  put  two  drops  of  oxalic  acid  and  blow  upon  it 
If  it  becomes  milky,  lime  is  present. 

For  ^ctd.— Immerse  a  piece  of  litmus  paper  in  It.  If  it  turns  red,  it  is  acid.  If 
it  precipitates  on  adding  lime-water,  it  is  carbonic  acid.  If  a  Mue  paper  is  turned 
red,  it  is  a  mineral  acid. 


APTHmyix, 


929 


TOBIN  BRONZE. 

{Trade-mark  registered,) 

JPlie  Aiisonia   Srase  and    Copper  Co.,  New  York,  N.  Y. 

Sole  Manufacturer, 

Specific  gravity,  8.379.  AVeight  of  a  cube  inch,  .3021  of  a  lb.  Tensile 
strength  i-inch  round  rod,  79600  lbs.  per  sq.  inch.  Elastic  limit,  54  257  lbs. 
per.  sq.  inoh.  Elongation  in  a  rod  i  inch  in  diameter  and  8  ins.  in  length, 
15.4  per  cent.    Reduction,  37.26  per  cent. — Fuirhanks, 

Is  readily  forged  into  bolts  and  nuts  at  a  dark-red  heat,  Torsional  strength 
and  Elastic  limit  equal  to  machinery  steel. 

rrorsional    StrPiiRtli, 
Boit  .5  inch  in  diameter  and  1  inch  in  lengthy  load  at  end  of  lever  ifoot. 

Torsion,  2.67**.  Elastic  limit,  328  lbs.  Rupture,  633  lbs.  Torsion  point 
of  rupture,  92.2°. — J,  E.  Denton,  Stevens's  Institute. 

Crashing  Strength,  maximum,  181  000  lbs.  per  sq.  inch. — Faii'barUcs, 

Plates. 

Weight  per  Square  Foot 
Thlckneu. 


ThkknaML  T  Wcifrkt 
Lb«. 


Ins. 
.0625 
.125 

.1875 

.25 

•3125 

•375 


2.72 

5-44 
8.i6 

10.88 

13-59 
16.31 


ThtckiMNft. 

Weight.  I 

IM. 

Lb«. 

•4375 

19.03 

.5 

21.75 

.5625 

24.47 

.625 

27.19 

.6875 

29.91 

•75 

32.63 

IlM. 
.8125 

.875 

•9375 
I 

1.0625 

1.125 


1  WelRht. 

Thickness. 

Lbs. 

Ins. 

35-35 

1.1875 

38.06 

1.25 

40.78 

1.3125 

43-5 

1-375 

46.22 

1-4375 

48.94 

1.5 

W«iRllt. 


Lbs. 
51-66 

54.38 

57^1 
59-82 

62.53 
65.25 


Bolts   and 

L   Rod 

8. 

Weight  per  Lineid  Fdot. 

Miunster. 

WeiRht. 

Di.'imeter. 
Ins. 

Weight.  I 
Lbs.     1 

Diameter. 

Weight. 
I.bs. 

Diameter. 

Weight. 
Lbs. 

jDiam. 

Weiirht 

Ins. 

Lbs. 

Ins. 

Ins. 

\    Ins. 

Lbs. 

•25 

•177 

-75 

1.6    ;  i.s 

6.42 

2.5 

17.8 

4 

45.57 

.3125 

•279 

.8125 

1.88     1.625 

7.5 

2.625 

19.6 

4-25 

51-44 

.375 

•399  1 

•875    . 

2.18     1.75 

8.7 

2-75 

21.53    4.5    ;  5764 

•4378 

-544  1 

•9375 

2.5    ,  1.875 

10 

2.875 

2352  ;  4-75    64.24 

•5 

.711 

I 

2.84     2 

11.38 

3 

2553     5 

71.16 

.5625 

.899 

1.125 

3.6    1  2.125 

12.87  j:  3-25 

30.05     5.25 

78.4^ 

.625 

I.H 

1.25 

4.46  ,  2.25 

14.43  1    3-5 

34-86     5.5 

86.11 

.6875 

1.34 

1-375 

5-36 

2.375 

16.06 

.  3-75 

40.01 

6 

102.45 

Owing  to  its  great  strength  and  non-corrosive  properties  the  rods  are  ex- 
tensively used  for  bolts,  forgings,  etc.,  Marine  and  Naval  Machinery,  Sugar- 
houses,  Breweries,  Pump  Fiston-Rods,  and  Yacht  Shafting.  The  plates  are 
used  for  Pump  Linings,  Condenser  Heads,  Hulls  of  Yachts,  Centreboards, 
and  Rudders. 

Drop  Forgings  and  Nails  of  every  description  can  be  made  of  it. 

Weiglits  of*  Steam-euBiiieei   and    Boilers  'with   Water. 

Per  Tndicaied  H»  in  Lbs. 


\f  erch^t  Steamer 480 

Royal  Navy    "      360 

Steamboats 280 


4 1* 


Tor|)o«!o  Boats 60 

Marine  Boilers 196 

Jx>comotive '*  60 


930 


APPBNI>IZ. 


"Weislit   and    Strengrtl^ 


DidUneioD*  of  Link. 


of  Ord.i11.ar3r 

Cable. 


Stud-Ljiuk   Cliain 


Diam. 


Int. 

375 

4375 

5 

5625 

625 

6875 

75 

875 

z 

1. 125 

25 


Lenfi^h. 


IBS. 
2.25 
2.625 

3 

3-375 
3-75 
4- "5 

4-5 

5-25 

6 

6-75 
7-5 


Widtlu 


Int. 
x-35 

IT 

2.095 
2.35 

2-475 
2.7 

315 
3.6 

405 

4-5 


Weight 
Fftthom. 

Admiralty 

Proof* 

•treu.* 

Lb«. 

Lb«. 

7-55 
"•3 
»3-4 

7840 
10080 

17.2 

2< 

12320 

15680 

25.4 
30.2 

19  040 
22680 

41. 2 

30800 

84 

40320 
50960 
63000 

DimensioMj  of  Link. 
DluD.     Length.    Width. 


In*. 
1-375 
«-5 

1.635 

1.75 
1-875 
2 
2.125 

2.25 

2-375 

2.5 

275 


Ins. 

8.25 

9 

9  75 
10.5 

11.25 

13 

»a-75 

'3-5 

14-25 

»5 
16.5 


Ins. 
4-95 
5-4 
585 
6.3 
6.75 

7.65 
8.1 

8.55 

9 
9.9 


Weight 

Admlralff 

per 

P»«o*. 

Fathom. 

stress.* 

Lbs. 

Lbiu 

101.6 

76160 

I3t 

90720 

143 

96400 

164.6 

«S!4  330 

189 

141 680 

2x5 

161  280 

343.8 

182000 

376.3 

204  1 20 

303-2 

227360 

336 

252000 

1   406.6 

304940 

*  Adopted  by  Lloyds. 

Note  i.—Safe  Working- stress  is  taken  at  half  the  Proof-stresaL 

2 Proof-stress  and  Sc^  Working-stress  fur  close-link  cbains  aiv  respect irely 

two-thirds  of  those  of  stud-link  chains. 

3. — Average  Proof-stress  is  72  per  cent,  of  altimate  strength,  or  17000  lb&  per  sq. 
inch  of  section  of  both  sides.  Safe  working-stress  is  half  the  proof-stress,  or  8500 
lbs.  per  sq.  inch  of  section. 

Weight  of  ckwe-link  chain  Is  abont  three  times  the  weight  of  the  bar  fhMn  wblcta 
it  is  made,  for  equal  lengths. 

4. — UUinuiU  Strength  per  sq.  inch  of  section  of  metal  is  35  000  lbs. 

Comparing  the  weight,  cost,  and  strength  of  the  three  materials,  hemp,  iron  wire, 
and  chain  iron,  the  proportion  between  the  cost  of  hemp  rope,  wire  ro|)e,  and  chain 
is  as  2  :  X  :  3;  and,  therefore,  for  equal  resistances,  wire  rope  is  only  half  the  cost 
of  hemp  rope,  and  a  third  of  the  cost  of  chains.    (Karl  Ton  Ott) 


it 
It 

n 
II 

tl 


Keifflxt  and   rtetrooession  oT  I^iagara  ITalls. 

1842.    Height — American 167  feet 

Horseshoe.... 158 

Width. — American 600 

Horseshoe 1800 

1875.    Receded. — American 60 

Horseshoe 160 

1886.— Average  retrocession  3.5  feet  per  annum  {Woodward). 
200  feet  in  IX  years,  and  9  feet  per  year  io  43  years. 
Descent  of  the  river  below  15  feet  per  mile. 

Sridice.— Over  Oxus  on  Caspian  sea,  6230  feet  in  lengths 


{J.  PoMman.) 


J(U.HaU. 


Lake  Survey. 


Coarse. 


LENGTHS 

Miles. 


OP 


NBWMARKST. 

.4eroB8  the  Flat 

Beacon ».».. 

Cambridge(Ain. . . . . 

Cesarewltch 

Round 

Rowley  Mile 

Summer  Course  . . . . 
Two-year  old,  new . . 
yearling 


1.292 
4.206 
1.136 
3.366 

3-579 
X.009 

3 

.703 

.377 


ENGLISH 
Coarse. 


RACE-COURSES. 


DONCASTBR. 

Chrular 

FNswilliiim 

KtAUoimb,.,. 

St  Leger4« 

Cup  Course 

SP80X. 

Craven 

Derby  and  Oaks. . « . 
Metropolitan. 


Miles. 


'•9«5 

X 

.711 
3.634 

1.35 

3.35 


Coarse. 


OOODWOOD. 

Cnp  Course .... 

UVKRFOOL. 

New  Course. . . . 

Newcastle... 

OXVORD. 

touk. 

Stakes  OoursA. . 
Two-mils 


MUes 


2.5 

«-5 

X.796 

a 

M-75 
x.9a3 


Rail'wasr  Speed   in   ICngland. 

Mj.^Korfk  Western  BaiUoajf.    To  Crewe,  158.5  miles  in  X78  minutes  witboot 
a  stop. 

Caledonian.    Carlisle  to  Edinbufgh,  xoo.  75  miles,  including  10  consecutive 
miles  of  elevation  of  x  in  80,  tn  104  minatea 


APFBJSfDOL, 


931 


2    • 


OQ 


0 

9 
h 

^   6 

^  c 
c 


8 


•0  1 


OD 

g 

0) 

0    «   ^ 
0    ♦* 

m 
h 
9 


i 


•  ■•••        •••«•••        ••• 

^tftm  co^  fOfO  ro^  M^  focn  co*  coco  fO 


M    aOK  ChC. 

'♦^ 

•      •    •      •    • 

•       • 

♦  CO*  com 

tff* 

1*1 


^  Q  O 
-o  ■♦  >n 


io</>  m o   mo 


m  >/)  tn  m 
ON    m  « 


mo 

N  m 


O  O 
t^  m 


o 
m 


M 


m  m «    mo    m 


>5  NO  m   r>oo  ooo^OnO    on    on    «m«m"m 


m  «n 


poo 

MOM 


o  o 


i 


omro      oojn-^mNOOk^NO    cono 


«    moo 


iSm^-   *'>■*  «■«♦•  mm   cO'«-   ro'*   ro'^   «o<o  rofo  f^-*-   ro-^ 


J! 

3 

p      S.  I  £'so  vovot^ooOkOtO    6  6    Oci    M«    wmwmmmmo 


hf  m 
■4-m 


•  OO    O'rtmO    OO    ommmmo    mm    OO     OQ    QQ 
A^mmm«ot>ts>ONC7>0    Om    cit^ciN    t^mmO    Oo 

h4  MHMHMMMMMMCICICI 


m 

m  m 

m 

m 

•           ■        • 

m  M 

•        • 

CI    N 

•        • 

• 

o  o 


I 


5 


§' 


<i     00        i«.,*mf'>Mi>*t«»«vO'*>'>t<»»'>       moo«'*      ooe« 
(|«o-^  foro   m-i-   fO'i-   co-i-   'i-'i-   to-i-   cO"*-   co4-   com   -i-^o    m  m 


e^  s  ^T"    >J 


«S>  « 


joo    OO    «nm»oo    »A0    m^o    mm   mm    mo    QQ    QQ    QQ 
2  CO  i*-    *  m   m%o  ^oe>.ooo^OO^Or«    nn    wmmg    OO    OO 

_1  H  MHMMMMHCfCICIriCI 


mm       m 
mm       m  M    M        m 

J5  mvo  vo  vo    e>«oo  ooovOnO    C).«    0«    wmwmmmmo    mo 


c 


S 


^\0     m  «n  CO  N  On  On  "> 


On  m 


rO  H  CO  On 


,£co*  •♦m  CO"*-  CO**-  co-^l-  ro-*  -♦no  •* '*■   '♦•«o  ■♦m  '••m 


•   • 

com 


0  ^ 


^ 


lO  "O  _j 

1*1 


-OO    OO    ommmmo    >oQmmNommmmOOO    O 
S  CO  fo   Ji-  m  \n*n   mNO  >©t>^ooONOCi    Onn    nn    n"?"?0    «r 

J  MM  MMMM^^^^vl^ 


O 
m 


m 
m  m  « 


m   m 


5  "♦  m  NO  «o  NO  t^  tNOO  oqononO    o«    nw    «*^?f>Y^!I*J" 


mir 


^ 


I 

■ 


00 

0 

•H 
W 

0 


•  •       •  •       • 


^  m   CO  -^    ^  tf>   »'>^    wi^O    ^  lo  so 


I  :; 


m  I  NO 


in  mNO    m  '     m  '    m  ' 


8  ■*     -; 


I 


OO     OO    00    mmmo    OmOl     Q«C^~;i*l     J?l     Svl 
to  CO  CO  i}-   ^  m  mv©  no  t>  tvoo    on|     onOOnwwI     «i     mi 

M       ^    M       ^       ^ 


m  m 
m   mm   m  n 


»5  *  m  m  m  « NO  rooo  oo  On  on  On  o 


>l  6  6    ««  «|  ml  ml 


M  M   M 


8  00   O    £3    2    JO   « 


o 


a 


V) 

« 


S8 


^ 


932 


APPBNDIX. 


^iaeara   River  I*o"w©r. 

The  caual  through  which  the  water  is  to  be  drawn  commenceB  at  a  distance  of 
1.5  miles  above  the  Fays.  The  water-storage  of  the  river  is  computed  at  328855 
square  miles,  viz. ,  87  620  of  lake  and  241  235  of  shed.  The  annual  rainfall  being  37 
Inchea 

Assuming  the  rainfall  to  be  but  30  inches,  the  flow  over  the  Falls  would  be  213 cop 
cube  feet  per  second.     The  I^ake  survey  computes  it  at  265000  cube  feet 
The  H'  designed  to  be  used  by  the  company  constructing  the  canal  is  12000a 

A  late  and  corrected  determination  of  levels  gives  Lake  Ontario  246  and  Lake  Erie 
578  feet  above  mean  tide  at  oity  of  New  York. 

Keiglit  of  rro-^vers.  Spires,  etc. 

(Additional  to  page  i8a) 

Eiffel  Tower,  Paris 984.3  feeL  I  Cathedral,  Strasburg. 465  feet 

Cathedral,  Kouen 492       ' '     |  City  Hall,  Philadelphia. 535 


it 


Zenitlx    and    Aleridiau    Distance    and.    iA.ltitude    of   Sixxi 
at   New    York.     C.  H.    (Lot  40°  42' 44".) 

Jun«  2iBt,  Zenith  distance. . .  ij^  15'  44" 
Meridian  altitude.  72^  aa  16" 


Dec.  2ist,  Zenith  distance. ..  64°   9'  44" 
Meridian  altitude  .  25°  50'  16" 

Water-puTXip.— -First  in  use  283  years  B.C.  Rotating  introdaced  iu  zytli 
century.  Plunger  pistons  invented  by  Morland  (England),  1674.  '  DmUtle  cu:Hng  by 
De  la  Hire  (France). 

SsTxabolic   XJatching  and   IDesigxiatioiis. 
As  adopted  by  Engineer  DqMirtmeatf  U.  S.  Natry. 


Cast  Ibon.     Wrought  iboit.'    Cast  Stibl.    Wrought  Stskl.       Brass. 


Copper. 


Lead. 


V///////y 


Briok. 


Glass. 


WiRS. 


Stonb. 


Earth. 


Wood. 


Lbathkr. 


VCLCANITR. 


riie  following   are   designed  and   added  "by  the  i^utlior. 


\i 

"it 

1  jf 

rf' 

M|| 

<^i 

IJli 

ill 

Babbitt.  Niokbl.  Goil 

See  Colors  for  Drawings,  p.  xo& 


'mi^ 


tilnt 


Znro. 


C09CRBTB. 


iSPBSDlX. 


933 


FtesuXts  of  Sxperixxieixts  on  Operation  of*  Steaxn- 


JEGnsine.    {C.  E.  Emery ^  M.  E.) 


Condenring. 

CyliDdcr i6  X  42  ins. 

Pressure 81.69  lb& 

"      meaD  effective.  31.06    " 
RevolutioDR  per  min. . .  60.3 


Non-Coodensinj;. 
x8  X  42  iOB. 
73-37  lbs. 
29.47 
736 


CondeDsing. 

Cutoff. 189 

H» 78.79 

Friction  H*  10.09 
Net  IP.... 68. 7 


Wliterper  IH*  per  hour  in  lbs , ..•..as.30 

Coal        "      "         "  "    , 3,8a 

Coal  per  net  IP  per  hour  in  lbs. ,, 3.23 

Relative  efficiency  per  steam ', i 

Relative  efflsiency  per  coal i 

Safety  Valves  of  Steaxu-Boilers. 


Non- 


Condensing. 

.189 

"S-43 
13.07 

102. 36 

29.231 

3.25 

3.66 
.8685 
.8676 


Boilers  operated  at  a  low  pressure  of  steam  require  proportionately  larger  safety 
/alves  than  when  operated  at  a  high  pressure.  Thus:  If* steam  at  20  lbs.  pressure 
per  sq.  inch  is  raised  to  30  lbs.,  a  valve  nearly  one  half  more  capacity  is  required; 
but  if  raised  from  100  lbs.  to  no  lbs.,  a  valve  of  nearly  one  tenth  more  capacity  is 
required. 

Belting.  Double  belts  will  transmit  one'  and  one  half  times  the  power  of 
single. 

Wide  belts  are  less  effective  per  unit  of  area  than  narrow.  Long  belts  are  more 
effective  than  short.  Driving  belts  may  be  driven  at  a  velocity  of  3500  feet  per  min- 
uta    Lathe  belts  from  1500  to  2000  feet.    Economy  of  wear  requires  less  velocitiea 


N"on.-Coiiductors   of  Temperature* 

Th.eir  Comparative   ISfflciezicjr. 

MaUriait  in  Italic*  are  whoUy  free  from  Carbonization  or  Ignition  from  slow  car^ 

tact  with  Bailert  or  Steam-pipes. 

Th.e    folloiving  A<laterials   -veere    used,    aa   Covering   to   a 
Steam-pipe  ii   Ins.  in  Diameter. 

Pounds  of  Water  Healed  xo^'  per  Hour  through  One  Square  Foot  of  the  Material. 

{J.  M.  Ordway.) 


Material  i  Inch  in  Thickness. 


1.  Wool,  loose 

2.  Feathers  of  live  geese . . 

3.  Lamp  Mackj  loose 

4.  Felt  of  hair. 

5.  Ootton  wool,  carded . . . 

6.  Lamp  black.compressed 

7.  Charcoal  of  cork , 

8.  Hagnesia,  calcined) 

and  loose ) 

9.  Magnesia,  carbonate) 

of,  and  light } 

to.  Charcoal  of  white  pine. 
XI.  Magnesia,  carbonate) 

of,  and  compressed  | 
12.  Plaster  of  Paris 


Lbs. 

ReIatiT0 
Solidity. 

8.x 

9.6 

9.8 

10.3 

.56 
X.85 

X0.4 

.2 

X0.6 

3-44 

XX. 9 

•53 

X2.4 

.23 

»3-7 

.6 

'3-9 

i.i9 

15.4 

i-S 

30.9 

3.68 

Material  x  Inch  in  Tbickneas. 


13 


14 

15 

16 

17 


Anthracite  coalpow- ) 
der } 

Magnesia,  calcined ) 
and  compressed . . ) 

Air  alooe 

Asbestos,  One 

Sand 

18.  Stag  wool,  best  (fine  | 
threads  of  brittle  glass)  j 

19.  Paper 

2a  Rice-chaff 

21.  Bit.  coal-ashes,  loose. . 

22.  Asbestos  paper,  tight. 

23.  Anth.  coal-ashes,  loose 

24.  Clay  and  veg'ble  fibre. 


Lbs. 

RelatiTV 
Solidity. 

35.7 

5.06 

42.6 

2.85 

48 

62.x 

.81 
5.27 

13 

— 

14 
18.7 

z 

21 

— 

2X.7 

— 

27 
30.9 

.^ 

irio-w  of  Several  Rivers.     AUnlmn-am  Dry    Weather. 

In  Cube  Feet  per  Minute. 


SL  I/iwrence,  at  BrockvH'e,  Ont,  18000000. 
Ifississippi,  at  St.  Pauls^  Minn. . . .  200000a 
Connecticut,  at  Holyoke,  Mass.. . .     300 000. 

Jkio,  at  Pittsburgh,  Penn. 100  000. 

Illinois,  at  La  Salle,  IlL 


Seine,  at  Paris,  France looooa 

Mohawk,  at  Cohoes,  N.  Y 58  80a 

Thames,  at  London,  England. .  36000 
Chicago,  at  Chicago,  IIL 36000 

...  36  000. 


954 


AtPBNDir. 


Standard  TJ.  S.  AVelglits  and  Measures. 

[V.  S.  Coast  Survey.) 

Xiixieetl. 


Inch  to 
Mtllimetres. 

Foot  to 
Metre. 

Yard  to 
Metro. 

Mile  to 
Kilometres. 

25-4 

.304801 

•9»44 

1.60935 

Metre  to 
inches. 

Mftre  to 
Foot. 

Metre  to 
Yards. 

Kilomotrs 
to  Miles. 

39-37 

3.28083 

X.093611 

.621  37 

Chain  =  20.1169  metres.      Fathom  =  x.829  metre&     Sa-  mile  =  259  hectare& 

Knot  =  1853.27  metrea 


Square. 


Inches  to 
Ceutimetre. 


6.452 


Feet  to 

Decimetre. 


9.29 


Y«rito 

Metre. 


.836 


Acre  to 

Hectare. 


,4047 


Centimotr* 
to  Inch. 


155 


MetMto 

Feet. 


JO. 764 


Metre  to 
Yards. 


Z.196 


Hectare 
to  Aci-ea. 


3.47* 


Pram  to 

MHII- 

litres.* 

3-7 


Volume.    (Fluid.) 


Ounce  to 
Milli. 
litres. 

Qaartto 
Litre. 

Gallon  to 
Litres. 

Milli- 

litre t  to 

Dram. 

Millililre 
to  Oance 

Litres 

to 
Qnarts. 

Decm- 

lilre  to 

GaUons. 

29.57 

.94636 

378544 

.27 

.338 

1.0567 

2.6417 

Hecto- 
litre to 
Baabcls. 

2.8375 


Inch  to 
Centimetres. 


Foot  to 
M^re. 


16.38/     I   .02832 


Yard  to 
Metre. 


.765 


Cube. 


Bushel  to 

Hectoliter. 


•35242 


Centimetre 
to  tnch. 


.o6z 


DecioMtr« 
to  Indhes. 


61.023 


Meti«to 
F%«t. 

35.3»4 


Metre  to 
Yards. 


1.308 


Weight. 


Grain  to 
Milligrams. 


At.  OnnoB 

to  Grains. 


64.7989  I  a8.3495 


At.  Pound  to 
Kilogram. 


•453  59 


Tr,  Ounce 
to  Grains. 


31.10348 


MilliKnun 
to  Grain. 


.01543 


Kilocrram 
to  Grains. 


15432.36 


Hectofcramt  I  Kilogram 
to  At.  Ounces,  to  Pounds 


3  5274 


2.20462 


Quintal  lo  Av.  Pounds,  220.46.      Tonnes  8  to  Av.  Pounds,  2204.6.      Grams  to  Tr. 
Ounce,  .032 15.    Av.  Pound  =  453.592  427  7  grams.    Kilogram  =  15  432.35639  grain& 

NoTB.— The  U.  S.  yard  is  equal  to  the  British  yard.     British  gallon  =  4. 543  4^ 
litres.    Bushel  =  36.3477  litres. 


"Value   of  the   Aletre  in  terms  of  the  British  Imperial  Yard,  and  of  the 
Committee  Metre  (CM.)  of  the  U.  S.  Coast  and  Geodetic  Survey.    (O.  HATtUman.) 


Authority. 


Hassler »• .  39 .  380  91 7 

Kater 370  79 

Bailey 369  678 

Clarke 3704^2 

Comstock 369  85 


Value. 


39-36994 
39-3699 
39  369  73 

39-3697 
39.36984 


Dead    Hea  and    Valley   of  the   Jordan. 
1300  feet  below  the  level  of  the  sea.    {B-  E.  Peary^ ) 


Mean....  39.3698 
Portions  of  these  are 


"Value  of  O-old.    From  1501  to  1889  ihe  ratio  of  gold  and  silver  varied 
from  1 1. 1  to  22. 

Durability  of  "\Vood8.    Wood  columns  or  posts,  set  in  earth  opposite 
to  course  of  its  growth,  are  more  durable  than  when  set  with  it. 


*  Cube  centimetres. 


t  Cube  centilitre. 


X  100  Grams. 


S  HUlien. 


APPENDIX. 


935 


Misoellaneous  Oper^.tioiis. 

To  Remove  Paint.     Apply  chloroform. 

To  Restore  Color  of  a  Fabric    When  destroyed  by  an  acid  ap- 
ply ammonia  to  neutralize  it,  and  then  chloroform. 

■  Sllver-ware.    Warm,  and   cover  with  a  mild  solution  of  collodion  in 
alcohol,  applying  it  with  a  soft  brush. 

Grilt  Franaes.    To  restore,  rub  with  a  sponge  moistened  with  spirits  of 
turpentine. 

Ggg  Stain.    On,  silver,  rub  with  salt. 

Iron.  RnBt*    To  remove  from  white  fabrics,  saturate  the    spots  with 
lemon-juice  and  salt,  and  expose  to  the  sun. 

Ink  Stains.    Wash  with  pure  fresh  water,  and  apply  oxalic  acid,    If  this 
changes  the  stain  to  a  red  color,  apply  ammonia. 

Clinlcers  on  Brick.    Apply  oyster  shells  on  the  top  of  a  clear  Are. 

Antidotes   ft>r   Poisons. 

Additumaito  paQ€  185. 

AfiUmomal  Wint  or  Tartar  Emetic. — Warm  water  to  induce  vomiting. 

Arsenic  or  Fotoler^s  Solution. — Emetic  of  mustard  and  salt,  a  tablcspoonfVU. 
Then,  butter,  sweetoil,  or  milk. 

Bed  Bug. — Oil  of  vitriol,  corrosive  sublimate,  sugar  of  lead. 

Caustic  Soda  or  Potash,  and  Volatile  ii/A;a{i.— Drink  flreely  of  lemon -Juice  or 
vinegar  in  water. 

Carbolic  ^ctU— Floor  and  water,  and  glutinous  drinks. 

Carbonate  of  Soda,  Copperas,  or  CchaU, — Administer  emetic;  soap  or  mucilagi- 
nous drinka 

Chloroform.— kppXy  cold  water  to  bead  and  fbce,  artificial  respiration,  and  gal- 
vanic battery. 

Laudanum,  Morphine,  or  Opium. — Administer  strong  coffee,  mustard  flour,  butter 
or  oils  in  warm  water,  and  exercise. 

Muriatic  or  Oxalic  Acid.  — Give  magnesia  mixed,  and  soap  dissolved  with  flresh 
water. 

NUrite  of  Silver.— Salt  in  water. 

Sulphate  of  Zinc  or  Aed  Precipitate.— G\yt  milk  or  white  of  eggs  OOplomsly. 

Sulptturic  Acid.—Aqwi  fortia 

Strychnine.— Kmetie  of  mustard  or  sulphate  of  zinc,  aided  by  warm  water. 

Miotive    Po\ver   of  tlie   ^World, 
Steaxn-engines.    In  Horu-Pavoer. 

United  State*. ...  7  500  000  I  Germany 4  500000  I  Austria 1 500000 

England 7000000  |  France. 3000000  |  Other  countries.  Z9000000 

Steam-boilers   in    Foreign,   Countries. 
France,  including  Locomotive. .  51 390  |  Germany  ....  60700  |  Austria 19000 

I^oooznotives  in   IToreisn   Countries. 

France 7000  |  Germany. . .  xoooo  |  Austria. . . .  2800  |  Other  countries. . .  85  200 

The  steam-engines  of  the  world  represent  the  power  or  work  of  1 000000000  men. 

{Bureau  of  Statistics^  Berlin,  1887.) 

Destructive   Stress  of  Beltingf.    {Horace  B.  Cfdle.) 

In  Lbs.  per  8q.  Inch. 


MuMrtol. 

Mul- 

mam. 

MbUman. 

Exten- 
siM.* 

Materia. 

Mail- 

mnB. 

Minim  nm. 

Exton- 
■Ion.* 

Hest  leather. 
Rawhide — 

Llw. 
8000 
6750 

Lbt. 
3850 
3000 

Ineh. 
.018 
.18 

Robber 

Cotton  belt'g 

Lba. 
3886 

«9>3 

Lb*. 
3000 
9000 

Inch. 

.059 
.OSf 

•  At  400 1^  ptr  19.  Inch* 


93^  APPENDIX 

Xjargest  CoTistruotioxis  axid  !N"atural  Formations* 

New  Opera-House,  Paris. — Covers  3  acres,  and  has  a  volume  of  4  387000  feet 

Popocatapetl^  Highest  active  V(Acano^  Mexico.— Has  a  crater  one  mile  in  diametei 
and  1000  feet  in  depth.    (See  p.  182.) 

Telegraph  Wire  over  river  Kistnah,  India.  — <6ooo  feet  in  length  and  xooo  feet  in 
elevation.    (See  p.  179.) 

Chinese  Wall,  Built  220  B.C.    (See  p.  179.) 

Lambert  Coal  Mine,  Belgium. — 3490  feet  in  depth. 

Mammoth  Cave,  Kentucky  —  Some  of  its  chambers  are  traversed  by  navigable 
branches  of  the  subterranean  river  Echo. 

St.  Oothard  Tunnel.— It8  summit  is  900  feet  below  the  surface  at  Andermatt,  and 
6600  feet  below  the  peak  of  Kastlehorn.    (See  p.  179.) 

Bibliothique  NaJtionale,  Paris. — Founded  by  liouis  XIV.,  contains  1400000  vol- 
umes, 300000  pamphlets,  175000  MSS.,  300000  maps  and  charts,  and  150000  coins 
and  medals.   Engravings  x  300000,  contained  in  1000  volumes,  and  looooo  portraits. 

Desert  of  Sahara,  Africa. — Length  3000  miles,  average  breadth  900  miles,  and 
area  2  000  000  sq.  miles. 

Pyramid  of  Cheops,  Egypt.— Volume  of  masonry  89038000  cube  feet;  weight  of 
stone  computed  at  6  316000  tons.     (See  p.  174.) 

Bell,  Moscow. — Circumference  at  base  68  feet,  height  31  feet.     (See  p.  xSi.) 

Bridges.*    RicUlo,  Venice. — A  single  arch  of  marble,  98.5  feet  in  length. 

Clifton  Suspension,  Bristol,  Eng. — Span  703  feet,  elevation  245  feet. 

Niagara  Suspension,  XJ.  S. — Cantilevers,  of  steel,  length  8x0  feeL  Elevation  above 
the  rapids  245  feet. 

Britanma,  England. — 1512  feet  in  length,  and  elevation  103  feet 

Forth,  Frith  of  Forth,  Scotland.— Length  8098.5  feet,  exclusive  of  approaches  of 
5349.5  leet.  Two  Cantilever  spans  of  17x0  feet  each.  Piers  360  feet  above  water. 
Roadway  150  feet  in  the  clear  above  water.  Iron  and  steel  54000  tons.  Masonry 
350040  tons. 

Toy,  Scotland. — Length  3  miles,  85  piers,  and  elevation  77  feet 

Coluxnxia  or   Pillars. 

When  a  column  or  pillar  is  without  its  vertical  line;  one  with  slightly  rcNiiided 
ends  becomes  capable  of  greater  resistance  than  one  with  square  end& 

Experiments  at  the  U.  S.  Arsenal  at  Watertown,  Mass..  devel0|)ed  that  the  ver- 
tical resistance  of  timber,  to  transverse  compression  or  crushing,  was  about  one 
third  of  its  resistance  to  longitudinal  compression,  and  hence,  that  the  area  of  the  cap 
or  the  head  of  a  timber  column,  should  proportionately  exceed  that  of  the  column. 

Steaxn-engrine   JN'otes. 

Horse -poioer,f  Nominal.— -la  usually  computed  flrom  the  volume  of  steam  dis- 
charged ffom  the  cylinder.  Its  measure  for  an  ordinary  non-condensing  engine  is 
about  .4  of  its  actual  power.  It  refers  more  to  the  dimensions  of  an  engine  than 
its  capacity. 

Indicated.  —Is  the  measure  of  the  force  exerted  by  an  engine,  and  fh>m  this  ia  to 
be  deducted  fur  leaks,  friction  of  its  partd,  and  of  its  connecting  parts,  about  10  per 
cent. 

Feed  fTa^er.— Ordinarily  2  to  3.5  gallons  or  17  to  30  lbs.  of  water  are  required  for 
each  IH*. 

Fuel.— the  ordinary  consumption  of  fliel  may  be  taken  at  3  lbs.  per  IIP  for  a 
non- condensing  engine,  and  2  llis.  for  a  condensing. 

Boilers. — 13  to  15  sq.  feet  of  heating  surface,  or  .4  to  .5  of  grate  surfkce,  with 
natural  draught,  will  give  one  IH*. 

Flow  of  Steam. — ^The  velocity  of  it  In  feet  per  second,  may  be  determined  by  the 

formula,  60V 1'  +  460°  =  V;  or,  60  times  the  square  root  of  the  sum  of  the  tem- 
perature of  it  in  degrees,  and  460.    ThQs  for  a  pressure  of  xoo  lbs.  per  sq.  inch  a* 
velocity  of  900  feet  may  be  obtained.    (John  Bichards^  PhiUi. ) 

*  AdcUtioDftl  to  page  z8z.       t  See  •Im  pp.  733,  734. 


APPENDIX.  937 

i^tlantio  and  f>aolfio  Oceans.  There  is  not  uty  difference  in  tbe 
mean  levels  of  these  Oceans  at  Aspinwall  and  Panama,  as  determined  by  Geo.  IL 
Totten,  who  constracted  the  Panama  Railroad. 

Origin  and  IPeriod  of*  GJ-reat  Inventions. 

See  also  C/iranoloffif,  pp.  71,  72,  9x5. 

Air-engine. — ^Amonton,  1699.    Stirling,  1827.    Ericsson,  1855. 

Air-pump. — Otto  Gaeriche,  x65a     Anemometer. — ^Walflus,  1709. 

BaUoon.—FiT8ty  Lyons,  France,  1783.     Barometer,* — ^Torricella,  1643. 

Battery. — Electric,  1745;  claimed  by  Kleist,  Cunaeus,  and  Muschenbroch. 

Bridges  (Suspension) Of  chains,  China,.ioo  R  G. 

Bayonets. — At  Bayonne,  1670.    Socket  bayonet,  1699. 

BeUs. — In  Christian  church,  400;  in  France,  550.     BeUows. — Egypt,  1490  B.G. 

Bessemer  SteeL — Sir  Heniy  Bessemer,  1856.     Blankets.*— England^  1340. 

jB2cu<in^.— Germany,  1620.     Bullets.— Of  stone,  1418 ;  of  iron,  155a 

Calio)  Printing. — Egypt;  introduced  in  England  1696. 

Camera  Otfscura. — Roger  Bacon,  1214;  Newton,  1700;  Dagoerre,  1839. 

Candles. — Of  tallow,  x29a      Cannon. — x  118;  England,  1521.    . 

Carriages. — Vienna,  15x5;  England,  1580. 

Clocks.*— 'To  strike,  by  Arabians,  800;  by  Italians,  120a 

Coin.* — 1x84  B.C. ;  China,  x2oo  B.C. ;  Rome,  576;  England,  xzoi. 

ComjMut.*— China,  2634  B.C.     Cotton  G'iVj.— Whitney,  1793. 

Dyeing. — 1490  B.G.    Prussian  Blue,  Berlin,  17x0. 

/dynamite.— Sobrero,  1846;  Nobel,  1867. 

Electric  Discoveries.*— hejden  Jar,  Cunseas,  X746  ;  Electric  Light,  Davy,  xSoo; 
fii'st  patent  of  it,  Greene  &  Staite,  X846. 

Electro-Magnetism. — Oersted,  Copenhagen,  X819. 

Electrotyping. — Jacob!  of  Russia  and  Spencer  of  England,  1837. 

Engraving.— Ch\nsLj  xooo  B.C. ;  on  metal,  1423;  line  or  steel,  1450;  etching,  X5i2. 

&CW.— Murdock  Cornwall,  X792;  Meter,  Clegg,  1807;  Dry  meter,  Malam,  x82a 

Glass.*— Egypi^  X740  B.C.    Windows,  France,  12th  century. 

Gold  Leaf. — Egypt,  X700  B.C.      Gunprnader. — Unknown;  rediscovered  1324. 

Horseshoes. — 300;  of  iron,  480. 

Hydraulic  fV«ss.^~Bramah,  X796.      Hydraulic  Bam. — Whitehurst,  1772. 

Hydrogen.— iBol&ied  by  Cavendish,  1766.  Iron  Vessels.-— J.  Wilkinson,  England, 
1787;  Ship,  x82x;  Steam-boat,  1830;  Ship  building,  1833. 

Kaleidoscope.— Sir  Daniel  Brewster,  1814-17.     iTntties.— Table,  England,  155a 

LifS'boaL— 1817.     Litfiography.—Senefelder^  about  X796. 

Locomotive. — Watt,  X769  and  X784.    Ciignot,  1769. 

Matches. — Friction,  1829.     Medicine.— From  Greece,  in  Rome  200  B.  G. 

if trrorf. --Glass,  Venice,  X3th  century.      Newspaper. — First  authentic,  X494. 

Omnibus. — Paris,  X827. 

Organs. — 755.     England,  95X.      Oajy^^en.— Priestley,  1774. 

Paper.— From  silk,  China,  130. B.C.;  flrom  rags,  Egypt^  1085. 

/%n«.— Of  steel,  1803;  gold,  X825.      /%»Jd7».— Of  lead,  50.    England,  X565. 

Pianoforte.— \\a\j^  X7fa      Phonograph.— F,d\win,  1877. 

photograph.— F,ufgL^rxd^  1802;  perfected,  x84i.     R>tt«!fy.— Oldest,  Egypt,  2000  B.  01 

PoH-Ojg^ — ^Vienna  and  Brussels,  1516.    Stantp«.  ^England,  x84a 

Printing.*— Tjpe&y  K  Comer,  1423. 

Jiailroad.*— Passenger,  England,  Sept  27, 1825. 

/S^eunn^-mocAw.— Patented,  England,  X755. 

aUeping-car. — x 858 ;  Pullman,  X864.     Soap. —England,  16th  centaiy. 

(S;pec<ac/e».— Italy,  xsth  century. 

Telephone. — A.  G.  Bell  and  G.  J.  Blake,  Boston,  1874. 

Torpedo.— Ct^M^  to  D.  Bushnell,  1777. 

jjtt  111  J        -   I  ■■  wiiw 

4K 


938  '  APPENDIX. 

Valued  of*  soxxxe   Preoious  MetaJs. 

Per  Ptmnd  Troy. 

% 


Cobalt 9    JO 

Gold ,.      250 

Iridium 295 


Osmiam S  590   Rhodium S41S 

Platinum 102    Ruthenium 975 

Potassium.... 25fi9iJvcr* 12 


K-xpenditnre  in.  Kngland  for  Various  Purposes  aud  of 
Articles  Compared  witli  tliat  of  Spirituous  Liciiiors- 

In  MiUUms  of  Pound  Sterling. 


Missions i 

Rducation xi 

Fuel  for  Households. .  15 
Linen  anil  Cotton 20 


Tea,  Coffee,  etc 20 

Sugar 25 

Milk..... 30 

Butter  and  Cheese. ...  35 


Woollen  Goods 46 

BwaA 70 

Rents. 130 

liquors. Z36 


AlunairLuin. 

Elastic  limit  of  bars  in  tension  14000  lbs.  per  sq.  inch.  Specific  heat  .2185.  Melt 
at  1400°.   Malleable  at  from  200*^  to  300°. 

Tensile  strength,  nUfmate,  26000  Iw.    Modulns  of  elasticity,  12000000. 

Shrinkage  .022  per^  linear  foot.  It  is  comparatively  unaffected  by  ezpostire  to 
air  or  water.     Cuoe  inch  weighs  .0926  lb.    h  cube  foot  weighs  160.013  Ibe. 

KCtmtinued  on  pag6  976.) 


Busliels  of  Seed  Kequired  per  Acre. 

In  B%t9hel8  per  Acre. 

Flax 5    to  2 

Grass,  blue. .  .695  "    .875 
orchard.  1.5     ''2.25 


Barley 1.5  to  2.5 


Beaiu9 1 

Buckwheat 75 '' 

Carrots 75  '* 

Clover,  red 16  " 

"      white..  .16" 
Com,  brown  . .  1      ** 
Indian...  .25 


it 


«t 


3 

1.5 

1.5 
•33 
•?3 

1.5 

X 


Ik 

''    Herds'.. 
"  Timothy 


Hemp z 

Millet I 

Mustard 25 


375'*    .5 
"    .625 


Oats 

Parsnips. . 

Pe«6e 

Potatoes. . 

Rice 

Rye 

Turnips... 
Wheat. . . . 


2 

to 

4 

•5 

kk 

.'/ 

2.5 

ik 

3-5 

5 

xo 

2 

ti 

2-S 

Z 

11 

2 

.06 

u 

.16 

».s 

k« 

a 

See  also  n««  t*8u 

Domestic   Rexiiedials. 
CWor*.— Discharged  by  an  acid,  can  be  restored  by  Ammonia. 

i^/t««.  -CarlioMc  Acid  (20  drops),  evaporated  on  a  hot  surface,  as  a  shoye),  will 
drive  them  from  a  room. 

Ink— To  remove  stains  from  a  white  fabric,  wet  with  Milk  and  cover  with  Salt 
Mildew  stains.— 'M.&y  be  discharged  by  Buttermilk. 

Jfwg'Mito.— Camphor  (ium,  vaporized  over  the  chimney  of  a  gas-burner  01 
lamp,  will  drive  them  from  a  room. 

Bati.— To  drive  them  off,  apply  Chloride  of  Lime  to  their  locality. 
Sewer  Gas.— The  noxious  effects  removed  by  Chloride  of  Lime. 

Snnstroke.    Remove  patient  to  a  cod  place,  administer  water  Arerty,  and 
Quinine  or  Salleate  of  Soda. 

Comparative   "Valnes   of  Food  for   SHeep. 

Wool  and  TaUow  Produced. 
Food.  Wool.    Tallow.  Fooo.  P  Woo).  Tallow. 


Wheat X 

Oats 04 

Barley 89 

Pease 88 

Rye,  with  salt 87 


Wool. 

Tallow. 

LlM. 

Lbt. 

■97 

•99 

•7« 

•7 

.78 

1 

X 

.7 

•97 

.58  u 

Gern-fneal,  weti 83 

BackwlMat «...  .70 

Rye,  witboui  salt ....  .58 
Potatoes, witli salt...  .3 
'<      withoiU  salt.  .38 


•93 
•7 
•97 
•45 

•45 


Lb«. 
.29 

•55 

•7« 

.a 

.19 


APPENDIX.  939 

Oroton  i\.quedxiGt.    New  Torky  189a 
X>ixnen8ion8,  Xjengtli,  and   Capaoit^r. 

Tunnel  proper..... =9.63  miles}  „     ,^  ,^^ 

Aqueduct  m  open  trench 1.12     "    j  i"-  /^  »«"«'»  ««  wur*.!. 

Pipes  to  Central  Pftrk  reservoir,  3.37  miles  in  length. 
Tunnel  ander  Harlem  river,  307  feet  below  tide-water  level. 

Course— Vxom  Crolon  Lake,  350  feet  above  the  Dam,  and  runs  generally  Southerly 
through  Westchester  Co.  and  the  24th  Ward  of  New  York,  to  a  point  7000  feet  K.  of 
Jerome  Park,  with  a  uniform  inclination  of  .7  fbet  per  mile;  its  general  form,  that 
of  a  hdrse-sboe  with  curved  invert ;  being  13.3^  feet  in  height  and  13.6  feet  in 
width  ;  having  a  computed  capacity  of  318  millions  of  gallons  per  day.  From 
thence,  where  it  is  contemplated  to  construct  a  large  reservoir,  for  the  supply  of 
the  annexed  districts  of  the  city,  to  its  termination  at  135th  Street  and  loth  Avenue, 
its  capacity  is  reduced  to  250  millions  of  gallons  per  day.  and  the  Aqueduct  which 
tcova  there  is  to  be  operated  unddr  pressure,  is  circular  in  its  section,  12.3  feet  fn 
diameter,  with  varyiug  inclinations,  the  portion  under  the  Harlem  river  being 
10.5  feet 

From  135th  Street  it  is  connected  to  x2  cast-iron  pipes,  48  in&  in  diameter,  4  of 
which  connect  with  the  old  Aqueduct,  4  with  the  present  City  distribution,  and  4 
leading  through  Convent,  (gtb)  and  8th  Avenues  to  the  Reservoir  in  Central  Park. 
The  operating  capacity  of  all  being  equal  to  that  of  the  Aqueduct,  250  millions  of 
gallons. 

The  Aqueduct  is  for  the  greater  portion  of  its  length  a  tunnel,  it  raising  to  the 
surface  but  at  four  points,  fVom  which  it  can  be  emptied  through  gates  into  the 
adjacent  rivera 

Copoctfy.— The  watershed  ef  the  Croton,  in  extreme  dry  weather,  with  storage, 
is  250  million  gallons  per  day. 

The  present  storage  system  includes  Croton  lake.  Reservoir  at  Boyd's  Comers, 
the  middle  brunch  Reservoir  of  the  Croton  valley,  and  several  lakes,  with  a  total 
capacity  of  10 000  million  gallons:  three  dams  being  in  progress  of  construction  and 
others  contemplated,  viz.,  one  at  Carmel  and  one  at  Quaker  Bridge. 

The  Capacity  of  the  Reservoir  in  Central  Park  is  computed  at  1000  million  gallons. 

loe. 

Additional  top.  195. 

X.5  in&  thick  will  support  a  man;  5  Ins.,  an  84-lbB.  cannon;  xo  Ins.,  a  body  of 
men;  tS  ina,  a  railroad  train. 


Rape 55 

Almond,  sweet 47 

»'       bitter 37 

Turnip 45 

Additional  to  pace  189. 


Yield  of*  Oil  in   Seeds. 

Percent 

Mustard,  white 37 

Hemp 19 

Linseed 17 

tCom,  Indian 7 


Oats 6.5 

Clover-hay 5 

Flour- wheat 3 

Barley 3.5 


Historioal  XCventa   and   Rotable   F'aot*. 

.^tMtro/ia.— Discovered  x6a3. 

Amano.^  Produce  per  acre  44  times  greater  than  potato,  and  131  times  greater 
tlian  wheat 
Camelf.— Some  can  travel  800  miles  in  8  daya 
CcKocoNidic.— Of  Rome,  remains  of  6000000  bodiea 
Cfttna.'-Aathentic  history  of  it,  3000  B.C.     Crucifixion,— yj. 
Library  of  Alexandria — 47  B.  C.  contained  400000  books. 
Peru. — Steel,  consumption  4000000  per  day. 
<8Za«ery.— Abolished  in  Eng.  West  Indies,  1834;  Russia,  1861. 

N*.  Uatitude  reaolied  \iy  Sxplorers.    1884.— AdoIpbuB  W.  Qreelj, 
U.  9-  Army.  %z^  94'.    The  4isUnce  ttom  this  (0  the  Pole  is  4^6  oa  mileg. 


940 


APPENDIX. 


Roolc    I>ril  line. 

Band  DrUt  Co..  New  York. 


Drill*. 


No. 

Kid 

I 

3  and  2  A 

3  and  3  A.... 
3.25  and  3. 25  A 

4  uiid  4  A 

5 

7 


Cylinder. 
DUin. 

Usual 

D«pth 

Drilled. 

Ins. 

Feet. 

1-875 

1.5 

2.85' 
3.75 

6  to  ro 

3- "5 

iotoi5 

335 

3.625 

15 

20 

4-5 

20  to  30 

5.5 

Dlam 

Deoth 

of      1  Drilled 

Diam. 

Dlam. 

steam 

St«am 

Bottom  1    in  10 
of  Hole.t  Hours. 

of 
Hose. 

of 
Steel. 

Boiler. 

npe. 

Ida.     1    p0et 

Ins. 

Ins. 

IP 

Ina 

I              :    .••  . 

.75 

.625 

3 

•75 

t.0695 

50 

•75 

•75 

5 

I 

IS 

60 

•75 

I 

7 

1.25 

1.75 

70 

z 

1. 125 

10 

>-5 

1-75 

70 

I 

1. 185  to  1.25 

10 

i-S 

3 

70 

X.25 

1.375 

12 

2 

2.35 

70 

1.5 

1.5 

15 

2 

[      •  •  •  • 

"•5 

175 

20  to  23 

2.5 

Capacity  in 

Free  Air 
per  Minute. 

Cube  Feet. 
670 
1196 
1562 
1650 
1920 
2242 

2395 
2520 
2897 
3128 
3960 
4icx> 

4530 
5000 

6000 
6B20 


Ptand    A.ir    Compressors, 

RandrCwlUs  Class  "^J?,/' 

Compound  Steam  Condensing.     Compound  Air. 

StCHm  Pressure  135  lbs. 


Stroke. 


Cylinder  Diameters. 

1 

Steam. 

Air.                1 

Hl<fb. 

ill 

Hiffh. 

Low. 

Ins. 

Ins. 

Ins. 

10 

18 

10.5 

»7 

12 

22 

»3 

21 

M 

26 

15 

24 

"4 

26 

»5 

24 

16 

30 

»7.5 

28 

16 

30 

»7S 

28 

16 

30 

17-5 

28 

18 

34 

20 

32 

18 

34 

20 

32 

18 

34 

20 

32 

20 

3« 

22.5 

36 

22 

40 

24 

38 

22 

42 

25 

40 

84 

44 

26.5 

42 

26 

48 

29 

46 

88 

52 

30 

48 

Ins. 

30 
36 
36 
42 
36 
42 
48 
36 
42 
48 
48 
48 
48 
48 
48 
48 

Rand  *'  Impei-ialf'*  Type  X. 
Duplex  Steam  Non- Condensing.     Compound  Air. 


Terminal 

Revolutions 

Air 

M(mit«. 

Preasnre 

at  80  lbs. 

No. 

IH>. 

8S 

102 

83 

182 

83 

238 

75 

252 

75 

a93 

75 

342 

70 

365 

75 

384 

75 

442 

70 

475 

70 

604 

65 

625 

65 

690 

55 

763 

55 

915 

65 

1040 

Steam  fr< 

9ssure  t»  to  100  Itw. 

BUmm 

Capacity  In 
Free  Air 

Duplex 

Diameter  of 

Revolution* 

and  Aft 

Steam 

AirCy 

inders. 

Stroke. 

MHmte. 

Pressor*, 

per  Min. 

Cylinders. 

Hllfh. 

Low. 

'  at  xoo  Iba. 

Cube  Feet. 

Ins. 

Ina. 

Ins. 

Ins. 

No. 

IIP. 

145 

6 

6-5 

10 

8 

200 

25 

*        245 

I 

75 

12 

zo 

190 

4« 

370 

8 

9 

X4 

12 

175 

63 

535 

zo 

zo 

x6 

14 

>65 

9« 

705 

Z3 

zz 

18 

z6 

Z50 

Z20 

1050 

14 

13 

22 

z6 

150 

Z78 

Rand 


Capacity  In 
FVeeAIr 
per  Min. 

AirCy 
Diam.  of 
eacb. 

Cube  Feet. 

Ins. 

11.7 

4 

22.7 

ll 

93 
163 

5 
6 

I 

xo 

275 

Z3 

pe  Ai.    iiuj 

pfex  Atr  vytu 

utert.    iMA  i 

inders. 

Revolution* 

Air  Pr«*Mnr»  p«r  Sq.  Inch. 

Stroke. 

per  Min. 

60  lb*. 

100  lb*. 

In*. 

No. 

IH». 

IH».. 

4 

200 

»-7 

2.3 

5 

200 

3-3 

4-5 

6 

200 

5-5 

7.5 

7 

200 

9 

Z2 

8 

200 

Z3.5 

Z&.S 

zo 

z8o 

'4 

30 

13 

X75 

40 

53 

appendix; 


941 


Pxn 


Siaspeiisloxi  furnaces— M!orison, 
The  Continental  Iron    Works,  Brooklyn,  N",  Y. 

Form-ula  for    Corrugated,   yu.rp.aces. 

Board  of  U,  S.  SupervUing  Enffinctri^  October  lothy  1891. 
=T.  P  =  working  pretture  in  Ibs^  per  iq.  inch,     D  mean  diameter  of  fux' 


15  600 
fiac«=i7mc2«  dtameter-|-2,  and  T  thicknest  of  metal,  both  in  ins. 

Corrugated  Dot  less  tfaan  1.5  inctaoB  in  depth,  and  flat  sarface  of  ends  not  exceed* 
ing  6  incbes  in  length. 

rFTiiokneHS    of  ^Cetal     iix    Suspensioii    ITurnaoes    fbr    dif« 
lereiit   X>ian:ieterB   and.    "^Vorking   X'resBu.res   in.  X^bs. 

I*«r   Sq..    In  oil. 

As  Determined  by  the  Formula  in  the  Rules  and  ReguJaJtums  oftheU.S*  Board. 


Inside 

Diain. 

Ini. 

A 

Ji 

t 

il 

A 

H 

i 

a 

A 

« 

■f 

ill 

n 

i 

28 
30 

162 

157 
152 

178 
172 
167 

195 
188 
182 

211 
204 
198 

227 
220 

213 

243 

235 
228 

260 

251 

243 

236 
229 

222 

216 
210 
205 

200 

195 
190 

185 
181 

177 

173 
169 

165 
162 

159 
156 

152 
150 
147 
144 
141 
139 

276 
267 
258 

292 
283 
274 

26s 
258 
250 

243 

237 

225 
219 
214 
208 
204 
199 

19s 

190 
1 86 
182 
179 
175 

308 
298 
289 

32s 
314 
304 

341 
330 
319 

310 
301 
292 

284 
276 
269 

262 

255 
249 

243 
238 
232 

357 
345 
335 

325 

315 
306 

297 
289 
282 

275 
268 
261 

255 
249 

243 

390 
377 
365 

31 
32 
33 
34 
35 
36 

147 
143 
139 
135 
131 
128 

162 
157 
153 
148 

144 
141 

177 
172 
167 
162 
158 
J  53 

150 
146 
142 
139 
136 
132 

130 
127 
124 
121 
119 
117 

192 
186 
181 
176 

171 
166 

206 
200 

195 
189 
184 
179 

175 
170 
166 
162 
158 
155 

151 
148 

14s 
142 
139 
136 

221 

215 
208 

203 

197 
192 

187 
182 
178 

174 
170 
166 

251 
243 
236 
230 
223 
218 

212 

207 
202 
197 
192 
188 

280 
272 
264 

257 

250 

J'ii 

237 
231 
225 
220 

215 
SIC 

295 
286 
278 
270 
263 
256 

250 
243 
237 
232 
226 
221 

216 
211 
207 
203 
198 
195 

354 
344 
334 
325 
3i6 
307 

37 
38 

39 
40 

41 
42 

125 

121 
118 
116 

"3 
no 

137 
134 
130 
127 
124 
121 

162 
158 

154 
150 

147 
144 

300 
292 
28s 
278 
372 
26s 

43 
44 
45 
46 

47 
48 

108 
los 
t03 

lOI 

99 
97 

IIQ 
116 
114 
III 
109 
107 

ro5 

103 

lOI 

99 
97 
95 

94 

02 

90 

87 
86 

140 
137 
134 
132 
129 
126 

162 
158 
155 

X52 

149 
146 

143 
140 

137 
135 
132 
130 

128 
126 

123 
121 
119 

117 

184 
180 
176 
172 
169 
i6s 

162 

150 
156 

153 
150 
147 

20s 

201 

197 

192 

189 

185 

i8i 
178 

174 
171 
168 
i6s 

162 

159 
156 
154 
151 
149 

227 
222 
217 

213 
208 
204 

238 

233 
228 
223 
218 
214 

260 

254 
248 

243 

238 

234 

49 
SO 
51 
52 
53 
54 

95 
93 
91 
90 

88 

87 

85 
84 
8a 
81 
70 
78 

114 
112 
no 
108 
106 
104 

124 

f  21 

119 
ri7 
115 
ti3 

III 
109 
107 

los 
103 
102 

133 
131 
128 
126 
124 
121 

119 

117 
IIS 
113 
1 1 1 
no 

172 
168 

165 
162 

159 
156 

191 
187 
183 
180 

177 
174 

200 
196 

193 
189 
186 
i8a 

179 

176 

173 
I70 
167 
i6s 

210 
206 
202 
198 
19s 

IQl 

229 
225 
220 
216 
212 
aog 

55 
56 
57 
58 

59 
60 

102 
100 
99 
97 
95 
94 

136 
134 
132 

130 

127 
I2S 

145 
142 
140 
138 
135 
133 

153 
151 
148 
146 

143 
141 

171 
168 

165 
162 

159 
157 

-188 
184 
181 
178 

175 
172 

305 
201 
198 
19s 

I9X 
188 

942 


APPENDIX. 


InfLxience   of  th.e   Rotation   of  the   Kartfa.  on    lif ovln^ 

Bodies. 

The  Rotation  of  tbo  E«rtti  on  its  axis  effects  on  appreciable  displaoement  of  the 
rails  in  a  line  of  railroad. 

In  the  case  of  an  express  train  weighing  400  tons,  running  N.  at  the  rate  of  5c 
miles  per  honr,  the  pressure  on  the  right  hand  or  Easleru  rail  is  computed  at  501 
lbs.,  and  with  a  steamer,  alike  to  the  Inman  Line  "City  of  New  York,"  the  press- 
are  is  computed  at  936  lbs.  This  lateral  force  increases  to  the  Polea  {T.  Von  Bavier.% 

Bacteria  in  Kartli-soil. 

In  Virgin  soil ;  soli  flrom  beneath  Roadways;  from  Gardens;  a4}acent  to  Factories 
from  Courtyards  and  Cemeteriea 


HI 

09 


Meter*. 

I 


No. 
124800 


Depth 

below 

Surface. 

Germa 
per  Cube 

Centi- 
meter.* 

Meters. 

2 

No. 
ISO 

Depth 

below 

Surfane. 

Meters. 

I 

m%  f  er 

55(51 


No. 
64300 


^^1 


Metre*. 

a 


go   B  J 


No. 
590 


*  .061  o23-cabe  Inehee. 


The  number  very  rapidly  decreases  in  the  deeper  layers  of  the  earth,  both  in 
virgin  soil  and  in  that  which  has  been  poUated.    (John  Reimtrs.) 

w  atexvxxieters. 
■^ITortHinirton's.     Ne-wr   York. 


Dtam. 

ofRe- 

eelvin^ 

Pipe. 


Int. 
•  625 

•75 


Vidome 

delivered  per 

Minute. 


Cube  ft 
1-5 
3 


Galls. 
11-25 

23.5 


Diam. 

ofPe- 

celTinjf 

Pipe. 


Ins. 

I 


Volnme 

delivered  per 

Minute. 


Cube  ft, 

5 
6 


Galls. 
37-5 
45 


Dism. 
of  Re- 
ceiving 
Pipe. 


Ims. 

2 

3 


Volume 

delivered  per 

Minute. 


Cube  ft. 
8 


Galls. 

60 

172 


Piam. 

of  Re- 

ceivinc 

Pipe. 


Ins. 

4 
6 


Volume 

delivered  per 

Mlnat«. 


Cube  ft. 

X30 


Galls 

435 
goo 


NoTS  1.— The  volume  of  delivery  here  given,  for  each  meter,  can  be  exceeded. 

2.— Extreme  velocity  of  a  meter  produces  incessant  and  improper  resistances; 
honce.  in  order  that  the  instrument  may  operate  only  within  a  perceptible  reductioc 
of  the  head  of  the  supply,  it  should  be  of  a  capacity  to  effect  its  duty  ai  a  moderate 
velocity  of  operation* 

Telescopes, 

Galileo^s  first  telescope  magnified  but  three  times;  but  by  the  addition  of  a  c<Mt- 
cave  eye  and  convex  object  glass  he  attained  a  magnifying  power  of  30  times. 

The  construction  of  large  lenses  is  at  present  limited  by  the  chromatic  aberration, 
or  separation  of  light  in  a  telescope. 

Euler  was  the  first  to  discover  the  principle  governing  this  aberration  and  the 
method  of  abolishing  it. 

I^iameters  of  tlie  Principal  Ol^ective  Q-Ia««es« 

United  Stales. 


Loe«tloo. 


Diameter. 

Fowl 

Length. 

Ins. 
la 
la 

12.56 

Feet. 

15 

ao.a 

LDcatien. 


Rochester 

Washington 

University,  Va... 
Lick  Observatory. 


Diameter. 


Ins. 
16 
26 
26 
36 


Focal 
Length* 


Fett. 
22 

32-47» 
as 
56. t 


West  Point. 

Wesleyan  Untveraity . . 

Harvard* 

ICadifon,  Win 

University  of  Sontbem  California  contemplates  the  construction  of  one  of  40  intt 

The  largest  telescopes  outside  the  U.  S.  are.  Gates  Head,  England,  24  ina ;  Viani* 
Austria,  27  ins. ;  Nice,  France,  28  ins. ;  Pulkowa,  Russia,  30  ina 

*  To  have  foor  leoMi  of  34  inchei. 


ABPsamx. 


943 


Manuffecture  of  loe. 
Machinery  and   Apparatus. 


ProdiM- 

xion  of 

Ie«  laS4 

Hour*, 

Toas. 

Z 

3 
5 

lO 

ia.5 

IS 

ao 

30 

40 
45 
60 

80 


Stewi-£B(iiie. 

Com- 
preMon. 

Ins.          R«T. 

Ina. 

7X  9 

8X16 

Z0X20 

90 
80 
75 

SXiot 

5X15 
6X18 

12X30 

70 

8X20 

14X30 

65 

8X25 

14X30 

65 

X0X20 

16X30 

35 

10X30 

18X361 
20X36 
24X36 
26X48 

50 
45 
45 

12X30 
15X30 
12X30; 
20X36 

-  ] 


Blookfl  of  loe. 


Ins. 

BX"  8X28 

8X15X28 

8X15X28 

1X22X281 

iXiiX28f 

1X22X28  t 

1XHX28) 

1X22X28  I 

iXuXaSf 

1X22X28  < 

1X11X28) 

1X22X28  ( 

iXnX28t 

1X11X28 

1X11X28 

1X11X28 

1X22X28 


Water 
required 

P" 

MinuU. 

Coal. 

Opcntwv 

Es«i-    Fire- 
neers.    men. 

Ub- 
orers. 

Oallons. 

T's.« 

5 

•5 

2 

2 

— 

15 

z 

3 

2 

2 

20 

1.5 

2 

2 

2 

30 

2 

2 

2 

3 

35 

2-5 

2 

2 

3 

40 

3 

2 

2 

4 

50 

4 

2 

2 

5 

60 

5 

2 

2 

6 

90 

6.5 

2 

2 

7 

— 

— 

2 

a 

8 

— 

— 

2 

a 

9 

100 

13 

2 

a 

zo 

ofSnglne 

and 

ria^t. 

Lbs. 
20000 
58000 
69000 

lOI  OQO 

129000 

167000 

190000 

225  000 
360000 

360000 


2000  lbs. 


t  One  oomjinMor.  {  And  one  16x36  ins.  additionaL 

All  others  two  compressors,  and  all  single  acting. 

Pressure  of  Steam.— For  all  75  lbs.  per  pf^uare  inch. 

Cut-off.  — For  the  three  first,  which  are  slide  valves,  three  eighths.  For  the 
others,  as  Corliss  engines,  one  fifth. 

The  volumes  of  ice  above  given  cover  that  lost  in  thawing  the  molds  to  release  it 
The  coal  given  as  that  required  is  inclusive  of  that  required  to  distil  water  from 
which  to  make  the  ice. 

NoTB.—In  order  that  the  proper  dimensions  of  engine  and  plant  may  be  arrived 
at  for  a  required  volume  of  ice,  it  is  necessary  that  the  quantity  and  temperature 
of  the  water  supply  should  be  furnished. 

2.— The  ice  is  produced  fVom  water  of  distillation ;  hence,  it  is  clear  and  trans- 
parent. 

'\Vh.exi  a  lk£aolxizi.e  is  operated.  \>y  'Water-po'^ver.    As  the 

water  flrom  which  the  ice  is  made  is  not  distilled  from  steam,  as  in  the  case  where 
steam  is  the  motive  power,  the  ice  produced  is  less  clear  or  transparent,  and  is 
known  as  ''white  ice.'' 

Refrifceratingp. 

Engines  for  Reft-igerating  are  in  all  respects  alike  to  those  for  Ice-making,  witli 
two  thirds  more  capacity.  As  distilled  water  is  not  required  in  refrigerating,  the 
saving  of  fuel  in  consequence  is  Ailly  thirty  per  cent.  Refrigerating  by  compression 
involves  a  much  less  expenditure  of  water  tbnn  when  it  is  attained  by  al>sorption. 

Elements  of  a  Test  of  Operation  and   Capacity  of  n 

Refrigerating  Machine. 

i<»  Liquid  in  24  ConMcutivt  Houn^  78.41  Tons  of  ^000  Ibe. 

Steam-engine.— Non-condensing,  18X36  ins.    Compressors  12.375X30  int. 

Pressure  of  Steam^  86  lbs.    Revolutions  per  minute,  56.5. 

niT.—Steamrcy Under,  84.3.     Of  compressors,  67.78. 

Temperature  of  condensing  water,  76.20.    of  condenser  room,  6a.5». 

Volume  qf  condensing  water  per  minute^  21.19  gallons.  Of  brine  per  meUr^ 
35  670  cube  feet »  a  496  900  lbs, 

^Operating  pressure,  25.22  lbs.    Condensing  pressure,  157.12  lbs. 

Anthracite  coal,  consumed,  6108  lbs.    Combustible,  63,6^ per  cent. 

Coal  per  lHVper  hour,  3.0a  Uit  Consumption  equivalent  to  the  liquefaciior 
of  (me  ton  of  ice,  77.88  lbs. 


944  APPKin)ix. 

^splialt    and.    A^splialt    Pavenaexit. 

Barber  Aiiphalt  Paving  Co.^  New  York. 

Rock  Asphalt  is  amorphous  limestone  impregnated  with  asphaltum,  whereas 
Trinidad  asphalt  pavement  is  a  mixture  of  sand,  pulverized  limestone,  and  asphal- 
tic  cement.  The  asphaltic  cement  is  composed  of  refined  Trinidad  asphalt,  with  a 
little  residuum  oil  of  petroleum,  the  pavement  being  an  artificial  asphaltic  sand- 
stone. 

*  In  the  cities  of  Europe,  where  asphalt  pavement  has  been  laid,  the  practice  is  to 
spread  trova  1.5  to  2.5  inches  of  it  on  a  bed  of  concrete. 

The  process  of  preparing  the  material  for  use  is  to  crush  the  rock  to  powder,  heat 
it  to  about  280*^,  spread  it  on  the  concrete,  and  then  compress  it  by  rammers. 

The  use  of  natural  asphaltum,  found  in  the  United  States,  as  Albertite  and 
Grahamite,  was  resorted  to,  but  without  success,  when  the  pitch  or  asphalt  lake  in 
Trinidad,  W.  I.,  was  discovered;  by  combining  this  material  with  highly  refined  pe- 
troleum, a  satisfactory  cement  was  produced,  which  being  mixed  with  a  sharp  sili- 
cious  sund  and  powdered  limestone,  a  desired  sandstone  was  formed;  a  compound 
possessing  the  necessary  firmness  and  resistance  to  the  changes  of  temperature  and 
durability,  under  the  wear  of  loaded  vehicles,  combined  with  smoothness,  cleanli- 
ness, and  comparative  freedom  firom  noise;  without  danger  from  the  slipping  of 
horses'  feet,  usual  with  pavements  with  smooth  surface.  So  evident  was  the  useful 
application  of  this  construction,  that  in  1870  an  essay  of  its  merits  was  made  in 
Newark  and  New  York,  and  in  1876  it  was  nirther  essayed  on  an  extended  scale  in 
Washington,  its  merits  being  evidenced  by  a  Board  of  U.  S.  Engineers.  Since  which 
time  it  has  been  laid  in  over  100  other  cities  in  the  U.  S.  to  an  extent  of  about 
20,000,000  square  yards. 

The  advantages  of  such  a  pavement  are  the  reduction  of  the  resistance  to  traction, 
economy  of  transportation,  and  fireedom  trom  jolting  in  travel,  added  to  cleanliness 
and  public  health,  as  it  is  without  seams  or  joints  wherein  filth  may-be  collected. 

Its  durability  in  wear  is  less  than  granite,  and  greater  than  sandstone,  wood,  or 
macadam. 

As  regards  the  cost  of  its  maintenance,  it  is  less  than  that  of  any  other  material 
maintained  in  like  ccmdition  of  repair. 

Origin    and    IDevelopment. 

The  utility  of  asphalt  for  covering  of  a  road  was  not  discovered  until  1849.  As- 
phalt rock,  broken  up,  was  laid  in  the  manner  of  a  macadamized  road,  and  the  re- 
sult was  such  that  in  1854  a  street  in  Paris  was  laid  with  compressed  asphalt  on  a 
foundation  bed  of  concrete. 

In  1869  it  was  first  laid  in  London,  and  is  now  extensively  laid  in  the  cities  of 
Europe  to  an  extent  in  excess  of  3,000,000  square  yards. 

Sultatitutes.  —  Tar.  As  a  substitute  for  it  ft  wa6  essayed  to  use  the  Inex- 
pensive tar,  obtained  ft*om  gas-works;  but  as  it  is  deficient  in  the  required  cement- 
ing qualities,  susceptible  of  being  rendered  viscid  by  the  heat  of  summer,  and  brittle 
by  the  cold  of  winter,  the  use  of  it  was  abandoned. 

Wood. — Wood-pavement  is  laid  in  London  and  Paris  on  a  foundation  of  concrete, 
and  it  lasts  firom  4  to  6  years. 

Stone-blocks  filled  in  with  asphaltum  water- proof  filling  has  been  practised  with 
success.  In  some  of  the  principal  cities  of  Europe,  the  uniformity  in  the  dimen- 
sions and  shape  of  the  blocks  contribute  tu  their  durability.  The  cost  of  such  a 
pavement  is  in  excess  of  all  others. 

MaMidam. — Macadam  pavement  is  unsuited  for  cities  from  the  wear  of  heavy 
Tehicles,  and  the  great  cost  of  maintenance. 

firtcA;.— Brick,  hard  burned,  laid  in  two  courses  on  6  inches  of  sand,  the  first 
course  on  its  face,  and  the  second  on  its  longitudinal  edge,  has  been  used  in  Holland, 
Ohio,  and  Illinois.  The  duration  of  such  a  pavement  depends  wholly  on  the  uni- 
formity of  the  material  and  its  burning.  In  general  practice  it  was  found  to  be 
neither  enduring  nor  economical. 

GenM  Gillmore,  U.  S.  engineer,  in  his  report  (1879)  submits  the  fbllowing: 
Requisite  of  a  Oood  Pavement.  —A  good  pavement  must  be  smooth,  and  to  promote 
easy  draught  must  give  a  firm  and  safe  foothold  for  animals,  and  not  polish  or  become 
slippery  under  wear;  must  be,  as  nearly  as  possible,  noiseless  and  fi-ee  firom  dust  or 
mud,  and  made  of  durable  material,  laid  upon  a  firm  foundation,  and  be  susceptible 
of  repairs  at  moderate  cost  at  all  seasons  of  the  year. 


APPENDIX. 


945 


Suital}!*  Xnoundatiorks  Tov  Pavements. 

A  firm  and  unyielding  foundation  is  quite  as  necessary  for  stability  and  endurance 
of  a  pavement  as  for  any  olb^ar  structure. 

Following  are  suitable  foundations  for  street-pavements,  in  order  of  value,  pro- 
vided their  thickness  is  adapted  to  character  of  subsoil  and  nature  of  traflSc,  viz. : 
X.  hydraulic  concrete  5  to  8  ins.  in  thiclcness;  2.  rubble-stone  set  on  edge  side  by  side, 
but  not  in  close  contact,  with  interstices  filled  in  with  hydraulic  concrete ,  3.  an  old 
coal-tar  pavement  properly  brought  to  slope  and  grade;  4.  rubble-stone  set  on  edge 
and  wedged  closely  in  contact  like  sub- pavement  of  a  Telford  road;  5.  un  old  pave- 
ment of  stone-blocka,  cobble,  or  rubble  stone;  and  6.  an  old  Macadamized  or  gravel 
road,  or  a  compost  layer  of  broken  stone  or  gravel,  8  or  10  inches  thick. 

Tb«  beet  pavements  now  prominently  before  the  public,  classified  with  respect  to 
the  materials  of  w^hich  they  are  made,  are  Asphalt,  Stone  block,  Wooden  block,  and 
Coal-tar  pavement&  The  wooden-block  pavement  is  not  entitled  to  a  place  in  the 
list 

Stone  PavemenU.—The  best  is  formed  with  rectangular  blocks  from  3-  5  to  4. 5  ins. 
thick.  10  to  13  in  length  on  wearing  surface,  and  8  to  9  inches  deep,  set  upon  febeir 
longest  edge  across  the  street,  upon  a  foundation  of  hydraulic  concrete. 

Ast^uxlt  Pavements. — Best  asphalt  is  one  having  for  a  foundatiop  a  bed  of  hy- 
draulic cement,  or  somethiug  equivalent  thereto  in  firmness  and  durability,  and  for 
its  wearing  surface  either  the  natural  bituminous  limestone  known  as  asphalt  rock, 
derived  flrom  the  Jurassic  region  on  the  confines  of  Switzerland,  or,  preferable  thereto, 
an  artificially  compounded  mixture  of  refined  asphaltum  and  silico-calcareous  sand, 
in  which  the  calcareous  ingredient  is  finely  pulverized  limestone.  As  the  material 
for  first-named  pavement  comes  principally  firom  vicinity  of  Neiifchatel,  the  i>ave- 
ment  is  known  as  the  Neufchatel.  Asphaltum  for  the  other  pavements  referred  to 
comes  firom  Iskind  of  Trinidad,  and  the  pavement  is  sometimes  called  the  Trinidad 
asphalt 

Netifchatel pavement— Ba&  been  extensively  laid  in  L9ndon,  Paris,  and  other  Eu- 
ropean citiea 

Although  these  two  pavements  represent  the  best  type  of  street  snrfkce,  there  is 
a  efaaracteristic  and  somewhat  important  difference  between  them,  due  to  the  fact 
that  the  Trinidad  contains  nearly  75  per  cent  of  sharp  silicious  sand,  and  does 
Dot,  therefore,  become  polishe4  and  slippery  by  wear;  while  the  Neufchatel,  being 
eumposed  entirely  of  bituminous  limestone  (a  species  of  amorphous  pulverulent 
chalk,  without  grit,  impregnated  with  bitumen),  is  by  no  means  free  fVom  this  fault 
i)  variety  of  asphalt  pavement  adapted  to  streets  of  exceptionally  steep  grade,  is  one 
Sormed  with  rectangular  blocks  of  compressed  asphalt  concrete. 

Comparative   Aferits  of*  tlxe   Several   Pavements. 

X.  Their  Firtl  CScxf.— In  cost  of  construction,  wood  is  the  cheapest;  Coal  tar  com- 
position second:  Sheet  asphalt  like  the  Trinidad  third;  Stone-blocks  fourth,  and 
Asphalt  blocks  fifth. 

3.  Their  Durability. — Assuming  each  of  the  four  pavements  named  to  be  the  beb. 
of  its  kind,  stone  and  asphalt  will  {lossess  the  longest  life,  and  wood  and  coal-tar 
very  much  the  shortest  Between  the  first  two  and  the  last  two  there  is  a  wide  gap. 
Unless  the  stone  be  of  good  quality,  asphalt  will  take  first  place  and  stone  second. 

3.  Cost  of  Maintenarux. — Order  of  merit  under  this  head  would  plare  stone  and 
asphalt  first,  and  wood  and  coal-tar  last  If  the  asphalt  is  good,  woll  mixed  and 
laid,  the  stone  must  be  both  tough  and  hard  in  order  to  maintain  the  first  place. 

Relative    I-«oa<ls    fbr    Roadv^ays    and    Pavements* 

At  Low  Speed.     (J.  W.  Howard,  C.  E.) 
Loads  which  a  Horse  can  draw  on  a  level,  eodi  day  of  10  hours,  onfolUnoing  roads. 

"    '  '  RMiatonce 


Roadway. 


Asphalt 

stone  Block 

Ordinary  Stone  Block. 

Hard  Macadam 

Hard  Gravel 


LtM. 


6095 

3006 

1828 

>39» 
"79 


RMUtance 
In  Term 
of  Ix>Rd. 


•037 
.076 

.124 

.164 

.178 


Roadwaj. 


Hard  Earth 

Worn  Stone  Block 

Cobble  Stone 

Ordinary  Earth. . . 
Sand 


Lbs. 


in  Term 
of  Load. 


1193 

.191 

"37 

.2 

730 
338 

•31 
•5 

946 


APPBNDIX* 


Formuia  for  Determination  of  Prettttre  per  Square  Inch  of  VatUmB 

Explosives  at  DijfercrU  Distances. 


V  (  Id  +  oir*-'" )  ~  **'    ^  representing  angle  with  Vie  vertical  passing  tkr<mgk 

Oii&  centre  of  the  charge,  made  by  a  line  drawn  from  it  tn  the  surface  exposed  to  the 
shade,  determined  from  the  nadir*  in  degrees ;  E  a  constant  for  the  explosive,  cu  de- 
termined by  experiment ;  C  weight  of  the  explosive  in  lbs.;  D  distance  from  centre  of 
the  explosive  to  the  surfajce  exposed,  in  feet ;  and  P  the  mMn  pressure,  corresponding 
to  that  which  would  be  transmitted  to  a  disc  of  copper,  by  a  Rodman  indenting-tool, 
per  square  inch  of  surface  exposed  to  the  shock,  in  lbs.  .  {Brev.  Brig.  General  H.  L. 
Abbott,  U.  S.  A.,  iB8i.) 

Value  of  E,  or  Relative  Strength  of  Explosives  Fired  under  Water, 


EzplotfTe. 


Dualin 

Dynamite  Xo.  1 1 

"         No.  2  . 

Explosive  Geldt. 

Gun-cottoD 

Electric  No.  i . . . 

No.  2  . . . 

Hercules  No.  i . . 

"  No.  2.. 


•0 

>» 

^1 

l-o 

l\ 

r^ 

*  s 

H 

116 

* , 

be 

232 

s 

III 

108 

75 

1B6 

100 

100 

100 

t 

120 

75 

83 

88 

259 

125 

117 

"3 

'35 

8j 

27 

91 

33 

67 

51 

69 

77 

28 

43 

38 

62 

72 

77 

211 

109 

106 

105 

42 

118 

74 

83 

87 

4 

Exploaive. 

Nitr©- 
lycerin 

H 

bL 

333 

Forcite  No.  1 . . 

Tonite 

__ 

118 

Rackarock.... 

^— 

220 

Nitre  glyc'ne. . 

100 

III 

Reudrock 

20 

lOI 

4t 

40 

160 

i( 

60 

166 

Vulcan  No.  i. . 

30 

99 

"     No.  2.. 

35 

"M 

to 

Sii 

.^'1 

0  A 

71 

Zi 

67 

78 

9' 

94 

93 

95 

06 

78 

72 

82 

&<8 


86 
84 

^1 


3 

86 

Illustration. — Assorae  the  distance  between  the  line  or  the  centre  of  a  charge 
of  dynamite  No.  i  and  the  bottom  of  a  vessel  to  be  5  feet,  the  angle  between  the  line 
of  centre  of  the  distance  and  the  bottom,  measured  ftrom  the  naidir,  to  be  180*^,  the 
constant  for  the  chtirge  186,  and  its  weight  100  lbs.  What  would  be  the  mean 
pressure  on  the  object  in  lb&  per  sq.  inch? 

A  =  180°,    E  =  186,    C  =  100,  and  D  =  5. 


3/76636  (i8o  -\- 186)  ioo\»  _  3// 
V  V       (5-Hoip't       I  ~\/\ 


2  428  736  X  ioo\    _^ 


(5-Hoi)''t       /       V^  V        29.489 
*  A  point  of  tha  globe  directly  ander  oar  feet,  or  that  opposite  the  tenitli. 
t  Standard  of  compariaoD. 

X  For  (s  +  .ox)*- »,  «ee  p.  310.    Tha«,  ^^ 


\    =^8  2362x0*  =  40  784  ft*. 


xo 


3t 

—  X  log.  5.0X  =  3.1  X  .699  837  =  Numbtr  39.489 


When  the  Object  is  not  in  a  Vertical  line  with  the  Explosion, 

Illustration.  —Assume  a  charge  of  gun-cotton  weighing  882  lbs.,  set  in  water,  at 
a  horizontal  distance  of  24,  and  a  vertical  of  86  feet  from  the  object;  what  would 
be  the  effect? 

-  X24 

To  obtain  a,  or  angle  of  divergence,  180O  —  Tan.      -  ^  =  15O  25',  and  180®  — 

86 


i/f 


150  25' =  1640  35' =  164.58°.    D  =  V24»-f  86a=:89,andE  =  x35.    Hence, 

3  /766^6  (164. 58  +  135)  882^  _  p 

Log.  of  89+  01  =  X.  949  43^ 
Log.  of  89.0X'-'  =  4.0938219 


(89-f-.oi)a-» 

Log.  of  6636  =3.821906 

"    "164.58  +  135  =  2.476513 
"    "  882  =2.945469 

Product 


Qootient 


=  9.243888 
4.093  822 

=55.150066 

2 


a^ioL  300  ijg 

Off  cnbe  root  of  Quotient  =  3.433  378  =  Number  2712.5  tbs.BmT. 


JkFPBNDIX 


947 


ICffioienoy  of*  '^^a.teivTa'be   Steam-JB  oilers. 

In  a  late  test  bf  J.  J.  Thorneycroft  of  his  patented  boiler,  the  following  elements 
and  resalts  are  reported  to  the  Institute  of  Civil  Engineer&    See  Vol.  XCIX.,  1889. 

Engine.— Triple  exparuioHy  Cylinders  14, 20,  and  31.5,  by  x6  ina  stroke  of  piston, 
and  jacketed.  Independent  engines  for  Circulating  pump,  Blower,  Donkey,  and 
Sheering.     All  exhausting  into  engine  condenser. 

rtesiilts   or  Xrials. 

Fuiiiace. 


ElemeDto  sad  Dlmeniloii*. 


feet. 


} 


Natural  Dmoght. 


1837 
61.2 

200.8 

26.2 

1837 
70.x 

196.3 

192.8 

XI.I 

165.2 
7-74 

— 

11.22 

—    . 

1308 

— 

X.24 

474° 

2.22 
2.28. 

150-3 

421O 

69.3° 
2.28 

2-334 
89.x 

86.8 

I 

«43 

Grate  surfoc^e  in  sq 

Heating      ''  "        

«'       sarficc  to  grate 

Pressure  of  steam  in  boiler,  p^r  sq.  In. 
«'  blast  in  fire-room  in  ins 
Revolutions  of  engine  per  minute. . 
Coal  per  sq.  foot  of  grate  per  hour. . 
Water  evaporated  from  and  at  212° ) 

per  lb.  of  coal,  ash  utilized J 

Do.        do.      per  lb.  of  carbon.. 
Do.        do.      per*sq.  foot  of 

beating  surface  |>er  hour 

Temperature  of  gases  in  chimney.. 
>'  of  air  in  fire  room.... 

Fuel  per  IIP  per  hour. 

Carbon        "        "      

IIP  •*        "    ' 

Efficiency  of  boiler  per  cent 

Water  used  for  jacket  per  JH*  per) 

hour  in  lbs. j 

Fuel.  Calorific  value  of  14900  thermal  units  per  lb.,  equal  to  1025  of  a  lb. 
bon.  Ea«:h  lb.  of  coal,  if  completely  consumed,  is  capable  of  evaporating  15. 
water  firom  and  at  2120. 


Blast  Dranffbt. 

30 

30 

26.2 

1837 

1837 

1837 

61.2 

61.2 

70.1 

186 

164.9 

1949 

27 

^§ 

2 

2342 

268.7 

318.4 

18.6 

29.8 

66.8 

10.48 

X0.2 

8.89 

12.18 

II.7 

xao4 

3-2 

4-7 

8.05 

540° 

610C 

777° 

71.4O 

60. 30 

62.  lO 

1. 981 

1.99 

2.26 

2.03 

2.04 

2.32 

282.1 

440.2 
78.2 

774  7 

81.4 

66.6 

.84 

.42 

38 

of  car- 
41  Iba 


Sarbed   Steel-'wire   Fencing.    {GcUmnized  or  painted.) 
J.  A.  Roebling's  Sons  Co.,  New  Fork. 
Four  points,  barbs  6  inches  apart,  15  feet  =  i  lb. 

u  »»  ♦»         a         '*  *'         12      "    =  I    •• 

On  Spools.— IS  foet  in  length  of  the  regular  measures  and  12  feet  of  the  thickset, 
we'fgh  each  one  lb. 

Spool,  about  18  X  18  X  17  »n8.,  measuring  3.5  cube  feet,  weighing  (Vom  60  to  xoo 
lbs.,  and  length  of  wire  ordinarily  1500  feet    Thickset  or  Hog  weighs  .2  mora 

Xo  Compute  Volume  of  Boards  tHat  can  "be  Sa'wed  out 
of  a   Round   I^og.    (M.  J.  Butler,  C.E.) 

RuLf.— From  diameter  of  log  in  inches  sobtract  4,  multiply  remainder  by  one 
half  of  it,  multiply  proceed  by  length  of  log  in  feet,  and  divide  product  by  8;  result 
will  give  number  in  feet. 

dTTI  X  —  X?-?-8  =  V.    d  representing  least  diameUr  in  inches^  I  Un{ftk  of  log 
2 
xA/eet,  and  V  volume  in  feet  of  board  measure. 

ljxu8TRATX».-~%Assume  a  log  3p  in&  in  diameter  and  15  feet  in  length. 
30  —  4  X  26 -H  2  X  IS  -^  8  =  633.75/«t  B.M. 

iroot-Pound-TF/i«n/or  Unit  of  Work-Is  t  lb.  lifted,  thrust,  or  projected 
through  I  foot,  against  gravity  or  inertl».  and  to  expressed  in  pounds  or  tons,  with- 
out  regard  to  the  period  bf  its  action. 

When  for  Unit  of  Rate  ofWork-lH  i  lb.  lilUd,  etc.,  as  above,  i  foot  tn  a  glvwB 
period,  as  In  X  second  or  minute. 


948 


APPfiKDIX. 


CfaltMinizing  decreases  strenglh  of  nuannealed  wire  5  per  cent,  and  its  ductility 
15  per  cent 

Breaking  Weight  of  No.  20,  B  W6  (.035  in.)  cracible  steel  rope  of  6  strands,  t.75 
ins.  in  circumference:  Wires,  78  to  102  tons  per  square  inch,  and  Ropes  5.75  to 
10.47  tons. 

Annealed  Wire  is  not  affected  by  galvanizing,  but  its  ductility  is  reduced  from 
179  twists  to  58,  =  68  |)er  cent. 

Annealing  Wire  reduces  its  strength  45  per  cent.,  but  increases  its  elasticity 
77  per  cent. 
Tensile  Strength  of  crucible  steel  wire  averages  85  tons  (80  to  90)  per  sq.  inch. 
Permanent  set,  Bessemer  iron  wire  12  tons  per  sq.  in.,  or  .25  of  ultimate  tenacity. 

Variation  of  tensile  strength  of  like  pieces  of  steel  wire,  galvanized  or  plain,  is 
but  3  per  cent,  for  the  former  and  8  for  the  latter 

Modulus  of  Elcuticity  (ME).  Iron  wire  22400000,  Steel  35000000,  and  crucible 
Steel  33  000  000. 

Bending.    Stress  dae  to  it,  in  a  wire  of  the  material  and  dimensions  given. 

ME  =  32000000. 

Diam.  of  pulley 10.5        13*125        16.875        18.75        24  ins. 

Stress  per  sq.  inch  50  40  31.4  28.2        22  ton& 

Durability.  Life  bf  steel  wire  ropes  over  iron  pulleys,  of  material  and  dimen- 
sions above. 

Numher  of  times  rope  passed  over  the  pulleys  without  Breaking.  Load  1568  lbs. 

Ini.  lat.  Iiu.  Int.  In*.  Ins.  Ins. 

Diam.  of  pulley .. .  5.25       7.875        10.5       13.125        16.875        18.75         24 
Number  of  times. .  6075       10300      16000      '23400        46800       72700      74100 

—  —         53ioot     85200!  —  392  soot   336600 

Over  Pulleys  24  Inches  in  Diameter.    Load  1568  Lbt. 

Number  of  Bends  before  Breaking. 


Msnufsctore  of  T.  k  W.  Smith. 


Ordinary  crucible  steel. 
Patent  improved  steel. . 

Plough  steel 

Iron  wire 

Crucible  steel 

Crucible  steel 


n 


No. 
20 
20 
20 

»9 
18 

22 


Diameter. 


Ins. 

.035 

•035 

•035 

.042 

.049 

.028 


Wire  and  strands  laid 
in  opiMMite  direction. 


1-24  Inch. 


No. 
74100 
96000 

109000 
66000 
87000 

IIKOOO 


3-24  Inch. 


No. 
51  000 
57000 
54000 
32000 
47400 
48700 


Wire  and  stranda 

laid  in  same 

dbecUon. 

3-34  Inch. 

No! 
126000 
142800 

«344a> 

79000 

117  100 

120300 


NoTii— By  author:  diameter  of  pulleys  should  be  =  10  circumferences  of  ropa 

rTeuacity   oi*  Dovetail's. 
White  Pine,  6  inches  square.    Notch  in  Length  equal  to  Depth  of  Tinker. 
S  and  D  each  representing  proportion  or  d^th  qfcuts  to  width  of 
Destruction. 
S  .25       3.9  tonsL 


41 
<( 


Destruction. 

D 

.125 
.167 
.208 

6  tons. 
6    " 
6    '* 

•33        5-75 
.41         5-" 

Greatest  strength  in  a  double  dovetail  is  attained  when  D  = .  167,  and  1&  a  single, 
when  S  =  .33.     {Gen' I  0.  M.  Poe,  U.  8.  E.) 

Sbaftine;   for   X^tUes   and    MlilU. 

Diaweter. — Should  be  given  in  inches  or  quarters  only.  Length. — ^Kot  to  exceed 
20  feet.  Velocity. — Machinery,  125  to  150  revolutions  per  minute;  Woods,  200  to 
300.  Power. — Applied  at  middle  of  length  of, shaft  whenever  practicable.  Hangers. 
—With  ac^ustable  boxes,  in  order  the  easier  to  maintain  a  shaft  in  line. 


•  From  a  paper  by  A.  8.  Biggart.  Ins'n  C.E. 


f  Long's  patent  lay. 


APPENDIX. 


949 


Granite  ., 
Bluestone 
Sandstone 


los. 

12 

8 
36  to  40 


Limestone, 


magnesia, 
oolite. ... 


Int. 

10  to  15 

36 
40  to  70 

(R.J. 


Cost  of*  Saivine  and   IDressitig   Stone. 

Per  Cube  Foot. 

Bedfbrd  Stone. — 20  centa  At  Chicago,  Soft^  mediam,  8  to  ro  cents; 
ILiiixiestone,  Alagnesiaii,  and  Oolites.  —  Medium^  13  to  17  cents; 
Marble  and  Grranite,  Hard^  25  to  30  cents. 

Rate  in  10  Hours. 

Ina. 

Marble,  Tenn. . .         9 
"    Vermont.        20 
Brownstone 20  to  25 

NoTB.— Depth  of  cut  without  reference  to  its  length  or  number  of  saws. 
Oooke,) 

X>ressiiig. 

Per  Square  Foot.    Labor  $  3  per  Day. 

Hard  Litnestone. —  Bush  hammered,  rough,  25  cents;  Medium  work, 
30  cents;  Fine  work,  35  cents. 

Cost    of  Raising   %Vater. 
1000000  Impexial  or  1  SOO  0.00  TJ.  S.  G>-allons  1  Foot. 

Average  cfis  Years. 
Low  Service.                            j                     High  Service. 
By  water,  1.23  cents.     By  steam,  13.2  cents.  |  By  steam 25  cents. 

.A-dliesion    of  Drifted    Bolts. 

Steely  One  Inch  in  Diameter. —Hole  Six  Indies  in  Depth. 

Wood.  UnXa.  UnlA  Uy.1.  rT>.l»  1I..1«        I        tl-1-  H-1-  HoIb 

i2-i6tba. 

LU. 
•53 
•45 

Hemlock  in  x5-i6tbs  hole  415  lbs.  per  lineal  foot  to  withdraw  it,  and  White  or 
Norway  Pine  i2-i6ths  hole  830  lbs. 

To  obtain  maximum  holding  resistance  of  timber,  diam.of  hole  to  bolt  as  13  to  16. 

Relative  bedding  resistance  between  driving  parallel  or  perpendicular  to  the  fibre 
Is  as  X  to  2.    {J.  B.  Tschamer.) 

Kesistanoe   ot   tlie   A.ir  to   Falling    Bodies. 


Yellow  pine. 
White  oak.. 


Mean  Holding  Resistance  per  Lineal  loci 

. 

Ratios. 

Hole 

Hole 

Hole 

Hole 

Hole     1.   Hole 

Hole 

i5-i6th». 
Lbs. 

i4-i6th8. 

i3-i6thi. 

i2-i6ths. 

i5-i6thB.  1  i4-i6tha. 

i3-z6thB. 

Lbs. 

Lbs. 

Lb*. 

Lbs. 

.    Lbs. 

Lbs. 

361 

616 

761 

400 

•47 

.8 

I 

1300 

1778 

2499 

"33 

•52 

•7» 

I 

Falling  Body 

Sm. 

In  Vaeoo. 

Veloc- 

Fall. 

Feet. 

Feet. 

X 

* 
3 

16 

t 

32 

.    64 

96 

Lead  Ball,  2  Ins.  In 
Diameter,  Wdght  i  lb. 

In  Air. 
Final 

FaU. 


Veloc- 
ity. 


Feet. 
30 
55 
77 


Feet. 
15.5 
43-5 
67.5 


Retar- 
dation 
per  See. 


Feet. 

•5 

4.5 

"•5 


Body  Falling  HorixonUlly. 
Weight  I  lb. 


One  Foot  Square. 


Final 
Veloc- 
ity. 


Feet. 
28 

35 
38 


Fall. 


Feet. 
1433 
33 
38.5 


Retor- 

datloii 

per  Sec. 


FeeU 
1.66 


Two  Feet  Square. 


Final 
Veloc- 
ity. 


Feet. 

>3-33 

24 


IS 

4I-5 

{P.  H.  Van  Der  Weyde.) 


Retor- 

Fall. 

dation 
per  Sec. 

Feet. 

Feet. 

1333 

2.66 

37-3 
61 

24 
66.66 

Retardation  is  Inversely  as  Density  of  Body.  Velocity  after  &11  of  one  second 
becomes  measoreably  uniform;  the  increased  velocity  being  balanced  by  the  in- 
creased resistance. 

Resistance  of  the  air  at  moderate  velocities,  to  the  velocity  of  a  falling  body,  is  as 
the  square  of  its  velocity. 

ThuB^  when  the  velocity  is  doubled,  the  resistance  is  quadrupled,  and  when  trip- 
led, nine  times  greater.    Applicable  alike  to  a  cannon  ball  in  i^ir  or  a  body  in  water 


950 


APPENDIX. 


Cost  of  a  Hors^-I'o'wer  "by  Steaxn.^ 

Joule's  equivalent  (p.  504)  =:  772  tintto  =  heat  required  to  raise  i  lb.  water  x^,  = 
elevation  of  i  lb.,  z  foot  high. 

Unit  of  evaporation,  to  evaporate  i  lb.  water  to  steam  at  the  preBsare  of  the  at- 
mosphere =  966.  i  British  thermal  units. 

Horse-power  33000  lbs. 


=  43.75  heat  units  =  i  ff  i  °,  and  42.75  X  60  min.  t=: 2565  per  W  per  hour. 


33000 
772 

---—  =  a.655  lbs.  water  required  to  generate  i  IP. 
966.1 

Anthracite  coal  has. ...  14  500  heat  units. )  ^       ,.      ^  ,  ««.  n  ^fWi^ 
Bituminous"   British.  14320    "       "     J  *  or  other  fuels  see  p.  486. 

Then  ^| — =15.01  U)s.  wcUer  evaporated  per  lb.  of  coaL 

900.1 


Hence, 


2-655 


=  .1769  lbs,  coal  per  IP  per  hour,  or 


=  5.65  W  per  how  per 


15.0X        '  "  -1769 

lb.  of  coal. 

Assuming  in  all  of  the  above,  the  normal  condition,  that  there  is  neither  expen- 
diture of  water  or  temperature  in  the  operation. 

Operalively. — From  elements  furnished,  in  part  by  Thos.  Pray,  C.E.,  the  cost  of  a 
IH*  at  the  pressures  and  expansions  given  is  as  follows: 

Co€U  at%2  per  2000  lbs. 

EniciB** 


Condantlnr. 

2o''X48'^ 


NoD-eoodMrinir, 
i8*'X42^ 

lbs. 


44 
4( 


58.5 

4  74  ina- 
8.12  lbs. 
0.99   " 

ii.59  " 
3.07  " 
6.21  centa. 


Initial  pressure  of  steam 83.6   lbs. 

Cutoff —     ins. 

Terminal  Pressure '8.71  Iba 

Evaporation  per  lb.  of  coal 10. 31 

"    IP 16.84 

Coal  per  IIP  per  hour 2.28 

Cost  per  IIP  per  10  hours 2.6  cents. 

A  Condensing  Pumping  Engine  has  been  operated  at  a  cost  of  2.28  cents. 

*  For  Hone-povtr  ttt  pp.  441,  733,  758,  and  9x4. 

Cost   of  "Water  I*ower  on  IDriving  Sliaft. 

P«rIP. 

Power  is  variable,  depending  upon  variation  in  head  of  water,  as  when  it  Is  de- 
livered in  a  river  subject  to  rise  by  fireshets,  cost  of  water,  and  of  plant  In  order 
to  attain  an  average  daily  power,  the  power  must  be  increased  to  meet  the  loss  of 
head  by  back  water  in  fresheta 


Location. 


Manchester,  N.  T. . 
Lawrence,  Mass.  . . 


FP 


No. 
890 
1000 


*t  9  Q  — 


Feet. 

30 

490 


Cost 

• 

44 
42 

LocAnoN. 

H? 

No. 

1000 

1000 

Fe«t. 
28 

Lowell,  Mass.  . . . 

4i                 11 

•  •  • 

FMt. 

575 
290 


13 
18 


Coai 

100 
57 


Cost  of  a  1000  H*  Plant  independent  of  cost  of  water  about  $  45  per  W. 


Cost  of  a  like 

Plant  uxxder  different  Kead4S. 

From  Supply  to  Discharge  in  Feet.              | 

From  Supply  to  Dbebarge  in  FeoU 

Head. 

too 

aoo 

300 

400 

500 

600 

Head. 

xoo 

900 

300 

400 

Soo 

Feet. 

$ 

t 

t 

• 

1. 

1 

Feet. 

$ 

$ 

1 

• 

1 

10 

95 

IfO 

"5 

140 

155 

170 

30 

26 

3a 

39 

45 

Sx 

20 

3» 

40 

54 

62 

70 

77 

40 

20 

25 

31 

37 

42 

600 

"•" 

58 
48 

At  lAwreQce  and  liowell.  a  Mill  Power  =  30  cube  feet  of  water  per  second,  with 
a  head  of  35  feet    At  Manchester  it  is  38  cube  feet,  with  a  head  of  20  feel 

{Ch€is.  T-  Mmn,  M.S.) 
For  Power  of  a  Mill  Wheel  see  pp.  565,  566. 


951 


Hia'bor    in 


Steam    Plant. 

Dally    and    YeaTly    Cost    of   Coal    and. 
Operating  a   Plant  of  lOOO 

Y'ear  of  308  days  of  10.26   liours,  coal  at  ^3   per  ton 

of  SOOO   lbs. 
Deduced  from  Reports  of  Chat.  T.  Main^  M.B. 


KnaiirB. 


•ExhikuU 
tteain 
used. 


CJorapouDd. 

Condensing . 

Non  Con- 
densing. . . 


I'er  cent. 

I'' 

(50 

(50 

(50 
*  For  heatiDg. 


Ccmlper 
»  |«r 
hoar. 

Attend 
per 

BoUer. 

Lbt. 

c 

1-75 

•S3 

x-5 
1.25 

.45 

.38 

2-5 

2.06 

•75 
.63 

1.63 

•49 

3 

.90 

2.44 
1.88 

.56 

per  IF  per  Day. 
Eaciiu. 


c 

60 

60 

60 

40 

40 

40 

35 

35 

35 


1  Stores 

Coml 

>ay. 

perH» 

Storat. 

Iter  day. 

e 

• 

.25 

2.14 

.25 

1.84 

•25 

1-53 

.sa 

3.06 

.22 

2.52 

.22 

2 

.20 

367 

.20 

2.99 

.20 

2.3 

^if 

tDally 

for 
xoooH? 

• 

•f 

3-5* 

316 
2.76 

3520 

3160 
2760 

4-43 
376 

4430 
3760 

3.XI 

3i»o 

5.12 

5120 

4.27 

42701 

3-47 

3470 

Tewly. 

10  841  60 
9732.80 
8500.80 

J  3  644. 40 

1 1  580. 80 
9578.80 

15769.60 
13x51.60 
10687.60 


t  Ineladinp  tMA. 


Yearly   Cost  of  lOOO  :H>  and  of  a 

Year   of  308   days   of  10.26    hours.    Coal   at  9 3 

of  SOOO  IL.t>8. 
DodwMfrvm  SUfvrU  tf  Chat.  T.  Main,  M.B. 


EltOINB. 


Compound. . . 

<^nden8ing . . . 

Non-Condens- 
in« 


•ExkAMi 

Engine 

tOperat- 

Steam 

and 

ingEx- 

omA. 

Hooaei. 

piBMk 

Percent. 

% 

% 

0 

40 

5.02 

25 

40 

5-02 

SO 

40 

S-oa 

0 

33 

4-M 

25 

33 

4-14 

50 

31 

3-95 

0 

29.50 

3.70 

25 

29.50 

3-70 

(50 

29.50 

370 

BoiJer- 

honse  add 

Shed. 

% 

18.36 

x6.i6 
13.00 
34.80 
ai.x2 

'7-33 
24 

24.28 

19.46 


fOpcra- 

tor's 
EzpeoM. 


% 

2.50 

3.*30 

X.] 

3- 
2.88 

a.  36 
3-95 

3-3> 
«.65 


t.89 
J.  38 


;Coal  and 

Labor  and 

Stores. 


per  ton 


STotal  per 
IP 


xo  841.60 

9732.80 

1500.80 

13644.40 

1x588.80 

9578.80 

15769.60 

13  151.60 

10687.60 


% 
18361.60 
16952.80 
154x0.80 
21 164.40 
18608.80 
16888.80 
23  419.60 
20161.60 
17037.60 


*  For  Heating. 

t  As  per  preTioas  Table. 


t  Injector,  Depredation,  Taxes,  Interest,  and  Tasamace. 
I  Net  fneladiag  Cost  of  Plani  in  eolomn  3  and  5. 


Sugar  in  IMortar. 

It  has  been  demonstnited  that  the  addition  of  saccharine  matter  to  lime-mortar 
is  very  beneficial,  as  it  enables  it  to  be  laid  in  nrosty  weather. 

It  is  claimed  also  that  H  eaases  the  mortar  to  set  rary  soon  and  strengthens  it, 
and  thai  it  can  be  laid  with  dry  bricks. 

As  sugared  water  dissolves  lime,  it  is  necessary  to  dissolve  the  sugar  first,  and 
then  add  the  water  to  the  lime  slowly  and  cautiously.  The  mortar  should  be  very 
stiff. 

ProporUont, —  For  mortar,  eoarse  broiWD  sngar,  3  Ibe.;  lime,  i  bushel;  sand,  c 
bnsbeia 

If  sugar  IB  added  to  mixed  mortar,  it  renders  it  too  thin.  (Jfantf/octerer  cmd 
BuOder.) 

Seltins.  Speed  of  belts,  single  and  double,  i  inch  in  width,  sbonid  not  ex- 
ceed for  the  first,  800  feet  per  mioute,  and  for  the  second  500  feet,  each  =  one  ff . 

Xlailroad   Speed. 

London,  Xorth  Western^  and  CaUdrmian. — I<ondon  to  Edinburgh,  400  miiea 
Speed,  q5.4  miles  per  hour  ;  3  stops  50.9  miles.  Engine,  tender,  and  cars, 
348  000  lbs. 

Chicajgo,  Burlington,  and  Quincy.—i^B  miles  in  0  minutes. 


952 


APPBKDIZ. 


Cost  of  Irrigation,  per  A.cre. 

Calijvmia. —  From  $  7. x8  to  $  53. 33.      Colorado. — $3. 75  to  $  zo.8<x      CTtaA,  $  4. 
France.  —Average  of  several,  $  58.     India.  —Average  of  several,  $  i.  75  to  $  xol 

Alloy 
That  expands  in  cooling:  Lead  9  parts,  Antimony  2,  Bismuth  x. 

S^jEtrexnes   of  rTexxiperature. 

Artificial,  135°  {Faraday).    Atmosphere,  77  ^  {Bade). 

Kxtexxsion   of  "W^oodis   by    Water.    (<fe  VoUon  Wood.) 
Elongation.    Pine 065       Lateral.    Pine 2.6 


Oak 085 

ChestuaL.  .165 


Oak 3.5 

Chestnut..  3.65 


SxxioUeless  Powder.  Gun  6  ibs.  in  diam.  Charge  17.64  Iba  Energy 
at  muzzle,  4609  foot  tona     Per  lb.  of  powder  139.7,  and  per  weight  of  gun  730. 

Voluxxie   of  '^Tater   Flo^viiif;   over   Niagara  Falls. 

270000  cube  fnet  per  second.  Since  1842,  Horseshoe  Fall  has  receded  140.5  feel, 
and  American  36.5  feet    {J.  Bogart,  S.  S.) 

ROOFS. 

'Po  Compute  Stress  oxx  Roofbr. 

"Velocity    axid    Pressure    of   "^^ixid. 

RuLS.— Multiply  square  orvelocity  of  wind  in  feet  per  second  by  .0023,  or  square 
of  its  velocity  in  miles  per  hour  by  .005,  and  product  will  give  pressure  in  pounds 
per  sq.  foot 

Or,  »«  X  .0023  =  P,  and  V«  x  .005. 

Also,  .0023  «*  sin.  X  =  P.  P  rqtreunting  pressure  per  »q.  foot  in  Ihs.^  x  angle 
of  incidence  of  wind  with  plane  of  turf  ace  in  degrees^  V  velocity  of  wind  in  miles  per 
hour,  and  v  velocity  in  feet  per  second. 

Direction  of  wind  usually  makes  an  angle  of  10°  with  the  horizon,  hence  10^  is 
to  be  added  to  horizontal  plane  of  direction  of  the  wind. 

Illustration  i. — Assume  wind  with  a  velocity  of  100  feet  per  second  to  impinge 
upon  a  plane  roof  set  at  an  angle  of  45°;  what  would  be  the  pressure  per  sq.  foot? 

Sin.  4S°4-  »o°  =  -8i9.  .0023  X  ioo»  X  .819  =  18.837  **• 

2.— Assume  the  wind  to  have  a  velocity  of  150  feet  per  second,  and  angle  of  roof 
60°;  what  would  be  the  pressure  per  sq.  foot  ? 

Sin.  600  -f  xoo  =  .94.  .0023  X  150 <*  X  .94  =  48.75  lbs. 

!Pressu.re   of  Snovr. 

This  pressure  decreases  per  square  foot  in  Ratio  of  half  space,  to  length  of  rafters, 
or  height  divided  by  space. 

I*ressures   for   Various   Angles   or   f^atios. 


At  IS  Pounds  Weight  per  Square  FooL 


Degrea^ 

Lb*. 

h-r-i 

De|^«e«. 

Lbt. 

b-4>S 

I>Bgreak 

45° 

33^40' 
36°  34' 

10.6 
12.6 

13-4 

.2 
.16 

•14 

21^  48' 
»5°39 

13.9 

'4-3 
14-4 

.X25 

.XX 

.xo 

X4O2' 
12O  3x' 
1 1®  19' 

.5 

33 
as 


Single  tiles 20 

Slates,  ordinary x 5 

Asphalt  on  slaba ....  20 

Pi^r,  tarred. 6 


»4-5 
X4.6 

«4-7 


VP^eiglits   0x1    R.oof1s. 
Per  Square  Foot  in  Lbt. 


Iron,  sheet 8 

Zinc,  sheet 8 

Slates  on  iron 10 

Iron,  sheet  on  iron . .  5 


Iron,  corrugated,  on  iron    4.3 
Zinc         »'  "  4.5 

Snow ao 

Wind c xo 


APPENDIX. 


953 


Ooxnparative  Operations  of*  a  Sizvtple   and  a 

I^oooinotive. 


Compound 


Brooklyn  and  Union  Elevated  Railway  of  Brooklyn^  N.  Y.    Forney  Type. 


KLnann. 

Siukpl*. 

Componnd. 

Cylinders,  in& . . . . 

l«Xi6 

11.5    18X16 

Drivers,  diam 

43  ins. 

42  ins. 

"       re  vol  u- 1 
tions  per  mile  j 

480 

480 

Boiler,  diam 

42  ins. 

43  ins. 

Flaes,  0  D 

1.5  ins. 

«.5 

Number. 

124 

124 

Exhaust  tip,  diam. 

3. 25  ins. 

3  ina 

Grates,  water 

— 

— 

Area,  sq.  feet. . . 

15-6 

>5.6 

Heating  surface, ) 
sq.  feet J 

289.46 

289.46 

Ratio  of  do.  to) 
grate ] 

18.5 

18.5 

CJoal 

3899  lbs. 

2430  lbs. 

Firing 

Dmionation. 


Expl.  Gelat.  (Vouge's). 

Hellhomte 

Nitro-glycerine  (old).. 

'*  fresh . . . 

"  French . 

Sm'less  Powder  (Nobel) 

Gun-cotton,  1889. 

**         laboratory 

Dynamite  No.  i 

Emmensite  No.  i 

Oxinite  ft.  Pieric  acid. 
Amide  powder. 


ELBMBim. 


Coal  per  car  mile. 

Water 

Gain  in  fuel 

Evaporation       ) 
fh>m  212°) 
Gain  in  water.... 
Water  per  car     ) 
mile  J 
Pressure  of        ) 
steam,  ave'  \ 
Revolu'sper  min. 
Miles  per  hour. . . 

IP 

Weight,  loaded... 
Miles  run 


Simpls. 


11.05  ^^B- 

26070  lbs. 
8.09  lbs. 


73.85  lbs. 
136  Iba 


45350 
122 


CompOBOd. 


6.88  lbs. 
19862  Iba 

37-7^ 
9.97  lbs. 

23-8j< 
56.27  Iba 

136  Iba 

222 

2773 
223.6 

45850 
122 


Higli   Explosives. 
[Point   and    H.elative    Strength 

DSSIQNATIOV. 


Firing 
Point. 

Order  of 
Strength. 

Deforce. 

365 

365 

106.17 
106.17 
100 

346 

92-37 
81.85 

92.38 

83.12 

— 

81.31 

301 

81.31 
77.86 
69.51 
69.87 

Tonito 

Bellite 

Kack-a-rock 

Atlas  powder. 

Ammonia,  dynamite. . 

Volney's  powder  No.  i 

"  "       No.  2 

Melinite 

Fulminate,  silver 

*'  mercury.. 
Mortar  powd. ,  I)uiM)ut 
Forcite  No.  x 


FirliiR 
Puiut. 


I>egrees. 


3»5 
500 
330 


Order  of 

Strength. 


68.24 

65.7 
61.71 

60.43 

6a25 

58.44 
53.18 
50.82 
50.27 
49.91 

a3->3 


{Lieut.  W.  WdUet,  U.  S  Army.) 

Centrifusal    Fump, 

To  Compute  tlie   Req.nired  Velocity  of  the  Outer  ICdge 

of*  the    Gladed^. 

When  the  Height  of  the  Required  Lift  of  Water  is  Given. 

The  edge  of  Uie  blades  must  have  a  velocity  at  least  equal  to  that  acquired  by., 
body  falling  firom  the  given  heiglit. 

Then,  to  lift  water  1      / — r-       ,z «    -  ^ 

and  sand  20  feet.  /   V2fliA  =  V64.4  X  2o  =  35.89/«rf. 

Comparison    of*  Operation    and    Cost    ot  a    Oas    and 

Steam     Kngine. 

{In  addition  to  page  587. ) 


Element*. 


Steun. 


Brake  W 

Thermal  efficiency 

<(  **  or  per  cent,  of  heat  in) 
power,  to  total  beat  generated..  / 

Mechanical  efficiency  of  motor. . . . 

Power  to  operate  engine 

Coal  for  B  ff  per  hoar. 

■^pace  occupied,  including  gen*  t 
erator  or  boiler. ) 


76 
(    Generator,  70.5^ 
(do.  and  engine,  12.7^ 

i8j< 

69JC 

3iJ< 
s.  34  lbs. 

470  sq.  feet. 

i'lofeuor  witc. 


75 

Boiler,  72JC 

and  engine,  j% 

9  75% 

1S% 

255t 

2.6  lbs. 

360  sq.  feek 

Bryan  DorC 


954  APPENDIX. 

8TBAM-ENQINSS. 
Ooxn  pound. 

»  DuraHon  of  Operation  2  Hours. 

Cyiffulert.— 5. 5,  9,  and  15.5  Ins.  in  diameter.    Stroke  of  piston  !<.  iit« 

BevoltUiofu. — 150  per  minute     JIP  40- 

Bo<Z«r«.— Fire  tubular.     TuJbes,  38  of  2  ins. ;  6.25  feet  in  length. 

Heating  Surface.^i$Z  sq.  feet.     Grates.— $.7  sq.  feet 

Pressure  0/ Steam.— lys  Ib^  per  »q.  inch. 

Water.  —Weight  consumed,  1 140  lbs.  Evaporation  per  lb.  of  coal,  o.  8  Ib&  Dmwq 
fh>m  jackete,  84  lb&  Consumption  per  W  per  hour,  1.435  lbs.  Temperature  of 
feed,  550. 

Consamed  116  lbs. —per  IIP  per  hour  1.45  lbs. ;  per  sq.  foot  of  grate  10.2  lbs. 

IndiaUor  Diagrams.— Mwn  ^  54=  13.31  IH^;  Intermediate  18=3  la  IH*;  GoU' 
densing  7. 5  c=  14. 7  \W  =  4cx 

<    Fly-wheel.—s-s  feet  in  diameter  and  10.5  ins.  in  width. 

Weight  of  Engine  and  Boilers^  without  water,  14  560  lb& 

But7d«r«.— Marshall  &  Co.,  Kreigly,  Eng. 

PUMPING  ENGINE. 
Vertical    Com  pound. 

Cy^vnders.—2\  and  66  ins.  In  diameter  by  60  in&  stroke  of  piston. 
Pressure  of  Steam.— 7^.81  lb&  per  sq.  inch.     Vacuum^  26.25  iu& 
RewdtUimu. — 25. 51  per  minute.     Grate  Surface. — 70  sq.  feet 
Pressure  of  Water  by  Gauge.  —62.02  lbs.     Head,  including  lift,  i55.i7>l9ef  s 
67.62  lbs.    Fuel— 67s  *h8.  per  hour. 
Duty.— 104  S20 4^1.    Stack,  in  height,  125  ^t 
Constrtutors.—The  Edward  P.  Allis  Co.,  Milwaukee,  Wi& 

ELECTRIC  DYNAMO  ENGINE. 
Triple  Sxpansion.. 

Arc  Lights. — 500.    Water  entrained  in  steam  7.39](- 

Cylinders.— 14,  25,  and  33  ins.  in  diam.  by  48  ins.  stroke  of  piston. 

Ooiufetu<;r.— Separate.  Circulating  Pump,  16  x  16  ins. ;  Air-pump,  single-acting, 
24  X  16  ins.  Cylinders,  12  x  16  in&,  operating  both  pumps.  Revolutions,  61.29. 
IH»  16.4. 

Pressure  of  Steam.— 12$  Iba  per  sq.  inch;  Revolutions^  engine,  99.12;  Steam  per 
IH*  per  hour,  12.94  lbs.    IH*  516.    liyection  Water. — 72°.     Reservoir,  90®. 

Constructors.— The  Edward  P.  Allis  Co,,  Milwaukee,  Wis. 


Hailroad.   Siffxials  and   Sigiiiiioation.8. 

"Off  breaks,'^  two  whistles. 

''Back  up,"  three  whistles. 

'' Danger,''  continued  whistles. 

''A  cattle  alarm,"  rapid  short  whistles. 


"Stop,"  one  pull  of  bell-cord. 

*'Go  ahead,"  Two  puUa 

"Back  up,"  three  pulls. 

"Down  breaks,"  one  whistle. 

"Go  ahead,"  a  sweeping  parting  of  the  hands,  on  level  with  the  eyes. 

"  Bark  slowly, "  a  slowly  sweeping  meeting  of  the  hands,  over  the  head. 

"Stop."  downward  motion  of  the  hands  with  extended  arms. 

"Back,"  beckoning  motion  of  a  hand. 

"  Danger,"  a  red  flag  or  light  waved  up  the  track. 

"Stop."  red  flag  raised  at  a  station. 

"Start,"  lantern  at  night  raised  and  lowered  vertically. 

"Stop,"  lantern  swung  at  right  angels  across  the  track. 

"Back  the  train,"  lantern  swung  in  a  circle. 

Ikletropolitan    Opera   House,   Ne-w  ITorb:. 

Copoctfy.  .-.Seating,  ^600.    Standing,  40a    If  the  saloons  attached  to  the  private 
boxes  were  removed,  tne  total  capacity  would  be  500a 


APPKKDIX. 


955 


I>i8tlllatioii  of  SVesli  *Water. 

Process  ofO.  W.  Boxrdy  U.  S.  Natty,  New  York. 

Marine  Steamers  for  long  voyages,  operated  under  a  high  presdure  of  steam,  are 
neceesariiy  provided  with  Evaporators,  to  replace  the  water  expended  in  leaks  and 
▼ents,  and  to  provide  for  the  ordinary  requirements  for  fresh  water. 

This  process  is  an  improvement  upon  existing  methods,  inasmuch  as  it  furnishes 
the  water  potable,  and  it  is  as  follows: 

The  Evaporator  contains  a  series  of  tinned  metallic  coils  and  a  volume  of  sea- 
Wttter;  which  is  designed  to  be  evaporated  by  the  passage  of  steam  fVom  the  engine 
boilers  through  the  coils.  The  water  condensed  in  them  is  returned  to  the  boilers; 
the  water  vaporized  from  the  sea-water,  external  to  the  coils,  is  either  led  to  the 
Engine  condenser,  to  replenish  that  lost  by  leaks  and  vents,  as  fh)m  gauge  cocics, 
etc. :  or  if  required  for  potable  purposes,  is  led  to  a  DistiUcr,  where  it  is  aerated, 
condensed,  and  filtered,  f^om  which  it  is  drawn  for  use. 

Aa  the  sea-water  is  evaporated  in  vacuo^  vi^wrization  occurs  at  a  temperature 
below  that  at  which  much  scale  is  precipitated.  Hence  the  shell  and  ooilB  are  both 
measurably  free  from  it. 

Restxlts   of  Bjx   Sxperixnent. 

Pressure  in  coils,  20  lbs.  above  atmosphere;  temperature  of  steam  in  coUs,  259-3^; 
temperature  o/feed  water,  131.66°;  tempercUure  of  the  wcUer  vaporised,  212*^;  water 
vaporized  per  hour,  103.33  lbs. ;  water  condensed  in  the  coils  per  hour,  112. 12  Iba; 
total  heat  in  the  steam,  1193.7°  and  in  the  water  vaporized,  1178.6°. 

Oetpaoitiee   of*  liS-vaporators   and   X>istillers. 
GaUonsper  day  cf^^  hours. 


No. 


X 

9 


Kntpo* 
rator. 

DIa. 
tlllar. 

No. 

Evapo- 
rator. 

DIt- 
tlllar. 

No. 

4 
4*5 

Evapo- 
rator. 

Dlt. 
tiller. 

No. 

Evapo* 
rator. 

Oalloua. 
600  . 
X300    ] 

Gallont. 
600 
1200 

3 
3*5 

Gallont. 
2000 
3000 

Gallont. 
1600 
1600 

Gallont. 
3000 
3000 

Gallont. 
2000 
2500 

5 
6 

Gallont. 
4cxx> 
6000 

Dft. 
tillw. 

Gallont. 
2500 
3000 


Coal  Produotion.  and   Consuzziptioii 

0/the  World  Per  Diem. 
fVodtief  ion.  ^^Estlmated  at  3  360000000  to  3  696000000  lbs. 

0»n«ttinp<um.— Generation  of  steam,  Land  and  Marine,  624000000  Ibe. ;  Smelting 
Iron  Ore,  s8  800000  lbs. ;  other  metals,  23000000  lbs. ;  Forges,  20000000  lbs. ;  Do- 
mestic use,  57  600  000  lbs.    Total,  2  700  000  000  lb& 

Corrosioxi   of  "^^ro-aKKt   Iron. 

The  purer  the  water,  the  more  active  it  is  in  corroding  and  pitting  Wrougbt-iroa 
plates.  This  arises  f^om  the  greater  presence  of  i^ir  in  pure  water,  and  hence  a 
greater  proportion  of  Oxygen.    {Locomotive. ) . 

KaxrtH   Soring  and  Heat  of  IMines. 

Speren'ber^.  near  Berlin.  Bore,  4173  feet  in  depth,  about  1000  feet  in  ex< 
cess  of  Artesian  well  at  St  Louis. 

In  lower  levels  of  some  of  the  shafts  in  theComstock  mines,  prior  to  the  draining 
tato  the  Sutro  Tunnel,  the  water  was  at  a  temperature  of  iao°. 

I*reservative»  of  Iron. 

Pitch,  Black  Varnish,  Asphalt  and  Mineral  waxes  are  among  the  best,  provident 
the  acid  and  ammonia  salts,  which  frequently  occur  in  tar  and  tar  products,  ar« 
removed. 

If  in  addition  these  substances  are  applied  hot  to  warm  iron,  the  bituminous  and 
asphaltic  substances  fonn  on  the  surfkce  of  the  iron  an  enamel,  which,  unlike  to 
other  coatings,  is  not  microscopically  porous,  and  consequently  it  is  imperriotw  tn 
water. 

SpiriU  and  Naptha  vamisheK  are  iqjurioua.    (Prof.  Itturit.) 


95^ 


LIGHTNING-CONDUCTORS. 


Code   of*  Rules    for    the    jBreotioxi    pf  Light n in g-Gon* 

duotors.' 

Lightning-rod  Conference, 

Points. — Point  of  termiDal  should  not  be  sharp — not  sharper  than  a  cone  of  which 
the  height  is  equal  to  radius  of  its  base.  A  foot  lower  down  a  copper  ring  should 
be  screwed  and  soldered  on  to  the  upper  terminal,  in  which  ring  should  be  fixed 
three  or  four  sharp  co])per  points,  each  about  6  inches  in  length.  It  is  desirable 
that  these  points  be  platinized,  gilded,  or  nickel-plated. 

Upper  Terminals. — Number  of  conductors  or  points  to  be  specified  will  depend 
upon  size  of  the  building,  material  of  which  it  is  constructed,  and  comparative 
height  of  the  several  parts.  No  general  rule  can  be  given  for  this.  Ordinary 
chimney-stacks,  when  exposed,  should  be  protected  by  short  termiuals  connected 
to  the  nearest  rod. 

Insulators.— Rod.  is  not  to  be  set  off  from  building  by  glass  or  other  insulators, 
but  attached  to  it  by  metal  fastenings. 

AttaehvMnt. — ^Rods  should  be  led  down  the  side  of  building  which  is  most  ex- 
posed to  rain.  They  should  be  secured  firmly,  but  the  holdfasts  should  not  pinch 
the  rod,  or  prevent  contraction  and  expansion. 

Factory  Chimneys. — Should  have  a  copper  band  around  the  top,  and  stout,  sharp 
copper  points,  each  about  z  foot  in  length,  at  intervals  of  2  or  3  feet  throughout  the 
circumference,  and  the  rod  should  be  connected  with  all  bauds  and  metallic  masses 
in  or  near  the  chimney. 

Ornamental  Ironwork. — All  vanes,  ridge- work,  etc.,  should  be  connected  with 
conductor,  and  it  is  not  absolutely  necessary  to  use  any  other  point,  than  that 
atlbrded  by  such  ornamental  iron-work,  provided  the  connection  be  perfect  and  the 
mass  of  iron  considerable. 

MateriaX. — Copper,  weighing  not  less  than  6  ozs.  per  foot  in  length,  and  the  con- 
ductivity of  which  is  not  less  than  90  per  cent,  of  that  of  pure  copper,  either  in  the 
form  of  tape  or  rope  of  stout  wires,  no  one  wire  being  less  than  No.  12  B.W.6. 
Iron  may  be  used,  but  should  not  weigh  less  than  2.25  lbs.  per  foot  in  length. 

Joints. — Bad  joints  diminish  the  efficacy  of  the  conductor;  therefore  every  joint, 
besides  being  well  cleaned,  screwed,  scarfed,  or  riveted,  should  be  thoroughly  sol- 
dered. 

/Voterfion. —Copper  rods  to  the  height  of  10  feet  above  the  ground  should  be 
protected  from  injury  and  theft  by  being  enclosed  in  an  iron  pipe  reaching  some 
distance  into  the  ground. 

Painting.— Iron  rods,  whether  galvanized  or  not,  should  be  painted;  copper  ones 
may  be  painted  or  not. 

Cui'vaiure, — Rods  should  not  be  bent- abruptly.  In  no  case  should  the  length  of 
it  between  two  joints  be  more  than  half  as  lopg  again  as  the  line  joining  them. 
^Vhen  a  string  course  or  other  projecting  stone- work  will  admitof  it,  the  rod  should 
be  carried  through,  instead  of  around,  the  projection.  In  such  a  case  the  hole 
should  be  large  enough  to  allow  for  expansion,  etc. 

Masses  of  Metal.— M  far  as  practicable  it  is  desirable  that  the  conductor  be  con- 
nected to  extensive  masses  of  metal,  such  as  hot- water  pipes,  etc.,  both  internal 
and  external;  but  it  should  be  kept  away  ft-om  all  soft  metal  pipes,  and  ft-om  in- 
ternal gad-pip^.    Bells  inside  well- protected  spires  need  not  be  connected. 

Earth  Connection.— li  is  essential  that  the  lower  extremity  of  the  conductor  f)e 
buried  in  permanently  damp  soil ;  hence  proximity  to  rain-water  pipes  and  to 
drains  is  desirable.  U  is  a  very  good  pllm  to  bifurcate  the  couductor  close  below 
surface  of  the  ground,  and  adopt  two  of  following  methods  for  securing  escape  of 
the  lightning  to  earth.  A  strip  of  copper  tape  may  be  led  from  the  bottom  of  the 
rod  to  t4)e  nearest  gas  or  water  main— not  merely  to  a  lead  pipe — and  be  soldered 
to  it;- or  a  tape  may  be  soldered  to  a  sheet  of  copper  3  feet  X  3  feet  and  .0625  inch 
thick,  buried  in  permanently  wet  earth,  and  surrounded  by  cinders  or  coke;  or 
many  yards  of  the  tape  may  be  laid  on  a  trench  filled  with  coke,  taking  care  that 
the  surfaces  of  copper  are,  as  in  previous  oafies,  not  lessAhap  18  square  feet.  Where 
iron  is  used  for  the  rod,  a  galvauized  iron  phite  of  similar  dimensions  should  be 
cmployod. 

Initpection. — The  conductor  should  be  satisfactorily  examined  and  tested  by  a 
qiKililied  person,  as  injury  to  it  often  occurs  up  to  the  latest  period  of  the  works 
from  Roeidontul  causes  and  carelessness. 

Collieries. — ^The  head-gear  of  all  shafts  should  be  protected  by  proper  lightning- 
conductors  to  prevent  explosion  of  fire-damp  by  sparks  from  atmospheric  elec- 
tricity being  led  to  the  mine  by  the  wire  ropes  of  the  shaft  and  iron  rails  of  the 
galleries. 


STONE    fiREAKEB. — ORUSHllR. — STEAM   HEATING.      g^y 


Stone    Breaker    and.    Ore    Cruslier. 


Stone  Breakers  and  Ore  Crushers  are  used  in'  mak- 
ing Macadam  for  construction  of  roads ;  material  for 
concrete ;  ballasting  railroads,  crushint^  ores,  quartz, 
corundum,  and  all  brittle  substances ;  tbey  can  be  ad- 
justed to  pass  a  mass  from  the  size  of  a  pea  to  larger 
diameters,  depending  upon  the  capacity  of  the  machine. 

Crushed  to  Cubes  qfn  Indies.    /Vr  Hour. 


Extreme 

No. 

Receiver. 

Volume. 

Weight 
of  Stone. 

Weight 
Produced. 

J 
length. 

OimetiBioi 
Breadth 

Ins. 

Cab.  yds. 

Lbs. 

Lbs. 

Ft.  ins. 

Ft.   ins. 

I 

3X   1.5 

— 

40 

100 

X.     I 

.  6 

2 

6X   2 

X 

560 

I  200 

2.10 

2.    I 

3 

loX  4 

3 

1800 

4900 

4 

3.  3 

4 

loX   7 

5 

3800 

7800 

5.   > 

3.  9 

5 

I5X  9 

8 

7400 

15500 

6.  6 

5 

6 

15X10 

9 

7800 

16000 

6.  6 

5.  5 

7 

20X  6 

10 

5300 

II  200 

5-  3 

2. II 

8 

20X10 

10 

8100 

18300 

6.10 

5.  9 

9 

12X30 

16 

14200 

33000 

7.10 

8.  4 

TO 

»5X3o 

20 

14200 

35000 

.7.10 

.    8.  4 

t. 

Height. 

PuUey. 

Speed. 

IP 

Ft.  ins. 

Ins. 

No. 

.10 

SX  1 

250 

•5 

2.   3 

"X  5 

250 

4 

3-  9 

20X  6 

250 

6 

4.   5 

24X  7-5 

250 

8 

5-" 

30X  9 

250 

»5 

5-II 

30X10 

250 

15 

4.  6 

30X10 

250 

15 

5." 

36X12 

250 

20 

6.  4 

36X12 

250 

30 

6.  4 

36X12 

250 

30 

Note.— The  30X15  and  the  36X24  are  preparatory  Crushers,  the  former  breaking 
500  cube  yards  in  10  hours  to  4  ins.,  and  the  latter  800  cube  yards  to  8  ins. 


Crusher   >vitli 

Revolving    Screen. 

Dimen- 
sions. 

Volume. 

Extreme 

Weiglit 

of  Stone. 

Weight 
Produced. 

I 
Length. 

NmensioDt 
Breadth. 

Depth. 

Pulley. 

Speed 
jJlhi. 

IP 

Ins. 

Cub.  yds. 

Lbs. 

Lbs. 

Ft.  ius. 

Ft.   ins. 

Ft  ins. 

Ins. 

Kev. 

No. 

xoX   7 

5 

3800 

10200 

5-   > 

3-9 

4.   5 

2     X   7-5 

250 

8 

15X  9 

8 

680U 

17  700 

6.  6 

5 

S-" 

2.6X  9 

250 

15 

X5X10 

9 

7300 

18x00 

6.  6 

5-5 

5" 

2.6X10 

250 

za 

20X10 

10 

7700 

21  500 

6.10 

5-9 

5. II 

3    X   X 

250 

M 

Steaxxi   Heating  and   Boilers. 


Steam  JH eating. — Is  effected  Directly  or  Indirectly.  In 
the  first  case,  the  steam  is  conveyed  through  a  pii^e,  or  to  a 
cluster  of  them,  at  whatever  point  they  are  re(|uired,  termed 
a  Radiator ;  air  being  heated  by  contact  with  the  exterior  sur- 
face of  the  pipes,  and  the  water  of  the  condensed  steam  flows 
back  (by  gravity)  through  the  return  pipes  discharging  into 
the  boiler. 

In  the  second  case,  steam  is  conveyed  in  like  manner  to  a 
cluster  of  pipes  enclosed  in  a  chamber,  in  the  lowest  part  of  the 
building,  usually  the  cellar,  the  air  within  the  chamber,  upon  being  heated, 
ascends  by  its  rarefaction,  and  is  led  to  the  space  or  apartment  required  to 
be  heated. 

Hot- water  Heating. — This  system  consists  of  circulating  hot  water 
in  the  radiators  instead  of  steam.  The  boiler,  pipes,  and  radiators  are  fully 
filled  with  water— the  flow  or  circulation  pipes  attached  to  the  top  of  the 
boiler  and  the  return  pipes  to  the  bottom.  The  water  in  the  boiler,  when 
heated,  rises  and  circulates  through  the  pi|ies  and  radiators,  and  parting  with 
a  portion  of  its  heat  it  becomes  denser,  and  gravitates  through  the  return 
pipe  to  the  boiler,  where  it  is  again  heated. 

This  system  requires  a  much  greater  proportion  of  radiating  surface  than 
that  of  steam. 


958 


BOILEBS. HTRDAULIC   CEMBNT. 


S  oilers.    In  continuaHon. 


ELBMBim.      No. 


Shell,  diam Ins. 

"     over  jacket. ..  " 

"     height 

<^  extreme  . . . 
Furnace,  diam  . . . 
Tubes,  No.,  do.  3  . 

''     length 

Steam-outl'ts  2,diam. '' 
Chimney  flue,  diam. 
Water-line  flrom  base 
Heating  surface. .  Qfeet 
Direct  radiating  )      (« 
surface  supplied  J 


(I 


i( 


(( 


ti 

C( 


Wroaght>iroi 

k  Water  Lags. 

< 

lut-bm 

3 

3 

4 

5           6 

7 

0 

z 

3a 

35 

41 

43 

5X 

54 

24 

38 

35 

3a 

45 

46 

55 

57 

30 

31 

33 
69 

37 
72 

1^ 

n 

45 

92 

45 

92 

64 

67 

31 

24 

30 

32 

3« 

40 

18 

19 

44 

56 

84 

9« 

134 

z6o 

30 

36 

30 

34 

34 

42 

42 

42 

27 

y> 

2 

2 

2-5 

2.5 

3 

3 

1-5 

1-5 

8 

8 

zo 

10 

12 

12 

7 

7 

55 

59 

63 

,11 

73 

74 

51 

54 

75 

los 

140 

360 

320 

45 

60 

450 

630 

830 

X050 

Z500 

1900 

260 

350 

32 

35 

33 
69 

2Z 

44 

30 

2 

8 

55 
75 

450 


35 
38 
37 
72 
24 
56 

34 

3 
8 

59 
«05 

630 


For  Direct  radiation,  each  G^oot  of  radiating  surface  will  heat  firom  50  to  zoo  cube 
feet  of  air  8|iace,  and  for  Indirect,  ft'om  2<;  to  50  cube  feet;  tbe  range  depending  ui)uu 
the  conditions  of  construction  of  building  and  its  exposure  to  external  air. 

HYDRAULIC   CEMENT. 

£«ortlancl« 

In  addition  to  pp,  589-590. 

Some  limestones  when  burned,  ground  finely,  and  made  into  paste,  attain  tbe 

element  of  hardening  in  water,  and  are  termed  Hydraulic. 

Cements  are  classed  as  Natural  and  Artificial.     Tbe  stone  from  whick 
Portland  or  Hydraulic  Cement  is  made  iu  tlie  Uniied  States  is  found  in  stratified 
beds  of  aqueous  de{>o8its,  which  iu  extent  cover  about  one-third  of  the  area  of  the 
State  of  New  Yoric,  the  western  part  of  Vermont,  and  also  in  New  Jersey,  I'eun 
sylvania,  Maryhmd,  Virginia,  and  East  Tennessee. 

Analysis  of  Glens  Falls  and  best  German  cement  are  nearly  identical,  both  in 
their  quality  and  volumes,  and  all  advantage  chtimed  for  the  former  is  that  it  is 
finer  grained,  and  that,  in  common  with  this,  that  it  sets  slowly,  usually  requiring 
from  4  to  6  houra  Consequently,  the  mixture  can  be  made  in  a  larger  voluuie 
without  being  rendered  useless  by  setting  before  all  of  mass  is  required. 

It  is  only  in  the  stopping  of  joints  leaking  water  under  a  pressure  that  the 
quick  setting  of  cement  is  better. 

'Pensile  Strengtli.    Cement  1,  Sand  3.    Per  square  inch. 


Work. 


Aqueduct  Na  S 
Vertical  Wall . 
Swing  Bridge. . 
Vertical  Wall.  . 
Swing  Bridge. . 
Vertical  Wall. . 
Swing  Bridge. . 
Vertical  Wall. . 
Vertical  W&IL . 


Location. 


Fort  Miller 
Glens  Falls 
Waterfbrd 
Glens  Falls 
Waterford 
Glens  Falls 
Waterford . 
Glens  Falls 
Glens  Falls 


Sievo. 

s«u. 

M  Day.* ' 

TmL 

SB  Days' 1 

No.50. 

No.lOO. 

Inf. 

U«l. 

Min- 

Hard. 
Min. 

Max. 

Lba. 

MIn. 
Lb*. 

Aver* 
•He. 

Max. 

Lba. 

Min. 
Lbt. 

Lba. 

100  T 

98.35 

50 

'42 

347 

254 

309 

394 

300 

zoo 

9?  875 

70 

Z56 

404 

305 

337 

442 

320 

zoo  T 

56 

Z36 

369 

303 

342 

3**§ 

330 

zoo 

99- "5 

Z40 

230 

379 

330 

350 

39*» 

326 

zooT 

99 

120 

230 

3B3 

388 

331 

407 

295 

zooT 

99 

ISO 

280 

3^S 

2K0 

321 

372 

31a 

zooT 

99-125 

'55 

300 

368 

323 

343 

404 

332 

zoo 

99 

160 

255 

3«5 

273 

337 

442 

326 

zoo  T 

99-125 

los 

Z90 

374 

3»3 

33a 

440 

374 

Wm.  p.  Judtttm,  Deputy  fitate  Enginetr,  N   Y. 

Oru.8h.lxLS   Streiisth..    Per  Square  Inch. 
ieets  of  strength  made  at  New  York  and  Brooklyn  Bridge. 

[n 
WatM 

LbiT 
1409 


Period. 

In 
Air. 

In 
Water. 

Period. 

In 
Air. 

In 
Wat«r. 

Period. 

In 
Air. 

In 
Water. 

Period. 

II 
Air. 

Lba. 

1854 

Day. 
1 

Lbi. 

Lba. 
385 

Weeli. 

X 

Lba. 

W8  i 

Lba. 

Wee)[B. 

3 

Lba. 
750 

Lba. 
515 

Weeka. 

3 

BLBCTKIC    HOTOB 


959 


HJleotrio  Motor.    The  Crockm'-Wkeeler^  New  York. 

This  jMotor  has  be^n  designed  to  remove  difficulties 
which  experience  has  develu|)ed  to  be  attendant  upon 
otlier  instruments  of  like  purpose. 

Care  has  been  taken  in  its  design  and  construction. 
J'he  bearings  are  oiled  aotoniatically,  and  magnetic 
circuit  is  made  as  perfect  as  practicable.  Its  centre 
uf  gravity  is  low,  machine  strongly  built,  weight  of 
it  comparatively  low,  and  its  efficiency  high. 
Designed  to  run  at  low  speed,  in  order  to  reduce  wear,  heating  journals,  etc. 

Between  Bolt-  SbafU. 


H» 

Weight 

Vehw- 
ity. 

No. 

LIM. 

v.. 

18 

2100 

•"5 

36 

3000 

.166 

26 

1800 

•25 

65 

1300 

.5 

100 

>350 

'57 

1050 

t 

290 

1050 

\ 

300 

lOCX) 

485 

1000 

run«9y. 


Dfam. 

IM. 

Gi. 
Fi. 
G  . 
Fi. 

2. 


In*. 

•375 


•375 
•25 


DimenBionii. 


Length. 


lae. 
7*375 

9-75 


Breadth  HeiKhi. 


Ids 
5-5 

7-5 


Im. 
7.875 

8.5 
8.5 


hulea. 


Length. 


Ina. 
4.625 

6.375 
6.375 


Breadth 


Ins. 
2-75 


3.375 


Diam. 


Ids 
•25 


•375 


From 
Base  of 
Motor. 


Ibs. 
3-375 

3.6875 

6875 

75 

75 

0625 
8.25 
8.25 

9- 25 


9*75      7-5       8.5       6.3753.375      .375 

3  2          14.75      9.5      10.75      9.75  4.3*25    .5625 
3.53          18.25  I'          »3          »».5  5-5  6875 

4  3-5      19  »3-25    15.5      12.25  7  .875 
63          25  12. 625  18.375  18.25  9.25 
8      4          26.25  15.625  18.375  18.25  9.25 
7.54.5      28  18.75121          18.75  9.75      I'las 

a  Grooved.    F  FkaU 

Application  qfthe  Motor.  ^For  Printing-rooms  and  mechanical  Shops  of  medium 
capacity  and  Elevators,  one  of  5  IP  is  sufficient 

To   Compvite   I*o>ver   reQUired    fbr   Elevators. 

Rule.— Multiply  twice  *  prodact  of  weight  to  Inn  raised  in  lbs.,  and  height  of  as- 
cent in  feet  per  minute;  divide  by  33  000,  and  the  quotient  wrll  gfve  the  number  of 
H*  required. 

Sixiall  Af  otors,  of .  166,  .  125,  and  .0833  IP  are  adapted  for  operating  Fans, 
Bloweis,  Sewing  maebinest  Small  loathes.  Presses,  Tools,  Moflels  in  operation,  Ro- 
tating Advertisements,  Organ  blowing,  Bafflng  wheels,  Knife  sharpeners,  Cloth  and 
Paper  cutting,  ExpertmeDtal  models,  etc.,  etc 

miectrio   Fans. 

For  Ventilation  of  OfLcos,  Restaurants,  Kitchens,  Sick-rooffls,  etc.,  etc. 
Constructed  in  various  styles,  Plain  and  Nickel-plated. 

Faru  12  Inches  in  Diameter 

Regular,  .0833  IP  motor. — Fa^i^  .125  £P  motor. — Double  (a  Fan  at  each  side), 
.1666  IP  motor,  or  one  i6-incb  Fan. 

Lm  Kue  ConUructum.—\  M\Able  speed,  Fan  24  ins.in  diam.— 20  Inch,  125  H*  motor. 

ICleotric    FuxnpH. 
Pump,  .  166  IP,  will  elevate  500  gall,  water  per  day  ot  ro  hours  100  feet  in  height 
These  pumps  are  arranged  to  operate  automatically,  so  that  when  a  receiving  tank 
is  filled,  the  pump  is  arrested. 

Capacitjr   of  I'll  nip   per   Hour. 


H» 


Galhms. 


H' 


Oallons. 


¥P 


OAllons. 


1670 
2600 


.166  100  .3  370  3 

.25  230  1  750  5 

Are  Circnit  !Motors. 

Are  3tot'fr9  diflcr  flroin  all  others.    The  ifianner  of  connecting  the  circuit  ttid  of 
their  operation  varies  Arom  that  of  other  motors  . 
They  are  famislied  from  .135  to  5  IP. 
They  sboaM  ad  ways  be  connected  to  the  arc  circa  it  by  a  competent  lineman. 


*  Tk»  twice  k  takn  to  coT«r  lou  of  power  by  friciioa  of  all  tho  pttrtt. 


960      DYNAMO   LBATHBR  BELTS. — WIBES   AND  GABLSS. 


I>ynaxno  Leatlier  Belts. 

Belting,  —  For  Dynamos  and  Electric  Light  Machinery  should  be 
double  and  endless,  and  not  over  ,^  inch  thick,  when  run  at  a  velocity  of 
4CXX)  feet  or  more  per  minute ;  should  be  perforated  to  prevent  air-cushion- 
ing, the  perforations  may  be  .093  75  inch  in  width,  .281 25  inch  in  length, 
and  placed  1.5  inches  apart;  furnishing  about  50  openings  per  sq.  foot  of 
belt,  without  material  injury  to  the  tensile  or  operating  strength  of  it. 

■  In  order  to  protect  the  surface  of  a  Dynamo  Belt  it  should  be  rendered 
im{)ervious  to  the  mineral  oil  used  on  it,  which  is  destructive  to  the  fibre  of 
the  leather. 

LEATHBB  LINK  BELTS. 

Where  Belts  are  run  at  right  angles  and  at  short  distances  apart,  Leather 
Link  Belts  are  recommended,  as  they  are  very  pliable  and  have  uniform 

oscillation. 

Link  Belts  made  .6875  inch  thick,  forming  when  combined  two  foil  cir- 
cles, assure  the  required  uniform  it  v  of  oscillation. 


WIRES  AND  CABLES. 

Telegraph,  Teleplione,  aixd.   Klectric   ILiigb.t   Wires 

arid.   Cables. 

For   A.eria,l,  Su.'b.-xxiarine,  and   Underground.. 

The  Okonite  Company,  New  York. 

Insulation. — In  order  to  effect  an  enduring  insulation  this  Company  uses  a 
compound  termed  Okonite,  a  material  possessing  buili  tenacity  and  resistance  to 
abrasion,  while  it  is  equally  unafiected  by  extremes  of  temperature,  commercial 
acids,  or  alkalies,  with  insulating  properties  of  the  highest  order. 

Test  Requirements  for  Insulated.  'Wires. 

"Voltage  Test. 


SIZE 

Thick 

NESS 

OP  Insulatiok  in  Inches 

A.  W.  G. 

3/64 

2f33 

5/64 

3133 

4500 
6000 
6750 

7/64 

6000 
7500 
8250 

4/3« 

7500 
9000 
97SO 

5133 

6/32 

7/32 

8/32 

9/32 

10/32 

4/0  to  I 

2  to  7 

8  to  14 

•  •  •  • 
■  •  ■  • 

2250 

•  •  -  • 

3000 

37SO 

3000 
4SOO 
5250 

10500 
12000 
12750 

13500 
ISOOO 
IS7SO 

16500 
1 8000 
18750 

19500 
3 1000 

22500 
24000 

25500 
27000 

NoTK.— Elzperience  proves  that  tbe  above  are  sufficiently  hi(;h  voltages  toemploy.   Higher  voltagM 
although  not  necessarily  caasing  a  breakdown  of  the  insulation,  are  apt  to  Urain  it. 


Miegolims   Fer  3VCile.     60  I>eg-  F. 
One    Mliiiiite    Eleotrifloation. 


Strd. 
II 


4/0 
3/0 

2/0       •' 
I/O       - 

1  Solid 

2  " 

i  " 
I   " 

8 

9 
10 
12 
14 

Not*. — The  above  are  conservative 
resulu. 


<« 
it 
(I 
i< 


3/64 

2/32 

•  •  a  « 

•  •  a  • 

•  •  ■  • 

•  •  •  • 

•  •  •  • 

1200 

1300 

1400 

.    1550 

1700 

1 60c 

>   2000 

i8o< 

J   2200 

200< 

i       2400 

230< 

)   2800 

3  70< 

>   3250 

5/64 

800 
850 
950 
1050 
1300 
1400 
1500 
1700 

1850 

2000 
2400 
3600 
2800 
3200 
3700 

figures, 


3/32 

7/64 

4/32 

S/32 

950. 

1050 

1 1 75 

1400 

1050 

1150 

1300 

T500 

1 1 50 

1275 

1400 

1700 

1250 

1400 

IS50 

1800 

iSoo 

1700 

1900 

3200 

1600 

1850 

2050 

3400 

1800 

3  000 

3300 

3600 

3000 

3300 

3400 

3800 

3150 

3400 

3600 

3000 

2300 

3600 

2800 

3250 

3700 

3000 

3300 

37SO 

3900 

3250 

3500 

4000 

3150 

3500 

3750 

4250 

3600 

39SO 

4«SO 

4800 

4100 

4SOO 

4800 

5350 

6/32 


good  insalating  oompoand 


1600 
1800 
1900 
2100 
2500 
2700 

2950 
3150 
3400 
3600 
4150 
4400 
4700 
5250 
5850 
should  f^v 


7/32 


1800 

3000 
3150 
2350 
2800 
3000 
3250 
3450 
3700 

3975 
4SOO 
4790 
5050 
5600 
6250 

lower 


VOLTMETERS   AND  AMMETEBS.  01 

JSlectrioal   DMeasuring  Instiraxuents. 

The  proper  seleclion  of  indicating  electrical  measuring  instruments  which  wUl 
best  meet  the  requirements  of  a  particular  case  is  a  very  important  matter  and 
should  receive  careful  attention.  The  most  suitable  types  and  ranges  must  be  de- 
termined by  the  kind  of  service  for  which  they  are  to  be  used  and  the  degree  of 
accuracy  required;  the  sizes  and  styles  must  be  determined  by  the  length  and 
kind  of  scale  desired,  by  the  space  available,  and  by  the  general  finish  of  the 
Bwitcbboard. 

When  selecting  an  electrical  measuring  instrument,  the  following  six  require- 
ments should  be  borne  in  mind  as  essential  to  a  satisfactory  instrument: 

1.  It  must  be  Direct  Reading — this  means  that  it  be  provided  with  a  pointer 
moving  automatically  over  a  divided  scale  marked  directly  in  electrical  units  so 
that  the  value  of  the  indication  of  tho  meter  can  be  determined  by  a  mere  inspec- 
tion of  the  position  of  the  pointer  upon  the  scale  without  manual  operation  or 
calculation. 

2.  It  must  be  Portable— ih\a  means  that  it  can  be  moved  about  from  place  to 
place  and  used  directly  without  previous  levelling,  calibrating,. or  adjusting. 

3.  It  must  be  ^ccuro^— this  means  that  if  it  is  used  with  reasonable  care  itB 
indications  will  not  diflTcr  from  the  true  value  of  the  quantity  measured  by  more 
than  a  definite  small  per  cent. 

4.  It  must  bePermanent — this  means  that  its  calibration  will  not  change  with  time. 

5.  It  must  be  Aperiodic  or  Dead- Beat— ihxB  means  that  its  pointer  will  immedi- 
ately come  to  rest  at  its  proper  position  on  the  scale  without  vibrating  to  and  fro 
about  this  position. 

6.  It  must  be  Economical  in  Power  Consumption — this  means  that  it  shall  con- 
sumo  only  a  small  amount  of  power  for  its  operation,  so  that  tho  expense  of  operat- 
ing is  negligible. 

Tbe  Weston  direct-current  instrument  consists  essentially  of  a  light  rectangular 
coil  of  copper  wire  wound  on  an  aluminum  fVame,  pivoted  in  Jeweled  bearings, 
and  capable  of  rotating  in  an  annular  space  between  a  soft-iron  core  and  tho 
specially  formed  pole  pieces  of  a  permanent  magnet  A  light  tubular  pointer 
is  attached  to  the  coil  and  moves  over  a  calibrated  scale.  The  current  is  intro- 
duced into  the  coil  by  means  of  two  spiral  springs  which  also  serve  to  control 
the  movement.  The  movement  of  the  coil  is  due  to  the  dynamic  action  be- 
tween the  current  flowing  through  the  coil  and  the  magnetic  field  of  tlie  per- 
manent magnet.  The  iK)intcr  assumes  a  position  of  equilibrium  when  the  action 
of  the  spring  equals  the  tendency  to  rotation  produced  by  the  current  and  tho 
magnetic  field.  Since  the  magnetic  field  is  uniform  and  the  torsion  of  the  spring 
proportional  to  the  deflection,  the  scale  is  practically  uniform. 

The  well-known  aperiodic  or  **dead-beat"  quality  of  Weston  instruments  is  pro- 
duced by  foucault  currents  generated  in  the  aluminum  tntne  when  rotating 
through  the  magnetic  field.  These  foucault  currents  have  a  sufficient  influence  on 
the  movement  of  the  moving  coil  to  cause  the  pointer  to  come  to  rest  almost  in- 
stantly and  without  friction. 

The  permanency  of  Weston  instruments  depends  largely  upon  the  small  annular 
gap  between  the  pole  pieces  and  core,  and,  as  this  is  an  important  point,  it  sliould 
be  borne  in  mind  when  selecting  electrical  measuring  instruments.  Tbe  small  air 
gap  referred  to  necessitates  the  greatest  accuracy  in  mechanical  construction,  and 
it  is  a  well-known  fact  that  the  product  of  the  Weston  Company  is  unapproached 
in  this  respect. 

The  balance  of  the  moving  coil  and  pointer  is  also  an  important  point,  as  an  un- 
balanced condition  of  tho  moving  system  introduces  forces  which  an  electrical 
instrument  is  not  intended  to  measure,  and  therefore  causes  great  errors  in  the  in. 
dications.  The  coils  of  Weston  instruments  are  carefully  balanced  for  all  positions 
BO  that  the  indications  are  practically  correct  for  all  positions  of  tbe  instrument. 

4  M 


962     VOLTMETERS  AND  AMMETERS. RAILROAD  CRANE. 


Weston  instruments  are  extremely  ec<»iomical  in  current  consumption,  and  are 
unexcelled  in  this  respect.  As  a  proof  of  this  fact  it  may  be  stated  that  a  volt- 
meter of  the  standard  type  consumes  only  about  .01  of  an  ampere. 

The  special  alloy  composing  the  series  resistance  of  Weston  Voltmeters  has  a 
negligible  temperature  coefficient  and  consequently  temperature  corrections  are 
unnecessary.  In  addition  to  this  the  alloy  has  been  carefully  designed  for  absence 
of  thermo-electric  effect  with  other  metals  of  the  circuit,  and  consequently  errors 
fh)m  this  source  are  avoided. 

A  great  variety  of  models  of  electrical  measuring  instruments  of  the  p(>rmanent- 
mignct  typo  is  manufactured  by  the  Weston  Electrical  Instrument  Co.  adaptable 
to  the  various  conditions  to  be  met  with  in  engineering  and  central-station  work. 
Among  thede  are  the  highest-grade  Laboratory  Standard  Instruments,  Portable 
Standard  Testing  Instruments^  and  a  complete  line  0/  Switchboard  Instruments. 
Besides  the  direct-current  Instruments  described  above,  a  new  line  of  alternating- 
current  Instruments  of  the  soft-iron  type  is  manufactured  by  this  company.  They 
are  extremely  accurate  and  permanent,  and,  by  means  of  a  well-designed  air 
damper,  have  the  same  "dead  beat"  action  of  the  movable  system  as  in  the  case  of 
the  direct-current  instruments.  They  are  practically  independent  of  temperature, 
frequency,  and  wave  form.  They  are  made  for  both  portable  and  switchboard  use. 
Complete  catalogues  describing  all  of  the  above  apparatus  will  be  supplied  on 
application  to  the  company  at  Newark.  N.  J. 

Portsklale    I>ireot»Re€t<iiuK    Voltmeters    and    'WattmoterH 
lor   .A-lteriiatins    axidi    Direct** Cur reiiit    Oirouits. 

Voltmeters,  22  ranges,  ft*om  7.5  to  3000  volts. 
Wattmeters,  12  ranges,  from  150  to  30000  watta 

Swi  tell  "board.    Ammete'rs    and    Voltmeters    for    Central 
Stations    and    Isolated    Plants. 

Illuminated  Dial  Instruments, ''  Round  Pattern  ^'  Instruments,  have  sul)StantiaUy 
the  same  characteristics  as  the  Portable  Standard  Instruments.  Are  "  dead  beat," 
have  uniform  scales,  can  be  kept  in  circuit  continuously. 

Railroad.  Crane. 

The  FarreU  Foundry  and  Machine  Co.^  A  nsoma^  Conn, 

Post,  —  Of  cast  iron,  in  one  piece,  fitted  to  deck-plate,  with 
faced  joints  and  secured  by  bolts  running  throagh  a  stone  foun- 
dation, set  up  on  anchor  plates  on  its  under  side. 

JUf. — Of  two  wroaght-iron  beams,  bolted  at  head  4ind  foot  to 
a  bonnet  and  shoe,  with  tie  bolts  between  them,  and  secured  to 
the   post  by  bolts   which  lead  from  its  head  to  a  yoke,  which 
turns  on  a  pin  in  the  hub. 
Hub. — With  a  pin  is  fitted  into  head  of  post-,  on  which  the  jib  turns. 
Tohe. — la  secured  by  two  bolts,  which  lead  down  through  and  arc  secured 
at  the  deck-plate  on  the  foundation. 

Gearing. — Double  and  set  for  both  fast  and  slow  motions,  and  detachable, 
to  admit  of  lowering  load  by  a  brake. 
Chain, — Triple  "  B  Crane,'*  and  all  sheaves  have  roller  bushes. 


Capacity. 


lUdiat. 

FmU 

13. 5 
SO 


Cnpadty. 

Weijrht. 

Lb*. 

55<» 
6500 

15 

Tubs. 

6 

10 

Welr>)t. 

Ltw. 

10400 
14D00 

16 
30 

CnniiHtv. 
T«ii>. 

so 

Tods. 

3* 

4 

*  I>wi|(n«d  for  operation  on  Wrecking  and  Coottractini;  can. 


Weiglit. 

LbeT 
17400 
23800 


VACrUM   PUMPS. 


963 


Vaoiium    Puxnpfl, 


Vaouuzn  P-axups. —  Air  pumps  are  so  termed  when  they  are  used 
in  connection  with  vacuum  pans,  multiple  effects,  or  filters. 

It  is  impracticable  to  define  a  general  rule  for  their  capacity,  as  the  cir- 
cumstances of  their  operation  vary  in  different  cases.  « 

Vacuum  Evaporators.— The\r  dimensioDS  depend  upon  the  temperature  to  which 
they  are  submitted,  the  evaporatton,  character  of  the  liquid  concentrated,  Tacuum 
desired,  and  type  and  efficiency  of  the  condenser. 

J>ry  Exhaustion. — When  air  alone  is  withdrawn. 

(  J    M  =  Q.     V  and  V  rtprueiOing  volwnes  oj  cylinder  and  receiver,  II 

volume  of  air  in  receiver  at  commencement  of  operaXion^  botk  in  cube  feet,  n  nuv^^er 
^Hrokes  of  piston^  and  Q  volume  of  air  remaining  after  n  strokes  of  piston. 

Condensation.— There  are  two  systems  in  operation  for  vacuum  puns  and  multiple 
effects,  viz. — 

Dry  System.—  Where  the  condenser  is  fitted  with  a  leg  pipe  or  barometric  tube, 
through  which  the  injected  water  passes  off  by  gravitation. 

Wet  System. ^Wheh  the  pump  receives  and  discharges  the  condensing  water,  in 
addition  to  its  maintaining  a  vacuum. 

In  either  system  the  pump  is  required  to  discharge:  ist.  The  air  contained  in  the 
injection  water,  in  the  liquid,  and  in  the  pan,  pipes,  and  condenser.— 2d.  The  incon- 
densable gases  evolved  trom  the  liquid  in  operation. 

Motes ^The  Pan  and  its  immediate  connections  are  made  of  iron,  copper,  bronze, 

or  alloya 

In  designating  the  design  and  construction  of  pump  required,  the  liquor,  the 
volume,  the  degree  of  concentration  required,  and  the  time  in  which  the  operation 
must  be  completed,  should  be  fUrnished. 

To  fhcilitate  transportation,  the  bed  plates  of  the  large  sizes  are  cast  in  two  parts 
and  bolted  together. 

An  order  for  a  pump  should  state:  ist  What  liquor,  and  volume  of  it,  is  to  be  evap- 
orated in  a  given  period,  as  an  hour?  2d.  What  the  diameter  ofpan  or  evaporating 
vessel,  and  what  that  of  vapor  pipe  when  it  enters  condenser?  3d.  What  the 
heating  surface  ofpan,  and  has  it  a  steam-jacket  and  coils,  and  if  coils,  what  is  their 
diameter  and  length?  4th.  If  heating  surlkce  is  of  iron,  brass,  or  copper?  5th. 
What  the  average  temperature  of  condensing  water,  and  what  the  volume  of  it? 

Duplex  "Vacuuxn   iPumps. 
Fly-'veheel   Typo  for   **I>ry»»  op  ••AVet*»   Syetezn* 

DfMBMSIONI. 


Dt*in«t«r 

DiameUr 

ofVMonm 

ofStoun 

Cyllodm. 

Cyliad*n. 

Int. 

Int. 

6 

5 

8 

6 

10 

7 

10 

8 

la 

8 

la 

9 

«4 

9 

\t 

10 

to 

16 

la 

18 

za 

18 

«4 

20 

la 

ao 

>4 

aa 

14 

aa 

16 

"4 

16 

a4 

x8 

DbplaMiDtBt,  at  75 

Diameter  of  PIpet. 

Volnm* 

FMt  Pbton  SpMd  pM 

BoctloD 

Stroke. 

par  Rev- 
olution. 

Ml 
Parlfla. 

Inst*. 
Per  Hour. 

and 
Diieharfe. 

steam. 

***'l>Mtt 

Int. 

Cub.  fact. 

Cub.  f«et. 

Cob.  feet. 

IM. 

Ins. 

Int. 

6 

•589 

29-45 

1767 

I 

«-25 

6 

1.047 

52.35 

3M« 

i 

X-25 

«  5 

6 

'•635 

81. 8a 

4909 

1-25 

9 

6 
9 

1.635 
2.356 

81.82 
117.81 

5?a 

»-5 

a 
a 

9 

2-356 

X17.81 

7068 

1.5 

a 

9 

3«o7 

160.35 

9621 

1.5 

a 

9 

3»?2 

160.35 

962Z 

»-5 

2.5 

9 

4.188 

209.4 

H564 

1 

«'5 

2-5 

9 

4.188 

009.4 

"§ 

u 

s 

■•5 

9 

5.30' 

265 

X 

a 

2.5 

9 

5.301 

265 

,5898 

i 

a 

2-5 

9 

6-545 

327 -25 

«9$35 

s 

a 

2-5 

9 

6-545 

327.25 

'9635 

M 

a 

2.5 

9 

7.919 

395.95 

23757 

3 

a 

2.5 

9 

7.919 

395-95 

23757 

2.5 

3 

9^ 

9   42» 

471.21; 

a8a75 

a.5 

3 

9 

9-424 

I  47*«»ft 

1    38375 

2-5 

3 

964         DRAWING,  TRACING,  SECTION,  ETC.,  PAPER. 

Dra-wing,   Tracing,    Profile,    Cross-section,    I*h.oto- 
printing  Papers  and.  Clotlis. 

Keuffel  &  Euer  Co.^  AVio  York^  Okicago^  SL  LouU^  San  J^VaneUea 

In  Blxeets.— WbatmaD*8  Haud  made  in  all  sizes,  U  P,  C  P,  and  R 
Univei'scUf  For  general  drawing  and  water-colors,  six  sizes,  14X17  ins.  to  27X40 
ins. — Normal^  Not  Hand-made,  but  very  similar  to  the  Not  Hot  Pressed,  in  Koyal. 
Imperial,  and  Double  Elephant. — JJupltx,  Cream  color,  for  line  detail  and  general 
drawings,  in  Hoyal,  imperial,  and  Double  Klepbaut.— i>up/fa;.  Drab  color,  heavy, 
Double  Elephant  only— Faragun^  Medium  rough,  in  Koyal,  imperial,  and  Double 
Elephant,  «wM>o</t  in  Double  Elephant  only.— Bristol- Board  (Keyuolds's),  Ave  sizes, 
12.5X15.25  ins.  to  21.5x28.75  ins.,  2,  3,  or  4  sheets  in  thickness.  IL  &  E.  Patent 
Oniou  Bristol-Board,  10X15  >i^  ^^^  15X20  ins.  K.  &.  K  J3ond  i'aper,  light  and 
Very  lough,  three  sizes,  19X24  to  27X40  >*^ 

TraoiiiK  h*eLi>eir ft. —  Vegetable  (French),  five  sizes,  13X17  to  29X42  ins.— 
Cfupola,  very  tough  and  transparent,  28X39  ius. — Hermex  (slight  grain),  20X30  and 
30X40  ins.— C*;;r«,  tough,  20X27  and  27X40  ins.— Corona,  thick,  27X40  ina  Of 
these  the  Vegetable,  Ceres,  and  Corona  are  natural  Tracing  ]>aper  (not  prepared). 

In  rolls:  —  J'archnynU,  Thick  Parchment,  Abaetu,  Patera^  Colonna,  thin  and 
medium,  30,  36,  42  ins.  in  width  (can  often  be  substituted  for  tractug  cloth), 
Corinthian,  Oothic,  Doric^  AUba  (for  transferring),  Lottu^  and  Libra. 

Drawing  F»apers  in  ^toll^.— Duplex,  medium,  cream  color,  30,  36, 
42,  56,  and  6a  ins.  in  width. — />>.,  thick,  drab  color,  36  and  56  ins.  in  width.— 
Uaiversal^tof  general  drawing,  water  colors,  etc.,  36,  42,  56,  and  62  Ins.  in  width.— 
Aawa,  similar  to  Universal,  pearl  gray.— Anvil,  medium  and  thick,  surface  and  ap- 
pearance similar  to  Whatman's  Not  Hot  Pressed,  medium,  36.  42,  and  62  ins.  in 
width;  thick,  62  and  72  ins.  in  width. —7'ara(/on,  pebbled  surface  (similar  to 
egg  shells),  thin,  medium,  thick,  and  extra  thick.  All  58  ins.  in  width,  except 
rough,  medium,  which  is  also  36  and  42  ins. — With  smooth  surface  (similar  to 
Whatman's  N.  U.  P.  on  one  side,  smooth  on  the  other),  medium  and  thick,  both 
58  ins.  in  width,  except  medium,  also  36  and  72  ins.  All  can  be  had  by  the 
yard,  in  lo-yard  lengths,  or  in  rolls  of  about  35  lbs. 

Detail.— £'conomVi  50-yard  rolls,  light  60  ins.  in  width,  medium  36  and  60  ins. 
^Simplex,  light,  medium,  and  heavy  (Manila),  36,  42,  48,  and  54  ins.  in  width,  in 
50  and  100  yard  or  loo-lb..  roll& 

MIounted. — Unitfersaly  Duplex,  Lara,  Anvil,  and  all  the  Paraxon  Papers 
are  mounted  on  muslin,  in  all  the  widths;  by  the  yard,  or  in  10,  20,  or  30  yard 
rolls.    All  the  sheet  pipers  are  also  to  be  obtained  mounted  up  to  20X30  feet 

I*hoto-Priiitii\g  Papers.— Prepared,  in  10  or  50  yard  rolls.  Helios  Blue 
Print,  medium  and  thick,  24  to  54  ins.  in  width.  K.  T.  Paper,  thin,  for  mailing, 
34.  30t  36,  and  42  in.s.  in  width. — Columbia,  Blue  Print  Papers,  medium,  thick,  and 
thin  (mailing),  24  to  4a  ins.  in  width.  Blue  I*roces8  Cloth,  prepared  and  unpre- 
pared, in  10- yard  rolls,  30,  36,  and  42  ins.  in  width.— iVijTrorirw (Positive  Black  Proc- 
ess), lo-yard  rolls,  30.  36,  and  42  ins.  in  width,  prepared  only — Umbra  (Positive 
Black  Process)  requires  no  developing  bath.  —  ifaduro  (Negative  Brown  Proc- 
ess) Paper  and  Cloth,  requiring  ouly  a  fixing  bath;  30,  36,  and  42  ins.  in  width. 
From  Maduro  prints  on  thin  paper  positive  blue  or  brown  prints  can  be  taken. 
Maduro  is  the  latest. 

Proflle  Crosa  -  Section  and  Tracing  Papers.— -Tracing  and 
Drawing  Cloths  printed  in  red,  green,  orange,  or  blue. 

Oross-Seotion  Papers.- 10X10,  16X16  per  inch,  5X5  to  the  half-inch, 
8x8  per  inch  millimeter,  12X12  per  inch,  all  in  sheets  about  16X20  ins.  10X10, 
x6Xi6  millimeter  also  continuous  in  rolls  and  in  the  usual  variety  of  colors,  and  on 
Tracing  Paper,  Tracing  Cloth,  and  Drawing  Clolh, 

Traoing  0\ot\\B.— Excelsior,  extra  fine,  very  transparent,  30,  36,  and  4a 
ins.  in  width. — Imperial,  both  sides  glazed  or  one  side  dull,  30,  36,  42  ins.  in  width, 
and  one  side  dull  in  48  and  54  ins.  in  width. — Sagar''8,  30,  36,  and  43  ins.  in  width. 
— Dowse'' s,  30,  36,  and  42  ins.  in  width.— Tnton,  thick,  for  coarse  tradings,  30,  37, 
40,  and  43  ins.  in  width. 

NoTK,— A  complete  cntalogrue  of  Drawinf^  MnttriaU  und  Surveying  loitramtnts,  660  pp.,  mailed 
on  application,  .  ,  . 


BEFB16ERATION.  ^6$ 

Adeoliaxiioal  Refrigeration. 

The  De  La  Vergne  RefHgerating  Machine  Co.y  New  York. 

]MecfaLaiiica.l  Refrigeration,  is  effected  by  Compressionf  Condensa- 
tion^ and  Expansion  of  a  liquefiable  gas. 

The  Kefri^erating  or  Heat-absorbing  agents  are  Ammonia,  Ether,  Sul- 
phurous Oxide,  Carbonic  Acid,  etc.,  which  undergo  the  operations  above 
given.    The  De  La  Vergne  Machine  is  operated  with  Ammonia. 

Coixkpreseion. — The  gaseous  agent  is  compressed  if  Ammonia  is  used 
to  from  125  to  175  lbs.  per  sq.  inch;  during  which  operation  heat  is  devel- 
oped in  proportion  to  the  pressure  exerted  upon  the  gas,  or  the  relative  vol- 
ume to  which  it  has  been  reduced. 

Condensation. — The  heat  developed  in  the  operation  of  compression 
is  withdrawn  from  the  compressed  gas,  which  is  forced  through  coils  of 
metal  pipe,  surrounded  with  cold  water.  As  soon  as  the  condition  of  satura- 
tion is  reached,  the  gas  assumes  a  liquid  state. 

ICxpansion. — The  liquefied  gas  is  also  passed  through  coils  of  metal 
pipe,  suspended  or  seated  in  a  space  where  the  substanee  to  be  cooled,  as  air, 
water,  brine,  beer,  etc.,  is  introduced ;  the  pressure  in  the  interior  of  the  coils 
being  at  a  lower  point  than  that  required  for  the  maintenance  of  the  gas 
in  the  liquid  state. 

The  liquefied  gas,  upon  entering  these  coils,  again  expands,  and  extracts 
from  them  and  the  substance  around  them  the  same  quantity  of  heat  that 
was  previously  given  up  by  the  gas  to  the  water  of  condensation. 

The  gas,  having  passed  through  this  routine  of  operation  of  refrigerating, 
is  now  m  a  condition  to  be  used  in  a  repetition  of  it. 

The  gas  is  forced  through  these  coils  by  the  pressure  in  the  coDdenser,  which,  in 
the  use  of  Ammonia,  is  generally  from  125  to  175  lbs.  per  sq.  inch.  Under  this 
pressure  and  the  cooling  action  of  the  water,  liquefaction  occurs,  and  the  resulting 
liquefied  gas  flows  to  a  stop-cock,  having  a  minute  opening,  by  which  the  pressure 
is  reduced  from  10  to  30  lbs.  per  sq.  inch  in  the  expansion  coils,  and  where  the 
liquid  through  reduction  in  pressure  is  again  transformed  into  a  gas.  By  the  ex- 
hausting operation  of  a  gas  pump,  this  pressure  is  maintained,  and  then  the  gas  iEf 
forced  by  compression  into  the  condenser  again. 

Thus  the  expansion  coils,  although  similar  to  those  for  condensation,  are  operated 
for  the  reverse,  which  is  the  absorption  of  heat  by  the  liquefied  gas,  instead  of  the 
extraction  of  heat  from  it. 

In  Operation,  heat  is  transmitted  from  the  outside  through  the  walls  of  the  ex- 
pansion or  cooling  coils,  and  is  absorbed  by  the  expanding  liquefied  gas  withiu  such 
coils.  This  heat  is  Dorne  by  the  gas  through  the  pump  into  the  condenser,  where 
it  is  in  turn  transferrred  to  the  cooling  water  through  the  walls  of  the  condenser 
coils,  and  ultimately  carried  away  by  this  water. 

NoTV. — Uqaefied  ammonta  in  ■  giiMoiu  condiUon  at  atmoupberic  precsare  and  temperature  of  60", 
•naadi  about  1000  times,  and  upon  ita  ezpanaion  re-absorba  a  quantity  of  heat  equal  in  amount  to  t^at 
originally  held  and  OTolved  frftm  it  during  llqaofactioo. 

The  liquefied  gas,  entering  the  coils  tL>rough  the  minute  opening  in  stop-cock,  is 
immediately  relieved  of  a  pressure  of  125  to  175  lbs.,  that  requisite  to  maintain  it 
in  a  liquid  state,  when  it  boils  and  expaLds  into  gas.  To  obtain  this,  heat  is  re- 
quired, and  which  alone  can  be  supplied  fh>m  the  substance  surrounding  the  coils, 
such  as  air,  brine,  water,  etc. 

As  a  result,  the  surrounding  substance  is  reduced  in  temperature,  the  quantity 
of  heat  withdrown  by  the  gas  being  the  same  as  that  which  was  withdrawn  flrom  it 
during  its  liquefaction  in  the  condenser. 

Consequently,  if  the  expansion  coils  are  set  in  an  insulated  space,  it  will  be  re- 
frigerated; and  if  brine  or  any  liquid  surrounds  the  coils,  it  will  be  reduced  in  tem- 
perature, and  brine,  in  this  condition  led  into  a  space  through  a  pipe  or  open  con- 
duit, will  refrigerate  it. 

in* 


966 


BEFBIGERAltON.— FOBCITE  POWDER. 


ResnltB  of*  Operation  of  H.eftrigeratit»g  Mlaoliixiea 

of  200*   Tons. 

At  Lion  Brewery^  New  York.    Duration  of  Test  ii  A  20  min. 

Steam  Cylinders.— D\a.meter,  36  ins. ;  Stroke  of  Piston^  36  ins. Pressure* 

of  steam  (mean),  48.4  lbs. 

Gas  Compressors. — Two  double  acting;  diam.  18  ins. ;  Stroke  of  Piston^  36  ins. ; 
back-pressure,  38.22  lb& ;  condenser,  180.78  lbs.  persq.  inch;  BtoolutUms^  39.55  pel 
minute. 

Test  for  cooling  made  by  running  water  of  a  mean  temperature  of  loags^'  ovei 
wort,  Baudelot  Cooler,  and  cooling  same  to  a  mean  temperature  of  50.77°. 

Befrigeratum,  equal  to  melting  of  210  tons  Ice  per  day  of  24  hours. 

Horse  Power.  —  IH*  =  313,  and  assuming  consumption  of  coal  at  3  Ib&  per  boui 
per  IIP,  ratio  of  refrigeration  =  20.84  lbs.  ice  per  lb.  of  coal. 

•  

If  operated  under  ordinary  condensingpressure  of  156  lbs.,  the  IW  would  be  278, 
and  ratio  23.47  lbs.  ice  per  lb.  of  coal ;  1&  per  ton  of  ice  per  day  =  z.  183. 

Of  a  26-Ton   l^aohine.      At  Bohlen-Huse  Machine  and  Lake  Ice  Co.^ 
Memphis^  Tenn.    Duration  of  Operation  20  Days. 

Steam  Cylinder :  Diameter,  22  ins. ;  Stroke  of  Piston^  28  ins. ;  Steam,  93.49  lbs.  per 
84.  inch. —  Cfas  Con^rensors^  Two  single-acting:  diam.,  14  ins. ;  Stroke  cf  Piston,  38 
ins. — Revolutions^  40  13  per  min.—  TemperaXures  :  Cooling  water  63^',  brine  18.62°; 
coal  consumed,  180597  lbs. ;  Ice  produced,  i  221 172  lbs. — Ice-making,  26.83  ^'^  P®' 
day  of  24  hours.— Steam-boiler  evaporated  5.5  lbs.  water  per  lb.  coaL 

*  All  tons  are  giTen  at  2240  lb*.    See  foot-note,  p.  zzri. 

FORCITE   POWDER. 
A  merican  Forcite  Powder  M^fg  Co,,  New  York, 

ITorcite.  —  Is  an  improvement  in  Nitro-glycerine  compounds,  and  it 
presents  the  following  elements : 

It  is  less  sensitive  to  shock  than  other  explosives. 

Assuming  Dynamite  No.  1  as  (he  Standard ^=.  100. 
Forcite  No.  X,  95  per  cent  Nitro-glycerine,  133  per  cent,  intensity. 

3t40        "  "  "  95        " 

*  3$  per  cent,  stronger  than  Dynamite  No.  i.      f  Within  5  per  cent,  the  strength  of  No.  x,  75  per  cant. 

It  is  more  powerful  than  any  other  known  explosive  in  our  market 
See  Report  of  Henry  L.  Abbott,  Lieut.-Col.  E.  U.  S.  A. 

It  is  safe  in  handling  and  transportation,  quintuple  force-caps  being  ap- 
plied to  explode  it,  and  free  from  noxious  fumes.  Water-proof,  ftise  from, 
tiie  absorption  of  moisture,  and  is  not  injured  by  submersion  in  water. 

Directions  in  Use, 

In  Blasting,  fill  the  hole,  and  thoroughly  tamp  the  charge. 

Thaw  it,  if  frozen,  as  frozen  powder  will  not  explode  with  its  proper  eflfbct 

Exploder  or  caps  should  be  maintained  dry,  and  are  not  to  be  stored  in  samo 
buildings  as  the  powder. 
Powder,  ignited  by  weak  caps,  instead  of  being  exploded,  emits  noxious  vapors. 

Per   Cent,  of  Nitro««grl3roerine   in   Srande  of  I^oroite. 

Gelatine 95  I  No.  i 75  I  No.  2 50  I  No.  3 40  I  No.  3  B m 

N0.1X 8o|    "aX....6o|    "3X....45I    "3A....35I    »'   3C 30 


SURFACB   CONDENSATION. — ^RSFBIGSRATING.       967 


SURFACE   CONDBN8ATION. 

W?i€eler  Condenser  A  Engineering  Works^  New  York, 

Constrviotion. — The  Wheeler  Condenser,  alike  to  others  for  the  same 
purpose,  is  an  elongated  vessel,  cylindrical  or  cubical,  with  the  neftssary  at- 
tachments for  Steam  and  water  connections. 

Its  disting^uishing  features  are :  The  exhausted  steam,  upon  entering  the 
condenser,  impinges  upon  a  perforated  scattering  plate,  which  distributes  it 
generally  over  the  tubes  and  thus  diverts  the  deteriorating  effect  of  the  direct 
impingement  of  it  upon  one  portion  of  the  tubes ;  the  steam,  expanding 
in  a  void  above  the  tubes,  is  reduced  in  pressure,  and  consequent  temperature, 
before  it  tlows  into  contact  with  the  surfaces  of  the  tubes. 

Each  pair  of  tubes  is  composed  of  an  external  and  internal  tube,  set  hori- 
zontally, the  inner  tube  having  an  open  end,  the  other  end  being  screwed 
into  a  removable  head  or  vertical  diaphragm,  which  is  set  at  a  space  of  a 
few  inches  from  a  like  head,  into  which  one  end  uf  this  large  tube  is  screwed, 
the  other  end  being  closed  by  a  screw  cap. 

This  design  permits  the  tubes  to  expand  or  contract,  without  the  use  of 
tube  i)ackings  or  ferrules  of  any  kind,  as  only  one  end  of  each  tube  is  fixed. 

The  tubes  are  tinned  both  externally  and  internally,  and  can  be  readily 
withdrawn  for  cleaning,  etc. 

Operation. — The  tubes  are  divided  into  two  distinct  tiers ;  the  condens- 
ing water  flowing  through  the  small  tubes  in  the  lower  division  passes  out 
of  their  open  ends  and  through  the  annular  space  between  their  external  sur- 
faces and  the  internal  surfaces  of  the  larger  tubes,  and  from  thence  into  the 
upper  division,  and  through  its  tubes  in  like  manner  to  the  8{)ace  between  the 
two  heads  referred  to,  and  finally  out  through  the  discharge  pipe. 

The  circulation  of  the  condensing  water  is  by  this  manner  of  fiowing  ren- 
dered very  active,  and  consecjuently  a  less  volume  of  it  is  required,  and  there 
is  less  tube  surface  needed  for  a  required  volume  of  condensation. 

HeHults    o<*  an   Operation    to    Determine    tlie    Kfflcienoy 
of*  tlxis   Condenser,  -with,   and    -witliovit   a   Vaonum. 

Steam  Condensed  per  Hour  per  Sq.  Foot  0/  Condensing  Surface. 


Coiidenter. 


With 
Vacuum 


V«c- 
■um. 


In*. 
24.5 


In 
Water. 


T«inp«ratarM. 

DIi- 

charfT* 

Wat«r. 


56.5 


98 


RMer- 

Tolr. 


DtifC'a. 

138 


Steam  ' 

Coo-   I 

dented. 


Lbs. 
101.8 


CondanMr. 


Without 
Vacuum* 


Teinperatarea. 
In-         DU- 


jsction  '  chftrir* 
Water.   Water. 


D«K't. 
J78.5 


Deg's. 
139 


Rsacr- 

▼olr. 

DeK'.. 
201 


Steam 

Con- 

d«nMd. 


Lba. 
204.2 


*  Aa  a  tlmple  surface  condans«r  without  air  pump  attached. 

REFRIGERATING   AND    ICE-MAKING. 

A  Refrigerating  Machine  is  one  that  produces  as  low  a  temperature  as  a 
given  volume  of  ice,  at  the  temperature  attained,  would  in  melting  from  the 
temperature  of  the  air,  or  void  to  be  refrigerated  :=  142°  (142.6°)  of  temper- 
ature are  required  to  transfer  one  lb.  ice  at  32°  to  one  lb.  water  at  32°,  which 
difference  represents  the  Latent  heat. 

In  order  to  operate  such  a  machine  for  the  formation  of  ice,  there  will  be 
requireil,  instead  of  142°,  about  236°. 

Thus,  Assume  the  water  (Tom  which  the  ice  is  to  be  formed  to  be  of  an  average 
irnnpemture  of  72^;  Ihen  to  reduce  it  to  32*^,  before  Ice  can  be  formed,  40°  or  40 
thermal  units  are  to  be  abstracted  flrom  each  lb.  of  water;  Uien  143°  are  to  be  ab* 
Viracted  f^om  the  lb.  of  water  of  32 ^  to  reduce  it  to  one  lb.  ice  at  ^2^. 


q68    befbigkbatinq  and  ios-making,  btc,  etc. 


If  the  ice  is  produced  at  the  general  temperature  of  iS^',  and  the  Specific  heat  of 
it  is  taicen  at  .  5° ;  then,  32  — - 18  x  •  5  =  7^.  To  reduce  this  water  from  72°  to  32° 
there  is  a  reduction  of  40°  or  thermal  units  from  each  lb.  of  water. 

If  ice  is  produced  at  18°,  Then  7°  additional,  as  deduced  above,  are  required. 

In  practice  it  is  observed  that  the  avenge  loss  of  temperature  by  radiation  of  it 
from  the  freezing  tank,  melting  the  external  surface  of  the  ice,  to  withdruw  it  from 
the  molds,  etc.,  is  fully  20  per  cent,  of  the  total  capacity  of  the  machine.  Hence,  of 
the  236^^  which  are  to  be  abstracted  from  the  water  per  lb.  of  ice,  in  order  to  reduce 
it  to  ice,  47.3°  are  lost  by  radiation.  And  40+  142 +  7-1-47=: 236°  are  to  be  ab- 
stracted from  each  lb.  of  water  of  72^,  in  order  to  produce  i  lb.  ice  at  18°. 

Consequently,  If  142°  are  required  in  Refrigerating  machine  und  236°  in  Ice- 
making,  the  relative  requirements  are  as  i  to  i  .66  or  as  6  to  10. 

Refrijgerating  Capacity-  —  Of  a  machine  is  designated  by  the 
number  of  lbs.,  or  tons  of  Ice,  which  it  is  capable  of  producing. 

One  lb.  of  ice  at  32°  absorbs  142  <^  or  thermal  units  in  melting.  Hence,  one  ton 
of  ice  absorbs  142°  X  2240  =2  318  000 o,  and  a  machine  of  50  tons'  capacity  absorbs 
318000°  X  50=  15900000°  every  24  houre  of  its  operation. 

Ice-making  Capacity. — Of  a  machine  is  also  designated  by  the 
namber  of  lbs.,  or  tons  of  Ice,  which  it  is  capable  of  producing. 

To  freeze  one  lb.  of  water  at  72°  to  ice  at  18°,  it  requires  the  absorption  of  236° 
viz..  To  reduce  one  lb.  of  water  at  72°  to  32°,  it  requires  the  ahsorption  of  40°,  to 
freeze  it  requires  142°;  to  reduce  ice  from  32°  to  18°  requires  14  x  -5  =  7°  (Specific 
heat  of  ice  =  .5).  Reduction  of  temperature  from  surface-of  freezing  tank  and 
withdrawing  the  ice  from  its  molds  by  the  application  of  heat,  about  20^  of  total 
capacity  of  machine  =  20^  of  236  =  47°.  Hence,  Total  heat  to  be  absorbed  per  lb. 
of  ice  =  4o-|-i42-|-7-|-47  =  236°. 

Ratio  0/ Capacity  0/ Refrigerating  to  Ice-making. — As  142  :  236  : :  6  :  10,  as  pre- 
ceding, or  a  Refrigerating  machine  of  9.97  tons  capacity  will  produce  about  6  tons 
of  ice  in  the  same  period. 

l^igliest   £21evation.   of  a   I^alze. 

Colorado. —  '* Green  Lake"  is  10252  feet  above  level  of  the  sea  and  300  feet  in 
depth. 

Afagnifying. 
Bavaria^  Munich,  possesses  a  microscope  that  magnifies  16000  diameters. 

r*ower   of*  Screw    Bolts. 
Results  of  an  Experiment 
Wrought-iron. — Diameter^  2  ina     Thread,  V.     Pilch,  .22  ina 
Mean  Power  applied  at  a  circumference  of  78.85  ins.,  213  Iba 
Loss  by  friction,  10. 19  per  cent. 

{Jos.  McBride,  M.  Am.  Soc.  M.  E.) 

IDuration   of*  Railroad   Cross-ties. 
Du.ration.   of*  IfolloAving    "Woods. 

Wood.  I  Yean.  Wood.  Yeara.  I  Wood. 


White  Cedar. . 
White  Oak. . . . 
Black  Cypress 


Wood. 

Yeara. 

Chestnut 

Red  Spruce 

Red  Oak 

I' 

5.5 

Yevt. 


8.75      Chestnut 7.5       Yellow  Pine 6 

8  Red  Spruce 6  Hemlock 5.5 

8  Red  Oak 5.5       Tamarack 4 

The  elements  of  durability  are  Resistance  to  decay  and  to  wear.  White  Oak  com- 
bines both  qualities  to  the  highest  degree.  Yellow  Pine  resists  wear,  but  not  decay. 
Red  Cedar  and  Black  Cypress  resist  decay,  but  not  wear. 

Ties  should  not  be  cut  when  the  tree  is  in  leaf,  and  should  be  well  seasoned  or 
preserved  by  some  antiseptic  process  before  being  laid. 

Proper  draining  of  a  road-bed  will  add  to  the  duration  of  ties,  andall  indentations 
of  their  surface  by  tools,  etc. ,  should  be  avoided,  and  all  spike-holes  plugged  to 
avoid  the  absorption  of  water.    {H.  W.  RecU.) 


GAS  ASi>  ELSCTBIO  LIGHTING. — BAILBOAD  SPBBD.    969 


GAS  AND  ELECTRIC  LIGHTINO. 
{In  AddUifm  to  pp.  583-587).    Gras. 
Csuidle  JPo^w^er  and  Coxisuixiptioti  of  X>ifierent  Sixrners. 

Candle  Peww. 


Burner. 


Bats  wing 

Flat     I  from 
Flame j  to... 


CandU  Power. 
No. 


10 

"5 
13-8 


Per  Foot 
per  Hoar. 


No. 

2-33 
2.5 

3 


CoosamH 

tioo 

per  Hoar 

per  Lamp, 

FeeU 

4-3 
4.6 

4.8 


Bamer. 


No. 


Flat 
Flame' 


In  I 
CIub) 
ters.! 


60 
150 


Per  Foot 
per  Hoar. 


No. 
4 

5.5 
5 


Coneaaip* 

tion 
per  Hoar 
per  Lamp^ 


Kleotric. 
Am  Xjaxups. 


Current. 

Ampera. 
6 
8 
10 


Candle  Power. 

WatU 

Unite 

Horix'tal. 

Angle  ;•. 

Angle  to*. 

Angle  20*. 
No. 

Annie  40*. 

Required. 

per 

No. 

No. 

No. 

No. 

No. 

Hoar. 

93 

175 

207 

322 

460 

300 

•3 

156 

300 

350 

546 

780 

400 

.4 

220 

420 

495 

770 

1 100 

500 

•5 

Feet. 

«5 

30 

30 


Relative 

Coeto*of 

Gas.  Eleo- 

tricsi. 


3.67 

3-77 
483 


*  Per  Candle  Power  for  Batowing  Bonier. 


Arc  Lighte  should  be  set  high  and  for  the  following  causes: 

1.  Their  high  candle  power  and  distance  apart  being  in  excess  of  gaslighta 

2.  Light  radiating  at  a  depressed  angle  is  greater  than  when  cast  horizontally. 

3.  Horizontal  rays  are  not  as  steady  as  angular. 

N<yrB.>-The  greatest  intensity  with  continuous  currents  is  at  an  angle  of  40°  be* 
low  a  horizontal  line. 

T*o  Deterxnine    tlie   Coefficient  of  Mlixximixxn   Xjiglitlxi^ 

Po-^wev   ill   Streets. 

L  H  -H  D3  =  Co.  L  reprf tenting  candle  power  of  lamps,  D  maximum  distance 
Jrom  lamp,  and  H  height  o/lamp^  both  in  feet,  and  Go,  coefficient. 

Usual  standard  for  Gaslighting  is  assumed  for  a  unit  of  pavement  50  fbet  dis- 
tant for  a  lamp  of  12  candle  power  9  feet  in  height.     Hence, 

12  X  9  -J-  50*  =  .000864. 

Adopting  this  coeffl<^ent,  the  following  capacities  of  arc  lights  will  give  the  same 
standard  of  light  at  the  following  h«ight  and  distance. 

A  minimum  standard  would  increase  the  coefficient  to  .001 728. 

NoTK.— One  arc  light  can  replace  from  3  to  6  gas-lamps,  according  to  locality  and 
standard  of  light  adopted. 

a. — Arc  lighting,  based  on  the  substitution  of  one  light  for  3.5  to  4  gas-lamps, 
would  double  the  minimum  standard  of  light;  while  the  average  standard  would 
be  Increased  from  10  to  12  time& 

{Eliminaledy  etc,  from  Papers  of  Henry  IMrinson,  M.I.C.E.) 

Xlailroad   Speed. 

1891,  Sept  14.  N.  T.  Central  and  Hudson  River  R.  R.—  From  Grand  Central 
Station  to  East  Buflalo,  N.  Y.  416  miles  in  426  minutes,  actual  running  time  = 
61 .  404-  miles  per  hour.     Weight  of  Train  230  tons. 

From  Station  to  Fairport,  361  miles  in  360  minutes,  there  delayed  by  a  hot  JoumaL 

1891.  Philadelphia  and  Reading  R.  R. — One  mile  in  39.75  Beoonds=:the  rate  of 
90 .  54  miles  per  hour. 

"  Flying  Seolshman,**  London  to  Edinburgh,  400  miles;  stops,  44  minutes  ex- 
eluded,  in  8 . 5  honn  :£  47 .05  miles  per  hour. 

Weight  of  Trains  excluding  locomotive,  80  tonsL 


970 


TMJfACl'XY  AHfH  BS6I9TANCS  QF  BOLTS. 


rrenaoitsr  of*  Round  and  Square  "^^rouglit-Iron  Solts, 


Round — .75-incb,4riTen  into  a  ho]a  at  .695  iQcti,  in  White  Pine,  for  12  iii&, 
required  6875  lbs.  to  withdraw  it. 

I -inch,  driven  into  a  hole  ot  .75  Inch,  <n  White  Pine,  for  12  ins.,  requited  io6it 
Ita.  (o  withdraw  it;  and  in  Norway  Yellow  Pine.  10830  \i». 

i-incb,  screwed,  S-tbreads  per  inch  into  a  bole .  8125  inch,  in  White  Pine,  for  z?  in&, 
required  15  125  lb*,  to  withdraw  it,  and  oiie  of  19  threads  required  15  250  lbs. 

x.iss-ins.,  driven  into  a  hole  of  .875  inch,  in  Hemlock,  for  12  ine.,  required  8875 
Iba.  to  withdraw  it. 

Square. ^Tbe  differeoo^  belween  that  and  Round,  under  like  conditions,  was 
essentially  diStorent,  and  when  a  hole  wa«  bored  10  ins.  in  depth,  tb^  diflferwoa  was 
not  essential    - 

Rail-vragr  Spilces. 


te 
Tf«. 


4.6 


Ctiettont. 


Lbs. 
3*64 


To  Withdnwr 
Y.  Pine.    W.  Cedar.    W.  OA. 


Lbs. 
3«98 


3305 


Lbs. 
4330 


Hemlock, 


Lbs. 

3485 


Remarltt. 


Iq  solid  wood,  sharp  pointed. 


6hip  Spikes. — 37^  inch  square  and  7  ins.  in  doptb,  driven  3  in&  in  White 
Pine  and  drawn  back,  required  1617  lbs.,  their  edge  wit^  the  grain  of  tbe  wood,  and 
1317  lbs.  with  it  across. 

iVbfe.— The  above  are  dedueed  ftom  Experiments  ef  Gen.  Weitzel,  U.  S.  E., 

1874-77. 

BemHance  9/  BoUt,  afVer  being  7  piontbis  driven ;==  xo  per  c?nt.  greater  than  im- 
mediately after,  and  when  driven  through  in  direction  of  flbre  it  fs  but  60  per 
cent,  of  that  of  being  withdrawn. 

Smooth  bolts  have  greater  retention  than  ngged,  efther  driven  or  withdrawn. 

Moderate  "  ragging  "  reduces  their  power  25  per  «ent ,  and  extreme  50  per  cent. 

Relation  between  diameters  of  bolt  and  hole  showed  that  the  resistance  of  a  fooU 
of  f  inch  in  a  .6875-incb  hple  was  greater  tbA«  in  ope  of  .75  or  .8x25  inph. 

With  a  .75-inch  bolt  the  reBistaaoe  was  gveator  in  a  hole  of  .625  inch,  and  waa 
one  quarter  greater  than  in  one  of  a  sixteenth  greater  or  les£k 

One-inch  square  bolt  is  a  .875-inch  hole  was  the  same  as  a  roviid  boU  in  » >6875* 
inch  bole. 

Screw-bolts  are  about  50  per  ceat.  more  elfective  than  ptoin  rownd. 

Long  pointed  blunt  bolts  are  more  effective  than  short  pointed. 

ExperimeBta  of  Mr.  F.  Cottingwood  a«d  Wn.  H.  Paine,  made  in  connection  with 
construction  of  the  New  York  and  Brooklyn  Bridge,  gave  for  a  i-inoh  round  bolt, 
driven  in  a  .9375-)nch  hole,  in  best  Georgia  Pine,  a  resistance  of  15  000  lbs.  per  lineal 
foot,  and  in  a  .875-inch  hole  12  000  lbs.    In  lighter  woods  the  tenacity  was  less. 

Mr.  J.  B.  Tscharner,  in  the  laboratory  of  the  University  of  Illinois,  determined 
that  a  like  bolt  (^-inch  round),  under  like  conditions  in  WliKe  Pine,  was  6cxx>  lbs., 
and  that  a  bolt  driven  paraillel  to  the  grain  of  ttie  wood  has  but  hadf  of  the  reaist- 
ance  of  that  drivon  perpendievlar  to  ft.  Furtiier,  that  amuraiDg  a  bolt  of  i  imeh  in 
a  .0375-hole  as  I,  that  if  driven  in  a  .75-inch  hole  it  would  be  1.69,  and  iaa.tiss- 
incn  sole  2.13. 

Relative   IDriving  Resistance   of*  Round   and    Sq.uare 

Steel   IBolts. 
One  Inch  in  Diameter.    Drive  into  Pine  Wood,    Six  Inehe$  in  Depth. 


S^u«re. 


Diam.  of  Holes  in  Ins. 

Power  applied  in  Lbs. 

Tenacity  per  Inch  of  Depth 


"k 


•9375 

426P 

710 


.875 
4660 

777 


.8«^ 
40S0 
675 


Konnd, 


•9376 

9250 

375 


.875 

3798 
633 


.8125 

4728 

788 


(/.  ff.  Powell  and  A-  E,  Uarwy). 
Non.— Inasmuch  as  the  amount  of  matal  jn  Um  fiovnd  bolta  is  but  .7854  that 
of  the  square,  Round  drift  bolts  «c«  lb»  Iwat  «SpaA^iF«. 


MOBTAB. — SPKXD   OV    YS8SBLS,  KTO. 


971 


MIortar. 

K rick.— Clean  and  Sharp  Sand,  3  parts;  Ume^  t  part;  laid  in  a  bed  saffl- 
cientlj  large  to  admit  of  the  composition  being  in  a  thin  layer. 

In  slaking  the  lime,  apply  sufficient  water  to  prevent  its  baming.  Stir  rapidly 
and  thoroughly,  in  order  to  enable  the  water  to  cover  each  lump  of  lime  as  it  deli- 
q06Kes;  and  when  this  operation  is  flilly  efiteted,  stir  the  substance  into  a  condi- 
tion alike  to  milk,  and  then  mix  it  with  the  sand  in  the  bedt  with  water  sufficient 
to  render  the  mass  semi-fluid. 

In  this  condition  it  should  remain  fbr  a  period  of  at  least  94  hours— a  longer  pe. 
riod  is  preferable. 

When  required  for  use,  add  and  thoroughly  mix  with  it  another  part  of  sand. 

Hair  Iilortatr.—Lay  the  hair  on  a  floor  and  beat  it,  in  order  to  break  the 
bunches  and  remove  (breign  substances.  Then  soak  and  wash  it  in  water  for  «4 
hours,  to  remove  all  glutinous  matter. 

Spread  it  on  a  layer  of  sand  in  a  bed,  add  lime,  and  proceed  as  directed  for  Brtck 
Mortar. 

Uar^^e   Xreea   in   A.i3.stralia« 

In  VidoriOf  Eucalyptas.— One  435  and  one  450  feet  in  height. 

6peed  of*  Vessels. 

To  I^eterxnine  the  True  Spe^d  oraV^essel  \>y  ConBeoutive 
and  A.lternate  Runs   over  a  Pleasured   Distance. 

Asmme  the  Runs  asfMoun: 


3 
4 
5 
6 


MilM  or 
KnoU. 

15.6 


10.  a 

»4-4 
ti 

13. a 
II. 8 


xrt 

RMuIt. 


ia.9 
14.3 

la.y 

13. 1 

"5 


ad 
RMolt. 


ia.6 

12.S 
13.4 
ia.3 


3d 
Result. 


ia.55 

ia.45 
ta.35 


RMalt. 


ia.5 
ia.4 


Mean 
of  RmuIIs. 


ia.45  =«  Trtu  Speed. 


62.5-7-5  =  la. 5  Ordinary  mean  Speed. 

NonL^The  mean  of  second  result  Is  sufficiently  accurate  for  ordinary  determl- 
nattona 

Velocity  o^  tlie  €7ui*fent. 

To  I^oterxnine  the  Valooity  of*  the  Ourrent  in  ILiitie  of 

the  Vessel's  Course. 

From  the  observed  speed  of  the  vessel  deduct  her  true  speed,  and  the  difference 
Is  the  velocity  of  the  current 

iLunmuiTioif Assume  preceding  runs. 

speed. 


Rua. 


X 

3 

4 

I 


Obaerved. 


15.6 
10.1 

»4-4 
II 

13.3 
II. 8 


True. 
'  ■ » « « 


ia.45 


3-15 
3.35 

x>45 
.65 


Milee  or  Knotk 


With  the  vessel 
Against  da 
With  do. 
Against  da 
With  da 
Against     da 


Relative   Corrosion   of  Wrought    Iron   in    8ea   Water. 

In  Air i. 

In  contact  with  brass 34  i  iQ  contact  with  lead 5.5 

"         "     copper 4.9)         »'         "     gun-metal ©.5 

In  contact  with  tin. 8.7. 


972  PILE-DRIVING. — RiNGrNG   ENGIITB. 

PILE-DRIVING. 
{Continued  from  page  672.) 
Xo  Comp-ute   Weight  of  R,a.xn.    {MoleavHyrth.) 
P  ( — T-| —  1 )  =  H.     P  rqareseTiiing  weight  of  pile  in  lbs.,  h  height  of  fall  ofram^ 


ftp 
and  L  Urtf^k  of  pile,  both  in  feet,  and  A  <wea  of  section  of  pile  in  sq.  inis. 


Piles  are  distinguished  according  to  their  position  and  purpose:  thus, 
Gauge  Piles  are  driven  to  define  limit  of  area  to  be  enclosed,  or  as  guides  to 
the  permanent  piling. 

Sheet  or  Chse  Piles  are  driven  between  gauge  piles  to  fmrm  a  compact  and 
continuous  enclosure  of  the  work,  and  are  driven  as  close  and  uniform  to 
each  other  as  practicable  of  attainment,  and  the  interA'ening  space  or  joint, 
however  close,  is  made  water-tight  by  the  introduction  of  a  "  feather  "  driven 
in  a  groove  on  the  sides  of  the  piles. 

Ci-ushing. — Crushing  resistance  of  a  pile,  unless  of  verv  hard  wood,  should 
not  be  estimated  to  exceed  a  range  of  from  500  to  1000  fbs,  per  sq.  inch. 

Refused  of  a  pile  intended  to  support  a  weight  of  13.5  tons  can  be  safely 
taken  with  a  ram  of  1350  lbs.,  falling  12  feet,  and  depressing  the  pile  .8  of 
an  inch  at  final  stroke. 

Pneumatic  Piles.— A  hollow  pile  of  cast  iron,  2.5  feet  in  diameter,  was  depressed 
into  the  Goodwin  Sands  33  feet  7  ins.  in  5. 5  houra 

Water  Jets. — A  stream  of  water  )s  ejected  under  pressure  at  the  point  of  a  pile, 
and,  rising  around  it,  removes  the  end  and  surface  resistance,  so  that  it  will  be  more 
easily  driven.    Suited  for  sand  or  fine  soil. 

XasmyWs  Steam  Pile-hammer  has  driven  a  pile  14  ins.  square,  and  18  feet  in 
length,  15  feet  into  a  coarse  ground,  imbedded  in  a  strong  clay,  in  17  seconds,  with 
20  blows  of  ram,  making  70  strokes  per  minuta 

Shaw's  Gunpowder  Pile-driver  is  operated  by  cartridges  of  powder  on  head 
of  pile,  which  are  ignited  by  fall  of  the  ram.  30  to  40  blows  per  minut« 
have  been  made  under  a  fall  of  5  and  10  feet. 

Slieet   lulling. 
Bevelling 120°    1    Shoeing a^ 


To   Coxupute   Coetfnolexit  ocf  Resls^tauoe  of  th.&   KartK. 

——  =  (X    R  representing  resistance  of  the  earth,  h  height  offaU  of  ram,  and  d  final 

€L 

depression,  both  infect. 

I^inging  ICngine 

Requires  i  man  to  each  40  lbs.  of  ram,  which  varies  from  450  to  900  lbs. 

To   Color   Srasa    (Copper  and.    Zino)   Slue, 

Mix  in  a  close  vessel  100  grains  t=  6.5  oz.  Troy,  of  Carbonate  of  Copper  and  750 
^ins  =  4.o6  lbs.  Troy,  of  Ammonia;  shake  until  solution  is  effected  and  then  add 
distilled  water;  shake,  and  the  solution  is  ready  for' use. 

Keep  it  coo)  and  elTectively  stopped.     If  deteriorated,  add  a  little  Ammonia. 

Articles  to  be  colored,  to  be  perfectly  clean,  suspended  in  motion  in  the  solution; 
remove  tberefh)m  in  n-om  2  to  3  minutes,  wash  in  pure  water,  and  dry  in  sawdust 
or  like  effective  material. 

Expose  during  the  operation  as  little  to  the  air  as  practicable. 

Other  alloys,  as  copper  and  tin  and  argei&tine,  are  not  available. 

{CJiemical  JoumcU.) 


SI^BBL  SPRINGS.  973 

STEEL   SPRINGS.     (Additional  to  page  779.) 
To   Comptxte   Safe   Blemeiits  of  Springs.* 

.8Z3  /Dbt^n  .813  ,/Jii  -8^3  bt'n 

FiT^-^'   V~^8~"-''    d73^-^'   V^ftli-''    0673-"'    1T"~ 

D  repr«<en<t7i0'  deflection  and  t  Uiickness  0/ plates,  both  in  t6f^  of  an  inch;  I  length 
of  span  or  bearings  when  weighted^  and  b  breadth  of  plates  of  springs,  both  in  ins.; 
n  numlter  of  plates,  and  L  load  or  stress  in  1000  Ws. 

NoTB.— The  plates  are  assumed  to  be  similar  and  regularly  formed. 

Illustration.— A£su mo  a  sprmg  of  the  following  elements : 

^  =  20  and  b  =  i  ins.,  t  =  ^  i6f^,  n  =  5,  and  L  24cx>  lbs. 


.8X203   ^6400^  ,  /6.66X  3X43X5, 3 /64°o_.^^.^  . 

3X43X5      960  'V  .8  -V    .8    ""^ ****•' 

3/    .8X2o3     ^,76400^        ^.  -8  X  2o3      ^640o_ 

V  6.66X3X5      V  ««>  '     6.66X3X43      "80      ^' 

.8  X  w3  6400  ,    .^.  .  3  X  4'  X  5      240  ,K 

=  - —  =  3 + »««. ;  - — - — - = -^  =  2.4  1000  ihs. 


6.66  X  43  X  5      2133      ^  '  5  X  20         ic» 

NoTK.— When  buck  or  short  plates  arc  added,  they  are  to  be  added  to  the  number 
of  plates  if  of  the  ruling  breadth  and  thickness. 

When  extra  thick  back  or  short  plates  are  added,  they  are  to  be  represented  by 
plates  of  ruling  thickness  having  an  equivalent  resistance,  prior  to  computation  by 
formulas  for  D  and  L,  and  are  thus  ascertained:  multiply  number  of  additional 
plates  by  cube  of  their  thickness,  and  divide  product  by  cube  of  ruling  thicknesa 

Illustration.— Assume  as  preceding,  thickness  of  p]ates=4  i6tb8,  number  of 
litem  5,  and  3  extra  plates  of  5  i6thi  to  be  added. 

Then,  ^^^   =  ^  =  5.86  =  no.  of  plates,  and  5  -f-  5.86  =  ia86,  the  no.  of  platet 

of  4  i6<*«  in  thickness.       la 86  X  43  =  695,  and  5  x  43  =  320  j  Aqc 

3X53  =  375)    ^^' 
Hence,  3  plates  0/5  i6<A»  added  to  the  s  of  4  i6<**  =  to.B6 plates  of  ^  i6«*«. 
Conversely,  695  -f- 53  =  5. 56 pHaUs  of  5  i6«*«  are  equal  to  Vie  10.66  of  4  i6rt«. 


Helical   Steel   Springs. 

d3  L  /d3  L  D      ,  .  /CtAD     ^  C  M  D 


=  L. 


C<4  '         V      C  '         V      L  d3 

i^D  additbn  of  .135  to  ^  slu>ald  be  add«d  to  the  diameter  or  square  to  compeiuate  far  a  set  of  the 
jpringi. 

Safe  Load.    3  / —  =  t  jor  round,  and  3 /—    =  tfor  square. 

d  representing  diameter  or  distance  between  the  centres  of  the  rod  or  bar  of  the 
spring,  and  D  compression  of  the  spring,  both  in  ins. ;  L  load  or  stress  applied  in  lbs.; 
I  diameter  of  rod  or  side  of  square  of  bar  in  i6<^  of  an  inch,  and  C  a  coefficient  =.  aa 
for  round  rods  and  y>for  square  bars. 

Illustratiox.— Assume  as  follows:  <i  =  7  ins.  square;  L=:3363  lbs.;  t  =  i6  lis- 
ieenths,  and  C  =  22.  t 

73x3363^1253434^3.^         4/73  X  3363  X. 8^^/.  441792  ^,6  ,6^ 

23  X  l64  I  441  792  V  22  V  22  * 

3/22Xi64x.8^3yi,53434^     .^.        22  X  i64  x  .8^x^53434^  33^3  „^ 

V       3363         V    3363  73  343 

The  load  and  deflection  obtained  for  one  coil  are  each  to  be  multiplied  by  the 
number  of  coils  for  the  respective  total  load  and  deflection  of  the  spring. 
A  square  spring  is  approximately  equal  to  a  round  of  like  area. 

•  EumittoUy  from  T>.  K.  Clark's  Manual. 


074 


HKHOBAinU. 


Slaat  I>rauslit  in.  .AoBh-pit  of*  a  Marine  Soiler. 


Of  Blower 
Engliic. 


Iff 

I 
I 


Of 

CoiU 
Per  IH*             Coiuamod 

Water 
Bvapormted 

Relatire 

EagiiM. 

per  hovr. 

per  hoar. 

per  n».  of  Coal. 

No. 

LU. 

LN. 

U», 

FtrCnt. 

57-5 

3-7» 

SX4 

xO-77 

f 

88.8 

3.26 

290 

8.83 

1. 186 

100.5 

3.12 

314 

8 

1.05 

106.  r 

?04 

323 

7.89 

1.086 

118. 8 

a- 93 

348 

7.83 

1. 172 

1 19. 8 

3.12 

374 

7-53 

1.179 
I.  J  58 

127.9 

3'» 

399 

7 

135-7 

31 

421 

7-03 

X.283 

No. 

Natural  ) 
Draught  /  ' 
.96 

3 

a 

4-2 

5 

6 

7-4 

When  the  Power  toas  Doubled. — ^Tbe  fuel  consumed  was  as  1.5  to  x,  the  watei 
evaporated  as  .73  to  i,  and  the  saving  of  coal  was  19  per  cent. 
An  average  of  the  above  results  gave  a  saving  of  15. 8  per  cent. 
By  trials  in  the  R  N.,  it  was  ascertained  that  a  blast  draught  increased  the  power 
of  the  engines  53.5  per  cent,  and  the  bgilers  65  per  cent,  per  ton  of  their  weight 

ITirBt    SteamxXuaunoU* 

*'SwnTRf(ART.''--W«8  built  at  the  Navy  Yard,  New  York,  in  1837. 

Lengthy  35  feet;  beam.  4  35;  depth,  1.83. 

Engine,  vertical  cylinder  beam,  4  ins.  in  diam.  by  12  Ins.  stroke  of  pistoQ. 

Water-wheel*,  4  feet  by  lo  ins.     Boiler,  horizontal  Are  tubular. 

On  her  trial  trip  she  was  saluted  by  steamboats  and  a^emblages  of  people  '>n 
ferryboats  and  on  the  piers.  Designed  by  and  constructed  under  the  direction  of 
the  Author. 

Searingfs  vritb-out  XiUbrioants. 

Graphite  or  Plumbago— \b  the  essential  clement  in  dry  bearings. 

^^  Fibre  ^apAtfe '*— Consisting  of  finely-powdered  plumbago  mixed  with  moist 
wood  fibre,  is  pressed  io  a  mold  of  the  required  form,  tboo  saturated  with  a  drying 
oil  and  oxidized  in  a  hot  dry  air. 

NoTB.— Thi>  hearing  *  has  beoa  faTorsbly  repertad  on  by  a  oooiiaHtae  Vl  the  Franklin  Inxtltote. 

''  Car6oui{" — Is  carbon  mixed  with  finely-powdered  steatite;  its  specific  gravity 
=  1.66,  that  of  carbon  being  1.48.  It  can  be  molded,  turned,  bored,  and  shaped  to 
any  form. 

NoTK.— The  coefficient  of  friction  with  dry  bearings  is  lower  than  thai  of  many  oil 
bearings  in  good  condition. 

Tests   for   Wat«r. 

(A^itional  to  page  852.) 
To   A.soertain 

Ij  Hard  or  Soft. — Into  a  clean  glass  tube  put  a  solution  ot  soap,  add  a  si*,  'ill  vol- 
ume of  the  water,  when,  if  hard,  the  mixture  will  become  milky. 

J/ Alkaline.— It  will  turn  red  litmus-paper  blue. 

^ Acid.— It  will  turn  blue  litmus- paper  red. 

If  Carbonic  Acid  is  preient— Equal  volumes  of  it  and  lime-water  will  become 
milky.     Add  a  little  hydrochloric  acid  to  the  mixture  and  it  will  become  clear. 

IfSulvhaU  of  Lime  {Gypsum)  it  pr«<en/.<.-^ Add  to  it  a  little  chloride  of  barium: 
if  a  while  precipitate  is  formed,  which  will  not  dissolve  when  a  small  volume  of 
nitric  acid  is  added,  it  contains  the  sulphate. 

AiioliorijiK    BoltB    iii.    Stone. 

A  test  of  the  relative  value  of  Lead,  Sulphur,  and  PorUand  Cemontu  tv  the  re- 
tention of  iron  bolts  in  limestone  rock,  give  similar  results. 

—  ■        ■        ■  ■  ■■«■■■■■      ^        ■■       .1  ,  I  ■-■■■■■  »i   ,.   ■-^■M.   I  .^p^^^p— .,  ^         I 

*  rhtltp  H.  HQlin«s  paunt. 


GATE    VALVES. — HVPRANTS. 


975 


G^ate  Valves.    SdOy  Vaivi  0».,  WaUrfbrO,  N,  T. 

Oato  Val-v-es,  Doable  Seated,  have  foces  set  at  a 
slight  angle  to  line  of  stem,  and  as  the  gates,  in  consequence 
of  their  angular  faces,  cannot  fill  the  space  between  the 
valve-seats  until  they  are  ftilly  down  to  their  position,  the 
adhesion  of  them  to  the  valves  in  their  progress  down, 
f^om  the  interposition  of  sediment  or  other  obstructions, 
is  not  only  not  arrested,  bnt  they  are  Imfiracticable  of 
arrest  iMfore  belDg  tnWy  seated,  and  left  imrtially  open, 
under  (lie  iuapressioQ  on  the  part  of  the  operator  that  they 
are  in  position  and  the  flow  of  the  fluid  arrested. 

The  valves  are  attached  to  the  stem  by  an  articulated  ball 
joint,  hence  they  are  rendered  free  to  revolve,  and  their 
fiB«es  varying  with  that  of  their  valve  -  seats,  cutting  or 
grooving  is  measurably  avoided. 

The  valves  are  two  independent  pieces,  whereby  a  single 
defect  involves  the  repair  or  removal  of  but  one  of  them. 

The  stem  rotates  In  a  screw-collar  connected  to  the  ball 
Joint,  and  hence  it  is  not  elongated  outside  its  glands  upon 
the  rafaing  of  ibe  valves. 


DUm* 
et«r. 


In*. 
•5 
•75 

I 

«-5 

2 

3 

35 

4 

4-5 

5 

6 

7 
8 


End  to 
End  of 

Screw 
SoclieU. 


,  300  Founds*  Test  I>ressure 

Hab-«nd  VaItm. 

All  lt«ia  for  Gm. 

Iron  Body  Braaa 

Mountml  for  Wat«r. 

Knd  to 


ValT«.    8cr«Wfd  asd  FbiMwd 
End*.    Stationary  Sum  and  Quick- 
<»p«iin|f  Rack  and  Pinion. 


lua. 
2-375 
75 
875 
375 
5 

375 
.125 

375 


2. 

2. 

3- 

3 

4- 

5- 

5- 

6 

6.625 

7 

7-25 
r  75 
8.25 

9 


Face  to 
Face  of 
Flangre. 


Diameter 
of  Stan* 

dard 
Flanirv. 


Ina. 
2-5 

3 

3-2S 

4 

4 

4-6a5 

5-5 

5.875 

6.25 

7 
7.25 

7-5 

7-75 

8.125 

8.5 


•5 
•75 

•25 
•/5 


lua. 

3 
4 
4 
5 

5 

5 

6 

^•5 
7.125 

8 
9 

9 
II 
12 

«3 


25 
5 

5 
5 


Diant- 
eter. 


Ina. 

2 

3 

4 
5 
6 

8 
10 
12 

14 
X5 

16 
18 
20 
22 

24 

30 

36 


Bad  of 

Hub 
End*. 


ina. 

7-5 
10.5 

12 

12.5 

«3.5 
14.25 
15.5 
16 

I7. 
»7 

\l 

19, 
21 
22 
25 

30 


25 
5 

75 


IrosBeAy 

wUhBrM 

■  or  BrMM  monnM 

Valval. 

Screwed  and  l^lMi|ad  Biuta. 

End  to 

Face  to 
Face  of 
PlauKe. 

Diameter 

DteBv 

eter. 

Endaf 

Sorew 

of  Stan- 
dard 

Sorliett. 

Flange. 

lua. 

Ina. 

Ina. 

Ii». 

2 

5-5 

5-75 

6 

2.5 

6 

6.5 

7 

3 

7^25 

7-75 

7-5 

3-5 

7.5 

7-75 

8.5 

4 

8 

7-75 

9 

4-5 

8.$ 

8.5 

9-»5 

5 

9 

9-25 

10 

6 

?o.2S 

9'75 

II 

7 

II 

II 

12.5 

8 

II 

II 

»3-5 

zo 

13-25 

12 

16 

12 

M-75 

13.5 

'9 

>4 

15 

2Z 

»5 

15 

22.25 

16 

16.25 

23^5 

18 

16.25 

25 

20 

»7-75 

27^5 

22 

»9 

29.5 

24 

20 

3»-5 

30 

22.5 

^8 

36 

26.5 

44.5 

P:ddy  hydrants-    Xddy  Valve  Co.,  Water/ord,  ^'.  F. 


Dfauncttraof                | 

Pip*  Con- 

Stud 

8e*t 

neelian. 

Pipa. 

Rlntr. 

Ink 

log. 

las.  . 

3  or  4 

4-5 

3 

3  or  4 

5-5 

4 

6 

5-5 

4 

4  or  6 

6 

4-5 

4or6 

6.625 

5 

6 

7.625 

6 

8 

7.625 

6 

8  or  10 

9-75 

8 

laa. 

Na. 

1 
I 
I 


Noxxlaa. 

Steamer  and 

la*. 

9-S 

a-S 

a-S 

steam- 

as 

a-S 

laa. 

In«. 

In*. 

«r. 

Ina. 

Ina. 

No. 

No. 

No. 

Na. 

No. 

Ntf. 

No. 

2 

3 

— 

I 

2 

2 

3 

— 

— 

I 

2 

2 

3 

— 

— 

I 

a 

a 

3 

4 

— 

I 

2 

2 

3 

4 

— 

I 

2 

2 

3 

4 

— 

I 

a 

— 

— 

— 

6 

— 

— 

•^ 

Eddy  Valves  and  Hydrants  are  Mo|>Ma  bjr  i^  if?  Insurance  Companl^ 

« •         •  • 


976 


MEMORAKDA. 


{Continued  from  page  938.) 

The  available  properties  of  Aluminum  are  its  relative  lightness,  fireedom  fh>m 
tarnish,  not  being  affected  by  sulphurous  fumes  and  being  slowly  oxidized  by  a 
moist  atmosphere,  its  extreme  malleability,  its  facility  of  being  cast,  Its  high' speci- 
fic heut  and  electrical  and  heat  conductivity,  and  its  extreme  ductility. 

Its  transverse  and  torsional  resistances  are  very  low,  its  maximum  shearing  re- 
sistance for  castings  laooo  lbs.,  and  forgings  16000  lbs.  per  square  inch. 

It  is  adapted  for  structures  under  water,  can  be  welded  by  electricity  and  an- 
nealed if  heated  and  gradually  cooled  Just  below  a  red  heat.  The  tensile  strength 
of  its  wire  is  greater  than  that  of  its  rolled  metaL 

Its  properties  are  materially  changed  and  impaired  by  atloyiDg  it  with  small  per- 
centages of  other  metals,  and  its  tensile  resistance,  relative  to  its  weight,  is  in 
plates  as  strong  as  steel  at  80000  lbs.  per  square  inch^  and  ia  cold  drawn  wire  as 
strong  as  it  is  at  180000  lbs.    (Alfred  E,  Htmt^.) 

Ad  agn  eaiuxn  . 

Specific  gravity  1.74,  is  .33  lighter  than  Aluminium;  is  harder,  tourer,  and 
denser;  less  affected  by  alkalies,  and  takes  a  higher  polish. 

Stair.  '    • 

Staff  is  composed  of  Plaster  of  Paris,  water,  and  hemp  fibre,  the  latter  used  to 
bind  the  mass. 

For  ornamental  pieces,  matrices  of  hardened  gelatine  are  used. 

It  resists  the  weather  and  even  frost  after  being  saturated. 

Boiler   Setting. 

The  fire-brick  should  be  laid  with  very  thin  Joints,  and  set  in  Kaolin  *  or  pre- 
pared fire-clay,  so  thin  that  it  is  necessary  to  lay  it  with  a  spoon  instead  of  a 
trowel. 

Every  fifth  course  should  be  a  header  course.    (*'  Tfte  Locomotive.''^) 
GMue. — Its  tenacity  varies  from  500  to  700  lbs.  per  square  inch. 

IfViotion.  of  Engines   aTid.   Oearing, 

(In  addition  to  pages  469-478,  etc^). 

Deduced  from  ExperimenU  of  Alfred  Saxton,  Manchester  Assn.  of  En^neen. 

Spur  Gearing 25.9  per  cent  t  Belt  Driving 28.6  per  cent 

Rope  Driving 29.6       "         |  Direct  Acting 23.8       " 

Engines 6  and  10.3  per  cent. 

Spur  gearing  gave  the  best  result  when  not  complicated  with  rope  driving. 

Rope  driving  gave  best  results  at  high  speeds. 

Bel^t  driving  for  developing  large  power  is  only  equal  to  an  average  rope-driving 

engine. 

Itelative    Value    of   varions    "Woods,  tlieir    Cr-usliixxK 
Sti^eiigthi    and    Stififnesei  'being  Combined. 


Teak 9.4 

English  oak ...  5.8 
Ash 5.1 


Elm 5 

Beech 4.4 

Quebec  oak. ...  4.  i 


Mahogany.....  3.7 

Spruce........  3.6 

Walnut.......  3.4 


Yellow  pine. . .  3 

Sycamore 3.6 

Cedar i 


Comparative  Value  of*  I^ong   Solid  Colvixnus  of  various 

Mlaterials.    (Hodgkinson.) 

Cast  Iron xooo  |  Cast  Steel....  3518  |  Oak 108.8  |  Pine. 78.5 

Hence,  To  compute  destructive  weight  of  an  Oak  or  Pine  column,  take  weight  foi 
one  of  Cast  iron  of  like  dimensions,  and  if  for  Oak  divide  by  9,  and  for  Pine  by  ta.f, 

*  A  variety  of  clay,  one  of  tbs  two  ingnstUeuto  in  Oriental  poKeXain}  th«  otliflr  is  tmutd  la  Chiiu 
pttutue. 


SPIBALLT   BIVBTED   IBOIT   OR  STBBt.    PIPE. 


977 


Spirally    Rivetecl    Iron,    or    Steel    Pipe. 

Abendroth  &  Boat  MJ'g  Cb.,  Newburgh,  N.  T. 

Spirally    Riveted    A£etal    Pipe. 

Compared  with  Wrought  or  Cast  iron  Pip«,  has  the  advantage  of  low 
original  cost  and  expense  of  transportation,  maintaining  a  nearly  equal 
bursting  pressure  with  that  made  of  heavier  material.     It  is  made  of  Sheet 
Iron  or  Sheet  Steel,  varying  in  thickness  from  No.  20  to  No.  12  B.W.G.,  ac- 
cording to  diameter  and  pressure.    The  rivets  in 
the  seam  are  set  by  compression,  while  the  laps 
are  thoroughly  coated  with  hydraulic  cement  to 
make  it  water  tight 

Cojtneotioiis. — When  a  moderate  pressure 
is  maintained,  these  pipes,  their  ends  being 
crimi)ed,  are  usually  connected  by  a  cement  joint, 
as  shown  in  the  annexed  cut. 

When  the  pressure  is  excessive,  a  lx)ltcd  joint  is  resorted  to,  as  also 
shown,  and  which  is  in  effect  a  stuffing  box  or  sleeve  joint,  dispensing 

with  lead  calking,  and  admitting  of  a  slight  flex- 
ure of  the  pipe. 

For  service  connections  the  collar  may  be 
tap|)ed.  Wtien  lead  calking  is  required,  the 
inner  ends  c^  the  pipe  are  reinforced  by  an  iroa 
collar. 

Bursting    Pressure. 


.    , 

u    . 

u    • 

w     . 

h 

5*3 

^i 

^1 

Par  Sq.  Inch. 

u 

Par  Sq.  Inch. 

1^ 

Per  84.  In^li. 

ag 

Par  Sq.  Inch. 

55 

h 

1 

55 

Int. 

Int. 

Lba. 

lot. 

Lba.       1 

lo*. 

Lba. 

Lba. 

3 

900  to  Z300 

6 

350  to  800 

10 

275  to  650 

16 

190  to  400 

4 

7c»  "  1000 

8 

350  "  825 

12 

225   "  550 

18 

>5o  "  375 

5 

550  "    800 

9 

300  "  750, 

»4 

200  "  470 

20 

14Q  "  325 

|«* 

1* 

Per  Sq.  Inch. 

■as 

Ina. 

Lba. 

22 

125  to  300 

24 

no  "  27s 

— 

— 

In  order  to  enable  an  estimate  of  the  relative  cost  of  these  pipes,  com- 
pared with  cast  and  ordinary  wrought-iron  pipes,  the  weights  of  each  are 
submitted. 

'Weishts. 


Hm 

h 
Td 

^t 

Hei 
8pi 

1 

f 

|5     ^& 

•a 

^ 

> 

5 

^ 

ina. 

Lba. 

Lbe.      Lba. 

Int. 

Lba. 

3 

a 

7  5 

>3 

8 

8 

i 

a-5 

10.75 

20 

10 

10 

5 

18.75 

30 

12 

«3 

S  » 

Tb..' 

Lba. 

a8 

40 

40 

55 

49 

70 

Spi 

ivy 

ral. 

h 

31 

Hai 
8p 

■J 

h 

31 

1 

i 

Lba. 

Lba. 

E 

Int. 

Lba. 

In>. 

Lbi. 

Lba. 

Lbt. 

M 

20 

58 

94 

20 

28 

— 

180 

16   ,  23 

— 

109 

22 

3« 

— 

aoo 

18 

26 

— 

160 

24 

33 

— 

250 

•  StaadanL 


»4N 


tUstit 


978 


OBAPHITB   AND   DRAWING   PENCILS. 


Grraplilte    as    a    Xjubrioant. 

Joseph  Dixon  Crucible  Co.,  Jersey  City,  N.  J. 

Results    of    Comparative    Tests    of  its    Operation 
"WitU   best   Sperm   Oil   and    I*erfe©ted   C3-raplxite. 


Lubricant. 


Best  Sp«rm  (MI 

P«tfected  Graphite*. 


WciKbt 

of 

Lobrieaot. 


Graina. 
5- 16 
1-75 


PreMora  on 

bcarinf; 
p«T  84.  Incfa. 


Lb*. 
48 

4» 


RevolutioM 

per 

Miliutfl. 


No. 
2000 
90O0 


UnMof 

Duration  of 

TMt. 


MlautM. 
11 

30 


Frictleoal 

SurflMX  In 

8q. 


No. 
7198 

1963s 


*  Mixed  with  water  enough  to  distribute  it  orer  the  bearing, 

NoTB.— Hence  it  appears  that  Graphite,  under  like  conditioBs,  presaany  aad  vdoeltj  of  opMvite, 
was  2.73  times  more  effective  than  the  beet  Sperm  Oil. 


With,  best  Sperm  Oil,  Xj-ubrioatixig  GH'ease^  and  lllCA 
G^reasci,  ooiitaining;  16  per  cent,  of*  Perfbot«d  Ghrapli- 
ite. 


Lobrlcant 

Lnibricant. 

PiMsoreon 

Bearing 
per  8q.  Indk 

RcToIutions 
Minute. 

Best  Sperm  Oil 

Lubricating  Grease. . 
Same  mixed  with) 
tiraphite. ...«...) 

Grains. 
5.  .6 
5.16 

5.16 

Lbs. 
60 
60 

60 

No. 

9000 

2ono 
aooo 

Time  of 

DurfttfoD  of 

Tekt. 


MinutM. 
d93 


Frictioaal 
Surface  In 
Sq.  Feet. 


No. 
33360 
33360 

19494* 


NoR.-^The  grMM  «rfthottt  Graphite  ftave  only  like  resnlto  wllll  the  tearm  0B{  bat  whea  tlw  |Ms 
cent,  of  Graphite  was  added,  the  time  of  operation  of  the  beariafl  WM  5.»  time*  longer  wlth«ttt  ail> 
ting  and  at  the  same  velocity.  IVw/*.  it.  H.  TkunCon. 

To  introduce  in  Steam  Cylinders.  The  method  preferred  by  experienced  engi- 
neers is  to  mix  the  graphite  with  oil  for  the  yalres  and  iivject  by  a  small  hand  oil 
pump  attached  to  steam  pipe.     The  graphite  must  not  be  too  coarsely  ground. 

P»tre  Chraphitcy  mixed  with  oil,  applied  to  a  scratched  or  cut  sorface,  as  cylinder 
or  piston  rod  of  an  engine,  valve  seat  or  journal^  will  arrest  the  catting  of  them. 

The  selection  of  the  perfectly  pure  involves  the  experience  of  an  Expert,  or  confi 
dence  in  the  manufaotorer 


IDrawing   !Penoils. 
Engineers,    A^roliiteots,   A.T^ists,   «to. 

Joseph  Dixon  Crucible  Co.,  Jersey  City.  N.  J. 

Hexagonal    in    Section    and    I^urnislxed    in    Xen    Ghradev 

of   JHardness. 


Trade 

Not. 


210 
211 

2191 
913 
914 

216 
217 

918 

2x9 


Grade  Stamps. 


vvs 

V  s 

s. 

8  M 

MB 

M 

M  H 

H 

V  H 

V  VH 

Character. 


(B  B  B.) 

(BB.) 

(Band  No  i.) 

(H  B  and  No.  9.) 

(F.) 

(Hand  No.  3.) 

(HH.) 

(H  H  H  and  No.  4.) 

(H  H  H  H  and  No.  5.) 

(H  H  H  H  H  H.) 

NoT>w~-The  first  5  numbers,  cio  to  3x4,  are  especially  designed  for  Artiste. 

M  H  is  designed  for  sketching,  V  H  for  ordinary  drawinga,  and  V  V  H  for  very  fin*. 


Very,  very  soft. . 

Very  soft 

Soa 

Soft  medium.... 
Medium  black. . . 

Medium 

Medium  hard.... 

Hard 

Very  hard 

Very,  very  hard. 


Bimllaf  gnde  to  the  EnropMS 
•tamp  of 


lOIfOKANDA. 


979 


^'bsorptioxi  of    Ct-eologioal   Stx^ata. 
Water  in  loo  Parts  or  Per  Oml.  of  Volume. 


Material. 

From  Where, 

Per  Cent. 

Avthority. 

Gub^ro , Dnluth.  Minn 

.29 

•42 

•55 
2.1 

4  4 

25 

4.81 

6.25 

6.6 

12.5 

12. 

36.5 
11.6 

ia.15 

23.98 

Geo.  P.  Merrill. 

GraDite  Hornblende 

Limestone 

St.  Cloud,  Minn 

(( 

Quincy.  Ill 

t( 

Rockford,  111 

Bedford.  Ind 

0.  W.  Mead. 

C( 

t( 

Dolomito 

SftoitsloDe 

Red  Wing,  Minn 

Geo.  P.  Merrill 

Fond  du  I  AC,  Wis 

Fort  Snelling,  Mi  up 

Berca,  0 

{( 

D.  W.  Mead. 

(( 

Jordan.  Minn 

Geo.  p.  Merrill. 

Dry  Ctoy 

R.  J.  Htinter. 

Sand  and  Gravel 

(t 

Red  Sandstone 

Gloacestershire.  Kng 

Cheltenham,  Eng 

ti 

E.  Wetherell. 

Oolite  Limestone 

'*     Sandstone 

Supporting  Po^ver  of  S^nd   and   Clay, 

Per  Square  Foot. 

Sand  with  Loam,  4  to  5  tons.    Clay,  2  tons.     Friction  resistance  of  sides 
should  be  neglected. 

NoTK.— The  walls  of  the  Capitol  at  Albany,  N.  Y.,  at  some  points  settled  at  a 
weight  of  2  ton& 

To   Compnte  tlie   K*  of*  Ropee. 

Rule. — Mnltiply  sectional  area  of  it  in  square  inches  by  its  velocity  in 
f(p«t  per  minute  and  divide  product  by  330. 

Bjumplb. — Area  of  rope,  4.2  sq.  ins.,  and  velocity  72  feet  per  minate. 

4.2  X  72 -4-330;=. 916  H*. 


I^ooflng   Slates. 

Streng>t1i   ftud.   Qvialities. 

t4  by  la  tfu.  and  ,1875  fo  .35  ins.  in  thickness. 


Qtwrry. 


Albion 

Old  Bangor... 
Pleach  Bottom. 


Modnlnt 

of 
Rapture. 

Specific 
Gravity. 

Poroeity. 

7»5o 

9810 

II  260 

2775 
2780 
2894 

.238 

•M5 
.224 

Corrodibil- 
«ty. 

Denaity. 

DafleetloB. 

.208 
.169 
.086 

80 

128 

90 

Modulus  of  Rupture,  in  lbs.  per  sq.  t'ncft, 


3WI 
2&d2 


=  M.     W  iutruetive  loa4  in  lbs., 


I  distance  between  the  supports,  and  b  and  d  the  breadth  and  depth,  all  in  inches. 
Porosity,  per  cent.  0/ water  ahsm-bed  in  24  hours.  Corrodibflity,  per  cent,  of  tfeight 
lost  in  34  hours  in  on  aeid  soUttion.  Density,  grains  atyradM  oy  50  revoluifpni  of  a 
smaU  grindstone ;  and  Deflection,  on  supports  as  inches  apart,  in  inches. 

Slates  are  finished  in  varisd  dimensions,  ranging  f^om  6  x  12  io  14  x  24  inf  In 
Roofing,  with  a  slats  of  24  ins, ,  10. 5  ins.  are  exposed,  10. 5  coverad  by  the  slafe  above 
it,  and  the  balance  of  3  is  covered  by  the  two  above  it  The  slates  required  to  cover 
an  area  of  10  x  10  feet  in  the  above  manner  is  termed  a  Square,  which  Is  the 
Uoiik  For  slates  12  X  34  ina,  X14  are  rwmirtd  to  make  a  Sftuarp,  and  for  8  x  16 
Ina,  #77  are  requirtd.  {M.  M0rrim9n,  M,  4m,  ^,  C.  J7.) 


98o 


SINOTS^  HiTGHBSy  ETC. 


In  Aleolxaziioal   and.  Snsineering  Operation*. 


Slip-Knok         Square  or  Reef  Knot        Flemish  Loop. 


Bowline. 


Harline-spilce 
Hitch. 


Sheet  Bend,  or 
Weaver's  Knot 


Carrick  Bend. 


Stevedore's 
Knot. 


Bowline  on  a  Bight. 


Water  Knot. 


Sheepshank. 


Halt  Timber       Clove         Rolling 

Hitch.  Hitch.       Hitch.         Hitch. 


Cat's-paw. 


Chain  Knot  with  Toggle. 


Timber  Hitch 
and  Round  Turn. 


Black- 
wall 
Hitch. 


Ftsh'^rman'8  Bend. 


Short  Snlica 


Racking,  or      Bound  Turn  Round 

Frapping.     and  Half  Hitcb.        Seizing. 


Cask  Sling. 


Selyagee 
StrapL 


SYMBOLS. 


981 


SYlVtBOLS 

For   Slexneixts  and  Forxnulae,  proposed  \>y  tlie  A-vitlior. 
For  the  purpose  of  inducing  a  uniformity  in  their  expresxion  (1891). 


Angle. ^ 

Of  Incidence z 

Calorimeter Cal. 

Grate Gt 

Heating  surface Hs 

Section. .  Sen,  H,  Lor T 

Superficial Sup. 

Square Sq.  or  Q 

Square  foot,  feet . .  D^b- 

Atmosphere,  -s At 

Barometric Be 

Breadth,  -s b.  b' 

Centrifugal  force Cf 

Centre  of  gravity Cg 

Circumference,  -s..  G.c.c' 

Coefficient  or  Factor. .  Co. 

Compound Cpd 

Cube Cub.  org) 

CyUndrical Cyl. 

Dead  flat {g} 

Depth,  -8 dp  .  dp' 

Departure Dpt 

Diameter,  -b D  .  d .  d,' 

Distances.     Inch,  -es.  ins. 

Feet ft. 

Yard,  -s Yds 

Chain,  -s Cbn 

Rood,  -8 {Id 

Knot,  •& K 

Mile,  -8 ^8 

Millimeter,  -s. mm 

Centimeter,  -s cm 

Decimeter,  •&..... .  dm 

Meter,  -8 m 

Dekameter,  -a da 

Helctameter,  -a hk 

Kilometer,  -a. . » . . . .  km 

Myriameter,  -a mr 

Centare  orsq.  meter,  -s  Ce 

Are,  -a... a 

Hectare,  -a Ha 

Draught  of  water Dw 

Elevation,  -s Kl 

Energy E 

Equivalent,  V.  S.  or 
French 

Electric.  Ampere,  -a  Am 
Farad,  -acOiMk  cap.  phi)  4> 
Microfiira<l,-a(Gn«k  pbQ  ^ 


}    Eq, 


Henry,  -s H 

Joule,  -8 J 

Kilojbule,  -s KJ 

Watt,  -8 wt 

Kilowatt,  -8 kwt 

Millihenry,  -s mh 

Milliampere,  -a. ....  ma 

Megohm  (Gr««kc.  omega)  il 

Microvolt,  -s Mv 

Ohm,  -8.  .(Ore«k  oaugn)  «* 

Volt,  a Vo 

Evaporation,   ive....  Evp 
Foot  pound,  -8,  tons  Fp.Ft 

Force F 

Friction Fn 

Gravity g 

Height,  -8 H  .  h.  fa' 


Sum,  -8 — Sm 

Tangent...'. Tan. 

Cotangent Cotan. 

Thrust... Tt 

Time,  -s T  .  t .  t' 

Second,  -s.Sec.  sec.  or  " 
Minute,  -s  Min.  min.  or  ' 

Degree,  -s Deg.  or  o 

Hour,  -a Ho .  ho 

Day,  -8 Da 

Month,  -s Mo 

t'ear,  -s Ys 

Triangle,  -a a  A' 

Triple Tpl 

Unit,   a     Heat Hu 

Calorific  or  French .'.  Cc 

Vacuum Vm 


Horsepower IP  '  Velocity V 


Efftective KIP 

Indicated IH^ 

Nominal NIP 

IncUnation In 

Joule's  Equivalent jE 

latitude Lat 

Length,  -s L.l .  1' 

Logarithm I.x>g. 

Hyperbolic  . . .  Hyp.  log. 

Longitude Lon. 

Mercurial  gauge Mg 

Meridian M 

Modulus  of  Elasticity  .  MB 

Moment,  -s Mt 

Number,  -a No 

Ordinate,  -a 0 .  o .  o' 

Perpendicular Pr 

Pitch, -a Ph.Ph' 

Pressure,  -a P   p  .  p' 

Quadruple Qpl 

Radius^  -ii R .  r .  r' 

Revolution,  -s..  Rev.  rev. 

Secant Sec. 

Cosecant Cosec. 

Sine Sin. 

-Cosine Cosin. 

SHp Sp 

Solid Sd 

Specific  gravity Sg 

Span Sn 

Stability St 

Steam Stro 

Stroke S  .  s 

V  =  3  1416 


v  V 

Versed  sine v-sin 

Vertical Vt 

Volume,  -8 Vol.  vol. 

Chaldron,  -a. Ch 

Chord,  -a Co ' 

Buahel,  -a Bl 

Cube  foot,  feet Cf 

Barrel,  -s bbl 

Gallon,  -8 gl 

Microliter  (Greek  lambda)  \ 

Milliliter,  -s ml 

Centiliter,  -s cl 

Deciliter,  -s dl 

Liter, -a 1 

Dekaliter,  -a dal 

Hektollter,  -a hi 

Kiloliter  or  Stere,  -a  Kr 

Water-line v.  Wl 

Weight,  -a W.  w.  w' 

Ounce,  -8 oz 

Pound,  -a lb.  .  Iba 

Ton,  -8  (2240) Tons 

"       (2000) . . .  —Tons 

Milligram,  -s mg 

Centigram,  -a cg 

Decigram,  -s dg 

Oram,  -a g 

Dekagram,  -a dgm 

Hektogram,  -a hgm 

Kilogram  or  Kilo,  a.  Kg 

Myriagram,  -a y 

Quintal, -a...... q 

Miller  or  Tonneaa,  -a  Mr 


982 


MEHOBANDA. 


Relative  £fBoieno3r  of  a  r?on-ooud*n«ins  Steam-Bncixia 
and  a  13i-Sulpb.ide  of  Car'bozi  (C  Sa)  ICns^ixe. 

With  like  Engine,  Boiler,  and  Fuel,  as  developed  by  competitive  tests  of  both  at 
Riverdale,  near  Chicago,  1892-94. 

Cylinder,  16  X  42  ins.  Jacketed  and  with  automatic  Cut-off.  Boiler,  horizostal 
cvlindrical  fire'  tubular.  Grates,  21.6  sq.  feet,  and  Heating  surface,  loaS  sq.  feet. 
Fuel,  anthracite;  Combustion,  natural  draught. 

Steam. — Coal  consumed  per  z  W  per  hour,  4*399  lbs. 

C  St.—  •'  "  •*         a.49    "    =42.08  p«r  cen^.,  or  as  1  to 

1.7a  4-)  or  942.6  lbs.  coal  in  each  ton. 


Alortar   for    "M-BMoixry   ly^lO'Vir    KrAeKing^point. 

Anhydrous  Carbonate  of  Soda,  '^Sodium  carbonate"  (Na2C0  3),  2.3  lbs.  per 
gallon,  dissolved  in  water,  maintained  at  86  <3,  mixed  with  equal  volume  of  water. 
Mix  the  mortar  with  25  per  cent,  more  of  this  Solution  than  if  pure  water  was  used. 
Hands  of  operatives  should  be  protected,  as  with  ludia-rubber  gloves.  Extra  cost 
35  cents  per  cube  yard  of  masonry.  Setting  of  mortar  accelerated.  It  will  set  at 
30  below  freezing  point  as  readily  as  at  10°  above. 

{Coen  and  Vive- Saint  Lo  IPy.)    Mom.  Rabat. 

Freestone. 
RetuU  of  a  Seriei  0/  Test*  of  Comnedicid  BrowntUme  to  Ruiit  CfruAing. 

Per  Sq.  Inek  of  Crou  Seotion. 

Portland  stone 6222  to  10928  lbs Colt's  Firearms  Mfg. Go. 

New  England  Brownstone  Co. . 7843  '*  13  297   "    U.  S.  Ordnance  Dept 

Portland  Shaler  and  Hall 9330  "  13980  "   "  " 

Hisliest   Hailwasr  in    ICurope. 

Brienzer  BotMombahn.  —  Alps,  7886  feet  at  Summit  level. 
Greatest  grade,  1  in  4. 


Rack  and  PinipD. 


Slevation    in   Feet   of*  Uooalities    in   tlie   XJpper   Alissit 
sippi    and    "West   of  JL<ake    Miioliisan* 

{In  addition  to  page  58a.) 


Davenport,  la 615  |  AshIand,Bay  City,  Wis.  610 


Dubuque,     **■ 665 

Ft.  Madison,  la 600 

Independence,  la 850 

Keokuk,  '• 618 

Monticello,        *'.   ...  880 
Appletou,  Wis 658 


Cedar 2000  years. 

Cyprus 800     " 

Elm 300 

Ivy 335 

Larch 576 


La  Crosse, 

Milwaukee, 

FL  Ridgely,  Minn. 

Ft.  Snelling, 

Minneapolis, 

St.  Paul, 


744 
697 

1330 

820 

856 
831 


Ft.  Ripley,  Minn 1130 

Chicago,  111 715 

Galesburg,  111 795 

Ottawa,        '* 500 

Peoria,        " 475 

Rockford,    *' 800 

St.  Louis,  Mo. 571 


A.e>e    of  Trees, 

Lime xioo  years. 

Maple 516     '* 

Oak 1500 

Olive 800 

Orange 630 


Oriental  Plane.  1000  year& 

Spruce laoo     *' 

Walnut 900     " 

Yew 3aoo 


(( 


Alonolith.. 

(In  addition  to  page  179.) 
Wisconrin.—Ai  World's  Fair,  10  feet  square  at  bsM,  115  in  height,  and  4  at  apex. 

A-ngle   of  Repose   of  Sartlx. 

o    Gravel,  clean ^99 

with  sand....  26^ 

Sand,  wet a6° 

dry 34O 

R.  E.  AideMimorie. 
The  co-efflclent  ^f  mc^oQ  =  t»n.  of  degrees,  as  co-efflclent  of  shinfle  =  tan.  of 


Clay,  dry 29° 

damp,  well 

drained  45° 
16° 


wet. 


Earth,  vegetable  dry..  29' 

moist 47O 

Shingle 39O 


39*'  =  .8e. 


I 
MICMOBANDA,  983 

To    Oontypute    tfi^    f£*    ot  a    "Wrouglit-iron    SHa^. 

Rule. — Multiply  cube  of  diameter  of  shaft  in  its  journal  in  inches,  by 
number  of  its  revolutions  per  minute  and  divide  product  by  80. 

ExAMPLB. — Diameter  of  Journal  17  ius.,and  revolutions  of  engine  30.  What  Is 
its  IP? 

17  3  X  aa  =  98  360,  which -r- fio  rs  ias6. 35  ff . 

To  33etemaiiie  the  South,  "by  the  Motir-hand.  of  a  "Watch, 
bet'^p^een  the  Irlourei  of  8  ^.I^.  and  4r  P.l^. 

When  the  Sun  is  VisibUi. 

OrsBATMw.<~<Point  the  hour-hand  to  the  sua,  and  half  the  diaUace  belwaan  thai 
point  and  tha  figure  is  is  the  South. 

Nora.— The  greatwt  tutor  ti  In  latHiule  38*,  and  Is  about  15*  to*  Atr  Baai  at  8  a.h.  aad  15*  te»  iv 
Waal  at  4  p.m.    Hmio*  allawanoaa  ara  to  ba  oorvaapoodlagly  aiMa. 

Ci-reateiit   i:>epth8   »»»d   £leis^ts» 

{In  a4iditi(m  to  pp.  179-184.) 

Greatest  depth  of  Ocean,  Pacific 28000  foal 

Deepest  Well  in  North  America,  Wheeling,  Va 4  560    '* 

"       Mine  in  "  Cotnstock.  Nev 3000   •' 

Highest  Mountain  in  North  America,  St.  Elias 18  ocx>    *' 

'*       flkruoUre,  Washington  MonuBM»ni. sgo   « 

"       Tide,  Bay  ofFundy 50    " 

Tests    for    *%Vater. 

(fn    addition   to   page   851.) 
If  Hard. — When  mixed  with  a  solution  of  soap,  it  will  be  rendered  milky. 

If  Carbonic  Acid  u  prtsent. — When  mixed  with  Hme  water  it  will  be  rendered 
Wtiky. 

If  Sulphate  of  Lime  {Oyptum)  is  present— it'ix  with  a  little  chloride  of  bariHMK, 
and  if  a  white  precipijbate  is  formed,  which  will  not  diasolve  when  nitric  acid  is 
added. 

Comparati-ve   Tenaoitsr  of  Out  and  "Wire   Iron   Nwdlm* 

In  Lengths  from  1.135  <o  6  ww-,  and  Driven  in  Bpruoe  w4  Pine  Timlber. 

In  Spruce.— The  tenacity  ot  ordinary  cut  nails  exceeded  that  of  wire  47.51  per 
cent;  of  finishing,  72.22;  luad  of  Iwx,  5a  8S. 

In  fViM.— Box  aails  taper  perpendicular  to  grain  of  wood  125.2  per  cent.;  paral- 
lel to  it,  100.33;  '■'^d  driven  in  end  of  wood,  64.38. 

Average  of  58  series  of  tests,  with  40  sizes  of  nails,  72.74  per  cent 

Maj.  J.  W.  Reitty,  U.  8.  O.  D. 
»jf  Wm.  H.  Burr^  a  B. 

Uydro-Greology. 

U.  a.  Census  Report,   Vol.  JTVII. 

Upper  MlspourU— The  average  annual  Discharge  of  the  principal  tribn- 
taries  of  it,  to  the  precipitation  on  the  basin  ==  joS  per  cent. 

Upper  ^liHsinsippi — Average  annual  Kainfall  in  it  and  in  the  valley 
west  of  Lake  Michigan,  33.7  inchea 
Avarafa  flow  per  aeoo^d  per  square  mile  of  drainage  araa,  .701  cube  feet. 
Klevation  of  ordinary  low  water  at  its  extreme  souree  above  the  Ocean,  1680  feet 
Draiaafe  araa  above  moath  of  Missouri  river,  969000  squave  milea 

J.  L.  Gresnleti/,  C.  X. 

Cost  of  an    Sleotrioal   IP. 

Avaitahte  W,  84  per  cent  of  Indicated.     Coal  at  $3.75  per  Ton. 
Coal,  64  cents.    Wages,  water,  etc.,  s6  cents. 

Alea,  Siemens,  M.  I.  C.  X. 


984 


MEMOBAKDA. 


Capacity   of  Grirders   and   Floor  Seams. 


Loaded  in  their  Centre, — Girders  of  single  span  of  Georgia  or  Yellow  Pine, 
lo  ins.  in  breadth,  12  ins.  in  depth,  and  10  feet  in  length  between  its  sup- 
ports at  both  ends. 

The  mean  rapacities  of  the  woods  in  ordinary  use  in  the  floors  of  buildings  for 
one  inch  square)  and  one  foot  between  supports  are  as  follows: 


Lbs- 
Spruce 550 

Canada  Oak 560 

N.  E.  Pine 500 


Lbs.  I  Lbt. 

Georgia  or  Yel.  Fine. .  830  I  White  Pine 500 

Hemlock 450  1  White  Oak 650 

Chestnut. 480  I  Ash 900 

In  the  computation  of  the  strength  of  posts,  girders,  and  floor  beams  in  baiid- 
ings,  it  is  impracticable  of  assured  safety  at  all  times  to  assume  their  strength  at 
their  mea*v  value  as  determined  by  experiment,  inasmuch  as  allowance  is  to  be 
made  for  defects,  as  knots  and  shakes,  fungus  growth  and  dry  rot  Hence  a  Factor 
ofzafety  or  a  deduction  of  capacity  in  each  case  must  be  resorted  to. 

In  the  case  above  given,  the  strength  of  the  pine  is  assumed  at  850  and  coeffi- 
cient of  capacity  at  4. 

„  10X122x850  .     „         .30600  .    „ 

Hence,  — —  =  30  600  Un.  and =  3060  lb*» 

4  X  xo  10 

If  Uniformly  Loaded^  this  result  would  be  doubled. 

Sstimate   of  .'Paiai.t   Required,  ibr   Open    Iron  "Worlc   on 

Bridges,  etc. 

First  coat,  .625  gallon  per  ton;  second  coat,  .375  gallon. 

(21  J.  Sioijl,  a  K} 

To    Compute    lr!P    of  a    Stream    of  "^Vater. 

When  Maintained  at  a  Uniform  Height. 

Illustration.— Assume  section  22  sq.  feet,  velocity  of  flow  5  feet  per  second,  and 
&AI  25  feet. 

22  X  5  =  no  euhefeei  ttnUer  in  volume  per  geoond.  no  X  60  X  62.5  :=  4x2  500  26s. 
water  per  minute. 

Then,  *'^^°° — ^  =  weight  0/  wcder  in  lbs.  -f- 33  000  =  312. 5  theoretical  W  per 
33000 

minute,  from  which  is  to  be  deducted  loss  of  efficiency  of  instrument  of  applica- 
tion, and  which  are  given.    (See  pp.  561-580. ) 

Assume  a  Turbine  wheel  at  .7  of  efficiency.   Then,  312.5  X  •  7  =  218.75  effective  W. 

If  the  surface  is  maintained  (impounded)  at  a  uniform  height,  the  power  of  it, 
for  the  period  of  working  hours,  will  be  2x8.75  x  60  x  N.  N  representing  the  num- 
ber of  hours. 

The  result,  then,  for  a  period  of  10  hours  would  be  218.75  X  60  X  10  =  131 250  W. 

If  a  stream  has  a  supply  equal  to  the  expenditure  of  it,  it  will  overflow  in  the 
Intervals  between  working  hours;  but  if  it  is  unequal  to  the  operating  volume  or 
consumption  required,  there  must  be  a  storage  reservoir,  and  the  greater  the 
area  of  it  the  less  the  decrease  of  the  head  or  level  of  it,  when  being  drawn  frouL 


To   Compute   Slemeiits   of  a   Flume. 
2%e  Volunu  of  Water,    Area  and  Height  being  Given. 

/  V  y 

-  A  y/^2  ghGss  volume.     I  2  n  a  1  *^  agz=heighL   V  representing  voihune  in  cube 

3  V-CAy 

feet,  A  area  in  sq.  feety  C  co^fftderU  of  discharge,  h  height,  and  I  length  in  fxL 
Assume  Volume  36.39  cube  feet,  Area  8  sq.  feet,  and  G  .6. 

(-.6X8)  ■^^4-33  =  -6;^  =  a'^»^'^^-     -X  8  X  \/64.33X3X.65F36.39»oliima 

j^=i-=4i^ngthi  Off --=-  =  9  height. 


MBMOBANDA. 


985 


Sfieot  or  Tappiiis  of  ILiongr-leaf  Pine. 

Late  tests,  conducted  by  the  U.  S.  DepH  of  Agriculture,  of  32  trees,  have  conclu- 
sively evidenced  that  the  timber  of  the  Long-leaf  Pine  is  in  no  wise  aflected  by  the 
tapping  of  it  for  turpentine.  See  Circular  No.  9,  Forestry  Division. 

Comparative  Strength  of  Tapped  and  Untapped  Long-leaf  Fine. 

In  Founds  per  Sq.  Incfi. 


ConditioD. 


Specific 
Gravity. 


Ten  rile. 


Trail  srerM. 


Crashing^.    >   Detmrive. 


Tapjfed. 
25  pieces,  green . . . 

dry 

Z15  tests,  mean... . 

Untapped. 
Z33  tests,  menu 


•759 
.687 

.76 
•71 


LIm. 
15448 
M757 
15985 


Lba.* 

136 
177 
140 

i4fl 


Lbi. 

4755 
6627 

5118 
5661 


Lba. 

540 
648 

636 
652 


16429 
*  Oue  inch  squaiw  and  one  foot  in  length,  weight  tupported  from  one  end. 

See  Circular  No.  8. 
Tapped  and  untapped  is  known  as  "boxed"  and  "  unboxed." 

The  pores  of  woo<l  leading  upward,  or  in  the  direction  of  its  growth,  facilitate 
the  Uow  or  passage  of  moisture  in  that  direction.  Hence,  timber  set  inclined  or 
vertical,  with  the  abut  end  up|)ermost  and  exposed  to  moisture,  will  decay  at  the 
top  more  readily  than  if  set  with  the  abut  down. 

The  effect  of  varying  the  set  of  wood  is  frequently  observed  in"  the  staves  of  a 
cistern  or  tub,  etc  ,  some  of  them  being  saturated  with  moisture  and  others  quite 
dry. 

ITo   Compute   "Weiglit   or  Flue   etnid   Xubuletr   I^ariue 

Steam    Boiler. 

To  weight  of  the  metal  plates,  as  determined  by  tfieir  area  and  thickness,  add  as 
follows : 
For  Laps  and  Rivets.  ~One  lb.  per  sq.  foot  for  each  .  125  ins.  in  thickness  of  plate. 
'*  Bolts^.Stays,  and  Braces. — 20  per  cent,  of  total  weight  of  the  plates  in  lbs. 
"  Mean  and  HandhoU  Flaies.^yso  ^  icno  lbs. 


^otes  on.  Portland  Cement  and  Cement  JMortars. 

{In  addUion  to  pp.  515,  589, 871,  907, 958.) 

Cements  that  harden  rapidly  produce  a  brittle  texture ;  they  should  increase  in 
strength  with  uniformity.  The  strength  at  terminotion  of  one  day  should  not  ex- 
ceed 45  per  cent,  that  of  the  seventh  day. 

The  addition  of  Sulphate  of  Lime  and  Gypsum  to  American  Portland  cement  in- 
creases the  strength  of  the  cement;  with  3  per  cent,  of  the  former  il  increases  it 
64  per  cent. ;  from  that  it  diminishes  the  effect;  and  with  5  per  ce*t.  of  the  latter 
it  increases  it  33  per  cent. 

To  English  Portland  cement  2  per  cent,  of  Sulphate  of  Lime  increased  It  60  per 
cent 

Dry  Sands.— Standard— Weight.  92  lbs.  per  bushel,  and  its  voids  are 
47-5  PC*"  cent.     Natural  or  Bar. — 103  Um.,  and  41.25  per  cent. 

Requirements  and  Specificatunu. — Tensile  Tests.— An  average  of  5  briquettes  in 
each  case. 

Fineneu.—qj.s  per  cent,  through  No.  50  sieve,  and  87.5  through  No.  100  sieve. 
Specific  Gravity. — To  exceed  3. 

Homogenefms.—D\aca,  3.5  ins.  in  diameter,  and  .375  thick  at  centre,  tapering  to  a 
sharp  edge  at  the  circumference ;  they  should  not  crack  or  warp. 

Samples.— Ten  per  cent,  of  the  quantity  selected  at  random. 

Tensile  Strength.— lAm\t  of  results,  10  jier  cent. 

For  Exposure  in  Salt-water. — Initial  set  with  fresh-water  not  to  exceed  ten  min- 
ntea. 

10 


986 


MSMORANDA. 


ikl>«orptiv*  Ponnrer  of  Okarooal* 

Of  Fint  Boxwood.    J3y  VoluvMt. 


Aimnonts 3:0 

Carbonic  acid 35 

Carbonic  oxide 9.4a 


Carburetted  hydrogen  5 
Hydrogen 1.75 


NUrottS  oxide. 40 

Oxygen 9.9$ 


NUrofeiL. ...••  6.5  |Saly'dbydr(^ea...  55 

Pop  Safety  and   Relief  "Valves.    Crane  Co.,  Chicago. 


BUAB8. 


H.  P. 


IRON   BODY.    BRASS  SB  AT 


No. 

3to   6 

6  "  to 
10  *^  so 

90  "  30 

30  »♦  40 

40  "  75 


it 

Sq.FU 

l<32 

«.35 
3-68 

5-3 

9.42 

14.72 

r 


3-75 


Ins. 

«-5 

3 

3-5 

4 

4-5 
5 
6 


H.  P. 


Mo. 

40  to    75 
75   "  Joo 

100    *'    X95 

125  **  150 

150  ••  175 

175  "  aoo 

250  "  300 


t 

•« 

li 

£Sf 

-^ 

Ifto 

~5 

05-3 -s 

pS 

> 

S4.  Ft. 

Int. 

14.79 

3.75 

21.9 

4.375 

98.86 

4-75 

3769 

5.695 

47' 7 

6.375 

58.9 

6.375 

84.83 

7.125 

Approved  by  U.  S  Board  of  Supervising  Inspectors  of  Steam  Ypssels.  and 
will  be  approved  by  all  TiOcal  Inspectors,  on  n  bn«!}-»  of  On«^  s^iattre  luc'i  of  area  to 
three  squxre  feet  of  grate  surface.  , 

^nierioan.   "Woods. 
With   ike   Order  of  their  Strength. 
Order, 


i< 


Ash,  mountain,  Pifvus  Americana..      — 

"     Frax^inui  pistacuefolia 234 

"    Oregon,  Fraxinus  Oregana...     210 
red,              "        pubescens. . 
white,           "       Americanum 
priclcly,  JTanUioxylum  Ameri- 
canum  

Basswood,  Li  ndeo,  Titia  Americana 

Beech,  Fagu»  fen-uginea 24 

Butternut,  Jufjlaws  cinerea 205 

Button- woo<i,  Ctmocarpus  ereeta. . .      76 
Ceditr,  while,*Z>t<M>ce(lnM  decurrent, 
*'      red.  canoe,  Thuya  gigantea. 
Cherry,  wild  red,  Prunus  Pennsyl- 

vanica 

Cherry,  wild  blaolc,  Prunus  serUina 

Chestnut,  Castanea  vulgaris 

Cottonwood,  Populus  monilifera. . . 
Cucumber,  mountain,  Magnolia  acu- 
minata       908 

Elm,  slippery,  Ulmusfidva. — 

**    white,  '*     Americana..     114 

Fir,  white,  Abies  grandis 280 

Gam,  sweet,  Liquidambar  styraci- 

flua 222 

Hemlock,  Tsuga  Mertensiana 87 

Hickory,  shell-burk,  Cartfa  aiba. . .      12 
'*       nutmeg,         **      myritti- 
coiformis x 


105 
29 


949 


300 


119 
150 


Order. 

Hickory,  pignut,  Carya  porcina. ...  44 

Iron  wood,  CyrUla  racemijlora 305 

Larch,  hackmatack,  Larix  Ameri- 
cana.   94 

Laurel,  big.  Magnolia  grandiflora..  139 

"      white     "        glauca 170 

LignumvitsB,  Cfuaiactim  sanctum. . .  143 

Lime,  wild,  JTanthostyium  Pterota..  — 

Locust,  Rwinia  pBeudacaeits. 3 

Maple,  mountain,  Acer  spioatum. . .  — 
■  *■*      sugar,  hard,  '•^  saecharinuvk 
*^      Biiver,  soft,    "  dasjfearpum. 

"     swamp,         "  rubrum. 

Oak,  black,  Quereus  tincUiria 

'*    live,  '*      vireni 

''    white,       "      cUba 

Pine,  white,  JVntM  s^ro&tM. 332 

'«    yellow,    •'     Arizonica. — 

•♦     pitch,      •♦     rigida 168 

•'     scrub,      "     inops 914 

Poplar,   white'wood,    Liriodendron 

tuHjpifera. 215 

Redwood,  Stqwna  sempervirens. . . .  946 

Satinwood,  jtanOmxylum  cai-ifxpum  157 

Spruce,  wh  Ite,  Picea  alba 163 

Sycamore,  PUUantu  oecidentalii. . .  231 

Tulip,  yellow — 

Walnut,  bluck,  Jufflans  nigra. — 

Willow,  Salix  Uemgata 394 


21 
56 

X96 

57 
89 


ELECTBIGAL.  987 


I         Sleotrioal. 
CimpiUd  l>y  Prqf.  A.  E.  KenneUy. 
XJnits    in    Bleotrioal    Ifingrlneering. 

The  faUowing  units  have  bem  legally  adopted  by  the  U,  S.  Oovemment,  s^d  Con- 
gress, 1894: 

XJnit  of  Hesistanoe The  International  Ohm,  represented  by  the  re- 
sistance offered  to  an  unvarying  electric  current  by  a  column  of  mercury  at  the 
temperature  of  melting  ice*  14.4521  grammes  in  mass,  of  a  constant  cross-sec- 
tioi»l  area,  und  of  tbe  length  one  hundred  and  six  and  three- tenths  centimetres. 

"Unit  of  Current.— The  Intfmalional  Ampere,  which  is  the  one-tenth  of 
the  unit  of  current  of  the  centimetre  gramme-second  system  of  electro- magnetic 
units,  and  is  the  practical  equivalent  of  the  unviirying  current  which,  when  passed 
through  a  solution  of  nitrate  of  silver  in  water,  in  accordance  with  standard 
specifications,  deposits  silver  at  the  rate  of  .001 118  gramme  per  second. 

XJiiit  of*  Eleotromotive  Foroe. — The  Intemaiionai  Volt,  which  is 
the  electromotive  force  that,  steadily  applied  to  a  conductor  whose  resistance  Is 
one  international  ohm,  will  produce  a  current  of  an  international  ampere,  and  is 
practically  equal  to  1.434  times  the  electromotive  force  between  the  poles  or  elec- 
trodes of  the  voltaic  cell  known  as  Clark's  cell,  at  a  temperature  of  xs**  C,  and  pre- 
pared in  the  manner  described  in  the  standard  specifications. 

TJnit  of  Quantity. — ^The  International  Coidomb,  which  is  the  quantity 
of  electricity  transferred  by  a  current  of  one  international  ampere  in  one  second. 

Unit  of  Capacity.— The  IfUemaiional  Farad,  which  is  the  capacity  of  a 
condenser  charged  to  a  potential  of  one  international  volt  by  one  international 
coulomb  of  electricity. 

Unit  of  T^orls.— Th6  Jouk,  which  is  equal  to  io7  units  of  work  in  the 
C.-6.-S.  system,  and  which  is  practically  equivalent  to  the  energy  expended  m  one 
second  by  an  international  ampere  in  an  international  ohm. 

.  "Unit  of  I*ower. — The  Walt,  which  is  equal  to  io7  units  of  power  in  the 
C.-G.-S.  system,  and  equivalent  to  work  done  at  the  rate  of  one  joule  per  second. 

"Unit  of  Induction.— The  Henry,  which  Is  the  induction  in  acircait  when 
the  electromotive  force  induced  in  circuit  is  one  international  volt,  while  the  in- 
ducing current  varies  at  one  ampere  per  second. 

The  following  list  presents  these  nnits  with  their  derivatives,  and  also  other  elec- 
tro-magnetic units  which  are  in  use: 

Resistauoe,  Ohm. — Megohm,  one  million  ohms-  Begohm,  one  billion  ohms; 
Tregohm,  one  trillion  ohms;  Microhm,  one  millionth  onm;  Bicrohm,  one  billionth 
ohm. 

Current,  >lmp«r«.— Bicro-ampere,  one  billionth  ampere;  Micro-ampere,  one 
millionth  ampere;  Milli-ampere,  one  thousandth  ampere;  Centi-ampere,  one  hun- 
dredth ampere;  Deci-ampere,  one  tenth  ampere;  Deka>ampere,  ten  amperes;  Hecto- 
ampere,  one  hundred  amperes;  Kilo-ampere,  one  thousand  amperes. 

£.  "M..  IT*.,  Toft— Microvolt,  one  millionth  volt;  Kilovolt,  one  thousand  volts. 

Capacity,  l^arod.— Bicrofarad,  one  billionth  farad;  Microfarad,  one  mill- 
ionth farad. 

Work,  Jou^tf.  — Kilojoule,  one  thousand  Joules;  Megajoule,  one  million  Joules. 

l?o"wer.  Watt. — Kilowatt,  one  thousand  watts. 

Induction,  ^enry.  —  Microhenry,  one  millionth  henry;  Millihenry^  one 
thousandth  henry. 

Alagnetio  F'lux,  IKefrer.— Kiloweber,  one  thousand  webers;  Megaweber, 
one  million  webers. 

AAatsn^tio  lieliiotanoe.  Oersted — Millioersted,  one  thousandth  oersted. 
*'  Intensity,  Oauss. — Kilogauss,  one  thousand  gausses. 

AXaenetoxnotive  F'oree,  Gilbert  —The  O-ilbert  is  the  M.  M.  F 
produced  by  .7958  ampere-turn. 

The  Oersted  is  the  reluctance  of  a  cubic  centimetre  of  air  measured  between 
opposed  parallel  faces. 

The  Weber  is  the  flux  produced  by  a  M.  M.  F.  of  one  gilbert  through  a  mag- 
netic circuit  in  which  the  reluctance  is  one  oersted. 
The  Ghauss  is  an  intensity  of  one  weber  per  normal  sq.  centimetre. 


p88 


ELEGTBTCAL. 


Sjleotrioal.    (BrUiah  Association.) 

H.esi0tanoe. — Unit  of  resistance  is  termed  an  Ohm,  which  represents  resist- 
ance of  a  column  of  mercury  of  i  sq.  millimeter  ia  section  and  1.0486  meters  in 
length,  at  temperature  o**  C. 

X  000000  Microhms =  x  Ohm. 

I  Microhm =5  ■  1000  absolute  electro-mAgnetic  anits. 

I  Ohm =         looooooooo        "  "  "  " 

1 000000  Ohms =  X  Megohm  or  10 «5    ♦'  "  <*  *» 

TCleotro-xnotive  IToroe.— Unit  of  tension  or  difference  of  potentials  is 
termed  a  Volt. 

1 000000  Microvolts. .  =  i  Volt. 

X  VoU =  loooooooo  absolate  electromagnetic  units. 

X  Megavolt . . .  =     1 000000  Volt& 

Current.  —Unit  of  current  is  equal  to  i  AmperA^  or  the  current  in  a  circuit 
which  has  an  electro  motive  force  of  i  VoU  and  a  resistance  of  one  Ohsn. 

Capacity-.— Unit  of  capacity  is  termed  a  Farad, 
z  000000  Microfarads  or  io~9  absolute  units  of  capacity =  x  Farad. 

Heat. —  Unit  of  heat  is  quantity  required  to  raise  one  gramme  of  water  ttom 
''o  C.  to  1°  C.  of  temperature, 

Qiian  tit3r. — Unit  of  Quantity,  one  CfouUmb,  and  Is  the  quantity  of  Electricity 
transferred  by  one  ampere  during  one  second. 


r 


To    X>eterxnine    tbe    Kast    aticl    TVest    Aleridiaii. 

Set  up  a  rod  vertically  on  a  level  area  or  plane  in  tlio  approximating  mer.Uian 
and  describe  arcs,  with  a  radius  of  about  twice  the  height  of  the  rod.*  At  any  time 
before  M.  mark  the  point  in  tbe  arc  where  the  shadow  of  the  rod  touches  it,  and  in 
the  P.M.,  at  the  same  length  of  time  of  before  M.,  mark  the  point  of  the  shadow  on 
the  arc;  remove  the  rod,  and  a  line  drawn  through  these  points  will  give  the  true 
bearing  of  E.  and  W. 

1?o    Coxxipute    th.e    Ixiorease    o£  A.rea    ojf  a    Circle    or 

"Volume    of  a    Cul^e. 

By  Differential  Calculus. 

Circle,     n  x^=:u  and  2  n  x  dx  =  du. 

u  representing  area^  x  radius  of  circle^  and  du  increase  of  area. 

Illustrations. — i.  Assume  x  10  ins.,  and  d  x,  or  difference  of  radius,  .05  inch. 

Then,  2X3- 1416  X  10  X  .05  =  3. 1416  sq.  ins. 

Circle  of  10  ins.  radius  =  3. 1416  sq.  ins. 

Hence, .  /  -  —  -  T       -  -  =  y/  404  =  20.0997  ins. ,  the  increased  diameter. 
V  • 7°54 

Cube,    x^  =  u  and  2  x^dxtsidu, 
2.  Assume  X  side  of  a  cube  22  ins.  and  d  x  increase  of  side  .05  inch. 
X  representing  side  ofcube^  and  du  increase  of  volume. 

Then,  3  X  12=^  X  -05  —  21.6  cube  ins. 

Hence,  •^'123-1-21.6  =  12.05  ins.  the  increased  side. 

du      3  da;      .15  dx      .05  ,,        .     .0125  _     ^     ,.^ 

—  -  - —  =  -^  =.-  .0125  and  -   -=  -  ^-  =  .004166  and  — — ~r  =  3.     Hence,  tbe 
u  X  12  ar        12  .004166 

cubical  expansion  is  tliree  times  that  nftfie  linear. 

— — — • — ■ —  ■*  ■ 

•  Varyin;;  with  th«  latitiiile  of  the  location,  as  the  more  vertical  the  mu  Uie  gremUr  the  beiitht  ol 
thfl  rod. 


ENEB6T    AND    MOTION — KINETICS.  989 

ICnergy    and    !M.otioxi. 

The  science  of  Motion  is  included  in  Mathematics,  and  is  termed  Kine- 
malics;  the  science  of  V or ce^  Dynamics  or  Kinetics;  and  the  investigation  or 
operati(Hi  of  forces  in  equilibrium,  Statics. 

All  standards  of  Energy  aud  Motion  are  Units^  as  the  unit  of  liength  may  be  an 
inch,  foot,  yard,  or  mile,  bul  usually  a  foot ;  that  of  Time  a  second,  minute,  hour, 
or  day,  usually  a  second;  aud  Velocity  by  the  number  of  units  of  lengths  or  opera- 
tion in  a  unit  of  time. 

Uniform  Acceleraiion  is  the  uniform  increase  or  decrease  of  velocity  per  unit  of 
time  or  distance,  but  this  increase  or  decrease  of  velocity  is  that  whicli  the  force 

produces  in  a  unit  of  time  ;  hence  -—  =F.     m  representing  unit  of  force,  a  unit 

of  accelei'alion,  t  the  time,  and  F  the  force. 

Illustration Assume  a  body  moving  at  the  rate  of  50  feet  per  second,  and  at 

the  end  of  10  seconds  it  has  acquired  a  velocity  of  75  feet  per  second,  the  increase 
of  velocity  is  25  feet  in  10  seconds,  equal  to  2. 5  feet  per  second  in  each  second,  or 
2. 5  feet  per  second  per  second.  * 

2.  Given  a  uniform  acceleration  of  velocity  of  40  feet  per  second  per  second; 
what  is  the  acceleration  in  yards  per  minute  per  minute? 

40  feet  perl  ^40  x  ^feet  per  min.  per  sec.  >  ^40X60'^ 
sec.  per  sec.  f      40X60=*  "      "      "       "     min.f  3  t  9         i 

min.  per  min. 

3.  A  train  of  cars  2  minutes  after  starting  attains  a  uniform  velocity  of  15  miles 
per  hour ;  what  is  the  acceleration  in  miles  per  minute  per  minute? 

15  miles  per  hour  =  .25  mile  per  minute,  increase  of  velocity  =  .25  mileper  minute 
which  occurs  in  2  minutes. 

Hence,  acceleration  = .  5  of  .25  mile  per  minuie  = .  125  milt  per  min.  per  min. 

Kinetics. 

Force  and  Mass. 

If  two  bodies  of  equal  dimensions  and  unequal  weights  be  simultaneously  pro- 
jected with  likeFe/oci^y,  the  heavier  one  will  go  farther  than  the  lighter;  but  if  these 
bodies  were  projected  with  like  Force,  the  lighter  one  would  go  the  farthest. 

The  difference  is  in  consequence  of  the  difference^of  the  Mass  or  Matter,  and  as  a 
result  it  requires  more  force  to  stop  the  heavier  body  when  started  than  the  light 
one. 

In  operation,  there  are  two  common  Units  of  Mass,  as  there  are  two  of  Force. 

The  Poundal,  or  British  absolute  unit  of  force,  is  that  which  the  action  on  a  mass- 
pound  for  one  second  produces  in  it  a  velocity  of  one  foot  per  second. 

The  Dyne  is  that  force  wliich,  acting  on  a  mass-gram  for  one  second,  produces  in 
it  a  velocity  of  one  centimeter  per  second. 

Opk&ation. — If  15  poundals  bear  upon  a  mass  of  70  lb&,  in  what  time  will  it  pro- 
duce a  velocity  of  60  feet  per  minute? 
I  poundal  =  a  velocity  of  i  foot  per  sec.  in  i  lb.  in  1  second. 

Hence,  15  poundals  =3  a  velocity  of  i  foot  per  sec.  in  i  lb.  in  —  teamd. 

70 
15  poundals  =  a  velocity  of  i  foot  per  sec.  in  70  lbs.  in  —  seconds,  and  15  poundals 

=  a  velocity  of  60  feet  per  sec.  in  70  lbs.  in ^=  280  uconds. 

Hence,  — r-  =  F,  m  representing  unit  offeree,  v  unit  of  velocity,  t  unit  of  time, 
and  F  the  force. 


*  Second  per  Mcond,  Minute  per  minnte,  etc.,  altboufrh  nnaknal,  )•  proper.  Thns,  the  enreetloii, 
*'  The  train  went  with  a  velocity  of  60  mliea  per  hour,*'  is  indefinite,  as  it  may  have  gone  at  that  rata 
hat  for  a  period  of  one  minute,  or  10  minntee ;  wbereaa,  60  milea  per  hoar  per  aoar  indicate*  both  the 
rate  of  the  velocity  and  of  that  per  boor. 


990  KINSTICS.'-raAB   BNGINBS* 

Impulse — Is  when  a  force  acts  during  a  given  time. 

Thus,  if  a  force  of  5  lbs.  bears  upon  an  object  during  3  seconds,  3  X  5  =  15  units 

of  effect,  and  — —  =  F,  representing  the  number  of  units  of  impulse. 

Momentum  or  Moment — Is  the  product  of  the  number  of  units  of  velocity  with 
which  the  mass  is  moving. 

Illvstratiom.— A  mass  of  aoo  lbs.  is  moved  with  a  uniform  velocity  of  75  yards 
per  minute;  during  what  time  is  a  force  of  80  lbs.  required  to  arrest  the  mottpn? 

7S  X  ^  200  X  7^ 

>■      =  3-75  feet  per  second^  and  -._^      =  750,  which  -i-  80  =  9.375  seconds. 

2.  A  mass  of  6.75  lbs.  is  acted  ui)OU  by  a  force  of  .5  lb.  during  5  minutes ;  what  is 
th«  velocity  acquired? 

5  minute8=3oo  seconds^  and  300-T-.5  (halfpouDd)  =  i5o  units  of  impulse,  and 

^^  =  33. 2  feel  ner  McoRd. 
6.75 

3.  A  rod  8  feet  in  length,  weighing  8  lbs.,  has  a  weight  of  205  lbs.  suspended  fVom 
one  end  and  60  lbs.  from  the  other ;  at  what  ))Oint  in  the  bar  will  the  effect  of  the 
weights  be  equalized  ? 

By  rule  To  Compute  Position  of  Fulcrum,  p.  624, 


•OK  8 

8-T-  -r^  +  i  ;= —  •=  1.8113  /ee<=dMtance  of  305  Vbs.  from  its  end.  and  8  — 

00  4.4107 

1. 81 1 3 = 6. 1887  feet  =.  distance  of  60  lbs.  from  its  end. 
Then,  to  include  weight  of  rod— 

205 -|-i.8ii3-r-6o-|-6. 1887 4-1=4- 1246, and  84-4. 1246  =  i. 9396— /e«f  =  distance 
of  aos  lbs.  from  its  end,  including  its  toeight  of  the  rod.  Hence,  8  —  1.9396  —  = 
6.0604  -\-feet  =:  distance  of  60  lbs.  from  its  end. 

Verifcation.  205 4- 1-9396  X  1.9396  =  401.367  lbs.,  and  6o-|- 6.064 ~i~  X  6.064 -f-  = 
401.376  lbs. 

GX&  BNGINBS. 
<3*as  Kneines.    Are  divided  into  three  types. 

^^^                                                  TlMoratleml.  BllcUiiey. 
I.  Engines  igniting  at  constant  volume,  without  previous)                _^ 

compression )  ^ 

3.  Igniting  at  constant  pressure,  without  previous  compres- 1         ^       a 

sion I         '       —  •'" 

3.  Igniting  at  constant  volume,  with  previous  compression. . .        3       =  .34 

In  the  first  two  types  the  cylindrical  conditions  are  most  favorable  to  cooling, 
and  a  practical  efficiency  of  .06  is  attained.  In  the  third  the  conditions  for  loss  by 
cooling  are  very  favorable,  and  an  actual  efficiency  of  .17  is  obtained. 

The  ordinary  heat  efficiency  is  17  per  cent  of  all  the  heat  expended  In  ah  en- 
gine, and  the  highest  obtained  25  per  cent. 

For  powers  up  to  20  IIP,  when  gas  is  cheap,  as  in  towns  tod  cities,  it  competes 
with  steam,  as  it  is  more  economical  and  fnore  convenient,  and  is  most  usually  rs- 
sorted  to  for  a  power  of  from  4  to  6  horses.  Some  engines  have  been  constructed 
and  are  in  useof  xoo  H*. 

Non-Coxxip7>e88ioTx  HSngiixes.  Are  principally  used  for  small  power, 
as  up  to  .5  IP. 

The  pressure  is  applied  only  during  a  portion  of  the  stroke. 

In  the  I^eiioir  the  piston  is  moved  only  for  about  .5  its  stroke,  when  it  re- 
ceives a  mixed  volume  of  gas  and  atmospheric  air,  which  is  ignited  by  an  eleotrie 
spark,  the  pressure  rising  to  about  45  lbs.  per  sq.  inch  above  the  atmosphere.  The 
piston  then  is  driven  through  the  remaining  portion  of  the  stroke,  and  at  the  ead 
of  it  the  pressure  falls  to  about  3  lbs. 

The  mean  effective  pressure  being  usually  8.5  lbs.  per  sq.  lach. 


OAS   8N<»IKfiS. 


991 


M. 


n. 


Reeixlts    of*   Operatiou    of    Thirtaen     JKiAsixies   of 
Viire    I>ifi«reut    Ooustruccioos.  ^ 


RMRlltB. 


IIP 


No. 

Mean. 

15-35 

I^ast. 

342 

Extreme. 

336 

BH? 


No. 

1255 
2.7 

27-75 


IIF 

Cube  feet. 

22-21 

16.92 
30-9 


Revolation 

Heat  Con- 

per 

per 

vwrie4  iato 

BiP 

MiHntew 

W«rk. 

Cube  feeL 

No. 

l*er  cent. 

28.05 

180.7 

17-43 

23-58 

132 

10.  s 

33-4 

223.8 

21.2 

This  Type  of  engine  \b  heW  to  be  -wasteftil  of  gas,  as  it  consumes  over  90  cube  feet 
of  16  caiidle-iwwcr  gas  per  IH*  per  bour. 

The  Otto  dc  I^ati-s^v  is  a  free- piston  er  atxnosoberic  eogioe,  admitting  of 
bigb  piston  speed  and  great  cxpansiott,  lieuce  it  is  more  ecQUonii^al. 

An  explosion  of  gus  drives  tbe  piston  upward,  and  by  the  projectile  force  of  it 
and  the  reduction  of  the  temperature  of  tbe  gas  under  it,  a  partial  vacuum  is 
formed,  the  piston  returning  under  atmospheric  pressure. 

In  an  engine  with  a  cylinder  of  12.5  ins.  diameter  and  an  observed  stroke  of  pis- 
ton of  40  ins. ,  25  cube  ffet  of  gas  gave  a  maxitn.uiii  gav^  preisure  of  54  l)s.  per  sq. 
inch,  and  a  resuH  of  2.9  per  IH*  per  hour. 

GompresHioxi  JSix^iiies  possess  the  advantage  of  furnishing  greater 
power  with  less  vohioie  and  weigfai,  as  well  as  economy  of  operation. 

The  Otto. — It  is  a  siog^e-acUog-pintoB  engine,  serving  alternately  as  a  pump  and 
a  motor,  and  one  explosion  of  gas  is  given  for  every  two  complete  revolutions. 

Opbratton. — The  piston  receives  a  volume  or  charge  of  gas  and  air,  then  returns, 
compressing  tbe  volume  into  a  space  at  end  of  its  stroke,  which  mixture  is  ignited, 
nnd  Hie  presavre  ^erefeM  foroes  tip  the  piston,  w)icn  it  i«turns  with  an  exbanftt 
valve  open  to  fVee  it  from  the  forceand  prodnots  of  combustion ;  at  the  termination 
of  the  stroke  it  is  in  position  to  receive  a  new  charge. 

Thus,  one  driving  stroke  of  the  piston  is  given  for  two  revolutions  of  the  rngine. 

The  Mean  affective  pressure^  with  gas  of  16  Ciindle-power,  is  about  55  to  60  lbs. 
per  sq.  inch,  the  maxim«ai  pressure  of  the  explosion  being  from  140  to  160  lbs., 
and  even  up  to  180  lbs. 

In  an  engine  rated  at  6  fi?  the  coasimption  of  gas  was  21  cube  feet  xvex  IB?,  .and 
for  brake  W  29  cube  feei. 

The  Clerk  has  a  second  cylinder,  termed  the  charging,  the  function  ef  wfiieh 
is  to  receive  a  charge  of  gas  and  atr  at  each  stroke  and  deliver  it  into  the  motor 
cylinder.  The  charge  dispels  the  consaraetl  gas  of  a  previous  operation  and  fills  it 
with  mixture,  to  be  compressed  by  the  return  stroke  of  the  piston  and  ignited  at 
each  revolution. 

Tbe  Me«M  effective  presmare  ia  an  eagine  of  12  IP  is  65  lbs.  per  sq.  incb,  pressure 
of  compression  57  lbs.,  and  maximum  pressure  of  explosion  238  lbs.  Gas  consumed 
24  ctibe  feet  of  24  candle-power  per  IH*  i>er  hour.  One  of  oj^nch  cylinder  and  20 
ins.  stroke,  at  132  revolutions  per  minute,  developed  27.5  IH*  per  hour,  or  23.2  IP 
at  the  brake. 

The  Caxnp'bell  and  Midland,  are  of  Chis  type,  and  are  alike  to  it  in  the 
use  of  a  charging  cylinder. 

Tbe  Stoolcp-ut  resembles  it  also,  but  the  operation  differs  in  the  passing  of 
each  charge  ftom  the  gas  pun»p,  which  is  a  combination  of  the  motor -]»i8t»n,  into 
an  intermediate  reservoir,  wbenoe  it  Mews  out  iato  tbe  motor  cylinder  and  dis- 
charges tbe  buraed  gas. 

Three-Oyole  engines  are  like  the  OUo  in  their  operations,  but  give  only 
one  impulse  for  every  three  revolutions,  one  extra  doifble  «troke  being  used  in  re- 
ceiviBg  a 'Charge  of  air  and  expelling  it  at  the  exhaust  port,  so  that  the  comprea- 
Bion  space  is  cleared  at  each  operation. 

The  eaxMrnt  of  tbeae  eagiaes  was  kUMMm  as  iba  Linfor^i  those  now  in  use  are 
the  Or^n  and  tbe  Barker, 


992 


GAS   ENGINES. 


The  A-tkinson.  Csrole  gives  an  impulse  at  each  revolution  of  the  crank 
shaft,  and  the  piston,  by  a  system  of  links,  is  connected  so  that  it  makes  two  out 
and  two  in  strokes  for  each  revolution  of  the  crauk-shafi,  and  one  explosion  is 
given  for  each  cycle  of  four  strokes. 

It  resembles  the  Otto  in  using  the  same  piston  alternately  for  pump  and  motor 
operations,  but  differs  from  it  in  making  unequal  strokes.  This  arrangement  en- 
ables the  exhaust  gases  to  be  swept  out  of  the  cyUnder  at  every  operation  and  great 
expansion  is  obtained.  This  engine  is  held  to  be  very  economical,  as  in  recent 
trials  it  consumed  but  22  cube  feet  of  gas  per  brake  W  per  hour. 

(Ths  Practical  Engineer.) 

The  Crossley  is  a  horizontal  engine,  with  a  single  cylinder,  and  of  nominal 
powers  from  .5  to  30  B?,  indicating  from  2  to  85  ff  :  with  double  cylinders,^  ftom 
16  to  170  IIP. 

A  13  IP  engine  has  developed  28  \W  and  23  at  the  brake  £=  Z'2%  of  the  indicated, 
consuming  20  cube  feet  of  gas  per  IIP  per  hour. 

Hesults    of*  Xrials    of*  G-as    Sug^nes. 


Type. 


Otto. 

Clerk. 
Beck. 


IH». 


No. 
22.56 

3- 4a 

27.46 

6.12 


n>a    ..^. 

Heat 

Revoln- 

Gas  per 

Heat 

Rerola- 

1^    converted 
*"^-    1  into  Work 

tiunt  per 

Type. 

IFP. 

converted 

tions  per 

Minute. 

into  Work 

Minnte. 

Cube  ft.   Percent. 

No. 

No. 

Cube  ft. 

Per  cent. 

No. 

23.6 

17-5 

158.7 

Griffin. 

17.46 

18.92 

21.2 

223.8 

309 

14.46 

160.3 

Forward. 

5-54 

20.79 

19.3 

— 

20.39 

I5-5 

132 

Fawcett. 

11.49 

18.4 

19.6 

— 

20.67 

21. 1 

168.9 

Atkinsoa 

11.15 

19.22 

23.8 

— 

{T.  L,  JUaier.) 


Results    of*    Trials    of    Crosslejr    Sngixie    iTvith.    I.jOulcIoii 

Coal    O-ae.* 

Pressures  and  Revolutions  per  minute.  Pressures  and  Water  in  lbs.,  Ctas  in  cube 

feel,  and  Efficiency  and  Heat  per  cent. 


Power. 


Revolutions  per  minute. . . 
Explosions     *'        " 

Mean  initial  pressure 

Mean  effective    '■'■      

Brake  IP 

Indicated  H* 

Mechanical  efficiency 

Gas  per  hour,  total 

Gas  per  IBP  per  hour 

Gas  per  brake  H*  per  hour. 


Fall. 

Hfilf. 

160. 1 
78.4 

196.9 
67.9 

158.8 
41.1 

196.2 
73-4 

M-74 

7.41 

17.12 
86.1 

9-73 
76.2 

355-3 
20.76 

205.8 
21.2 

24.1 

27.77 

Power. 


Water  for  cooling  per  hour 

Mean  pressure  during 
working  stroke  equiv- 
alent to  work  in  pump- 
ing stroke 

Corresponding  IIP 

Heat  converted  to  work.. 

Heat  rejected  in  jacket) 
water. j 

Heat  rejected  in  exhaust. 


Fall. 

flalt 

713 

480 

2.19 

.58 

— 

22.1 

ao.9 

43a 

41. 1 

35-5 

38 

(D.  K.  Clark.) 


I*ressures    Produced,    "by    tHe     lOxploeion    of*    Ghaseous 
Miijctures    in.    a    Closed    Vessel. 


Mixture  of  Air  and  Coal-Chis,  TempertUure  64°. 


Miztare. 


6a>. 


Volume. 

1 
I 


Air. 


Volumes. 
5 
7 


Preesaret 

per 
Sq. Inch. 


Lbs. 
96 
89 


Mixture. 


Gas. 


Volume. 
•I 

1 


Air. 


Pressure 

per 
Sq. Inch. 


Volumes. 

9 
II 


Lbs. 
63 


Mixture. 


Gas. 


Volume. 

I 


Air. 


Volumes. 
X3 


Pnssvre 

per 
Sq.  Inch. 


Lbs. 
52 


(2>.  Clerk,) 


•  Set  Xeport  on  Trialt  of  MXorafor  BleeHt  UghHngfor  SoeUtf  vf  Art$f  1889, 
t  Maximum  above  the  atmosphere. 


DIMENSIONS  OP   BOLTS,  NUTS. — ^TENACITY  OF  NAILS.  993 


Standard.  I>izxiensions  of  Iron  and  Copper  Solts 

and    ^nts,  TJ.   S.  Navy. 
Sq.u.are    and    Hexagojaal    Heads    and    Nuts, 

J^nished, 
From  .25  Inch  to  6  Inches  in  Diameter. 


DiAMms. 

BoiU 

Effec- 
tive. 

Ina. 

Ina. 

•25 

.,85 

•3"S 

•24 

•375 

.294 

•4375 

•345 

.5 

.4 

•5625 

•454 

.625 

•507 

•75 

.62 

.875 

•731 

z 

.837 

1. 125 

1.065 

1.25 

«-375 

1. 16 

i-S 

1.284 

1.635 

1.389 

«-75 

I.49I 

1.875 

I.6I6 

2 

1. 712 

2.35 

1.962 

a- 5 

3.176 

2.75 

2.426 

3 

2.629 

3*5 

2.879 

3  5 

3-« 

3-75 

3-3»7 

4 

3567 

4-25 

3-798 

4-5 

4.038 

4-75 

4256 

5 

4.48 

525 

4-73 

5  5 

4-953 

5.75 

5-203 

6 

5-423 

DiAMRIB. 

Width. 

Depth. 

Effective 
Area. 

Be«d  and  Nut. 

Head  A  Nat. 
Hexagonal 

HeuL 
Hex. 

Nut. 
Hex. 

Threada. 

Hexagonal. 

Square. 

and 
Square. 

and 
Square. 

and 
Square. 

Sq.Iiw. 

In*. 

Ina. 

Ini. 

In*. 

Ina. 

No. 

.026 

9-16 

23-32 

•5 

•'5  , 

•25 

30 

•045 

ii'»z6 

27-3« 

19-33 

19-64 

.3«25 

18 

.067 

25-33 

31-32 

ii-i6 

11-32 

•375 

16 

•093 

29-32 

I-  3-32 

25-32 

25-64 

•4375 

14 

•125 

I 

1-25 

•875 

•4375 

•5 

13 

.162 

125 

1.625 

31-32 

31-64 

9-16 

13 

.202 

I.  7-32 

1-5 

z.   1-16 

17-32 

.625 

11 

.302 

I.  7-i6 

1-75 

1.25      ^ 

•  1635 

•75 

10 

•4»9 

1.21-32 

2.  1-32 

1.  7-16 

23-32 

.875 

1 

•55 

1-875 

2.  5-16 

1.  5-8 

13-16 

1 

•694 

2.    3-32 

2.  9-16 

X.  13-16 

29-32 

1.125 

7 

.891 

2.    5-16 

3.27-32 

3 

1 

1.25     • 

7 

«-o57 

2.17-32 

3-  3-32 

3.  3-16 

«•  3-32 

'375 

6 

1.294 

2-75 

3- 1 1-32 

2-375 

1.  3-16 

'•5 

6 

1. 515 

2.3>-32 

3.625 

3.  9-16 

1.  9-32 

1.625 

5-5 

1.746 

3-  3-16 

3-875 

2.75 

>.37S 

175 

5 

2.051 

3- »  3-32 

4.  5-32 

3.15-16 

1.15-32 

187s 

5 

2.302 

3.19-32 

4.13-32 

3- "5 

1.  9-16 

2 

45 

3-023 

4-  1-32 

4.i5-'6 

35 

»-75 

2.25 

4.5 

3-7>9 

4-«S-32 

5-15-32 

3.875 

1.15-16 

2.5 

4 

4.622 

4.29-32 

6 

4-25 

2.125 

2.75 

4 

5-428 

5.11-32 

6.17-32 

4-635 

2.  5-16 

3 

3-5 

6.51 

5-25-32 

7.  1-16 

5 

"•5      ^ 

3.25 

3-5 

Z§^7 

6.  7-32 

7.19-32 

5-375 

2.11-16 

3.5 

3-25 

8.641 

6.625 

8.125 

5-75 

2.875 

3-75 

3 

9-99 

7.  1-16 

8.21-32 

6.135 

3.   1-16 

4 

3„ 

11.329 

7.5 

9-  3-16 

6.5 

3-25    ^ 

4.25 

3.87s 

"743 

7. 15-16 

9-25-32 

6.87s 

3.  7-16 

45 

2.75 

14.226 

ia25 

7-25 

3.625 

4.75 

3.625 

15-763 

8.13-16 

10. 25-32 

7.625 

3.i3-«6 

5 

2.5 

17-572 

9-25 

11.   5-16 

8 

4 

5.25 

2-5 

19.267 

9.11-16 

11.37-32 

8.37s 

4.  3-16 

5-5 

2.375 

21.362 

la  3-33 

".375 

8.7s 

4-375  ^ 

5.75 

a-37s 

23.098 

10.17-32 

13.39-33 

9.125 

4.  9-16 

6 

3.35 

For  Rough  Bolts  and  Nuts,  add  .066  to  above  dimensionB,  and  for  other  notes  see 
pp.  156-159. 

Relative    Tenacit^r    of*   WrougHt-Iron    Out   and    'Wire 

M-ails. 

Per  Cent,  of  Cut  and  Wire  Naiit, 


Dimen. 
aiona. 

Spkccb. 
Desiffoa- 
tloo. 

Per 
Cent. 

Dimen- 
alona. 

Ina. 
J.25X4 

Ina. 
1.125X6 

Ordinary. 

47-5 

X.125X4 

Finish. 

72.3 

"•as  X  4 

X.135X4 

Box. 

50.9 

«.2SX4 

2X4 

Floor. 

80 

1.25X4 

DeaignU' 
tlon. 


Box. 

Box. 
Box. 
Box. 


Per 
Cent. 


135.2 

loas 

66.4 

999 


nirer.ilon  of 
Pmetratton. 


•  ■■       a  «■  ->  ■ 


In  Spmce  40  tests  of  cat  nails  averaged  60  per  cent. 

In  Spraee  uid  Pine  combined  the  average  was  73.7  per  oeot 


Taper  porpeudlo^ 

ular  to  grain. 

Taper  parallel  to 

grain. 

In  end. 

I  In    the    three 

\         wayg. 


See  p.  97a 


(fTnk  H.  Burff  CK.) 


9^  COMPBESSION   OF  Al^ 

CoxMipre^^^d   ap.d   CoYnpression   of   ^tzAOspU^rio 

Computations   of  IPlo-^r,    Operation,'  Bflfeot,   l*o-W"er,  etc. 

For  fuller  information,  see  "Compressed  Air,"  l)y  Freclk..C.  Weber,  M.E.,  before 
the  Engineering  Society  of  Columbia  College,  April  22d,  1806  ;  Wm.  L.  Saanders, 
N.  y. ;  also  by  Frank  Richards,  Mera.  A.S.M.E. ;  a  lecture  by  R.  A.  Parke  ;  D.  K. 
Clark'0  Pocket- Book:  $,  treatise  by  W.  C.  Uuwin,  iu  V^ol.  CV.  of  Proceedings  of  In- 
stitution of  0.  E.  of  Great  Britain,  and  a  treatise  of  The  Norwalk  Iron  Works  Co., 
etc. 

Pressure    and    Xetnpeitature* 

Under  constant  pressure  the  volume  of  air  varies  directly  as  the  Absoluts 
temperature.  For  constant  volume  the  pressure  is  in  direct  proportion  to 
an  increase  in  temperature. 

Compression. 

Heat  and  Mechanical  energy  are  mntnally  convertible ;  when,  therefore, 
the  piston  of  an  air-compressing  engine  is  in  operation,  heat  is  evolved 
(theoretically)  in  exact  proportion  to  the  work  performed,  in  the  ratio  of  one 
British  thermal  unit  (B  T  U)  for  every  772*  fu<^  pounds  expended. 

When  atmospheric  air  is  compressed,  the  degree  of  its  comprrasion  may 
be  indicated  by  a  pressure  gauge. 

The  heat  evolved  by  the  compression  of  air  generates  by  expanding  it  an 
increased  resistance,  and  involves  increased  power  to  compress  it.  This 
loss  of  power  consequent  upon  the  expansion  of  tlie  air  by  the  heat  of  com- 
pression is  so  great  that  it  is  necessarily  essayed  to  reduce  the  heat.,  and  a 
cooling  medium  is  resorted  to,  to  abstract  it  in  the  operation  of  compression. 

The  rate  of  increase  of  temperature  of  air  during  compression  is  not  uni- 
form, as  the  temperature  rises  faster  during  the  primitive  stages  of  compres- 
sion tlian  the  later.  Thus,  in  compresshig  from  i  to  2  atmospheres,  the 
increase  of  temperature  will  be  greater  than  in  compressing  from  2  to  3 
atmospheres,  ana  in  like  ratios.  The  rate  of  increase  also  varies  with  the 
initial  temperature,  as  the  higher  it  is  the  greater  will  be  tlie  rate  of  increaie 
at  any  point  of  the  compression.  When  air  at  atmospheric  pressure  and 
0°  is  compressed  to  15  lbs.  gauge,  the  final  temperature  will  be  100^,  or  an 
increase  of  100°.  If  at  60**,  it  will  be  175°,  an  increase  of  xis°,  and  at  90° 
it  will  be  210°,  an  increase  of  130°. 

The  rise  in  temperature  due  to  the  compression  of  atmospheric  air  at  33^, 
when  it  is  reduced  to  one-fourth  its  volume,  is  given  by  Kimball  at  344°. 

TIm  great  reduoti(m  of  the  temperature  of  oompressed  air  when  it  is  dis- 
charged from  the  compressing  cvlinder,  against  a  resistance,  as  the  cylinder 
piston  vf  an  engine,  precludes  the  economicji^l  operation  of  using  it  expan- 
sively alike  to  steam  or  any  similar  vapor.  The  available  energy  of  com- 
pressed air  is  that  which  it  exerts  against  a  resisting  medium,  in  its  increase 
of  volume  by  expansion. 

When  air  is  compressed,  if  it  neither  gains  or  loses  temperature  bjr  com- 
munication with  any  other  body,  the  heat  generated  by  compression,  re- 
maining and  adding  to  it,  the  operation  is  termed  AcUabatic  conrnression. 
When  pressure  is  removed  from  compressed  air  and  it  expands  wiuiout  re- 
ceiving heat  externally,  the  air  is  termed  to  have  expanded  A  diabaiicaUy, 

If 'during  the  compression  of  air,  it  is  maintained  at  a  uniform  tempera- 
ture by  thf  reduction  of  it,  coeval  with  its  generation,  the  compression  is 
termed  MhemcU.  Hence  when  the  air  remains  at  a  uniform  tempera- 
ture throughout  the  operation  of  compression  or  expansion,  it  is  designated 
as  Isothermal, 


■^..^■»^P*"»"~^^~»^*»-^"t»«— »«Wif»*w»WW»»^*i"^W^*«*ii^F^"^^H»^»#** 


*  JoaU't.    L»t«r  •zptriiMati  put  it  at  77^ 


COUPBBHBIOtr  OF   AIB. 


995 


The  specific  heat  of  atmospheric  air  at  constant  pressure  is  .3  377.  hence 
the  unit  of  beat  tiiat  would  raise  the  temperature  of  i  lb.  of  water  i*^  would 
raise  the  temperature  of  x  lb.  of  air  (i  -f-  .2377)  =  4.307^. 

(3.14X  cube  feet  of  air  at  63*^  (table,  p.  521)  weigh  i  lb.,  and  air.  at  60*^ 
com|)ressed  to  half  its  volume  evolves  116^  heat,  and  the  specific  heat  of 
air  under  constant  pressure  is  .3  377,  which  x  x  16  ss:  37.573  heat  unittt,  pro- 
duced by  the  compression  of  i  lb.  or  13. 141  cui)e  feet  of  free  air  into  une-^ 
half  its  volume:   Hence,  27.573  x  778  =  21452  foot  IbH.,  and  as  heat  and 


mechanical  energy  are  held  to  be  convertible  terms, 
duced  or  lost  by  the  compression  of  i  lb«  of  air. 


21452 
33000 


=  ^5  H»  pro- 


"Voluxne,    Adean    Pressure,    and    'Petnp^ratvire   of*    Ooxn- 

pressed    A.ir. 

From  %  to  200  Lbt.  and  from  60°  to  673°. 

Air  assumed  cU  14.7  Ihs.  and  Temperature  60^. 

Final  T«m- 
perator*,* 
Air  not 
Cooled. 


VOUIMB 

09  AiB. 

Prawnro 

CoDsUnt 

Not 

in 

LlM. 

TauipMmtur* 
Iao|o«rui»l. 

Cooiikl. 

A4iabatic 

0 

I 

I 

I 

.9363 

•95 

•      3 

.8803 

.91 

3 

.8305 

.876 

4 

.7861 

.84 

5 

.7462 

.81 

10 

•5953 

.69 

«5 

.495 

.6n6 

30 

.4237 

.543 

35 

.3703 

•494 

30 

.3289 

.464 

35 
40 

.2057 
.2687 

•42 

.393 

45 

.2462 

•37 

50 

.2272 

.35 

55 

60 

.■«io9 
.■96I 

.331 
•3M 

65 

.1844 

.301 

70 

•  1735 

.288 

P 

,1639 

.276 

80 

.1552 

.367 

85 

•»474 

.257 

90 

.1404 

.248 

95 

.1281 

.24 

100 

.232 

»P5 

.1228 

,325 

no 

.1178 

.219 

"5 

."33 

.213 

120 

•  1091 

.207 

135 

.1053 

*203 

130 

.1015 

.197 

'35 

.0981 

.192 
.188 

140 

•095 

>45 
150 

.0921 
.0893 

.184 
.18 

160 

.0841 

.173 

170 

.0796 

.166 

180 

•0755 

.16 

190 

.0718 

.154 

300 

.0685 

.149 

Constant 

Not 

T«fnu«rat«r« 
lautluirinai. 

Cooled. 

Adiabatlc. 

0 

0 

X 

.975 
1.91 

B.78 

8.8 

3-53 

3-67 

4  3 

4-5 

7.63 

8.37 

1033 

>i.5> 

13.63 

«4-4 

«4-59 
"0-34 

17.01 

19.4 

17,93 

31.6 

19.32 

23.66 

20.52 

25- 59 

21.79 

27.39 

23.77 

39.1 1 

33.84 

30-75 

34  77 

31.69 

36 

33-73 

26.65 

35.23 

27.33 

36.6 

28.05 
28.78 

37-94 
39.18 

29-53 

40-4 

3a  07 

41.6 

30w8i 

42.78 

31.39 
3i^98 

43-91 
44.98 

3254 

46.04 

3307 

47.06 

33.57 

48.. 

3405 

49.1 

34-57 

50.02 

35C9 
3548 

5' 

51.89 

36.29 

53-65 

372 

55-39 

3796 

57.01 

38.68 

58.57 

39-42 

60.14 

AlK  PBK  StBOKK. 

During  CoDipreaslon 

only. 

Oonalant 

Not 

T««par»tor« 

CooUmL 

0 

0 

•43 
.95 

:^ 

»-4 

1.41 

t.84 

1.86 

8.32 

3.26 

4»4 

4.26 

5-77 

5.99 

7.2 

7.58 

8.49 

9.05 

9.66 

10-39 

10.72 

11.59 
12.8 

11.7 

12.63 

13-95 

13.48 

»505 

»4-3 

15.98 

15-05 

16.89 

17.88 

15-76 

16.43 

18.74 

17-09 

19-54 

'2  7 

20.5 

18.3 

21.22 

18.87 

33 

'9-4 

38.77 

19.93 

23-43 

20.43 

34.17 

20.9 

2485 

21.  39 

25-54 

21.84 

36.3 

33.26 

2681 

22.69 
23.08 

3742 

28.05 

2341 

2866 

23-97 

29.26 

04.28 

29.82 

24.97 

30.91 

25-71     . 

3«-o3 

86.36    • 

33-04 

27.02 

34- <* 

27.71 

35-02 

600 
88.9 

98 

106 
«45 
178 
807 

234 
25s 

281 

302 
321 

339 
357 
375 
389 

405 
420 

432 

447 

459 
478 

485 
496 

507 
518 

529 
540 

% 

570 
580 

589 
607 
634 

64* 
657 

673 


*  Prodnead  by  oonpraailoB. 


(Framk  HicKardit' 


990 


COKPBB6SION   OF  AIB. 


For  detennination  of  absolute  preesare  add  14.7  lbs.  to  gauge  preasitre. 

Column  3  gives  the  volume  of  air  (initial  =  1),  assuming  that  its  temperatur« 
has  not  risen  during  the  compression,  or  that  if  the  air  has  not  been.wholly  cooled 
during  the  compression,  it  has  been  cooled  to  the  initial  temperature  after  the 
compression.    Or  volume  of  one  cube  foot  of  free  air  at  given  pressure. 

Absolute  isothermal  compression  is  not  attainable,  as  it  is  impracticable  in  the 
compression  of  air,  simultaneously  to  abstract  all  the  heat  evolved  in  the  compres- 
sion. This  column,  however,  does  give  the  volume  of  air  that  will  be  realized,  if  it 
is  transmitted  to  such  a  distance  fFom  the  compressor  or  in  any  manner  that  the 
heat  is  abrtracled  before  it  is  used.  Air  radiates  its  heat  very  rapidly,  and  this 
column  may  be  taken  to  represent  the  volume  of  available  air  after  compression. 

Column  3  gives  the  volume  of  air  at  completion  of  the  compression,  assuming 
that  the  air  has  neither  lost  nor  gained  during  the  compression,  and  that  all  the 
heat  developed  by  the  compression  remains  in  the  air.  The  condition  represented 
by  this  column— adiabatic  compression — is  alike  to  that  of  isothermal  compression, 
never  actually  attained.  In  any  compression,  the  air  will  lose  some  of  its  heat,  and 
consequently  the  air  is  not  as  heated  at  any  period  of  the  compression  to  the  ex- 
tent  that  theory  assigns  to  it.  Physically,  the  theory  is  correct,  but  practically  it 
fails.  The  slower  a  compressor  is  o|)erated,  the  more  readily  will  the  air  radiate 
some  of  its  heat,  and  as  a  result,  the  less  will  be  its  volume  and  ItMs  the  power  r«. 
quired/or  compression. 

Column  4  gives  the  mean  effective  resistance  to  the  piston  of  the  air-comprrasor 
cylinder  in  the  stroke  of  compression,  assuming  that  the  air  throughout  the  stroke 
remains  uniformly  at  its  initial  temperature— isothermal  compression — but  as  the 
air  does  not  remain  ut  constant  temperature  during  compression,  the  results  in  this 

column  are  to  be  essayed  to  be  attained  in  economical  compression. 

• 

Column  5  gives  the  mean  effective  resistance  to  be  overcome  by  the  piston,  as- 
suming there  is  not  any  cooling  of  the  air  during  compression — adiabatic  compres- 
sion— inasmuch  as  there  is  always  some  cooling  of  the  air  during  compression,  the 
actual  mean  effective  result  will  be  somewhat  less  than  that  given  in  the  column. 
For  the.  computation  of  power  required  for  the  operation  of  the  air-compressor 
cylinder,  the  results  given  may  be  taken,  with  a  per  cent,  added  for  f^'iction'"— o  to 
10  per  cent. — and  the  result  will  very  nearly  give  the  power  required  to  o|>erate  the 
compression. 

Column  6  gives  the  mean  effective  resistance  for  the  compression  of  the  stroke 
of  the  piston  in  compressing  air— Isothermally— ft'om  that  of  14.7  lb&  to  any  given 
pressure. 

Tllustration— Assume  an  air-compressing  cylinder  20  ins.  in  diameter  by  3 
feet  stroke  of  piston,  making  75  revolutions  per  minute,  with  an  adiabatic  pressure 

of  75  lbs.  ■     ■ 

30»X.7  854X  35.23  (column  5)  X  75  X  2  X  2-f-33ooo=ioa6 ff. 

Illustration.  —Assume  an  adiabatic  pressure  of  50  lbs.  by  gauge,  the  volume  ot 
air  compressed  and  delivered  will  be  (column  3)  .35  for  each  stroke  of  the  piston  in 
a  cylinder  fbll  of  free  air;  while  for  the  compressing  part  of  the  stroke  i  — 35  =  .65, 

the  mean  resistance  will  be  15.05  lbs.  (column  7).    Thus,  15.05  x  .65-^-50  X  -35  = 
37.28;  corresponding  very  nearly  w^ith  27.39  (column  5)  for  the  whole  stroke. 

Comparing  isothermal  compression  with  adiabatic,  to  50  lbs.  as  above,  in  column 

6  is  13.48  which  X  i—  2272  =  .7  728  (column  2)  +  50  X  •2272  =  21.78  or  21.79,  as 
given  in  column  4. 

Columns  6  and  7  are  useful  in  the  computation  of  power  in  the  first  operation  ot 
oompression,  as  the  fbnction  of  the  first  cylinder  is  that  of  compression  only. 

The  results  given  in  columns  7  and  8  are  elements  of  computation  for  the  IP  of 
the  compressing  engine,  and  a  like  computation  applied  to  the  result  in  the  air 
engine  will  give  the  power  attained  in  the  compression  of  the  air.  Column  7  gives 
also  the  mean  effective  resistance  for  the  compression  of  the  stroke  in  compressing 
air— isothermally— from  a  pressure  of  14.7  lbs.  to  any  given  pressure,  and  column 
8  gives  the  theoretic  temperature  of  the  air  after  compression — adiabatic — to  the 
given  pressure. 

*  In  MOM  operation*  th«  air  will  bacoBio  to  cooled  that  It  will,  by  the  ranltiDK  dacraaie  of  1*41111% 
meat  of  power  0/ operation,  fully  oompeiuale  for  the  friction  of  the  oompreaelng  uiariilne 


COMPRESSION  OF  AIR.  997 

Xo    Compute    IIP    ^w^itH    tlie    SSleznents    of   th.e    Preoed- 

ixkfs    Table. 

Assume  a  cylinder  40  ins.  in  diameter,  with  4  feet  stroke  of  piston,  in  which  air 
is  compressed  by  75  revolutions  at  75  lljs.  pressure  per  sq.  inch.  Area  of  cylinder, 
less  .5  that  of  piston  rod,  1250.  sq.  ins.  and  mean  pressure  per  stroke  of  piston  as 
per  table  (column  5)  35.23. 

Then  1250  X  35- 23  X  75  X  4  X  2-i-33ooo=^8oo.6  IP. 

* 

Efficiency  of  Engine  of  Operation. — The  efficiency  of  an  enpne  is  the  per 
cent,  of  power  develo[>ea  by  it^  tiiat  it  bears  to  that  required  to  compress  the 
air,  the  loss  by  leaks,  friction  in  pipes,  of  parts  and  heated  air  from  the  en- 
gine-room (varying  with  the  weather  and  the  season),  including  that  of  the 
driving  engine. 

Compressed  air  can  be  transmitted  with  great  facility,  provided  the  trans- 
verse area  of  the  conduit  is  pro[)ortioned  to  the  volume  and  pressure  of  the 
flow,  and  the  suitability  of  the  interior  surface  of  it  for  its  transmission. 
Under  such  conditions,  the  volume  of  the  external  flow  or  discharge  of  air 
may  be  computed  by  the  volume  of  the  cylinder  of  the  air  engine  and  the 
number  of  strokes  of  its  piston,  less  the  loss  and  friction  of  the  flow,  which 
may  be  estimated  at  5  i>er  cent. 

Theoretical  EflBciency  of  the  compression  and  delivery  of  airT-7*t=E.  T  and 
t  repraenling  the  abgolute  temperature*  of  the  air  at  iti  irUrance  into  the  operaHng 
cylinder  and  iti  flow  from  the  compressor. 

In  order,  then,  to  increase  the  eflBciency,  the  heat  evolved  during  compression 
of  the  air  must  be  abstracted,  or  by  operating  at  a  lower  pressure. 

Practical  Efficiency  is  the  difference  between  the  iiower  developed  by  the  dis- 
charged air  and  that  expended  in  its  compression,  and  in  operation  at  a  low  speed 
of  compressing  engine  and  under  a  pressure  of  but  ft-om  60  to  75  lbs.  an  efficiency 
of  .9  has  been  attained. 

Spray  ii\jection  of  cold  water  into  a  cylinder  is  more  effective  than  a  water 
Jacket,  and  by  compressing  the  air  In  two  or  more  cylinders,  and  cooling  it  between 
them,  the  work  lost  or  expended  in  the  heating  of  the  air  by  its  compression  is 
much  reduced.  Hence  compound  compression  with  inter-coolers  has  been  intro- 
duced with  advantage.* 

If  air  is  flowing  with  uniformity,  a  like  weight  of  it  flows  through  each  trans- 
verse section  per  section.  Hence,  G  a  V  =  W;  6  representing  weight  of  a  cube  foot 
of  air  in  lbs. ;  a,  area  of  transverse  section  in  sq.  fut ;  V,  velocity  in  feet  per  second  ; 
and  W,  weight  of  air  in  lbs.  per  second. 

Friction  of  Air  in  Long  Pipes. 

V«L  ^      ixooood*Ch      „     V»L         ..  ^  .iooood»CA      _      „ 

=  *'-v/ 1 =  ^' r  =  a»C;  and ==^ =L. 

\  L  loooo  h  "  . 


representing  volume  of  air  delivered  in  cube  feet  per  minute;  L  =  2en^  of  pipe  ir% 
feet ;  d=.  diameter  of  pipe  in  inches  ;  and  C  =  coefficient  cu  per  following  table : 

x"        .35  «.5"  -S'  1*5"     .6513-5"  -78715"     -9348"    1.12512"     1.26)20"     1.4 
1.25".  42  2'^     .56513'^       .73I4         .84  16"    I.        lo"    i.a     |i6"     ..34I24"     1.45 
For  fifth  power  of  d,  see  pp.  303,  304. 

iLLUSTRjiTioy.— It  is  required  to  tnmsmit  1200  cube  feet  of  flree  air  per  minute, 
at  75  lbs.  gauge  pressure,  through  a  pipe  4  ina  in  diameter  and  1000  feet  in  length ; 
what  is  the  additional  pressure  required  to  overcome  the  ftriction  in  the  pipe  ? 

1200  y  1639  (col.  2,  Table,  p.  995)  =  196.68  cube  feet. 

106.682X1000  -.  •       ,-  ,      w%-   X        J*  » 

5r ^ s-  ^  30  Ofg,       {Frank  Richards. ) 

loooo  X  1024  (45)  X  .84      '  ^^ 

Mr.  Unwin  gives  the  following :  .0027  1 -f- 3 -H 10  d  =  C.  d  representing  diameter 
of  pipe  infeety  and  G  a  constant^  due  to  diameter  of  the  pipe. 

For  pipes  less  than  one  foot  in  diameter,  .5.  €  =  .00435,  .656  =  .00393,  and  for 
,98  feet  ^=.00  351. 

*  tSSi.    Norwalk  Iron  Worki  Co.  claim  to  haTe  fint  eonitroctad  Compoond  ComprflMort. 


998 


COMPRESSION  OF  AXR. 


Xo   Compute    Ijosm    of  K^etd    ixi    Floipvr  of  JLiT  in    X^onfc 

Pipes. 

—  C  X  -^  =  A.    V  rqpresenting  velocity  of  air  in  feet  per  second,  C  <u  db&ve,  I 

length,  d  diametn'  of  pipe,  and  k  head,  all  in  feet. 

•  Assaroe  a  pipe  having  a  diameter  of  .5  foot  and  a  length  of  1000  and  the  velocity 
of  the  air  10  feet  ^r  second. 

C==.ot>27  (1  +  —)  =00432.    Then,- X  00433  X =53.71  feet. 

\        10/  04.33  '5 

Assnme  the  transmission  of  laoo  cube  feet  of  free  atmospheric  air  per  minute, 
through  a  pipe  4  inches  in  diameter  and  1000  feet  in  lesKtb,  under  a  gauge  press- 
ure of  73.5  lbs.  persq.  inch;  what  will  be  the  additional  pressure  or  head  required? 

1200  cube  feet  of  free  air-^ -^'^"'"'^'^ 

»4-7 
1034  and  C  for  4  ins.  =  .84. 

3oo»Xiooo  ^     ,^_    ^_j J      y  10  000  X  1024  X. 84  X  4-65 


-=  1200 -4-  6  =  aoo  feet  at  73. 5  lb&    4*  = 


^-— -  =  4.65  lbs.  head,  and  ^  /  ■ 
X.84     *   ^  V 


Then 

looooX  1034  X   ^H       '    ~  '  V  1000 

300  cube  feet. 

If,  however,  this  volume  of  free  air  was, under  a  pressure,  the  volume  of  (V-ee  air 
during  its  transmission  would  be  due  to  the  pressure.    Thus,  if  it  was  58.8  Ibe.  per 

gauge,  the  volume  would  be        t"'4-7  _     j^^^j  ^oo  X  s  =  1000  cube/set, 

14.7 


Loss  of  Pressure  per  Mile  of  Pipe* 

P»   /(i  — ~-  j  =  P.    P*  =  conoentional  presswre*  qa  given  below ;  V  repre- 

tenting  initial  velocity  in  feet  per  second,  d  diameter  qfpipe  in  feet,  and  P  termincA 
pressure  in  lbs.  per  square  inch. 

Assuming  initial  velocities  of  25,  50,  and  100  feet  per  second  and  initial  pressures 
of  50, 100,  and  200  lbs.  absolute. 


Diameter  of  Pipe,  One  Foot. 


Initial 

Velocity. 

V. 


Fe«t. 

50 

100 


T«rniinal  PreMHre=:P. 


P«  =  50.    P<^=s:iOO. 


Lbs. 
48.8 

45-3 
26.9 


LlM. 

97-7 
90.6 

53-8 


P'aiaoo. 


Lba. 

19*4 
181. 2 

Z07.6 


Initial    ^ 
f'reacare 
lost  in 
Oi>«  Mite 


Per  cent. 
2.4 

9-4 
46.2 


Diameter  of  Pipe,  Two  Feet, 


Initial 

Vel<»elty. 

V. 


Terminal  pre«sqre  =  P. 


P»a»SO. 


Feet. 
25 
50 

100 


Lbc 

49-4 

47  7 
40.1 


piss  100. 


Lba. 
98.9 


P>  =  aoo. 

Lbs. 
197.8 
190.8 
160.6 


InUW 

PressufQ 

loetln 

One  MHa. 


Per  cent. 
1.2 
4-6 
19.8 


Illustration.— Assume  initial  pressure  50  lbs.  per  sq.  ipch,  velocity  100  feet  per 
second,  diameter  of  pipe  or  conduit  one  foot. 

50    /  f  I  —  )=  50  X  V  '39  =  26.93  lbs.  terminal  pressure. 

Hence,  if  50  —  26.92  =  23.08,  100  =  46.2  per  cent,  loss  in  mu  mile. 

The  per  cent,  loss  in  one  mile  is  the  same,  whatever  the  initial  pressure,  the 
velocity  increasing  and  the  density  decreaaing  with  the  length  of  the  pipe. 

RestMs  observed  by  Prof  A.  B.  W.  Kennedy,  M.lnsLC.E.,  in  the  operation  qf  a 
plant  of  six  Compound  cylinder  engines,  each  operating  two  compressors,  having  a 
combined  capacity  0/2000  IP. 

For  a  distance  of  3.  i  mUes,  through  a  pipe  11.8  inches  in  diameter. 

At  the  terrainiitioD  of  the  flow  of  air  as  it  was  about  to  enter  the  motor,  it  was 
heated  from  a  coke-burning  stove.  Compression  of  the  air  88.a  <73<5 4-14.7)  lbs. 
per  sq.  in.  at  a  temperature  of  150°  reduced  to  66.15  lba,  and  delivery  of  the  com- 
pression cylinders  348  cube  feet  of  air  at  atmospheric  pressure  and  70^  tempera- 
ture per  IH*  per  hour. 

The  average  loss  was  3  per  cent,  velocity  of  air  1550  feet  per  minute,  with  an 
UP  of  1350. 


COVPaMBIilOlf  0^  AIB. 


999 


Sammary  of  Results  of  two  experiments,  each  with  cold  and  heated  air,  in  the 
Transmission  of  Compressed  air  at  Paris,  1889,  for  a  distance  of  4  miles.  Motor 
]o  H*  and  presBttre  of  air  reduced  to  66  Uw.  One  IH*  gave  .845  liP  in  compressipn, 
or  348  cube  fbet  of  dir  per  hour  H'om  atmospheric  pressure  of  88.8  lbs. 

A  summary  of  other  results  showed  that  a  small  motor  at  a  distance  of  4  miled 
from  the  oomiiressor  iodicatoU  i  H*  for  a  IP  at  the  motor,  or  2.5  IP  When  the  air 
w:is  not  heated  before  entering  the  motor. 

Heating  the  air  caused  a  saving  of  225  cube  feet  of  it  per  IIP,  at  a  cost  of  4  cents 
per  Iff. 

The  exhausted  air  from  a  motor,  when  that  in  the  pipe  is  even  but  slightly  heated, 
will  be  so  much  reduced  in  temperature  as  to  be  available  for  coding  and  even 
freezing  application,  so  great  is  the  effect  of  instantaneous  expansion  of  the  liir 
when  exhausted  that  ice  is  formed  in  the  air-poris  of  the  cylinder,  and  hen<)e  the 
operation  of  a  plant  at  high  pressures  or  above  90  lbs.  is  held  to  be  objectionable.  • 

By  operating  at  full  pressure,  the  high  velocity  of  the  flow  meohanically  restricts 
the  deposit  of  ice  crystals,  but  inasmuch  as  the  useful  effect  decreases  with  an  in 
crease  of  pressure,  it  is  held  by  Robert  Zahner  and  others  that  60  lbs.  is  the  limit 
unless  the  opetating  air  is  reheated. 

When  air  is  o|)erated  expansively  at  hulf-stroke^  the  temperature  falls  160°,  and 
at  one-fourth  stroke  284*^. 

Compressed  air  is  the  only  power  of  general  application,  as  it  can  be  applied, 
extended,  and  distributed  without  restriction  to  distance,  course,  elevation,  and 
depression,  and  under  ground  or  water,  and  under  some  of  these  conditions  the 
only  power  at  all  praotictible  of  operatioh.  Alike  to  water  it  can  be  stored,  which 
condition  is  unattainable  with  steam. 

Uealing  Compressed  A  ir. — When  compressed  air  has  been  transmitted  to 
the  point  wltere  it  is  tO  be  employed^  an  inerea99  of  power  is  attainable  b^ 
the  addition  of  heat  to  it,  befbre  it  is  applied. 

*  Absolute  temperature  is  461.3°.  Hence  when  the  air  is  60^,  the  absolute 
temperature  is  461.2  -{-60  =  521.2,  and  when  it  is  — 30°,  it  is  431.2°  abso- 
lute. 

Loss  of  JEfficienqf.    IniticU  TempetaMirt  of  Air  62°. 


PraMar*. 


!  FinAl  Tefh- 
perature. 


Lb«. 
29.4 

44- « 

58.8 


Degrees. 
178 
258 
321 


Eflleiency. 
Rednced.         Lom  of. 


Ptor  cent. 

82 

73 

67 


Per  cent. 
18 
27 
33 


Preuure. 


Lbe. 
73  5 

'47 


Finnt  Tem- 
perature. 


Degrees. 
373 
559 


Efflciencjrt 


Redneed. 


Per  cent. 
63 
5' 


Jjowof. 


Pel-  cent 
37 
49 


Assuming  eflBciency  of  Compression  and  also  that  of  the  Engihe  at  80  per  cent. 

the  resultatit  efficiency  of  the  combination  at  147  lbs.  pressure  = -——?  X  51  = 

•  100 

32  6  per  cent.    At  44.  i  lbs.  thd  efflclefifcy  ^  -= x  82  =t  54.  s  ptr  dmt. 

««>  (D.  K.  Clark.) 

Air  expands  at  constant  presBure  troxa  32°  to  2i3<^  .00s  036  per  degree  of  tem- 
perature. 

Ififfloiexioy   or 'Cooling. 

Cooling  of  compressed  air  effects  a  saving  of  power  required  for  its  compreission, 
an^l  aids  in  the  lubriuation  of  the  piston.  It  is  most  effective  at  low  pl-essures. 
Thus  at  15  IbA  pressure  the  temperature  consequent  upon  compression  is  raised 
from  60°  to  177O  and  from  75°  to  90*',  but  39°. 

When  air  is  heated  by  compression  and  water  is  introduced  it  becomes  saturated, 
and  when  after  perfonning  itswork  it  is  exhausted  into  the  open  air,  it  expands  so 
rapidly  that  its  temperature  is  frequently  reduced  below  zero,  and,  as  a  result,  the 
moisture  in  the  air  gravitates  as  ice  in  the  exhaust  passage  of  the  engine,  and  its 
capacity  is  choked  and  even  closed.  Rence  It  IB  imperative  that  the  air  of  com* 
prewiOB  should  be  maintained  as  dry  as  practicable. 


lOOO 


COMPBXSSION   OlP  AIB. 


A.ir    Receivers. 

The  operation  of  a  Receiver,  if  of  safflcieat  volume,  is  to  reduce  the  effect  of  the 
pulsations  consequent  upon  the  stroke  of  the  compressor,  for  without  it  the  press, 
ure  of  the  air  at  its  delivery  from  the  compressor  to  a  pipe  would  be -momentarily 
in  excess  of  the  average  pressure  ot  operation.  This  efl*ect  may  be  reduced  by  in- 
creasing the  length  of  the  pipe,  also  by  the  attachment  of  a  second  Receiver  at  the 
termination  of  a  long  pipe. 

As  the  presence  of  a  Receiver -checks  the  flow  of  the  compressed  air,  some  of  the 
water  which  is  in  the  air,  which  otherwise  would  be  borne  with  the  current,  is 
precipitated. 

Kflloienoy    of*  OompreaaecL    .A.ir    Kzigriues. 

At  the  ordinary  pressure  of  60  lbs.  per  sq.  inch,  the  decrease  in  resistance  effbcted 
by  the  cooling  of  the  air  is  held  to  be  equal  to  the  friction  of  the  compressor.  This 
effect  is  greater  with  high  than  low  temperatures  of  the  air,  in  consequence  of  the 
higher  temperature  at  the  higher  pressures  of  the  air. 

AdiabcUic  Expanrion, 

The  more  air  is  in  compression  and  the  friction  of  its  passage  in  the  pipe  in- 
creased, the  efficiency  of  compression  is  increased. 

The  following  table  gives  the  Lowest  Pressures  which  should  be  operated  in  the 
Compressor,  with  varying  amounts  of  friction  in  the  pipe: 

^^ 


u 

if 

>l 

fata 

^1 

SI 

0 

ll 
0. 

el 
w  • 

P'rct. 
55-7 
53-9 

Lbs. 
ao.5 

235 

•s 

Lbs. 

26.4 

29.4 

Lht. 

It 

LbB. 

20.5 
29.4 

P'rct. 
70.9 

64-5 

Lb*. 

8.8 

11.7 

Lb*. 
38.2 

47 

P»rct. 
60.6 

57-9 

Lbs. 
17.6 

Lbi. 
52.8 
61.7 

Lbs. 

705 
76.4 

P'rct. 
52-5 

513 

Lbs. 
82.3 
88.2 

P'rct. 
50.3 

49 


Operation,    and 


M!ean    XCesnlte    of*  a    Hardie 
Rome,  N.  Y.,  180C 


lifotor    at 


Elements. 


Pressure  iiersq.  inch. 

Distance  run 

Temperature   of  air 

entering  heater... 
Temperature    of   air 

leaving  heater.... 
Temperature    of  air 

at  exhaust 

Hea*t   absorbed    in 

heater 


One 

Run. 


1.41 

358 

65.2O 
24a  3O 

130-7° 
175.1° 


Mean  of 

Screw. 


1 01  lbs. 
a.  61  miles, 

68.2° 

219.50 

X23.5O 

137.1° 


Elemento. 


Difference  in  tem- 
perature in  heater 
at  start  and  fin« 
ish 

Iff 

Water  supplied. .... 

Air  per  IH*  per  min- 
ute  

Power  from  heater.. 


One 
Ran. 


49" 
12.45 

29.37 

6 
43.3 


Mauof 

Screw. 


29.80 

9-47 
21.46  lbs, 

6.$  cube  ft. 
4o.ipercu>t 


The  power  obtained  fk-om  the  Reheater  was  about  45  per  cent, 

{Frederick  C.  Weber.) 

Fo-^ver    H.eq.u.ired    to    Compress    A.ir   at    tlie    XJnifbrm 

Temperature    of  62". 


Pressure 

per 
Sq.  Inch. 


Lbe. 
30 

45 
60 

75 

90 

105 


HP  per 
Cabe  foot 
of  Com- 
pressed Air 

No. 

.089 

.211 

.356 
.5>6 
.69 
.874 


Volume  of 
Compres'd 

Air  per 
mtn.perIP 


Cube  feet. 
11.25 

4-73 
2.88 

X.94 

1.45 
1. 14 


Pressure 

per 
Sq.  Inch. 


IP  per 
Cube  foot 
of  Com- 
pressed Air 


Lbs. 
120 

135 
X50 
165 
i8a 

»95 


No. 

1.07 

1.27 

Z.48 

Z.69 

1. 91 

a.  14 


Volnme  of 
Compres'd 

Air  per 
min.perH* 


Cube  feet. 

.938 
.788 

.667 

•59' 
.523 
.468 


Pfeerare 

per 
Sq. Inch. 


Lbs. 
SIC 

225 
240 

955 
270 
300 


IP  per 

Cube  foot 

of  Com- 

preseedAir 


No. 

a.37 
a.  61 

a.  84 

3.09 

3.34 
3.84 


Volnme  of 
Compres'd 

Air  por 
min.perH? 


Cabe  feet. 
.4aa 

•384 

.35a 

•3«4 

•3 

.a6 


At  the  Mont  Cents  tunnel,  64  cube  feet  of  compressed  ftir  per  minute  through «  eMt>Iroit  pipe  7.695 
Ins.  in  diameter,  5325  feet  in  len|^h,  and  under  a  pressure  of  838  lbs. :  the  loss  of  the  head  includiaf 
leaks  and  fHctiou  was  bat  3.5  per  cent.,  and  in  a  length  of  pipe  of  20000  feet  the  loss  was  but  5  per  cent 
of  the  initial  preseore. 

{D.  K.  Clark.) 


COMPBESSION   OF   AlB, 


lOOl 


UI 


"t^ 


^ 


R'    00 

i?^ 

t* 

§ 

5 

«U1 

90 

IT 

Q 

o 

w*:* 

00 

o« 

CO 


5    tt 


o 
0 


s 

oa 

i 

I 


Gauge  Prew- 

ure  at  eii- 
tnnce  to  the 
Pipe.  . 

•s)  "J  VI  vj  .sa 

V4    00  p0^p^O 
i>.          (>»»    00 

Length  of 
Pipe  fn  Feet. 

Diameter  of 
Pipe  in  Ins. 

00"sl    Ox*-    M 

'S 

UI  UI  >>  W    M 
^    H    bvM  ik 

M 

8 

M    M    M    M 

pop   00>^  U) 
M  '-J          M    0\ 

M 

S 

M 

M     M 

M   M  \0  >4  OJ 

1 

UI 

CO    M    M    M 

i 

M     M     M     M 

M    pOM<Sw 

t 

UI  .^  M    M   i-i 

M 
Ui 
0 

M     ' 

CO    M    M    M 
M    00>K    C0\O 
00  OOU)  OJ    M 

•            a            •            •            ■ 

0\0\vO   ►«  vj 

? 

UI 

• 

Oaage  Prea»> 

are  at  en- 
trance to  the 
Pipe 

*4  >J  ^  »J  ^ 

UI  yi  UI  ui  p\ 
*^  b\boM 

Length  of 
Pipe  m  Feet. 

Diameter  of 
Pipe  in  Ina. 

u!  w  »8\w 

UI        '^OJ 

"S 

00*4  <^  V]  >4 

M    pOp^Ul    M 

<*<  Ul>b    M  UI 

M 

8 

OJO»   U    M    M 

M  ov5  00^ 

M 

8 

M 

M     M     M     M     M 

O0>«  ^    Q\UI 

rf-  P  p^po 

UI  M  9\o^<>a 

1 

ijx 

>.  >  OI  OJ  OJ 

M  0\o  ooo« 

N|    H    M  OJ  UI 

^bik  oo«b  bv 

§ 

U   U    M    M    M 

O^Ui  4^  4k  o* 
*.+.  pooJ  « 

UI       o\     >■ 

•§ 

"^   0\0>OhO» 
M  oj>p  .^  0> 
b^boM  UI  00 

"8 

t» 

>•  >•  >-  >.  OJ 
-^<Um   OB 

r 

UI 

Is 


B 


ft 
»i 

0 
9 

0 

H) 
<♦ 

9 
9 


Gauge  PrsM. 

are  at  en- 
trance to  the 
Pipe. 


00  00  00 
M    M     H 


?r 


VI    OvUl  4k.    M 

00  0\  M    H  OJ 
.      •      •      .      • 

M   Ul  UI     M  VI 


Ul  >.  OJ    M    M 
Ui>4  v|\0    p\ 

M  M  OO 


OJ 
M 


M    00O\4> 
M    OOOOP 

4>  VI  VI   »« 


SO  VI   0\*-   K 
OJ  <p   M    00  00 

i-  C\   00  bv4k 


9   O 


•s| 
^4 


UI 

O 


8 


Ol 


M    M    M    M 
Ui   w    O^OJ  v| 
O  OJ  00  O   o« 


4i>   N>0  ^  4k 
Ui  OJ  VI  t^^O 

M  Ul  UI  Ul 


Ui  4»  OJ   M   M 
OJ  Ui  Owl   On 
VI  V|    H  ^  OJ 


I 


i 


OJ    »    H    M 
M    0«  M    M  UI 


O0v»Ui  ^   B 
QkOJ    OOUl    Ov 
>4    COM    M  OJ 


UI  ^  O)  M  M 
O  M  OJ  0«Ul 
OJ    OOOOM  OJ 


OJ 


w  r 


N  Q  OOOVOJ 
0«*^  .K  UI  00 
M  .^.  v|    OSOJ 


^ 


OO'i  0»4k   M 
O   0>  Q   0*>J 


UI 


OOUl   H>6  UI 
^    QkOJ  Ui  UI 

O  OvOwi  00 


M  ^  V4    OtOJ 

ONOomo  ui 

M\C    QUI    M 


-M  \0  UI    M 

00-^  OJ  ~ 
Ov  0\Ui 


^2' 

^ 


VI 


<4J 


»>  O  00  0«OJ 
4k  0\OJ  Ol  «« 
vO  0J\0   O  >0 


OJ  M   M   M 

H  QOtt  <^' 

^0  O  M  M  ' 

N  M    O    M  ' 


wm    9m  wm 

VI  UI  W«0  UI 

«0  OJ  O  OJ  ^ 

<0  M  OOOvOv 


CO 


00 


i002 


COMPRESSION  OP   AIR. 


Voluzn«    of    f*ree    .A.ir    in    Ctil^e     P^eet    Requiped     in. 

IVfotor   per    Ilf    per    ]\£iiiu.te.* 

Without  HeheaHng, 
Gaage  Pressure  in  Pounds  at  60®. 

20.3 
16. 1 

«5.« 

135 
12.9 

>3-4 

To  these  resqlts  is  to  be  added  the  per  cent,  of  clearaoce  as  determined  in  each 
Quse. 

If  the  air  is  reheated,  the  volame  in  the  table  will  be  decreased,  depending  upon 
the  temperature  of  the  air  at  admission,  and  it  Is  proportional  to  T-r  T',  T  r^tre- 
tenting  absolut«  temperature  at  6o<3,  and  T'  460 -f  temperaiure  of  air  at  a4misaion  to 
motor, 

HeDce,  if  the  air  is  reheated  to  300^^,  the  volume  in  the  table  Is  to  be  maltiplied  by 

460  +  60  ^5ao_  gg 
460 -|- 300      760 

To  Aicertain  the  Eeonomieal  point  of  Cutoff  far  the  Gauge  Preuwres  in  the  l\ibU. 

Avi  inspection  of  it  will  show.    Thus,  at  60  lbs.  the  least  volume  of  f^ee  air  per 


Point 

of 
Cat-off. 

«5 

30 

40 

X 

31-2 

233 

21.3 

U 

25.6 
24.8 

J7-85 

16.2 

.5 

25.8 

16.4 

14.5 

33 
•25 

37 

»7S 
2a  6 

152 

15.6 

60 

70 

80 

90 

zoo 

no 

"5 

150 

19.4 

18.8 

18.42 

18. 1 

.7.8 

17.63 

17.4 

17  05 

1547 

15 

14.6 

14-35 

14-15 

13- 9« 

13-78 

13-5 

14-5 

14.2 

13-75 

13-47 

13-28 

13.08 

12.9 

13.6 

X3-8 

12.3 

II. Q3 
10.8 

11.7 

11.48 

"-3 

ll.i 

10.85 

U.85 

11.26 

10.5 

10.31 

10.  Q2 

9.78 

9^5 

«3-3 

11.4 

10.72 

10.31 

10 

9-75 

9.42 

9.1 

TIP  ip  at  .33  cut-off,  and  at  80  lbs.  at  .35. 


{Frederick  O.  Weber.) 


X^oes  oi*Pre«sure  by  F'riotion  of  Compressed  A.ir  in  Pipes, 

In  Pouadt  per  Square  Inch  for  1000  Feet  of  Pipe, 

Volume  of  Free  Air,  Compressed  to  a  Gauge  Pressure  of  60  lbs.  per  Square  Inch, 

Delivered  per  H inuta 


Diam. 
of  Pip*. 

50 

75 

zoo 

»25 

150 

aoo 

«S0 

300 

400 

600 

IlM. 

Lbs. 

Lta. 

Lta. 

Llw. 

Lbs. 

Lb«. 

Lb*. 

Lb«. 

Lbi. 

Lbs. 

X 

10.4 

— 

— 

— . 

— 

— 

— 

— 

— 

— 

1.25 

a. 63 

5.9 

— 

— 

— 

-^ 

.^^ 

— 

-— 

— 

«-5 

X.22 

2.7s 

4-59 

7^65 

If 

— 

— 

— 

—   - 

— 

» 

•35 

•79 

l.4« 

2.2 

3^i7 

5-64 

8.78 

— 

^ 

— 

».5 

•'4 

•32 

.57 

•9 

1.29 

^•3« 

3.58 

5.18 

9. a 

— 

3 

.    .11 

.2 

•31 

•44 

•75 

1.33 

1.77 

3.«4 

7.0s 

3-5 

— 

— 

— 

•15 

.21 

.38 

•59 

•85 

m: 

3.4 

4 

— 

— 

— 

— • 



.8 

■3« 

•45 

1. 81 

5 

— 

— 

— 

— 



— 

.1 

•15 

.a6 

•59 

Diam. 
•fPipe. 


800 


Lbs. 

6.03 

3  22 

1.04 

•41 
.z 


1000 


Ins. 

3-5 
4 
5 
6 
8 
10 

13 

•  Copyright«d. 


Lb«. 

5.02 

1.63 

.64 

.16 


Zmbe  FtH 

• 

I90O 

1500 

z8oo 

2000 

3500 

3000 

4000 

5000 

Lb*. 

Lba. 

Lbs. 

LU.  . 

Lbt. 

Lb«. 

Lba. 

Lb*. 

7-23 

"•3 

_ 

^.m 

— 

_ 

_« 

.^ 

2.3s 

•93 
.23 

3.66 

1.46 

•37 

.13 

5.28 
2.09 

•53 
•>7 

6-5 

.31 

XO.3 
4.06 

I.03 

•33 
•«3 

sTsi  . 

1.47 

•47 
.19 

10.3 
3.61 
.84 
•34 

4T08 
1-3 
•53 

[Band  DfiUCo.,  F.  A.  Halsey.) 


COHFRESBIOM   OF  AJB. 
j31ni«naloiiH  and  Klemeuta  of  A.ir  C 

Operuled  bf  SItam, 


i.,. 


t^ 

BlrolH 

Si 

ch.,^^. 

su™. 

E^. 

"r 

"w«,. 

. 

'" 

» 

s 

If 

■••. 

lu 

!" 

** 

"•jg 

li 

JO 

.6 

1 

1 

i6s9 

1 

-* 

1 

LIS 

.i 

1   CoiBpp***    One   Cubfl    I''oot 


STTSK." 

S'Zt. 

p«.». 

T3. 

air.' 

C«Hoi 

iw..™. 

■» 

033' 

::;i; 

X' 

£ 

" 

X 

Xi 

.U99 

-■4a5 

70 

l« 

" 

■3;; 

1^37 

:S 


Mothn  or  the 


■  Mj 


L    Points   of  flzpiuiBi 


rtcn  Mr  nwnire  i>  £dii  ttox  Almniptert  U  U  Oivm  A 


i 

JZ 

T„r, 

^ 

""='- 

~ 

;i;r 

i 

°tJ* 

■? 

1 

is 

Is 

°% 

11 

Sii 

4..6fl 

9' 

5 

1004 


COkPRSB^lOK   OF  AIR. 


Heat    Produoed   lay   Coxnoresuioxl   of  I>ry   ^ir. 


Witiunu  vooting. 


Preeenre 
aboTe 

Atmoe- 
pliere. 


Lbe. 
o 

«-47 
367 

7-35 
II. II 

M7 


Volame. 


Cube  feet. 
I. 

.9346 
.8536 

•7501 
.6724 
.6117 


Teinpera 
ture  of 
the  Air 


O 

60 

74.6 

94.8 
124.9 
i5».6 
175-8 


Preeenre 

above 

Atmoa- 

phere. 


Lbe. 

22 

29.4 

367 

44- « 
58.8 

73  5 


1  Tempera- 

Voinme. 

ture  of 
\  the  Air. 

cane  fMC. 

0 

.5221 

218.3 

.4588 

255.x 

•4»»3 

287.8 

.3741 

3«7-4 

.3194 

369.4 

.2806 

414.5 

Preeenre 

above 
Atmoe- 
pbere. 

Volnme. 

Temper* 

tnreof 
the  Air. 

Lbs. 

Cnbe  feet. 

0 

88.2 
102.9 

.2516 
.2288 

454-3 
490.6 

Z17.6 

.2105 

5237 

132.3 
205.8 

•1953 
•M65 

554 
681 

2793 

•«i95 

781 

The  presence  of  moisture  will  increase  these  resulte  as  it  increases  both  the 
specific  heat  and  the  heat-conductive  caoacity  of  the  air.  ( IT.  L.  Saunders. ) 

lOffloienosr  of*  an  ISxi£:ine.— With  perfect  expansion,  without  the  air 
receiving  any  increase  of  temperature,  the  efficiency  at  pressures  above  the  at- 
mosphere and  friction  in  pipes  are  estimated  as  follows  : 


Friction 
cetiinnted. 

U-7 

39.4 

Lbe. 

5.1 
>4  7 

Per  cent 
70^44 
57.14 

Per  cent. 
68.81 
64.49 
48.53 

Per  Cent. 


44-X 


Per  cent. 
64.87 
62.71 
55-13 


58.8 


Per  cent. 
61.48 

60wI2 

55-64 


73.5 


Per  cent. 
58.62 

57-73 
54-74 


88.3 


Per  cent. 
66.23 

56.59 
53-44 


As  firiction  increases,  the  most  efficient  and  economical  pressures  increase. 

Lowest  Pressures  aJt  Compression. 


Friction. 

Compres- 
sion. 

EUBoIency. 

Friction. 

Lbe. 

si 

8.8 

Lbe. 
20.5 

38!  2 

Per  cent. 
7a  92 

Lbs. 
11.7 

17.6 

Compree- 
■ion. 

£fllciency. 

Friction. 

Comprec- 
•ion.  . 

Efficiency. 

Lbe. 

52.8 
61.7 

Per  cent. 
57.87 
55-73 
53-98 

Lbe. 
20.5 

26.4 

LU. 
70.5 

82.3 

Per  cent. 
52.52 
51.26 
50.17 

13.134  cube  feet  of  air  at  62*^  (table,  p.  521)  weigh  i  lb.,  and  air  at  60*^  compressed 
to  half  its  volume  evolves  ii6<^  heat,  and  as  the  specific  beat  of  air  under  constant 
pressure  is  .2377,  which  x  116  =  27.573  hecU  units,  produced  by  the  compression  of 
I  lb.  or  13.134  cube  feetof  fVee  air  into  one-half  its  volume  :  Hence,  27.573  X  778  == 
21452  foot-ibe.,  and  as  heat  and  mechanical  energy  are  held  to  be  convertible 

terms,  ^li^  =s  .65  IP  produced  or  lost  by  lbe  compression  of  i  tt>.  of  air.    Inas- 
33000 

much,  then,  as  the  compression  of  air  develops  heat,  and  if  the  temperature  of  the 
compressed  air  is  reduced  to  that  of  the  atmosphere  from  which  it  is  drawn  before 
being  used,  the  mechanical  efl*ect  of  this  difference  in  heat  is  work  lost. 

Work:    I^ost   "by    Heat   of*  Compression. 

Air  assumed  to  be  cooled  to  temperature  of  atmosphere  between  stages  of  com- 
pression and  without  effect  of  Jacket  cooling. 

Second 
Staff*. 


Gauge 

First 

Second 

Third 

Fourth 

Preeenre. 

Stase. 

Stage. 

Stage. 

Stage. 

Lbe. 

Per  cent. 

Per  cent. 

Per  cent. 

Per  cwit. 

60 

23 

11.8 

4.45 

80 

25-3 

13. 1 

— 

4.8 

xoo 

27.6 

14.6 

— 

8.27 

200 

34-4 

18.9 

— 

400 

40.7 

22.9 

— 

II 

600 

44.6 

24.0 

13  1 

Oange 
Pressure. 

First 
Stage. 

Lbs. 
800 
1000 

Per  cent. 

47-4 
49-2 

1200 

51.6 

1400 
1600 
1800 

52 

53-3 

54 

Per  cent, 
26.3 
28.x 
28.6 
29.4 
30 
30.6 

The  power  .of  compressing  at  high  pressure  is  not  proportional  to  the  pressure. 

(Frederick  C.  Weber.) 


Third 
Stage. 

Fourth 

SUfB. 

Per  cent. 

Per  cent. 

— 

M-3 

— 

^^'i 

— 

14.8 

— 

15 

__ 

x6.x 

COMPRESSION    OF   AIR. 


1005 


XjOSs    of*   Pressure    throiagh.    IT'riotion.    of  ^ir    in 

l-'ipes. 


Per  100  Feet  of  Length  (Imtial  Gauge 

Pressure  80  Lbs.  at 

Receiver) 

• 

Eqaivalent 

Volwne  of 

DiAURBB  or  Pipe. 

Free  Air 

Diacbargad. 

I 

I-25 

«.s 

s 
Ins. 

2.3 

3 

4 

5 

Ins. 

6 
Ins. 

7 

8 

10 

1   " 

M 

Per  minute. 

Ins. 

Ins. 

Ins. 

Ins. 

Ins. 

Ins. 

Ins. 

Ins. 

Ins. 

Ids. 

Ins. 

35 

.24 

.12 

___ 

— 

— 

— 

— 

— 

— 

— 

— 

— 

— 

— 

50 

I 

•45 

.18 

— 

— 

— 

— 

— 

— 

— 

— 

— 

— 

~- 

75 

2.4 

I 

•4 

— 

— 

— 

— 

— 

— 

— 

— 

— 

— 

100 

— 

1-7 

•7 

•'3 

— 

— 

— 

— 

— 

— 

— 

— 

— 

200 

—   ,   — 

3 

•5 

•175 

— 

— 

— 

— 

— 

— 

— 

— 

— . 

300 

— 

— 

— 

t.2 

.3a 

•'5 

— 

— 

— 

— 

— 

— 

— 

— 

400 

— 

— 

— 

2. IS 

•67 

.27 

.06 

— 

— 

— 

— 

— 

— 

— 

500 

— 

— 

— 

3-3 

I.I 

•4 

.1 

.03 

.012 

— 

— 

— 

— 

— 

750 

— 

— 

— 

2-5 

.:r 

.22 

.07 

.03 

•013 

~ 

.— 

— 

— 

1000 

— 

— 

— 

— 

— 

•4 

.12 

.05 

.023 

.012 

— 

— 

— 

X500 

— 

— 

— 

— 

— 

4 

X 

•3 

.12 

.052 

.027 

— 

— 

— 

2000 

— 

-— 

— 

— 

— 

: — 

i.6q 

.5 

.a 

"95 

.048 

.017 

_^ 

— 

3000 

— 

— 

— 

— 

— 

— 

3.70 

I  .2 

^5 

.22 

•"5 

.036 

.015 

— 

4000 

— 

-  — 

— 

— 

— 

— 

— 

2 

.8 

•39 

.2 

.07 

.026 

.012 

5000 

— 

— 

— 

— 

— 

— 

— 

— 

»  3 

.6 

•3 

.1 

.041 

.018 

6cxx) 

— 

— 

— 

— 

— 

— 

— 

— 

1.9 

•85 

M 

•15 

.06 

.028 

7500 

— 

— 

— 

— 

— 

— 

— 



3 

1-4 

.22 

.09     .04 

xoooo 

— 

1 

— 

^— 

— 

— 

— 

— . 

2.5 

»-25 

•4 

•»7 

•075 

(Frederick  C.  Weber.) 

Illustration. —Ad  air  compressor  fYtniishes  500  cube  feet  of  free  air  per  tninnte 
at  a  pressure  of  80  lbs.  per  square  inch  in  the  receiver.  If  this  air  is  used  at  the 
end  of  a  3-inch  pipe  1000  feet  in  length,  the  loss  due  to  fViction  will  be  10  X  .4  =  4 
Iba  If  a  like  volume  of  air  were  supplied  by  the  same  compressor  at  a  like  press- 
ure and  passed  through  a  5-iDch  pipe  1000  feet  in  length,  the  loss  would  be  only 
.03  X  10  =  .3  lbs. ;  thus  illustrating  the  iipportance  of  using  pipes  of  large  diameter. 

Strictly,  the  loss  of  pressure  is  not  directly  proportional  to  the  length  of  the  pipe, 
but  for  all  practical  purposes  it  may  be  taken. 

Elbows  and  irregularities  in  pipes  increase  the  friction  in  excess  of  the  figures 
here  given. 

The  results  in  the  table  represent  the  loss  by  friction  in  the  pipes.  There  is  also 
a  slight  loss  due  to  friction  of  the  air  with  itself  at  the  mouth  of  a  pipe  when  it 
leaves  the  Receiver. 

Leakage, 

All  leaks  in  compressors  or  valves,  air  receivejre  or  pipes,  should  be  -strictly 
guarded  against  for  economy,  as  they  are  Hilly  as  expensive  as  steam  leaks.  When 
air,  at  60  lbs.  pressure,  issues  from  a  leaky  Joint  in  a  pipe  at  a  velocity  of  over  500 
feet  per  second  the  waste  of  it  will  become  apparent. 


M-eein.  Kffeotive  Pressures  in  the  Compressing  and 
Delivery  of*  Free  A.ir  to  a  Ghiven  G-auge  Pressure 
in    a    Single    Cylinder. 

Oaoge 
Press- 
are. 


Lbs. 
I 

3 

3 

4 

5 
xo 


Compression.    { 

Oange 

Adia- 

Isotber- 

Press- 

Iwtie. 

mal. 

are. 

Lbs. 

Lbs. 

Lbe. 

■^ 

•43 

15 

•95 

29 

1.41 

'•4 

25 

1.86 

X.84 

30 

2.26 

2.22 

35 

4.36 

4-14 

40 

Compression.    | 

Oange 

Compreesion.   { 

Gannre 

Cbiopressloii. 

Adia- 

Isother- 

Press* 

Adia. 

Isotber- 

Press- 

Adia-   Isothtr- 

batic. 

mal. 

ftre. 

batic. 

inal. 

ure. 

batic. 

mal. 

Lbe. 

Lbs. 

Lbe. 

Lbs. 

Lbe. 

Lba. 

Lbs. 

Lbs. 

r?? 

5-77 

45 

«395 

12.62 

J^ 

19-54 

17.09 

Z' 

50 

X5.05 

X3-48 

2a  05 

17.7 

905 

8.49 

55 

15.98 

M3 

85 

21.22 

i«-3 

10.39 

9.66 

60 

16.89 

1505 
15-76 

90 

22 

18.87 

".59 

10.72 

65 

17.88 

95 

22.77 

19.4 

12.8 

XI.7 

70 

18.74 

16.43 

xoo 

23-43 

1992 

{Frank  Bichards.) 


1006  0OA£PBSSSIOK   OF   AIB. 

To  Goxnp-ate   tb.e   Steazxi  Pressure  and.  foixit  of  Cutting 
off* -for   &    O-iven    i\.ir    Compressor. 

Assume  steam  and  air  cylinders  each  22  X  24  ins.  and  temperatare  of  initial  air 
62°. 

Area :  — g — -  =  5. 26  cube  feet  per  stroke. 

1720 

= .  4  —  26<. ,  and,  if  compressed  adiabaticaUy,  68  755  (see  ante)  X  <  4  =  37  592 


13.141 
\HU-lbs. 
lbs.  resistance  to  be  overcome  by  steam  pressure. 
Hence,    „       ^'   ^=41.2  lbs.,  which  correspon 

380.13  X  2t 

are  of  80  lbs.  gauge  pressure.  (F.  C.  ITefter,  Jf.  E. ) 


Jbot-lbs.,  and  assuming  friction  of  operation  at  la  per  cent.     •  ^     ==31 352  foot- 

.88 

B  overcome  by  steam  pressure. 
Hence,— —^^-^^^—-=41.2  lbs.,  which  corresponds  with  .2  cut-off  at  initial  press- 


To  Compute  Volume  of  One  Pound  of  Dry  Air  in  Culje 
Keet  and   Weight  of  One  Cube  IToot  of  it  in  Pounds, 

At  Various  Temperatures  and  at  Atmospheric  Pressure, 

T  -\-  T-T-  39. 819  =  volume.    T  representing  temperature  of  air  and  T'  absahUe  tern- 
pertUure  in  degrees. 

DrT  =  620.     62O-|-46i0-J-39.8i9  =  i3.i34Cu6e/e«t 
Inversely.    39. 819  -»-  630+4610  =  .  076  097  lbs. 

NoT«.-~For  Table  of  Voliimes,  Preuures,  and  Density  at  62*  =  i,  and  for  Compatation  of  Volnme, 
Weight,  Preasure,  Density,  and  Elasticity  at  other  Temperatoree,  see  pp^  531, 533. 

When  the  Pressure  and  Temperature  of  Air  both  vary. 


2. 7093  X  P  -7-  T  =  cube  feet  in  lbs.    T  representing  absolute  temperature  and  press- 
ure in  lbs.  per  sq.  inch, 

Illustsation — What  is  the  weight  of  a  cube  foot  of  air  at  60  Ib&  pressure  and 
ioqO*  

3.7093  X  6o+i4.7-!-46iO-|-iooO  =  .36o7  lbs. 

.  .        4610-f  100O-J-60+14.7  , 

Inversely. ■ ' — ^^=3.771  volume. 

3.7093 


Comparison    of   Singrle    and    Compound    Compression. 

Assume  areas  of  cylinders  for  Single  and  Compound  compression  respectively 
100  and  33.33  sq.  ins. ,  and  pressure  of  compression  100  lbs.  per  sq.  inch.  Resistance 
to  cylinder  of  single  compression  =  100  x  100  =  loooo  lbs.,  and  to  second  cylinder 
of  compound  compression  =  33.33  X  loo  =  3333  lbs. 

The  resistance  upon  the  large  piston  is  its  area  multiplied  by  the  pressure  re- 
quired to  force  the  air  from  its  cylinder  into  the  less.  In  this  case  ft  is  30  lbs.  per 
sq.  inch;  but  inasmuch  as  this  30  lbs.  presses  upon  the  rev<^rsfl  side  of  the  less  pis- 
ton, and  thus  assists  the  operation,  the  net  reeigtance  to  forcing  the  air  fh>m  the 
large  into  the  less  cylinder  is  equal  to  the  difference  of  the  area  of  the  two  jiistons, 
X  the  SQ  lb&  pressure,  =66.66  X  30  =  2000  lbs. 

Hence,  the  resistance  to  forcing  the  air  from  the  larger  into  the  less  cylinder  is 
2000  lbs.,  and  the  resistance  in  the  small  cylinder  to  the  compression  of  it  to  100 
lbs.  =si  3333  lbs.,  the  sum  of  the  resistance  =  5333  lbs. 

{The  Normaik  Iron  Works  Co.) 

The  compression  of  air  develops  heat,  and  if  the  temperature  of  the  oompressed 
air  is  reduced  to  that  of  the  atmosphere  fhim  which  it  is  drawn  before  being  used, 
the  mechanical  effect  of  this  difference  in  heat  is  work  lost. 

*  Dedscting  area  of  piston-rod.  f  a  feet  atroke. 


OOMPBJSSSIOX   OF  ▲IB.  tOOJT 

Isotlverznal    Compression. 
P  V  hyp.  log.  -^  =  F.    P  rtpreteMing  atmokphtric  praturt  in  Ihi.  per  Jrf.  ^bof  s:t 

14.7  X  144  =  2116.8,  V  wlume  of  i  Ih.  air  at ,  atmospheric  pressure  (62®)  =  i3.xai 
CM6e/e«<,  p  and  p'  t^rmiruU  and  atmospheric  pressures  absolute  in  lbs.  per  sq.  inch, 
and  V  foot-lbs.  per  lb.  qfair.    Assume  p  =5  80  lbs.  per  gauge. 

Then,  aii6.8  X  13.X41  X  Uyp.  log.  ^^=27  814.7  Xi.86as  =  5>  8o4/i»aW6«. 
A.<iia1>atio   Oozxxpression.    One  Cytindtr, 


n  — I 


py  ...^    /:?-\ nr"—i « F.    «, ouwftttiV  w»Mr^^  ^jMefc^,  =3* i-M 


Thtto,  as  preoediMg,  27814.7  X  3-45  X  f— )     — i  =95^X  6.4429— 1«95.^ 

\«4-7/ 

X .  7165  =  68  755  foot-lbs. 

Coxnpound    Air   Cylinders.     Two  Cylinders. 
Air  cooled  to  atmospheric  temperature  before  admission  to  second  cylinder. 


*—  I  ,^   V     «—  I 


uret  in  ist  and  ad  cylindtrs.  .. 

PY— ^=595960,  at prt«Jedlng,  andj>a  =  VPiXJ»3=3  37.»5. 


n  — I 


Then,  9596dX  (^)  **'+  (|^)  "- «  =  95 960  X  1.3096:^ »»3096-a=:.6i9« 

X  95  960  =  59  4x8  foot-lbs.  ' 

For  N  Cylinders,  ^5960  X  N  X  R  •=*9^  i  =»=  F-    N  rq»r«eii«iV  numfttr  of  cylinders 

and  R  rofio  of  compression,  equal  in  each  cylinder. 

Na«.-^Iililtal  pMMur*  in  lit  cylliidw « 14.7  *••?  tort.toal37.2S  »»•  '^^l  ^*^  ^  **  •'^"■** 
Jp.aS,  BMD«  M  tormioal  in  x«t,  and  ai  termiDai  in  ad  cylinder  =  947  '*••  »»>«>»•»' 

To  Compute  WorU  per  Povind  of  Air  in  Compressing 
it  to  000  IjUb.,  Oa«KO  I^ressure,  from  an  Initial 
Tftmpek»at\iro  of  6S«»  in   B'irtet  Cylinder. 

Coolina  to  Atmospheric  Temperature  before  Air  is  admitted  to  next  Cylinder,  and 
Jacket  Cooling  not  considered,  hence  n  =  1.408. 

F  =  9596oXNxR«»-i 

Pi  _^Pl-.Pl  =:£♦  =  R,    p  representing  atmosphere  in  lbs.  per  sq.  incfc  =  14.7, 

p      Pi      Pu     P*  I 

p^  terminal  presxure  (oftw^wte)  in  ist  cyKndtr  and  admission  to  2d=VpXPi 

=  V»4.7X86.8  a=  35.7,  Pt  terminal  in  ad  cyUnder  and  admission  to  3d  =  y/pxp^= 
^14.7  X  S147  =  86.8,  P3  terminal  pressure  in  3d  cylinder  and  admission  to  ^th  = 
^^^3^=^86.8  X  514.7  =  2ix,j)4  terminal  pressure  ^SH  7  Hw.,  atkJ  N  =  4. 
ac.7  86.8  an  «„.!  S14:7_.  ,. 

Heh«5,  f^-^-43,  5;:V  =  «-43'  86:8  =  »«'  "^"^  -^  =  '**- 

95 960 X  4  X  2.43  a*- I  =  95 9^  X  4  X  2937  =  1x2 7^4  footpoundk. 

•ro  Compute  the  Steam  Pressure  Reqllil^d  irt  tlie  Steam 
Cylinder  of  a  Simple  A.ir  Compressor. 

When  the  Air  Pressure  and  Diamder  of  Both  Cylinders  are  Given. 
£  y^  /£\  '_.  Pj.    p  and  Fi  representing  mean  effective  air  and  steam  pressures  in 

Ib^perlq.inch,  E,  mecfcomcaJ  efficiency  of  Compressor,  and  d  and  d^  diameter  of 
air  and  steam  eytind^t 


ICX)8  OOMPBESSION   OF  AIR. 

iLLCSTiUTioir. — Agsume  pressure  of  air  60  lbs.,  diameter  of  steam  and  air  cylin- 
ders respectively  12  and  14  ins.,  and  mechanical  efficiency  .85. 

Mean  eflective  air  pressure  of  air  for  adiabatic  compression  at  60= 3a  75  lb& 
{see  table,  p.  995). 

^—^  X  (~)  =  36. 18  X  1.36  =  49.2  lbs.  per  «g.  inch. 

Corresponding  to  a  steam  pressure  of  70  lbs.  gauge,  at  .375  cat-off. 

Temperature  is  a  direct  function  of  the  pressure,  hence  it  is  apparent  that  in  the 
multiple  stiige  compression,  where  the  temperature,  by  the  application  of  inter- 
coolers,  is  reduced  back  to  that  of  the  atmosphere  before  admission  to  each  cylin- 
der, that  the  loss  in  radiation  is  reduced.  In'compound  compression,  in  ordjsr.to 
divide  the  work  equally,  the  ratio  of  compression  should  be  the  same. 

The  temperature  of  the  air  (theoretical)  in  the  single  stage  compression  here 
given  is  about  400°,  and  that  at  the  end  oteach  compression  in  the  compound  case 
is  about  200^. 

The  mean  eifective  pressure  or  resistance  of  the  air  of  compression  in  a  single 

cylinder,  and  for  the  given  pressure  and  temperature,* is  Isoihermally — ~ — 

=  27. 38,  and  AdiabcUicaUy  — -~- —  =  36. 33,  and  51 804  -r-  68  755  =  75. 35.  Hence, 

144  X  13- '4' 
AdiaitaUe  compression  is- but  75.35  per  cent,  as  eflfective  as  IsotherwuU.* 

For  the  heat  evolved  and  given  to  the  air  by  Adiabatic  compression  is  difitised  to 
the  surrounding  media  before  the  air  is  admitted  to  the  Motor  cylinder  of  an 
engine,  the  extra  work  in  compression  is  lost,  and  in  the  case  here  referred  to,  the 
loss  is  100  —  75.35  =  24.65  per  cent. 

In  a  water.jacketed  cylinder,  the  loss  is  not  so  much,  as  the  heat  of  compression 
does  not  rise  so  high.  iFrederick  C.  Weber.) 

1?o    Oozzipiite    tlie   AVeiglit   of   .A.ir  -used  in.   a   !M!otor  i>er 
IMinute  for  a   Q-iven'  .A.mo-axit  of  "Work. 

5^^^-  =  —  =:  cube  feet     N  r^aresenUf^  nu«U>er  of  H*.     U  =  P  V 


I  —  •—■  M  >«     P  initial  and  Px  exhatut  pressure  in  lbs.  per  sq.  tncJk,  V  volume 

P  Ir 

of  air  in  cube  feet^  n  1.408,  and  T  and  Tx  dbsd^Mte  tempertUwes  at  admission  and 
atmospheric  temperature ;  W  weight  (fair  per  minute  to  deliver^  N.  W  per  minute^ 
and  w  weight  per  cube  foot  at  atmospheric  pressure  in  lbs. 

N  assumed  12,  to  .076,  T  and  T,  63  -4-  460  =  523,  and  300  -f  460  ==  761,  P  80  Oa.  per 
gatige,  and  volume  at  62^  =  13. 141  cube  feet 

33000x12X5^3  _ 

14.7  X  144  X  13. 141  X  —^1—-  XI ^1408     X  761  X  .0761 

■    ^^' — —  =  89.2  cube  feet  per  minute. 

95960  X  ( I —.1552 ■'•) -4174  X  761  X  .0761  =  2  319 510 

89.2-i-.686=:  129.9  cu5e/ee<  without  reJieaiing  ajad  129.9  X  .686  =  89.1  cubefxi 
when  reheated. 


1.408-1      t  Log.  14.7  X.  29  =  1.167317  X.  293=.  338521 

x^l±l    X.408   =  I— .1552"  94- 7  X.  29  =1.97635   X. 29  =  .573141 

94*7  — .234620 

I  —  .23 462  =  .76  538  and  number  of  .76538  —  i  =.5826  — 1=:. 4174. 

By  Logarithms.  ^5960=4^98209  33000=4.51851 

.4174  =  1.62055  12  :i=  1.07  918 

761=^88138  523  =  2.71850 

.0761  =  2.88138  8.316x9 

6-36540 

Log.  of  z. 95079  =  89.28  cube  feet.  '•95079 


*  For  an  lUoitration  of  th«  corvM  of  preuare,  see  Frank  RichArds.    Fr9ati^«c«  aad  p.  43. 
i  Bj  Logarithms. 


COMPBE6SION    OF   AIB. 


1009 


IDizuexisions    of*  "Valves,   Pipes,   and    Clearanoe    of  A.ir 

Cylinders. 


DiacHABOS  Valvcs. 

Number.  Area. 


Pressure  of  Air ^  75  Lbs, 

Cylinder. 

Ann.         Fi 

ree  Air. 

PreaBure, 
75Lta. 

Inlbt  Pipe. 
Diameter.  |      Ares. 

Ids. 

Sq.  inu.        P 

er  ceb  V. 

Percent 

Int. 

Sq.  ins. 

10.25  X  12 

I         78 

0098 
.0086 

.047 

2 

3- '4 

12.25  X  14 

"3 

•043 

2-5 

4.9 

14.25  X  i8 

154 

0066 

•033 

3 

7 

16.25  X  18 

201 

0066 

.023 

3-5 

9.6 

18.25X24 

255 

0049 

.0225 

4 

»2.5 

2a25X24 

JM 

0049 

.0225 

4-5 

159 

22.25  X  24 

380 

0049 

.0225 

5 

19.6 

28.2 

3a25  X  60 

707 

002 

.01 

6 

36.25  X  48 

1018 

002 

.Oz 

7 

38.5 

No. 

a 
2 

3 

3 

8 

8 
10 
18 
20 


Sq.  iu8. 

5-4 
8.8 

13- 2 
13  2 
35-2 
35-2 

44 

79.2 

88 


Clearance,  .0625  ^^^^  ^^  '^^^^  ^^^  of  cylinder.  The  area  of  the  dischai|;e  depends 
upon  the  speed  of  the  compressor;  for  a  speed  of  300  feet  per  minute,  ten  per  cent, 
of  area  of  cyliHder;  for  a  spaed  of  450  to  500,  fifteen  per  cent. 

(W.  L.  Saunders.) 


lOIO 


TIDAJU   OB   FLUYIAI.   BBFMCT. 


Tidal   or   muvial   JSfieot  on   Speed   of  a  Steam    or   l^ike 

^Propelled  Vessel. 

Deduced  from  the  Experimenti  and  Notet  of  £dmn  A.  StevnUf  Atsociate,  and 
C.  P.  Paulding  J  Junior  ^  Members  N.  A.  and  M.  E. 

Xo   Couipute   Velocity   of  the   Tide  or   Current   iu    Keet 

per  AdCiiiute. 

R  — ^ 
C 1.        — -  =  V,  repretenting  the  velocity  in  feet  per  minute  ;  C,  Ungth  qf  course 

in  feet;  R  and  r,  T  and  <,  respectively,  whole  number  of  revolutions  of  engine^  and 
timet  of  run  in  minutts^  both  against  and  witli  a  tide  or  current 

I LLuBTRATiox.— Assume  C  one  mile  =  5  280  feei,  R  and  r  970  and  548  number  of 
revolutioQs,  aud  T  and  t  8.43  aud  4.77  times.     What  is  velocity  of  tide  or  current  f 

970  —  548 


5280 


970X4-77  +  548x8.45 


=5280 


422 

-   -       — - 

4  626.9 -|- 4630.6 


=  240.7— /<e<  velocity. 


To    Coxxipxite    A.dvaiioe    per    Flevolution.    of  Kneiiie    in. 

Feet   per   ^linvite. 


With  Tide  or  Current. 


C  —  \t 


=  A. 


5280  — 240.7  X4'77       4«3«'9 


548 


Against  Tide  or  Current. 


C4-VT 


=  A. 


5280+340.7  X8.45 


548 
7314 


=  7-54/««'- 


=  7.S4/«*- 


R  970  970 

NoTK.— If  distance  is  given  in  knot  of  6 080  feet,  add  15. 151  per  cent. 

To   Compute   Speed   of  Vessel   iu   I^eet  per   ^lixiutek 

»  R  +  r    _    „       970  -H  548 „   5181 


rT-f-R< 


=  S.  5280 


548  X  8. 45  + 970  X  4-77 


=  5380 


9»57-5 


=  865.8/«e«. 


Po  Compute  Number  of  Revolutions  to  Run  one  ACile 
in    Still    W^ater   and    the    Slip. 


rT-\-Rt 


^^  _  N.     548  X  8.454-970X4.77  ^  9i57:5  ^    ^^  revolutions,  imd 

T-j-t  8.45-1-4.77  13.32        ' 

54   -t-970  _  y^  ^^  _  ^_5^ 700.26  =  58.74  lost  in  slip  =  7.75  P^  cent. 

2  2 

NoTK. — In  applying  these  formiilse,  the  number  of  revolutions  in  the  run  should 
be  as  uniform  as  practicable. 

Between  runs,  a  variation  of  5  per  cent,  will  not  materially  affect  the  result. 

STEAM  SIPHON.     A.n    Independent    J^ifting    I*ump. 

Capacity  for  a  Discharge  Pipe  2  Ins.  in  Diameier.,  per  Minufe. 


Water  raised. 

Preuure. 

FMt.       Ini. 
14         6 
13         3 
13         3 

Lbs. 
30 
40 
50 

Diacharfre. 

Water  rnlied. 

Preasure. 

Ditcbarii^. 

Gallons. 
63.54 

85.71 
lod 

Feet.        Ina. 
13           2 

13           2 
13          a 

Lba. 
60 

Gallons. 
X19.68 

'38 -44 
»57.57 

F'riotion    Tjosses    and    T>isti»i"biatloii    of*   Powder    in 

"M^aoliiiiery. 

Krom    8    to    400    I-P. 

Losses  Range  from  55  to  65  per  Cent 


Per  Cent. 

flTrlctton  of  Engine 10  to  1 1. 8 

"      ofShafting 15  "17.7 

»      of  Belts  and  Hearing.  15  »'  17.7 


PbtOmM. 
Friction  of  Lathes  and  Ma- 
chinery  1510x7.7 

Effective  Operation ,  45  *'  35. «. 


CAST  IBON,  D^W-POINT,  AND  COLUMNS.  lOI  I 


Strezifctli    or  Cast    Iron. 

At  deUrmined  by  Tests  on  a  Riehli  Instrument  at  Lextr^fton^  Ky. 

Aver<tge  of  i6  Tests. 


Teniile, 

ElMtie 

Modolus  of 

Tmneverae, 

Elastie 

ModaloB  of 

p«r  Sq.  Inch. 

Limit. 

ElMticily. 

p«r  Sq.  Inch. 

Limit. 

ElMticity. 

Lb«. 

Lba. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

24436 

,      21 469* 

28  240  CXX) 

Ann««led. 

MalieabU. 

4425 

2508 

21000000 

41582 

3104a 

13000000 

Refined. 

2435 

— 

19300000 

.     {Janus  H.  WeUs.) 

rTo  iVsoertaiti    the    IDegree   of  A.'bsolu.te   IDr^riiess   in   the 

AAr  and  the  I>eAV-I'oiiit. 
Mason's  Hygrometer. 

11  ^ 


li 

II 

0 

0 

.08 

1.17 

•«7 

2.33 

•25 

•33 

42 

4.67 
5.83 

•Is 
.67 

8.17 

9-33 

•75 
•83 

10.5 
11.67 

i| 

II 

ii 

i| 

H 

3q 

0 

0 

0 

0 

0 

0 

5-5 

.92 

12.83 

10.5 

"•75 

245 

6 

I 

«4 

II 

,.83 

25.67 

6.5 

1.08 

1517 

"•5 

1.92 

26.83 

7 

1.17 

16.33 

12 

2 

28 

7-5 

1.25 

»7-5 

12.5 

2.08 

29.17 

8 

1.33 

18.67 

»3 

2.17 

30.33 

«5 

1.42 

.9.83 

»3,5 

2.25 

3>-5 

9 

'5. 

21 

14 

2.33 

32.67 

95 

i.5« 

.22. 17 

M-5 

2.42 

3383 

lO       t 

1.67 

2333 

15 

2.5 

35 

i^ 

Exceuof 
DryneM. 

l< 

II 

0  a 

0 

0 

0 

<5-5 

2.58 

3617 

16 

2.67 

37-33 

16.5 

2-75 

38.5 

17 

2.83 

39-67 

17-5 

2.92 

40-83 

18 

3 

42 

18.5 

3.08 

43-17 

19 

3«7 

44-33 

>9-5 

325 

45-5 

20 

3-33 

46.67 

o 

•5 

1 

»-5 

2 

2-5 

3 

3-5 
4 

4  5 
5 

To  Ascertain  the  DryneJis. —OytKATiOH. — From  temperature  of  the  air  subtract 
that  of  the  wet  thermometer,  add  excesB  of  dryness  from  the  table  for  the  differ- 
ence, multiply  sum  by  2,  and  the  result  will  give  absolute  dryness  in  degrees. 

Illustratiox.— Temperature  of  air,  57;  wet  thermometer,  54.  Hence,  57—54 
=  3.    Add  ,5,  flpom  table,  =  3.5  which  X  2  =11 7  degrees. 

To  Ascertain  the  Dem  -  Point.  —From  temperature  of  the  air  subtract  Absolute 
Dryness  and  result  will  give  the  Dew-Point  in  degrees. 

Illustkatiox— Temperature  of  air,  57;  Absolute  Dryness  =  7.  Hence,  57  —  7  = 
yP  Dew-  Point. 

Safe  Orutsixing  tStreriKth  of  Oolunine  of  a  H^eight  not  ex- 
ceeding 12  times  their  Diameter. 

In  Pounds  per  Square  Inch  of  Transverse  Section. 


Material. 


Basalt 

Brick,  hard 

*■*     common  . . 

Granito,  hard 

**       common 


Lbs. 


2875 

«75 

58 

1090 

575 


Iron,  cast 28  750 


Material. 


Lbs. 


14400 
720 

432 

M35 

43» 

38 


Material. 


Mortar,  common. 

Oak,  white 

'*    common 

Sandstone 

Spruce,  red 

'*       white... 


Lba. 


36 


432 

280 
«29S 

540 
240 


Iron,  wrought 

Limestone,  hard 

*'         common 

Marble,  hard 

"      common. . . . 
Mortar,  good  and  old 

When  the  height  of  a  column  exceeds  12  times  its  least  diameter  in  feet,  or  area 
in  square  feet,  divide  the  tabular  weight  by  the  number  in  the  following  table 
corresponding  to  the  length. 

Height I    12        18 

Divisor |   1.2    I    16 

Illustration. —Assume  height  of  a  column  of  white  oak  15  Inches  in  diameter 
and  21  feet  in  length.    What  weight  will  it  support  ? 

432  -f-  X.  8  =  240  lbs.  , 


21 

24 

27 

3^ 

35 

*?. 

^l        50 

6c 

1.8 

a 

2-4 

2.8 

39 

4.8 

5.8       7-8 

12 

•  TanaUa  RfftMd  Ultinntoi  03695. 


PKEPETUAL   AIM  AS  AC 


flf=.ill-J 

15  °5ll^m- 


SS|||II 


13 


Pi 


tis 


i 

liriH 

fSa" 

?' 

SSI 

^d;P 

h 

CEMSNT,  HDMIDITT,  METRIC 


latlve    Humidiiy    and    Dew   Point   of  tl 

At  Delermiaed  lig  a  Diy  aad  We<  Themvnaeter. 
■B  or  Tempenlure  beliveen  Iha  Two  TJiermoRiQtera  sad  ] 


(OrwBioiri  Otuemaliiry.) 


ofMetrio  Mea> 


illgniilex  i,B|  +  3a  =  ilegree5" 
ere-T- 5.69  =  8  ilrjchi 


HeclolltereVyiji  =  cube  tl 
Hwlolilera  X  a.a,  =  huahela 
Heclollwnx  -ijr  =  i-ulie  ys 


KllaptrCi 


r  Ch«vj 


KilomeMn- 


<  33.84  ^OiDdouDO 
<.a^j  =  pilluns 


I0I4         CHIMNKY   DRAUGHT,  SITBAM   YESSBLS,  BTC. 

Xo    A.soertainL    tb.e    Ii!eifi;Ut    of*  ct    Ch.ixxi.ja.ey    for    a    Re- 

q,xiired.    IDrauglit. 

Divide  7.6  by  the  absolute  temperature  of  the  external  air,  and  7.9  by  the  like 
temperature  or  the  gases  in  the  chimney  at  the  point  of  their  delivery  into  it;  sub- 
tract this  quotient  n'om  the  former,  divide  the  required  draught  by  the  diflerence, 
and  the  quotient  will  give  the  height  of  the  chimney  in  feet. 

Or,  —2 —  =h.     D  representing  the  draught  in  inches  ofwater^  T  temperature 

70      7-9 
T         t 
of  air  -\-  460,  t  temperature  qf  gases  -\-  460,  and  h  height  oj  chimney  in  feet. 

Illustration.— Assume  temperature  of  air  20 o,  and  that  of  the  gases  600^,  and 
required  draught  .6  inch  / 

.6  .6  ^  J.  J 

—  =  — — -—  =  nx.tfett 

7^6 7.9  .00838      '      '' 

20O  +  460°      600°  -f  460O 

T*o    Ascertain,    tbe    IDrauglit    of*  a    CUizxixiey. 

In  Inches  of  Water. 

Proceed  as  above  to  determine  the  difference  of  temperature,  subtract  the  latter 
Arom  the  former,  and  multiply  the  remainder  by  the  height  of  tne  chimney  in  feet 

Illustration, — Assume  like  temperature  and  height  of  chimney  as  above. 

!Resistan.oe    of    Steaxn    Vessels. 

The  thrust  of  a  pro|)elIer  on  the  resisting  collars  of  a  propeller  shaft  is  the  meas- 
ure of  the  power  applied  to  the  propulsion  of  the  vessel. 

a  X  llr  33000  33000  t»  K. 

Iff.  P  representing  the  titrust  of  the  propeller  in  Z6».,  S  and  S,  the  speed  of  the  ves- 
sel in  feet  per  minute  and  knots  per  hour^  D  disptaoement  in  tons  (2240),  A  area  of 
immersed  amidship  section  in  square  feet,  and  C  and  C,  constants. 

Assume  the  following  elements  of  the  steamer  '*  El  SoP':  Length  betvjeen  per- 
pendiculars, ^j  J.  2  feet;  amidship  section,  g^^  square  feet;  displacement,  6760  tons; 
S  and  S],  i^.-j^feet  and  14.5  knots;  C  and  C|,  310  and  Siq;  and  IIP  z=  3500. 

.66X33000^  5. 69s  X  .475  ^6 Kg.     51695  Xi^  =  3«6 Iff. 

1475  X  3500  ^^  33  000  33  000 

6760K  X  M- 53  ^  357. 5  X  3048  ^  i^      934X14.53^  I^, 

310  310  ■"'  813 

D.  K.  Clark  gives  — =  EH*.     W  representing  ufetted  surface  in  square  feeL 

20000. 

Coefiioieiits    of*  Radiation    of*  Heat. 

For  a  Period  of  One  Hour  from  10.76  Square  Feet*  of  Surface. 


Silver,  polished 16 

Copper,  red 20 

Brass,  polislied 32 

Sheet- iron,  polished. . .  56 


Sheet-iron,  leaded 81 

Sheet-iron,  black 345 

Glass,  polished 373 

Cast-iron,  rusted 419 


Paper 470 

Stone,  building 499 

Soot 500 

Water 66a 

{'■Home  Study.^') 


lEIeat    Radiated,    per    Square    F'oot    per    Hour. 

From  a  Temperature  of  180°  to  X59O  in  Units. 

Tin-plate 1.37  |  Sheet- iron 9.34  {  Glass. ».z8 

(TredgeUL) 

—,1  I u_jii...ia..i 


FORCED   DBA.UGHT,  GBOLOOICAL  STRATA,  RTt?.  IOI5 


IPoroed    I>r»aglxt    in    Alarine    Soiler. 

C<mpre»Kd  Air  JSwhamting  BUut  in  the  S.  &  ''BewltUe." 


Blowlnic 
Engine. 

Engine. 

Coal 
per  hour. 

Coal* 

perI(P 

per  hour. 

Water 
evapo- 
rated per 
lb.  or  coal 

Blowing 
Engine. 

Natural  ) 
dniiRlit.  f 

.96 

a 

3 

1H> 

575 

88.8 
loas 
106.1 

Lba. 
ai3 
289 
315 
32i 

Lba. 

3-72 
326 
3.1a 
304 

Lba. 

10-77 

8.82 

8 

7.82 

IR' 
4-2 

5 
6 

7.4 

Engine. 


I     Coal 
per  hour. 


Goal 

perIH> 

per  boor, 


IIP      . 

I18.8 

1 19. 8 
Jia7.9 
135  7  ' 


Lbs. 

348 

374 
400 
430 


Lbi. 
2.93 

3>a 
3. 13 

3.10 


Water 

evapo- 

rateaper 

lb.  of  coal 


Lba. 
783 

7-53 

7 

7.03 


{D.K.  Clark.) 


Formation. 


A.b9orption  or  G^eologioal   Strata. 
P6r  Cent,  by  Volume. 

Locatlgn.. 


Dolomite 

14 

i( 
l( 
ti 

Gabbro    

Granite,  Hornblende.. 
Freestone,  Calcareous. 
Limestone 

Galena  .... 

Trenton  . . . 

Oolite 

Devonian.. 


u 
(i 
*( 
tl 


Sandstone. 


It 
(I 

u 
(( 
it 
il 
it 


Quartzose. 

Oolite 

Old  red... 


Clay,  dry 

Sand  and  Gravel. 


Joliet,  111 

Tieniont,  III 

Winonu,  Minn 

Red  Wing,  Minn 

Mantorville,  "    

Duluth,         »'    

B.  St.  Cloud,  '♦    

Grand  Beaucbamp,  France 

Bedford,  Ind 

llockford,  III 


Cheltenham,  Eng 

Boulogne,  V  ranee 

Quincy,  111 

Big  Sturgeons  Bay,  Wis. . 

Grand  Beaudhamp,  Prance 


Water  in 
100  p^rta. 


i( 


Cheltenham,  Eng. . . . 
Gloucestershire,  Bog. 
Fond  du  Ijac,  Wis. . . . 
Fori  SneiliDg,  Minn. . 
Jordan, 
Berea,  Ohio . 


It 


1.06 

I  13 

4.76 
2-5 

5-55 
•29 
•42 
29 

4  4 

4-2 

2.1 
12.15 
.08 


Authority. 


G.  P. 


Merrill. 

(t 


{ -in 

•25 
(   4  37l 

M3  «5J 

29 

2395 

II. 6 
4.81 
6.25 
1.25 
6.6 

la 


<( 

C( 

(I 
u 

M.  Delessee. 

D.  W.  Mead. 

il 

E.  Welherel. 
M  Delesnee. 

O.  P.  Merrill. 

i( 

u 

M-  Delessee. 

C( 

B.  Wetberel. 

li 

6.  P.  Mtrrill 

tl 

it 

D.  W.  Mead. 

R.  J.  HInton. 

il 

tt 


{II  } 

{Daniel  W.  Mead,  C.E.) 

Caet-iron.    'Water    Pipes. 

To    Compute    Tliiokness    of  IMetal. 

Hd  pd 

-~—  -f- .  25  =  T,  and  ^ 1-  .25  .=  T.    H  representing  head  ofpretmre  ofvMXter  in 

9000  425^ 

feet^  d  internal  diameter  of  pipe,  and  T  thickneu,  both  in  \nck99,  and  p  interior  preu- 
ure  in  lb$.  per  $q.  inch. 

IiiLUBrRATioM.^AssnnM  head  of  wateir  200  feet,  diameter  of  pipe  ^  ioa,  and  if- 
terior  pressure  86.83  lbs.  per  sq.  inch. 

200x8  ,  .  86.83  . 

— r-— +»5=-4«7**»*M  *°d ^  +  -25  =.4134  int. 

For  faucet  ends,  the  eqaiyaleQt  length  of  pipe,  equal  in  weight  to  that  of  the 
faucet,  7  -|-  d  -7- 1 5  =  ins. 

See  ante,  p.  147.  (D.  K.  Clark.) 

^— ^  I      I    I     I  III.  I         ■  ^fc^.*.^^^..^^^.^.^.^^     ^^Hi»i.i        ■    ■  ■ I  ■  -         ■ 

*  Antin  briguettea.    Tha  fuel  coniaiiMd  and  the  power  were  doubled,  but  the  •▼aporative  iMiimey 
wH  redocad. 


10 1 6   PBICTION  AND  FLOW  OF  WATEB  IN  MKTAL  PIPES. 

Friction  of  B^low  of 'Water  in  Sznootli  ^Vletal  Pipes, 

From  .5  to  3.5  Inches  in  Diameter. 
To    CoTxipute   tbe    I^oss    of   Xlead. 

Per  loo  Feet. 

^  •   '0315 — .o6d      I        u^ 
.0126  +  -^-  , X  -;  X r  =  H.    d,  tntoma2  diameter,  H,  JoM  0/  Aeod  due 

to  friction  o/Jlow,  dU  in  feet;  t>,  velocity  of  Jlow  per  secotui,  and  I  repreeenUng 
length  of  pipe. 

Illustration.— Assume  diameter  of  pipe  2.5  ins.,  lengtb,  100  feet,  and  velocity 
of  flow  36  feet  per  second,  what  will  be  the  loss  of  head  due  to  ftriction,  velocity  of 
flow,  influx,  and  efflux  ? 

i:  I  -0315  —  .06x2.5-7-12  100         1296  ^  ,  «       «, 

•0126  H — i-2 .   ,      X  : X  T-^  =  .0126  +  .003a  =  .0x58  X  480  X 

V30  2.5-1-12      64.3 

30.  z  :=  1 32. 44  feet  loss  due  toJHction. 

Loss  of  Head  Due  to  the  InJUtx  of  the  Water  into  the  Pipe, 

«**  ,     t>*  1206   ,    E2q6  ^    , 

Hence,  152.44  -|-  30.34  =  i82.6Sfeet,  total  head. 

BViotioEL  of  Flow  of  "Water  in   Cast-iron  Pii>es, 

From  4  to  60  Inches  in  Diameter, 

,  .001666     t       t>»       „     „     .^  , 
.01989a  +  •— ^ —  ^  1  ^  — 77  ^  ^*    "Sfyiroftoto  CLs  preceding. 

iLLUSTRATioir. — ^Assume  volume  of  water  required  30000000  gallons  per  24  hours, 
diameter  of  pipe  16  inches,  and  length  of  it  1000  feet.  What  will  be  the  loss  of 
head  due  to  frictiop  of  the  flow  and  what  the  loss  by  influx  into  the  pipe  in  feet? 

V      231 

-7  X '-  720  =  velocity  in  feet  per  minute.    V  representing  votwrne  of  discharge 

t        a 

in  gaUons.  <,  time  of  flow  in  mintUes,  a,  area  qf  section  of  pipe  in  sq.  tncftef,  and  730^ 

lineai  inches  of  flow  per  minute. 

Gallon  =  231  and  area  of  pipe  =  aoi  cube  indus. 

20000000     231 


X;7;:;7-5- 12X60  =  13889  X  1. 149 -4- 720  =  22. 16 /Mt  velocity  per  second. 

388 
627 


34  X  60        aoi 

Or,  by  table,  p.  1016,  ^—^ssaa.is/^ 


Hence,  32. 15'  x  .3465,  flrom  table,  =  120.02  feet  loss  of  heady  and  — ->  X  .505  —  ^|— 5_ 

3  flr  64. 3 

X  .  505  =  3. 86  fe^  loss  by  ii\^ux  to  pipe. 

Loss  of  Head  Due  to  the  Influx  of  Oie  water  into  the  Pipe. 

V2     ,     ^  22.162         22.l6»  ^    M      „ 

— ■  +  -- X.5o5  =  -T h-T —  x.905  =  "'SfB^-  Hence,  120.944-11.5  =  133.44 

3  gr      sg  04.3         04.3 

feet  totai  head. 

20000000  gallons  per  24  hours  =  13889  per  minute,  By  Coefficients  in  table,  p. 

Z017,  for  a  pipe  of  16  ins.     13  889 -7-627  =  22. 15  ^t  velocity^  and  23.15^  X  •2465  = 

S3a94,^  loss  of  head  due  toJHction. 

To   Ooxnpute  tlie   ITlo-wr  ot   "W^t&r  firozxi   a  G-iven.   Heeui. 

V  -r-  ^^  X  12X60  XT.    T  r^irreseniing  time  of  flow  in  minutes, 
a 

Illustration.  —Assume  the  elements  of  the  preceding  case. 


231 


22. 15 1  -?-  -^-  X  720  X  60  X  34  =  19  987  430  gaUons. 

20I 


—  repreMnting  the  head  required  to  produce  the  Telocitj,  and  —  X  .505  the  loet  doe  to  tlie  «■• 
a  g  ag 

^nce  of  the  water  into  the  pipe. 

By  BeardnuuL,  p.  548, «  would  s  a3.6/*tt. 


FRICTION  AND  PLOW  OF  WATBB  IN  MBTAL  PIPSS.    101/ 

^^lien  tlie  GMven   Xjeixgtli  is  X^ess  or  d-reater  tUau   tlie 
Xjenstb.  of*  lOOO   in   tire   foUo^wiiig   Table. 

The  ratio  of  tbe  given  length  to  the  length  in  the  table  is  ascertained  by  dividing 
the  length  in  the  table  (looo)  by  the  given  length,  and  the  inverse  ratio  to  the 
length  in  the  table  is  awertained  by  dividing  the  given  length  by  looa 

Assume,  as  in  the  second  of  the  preceding  cases  given,  the  length  to  be  1500  feet. 
i^=  1.5.    As  the  flriction  head  (for  1000  feet)  of  130.94  corresponds  to  a  veloc 

_IOOO 

ity  of  22. 16  feet  per  second,  120.94  x  i-5  =  iSi. 41  feetj  the  Jrictional  head  in  a  pipe 
of  I  ^oo  feet  in  length. 

Application  of  the  Formulas  in  the  following  TcMe. 

Assume  a  lake  1500  feet  distant  to  discharge  water  through  a  cast-iron  pipe  10 
ins.  in  diameter  under  a  head  of  70  feet :  What  is  the  velocity  in  feet  per  second, 
the  loss  of  head  to  the  influx  into  and  flow  through  tbe  pipe,  and  the  discharge  in 
gallons  per  24  hours? 

_    ,   .00167  ^  Vq  gh  V64. 3  X  70 

.oio8o4 ^=.o2i89=c  —  =  g  =  •  — •>  -^     J    . 

10-^ "  /I  I  1500 

sj  i+.505-h  5  XC  ^  i-h-5<^5+  ^^i^  X.02t89 

ra  '  —   (!^  —  ja48/«c<  velocity. 

Vi.  505-1- 1800. 7X.02189       ^-4 

C  =  352  512  X  za48  =  3 694  326  galloni. 

Assame  a  discharge  of  water  of  2450  gallons  per  minute,  through  a  cast- Iron  pipe 
10  ins.  In  diameter  and  1500  feet  in  length :  what  will  be  tbe  loss  of  bead  due  to 
Ariction,  and  what  the  discharge  in  24  hours? 

2450-4-245  {from  table)  =  jo  /iet  velocity  per  second,  io«  X  .4084  {from  table)  x 
-'—  =  61. 26feetfrictum  head,  and  lo  X  35a  512  (from  table)  =  3  595 120  gallons. 


1000 

Hencei,  1  +.505+  .03189  X  1800  X  ^^  =  4a8o7X  1.708  =  69.698 /erf  total 

04.3 

head 

Coeffloients  ibr  Computations  of  Velooitsr  or  IHo^v,  X>is« 
charge,  and  X^osa  of  Head,  due  to  Friction  of*  F'lo'w 
of  ^Water  in   Pipes,  lOOO   Feet  in   Uength. 

Velocity  of  Flow. 

Discharge -i-CoefBcient=i»«an  velocity  of  flow  in  feet  per  second,  and  velocity  x 
Coefflcient  =  discharge  in  gallons  per  nUmUe. 

InchM. 

Diameter..]    4    I    6    I    8    I   10   I   12   I   16   I   20   I   24   I  30  I   36   I   48  |  60 
CoefflcientI   39  j  88   |  157  |  245  |  353  |  637  1  979  1 1410 1 2303 1 3173 1  5640 1 8813 

Loss  of  Head  due  to  Friction  =iCo^eieni  x  Square  of  Velocity. 

Diameter..!    4    |    6    I    8    I    10  I   12   I    16   |   20   1  34   I   30  I   36  I   48   |  60 
Coefflcient 1 1 .  161 1  . 722  | . 5231I  .4084I .  3353I . 2465I .  1949I .  i6zi | .  1278I .  1060I  •o7^l  .0629 

Discharge  per  24  Hours  =  Coefficient  x  Velocity. 

IncfaM. 

Diameter I        4        I        6        I        8        |       zo       I       12       1        16 

CoeffictoBt I    56403    I    126931    I    335608   I    353513   I    507617    I   903448 

Diameter I       30       {       34       I       30       I       36       I       48       I       60 

Coefflcient |  1410048  |  3030490  I  3173600  |  4568568  |  8x31859  |  13690400 

Tabu,  and,  euentially,  the  computations  from  the  v<Uuable  work  by  Edmund  B, 
Weston,  C.E.  {D.  Van  Nottrand  Co.,  1896). 


ioi8 


BELTS  AND   BELTING. 


T'o   Cpnaptite    tlie   A.ot-u.al    IDisoheirge    of*  Water    tlirouslft 
A    Oouical    Tulae    (Nozzle).     Coefficientsofi^docity  andt^ftlffiiix. 


Angle. 


5<^26' 


Velocity.       Efflux. 


.829 
.919 


.829 
.924 


Anprle. 


12°  4' 
J3O  24' 


Velocity. 


•955 
•963 


EfiSoz. 


.942 
.946 


r- 


Angle. 


19O  a8' 

83° 


Velocity. 


•97 
'974 


Efflux. 


.924 
9M 


{Home  Study.) 


{Contintied  frqm  poffe  443.) 

Pulleys  should  have  a  slight  convexity  of  surface.  Authorities  differ,  from  .5  inch 
per  fvot  of  br«fulth  to  .1  of  breadth.  Belts  run  at  a  high  sp^ed  are  less  liable  to  slip 
than  at  low  speed. 

The  best  speeds  for  economy  are  f^om  1200  to  1500  feet  per  minute,  and  the  best 
for  result  not  to  exceed  1 8cx>. 

Belts.— Le&iheVy  toirside. . . .  x      I  I<etiihier,  fle&h-sidd. . .  .74  |  Rubber. 51 

Guttapercha........    .44  |  Canvas >.. » ^^4  .35     ...     . 

Coefficient  of  Friction  of  a  Belt  in  oi>eration  is  assumed  to  be  flnom  .2  to  .4. 

Smooth-mirface  belts  are  most  eadurablo  and  soft  most  adherent. 

Round  belts  .25  and  .5  inch  in  diameter  are  fully  equal  in  operation  to  flat  of  x 
and  3  ins.,  and  grooves  in  their  pulleys  should  be  angular  or  V  shaped. 

Long  belts  are  more  effective  than  short.         * 

The  neutral  point  of  a  rope  belt  is  at  .33  of  diameter  from  inside  surface. 

Friction  of  driving  and  pdlley  bearings  is  about  .025. 

A  fan-blower  No.  6,*  driven  by  a  belt  3.875  in&  in  Width  and  .18  in  thickness,  at 
a  velocity  of  2820  revolutions  per  minute,  requires  |)ower  of  9.7  horse& 

Area  of  belts  per  EP  varies  essentially,  ranging  from  25  to  100  square  feet;  the 
mean  is  75. 

The  average  ''  net  effective  stress  "  of  k  belt  is  the  diflferen^e  of  len&ional  Stress 
between  its  driving  and  slock  surfaces  per  lineal  or  sq.  indh  -of  seotiod,  iind  this 
stress  over  fast  and  loose  pulleys  was  but  >.4  of  that  ov^r- cones. 

"Idlers/'  are  most  effective  on  the  sl^ck  side  of  a  belt. 

Narrow  and  thick  belts  nre  preferable  to  wide  and  thin.  The  Joining  of  the  ends 
of  a  belt  should  be  by  splieitig  and  cementing,  and  the  length  of  the  splict^  the  same 
as  the  width  of  the  belt,  and  if  the  ends  are  cut  slightly  convex  and  so  connected 
the  effect  in  operation  will  be  that  of  equalizing  the  stress  on  the  centre  and  edges. 
The  OuhI  'stretching  of  leather  belts  is  6  per  cent. 

A  double  belt  with  an  arc  of  contact  of  180°  and  i  inch  in  width  will  sustain  a 
stress  of  35  lbs.,  and  the  number  of  sq.  feet  of  a  double  belt  over  a  pulley  per  min- 
ute to. transmit  onf  H*  is  80..:  >.  •  •.  r  .  <      :  . 

Tlie  transmitting  powet  (resistanOB)  of  the  ttrc'of  contact  i^ee^ntialiy  ptupor- 
tionate  to  the  arcoftSa^.  '     •  •     ' 

The  average  ''  working  load  "  on  fast  and  loose  pulleys  was  but  .4  that  of  on  cone 
pulleys,  and  the  ^'  net  working  loa<!  **  Is  the  difference  in  tension  between  the  driv- 
ing and  slack. 

The  diameter  of  u  pulley  should  be  increased  in  proportion  to  the  thiekness  of, 
or  number  of  plus  of,  a  belt. 

A  band  wheel  at  the  Amoskeag  Mfg.  Co.,  N.  H.,  30  feet  in  diameter  and  no  ins. 
face,  drove  three  belts,  havitig  a  lineal  vf  idth  of  104  Ina,  at-a  speed  of  5750  feet  per 
minute.  Capacity  of  engine  1950  H*,  trx>n\  which  is  to  lie  deducted  the  friction, 
which  is  assumed  largely  at  5  per  cent.,  leaving  185a  net  IP.     . 

Hence, '  -^  =  17.8  IP  per  inch  of  width  of  belt  and  ^^=  333  feet  speed  of  bell 

104  17'9 

per  H*  per  inch  of  width.  ... 

If  a  bell  of  its  proper  length  slips,  the  under  surface  slwuld  be  moistened  with 
boiled  linseed  oiL  * 

When  belts  have  become  dry  and  hard,  apply  neat's-foot  or  liver  oil,  mixed  with 
a  small  quantity  of  resin. 

Rubber  belts  are  improved  by  the  application  with  a  brush  of  A  composition  of 
litharge,  red  and  black  lead,  in  equal  parts,  mixed  with  boiled  linseed  oil,  and  var- 
nish sufficient  to  cause  it  to  dry  quickly.  They  are  less  liable  to  slip  than  leather, 
and  are  suited  for  service  when  exposed  to  mOiSture. 

Cfvient.  Gutta  perclia.  16  parts,  rubber  4,  pitch  2,  shellao  x,  and  Unseed  oil  3; 
cut  in  small  parts,  melted,  and  well  mixed.    {Moletworth.) 


For  a  table  of  Bells  for  Fan-blowen,  etc.,  see  J.  H.Coopcr,  in  «  Jour.  Franklin  Inst.,*'  vol.  jS6,  p.  409. 


OIL  BN6IXKS. — BLAST  AV1>  A-XHAUST  BLOWBES.     IOI9 

OTL  KNGmKfe. 

Oil  TCn.g:in.es  are  In  employ meni  as  Motors. 

In  tbc  Priejtiniaa,  mineral  oil  or  petroleum,  having  a  speciflo  gravity  of  .8  Oimp* 
9vardB,  with  a  flushing-point  from  75O  to  150°,  is  umU. 

The  oil  is  mixed  with  air  under  a  pressure,  is  drawn  into  the  cylinder,  and  ig- 
nited by  an  eleotrio  ajKirk. 

llie  oonsamption  of  oil  varies  ftotn  1.25  ponnda  per  bralce  ff  per  hour  for  large 
engines  to  1.6  lbs.  for  small. 

An  engine,  cylinder  8.5  ins.,  Stroke  la  ins/,  and  180  tevolntiobB  per  minote,  de- 
veloped 4.6  brake  £P,  with  a  consumption  of  .1.2  lbs.  of  oil  per  IP  per  hour. 

The  Hargredves  motor  is  designed  for  the  use  of  coal-tar  or  creosote  as  fuel. 

It  coqsists  of  nn  air-compressing  pump  and  motor  cylinder,  to  which  a  regenera* 
tor  18  adapted,  which  absorbs  a  portion  of  the  heat  of  jibe  exhausted  gases,  and 
yields  it  to  tbe  incoming  charge. 

The  compressed  air  is  delivered  tbreagb  th«  r^renerator  into  the  motor  cylinder, 
where  it  is  exposed  to  a  jet  of  coal-tar  or  creosote,  and  being  healed  to  redness  ig> 
nites  the  fUel. 

In  a  trial,  40  IH*  was  generated  by  tbe  consumption  of  .512  lbs.  coal  iar  per  hoar, 
and  32.4  per  ccnu  of  heat  converted  into  work,  and  in  another  trial  with  a  smaller 
engine,  5.17  IIP  was  generated  by  tbe  consumption  of  1.3  lbs  of  creosote  per  hour, 
and  14.4  per  cent,  of  heat  converted  into  work.  {D.  K.  Clark.) 

Slast    and    IGxh.au.st    B^atx    Slo^irers* 

{In  addition  to  pp.  447-448  and  898.) 

The  BUist  Areay  which  fs  the  basis  of  all  computations,  is  the  diameter  of  the 
tsLD  (wheel)  multiplied  by  the  width  of  it  at  its  periphery. 

Exhaust  Fan. — The  area  of  its  discb.trgc  fcbould  be  about  equal  to  three  times 
tbe  blast  area,  or  equal  to  tbe  area  of  .the  inlets,  and  the  vtidtb  of  the  fan  25  its 
diameter  at  its  greatest  width. 

Volume  Blower.  —For  foroed  draught  tbe  <lla<:harge  «Ma  sbontd  be  about  equal 
to  the  area  of  tbe  blast,  and  the  width  of  the  fan  25  its  diameter  at  its  greatest 
width. 

Pressure  Blotoer. — As  for  a  Cupola,  the  discharge  area  should  be  .33  that  of  the 
blast,  and  one-half  the  area  of  the  ialet^  and  the  diaipeter  of  the  fan  should  be  pro- 
portionally great,  and  the  blades  of  the  fun  narrow  at  their  extremity. 

In  ordinary  practice  the  inlets  are  made  about  one-half  the  diameter  of  the  fttn. 

{American  Blower  Co.) 


I>im«nsionii-  of*  F«tn« 

Prkssurs. 


From  3  lo  6  ovncetper  Sq.  Inch;  or  5.3  to  10.4  Incke%  of  Waler. 


Dfamatsrof 
Fan.        I      Inlet*. 


BlAilM. 


Width. 


Ft.  Int. 

Ft  Ina. 

\     Ft.  Ins 

3 

1.6 

.9 

36 

1.9 

.10.5 

4 

a 

I 

Length. 


Ft.  Int. 

■9 
.10.5 

I 


Dfsinetor  of 


Fan. 

Ft.  In«. 
4-6 

5 
6 


InleU. 


Ft  \vm. 

2-3 
9.6 


BladM. 


Width. 


Ft.  Int. 

1.1.5 

'•3 
1.6 


Leniitth. 


Ft  Int. 

1. 1.5 

>-3 
1.6 


Ftintk  6  tog  otmees  per  Sq.  Inch;  or  10.4  to  15.6  Inches  of  Water. 


Dlami 
Fan. 

»t«t  of 
Inlet  t. 

Biai 
Width. 

Ft.  Int. 

4 

Ft  Int. 

X 

x.6 

Ft  Int. 

.9.5 

L«n^h. 
Ft  Int. 

X 

1. 1. 5 
13-5 


Diameter  of 


Fan. 


Ft  Int. 
4-6 


Inlett. 


Ft  Int. 
1.9 

2 

2-4 


Blades. 
Width.    I     Length. 


Ft  Int. 

.10.5 

X 
t.2 


x.xo 
{Mr.  BudMi  JSmperimenJU.) 


Ft 


I020         FLOOB  BEAMS,  GIBDEBS,  COLUMNS,  ETC. 

To  I>eterniine  th.e  Dixnensious  of  .Floor- Beaxns,  O-ird- 
ers.  Columns,  ITouiidat.ions,  and  Piling  of*  a  Build- 
ing  to    Sustain   GKiven    X^oads   on   tJb.e   Floors. 

Omsiruction,  Dimengions,  and  Capacities  as  Assigned  by  (he  Department  of 

BvUdings,  CUy  of  New  York, 

Foundation. — Piles,  not  less  than  5  ins.  at  point,  spaced  not  to  exceed 
30  ins.  from  centres,  and  to  support  not  to  exceed  40000  lbs.  =  5.714*  tons 
per  sq.  foot  with  two  lines  of  piles,  8.57  tons  with  three  lines,  and  11.43  tons 
with  four  lines,  etc.,  or  2.857  tons  per  additional  line. 

WaUs  and  Piers. — Include  all  built  below  the  first  tier  of  beams,  at  or  be- 
low the  level  of  the  curb-stone.  Masonry,  of  stone  or  brick,  with  lime  mor- 
tar, not  to  be  subjected  to  a  stress  exceieding  16000  lbs.,  with  lime  and 
cement  23000  lbs.,  and  with  cement  30000  lbs.  per  sq.  foot 

Side  WaUs, — Their  widths  as  determined  by  their  height  and  the  propor- 
tional area  of  fiues  and  recess^  in  them.  If  of  stone,  at  least  8  ins.  wider 
than  the  wall  first  above  them,  to  a  depth  of  12  feet  below  the  curb,  and  for 
each  10  feet  or  part  thereof,  an  additional  4  ins.  If  of  brick,  for  8  ins.  put 
4 ;  other  requirements  same  as  for  stone.  In  buildings  where  the  beams 
are  25  feet  in  length  or  over,  an  addition  of  4  ins.  in  width  must  be  given  to 
the  side  walls  from  above  the  curb-stone.  ^ 

Front  and  Rear  WaUs* — Except  where  supporting  a  girder,  for  half  the 
distance  between  it  and  the  column,  are  non-bearing,  and  may  be  4  ins,  less 
in  width. 

Footing  or  Base  Course  and  Piers, — Of  stone  or  concrete,  or  both,  and  at 
least  one  foot  wider  than  base  of  wall  or  pier.  Capacity  of  solid  primitive 
earth,  estimated  at  8000  lbs.  per  sq.  foot. 

When  the  instability  of  the  ground  is  such  as  to  render  additional  support 
to  piers  necessary,  they  are  to  be  connected  by  inverted  arches  of  the  full 
widUi  of  the  piers,  but  not  less  than  12  ins.  in  width. 

Widtli    of  Walls    for    Ghiven    Heiglits. 
Height  Measured  from  Level  of  Cwrb-Stone, 


Height 

V 

Hdth. 

Feet 

IBB.           Ft 

Itia.       Ft 

Ins.       Ft 

iBt.        Ft 

40  to   60 

z6  to  4ot 

Then  12  to  top. 

—        — 

—        — 

60  to   75 

30  to  25t 

..    ,6      u 

.—        — 

—        — 

75  to   85 

24  to  20t 

"    2oto6ot 

Then  x6  to  top. 

—        — 

85  to  100 

28  to  25t 

"    24  to  sot 

"    2oto75t 

Then  16  to  top. 

If  over  100  feet,  each  additioniU  25  feet,  or  part  thereof,  above  the  ctirb- stone  to 
be  increased  4  ins.,  and  if  there  is  a  clear  span  of  over  25  feet  between  the  walls,  4 
ins.  additional  width  for  every  12.5  feet,  or  flraction  thereof,  that  they  are  more 
than  25  feet  apart. 

Nora.— For  otiier  ead  fuller  detidla  of  dinMOdoiu,  see  Lawi  relating  to  Constraction  of  Boildingi. 


Weight  of  Materials  Per  Cube  Foot. 


MaterUle. 

Lbe. 

Mnterialt. 

Lbe. 

Brick \ 

"5 
160 
160 

White  Marble 

Cast-iron 

160 

^§° 
480 

487 
35 

Masonry ) 

Sandstone 

Wrought  Iron 

Rolled  Steel 

White  Pine 

Granite    or    other) 
stone 1 

Mnterlale. 


Lbe. 

3« 
23 

54 
54 

Aoo^.— Weight  assigned  50  lbs.  per  sq.  ft.  is  addition  to  weight  of  its  materials, 
assumed  in  the  following  compatations  at  15  lbs. 


Spraoe 

Hemlock. 

Georgia  or  Tellow) 

Pine t 

White  Oak 


*  2240  lbe. 


t  Or  neareet  tier  of  beame  to  thai  faelgbt 


FLOOB  BEAMS,  GIRDEB8,  COLUMNS,  ETC.  1 02 1 

Header  and  Trimmer  Beams,  of  4  fe«t  or  less  in  length,  one  inch  deeper  than 
their  adjoining  floor  or  roof  beams:  when  over  4  feet  and  not  over  15  feet,  to  be 
proportionately  increased,  or  doubled  in  width;  and  when  over  15  feet  to  be  sup- 
plemented with  a  wrought  iron  Fitch  plate  of  suitable  thickness  securely  bolted  to 
beams. 


Crusliina:    and    Transverse     Strengtlx    and    Coefiloients 

of*  Safety'. 


Cnishbg  per  Sq.  Inch. 


Lbs. 

Cast-iron 80000 

Rolled  Iron 40000 

Rolled  Steel 48000 

White  Pine 3500 

Spruce 3  500 

Georgia  or  Yellow) 

Pine J5000 

White  Oak 6000 


Trantvene  Oba  Inch  Squara 

•nd  Loaded  in  Centre 

between  Supports. 


Lbe. 

Georgia  or  Yellow) 

Pine JSSO 

White  Oak 550 

White  Pine 450 

Spruce 450 

Hemlock 400 

If  uniformly  loaded  doubled. 


Coefflcientt  or  Factors  of  Safety 
for  Crushing  and  Tensile. 


Columns  and  Vertical  Sup- 
ports of  Wrought  Iron 
or  Rolled  Steel. ..Four. 

All  other  materials,  ./^ve. 

For  Tie-rods  and  all  parts 
sutjected  to  a  Tensile 
stress Six. 


Illustration. — Assume  a  warehouse  of  stone  and  brick  masonry,  25  feet  in 
width,  4  stories  in  height,  with  a  cellar  and  sub-cellar,  with  one  line  of  girders  and 
columns  above  and  brick  piers  in  sub>cellar,  8  feet  apart  ft-om  centres,  stairways  4 
feet  in  width  and  15  in  length;  ground,  wet  sand. 

Heights  between  Levels  of  Floors,  inclusive  of  Beams,  and  Required  Capacity  0/ 

Beams. 


Ft.    Lbs. 
Sub-cellar 8  .  — 


Ft. 
ist  story 15 


Cellar 10    300     2d  Story 12.83 


Lbs. 

300 
250 


Ft.      Lbs. 

3d  Story «o-33  225 

4th  Story 9       300 


Height  of  Buildistgfrom  Curb  hne,  as  determined  by  the  Hei^s  bdween  the  Floors. 

To  the  upper  side  or  level  of  the  4th  floor  39'  9",  and  to  the  under  side  of  the 
roof  48'  2",  hence  the  brick  walls  are  to  be  x6  in  width  Arom  ist  to  under  side  of 
3d  floor,  and  12"  above. 

Foundation  of  Side  ITaUf.— Sub-cellar,  le^-f-S"  for  stone  masonry  =  24"  for  a 
depth  of  12  feet  below  the  curb  line,  and  for  its  part  of  10  feet  below  this,  4"-)- 28" 
=  2  feet  4  ins. 

Cellar,  i6"+  8"  for  stond  masonry  =  24",  or  a  feet. 

ist,  2d,  and  3d  floors  i6"=  i'  4",  and  4th  floor  12"=  i  foot. 

Floor  beams,  half  lengths.  Cellar  12'  6^—2'  4'=  10.16  feet,  2d,  3d,  and  4th 
stories  12'  6"—  1'  4"=  i  s,i6feet.    xst  story  12'  6"—  2'=  10. 5  feet 

NoTS.— The  ■nb^allar  floor  Is  of  oiaionry. 

All  Computations  made  for  a  Lineal  Section  of  8  feet  of  Length  of  Building. 
Operation.— Weight  to  be  supported  by  columns  under  roof.  Lbs.   Lbs. 

8  feet  apart  from  centres.    Area  of  section  11'  5"  x  8'=  92  sq.feet  x  65 
lbs.  (stress  on  roof  and  weight  of  its  materials)  = 

Girder,  White  pine  5"x  5"  In  breadth,  depth  =  /iiii?^  =6.48  (6.5)  ins, 

V  225*  X  5 

To  be  supported  by  column 

Column,  Yellow  pine,  o  feet,  less  oak  cap  and  girder  8^.5  =  Bfeet  3. 5  ins. 
Diameter  by  approximation  ttom  table,  p.  769,  4.7  ins.,  area  =  17.4  sq. 

ins.,  and  by  formula,  p.  768,  — 5000X1734       _^  ^^_ ^^^ 


5900 

5963 
85 


\4-7/ 


004 


Fourth  .9fory.— Weight  required  to  be  supported  300  lbs.  Area  of  sec- 
tion 1 1'.  16  X  8'=  89. 33  sq.  feet  x  200  lbs.  = 

Floor  beams,  White  pine  a"x  10" and  19. i" apart  flrom centres, capao- 
ity  not  less  than  200  lb8.r=  257  lbs.  per  sq.  foU 


17866 
330 


*  Coefllcleni  for  While  pine  nniformlv  Uiaded. 


t  For  safety. 


I022         FLOOB  BKAMSy  GIBDBBBy  COWMNS,  BTO. 

«  LiM.        Lba. 

Gfrder,  TeUov  pine,  7  ins  breadth,  depth  =  /—  1*  ''^  =;  8. 7   ( 8.5 ) 

V   «75*X7 
int.  and  cap  = 1^ 

To  be  supported  by  column 24438 

Column,  Yellow  pine,  9'  6"  less  girder  and  cap  :=  Zfttl  7  int 24  438 

Diameter  by  approximation,  7.75  Ins.,  area  — 47  «^.  iiw.,  and  by 
formula,  p.  768, 5«»  X  47 _^^^ ^^^^ 

Weight  of  column  and  cap 172 

Tkir^  iS^fory. ^Weight  required  to  be  supported,  245  lb&    Area  ot 

section,  89. 33  x  295  lbs.  = «o  100 

Floor  beams,  White  pine,  same  as  preceding, t^  257  lba  per  sq.  foot, . . .  330 

Girder,  Yellow  pine,  8  ins.  breadth,  depths  /        °*^°  =  8.s  ins, 

'                      '     *^       V   275X8         ^ 
and  cap  =... , 220 

To  be  supported  by  column 45260 

Column,  Cast-iron,  13  ,  less  girder,  cap,  and  sole  plate  i'=  xnfeeL — 

Diameters  by  appro^dmation,  as  preceding,  6  and  5.125  in&  =  7.65 

tq.  int.,  and  by  formula,  p.  768,. ^       ^'       — = 50579 

ProoMd  in  like  manner  for  remaining  oolumns  and  floom 

Second  Story. — Weight  required  to  be  supported '       ^  22  333 

Floor  beams,  White  pine,  3  X  "  X  19'- 1  <ns 397 

Girder,  Yellow  pine,  8  ins.  in  breadth,  9  ins.  in  depth 935 

To  be  supported  by  column 68225 

Column,  Oast-iron,  diameters  7X6  Ins.,  length  15',  less  girder, cap, 

and  sole  plate  =:  14/ipet 72  416 

First  Sffory.— Weight  required' to  be  supported 96  800 

Floor  beams,  White  pine,  3  x  12  x  19.1  ins 397 

Girder,  Yellow  plue,  9  ius.  in  breadth,  9. 5  ins.  in  depth 274 

To  bo  supported  by  column '95696 

Column,  Cast-iron,  diameters  7X6  Ins.,  length  9  feet,  less  girder,  cap, 
and  sole  plate  =  B/eet. .' 1 12  070 

Cellar. — Weight  required  to  be  supported. 25  200 

Floor  beams.  White  pine,  3X  12X  19.1  ins. '    397 

To  be  supported  by  Pier. ,  < . , , 121 293 

Sub-etUaar,  Fier Brick  maeonry  in  lima  and  cement  mortar  30  int. 

8q.=:6.25  sq.  feet,  which  at  23cxx>  lbs.  per  sq.  foot  = 143750 

Weight.   6.25  X  6.33  feet  in  height  and  footing  stone,  8  Ins.  in  depth  x 

42  Ins.  square  =s 5800 

To  be  supported  in  addition  to  weight  of  piles 127093 

Requiring  4,  set  at  30  ins.  from  centres,  and  driven  at  least  to  a  refusal 
of  30000  lbs.,  which,  when  they  are  In  a  quiescent  condition,  = 
40000  lbs.  z^ 160000 

Side  Walls  and  Footings. — Weight  01  each,  Including  one  half  ot 

weight  on  Pier an  370 

Requiring  7  piles,  set  and  driven  in  like  manner  for  the  pier 280000 

NoTB.— The  «zecu  of  b«u1nfr  raMcity  of  the  piles  it  to  meet  any  extraordfawry  luullnc  of  the  floon, 
mad  the  poMibllity  of  edilsfr  to  tb«  iMiKfat  of  Uw  butUUng. 

For  dimenaiona  of  HMMler  and  Trimmer  Beams,  see  pp.  834-«84i. 

—  •  -  -  - — --^ —  ' — —    — ^ ■ —  •  ■  ■    ■  i» 

•  CoeOdwl  /or  Yellow  piq^ 


^►-•— 


NON-CONDUOTCKBS  OF   HEAT. 


I033 


HiOss    of  Presfiiar«    of  yio-w  of  Air  for  Vax»yiafif   JDliajia.-' 
elierH    of  Pipo   axxd.  Velooitiea. 

'         '  '  • 

l«sa  of  prefimre  per  sq.  ioch  for  varying  Diameter  of  pipe  and  Velocities  of  fiow; 
computed  upon  the  basis  that  the  friction  is  clii:^ct)y  inverse  to  the  innet  siirface 
of  the  circumference  of  tlie  pipe.  TUifi  is  not  normally  correct,  inasmuch  as  whilst 
the  area  of  the  inner  surface  is  in  a  direct  ratio  with  the  diameter,  that  of  the 
transverse  area  of  Uie  pipe  is  as  the  square  of  its  diameter.  For  ordinary  reference 
and  for  pipes  of  approximate  diametors  it  is  sulQcientty  correct 

The  TaJ)le,  with  some  addition  to  the  velocity^  is  for  a  pipe  0/2  ins.  in  diameter. 

For.  other  JHqmtter  thf  Lots  of  Pressure  is  directly  Inverse  to  the  Diameter. 


> 

Feet^ 
100 

200 


Pressure 

per  Sq. 

Foot 

Veloeltyof 
Air  per 
Miaute. 

Lbs. 
.0005 
.0008 
.CKKII 

Feet. 

•300 
400 

5QO 

I3^i 

s  ^  o 

Lbs. 
.0031 
.008 
.oil 


Velocity  of 
Air  per 
MiBute. 

Pressure 

per  Sq. 

Foot. 

Velocity  of 
Air  per 
Miouta. 

Velocity  pf 
Air  per 
Minute. 

Pressure 

per  Sq. 

Foot. 

Feet. 
600 

750 
900 

Lbs. 

.019 
.Q28 

Feet, 
lioo- 
1500 
2000  1 

Lbs. 
.05 
.078 
.X04 

Feet. 
3400 
30OQ 
36cx> 

Lbs. 

.312 

•45 

Velocity  0 
A4r  per 
Mitmte. 

Pressure 

per  Sq. 

Foet. 

Feet. 
4200 
4800 
6000 

Lbs. 
.612 
.8 

I  25 

{American  Blower  Co.) 


R.4&lative    Efflcieuoy    of  I^on-Condxiotors    of   £Ieat< 

Tiie.  efflciency  of  substances  for  the  retention  of  beat  varies  generally  inversely 
lo  their  power  of  conduction  of  it. 

By  experiment  it  was  ascertained  that  the  relative  condensation  of  steam  in  a 
metal  pipe  under  the  following  conditions  was : 

Bare 100  |  Oementoteied........  ^  |  Hair-felt  covered 27 


Relative    Cost    of    Steam    I»oAver    in    l^ngiiies    per    1^, 

Based  on  cost  of  one  of  1000  IP  1888. 

Plant,  Fuel,  and  Cost. 


Nl)D 

Condensing. 


:  $  cts. 

RDgiiie  itnd  House  complete 39- 50 

Depreciation,  Repairs,  Interest,  Taxes,  and  In-t 

surance I       3. 70 

Boilers,  House,  and  Gbimney .<. |     39, 

Pepreciation,  Kepairs,  Intere&t,  Taxes,  and   In- 
surance  ;      3.95 

Total  yearly  cost  of  Coal  aad  daily  attend- 1 

ance  308  days. . . . ,  — 25.595 

33248 
3 


Total  yearly  cost 

Coal  per  i  H*  per  hour  in  lbs. 


Co.a...U.,.    ^a~Sj. 


$  cts. 

33- 

4.14 
.24.89 

338 

21.817 

29-355 

2.50 


$  ct^ 
40. 

so? 

18.36 

2.50 

16. 570 

24. 087 

1-75 


Chas.  T.  Main,  A.  S.  M.  E. 
Non.<— If  tb«  «zlwait  timm.  ii  otiUM4>  tb«  nt^  wUl  tw  GvrtwpaiuUwIy  reduced. 

'Po    Grradiiate    tlie    Compass  of  a  rTransit    Th-ood- 
olite    to     Coinoid«     ^w^ltli     tlie     Xiine     of    Sifflit 
•  of  tlie    Telescope. 

Bute  a  small  hole  in  centre  of  cover  of  objeet-^ass  and  put  it  in  place ; 
deprt'Sd  eye  end  of  telescope  to  the  graduated  circle  of  the  compaas.  Pla^e 
telescope  parallel  to  the  light,  as  Uiat  from  a  window,  and  with  a  sheet  of 
white  glazed  paper,  or  like  surface  reflective  of  the  light,  a  distinct  view  of 
th^  graduations  on  the  circle  will  be  observed  and  so  well  defined  that  the 
positions  of  180°  and  j6o°  with  regard  to  the  line  of  right  can  be  obtaoieds 


I024  APPENDIX* 

To  I!>et«i*zxiine  tHm  Diameter  of  Cylinder  of  a  ITotx* 
.Coixdensiiiif  8teatii*Ktigiiie^  and  tlxe  KlezxiezitB  of*  a 
Fire-Flixe  Sieaxxi  Boiler,  by  Coxnputatioix  of  tliem 
froixx  th.e  required  Capacity  of  Kusixxe  and  of  its 
A.88igiied    Operations. 

Steam  pressure  by  g^nge,  70  lbs. ;  cut-off  at  one-third;  stroke  of  piston, 
3.5  feet ;  revolutions,  50  per  minute ;  clearance^  or  volume  of  space  between 
mean  surface  of  piston  and  valve  seat  or  o|)ening,  .1;  back  pressure  and 
friction  each  assumed  at  2  lbs.  per  sq.  inch. 

Hence,  P  =  7a;  ^  =  42-^3-7- 12  =  1.16  ;  r  =  i.z6-|->i  =  i'26  ;  Lssj-s;  c=:.i', 

R=  ^■^,"^*'  =286;  6  =  2;  and/=2. 
1. 16  -f~  •* 
Assume— Kvaporation  of  water  =  10  lbs.  per  lb.  of  coal.    Combustion,  15  lb&  of 
coal  per  Hq.  foot  of  grate  surfuce  per  hour.    Heating  to  grate  surface  as  35  to  x ; 
and  transverse  area  of  tubes  to  grate  surface, .  14. 

Xo    Compute    Alean    Sffeotive    Pressure    (p.  7x0-711)1 

7o(i.26Xi-fhyP»log.g-86~.x)      — -_x73.9 

35  3-5 

To  Compute  Diameter  of  CifUnder. 

^-^ — ^^°°^  =  14 143,  which -i- 45.7  {&f.= 309.5  im.=  19.85  (20)  t4<. diameter. 
5oX3-5Xa 
Then,  diam.  20  int.  =  3x4. 16  sq.  int.  X  42  ins.  stroke  =.  13 195,  steam  cut-off  at  33 

=  4354  X  50  X  2  =  strokes  X  60  minutes  =  26 124  000  cube  ins.  ;  which  -i- 1728  and 
again  by  5.05,  the  volume  of  one  lb.  of  steam  at  the  absolute  pressure =2994  Ibe. 

Assume  feedwater  at  50^.  Then  2994  lbs.  steam  at  70  lbs.  gauge  =  85<)  absolute 
pressure,  by  Factor  of  Evaporation  (see  below),  =  x.201  (the  equivalent  value  of 
2i2<^)  =  3596,  and  3596  -T-  34.5  (the  lbs.  per  hour  evaporated  at  2i2<^  at  70  lbs.  gauge 
pressure*)  =  104  I£P. 

Hence,  2094  lbs.  water  to  be  evaporated  per  hour ;  2994  -r- 10  lbs.  water  evapo- 
rated per  16.  of  coal  =  299.4  lbs.  coal  per  hour;  299.4  -7-  '.5  lbs.  of  coal  expended  per 
sq.  foot  of  grute=  19.9  sq.  feet  of  grate  surface;  and  19.9  X  35  sq.  feet  of  heating 
surfiice  per  sq.  foot  of  grate  surface =606. 5  sq.  feet  of  beating  surface;  and  X9.9  x 
.14,  proportionate  transverse  area  of  tubes  to  grate  surface, =2.78  sq.  feet. 

If  engine  were  to  be  a  condensing  engine,  the  increase  in  the  mean  pressure  in 

the  cylinder  will  correspondingly  decrease  the  diameter  of  the  cylinder,  less  the 

increased  friction  of  the  operation  of  the  air-pump,  assumed  at  .71  Ite.  pressure 

per  sq.  inch. 

To    Compute    ITaotor   of  lfi'vai>oration. 
jl ^ 

. X  F.    H  and  h  representxTig  total  keai  of  the  tteam  at  given  pressure  and 

965.7 
temperatta-e  offeedwater^  in  degrees,  and  ¥  factor. 

Illustration.— Assume  gauge  pressure  of  steam  70  lbs.  per  sq.  inch,  and  tem- 
perature of  fecwlwater  i  loP. 

1209.8  —  XIO 

— — =  X.  139. 

9657 

Application.— Aaanme  the  volume  of  water  evaporated  at  the  temperature  of  the 
feedwater  of  110°  to  be  40000  lbs.  in  10  hours  ;  steam,  gauge  pressure  70  lbs.  per 
sq.  inch ;  coal  oonsnmed,  4000  lbs.,  and  relVise  flrom  it  350  Ibi. 

Tbexk,  40000-^4000=110  lb&  water  evaporated  per  lb.  of  coal  consumed,  and 
40000-7-  4000  —  350 1=  10.96  lbs.  water  evaporated  per  lb.  of  combustible. 

For  this  pressure  of  steam  and  temperature  of  feedwater,  the  factor  of  evapora- 
tion t  =  X.139 ;  which  X  40000  (volume  cf  water)  =  45  560  lbs.  equivalent  evapora- 
tion at  212° ;  and  45  560-f- 4000— 350  {lbs.  of  combustible)  =  12.48  lbs.  water  evapo- 
rated per  lb.  ofcnmbustiblejrom  and  at  212^. 

If  34.5  lbs.  water  evaporated  flrom  and  at  21 2P  =  one  IH*,  a  boiler  or  boilers,  oper- 
ating with  the  given  elements,  will  have  developed  45  560-77  34.5  X  10=  132.  x  fi^. 
"  —  I.    -  ■  ■  ■  ■  . 

•Am.  So&M.  K-  t  Seep.  478.  t  Sm  alto  Am.  Soc  M.  E.»  1884. 


1 


APPENDIX.  1025 

Heating    Sux*fkoe. 

Of*  a    Steana    Boiler,   eto. 

Heat  is  communicated  to  the  transmitting  surfaces  of  a  steam  boiler  in  the  fol. 
Vowing  order  of  effect — viz. ,  incandescence,  flame  and  gases  of  combustion ;  and  that 
transmitted  by  radiation  of  it,  (Vom  one  sorfbce  to  another,  is  reduced,  in  the  ratio 
as  the  square  of  the  distance  between  the  surfaces,  and  it  is  also  reduced  by  a  de- 
pressed inclination  of  the  surface  upon  which  the  current  of  the  heat  impinges, 
and  contrariwise  increased  by  a  raised  inclination. 

EvaporaUve  Efficiency. — ^The  evaporative  efficiency  of  a  boiler,  or  of  an  assigned 
area  of  heating  surface,  as  one  sq.  foot,  depends  .so  entirely  upon  the  thickness, 
position,  and  condition  of  it  that  it  is  wholly  impracticable  to  assign  a  determinate 
valae  to  it  It  is  also  measurably  affected  by  the  duration  of  the  time  of  the  trans- 
mission of  the  gases  of  combustion  over  it. 

Theoretical  and  Attainable  EvaporaMon. — If  all  the  heat  of  the  combustion  of 
coal  in  the  fUmace  of  a  steam  boiler  was  utilized,  the  evaporation  fh)m  one  pound 
of  best  anthracite  would  be  from  and  at  212^  abont  15  Iba  of  water,  but  only  80  per 
cent,  of  that  has  been  attained. 

At  the  Centennial  Exhibition  in  Philadelphia  in  1876,  the  average  evaporation 
from  15  boilers  of  different  types,  with  grate  area  as  35  to  i,  was  10.27  lbs.  of  water; 
aud  the  averages  of  evaporation  per  sq.  foot  of  heating  surface  per  hour  was  2.99 
lbs.,  varying  from  1.7^  to  9 ;  aud  of  the  temperature  of  the  escaping  gases,  410°. 

Experiments  with  locomotive  boilers  by  D.  K.  Clark,  having  from  52  to  90  sq. 
feet  of  heating  surface  per  sq.  foot  of  grate,  gave  with  coke  an  average  evaporation, 
at  the  ordinary  temperature  and  pressures,  9  lbs.  of  water  per  lb.  of  fuel. 

In  horizontal  tubular  boilers,  with  heating  to  grate  surface  as  25  to  z,  the  vol- 
ume of  water  evaporal«d  per  lb.  of  fuel  decreased  as  the  fuel  consumed  per  sq.  foot 
of  grate  area  Increased. 


Fnel 

Water  evaporated 

Fnel 

Water  evaporated 

from  3X3* 

Tempera- 

from  313* 

Tempera- 

per bour 
p«r»q. 

foot  of 

per  lb. 

persq. 
foot  of 

tare  of 
escapioK 

per  hour 
persq. 

fe)tof 

per  lb. 

Wof 

ture  of 
escaping 

^oot 

bestiiiK 

of  coal. 

heating 

gases. 

^t 

heating 

of  coal. 

heatiag 

gases. 

•f|Cnt«. 

•urfiwe. 

surface. 

1  of  grate. 

surface. 

surface. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Deg. 

Lbs. 

Lbs. 

Lbs. 

Lbs. 

Deg. 

6 

•24 

10.49 

2.52 

444 

16 

.64 

8.21 

5-25 

897 

8 

.32 

X0.3S 

3-3« 

472 

18 

.72 

7.7 

5-54 

999 

10 

•4 

10.05 

4.02 

fi^ 

20 

.8 

7-32 

5-85 

1074 

12 

.48 

9-53 
8.87 

4.57 

685 

22 

.88 

7.04 

6.19 

1130 

«4 

.56 

4.96 

766 

24 

.96 

6.82 

6.54 

1174 

Bery.  F.  Ithervxiod,  U.  S.  N. 

The  efficiency  is  also  dependent  upon  the  area  of  it  for  the  contact  of  furnace 
beat,  flame,  the  gases,  and  the  period  of  the  application  or  transmission  of  the 
beat  over  it ;  and  inasmuch  as  flame  imparts  more  heat  than  the  inflammable  gases, 
the  diameter  of  tubes  should  be,  so  far  as  practicable,  of  a  capacity  to  admit  of  the 
flow  of  it 

Radiation  0/  Heat  to  Surfaces. — If  the  thickness  and  surfaces  of  boiler  plates  and 
lubes  were  uniform,  or  progressively  reduced  in  thickness  and  resulting  capacity 
of  radiation,  their  progressive  effect  and  the  proper  temperature  of  the  gases  at  the 
point  of  delivery,  as  into  a  smoke-pipe  or  chimney-stack,  could  be  readily  obtained 
by  a  dividend,  of  the  difference  of  temperatures  between  that  of  the  entrance  of  the 
gases  of  combustion  into  the  flues  or  tubes,  and  that  of  212^,  the  divisor  being  that 
of  any  assumed  number. 

Thus,  assume  the  gases  at  the  bridge  wall  at  1700°,  which  is  the  temperature 
Assigned  by  Chief  Engineer  Benj.  F.  Isherwoodj  U.  S.  N.,  being  the  result  of  his 
observation  and  extended  experiments. 


Then,  at  six  locations  or  divisions  of  the  temperature. 


1700 


p_ 


212'^ 


=  248°; 


and   17000—2480  =  14520  and 


1452 


o 


212*^ 


=  207*^ 


14520—2070=12450  and 


«245 


o 


212^ 


=  1730;  12450  —  1730  =  10720  and 


1072 


o 


212^ 


=9280  and  9»8°-j2i20^^^,  9280 -  120O  =  8080  and  ^° 7 *"°  = 


=  1440;  10720  _,44« 


-=990. 


1026  APPBITDIX. 

Thus,  at  termination  of  6tb  location,  oqO  are  radiated  in  its  passage  tram  the  sth, 
and  the  temperatare  of  exits  806° — 21 2^=  596^'. 

ProfBsaor  Bankine  asserts  that  when  the  difference  of  temperature  between  the 
water  of  evaporation  and  the  gases  of  combustion  is  ver^  great,  that  the  rate  of 
conduction  increases  faster  than  the  ratio  of  the  difference,  and  is  nearly  propor- 
tional to  the  square  of  the  difference  of  temperature,  and  which  may  be  thus  ex- 
pressed. 

T— «''-=-  C  =  R  T  and  t  representing  tht  tempetatures  of  Vu  ffiuei  and  tkt  footer ^ 
C  a  oonakuu  defitedfrotn  experience^  t6o  to  geo,  ami  R  raMo  ofcondueUan  in  ther- 
mai  units. 

Assume  temperature  of  gases  and  water  1500^  and  2x2^  and  C  =r  tSa 

— — r r=  0216  ^rmal  units. 

x8o  ' 

Robert  Wilson^  London,  i8q6.  Gives  for  nMiltitubular  and  other  boilers  with 
heating  surface  to  grate  area  n'om  30  to  40  to  i  :  9  sq.  feet  heuting  surface  to  evap- 
orate I  cube  foot  fresh  water,  or  4.5  so.  feet  of  total  beating  surface  per  IP.  In 
locomotive  and  like  boilers  with  a  blast  draugni,  with  heating  surface  to  grate  firom 
60  to  80  to  1 :  6  sq.  feet  heating  surface  to  evaporate  i  cube  foot  fresh  water,  or  3 
sq.  feet  of  total  heating  surface  per  IP  ;  and  the  highest  average  efRciency^  i  sq. 
foot  of  heating  surfkce  for  13.5  lbs.  water,  of  4.66  sq.  feet  for  i  culje  foot  of  water. 
And  in  ordinary  externally  fired  boilers,  with  heating  surn^e  to  grate  10  to  16  to  x : 
x8  sq.  feet  of  heating  sarfkce  to  evaporate  i  cube  foot  watei,  or  9  feet  per  W. 

Vertical  Boilers. — Usually,  are  wasteful  of  fuel,  but  when  in  good  condition  and 
the  tubes  properly  spaced,  16  sq.  feet  of  heating  surfkce  have  evaporated  r  cube 
foot  of  water  or  8  sq.  feet  per  Wy  ^itfa  a  consumption  of  x  lb.  coal  to  evaporate  8 
lbs.  water = 7.75  lbs.  per  cube  foot  Usually  ic  to  12  sq.  feet  of  heating  surfkce  are 
required  per  H*. 

Tubes.^The  numl)er  and  8ect|onal  area  of  tubes  in  a  boiler  (horizontal  multi- 
tabular)  and  the  spaces  l>etweea  them  should  be  determined  by  the  transverse  area 
over  the  bridge  wall  or  the  grate  surface,  and  the  required  facility  of  the  ascending 
current  of  steam  ftK>m  over  fbmace,  and  in  all  cases  should  be  set  in  direct  vertical 
lines,  and,  in  consideration  of  their  efficiency,  their  lower  or  inner  surface  kept  flree 
fVom  accumulation  of  the  mechanical  deposit  of  ashes  and  soot. 

Inasmuch  as  the  surface  of  a  tube  increases  directly  with  its  diameter  and  iUt 
sectional  area,  or  capacity  as  the  sqaare  of  it,  it  l)ecomes  necessary  in  order  to  at- 
tain like  economy  of  evaporation  by  them,  when  of  diflbrent  diameters,  as  i  and  1 
ins. .  that  the  length  of  the  greater  diameter  must  be  twice  that  of  the  less. 

TnuB,  the  2-inch  tube  having  four  times  the  sectional  area  or  capacity  for  the 
passage  of  flame  or  gases  than  the  less,  and  but  twice  its  heating  surface,  the  length 
of  the  greater  must  be  twice  that  of  the  less.* 

Lenff^  of  Flues  and  Tubes.-^tbe  greater  the  velocity  of  the  current  of  the  gaset 
in  a  flue  or  tube,  the  greater  will  be  it§  temperature  at  their  exit,  and  consequently 
the  greater  the  waste  of  it,  unless  the  length  of  them  is  proportional  to  the  velocity 
of  the  current 

The  absorption  of  the  heat  of  the  gases  requires  time,  and  hence  Ibe  longer  tbd 
course  of  them,  if  duly  proportioned,  the  greater  their  efftectt 

PicUt  assigns  tbe  proportion  of  radiating  beat  fTom  coal  in  its  condition  of  per> 
feot  combustion  at  .5  of  its  latent  beat 

Length  and  Area  of  ru6««.— With  ordinary  smoke>pipe  or  chimney  dvangbk,  tba 
length  of  a  tube  should  not  exceed  40  times  its  diameter.  Experiment  with  a  tube 
8.5  ins.  in  diameter,  the  temperature  of  the  gases  at  tlieir  deliyery  being  500°,  the 
length  of  it  was  100  ins.,  or  40  times  its  diameter,  and  with  a  blast  draught,  as  in  a 
locomotive  boiler,  or  blower  draught ;  the  length  may  be  much  increased.  By 
late  experiments  on  a  railway  in  France  it  was  foond  that  greater  economy  was 
attained  by  increasing  the  length  of  locomotive  tubes  above  12  feet  In  conse- 
quence of  which  the  Baldtoin  Locomotive  Worki,  of  Philadelphia,  assign  a  length 
of  14  and  14.5  feet  for  a  2-inch  tube  =  84  and  87  times  the  diameter.  Prior  to  this 
2-inch  tubes  were  usually  but  10  and  X2  feet  in  length.  In  all  cases,  however,  the 
length  should  be  in  direct  proportion  to  the  diameter. 

VerticeU  Fire  Tubes. — Are  not  as  effective  as  horizontal  or  inclined,  as  the  gasec 
*  Sm  p.  743.         t  For  the  •Taponting  capacity  of  tubM  of  difforont  lengtlM,  bm  aUo  p.  74a. 


APPENDIX.  1027 

which  lose  some  of  their  temperature  by  contact  with  the  surface  of  the  tubes  are 
not  replaced  by  the  centre  current,  and  the  additional  temperature  of  it  imparted. 

Water  Tubes. — Whether  vertical  or  inclined,  enable  the  steam  which  is  gener- 
ated at  their  inner  surftice  to  rise  as  fast  as  it  is  generated,  and,  as  a  consequence^ 
the  velocity  of  the  current  of  the  water  is  increased. 

Water  or  Masonry  Bridge  Walli.— At  the  termination  of  the  grates,  by  diverting 
the  current  of  tbe  gases  of  combustion,  enable  them  to  be  better  commixed,  and 
effect  a  more  effective  combustion  and  consequent  economy. 

In  the  computation  of  the  area  of  heating  surface,  the  areas  of  the  furnace  above 
the  grates,  bridge  wall  if  water,  combustion  chamber,  flues,  tubes  (fire  or  water), 
and  connections  to  water-line  are  to  be  taken,  and  also  two-thirds  of  all  the  gas 
surfaces  above  it,  inasmuch  as  they,  as  in  the  case  of  a  steam  chimney,  are  sur- 
rounded by  steam  at  a  high  temperature. 

Steam    Heatins* 

{In  addition  to  p.  527. ) 

1?o  Ooxnpixte  ^rea  of  Plate  or  Pipe  Surface  of*  Cast- 
Iron,  to  Coxnpexiaate  the  Reduotion  of  Xeznperature 
in.  an.  B^noloeed  Space  by  tlie  Exposure  of  G)-laaa 
to  tlie  Kxternal  A.ir,  or  its  ICq.uivalent  in  Kxpoaed 
W^alls. 

T  —  t 

- — —  =  A.    T  and  t  representing  degrees  of  required  temperature  of  space  and  of 

external  air,  H  temperature  of  heating  surface,  and  A  area  of  radiating  plate  or 
pipe  maface  in  sq.  feet. 

Illustration.— Assume  temperature  of  external  air  70^,  of  heating  surface  i6<:^, 
and  required  temperature  of  space  70*^. 

70^ 20** 

—-a 0=  667  sq.feet  of  heating  surface  for  each  sq,foot  of  glass.     Hence,  if 

100^^7** 
the  area  of  the  glass  in  windows  or  lights  of  a  room  is  80  sq.  feet,  then  .667  X  80= 
53.36  sq.feet  additional  radiating  surface. 

H-adiation. 

One  square  foot  of  Direct  Radiating  surface  will  heat 


Cube  Feet. 
In  an  ordinary  domestic  room 

with  glass  windows 35  to  45 

In  an  ordinary  public  room 45  '^55 

*'  small  dormitories 50  "60 

"  large  dormitories 45  "55 

**  hallway  and  passages 60  '*  80 

"  school  and  low-ceiled  lecture- 
rooms  and  offices. ■. . . .  60  "75 


Cabe  Feet. 

In  churches  and  high -ceiled 

halls ,,..  65  to  95 

*'  small  low -ceiled  factories 

and  workshops 50  '*    (So 

"  small  high -ceiled  factories 

and  workshops 60  "    70 

"  large  high -ceiled  factories 

and  workshops 75  *^  140 


Steam.    Bxlianst    Irleating. 

Exhaust  steam,  according  to  the  condition  in  which  it  flows  nrom  an  engine, 
contains  water  and  oil,  varying  from  10  to  20  per  cent,  of  both  combined.  Conse- 
quently they  should  be  arrested  before  entering  a  heating  plant ;  and  as  any  restric- 
tion to  the  flow  of  the  steam  involves  a  resistance  to  it,  or  that  which  is  termed 
bttok  pressure,  the  receiving  and  distributing  pipes  should  have  the  greatest  prac- 
ticable capacity  and  least  restriction  to  the  flow  of  it  by  curves  and  angles. 

To  meet  an  emergent  requirement  for  heat,  a  direct  connection  to  the  boiler, 
through  an  automatic  reducing  pressure  valve,  must  be  furnished,  and,  contrari- 
wise, a  relief  valve  should  be  furnished,  in  order  that  when  a  reduced  temperature 
or  volume  of  steam  is  required  in  heating,  it  may  escape  into  the  air. 

To  Design  and  Proportion  an  Exhaust  Stenm  IHant.—li  is  necessary  flrat  to 
ascertain  the  area  of  radiating  surface  required  to  condense  the  exhaust  steam,  and 
to  obtain  this  the  volume  of  the  steam  which  the  engine  would  exhaust  must  be 
ascertained.  To  determine  which  (see  table,  p.  708),  give  weight  of  WAter  evaporatef' 
fk-om  aia^  per  sq.  foot  of  heating  surlkoe. 


1028 


APPENDIX. 


Illustration.— Assume  the  area  of  the  heating  surface  Is  9000  sq.  feet,  of  grate 
30,  and  fuel  consumed  16  lbs.  per  sq.  foot  of  grate  per  hour. 

The  water  evaporated  per  hour  per  sq.  (bot  of  grate  =  8.21  (see  table,  p.  1035)  X 
16  =  131.36  lbs.  water,  which  x  26.36  (the  volume  of  i  lb.  steam  at  212°)  =  3462.65 
cube  feet  of  steam. 

Water  evaporated  per  hour  per  IH*  in  a  non-condensing  engine  ranges  Arom  25 
to  40  lbs. ,  from  which,  for  condensation  and  leaks,  10  per  cent,  should  be  deducteid 
to  obtain  the  volume  of  steam  available  for  heating. 

One  square  foot  of  Direct  Radiating  surCEU^e  will  heat 

Cnbe  Fett.  1  Cnbe  Faet. 

In  dwelling-houses 45  to  55  I  In  factories,  stores,  and  shops    90  to  100 

"  offices. 65  "  75  1   "  churches,  auditoriums,  etc.  150  "  200 

For  Indirect  Radiation  deduct  20  per  cent.,  and  when  the  heat  is  transmitted  by 
blast  ft'om  a  Blower  add  from  4  to  6  times,  In  accordance  with  its  volume  and  con- 
sequent velocity. 

Hot- "Water    Heatixif?. 

The  sectional  area  of  the  main  pipe  should,  in  all  cases,  exceed  that  of  its 
branches,  and  for  each  sq.  inch  of  its  section,  if  short,  indirect,  and  at  a  slight  in- 
clination, 50  sq.  feet,  and  if  long,  direct,  and  vertical;  loo  sq.  fbet 

One  square  foot  of  Direct  Radiating  surface  will  heat,  the  average  temperature  of 
the  water  i6o<=>,  from  80  to  100  per  cent,  more  surfkce  than  by  Steam. 


Horse-Po'wer    Required,    to    Drive    IVtaoliinery. 

In  addition  to  Frictional  Resistances,  etc.,  pp.  475-478.  See  a  very  full  table  of 
H*  required  in  American  MackinUt^  April  12, 1894,  and  February  6, 1896. 

Referring  to  the  following  table,  it  will  be  noticed  that  the  loss  of  power  varies 
between  wide  limits,  but  in  all  cases  the  mechanical  loss  is  large,  averaging  over  41 
per  cent 

MftcliiDery.  Work. 


Union  Iron  Worka 

Frontier  I.  k  B.  Works. . 

Baldwin  Ix)c.  Works 

W.  Sellers  &  Co 

Pond  Machine  Tool  Co. . . 

Yale  &  Towhe  Co 

Ferracute  Machine  Co. . . 

Bridgeport  Forge  Cc» 

Hartford  Mch.  Screw  Co. 


Engines  and  Machinery. 

Marine  Engines,  etc 

Locomotive& 

Heavy  Machinery 

Machine  Tools 

Cranes  and  Locks 

Presses  and  Dies 

Heavy  Forgings 

Machine  Screws 


Total 

nwrmr 

Slmfting. 

ftlaehln- 
ery. 

Shafting, 
percent. 

400 

^l 

305 

•23 

25 

8 

»7 

.32 

2500 

2000 

500 

.80 

102.45 

40.89 

61.56 

.40 

180 

75 

«'°5 

•41 

»3S05 

66.81 

68.24 

•49 

35 

II 

24 

•31 

150 

75 

75 

•50 

400 

100 

300 

•25 

(Piof.  J.  J.  Flather.) 


Hef^ieevBLting    DMLaoliiiiery. 


For  the  cooling  of  Brine  and  other  liquids  by  the  alternate  compression  and  ex- 
pansion of  air. 

P         T 

T      -        75^^Trrt=^ 


t  —  t 
772CX^^  =  P. 


P  r<5>re«<»i^»«flr  jHmer  required  in  footpounds,  T  ahsolute  maximum  t»nperaiure 
of  the  air  in  the  hot  or  compressive  end  of  the  refrigercUor,  t  abseUUe  minimum  tern- 
peraiure  of  the  air  in  the  cold  or  expansion  end,  and-C  cooling  work  in  thtrmdl 
units.  {David  Thornton.) 

Illusteation.— Assume  T  =  80°  t = 30°  and  C  =  80°  —  30°=  50°. 

772  X  50 X^^^°  =  38 600  X  .625  =  24 125  =zfoot  pounds,  and  ^i^  Xg^_^^ 

=  31.35  X  1.6  =  50°.  • 

Hence,  the  most  economical  results,  as  regards  power  used,  are  obtained  when 
the  machine  is  operated  within  a  small  range  of  temperature,  as  in  a  brewery, 
where  the  temperature  of  the  water  Is  frequently  reduced  to  but  io<*. 

These  formul|9  are  applicable  to  all  refrigerating  machines,  whether  operated  l>y 


kWRTfrniX. 


1029 


atr,  other,  ammonia,  or  any  other  liquid.  -  In  ao  ammonia  machine,  or  any  other 
operated  on  the  same  principle,  in  which  mechanical  power  is  applied,  the  value 
of  P  18  the  heat  theoretically  required,  at  the  rate  of  i  heat-unit  for  772  foot-pounds 
of  power,  and  the  formula  i  becomes  (ammonia):  Heat  required  for  the  operation, 

w 

The  ammonia  machine  is,  theoretically,  economically  superior,  as  heat  is  less  ez< 
pensive  than  its  equivalent  in  mechanical  power. 
The  nature  of  the  vapor  operated  controls  the  capacity  of  the  machine. 

Relative  Capacities  of  Cylinder  Required. 


Ammonia... x 

Carbonic  acid. ....••. 16 

Methyl  Chloride 1.8 


Motbyl  ether 1.8 

Sulphuric  acid 2.6 

Ether 15.  i 

{D.K.  Clark.) 
Se-werage. 

Tn  order  that  an  estimate  of  the  volunio  or  oxcessive  rainfalls  may  be  nom- 
)>uled,  tbo  folluwiDg  data  are  derived  from  the  valuable  report  of  the  Sewerage  Com- 
mission of  Baltimore,  1897  : 

Philadelphia,  Jnly  23, 1887 4. 23  inches  in  13  minntea 

Chestertown,  Md.,  Aug.  15,  1894 3.64      '*      '*  30      ** 

Washington,  DC,  June  30,  1895 6.27      **      *'  10       ** 

The  average  of  26  fulls  was  3  inches  in  10  minutes. 

In  the  city  of  New  York  a  fall  of  i  inch  in  xo  minutes  has  fluently  occarreda- 
6  inches  per  hour. 

Safe  Transverse  Strength, 
Loaded  tn  Middle.    Supported  at  Both  Endt. 


Slate,  mean  of  242  and  537 390 

Glass 2IO 

Bluestone 178 

Granite,  Quincy 131 

fccf 


c. 

Freestone,  Little  Falls.. 121 

*■'■        Belleville,  N.  J xoi 

"        Connecticut , 6$ 

Dorchester,  Mass 50 


it 


To  Compute  Safe  Load.     — -  X  G  =  Load  in  Iba    C  representing  one-tenth  qf 

hreaking  weight 

Assume  a  flag  or  block  of  Quincy  Granite,  6  feet  in  width,  6  ins.  In  depth,  and  3 
feet  in  length  between  its  supports. 

6  X  la  X  6»  ^  ^  „ 

3X12      X'3«  =  7aXi3i=943a«>«- 

Avftag*  weight  of  17  differcot  Sanditaoei,  m  ascertained  by  Licnt-Col.  Gilmon^  U JSJ^t  >43  Un> 

CAST-STEKL   FLAT   BOPBS. 
John  A.  BoebUng's  Son*  Co.^  Nem  York. 


Dimenalooi. 

Welrhl 
per  Foot. 

Stiengtii. 

Dimenalona. 

Weight 
per  Foot. 

Stmgtiu 

Im. 

Lbe. 

U». 

Int. 

Lbe. 

Lba. 

•375  X  2 

I.IO 

1.86 

35700 

•5X3 

a.  38 

71400 
89000 

•375X2.5 

55800 

•5  X  35 

a.  97 

•375  X  3 

9 

60000 

•5X4 

3-3 

99000 

•375X3-5 

*5 

75000 
85800 

•5X4.5 

4 

X20000 

.375  X  4 

8.86 

•5X5 

4.27 

128000 

•375X4-5 

3.xa 

93600 

•5X55 

4.82 

X4460O 

•375  X  5 

3  4 

xooooo 

.5X6 

5« 

153000 

•375  X  5-5 

3-9 

xioooo 

•5X7 

5-9 

177000 

Steel  Wire  Flat  Ropes  are  composed  of  a  number  of  strands,  alternately  twisted 
right  and  left,  laid  aside  of  each  other  and  sewed  toi;cilicr  with  sod  iron  wirea 
They  are  used  sometimes  in  place  of  round  ropes  in  Bimris  of  mines:  wound  upon 
a  narrow  drum,  requiring  less  space  than  a  round  ro|)e.  Soft-iron  sewing.wires 
wear  out  sooner  than  the  steel  stnuids,  and  then  it  18  necessary  to  replace  them 
with  new  iron  wires. 


I030  APPENDIX. 

niustratioYis  in  Hiossaritluns. 

Xo    Compute    tbie    Xjengtli    of  an    ^ro   of  a    Oirole    to 

Radius    1. 

RuLB.— To  log.  of  degrees  in  the  arc,  add  2.241  877,  and  sum  is  log.  of  length. 
Nora.— When  the  arc  la  in  miniitea,  MConds,  etc.,  take  their  decimal  eqnlvaleots. 
Illustration.— An  arc  of  a  circle  is  57O  xf  44''  48"  -)- ;  what  is  its  length? 

17°  44"  48"  =  •  2957-  Log-  57°  •  2957  =  1.758  "3 

Log.  3. 1416  -f- 180°  =  2. 241  877 

Log.  1=  .000000 

1?o   Compute   tlie   IDegrees   in    an    A.ro   of  a   Circle   -wlien 

tlie    Xjengtii  Is    Q-iven. 

RcLK. — To  log.  of  length  of  arc,  add  1.758 123,  and  from  the  sum  subtract  log.  of 
its  radius,  and  remainder  will  give  log.  of  degrees. 

Illustration.— How  many  degrees  are  there  in  an  arc  when  the  length  is  2  and 
the  radius  i  ? 

Log.  2  =  .  301 030 
Log.  180°  -i-  3. 1416  =  1.758 123 

a- 059 '53 
Log.  I  =  .000000 

"    2.059  '53  =  114.59166  =  114°  35'  30  '— . 

7o    Compute    tUe    .A.n(;les    of  a    Triangle,  tlie    Xjengtli 

of  tlie    Sides    l>eing    Oiveii. 

Rule  i.— -To  the  logs,  of  the  diflferences  between  any  two  sides  and  half  the  sum 
of  the  sides,  add  the  arithmetical  complements  of  the  logs,  of  half  the  sum  of  the 
sides,  and  the  difference  between  it  and  the  remaining  side,  and  divide  the  sum  by  3, 
the  quotient  is  the  logarithmic  tangent  of  half  the  angle  opposite  to  the  latter  side. 

Rule  2.— To  the  logs,  of  half  the  sum  of  the  sides,  and  the  difference  between  it 
and  any  side,  add  the  arithmetical  complements  of  the  logs,  of  the  two  other  sides, 
divide  tlie  sum  by  2,  and  the  quotient  is  the  logarithmic  cosine  of  half  the  angle 
opposite  the  former  side. 

Rule  3.— To  the  logs,  of  the  diflferences  between  any  two  sides  and  half  the  sum 
of  the  sides,  add  the  arithmetical  complements  of  the  logs,  of  three  sides,  divfde 
the  sum  by  2,  and  the  quotient  is  the  logarithmic  side  of  half  the  angle  opposite  to 
the  remaining  side. 

Illustration.— The  sides  of  a  triangle  are  A  679,  B  537,  and  C  429.  What  are 
the  angles  ? 

79  "T  537  -r  429  __  g^^  ^  ^^j  822.5  — 679  =  143.5  =  cKjferewc«  between  two  sidet 

arid  halfgum  of  sides.    822. 5  — •  429  =  393. 5  and  822. 5  —  537  =  285. 5  =  differences  cu 
above  chtained. 

I.                 Log.  143.5  =  2.156853  3.                 Log.  833.5=3:2.915136 

"    393- 5  =  2. 594  945  "    143.5  =  2.156852 

Co.  Log.  822. 5  — 10  =  7.084  §64  Co.  Log.  537  — 10  =  7.970036 

•*      "    285.5  —  10  =  7.544394  "      "    429  —  10  =  7.367543 

2)19.381055  2)19.709557 

9.690528  9-854779 


Log.  143. 5  =  2. 1 56  852  I.  9. 690  528  =  .  5  Log.  c  Sin.  =  19°  35 

"    285.5  =  2.455606  2.  9.854779  =  .5     "    Cos.  =44°  17' 30 

Co.  Log.  679  —  10  =  7. 168 130  3.  9. 525  307  = .  5     "    Tan.  =  26°  7'  30 

"        "      537—10  =  7270026  90°    o'    o 

2)19.050614 


7? 


9525307  i860   (/  o' 


./I* 


APPKJJW^ 


1031 


To  Camp'cite  th^  Voluxn*  of  ck  Pyr»mi4  or  Coxx«. 

RuLi.— To  log&  of  area  of  base  and  haight  add  T.saa  879,  and  the  sum  is  the  log. 
of  the  volume. 

Ii,i,r4TRATioir.«*Tb6  largest  Fyrfupid  of  Egrpl  ba«  a  ha8«  of  700  fee(  oqu^rt.  « 
height  of  50Q  feet,  and  assuming  itp  faces  \o  be  triangular,  and  to  be  constructed 
90li(l  of  graqile  weighing  2654  ^^'  V^^  ^^^  '^^  ^^'^^  '^  ^'^  volume  and  weight? 


Log. 

»4 


700: 


ti 


Log.  volume  ns  7.419  045 
Log.  9054  B  3. 433  901 

Log.  2240 -i- 16  =  5.44563a 


:  5.6^  196 
500  =s  9.696  970 

Lag.  volume  7. 919045  Log.  weight  ^ 6. 781 578 

Log.  7.91a  045  xa  81 666  667  cube  feet. 
6.781 578  SB  6.047  528  totu. 


(» 


Cexitrifugal   Pumps* 
Morris  Machine  Works,  BaldwinsmlU,  N,  T. 

Omln/iwal  Fmnp».^Kf^  simple  id  construction,  and  for  the  raising  of  gr«fil  yol- 
Qmes  of  irat«r,  to  or  from  a  low  elevation,  are  superior  to  a  piston  pump,  in  thsir 
dispeosingof  valves,  piston  and  its  paokiog,  eto.  { 
and  as  a  result  they  will  eO'eotlyeiy  raiss  gravel, 
sand,  paper  pulp,  sewage,  silt,  and  like  material : 
all  of  which  a  piston  pump  is  wholly  impractical 
ble  of  raising- 

Tbs  e£9ciency  of  one  when  properly  propor* 
tioned  and  constructed  is  fhlly  65  per  cent,  of 
the  power  expended  to  o|)erate  it,  and  they  are 
also  applicable  to  furnish  surface-water  for  the 
condensers  of  marine  and  other  engines,  and 
brine  in    fee- making   machines,   in   dredging, 

wrecking,  et&,  oto.,  at  ft  |«8s  cost  of  opsration  th»n  4Q7  other  pnwp  of  like 
<»pacity. 


Standard    HTorizontal    p-anip. 


No. 

Capacity  par  Minntc. 

Minimam  Power  for 
each  Foot  of  Lift. 

a«ii*. 

1^. 

1.5 

50  to        70 

.094 

«-75 

75  to       100 

•037 

« 

tio  to       150 

054 

a-S 

175  to      250 

086 

3 

t5o     .      350 
45c  Ji      Ooo 

194 

4 

««3 

5 

790  to      900 

372 

6 

I  /CO  to    I  400 

.496 

8 

I  700  to    2  aoQ 

844 

10 

2  200  to    3  000 

I 

093 

12 

3000(0     4QQO 

I 

49 

15 

4  800  to    6  000 

2 

38 

♦15 

4iQO  to   6000 

».38 

18 

7500  to  lOOQp 

3.73 

♦18 

7500  to  10  000 

3  73 

22 

Z2000  to  14000 

5 

96 

Diameter  aad 
Face  of  Policy. 


6 
8 
8 

8 
8 


6X 

7X 

8X 

8X 

8X 
10  X  10 
15X10 
15  x1a 

?oX  13 

84  X  la 
30X14 
40X15 
30X15 

40X  M 

30X16 

48X20 


Weight. 


168 
232 
306 

348 
400 

545 
8a6 

965 
I  500 
2 170 

3050 
7«op 
3IS9 

90OQ 

3500 

12000 


*  Refer*  to  low-lift  pomn.    The  nnmber  of  pamp  is  alto  diameter  of  diachaige  opcDing  in  Inches. 
iVh.  re  iii.>rtf  tliifti  ,13  f«wt  •>(  tliMk«f|ie  pip*  i#  4MmW  to  pWliPiOil*  OV  tWO  aiiea  l|||0K  tkfW  U)f  pppip 

Rail-way. 

Speed.    Chicago,  Bsrliogton  k  Qpiqoy,  psssanger  train,  Denver  to  Eckley,  14.fi 
pilss  In  9  minutes  =  98.66  mUes  per  liowr. 


1032  ASBESTOS   PELTINGS,  CBMBNTS,  ETC. 

j^sbestos    B^l^rios,   !F*elts,    Oexxients,    Ijooomotive 

ILiagginSa  JSto. 

H.  W.  Johns  ManviUe  Co..  New  York. 

Steaxu-Pipe    and    Soiler    Coverings,    Packings,    £]to. 

In  the  protection  of  sarfoces  trom  loss  of  heat,  Hair-Felt  and  other  organic 
materials,  in  consequence  of  their  destructibility  at  high  temperatures,  have  been 
very  generally  superseded  by  Felts  made  from  Asbestos. 

Numerous  tests  of  the  relative  non-conductivity  of  materials  published  by  au- 
thorities have  given  an  impression  that  Asbestos  is  an  inferior  non-conductor  of 
heat  This,  however,  is  an  error,  as  these  tests  are  made  with  the  dense  or  crude 
forms  of  Asbestos,  while  in  its  fibrous  state  it  contains  numerous  air-cells.  The 
best  insulator  known  is  air  confined  in  minute  cells,  so  that  heat  cannot  be  re- 
moved by  convection,  and  the  value  of  insulating  substances  depends  upon  )he 
power  of  holding  minute  volumes  of  air  in  a  manner  that  precludes  circulation. 

Asbestos  Fibrous  Fabrics  are  claimed,  therefore,  to  be  the  very  best  and  most 
durable  non-conductors  of  heat 

A-sbestos    XTire-Felt 

Is  a  fkbric  "felted*'  flrom  Asbestos  fibres.  As  its  air-cells  are  fnnnmerable  and 
microscopic  in  size,  Fire-Felt  is  a  successful  application  of  the  air-space  principle. 
In  addition  to  its  superior  insulating  properties,  it  is  fire-proof,  flexible,  light  In 
weight,  susceptible  of  any  desired  mechanical  arrangement,  and  indestructible.  It 
is  particularly  adapted  for  Marine,  Mine,  and  Railway  work,  as  moisture  and  vibra- 
tion will  not  disintegrate  it,  and  it  will  withstand  much  rough  usage.  It  is  sup- 
plied in  cylindrical  sections  for  pipes,  in  sheets  for  boilers,  drums,  flues,  etc.,  in 
rolls  for  grouped  pipes,  cylinders,  hot-air  pipes,  etc.,  and  in  blocks  for  Locomotive 
and  Boiler  Lagging,  etc. 

.Asbestos    STlre-Felt,    Asbesto-Sponge    Felted,    and    A.8* 
Tsesto- Sponge    !Molded    Sectional    Pipe    Covering. 

These  are  formed  into  cylinders,  cut  lengthwise,  in  order  that  they  may  be  laid 
over  pipes,  and  are  furnished  with  a  canvas  jacket,  secured  by  metal  bands.  They 
are  suitable  for  both  high  and  low  ^team  pressures.  The  Fire-Felt,  being  com- 
posed wholly  of  Asbestos,  is  especially  adapted  for  highest  pressures  and  super- 
heated steam. 

Champion,  Zero,  Grine,  and  Auznznonia   Sectional   Pipe 

Covering. 

"Champion"  is  an  economical  covering  for  low-pressure  steam  and  hot- water 
pipes. 

"Zero "  eflfectually  prevents  water  and  gas  in  pipes  (Vom  f\reezing. 

Brine  and  Ammonia  Pipe  Coverings  prevent  the  formation  of  ice  on  the  line  of 
pipe,  and  produce  important  economies  in  refrigerating  and  ice  plants. 

A-slsestos    Cement    Felting. 

Composed  of  Asbestos  fibre,  inAisorial  earth,  and  a  cementing  compound,  ap- 
plied to  pipes,  boilers,  etc.,  while  heated. 

Furnished  in  bags  or  barrels.  One  bag  contains  Bufllcient  material  to  cover 
about  40  square  feet  of  surface  z  in.  in  thickness,  and  weighs  about  120  lbs.  net 

A-slaestos    IL<agging    for    Xjooomotives. 

Composed  wholly  of  pure  Asbestos,  suitable  for  all  styles  of  locomotives. 

In  slabs,  6  ins.  in  width  by  36  ins.  in  length,  flrom  .5  in.  to  2  ins.  in  thickneaa 

Asl>esto-Sponge    Hair-Felt 

Is  very  elastic,  and,  in  consequence  of  the  large  proportion  of  AsbestOB  In  It,  it 
is  not  liable  to  injury  Arom  steam  heat. 
In  rolls  of  about  300  square  feet,  6  It  in  width,  and  .375  in.  in  thickness. 


ASBESTOS    FBLTIKGS,   CEMENTS,   ETC. 


1033 


Kair-ITelt. 

Of  various  thickpessea 

In  bates  of  300  sqiuiro  iiset,  73  ins.  Id  width. 


i^s'bestos   Cloth.. 

Pure  fibres  of  Asbestos  spun  into  threads  and  woven  into  clotha 
various  weights  and  widths. 
Fine  doth.  36  ins.  in  width,  weighs  3.33  oz.  per  square  foot. 
Medium  clotn,  36  ina  in  width,  weighs  4.66  oz.  per  square  foot 
Heavy  cloth,  36  ins.  in  width,  weighs  6.25  oz.  per  square  foot. 


Frodnoed  in 


A.s'bestos    lPekolcing9  and   i^s'beeto-ACetallio    Paokings. 

These  are  especially  adapted  for  the  extreme  high-pressure  and  high-speed  en- 
gines of  modem  times.  They  are  supplied  in  flat,  round,  and  special  shapes  to 
meet  all  requirement& 

A.8l>e8t08   ]5f£ill-Board. 

Composed  of  pare  Asbestos  fibrea  Valuable  for  sheet-packing  and  general 
Joint-work,  for  gas  flre-backs,  screens,  partitions,  and  general  fire-proofing  pur- 
posea 

In  sheets  40  by  40  ina,  firom  .03x25  to  .5  in.  In  thicknesa 


c< 


A.s'beetos    NoTi^^vLm 


Paper   or    Sailding    3Brelt.»» 

Composed  of  pure  Asbestos  fibres.  Used  as  fire-proof  lining  between  floors,  side- 
walls,  etc.,  of  frame  and  other  structures  ;  also  for  railroad-car  partitions.  It  is 
vermin,  acid,/ and  fire  proof,  and  is  also  made  damp-proof 

Supplied  in  rolls  weighing  about  80  lbs.,  36  ina  in  widtb.  Three  weights— 
thin,  medium,  and  heavy. 

l^iokel    Steel    and    Sliaf\;lxi9, 

Nideel  Steel  is  well  adapted  for  shafting,  as  it  has  greater  elasticity  and  tensile 
strength  than  steel,  it  being  fully  30  per  cent,  greater,  the  latter  being  20.  per 
cent 

With  4.7  per  cent,  of  nickel  in  the  ooay)OSition  of  steel,  the  elastic  strength  has 
been  increased  fVom  36000  to  41 000  Iba  per  Q  inch,  and  the  transverse  fh>m  67  000 
toSgooolba 

Sleotrioal   £iZpression.s   and    l^^q.nivaletits. 


One 


BaU  of  Operation. 
"Watt.  One 


B         Ampere  per  sec. 

at  one  volt 
.7373  fooi-iba  per  sec 
44.238        *'        **  min. 
1654.38  ''        *'  hood 

<So^mile-lb&  "    " 


One   Kiloi^att. 


737.3 
14238 

1.34  BP- 


foot-lbs. 


«t 


per  sec. 
"   min 

M 


foot-lba 


it 


5SO 
33000 
375  mile-lba 
746  Walls 
.746  Kilowatt 


per  sec. 
*'  min. 
"    horr 


Q^CMltit!|  of  OpetaiMin. 
One   "^^att-Honr. 

2654.28  foot-lbs. 
.503  mile-lba 
f       ampere  -  hour  X 
one  volt 


hoar    _Lff.hour 
746 


Q^amtily  of  Operation. 
One    If-Hour. 

tgSoooob  foot-lbs. 
375.  mile-lbs. 
746.  Watt-hour. 

.746  Kilowatt-hoar 

QuantUy  of  Current. 

One    Ainpere- 
Kour. 

One  Ampere  flowing  for 
one  hour,  irrespective  of 
the  voltage. 

Watt-hour -i-volta 

Fvrce  Moving  in  a  Circle. 
Torqvie.     One  poonj 
I  at  a  radius  of  one  foot 


I034  CHAINS. 

Cliaiiis. 

ITov  Cables,   Cranes,  eto.,   <9f  'MTr^tiettt  Irmk  Ol*  flHM^. 

Cable  obaina  are  designated  afi  Open  or  Stud  link,  and  Crane,  Sus« 
pension,  and  Hauling  Cld  Slloit  Of  OpTO  Mttk. 

U>t,  per  square  inch. 

siiort-iink«*  The  average  ultimate  tetisile  strength  of  the  b'flk  of  a 
chain  is  ascertained  to  be  1.695  times  that  of  the  rod  or  bar  from  whiob  it  is 
forged,  and  to  avoid  injury  to  a  cliain  in  testing  it  should  not  be  subjected  to 
a  stress  in  excess  of  one  haJf  of  its  tensile  strength ;  nor,  in  consequence  of  the 
disastrous  results  of  the  rupture  of  a  cable  or  crane  chain,  snould  it  be 
8tibj«cted  in  operation  to  a  stress  in  excess  of  one  half  of  its  testing  stmigth. 

The  average  tensile  strength  of  i  inch  round  and  chain-rolled  wrought  iron 
and  steel,  is  further  assumed  at  440CX)  lbs.,  and  a  link  of  such  chain  at  71 500 
lbs.,  or  1.625  times  greater  Chan  tlUlt  of  a  rod  or  hmt, 

Hence,  a  chain  of  i  inch  may  be  tested  to  35  750  Ibi.,  f  md  labiiiittod  to 
a  Working  stress  of  17  875  Ibc 

Th«  Peocoyd  Iron  Workaj[iv«i  i7gao  Ike.,  th«  P«nD«Tly»nU  B«ilro«d  15000,  and  Molwlrottft 
•od  D.  K.  Clark,  both  of  Enfimi,  gIve  rMt>«etty6Iy  15  Md  aUd  t344b  Ifii. 

When  the  lead  of  a  chain  is  inclined  to  the  stress,  as  when  it  encompasses  a 
weight  lb  ttiasi,ori8iippnM  to  caat^bookfe,  the  grMt«r  Ihr  angle,  ibe  greater  the 
stress  with  a  given  load,  as  the  stress  on  each  chain  will  be  in  the  same  ratio  to 
half  tbo  load  that  the  length  of  one  half  or  side  of  the  chain  beafft  to  the  vertical 
distance  tn  a  line  between  (he  point  of  suspebglon  of  the  chAIn  and  the  losd. 

TbUfl,  M QlMply  hilf  the  load  by  the  length  of  one  lead  of  the  chain,  divide 
the  product  by  the  vertical  distance  and  the  result  will  give  the  capacity  of  the 
ohaia 

Load 
Or, X  seo.  .5  angle  ot  spread  of  the  chain = Streu. 

rtUTBTKAfiroN.— Aisame  the  load  to  be  t  ooo  lbs.,  the  length  of  one  tM«  of  tbv 
cftiain  to  be  5  Ins.,  the  vertical  distance  4  ins.,  and  the  BpresuA  of  the  chains  6  inft 

Then  1 000 -h  a  X  5 ^4  ^=3 625  lbs.  00  each  chain. 

Stud-link.  Authorities  on  the  relative  strength  of  this  and  a  short  or  open 
Hnk  are  very  materially  divided. 

D.  K.  Clark  gives  the  safe  working  load  of  the  two  links  approximately  aa: 
Short-link  D*  -r- 10.7,  Stud-link  D*  -i-  7.07.    An  okMm  of  strength  for  the  stud-link. 

D  rqnrKefMmg  dimmer  qf  rod  in  eSghtk^  t^  an  inch. 

Again,  be  ghres  the  oHimate  safe  workmg  stress  of  a  stud-link  chain  at  9  tons 
(20  160  lbs. )  and  of  a  short-link  at  6  tons  (13  440  tbt. ). 

This  is  wholly  at  variance  wHh  the  pMceOtag  rale  Ibr  the  deMrmthatlon  of  the 
stress  on  a  chain,  wben  it  Is  spread  or  divergil^  outward  from  the  V«t«tcat;  for  aa 
Hie  stress  of  the  load  inci^eases  in  the  profionion  that  the  length  of  one  lead  of  a 
chain  is  to  the  vertical  distance,  as  here  illuslratcd,  the  length  of  the  stud  not 
only  spreads  the  span  of  the  Imk,  but  subjects  it  to  a  stevere  ConttAned  fenile  and 
transverse  stress  on  its  ooter  surface,  in  the  direction  of  the  central  line  of  the 
stud,  as  the  tenetle  and  transverse  strength  of  wroaght  iron  or  steel  benig  lem  than 
that  of  their  crushing  streligth.  the  neutral  axis  is  lowered  and  thd  stress  on  the 
enter  surlace  correspondingly  Int^reAsed. 

Chaining   over    Indlinod   l&ijimfr«» 

I .  cosiii.  A  =  2.  L  rein'UenHng  length  itf  line  on  tw/foMt  A  angle  of  incUnatUm^ 
xmd  I  Ungth  iff  Hm  reduoed  to  thi  korimmtal, 

*  Crane  chaini  tkn  Vsually  of  thtt  crtiairuclioiu 

itht  UbiM  OQ  p.  457  it  lor  £ugliah  irou  and  il  for  31  300  Um. 


APPBITDIX. 


1035 


Hsrdrat&llos  of  a  F'ive-BInsiiia« 

With  a  ring  nozzle  the  Confident  of  discharge  is  about  .74. 

Loss  of  Pressure  by  Friction  in  Hose.— horn  of  head  varied  as  the  square  of  the 
velocity  ot  the  flow  and  nearly  as  the  length  of  the  hose. 

The  effect  of  a  difference  in  diameter  of  hose,  even  of  .125  inch  for  3.5  ins.,  may 
cause  a  loss  of  35  per  cent. 

"WTind.   Pressure. 

Normal  pressure  is  estimated  at  15  lb&  per  sq.  foot  and  maximum  at  30  lbs. ;  but 
on  elevated  structures,  in  consequence  of  the  partial  vacuum  or  minus  pressure  in 
their  rear,  the  effect  of  the  wind  is  much  increased. 

At  the  summit  of  the  Eiffel  Tower,  1097  feet,  the  pressure  has  been  observed  to 
be  5  times  that  at  the  Central  Meteorological  Bureau,  at  its  height  of  70  feet  be- 
low.—J2.  KohfaM. 

From  observations  of  the  St.  Louis  tornado  in  1896,  the  pressure  was  computed 
wo  vary  f^om  45  to  90  lbs.  per  sq.  foot;  and  trom  experiments  of  C.  F.  Martin  at  Mt. 
W^BsbfngtoD,  U.  a,  it  was  shown  that  rapid  and  intense  fiuctnatioo  occurs;  and  by 
Kernot,  that  a  marked  differenoe  results  from  the  preseOBe  of  other  buildings. -^ 
T.  Bates. 


Kfieot  of* 


BIctaL 


HiOMT  Temperat-ure    on.  Iron    and   Steel. 
Jn  Tons  per  Sq.  Inck. 


Wrought- 
Iron  Bar. 

Steel, 

Siemens* 

Angle. 

Malleable 
Iron  Bar, 


•I 


Tempsrmtars. 

ElMtte  UmU. 

Brakkitif;  Stren. 

^< 

Z8.2 

25.8 

-< 

18.5 

26.  c 
37.8 

—112° 

19-3 

^*o 

X5.2 

25-7 

-^r. 

15.7 

87.7 

— H2O 

Z8.9 

28.7 

K 

19.0 

25. 5 

-^l 

so 

26.4 

— 1130 

30.3 

27.4 

Ten«il« 

Ratio  of  ElMtle 

Strang. 

and  BMaktng. 

xoo 

.73 

105 

•7 

"07»5 

.7 

100 

•59 

Z02.9 

•57 

123.8 

.66 

100 

.77 

102.3 

.7^ 

103.3 

•74 

The  conclusions  flrom  these  results  are: 

1.  Elastic  and  ultimate  limits  are  raised  by  low  temperatures. 

2.  The  variation  in  mechanical  properties  by  a  reduction  of  temperature  is  greaU 
er  in  steel  and  least  in  malleable  iron.  The  variations  between  'the  extremes  at 
temperatures  given  are,  in  j9«r  cenl: 


Metal. 


Siemens*  steeL.... 
Wrought-iron  bar, 
Malleable  iron 


Elaitle  Umit. 
IncraaM. 


33.8 

5.4 
3i3 


Teftatla  Strangth. 
Incrvau. 


It. 9 
7-5 
7-5 


ElongMtioQ. 
DacnaM. 


30 
14. 1 

5. a 


3.  The  compression  by  impact  diminishes  with  a  reduction  of  temperature,  in 
like  manner  with  elongation  under  tension. 

4.  The  loss  of  malleability  is  8  per  cent,  at  4<^,  and  23  at  112°.  The  change  being 
least  in  hammered  iron,  and  greatest  in  rivet  iron. 

5.  The  flexibility  of  iron  is  slightly  changed  in  sod  rivet  at  4°,  and  in  rolled  bar 
iron  at  112^;  but  all  other  qualities  were  more  or  less  iujuriously  affected  at  the 
lowest  temperature. — M.  BadLeloff. 


Relative    Hiardening*  of  Cement   and    Mortar  in    Freslx 

and   Salt    M^ater. 

From  experiments  with  cement  with  varying  proportions  of  sand,  it  was  shown 
that,  when  it  war  mixed  with  and  submitted  to  fresh  water,  it  became  harder.-^ 
N.  Jf .  Koning  and  L,  BienforL 


Kvaporative   Powers  of*'  Oolxe   and   Ooal. 

From  experiments  at  Colmar.   The  calorific  values  were  z  and  .8933 


IFefier. 


1036 


APPENDIX. 


The   tjlsHtest   Ktxovim   Sa1>stebn«le 

Ib  tbe  pith  of  the  Sunflower;  its  speciflo  gravity  .038.  Elder  pith,  hitherto  bald 
to  be  tbe  lightest,  is  .09 ;  Reiadeer's  hair  .1,  aod  Ck>rk  .34.  Heace,  Reindeer's 
hair  has  a  buoyancy  of  x  to  to,  and  Sunflower  pith  i  to  35. — FroiUheim. 

Ratio  "bet-^veetx  Surfboe  and.   ACean  Velooity  or  the  ^Vet 

Section   of  a  Alill-^iaoe, 

As  determined  by  a  series  of  experiments,  is  .60  to  .65,  being  less  than  that  o' 
.80,  usaally  taken,  and  that  of  .71  to  .73  in  channels  with  earth  banks.— iS.  J*.  T- 
TUiein  Horthemua. 

rrestine   of  Stonea. 

OranUey  Marble^  and  SahdsUme  lose  strength  by  sntnration  with  water,  aod 
Sandstone  and  Granite  are  most  afltBcted  by  frost& — Jtf,  Gary. 

liosiataxioe  of  WrousHtilron  and,  Steel  Rivets  in  a  Xjap 

of  not   l^eaa  than  Tliree. 


Elartldl 
p«r  aq.  inc! 


I. 


Lb*. 

Iron. 

3«36o 
25  536  J 
31360) 


How 
Mad« 


Htind.  I 

Hydrat)' 
lie. 


TMnpviAi 
tare. 


Bright 

red  heat 

White 

beat. 


Per  Sq.  Inch. 
ItMittaDMtoH  ElMtidty  t 


Sb«ariDg. 


Lbs. 


{I 


5800 
6730 
7168 
8288 


LlM. 

Stbbl. 

31  360 
32704 

31360 
32704 

The  Iron  submitted  to  an  extension  of  13  per  cent,  before  ft-acture,  and  tbe  Steel 
18  per  cenL  — Dupuy. 


per  aq.  inch. 


How- 
Made. 


Hand.) 

Hydrau- 
lic 


Tempera- 
ture. 


Bright 

red  bent. 

White 

beat. 


{ 


llesiiteace  to 
Sbenring. 


Lta. 


6384 
7168 

8512 
9408 


Muzzle   Velooity  of  the   G^erznan   Infantry   H.ifle« 

A  series  of  experiments  gave  the  following  results : 

Muzzle  velocity  3070  feet  per  second,  and  the  maximum  at  10  feet  trom  the  mns- 
zle  3130  feet.— //urn.  C.  E, 

BiTeot  of  a  Diamond* Kdeed.   Savir. 

Result  of  its  operation  at  the  Paris  Exposition. 

In  semi -hard  nnd  soa  stone,  11. 8  Ins.  per  minuta  Cost  a  cents  per  sq.  foot; 
cost  by  hand  sawing,  15  cents. -^J.  Laftargue, 

S^oroed  X>raneht, 

« 

For  non-caking  coal  it  is  necessary  to  reduce  the  width  of  the  air  space  between 
the  grates  of  a  ftirnace  to  .135  inch. 

The  greater  the  force  of  tbe  blast,  the  less  Is  the  evaporative  effect  of  the  fuel, 
as  illustrated  in  a  steam-boiler  plant,  where  the  evaporation  with  natural  draught 
was  flrora  7  to  8  lbs.  of  water  per  lb.  of  coal:  it  fell  to  4  lbs.  upon  tbe  Introduction  of 
a  blast  draught,  nnd  although  there  was  a  length  of  fine  of  400  feet,  and  a  chimney 
130  feet  in  height,  flame  was  generated  at  the  top  of  the  chimney,  evidencing  that 
carbonic  oxide  left  the  Aimace  unc^onsumed. — D.  K.  O. 


Sffioienoy   of  Hand   13 rakes. 

From  a  series  of  experiments  on  the  tender  of  a  locomotive  on  the  Northern 
Railway  of  France,  it  was  deduced  that  the  (t-ictional  resistance  absorbed  83.3 
per  cent  of  the  power  applied. 

In  general  U  Is  assumed  that  the  efficacy  of  hand  brakes  does  liot  exceed  eo  pot 
eent— />.  K.  C. 

A.Qetylene  IHorn^ula* 

Ci  Bi,  end  a  SpaoiOo  Gravity  .91.— if.  Uemj^ 


AI^PBMXIX.  1037 

Sfi*eot  or  Kiln   Drying;  bn  Pine  and  Heznlook. 

White  i\'n«.^Wflighl  of  a  cube  foot,  36.4  lbs. ;  dried  at  2i3<>,  33  lb«.  RedPine.^ 
32.3  lbs. ;  at  aiao,  31  lb&  H«mlocik.— 53  lbs. ;  at  3ia<>,  31.3  Ib&^/Vo/.  H,  T.  Btnqf, 
LL.D. 

m 

Test  of*  an.   Iron  "Wire    H.ope  3.6  ins.  in  IDiaxneter. 

C&nstrttetion. — Six  Btrands  on  a  core  of  hemp,  and  each  of  six  other  strands  on  a 
central  core  containing  108  wires,  .058  inch  in  diameter.  Tensile  strength  of  wire 
260000  lbs.  per  sq.  inch,  and  united  strength  of  nil  740000  lbs.  Reduction  of  di- 
ameter with  a  stress  of  150  tons  x.4  inch,  and  ultimate  strength  560000  lbs.,  a  coeffi- 
cient of  75  per  cent. ~.i.  Martens. 

Consolidation   of*  I^oose   or   ACade   G^round 

May  be  sacceBsfuIly  attained  by  the  driving  of  piles  as  close  together  as  the  earth 
will  admit  withdrawing  of  them,  and  filling  their  holes  with  a  weak  Concrete. 

In  an  instance  recited,  8  piles,  30  inches  apart,  driven  to  a  depth  of  23  feet  in 
made  ground,  supported  a  brick  chimney  S13  feet  in  height  00  a  base  of  43  feet 
square. — Hoffman. 

For  the  foundation  of  the  buildings  of  the  Paris  Exposition,  the  ground  was 
rammed  by  ooaical  and  suitable  monkeys  from  a  pile-driver,  and  the  holes  filled 
with  hard  substances  rammed  down.—IhUar. 

A.   rTe-wr   G^eneral    Formnla   for   Train    Resistance* 

4  4- S  f .2  -| ^j~\  =  R.  R  repreunting  rtaistance  in  lbs.  per  ton  (aooo),  S  ve- 
locity in  miUs  per  hotur,  and  T  weight  of  train  in  lons.-^H.  L»  /. 

Resistance  of*F*ast  Passenger  Trains  on  Straight  Road. 

Experiments  on  the  Northern  Railway  of  France  at  velocities  varying  25  to  35 
miles  per  hour.     i.  45  -f  .0008  V*  =  R.  -De  LahorietU. 

AAagnaliun&. 

A  new  alloy  of  aluminum.  Spec,  gravity,  2-3;  Melting-point,  iioo^^;  Tensile 
strength  with  5  per  cent,  of  magnesium,  30000  lbs.,  and,  with  an  addition  of  from 
5  to  30  per  cent  of  it,  the  alloy  becomes  similar  to  brass  and  bronze,  and,  with  50 
per  cent  it  loses  Its  hardness  and  ceases  to  be  useful  for  mechanical  purposes; 
but  as  it  is  capable  of  receiving  a  very  high  polish,  it  is  eminently  suited  for  op- 
tical and  like  Instruments.— Ifve^Ase. 

Alaximite. 

Experiments  by  the  IT.  S.  Government  have  shown  that  it  possesses  in  a  great 
degree  the  two  essential  properties  which  render  a  high  explosive  suited  for  the 
charge  of  projectiles,  viz.,  insensibility  to  heat  and  shock.  To  test  its  susceptibil- 
ity to  chemical  change,  it  is  maintained  at  a  temperature  of  165°  for  a  period  of 
15  minutes. 

Ignited,  it  burns  slowly  without  explosion,  and  its  resistance  to  shock  was  de- 
termined by  a  drop  test  and  a  loaded  j-inch  shell,  which  was  projected  through  a 
nickel -steel  armor  plate  without  exploding;  but  when  armed  with  a  fUse  it  ex- 
ploded, burstinginto  about  800  fi'agments,  and  a  12-inch  shell,  similarly  exploded, 
burst  into  7000  firagments.  It  freezes  below  the  boiling-point  of  water,  and  possesses 
the  advantage  of  expanding  in  passing  firom  a  fluid  to  a  solid.— ^.  P.  H. 

Oarlinder  Ratios  fbv  Ooxnporand  and  Triple   Bxpansion 

Steam  -  SSngineu. 

By  experiments  of  Mr.  Greaoen.  of  Perth  Amboy,  N.  J.,  uader  differant  Initial 
pressures,  and  the  bushing  of  the  high-pressure  cylinder,  he  delennined  the  ratios 
to  be:  With  60  lbs.  pressure  per  sq.  inch,  1  to  4;  with  85  Iba,  1  to  5:  with  no  lb*.. 
I  to  6;  with  135  lbs.,  z  to  7:  rmd  with  160  lbs.,  1  to  8.— B.  C  BaiL 


I038 


APPBNDIX. 


B«lt  •  I>  ri  vititf. 


Belte  fbr  high  spMd,  ranBinf  over  4000  fiset  per  mhiiite,  should  be  of  sfngle, 
ttiln,  pUaMe,  and  (ough  leather;  and  if  singly  compounded,  they  may  be  rui  at 
9000  feet  per  minute,  with  less  loss  from  slipping. 

Narrow  pulleys  are  more  effective  than  wide;   thus,  two  belts  of  ao  las.  .will 

traiiBmit  more  power  tbata  one  of  40  Ins.  over  a  wide  pulley.    Great  convexity  of 

pulley  increasea  wear  of  belt,  and  induces  loss  of  power.    .063s  inch  in  coavexity 

IS  sufficient  for  a  pulley  of  6  ins.,  and  a  less  driven  pulley  may  be  flat  on  its  fiwe. 

*/.  TuUi*. 

TTemperature   in.   JMCiues. 

From  observations  made  in  Australia,  the  mean  result  in  rock  was  an  increase 
of  1°  to  each  137  feet  ef  deseeot /.  SterUmg, 

At  Lake  Superior,  U.  S.,  at  105  feet,  S9°i  ^^  ^^45^  f®et,  79O,  a  differenoe  oit^ 
for  323. 7  feeL    At  SL  Gothard  Tuanel  U  was  a o  for  60  feet.— .^i.  Agattiz, 

Relative  E^fllcienosr  of  a  Reoiprooating:  Piston  Puxup^  a 
I^otary  Pump,  and.  a  Steam  SipKon. 

Wttter  rmittd  <•  4m  AevsMon  <tf  17.66  /«elj  wnd  I^mndt  of  WMer  raited  per 
JRmnd  of  Steam. 

Reciprocating  Pomp,  135.6  lbs. ;  Rotary,  108.6  lbs. ;  and  Steam  Siphon  (Giflkrd'S), 
37.4  JbB.-~&  if,  Uherwood,  U,  S,  M, 

*]^ntmity  of*  M'alls  and  I>rift    Solta. 

Experimenlf  ma4e  txl  ^SUNey  Oetle^  fitmuh  the  foOmninff  revnIE*.* 

CtU  Nails  are  superior  to  Wire  in  all  positions  ;  and,  as  the  pointing  of  a  nail  in- 
flroaecB  its  ettcieacy,  the  p»iiitiflig  of  a  c«i  mii  viould  increase  its  teaaetty  elbovt 
30  per  cent.     Barbing  decreases  their  tenaci^  about  33  per  cent. 

Wire  iVaiTf.— Their  tenacity  decreases  with  time  of  service.  Surface  of  a  nail 
should  be  slightly  rough.  Nails  should  be  wedge-shaped  in  both  directions,  where 
there  are  not  special  dangers  of  the  splitting  of  the  wood.  Nails  are  50  per  cent 
more  effective  when  driven  perpendiesta'  ie  Om  grain  of  the  wood  than  with  it, 
and  most  effective  when  driven  perpendicular  to  the  surface.,  and  when  submitted 
to  impact  they  hold  less  than  .063  the  stress  tbey  can  withstand  when  it  is  ^grad- 
vally  apiAied. 

I)r0  BoUg,  when  round,  are  sUjperior  to  square,  and  the  boles  ijoto  which  ihey 
are  to  be  driven  should  be  respectively,  .81.25  and  .£75  of  their  diaaetar. 

BeUUive  Tenacity  of  Wood$.— While  pine,  i;  jkissvood,  c.s;  F«liosr  piao,  x.5; 
Chestnut)  1.6;  Elm  and  Sycamore,  3;  Beech,  3.3;  and  White  oak,  3.—F.  W.  Clay. 

Ijubrioation  of  Jdietal   8earin«a* 

Trmti  rewTlB  of  e-jrtended  experlmeirts  on  thelWlB-Ljenrs-  Heffiterraneaii  Raflwagr, 
MEfeendtDg  Itmn  1B71  to  1*890,  it  was  shown  Hial: 

tAibncfAi'ng  Wicks  of  irooibave  a  delivery  of  oil  over  that  of  cotton  of  from  50 
to  100  per  cent ;  that'their  renewals  were  but  as  68  to  100  of  the  cotton,  and  that 
^fliey  were  less  TinWe  to  "ftrlng. 

Jiaarin^s.—T\ie  wear  of^ite  Vetal  was  50  percent  less  than  niat  of  Branze, 
end  beariQgs  of  it  diminished  the  resistance  of  trains  of  300  tons,  runnlQg  from  «6 
to  26  mOes  per  hour,  30  per  centi  but  as  the  speed  was  increased,  this  gain  was 
diminished,  but  It  remained  always  al^  jier  cent.— £.  Ch^baL 


ITnocHL. 

A*eoiinntlt0e  vftllie  Avstrian  1!taii>n  -eT  ISngineers  and  Awhitedls,  sthvr  «fKteiided 
«KperiiBeiit8,  svlnhfrtea  tlint  l^oitteiid  Oement  wtfli  7  <fier  oenA.  «f  ^omtmm  «at 
.te  •eeld  ^Miter,  and  Ibe  -mooe  «r  lirick  dry,  'ima  flie  'mvA  «ffectiipe,  sod  that  Lime 
mortar  was  uBelcM.~il>(^«il  ^reO. 


AFPBHDIX. 


rabls  tor  R*anoiiiB  Oltmi 


■od  I>atl7  VBrlBiloii  of  Needle 
VBrlOilion  of  the  Day. 

r'  and  Oaidttic  SMntqi.  i8;S. 


No 

"=-* 

HindUi. 

V 

!.». 

£."^ 

Sf 

yt 

i.lL 

t 

h. 

*. 

K 

k. 

t 

N.... 

■ 

h. 

6 

IS-t::::;: 

3 

* 

■ 

; 

* 

1 

; 

Winter. 

; 

i 

i 

7 

i 

J 

- 

Blevatlona,  at  Varioua  Looationa,  of  BenoH-Marks 

Above  Mean  Level  of  the  Ooean.  at 

Sandy  Hook,  N,  J, 

Ba  Pnanirf  Amiuai  Ktfort  Jar  ,t^  of  Surennltudail  V.  S.  Cotut  (pd 


Alban)F,  N.  

AMii'driaB.,Ry. 

Brookiyn.H.v'!! 
Burllnglon,  lows. 

GllI(l,IIL 

Cbeyauua.  Hva. 
Cblcaco,  111 

ClDolniuiil,  d'.... 
ColondoSp's.Col.  i 
Columbus,  Kf.... 
CumlMrliBi},  Hd. 
Dakota,  Minn... 

Actmlt,  Uc'b,° 
Dubuque,  Iowa. 

Emm.  Ptfaa , . 

Krlfl,  Pi 

Fort  Jc^eRaD,« 

GoVBDr'il.,N."y; 

Harrlsburg,  Pb.. 

Jaokoon.  Tenn. . 


:;C 


!;i?S 


•di  ■ 

7.5«i.l 


Lake  HlchigaD.  III. 

a  Rock'  Art.' 

leapoliiL  hIud! 

Uoblle.itli 

HalcliBi.Misa..... 
Mewpon  Nskb.V*. 
New  Orlaana,  li.. 
New  York,  N.r... 

Qmaba,  h'eb 

[}nlarla,?t.IM.,Cu 
Oewego.  N.  Y 


tebanect*d«,  N.  V 

g.■i^^i::.:: 


Rb-  e»c(  loaUiim  and  ifcwriiHum  nfBtnt*Marla,  lee  Btport  ai  olivet,  pp,  548-51 


1040  APFSKDn^ 

Insulation   of  Steam   Soileva  and   Plp« 

From  the  experiments  of  several  parties  in  England,  St.  Petersburg,  and  Canada, 
the  following  results  were  obtained: 

With  steam  at  pressures  ranging  from  3  to  150  lbs.  per  sq.  inch,  and  averaging 
75  lbs.,  the  condensation  of  steam  in  pipes,  per  sq.  foot  per  hour,  was:  Uncovered, 
.60  lbs. ;  with  mica  insulation,  with  steam  fh>m  47  to  344  lbs.,  averaging  150  Ibs.^ 
.143  lbs. 

With  steam  at  150  lbs.  permanent  in  the  pipes,  it  was  computed  that  each  sq. 
foot  of  uncovered  surface  involved  an  annual  loss  of  $a.ii ;  with  ordinary  and  gocNl 
bagging,  55  cents;  and  with  mica  insulation,  28  cents. 

From  experiments  on  the  Canadian  Pacific  Railway,  the  rate  of  cooling  of  water- 
tanks  ftom  the  boiling  point  in  5  hours,  the  loss  of  temperature  varying  from  84° 
in  the  uncovered  to  20°  in  the  one  covered  with  mica;  and  from  other  experiments 
on  the  Grand  Junction  Railway,  with  5  locomotives,  with  steam  at  fVoro  140  to  150 
lbs.  pressure  per  sq.  inch,  the  observed  effects,  after  the  fires  were  drawn,  were: 
The  uncovered  boiler  lost  56  lbs.  pressure  in  one  hour,  while  the  covered  lost,  re- 
spectively, 24,  ao,  13,  and  6  lbs.,  the  last  with  mica  covering.->J?»?pinemfi^,  1901, 
p.  234. 

I^iq-aid    XTuel. 

From  experiments  made  with  crude  Borneo  oil,*of  the  composition:  Carbon,  87.9 
per  cent;  hydrogen,  10.78;  oxygen,  x.34;  flash-point,  21  lO;  boiling-point,  395°; 
and  caloric  value,  18.831  B.  T.  U. 

The  constituents  of  fuel  oils  fflve  off  vapor  at  temperatures  f^om  loo^  up  to  boil- 
ing-point of  tlie  oil,  near  which  point  a  residuum  of  dense  carbon  is  precipitated, 
tending  to  choke  pipes  and  to  accumulate  in  the  fbmace. 

The  following  methods  of  using  it  are:  i.  Ii^ecting  it  into  the  furnace  under 
pressure,  as  spray;  2.  Spraying  it  by  air  or  steam;  3.  Vaporizing  it. 

The  evaporative  eflBciency  under  the  first  was  12  lbs.  water  fi'om ;  and  at  312O  per 
lb.  of  oil,  an  excess  of  air  and  a  large  furnace  being  required  for  combustion. 
Under  the  second,  13  to  14  lbs.,  less  air  being  required.  Under  the  third,  15  to  16 
lbs.,  a  minimum  of  air  being  required. 

The  conclusions  deduced  were:  ist  A  reduction  in  consumption  of  fUel  with  the 
oil,  compared  with  coal,  of  about  40  per  cent  2d.  A  reduction  in  bunker  space  ot 
about  15  per  cent,  for  equal  weights  of  fuel.  3d.  A  reduction  in  furnace  labor  of 
at  least  50  per  cent. 

The  oil  should  be  filtered  before  being  used.— i?.  L.  Orde. 

Sffeots  of  Repeated  Stress  on  tlxe  Strenstln  uf  VITrousli-t 

Iron. 
Prom  Teits  Made  on  a  Bridge  that  had  been  24  Years  in  Service. 

The  maximum  stress  being  6.64  tonfi  per  square  inch,  no  reduction  in  strength 
or  durability  flrom  its  service  was  observed.— Ztmm«nnann. 

Saf^B   Static  ILioad  on   Ordinar^r  IToundations* 

In  Toni  per  Square  Foot 

Sand,  sharp  and  clean i  to  1.5 

Gravel,  dry 1 a.as 

Stones,  broken  and  concrete. .  3 


Alluvial  soil .5 

Clay  and  sand,  moist z  .33 

Clay,  hard  and  dry 1*5^3 

Earth,  firm itos.5 


-^Aide  Memoirt  and  Rainkime 


APPENDIX.      •  1 04 1 

A.ir«Puxnps    of  CoudensiziK    Steam-Kngii^esi- 

Are  more'efTective  wbeD  operated  independent  of  the  engine,  in  consequence  of 
possessing  the  advantage  of  their  operation  being  varied  to  meet  their  require- 
ipents;  and  vertical  single-acting,  at  a  velocity  of  piston  not  exceeding  400  feet 
per  minute,  are  more  effecU¥e  than  double-acting. 

The  required  dimensions  and  resulting  capacity  of  full  flowing  pumps  may  be 
computed  from  the  table  of  H.  R.  Worth  ington  on  p.  738. 

A  displacement  of  pump  cylinder  of  one-fifth  of  a  cube  foot  per  minute  is  held 
to  be  proper  for  one  IIP. 

Sffeot  of  tlxe    Use   of*  Oil  or  T*allo'w  in  a  Steam-Boiler. 

Oil  or  grease  introduced  in  a  steam  boiler,  c'ombiniug  with  alluvial  or  calcareous 
sediments  from  the  feed  water,  if  not  held  in  suspension  by  rapid  circulation  over 
the  heated  surfaces,  as  the  crowns  of  the  fUruaces  and  tubes,  and  withdrawn  by 
pump  or  blown  out  as  it  subsides,  will  settle  u|>on  the  upper  surfaces  of  the  fur- 
nace and  tubes,  involving  the  burning  uf  lUe  metal  aud  their  consequent  disruption 
under  pressure. 

Stress    on.   Xrussed    Seam    or   Rods. 

In  addition  to  pp.  621-623,  S23. 

Kins  TruflB*    To   Gompute    Stress   on.   Beam. 

W  /  W 

----  sec.  t=  —  cosec  »  =  S.     W  repre- 

8a 


-..  aa  4 

I     tenting  weight  unijormly  distributed^  I  length 

'     of  t>eam  between  supports^  d  depth  of  trtus^ 


both  in  feel,  and  i  angle. 

lLLU8TRATioir.— Assume  W  =  3ooo  lbs.,  l  =  2o,  d  =  3.03  feet    t  =  11^43',  and 
cotan.  i  =  5.i. 

2000X20  -.  2000  ,. 

3  ^  =2495  lbs.,  =  — —  X  5  >  =  2  550  '^*- 

1?o   Compute   Stress   on    Rods. 

Wi  .       W  ^      ^  ^        ,  W  Vi2  +  4da 

-—  sec.  »  =  —  cosec.  x.  In  absence  of  angle  put -f^ — . 

8d  4  °  4  2d 

Illubtration.  ^Assume  as  preceding.    Sec.  >  =  1.02,  cosec.  t  =  5.  i. 

9000    ^^                        ,,          2000    ,  ,. 

X  z.o2  =  3  445.4  2m.,= X  =5-1  =2550 (M. 


*JCo   Compute   Stress  on   Centre. 

IllustraMOU.—  5  W  as  -  X  a  COO  =  1 250  Ibs. 
8  o 

Queen    Xmss.     To   Compute    Stress    on    Beam. 

♦ »  WI  .      3„  ,  ,  ,    J.  ^ 

-T-^  sec.  »  =  I W  cotan.  i,  c  :=  6.67  fett. 

Illustration Assume    as    preceding. 

d=2  feet,  and  angle  i-=.ifP  42',  sec.  i  — 
1.044,  and  cotan.  t  =  3.4a. 

2000  X  go  ^  ,.044  =  2 6io  »*.,  and |2ooo=  750  X  3.42  =  2 565  it*. 
8x2  o 

Xo    Compute    Stress    on    Rods. 

W<         .      3W 

-— -  sec.  I = — „    coseft  ». 

8d  8 


Illcstratioh.— Assume  as  preceding,  cosec.  i  =  3.56 

44  =  3  610  Ihs. ,  a 
3W  v^T^ip^d" 


12^2L??X  1.044  =  2610  H«.,  and 3L2l£???x  3. 56  =  2670 ftl. 


In  absence  of  angle  put  -  . 

8  3a 


To    Compute    Stress    on    Centre, 

!iw  =  a  w=2oooi6..    ii2il^=,,oo»t. 

so  20 


I042   ORTHOGRAPHY  OF  TBCHKIOAL  WORDS  AND  TEpM& 


ORTHOGRAPHY  OF  TECHNICAL  WORDS  AND  TERMa 

Orthography  in  ordinary  use  of  following  words  and  terms  is  so  varied, 
bhat  they  are  here  given  for  the  purpose  uf  aiding  in  the  estabiishmeat  QX 
a  uniformity  of  expression. 

AbuL  To  meet,  to  aiUJoin  to  at  the  end,  to  border  upon.  Almt  end  of  a  log,  etc., 
to  tliat  having  the  greatest  diameter  or  side. 

Alt  and  Butt  tud,  wh«n  appUed  in  this  nuuuier,  ar*  corruptioiia. 

AdiL    iji  Mining^  the  opening  into.a  mine. 

AmidiMpt.  The  middle  or  centre  of  a  vessel,  either  fore  and  aft  or  athwartshipa. 
The  amidship  (hime  of  a  vessel  is  at  {§{<  ^^^  ie  termed  4ea4JkU. 

Arabesque.  Applied  to  painted  and  carved  or  sculptured  ornaments  of  imaginary 
Ibliage  and  animals,  in  which  there  are  no  perfect  figures  of  either.  Synonymoua 
with  Moresque. 

Arbor.    The  principal  axis  or  spindle  of  a  machine  of  revolution. 

Arris.  A  term  in  Mechanics,  the  line  in  which  the  two  straight  or  curved  aur- 
Ikces  of  a  body,  forming  an  exterior  angle,  meet  each  other.  The  edges  of  a  body, 
as  a  bricK,  are  arrisea 

Ashlar.    In  Masonry^  stones  roughly  squared,  or  when  faced. 

Athwart  Across,  from  side  to  side,  transverse,  across  the  line  of  a  vessePs 
aourse. 

Athtoartskips,  readhing  across  a  vessel,  from  side  to  sldeL 

« 

Bagasse.    Sugar-cane  in  its  crushed  state,  as  delivered  IVom  the  rollers  of  a  mill 

Balk.    In  Carpentry,  a  piece  of  tinjber  from  4  to  lo  ins.  square. 

BcUuster,  A  small  column  or  pilaster;  a  eoUectiOD  of  them,  joined  by  a  rail,  forms 
a  balustrade. 

JBmniattr  U  •  corniptlon  of  b^lutnul*. 

Bark.    A  ship  without  a  mizsentopeail,  and  formerly  a  small  ship^ 

Bateau.  A  light  boat,  with  great  length  proportionate  to  its  beam,  and  wider  at 
Its  centre  than  at  its  ends. 

Batten.  Tn  Carpentrif,  a  piece  of  wood  from  i  to  2.5  ina  thick,  and  from  i  to  7 
Ina  in  breadth.    When  less  than  6  feet  in  length,  it  is  termed  a  deal-end. 

Berme.  In  Fortifications  and  Engineering,  a  apace  of  ground  between  a  fampart 
and  a  moat  or  fosse'  to  arrest  the  ruins  of  a  rampart.  The  level  top  of  the  embank- 
ment of  a  oanal,  opposite  to  and  alike  to  the  towpatb- 

Bevel.    A  term  for  a  plane  having  any  other  angle  than  45°  or  9o<>. 

Binnacle.  The  case  In  which  the  compass,  or  compasses  (when  two  are  used),  is 
set  on  board  of  a  vessel. 

Bit.  The  part  of  a  bridle  which  is  put  into  an  animaPs  mouth.  In  Carpentry^  a 
boring  instrument. 

Bitter  End.    The  inboard  end  of  a  vessePs  cable  abaft  the  bitta 

Bitts.  A  vertical  frame  upon  a  deck  of  a  vessel,  around  or  upon  which  is  secured 
(jables,  hawsers,  sheets,  etc- 

Bogie.    Pivoted  truck,  to  ease  the  running  of  an  engine  or  oar  around  a  curve. 

Boomkin.  A  short  spar  projecting  frt>m  the  bow  or  quarter  of  a  vessel,  to  extend 
the  tack  of  a  sail  to  windward. 

Bowlder.  A  stone  rounded  by  natural  attrition ;  a  rounded  mass  of  rock  trans- 
ported from  Its  original  bed. 

0 

Buhr-stone.  A  Stone  which  is  nearly  pure  silex,  Ml  of  poNS  and  cavUies,  and 
used  for  Milla 

Bunting.    Woolen  texture  of  which  colors  and  flags  are  made. 

Burden.     A  load.    The  quantity  that  a  ship  will  carry.     Hence  fmrdenxome. 

Cog.    A  small  cask,  diflering  from  a  barrel  only  in  slza    Commonly  written  Keg, 


ORTHOGRAPHY  OF  TKOHKICAL  WORDS  AND  TBRMR.   IO43 

OaKhef.  Aa  inslrameiit  with  Bsmi  oireaiar  togs,  to  roeasure  diameteni  of Bpheree, 
or  exterior  and  interior  diameters  of  cylinders,  bores,  etc 

A  p4dr  «>f  OKHbera  U  laperflaoin  and  Impropor. 

CcUk.  To  Stop  seams  and  pay  ttem  with  pitph,  etc.  To  ppjnt  an  iron  phoe  so  4fi 
to  prevent  its  slipping. 

Cam.  Aa  irrfiguliM'  curved  instrument^  having  ite  axi«(  eccentric  to  the  eh^ft 
npon  which  it  is  tlxed. 

Camber.  To  camber  is  to  cnt  »  bc»m  or  mold  »  stru<st^rfi  archwise,  as  4ec|t- 
besms  of  a  vessel. 

Cambooge.  The  stove  or  range  in  which  the  cooking  in  a  vesael  i»  effected.  The 
cooking- room  of  a  vessel;  this  term  is  usually  confined  to  merphAnt  vessels;  in 
vessels  of  war  it  is  tormed  Galley. 

Camel  In  Engineering^  a  decked  vessel,  having  great  stability,  designed  for  nse 
in  the  lifting  of  sunken  vessels  or  structures.  Also  to  trjiniBpor^  ^o94&  of  great 
weight  or  bulk. 

A  8eow  U  open  decked. 

CanUe.    A  fragment;  a  piece;  the  raised  portion  of  the  hind  part  of  a  saddle. 

Cantline.  The  space  between  the  sides  of  two  casks  stowed  aside  of  each  other. 
When  a  cask  is  laid  in  the  cantline  of  two  others,  it  i3  sajd  to  be  stoi^ed  bilge  and 
cantline. 

Capstan.    A  vertical  windlasa 

Caravel  A  small  vessel  (of  25  or  30  tons'  burden)  used  upon  the  coast  of  France 
iM  berring  {Mierie& 

CarUngs.  Pieces  of  timber  set  fore  and  aft  ttom  $h£  deck  beams  of  a  vessel,  to 
receive  ue  ends  of  the  ledges  in  framing  a  deck. 

Carvel  bnill^A  term  appUed  to  the  manner  of  con8tr«»otian  of  small  boats,  to 
signify  that  the  edges  of  their  bottom  planks  are  laid  to  each  other  like  to  ti»e  twi- 
ner of  planking  vessels.    Opposed  to  the  term  Clincher. 

Cotter  A  fy^y"  phial  «r  battle  tor  the  tabje.  Casters.  Small  wheels  placed 
oiMMi  the  tegs  4>ftabfcii^  eto-,  to  alinw  them  to  ib«  moved  with  facility 

Catamaran  A  small  raft  of  logs,  usually  consisting  of  three,  the  centre  one  be- 
Ing  tS^r  and  wide"  than  the  oSSti,  and  designed  tor  use  in  an  n'^n  roadstead 
and  NpoB  a  wa-eoaat. 

Chamfer.    A  slope,  groove,  or  small  gutter  cut  In  wood,  metal,  or  stone. 

ChapeUing.    Wearing  a  ship  *»«n*  without  bracing  her  fore  yai^s. 

•l»d<VirnSes,«iHl«f««lal,  as  ill «fltea»  boiler.    So^Pipe. 

Chime.    To  chinse  id  to  calk  slightly  with  a  knife  or  chisel 
-    jOiflck.    taAr«WJrcfc««peiw-4!,«B»Uj?M»€»9  4afwoDdu8fidto,m»ke 
flciency  in  a  piece  of  timber,  frame,  eta    See  i^itmn^*. 

OMte.    fb>«tofii,io«h0tnct,iolitodk«9,toihiNKter,eto. 


aeaU  Pieces  of  wood  or  metal  of  various  shapes,  according  to  «ieir  uses,  eitheir 
to  b^fay  ropes  upon,  to  resist  or  support  weights  or  strams,  as  M«<,  shoar,  4>eam 
cleat^<A& 

<»tffM»ar  toM  A  term  «wtte«  t«  «be  ooostruolion  of  vessels'  'bettoms,  wtcn 
the  lower  edges  of  the  planks  overlay  the  wext  ond^r  them. 

Cook.    A  cylinder  cttbe,  or  trian^e  ofhard  wood  let  into  the  ends  or  faces  of  two 

which  the  pin  runs.    In  Naval  ArehiUciure,  the  oblong  ridges  hawked  an  Uie  omm 
tfahipa 
<yoaminfft.    Rniied  borders  «roimd 'tbe  edges  ofliartches. 

CobU.    A  small  fishing  boat. 

Cocoon.  The  case  wWch  .cectaln  inaocta  m^9  «w  #  4»wU»g  >0mV  th#  fi^oi 
•r  their  nietamorphosis  to  the  pupa  sUte. 


I044  OETHOGBAPHY  OF  TECHNICAL  W0BD8  AKD  TBBMS. 

Cng.  In  Mechanics,  a  short  piece  of  wood  or  other  mateiial  let  into  the  fhoes  o! 
B  body  to  impart  luotiuu  to  unother.  A  term  applied  to  a  tooth  in  a  wheel  when  it 
is  made  of  a  diOereut  material  than  that  of  the  wheel.  In  Mining^  an  intrusion  ot 
matter  into  fissures  of  rocks,  as  when  a  mass  of  uustratitled  rocks  appears  to  be  in- 
jected into  a  rent  in  the  stratified  rocks. 

Cogging.  In  Carpentry,  the  cutting  of  a  piece  of  timber  so  as  to  leave  a  part 
•like  to  a  cog,  and  the  notching  of  the  upper  piece  so  as  to  conform  to  and  receive 
It.    ^iko  to  indetUing  or  tabling. 

CoUer.    The  fore  iron  of  a  plough  that  cuts  earth  or  sod. 

Compass.    In  Geometi-y.ha  instrument  for  describing  circles,  measuring  figures, etc 

A  pair  of  Ct>mpat$et  b  aaperfliioiu  and  improper. 

Connecting  Bod.  In  Mechanics,  the  connection  between  a  prime  and  secondary 
mover,  as  between  the  piston-rod  of  a  steam-engine  and  the  crank  of  a  water-wheel 
or  fiy-wheel  shaft. 

Th«  t«rtn  PUmmn  b  loe«),  and  alto|C«ther  liiRpplieabU. 

Contraritoise.    Conversely,  op)x>site.     Orottwaf  b  a  comptioa. 

Corridor.  A  gallery  or  passage  in  or  around  a  building,  connected  with  variona 
departmeuts.  sometimes  running  within  a  quadrangle ;  it  may  be  opened  or  enclosed. 
In  Ibrtijcations,  a  covert  way. 

Cyma.    A  molding  In  a  cornice. 

Damasquinerie.    Inlaying  in  metal. 

DaviL    A  short  boom  fitted  to  hoist  an  anchor  or  boat 

Deals.    In  Carpentry,  the  pieces  of  timber  into  which  a  log  is  cut  or  sawed  qpl 
Their  usual  thickness  is  3  by  9  ins.  and  exceeding  6  feet  iu  length. 
Improperly  reatrlcted  to  the  wood  of  flr-treet. 

Dike.  In  Engineering,  an  embankment  of  greater  length  than  breadth,  imper- 
vious to  water,  and  designed  as  a  wall  to  a  reservoir,  a  drain,  or  to  resist  the  influx 
9f  a  river  or  sea. 

Dingey  {yaulicai).    A  ship  or  vessers  small  boat 

Dock.  In  Marine  Architecture,  an  enclosure  in  a  haitor  or  shore  of  a  river,  for 
ihe  reception,  repair,  or  security  of  vessels  or  timber.  It  may  be  wholly  or  only 
partially  enclosed.    See  Pier. 

When  applied  to  a  aingle  pier  or  Jetty,  it  b  a  inbiq;»plication. 

Dowel.  A  pin  of  wood  or  metal  inserted  in  the  edge  or  fiu»  of  two  boards  or 
pieces,  so  as  to  secure  them  together. 

Thb  fa  very  similar  to  ooakinK,  bat  it  need  in  a  diminatiTe  aente.  An  Illottratlon  of  it  b  liad  in  tha 
Banner  a  cooper  aecnrea  two  or  mora  fdeeee  in  the  head  of  *  eaak. 

Draught.  A  representation  by  delineation.  The  depth  which  a  veasel  or  any 
floating  body  sinks  into  water.  The  act  of  drawing.  A  detachment  of  men  firom 
the  main  body,  etc 

Ordinarily  written  draft, 

Dutchman.  In  Mechanics,  a  piece  of  like  material  with  the  structure,  let  into  • 
slack  place,  to  cover  slack  or  bad  work.    See  Shim. 

Edgewise.  An  edge  put  Into  a  particular  direction.  Hence  endtote  and  Hdewiit 
have  similar  significations  with  reference  to  an  end  and  a  side 

Eigewaift  b  a  corruption. 

Euphroe.    A  pieee  of  wood  by  which  the  crowfoot  of  an  awning  is  extended. 

FauU.  In  Mining^  a  break  of  strata,  with  displacement,  which  interropti  Ofiera- 
tions.    Also,  fissures  traversing  the  strata. 

/Woe,  Felloes,    The  pieces  of  wood  which  form  the  rim  of  a  whe^. 

Feiek.  Length  of  a  reservoir,  pond,  etc,  along  which  the  wind  may  blow  towards 
Ihe  emtrankment  or  dam. 

Flange.  A  projection  fVom  an  end  or  ft'om  the  body  of  an  instrument,  or  any 
part  com|K)Bing  it,  for  the  purpose  of  receiving,  confining,  or  of  secaring  it  to  a  snp^ 
port  or  to  a  second  piece. 

FKer.    In  Carpentry,  a  straight  line  of  steps  in  a  stairway. 

Frap.    To  bind  together  with  a  rope,  as  toyrop  a  fiOI,  etc 


OBTHOOBAPHY  OF  TECHNICAL  WOBDB  AND  TEBMS.  IO4J 

Friexe.  In  Architecture^  the  part  of  the  entiiblature  of  a  column  which  is  between 
(he  architrave  and  the  cornice. 

Frustum.  The  part  of  a  solid  next  the  huge,  left  by  the  removal  of  the  top  or 
segment. 

f)nutrum,  altboagh  u«d  by  •om*  lexioographen,  te  erroneous. 

Furrings.  Strips  of  timber  or  boards  fastened  to  fhimes,  joists,  etc.,  in  order  to 
bring  tboir  faces  to  the  required  shape  or  level. 

Guleting.    Putting  galets  into  pointing-mortar  or  cement 

GiUeiB.    Pieces  of  stone  chipped  off  by  the  stroke  of  a  chisel.    See  SpdU. 

Oaliot.  A  small  galley  built  for  «peed,  having  one  mast,  and  firom  z6  to  ao  thwarts 
for  rowers.    A  Dutch-constructed  brigantine. 

Gate.    In  Meehemies^  the  hole  through  which  molten  metal  is  poored  into  a  mold 

for  casting.     Gtmt  and  0«U  «ni  corraplione. 

Gearing.  A  series  of  teeth  or  cogged  wheels  for  transmitting  motion.  To  gear  a 
machine  is  to  prepare  to  connect  its  parts  as  by  an  articulation. 

Gingle,    To  shake  so  as  to  produce  a  sharp,  clattering  noise,  commonly  JingU. 

Girt.  The  circumference  of  a  tree  or  piece  of  timber.  Girth.  The  band  or  strap 
by  which  a  saddle  or  burden  is  secured  upon  the  back  of  an  animal,  by  passing 
around  bis  belly.    In  Printing,  the  bands  of  a  pretis. 

Gnarled.     Knotty. 

Grave.    In  Nautical  language,  to  clean  a  vessel's  bottom  by  burning. 

Graving.  Burning  off  grass,  shells,  etc.,  fh>m  a  ship's  bottom.  Synonymous 
with  Breaming. 

Grommet.    A  wreath  or  ring  of  rope. 

Gymbal  JHna.  A  circular  rynd  for  the  connection  of  the  upper  mill-stone  to  the 
spindle  by  which  the  stone  is  suspended,  so  that  it  may  vibrate  upon  all  sides. 

Harping*.  The  fore  part  of  ^he  wales  of  a  vessel  which  encompass  her  bows, 
and  are  Ihstened  to  the  stem.  Cat  harpingt,  ropes  which  brace  in  the  shrouds  of 
the  lower  masts  of  a  vessel 

Hogging.  A  term  applied  to  the  hull  of  a  vessel  when  her  ends  drop  below  her 
centre.    See  Sagging. 

Horsing.    In  Naval  Architecture,  oalking  with  a  large  maul  or  beetle. 

Jam.    To  press,  to  crowd,  to  wedge  in.     In  NatUical  language,  to  squeeze  tight 

Jamb.    A  pier;  tiie  sides  of  an  opening  in  a  wall. 

Jib.  The  projecting  beam  of  a  crane  from  which  the  pulleys  and  weight  are  sus- 
pended.   A  sail  In  a  vessel. 

Jibe.  To  shift  a  boom-sail  flrom  one  tack  to  another;  hence  Jibing,  the  shifting 
ofabooDL 

Jigging.    Waditeg  minerals  in  a  sieve. 

Keelifm.  The  timber  within  a  vessel  laid  upon  the  middle  of  the  floor  timbers, 
and  exactly  over  the  keel.  When  located  on  the  floors  or  at  the  sides,  it  is  termed  a 
sisters  or  a  side  keelson. 

Kerf.    Slit  made  by  cut  of  a  saw. 

KeveL    Large  wooden  cleats  to  belay  hawsers  and  ropes  to,  commonly  CaoiL 

Laequer,    A  spirituous  solution  of  lac    To  varnish  with  lacquer.  * 

Lagan.    Articles  sunk  in  the  water  with  a  buoy  attached. 

Laitanee.  A  pulpy,  gelatinons  fluid  washed  fh>m  the  oement  of  concrete  depos- 
ited in  water. 

Lap-tided.  A  lerm  expressive  of  the  condition  of  s  vessel  or  any  body  when  it 
will  not  float  or  sit  upright 

Lay-to.  To  arrest  headway  of  a  vessel,  without  anchoring  or  securing  her  to  a 
buoy,  eUx,  as  by  coanterbracing  her  yards,  or  stopping  her  engine. 

Leat.    A  trench  to  conduct  water  to  or  trom  a  mill-wheel. 

Leech.  In  NmuHoal  Umguage,  the  perpendicular  or  slanUpK  edge  of  a  eaU  wb«r 
•oi  secured  to  a  spar  or  9(§y.  ^    ^ 


104^  ORTHOGRAPHY  OF  TECHNICAL  WORDS  AND  TBRM8. 

LhJ.    ttie  ftillest  part  of  tbe  bow  of  a  Tessel. 

Mail.    A  largu  duuble-beaded  wooden  hammer. 

Mantle.  To  expand,  to  spread.  Mantdpiece,  The  shelf  over  a  fireplace  in  front 
of  a  chimney. 

Marquetry.    Checkered  or  inlaid  work  in  wood. 

Matrau.    A  chemical  vessel  with  a  body  alike  to  an  egg,  and  a  tapering  neck. 

MaJttreu.    A  quilted  bed ;  a  bed  stuffed  with  hair,  Inoss,  etc.,  and  quilted. 

Mitred.  In  Mechanics^  cut  to  an  angle  of  45^^,  or  two  pieces  joined  so  as  to  make 
a  right  angle. 

MiMen-magt.    The  afterfnoet  mast  ta  a  three-masted  vessel 

Mold.  In  Mechanics,  a  matrix  in  which  a  casting  is  formed.  A  number  of  pieces 
of  vellum  or  like  sutastance,  between  which  gold  and  silver  are  laid  fbr  the  purpose 
of  being  beaten.  Thin  pieces  of  materials  cut  to  curves  or  any  required  figure.  In 
Naval  Architecture,  pieces  of  thin  board  cut  to  the  lines  of  a  vessers  timbers,  etc 

Fine  darth,  such  as  constitutes  soil.  A  substance  which  forms  upon  bodies  in 
warm  and  confined  damp  air. 

Tbto  ortbofmpiiy  to  by  Hulogy,  m  gM^  aoldf  «iif,  M<l,  9oU,fvld,  clt. 

Maiding.    1  n  Architecture^  a  prelection  beyond  a  wall,  flnom  a  eirfumn,  wainscot,  eta 

Moresque.    See  Arabesque. 

Mortise.    A  hole  cut  in  any  material  to  receive  the  end  or  tenon  of  another  pieca 

Muck.    A  mass  of  dung  in  a  moist  state,  or  of  dung  and  putrefied  vegetable  matter. 

MuUion.  A  vertical  bar  dividing  the  lights  in  a  window  ;  the  horizontal  cjo 
termed  transomt. 

Net    Clear  of  deductions,  as  net  weight 

Newel.    An  upright  post,  around  which  winding  st&ira  tnm. 

Nigged.    Stone  hewed  with  a  pick  or  pointed  hammer  instead  of  a  chisel 

Ogee.  A  molding  with  a  concave  and  convex  outline,  like  to  an  S.  See  Oyma 
4D4  Taion. 

PaOUuse.    Masonry  raised  upon  a  floor.    Abed. 

Pargeting.    In  Ardiitecture,  rough  plastering,  alike  to  that  upon  chimneya 

Parquetry.    Inlaying  of  wood  in  figures.    See  Marquetry. 

Parral.    The  rope  by  which  a  yard  is  secured  to  a  mast  at  its  centre. 

PawL    The  catch  which  stops,  or  holds,  or  fUls  on  to  a  ratchet  wheel 

Peek.  The  upper  or  iwinted  comer  of  a  sail  extended  by  a  gaff,  or  a  yard  set  ob< 
liqueiy  to  a  mast.    To  peek  u  yard  is  to  point  it  perpendicularly  to  a  mask 

Pendant.  A  short  rope  over  the  head  of  a  mast  for  the  attachment  of  tacklae 
thereto;  a  tackle,  etc. 

Pennant.    A  small  pointed  fiag. 

Pier.  In  Marine  Architecture,  a  mole  or  jetty,  prqlecting  lAto  a  river  or  am,  to 
protect  vessels  from  the  sea,  or  for  convenience  of  their  lading.    See  Ihck. 

CrronMotly  t«ratMl  •  J>oek, 

Pile.  In  Engineering,  spars  pointed  at  one  end  and  driven  into  soil  to  sanx»rt  a 
superstructure  or  hold&st    e^u  to  a  cormption. 

Pipe.  In  Mechanics^  a  metallic  tube.  The  fine  of  a  fireplace  or  Aimaoe  when 
constructed  of  metal;  usually  of  a  cylindrical  form. 

Th*  tarm  or  appUtaliMi  of  Stack  (whkh  rofon  soioly  to  maMiiTy)  to  •  HMtaUie  ptpe  to  •  mtonp^U. 
eation. 

Piragua.    A  small  vessel  with  two  masts  and  two  boom-eaU& 

Commonly  termed  Pirry-iiugur. 

Pirogue.  A  canoe  formed  from  a  single  log,  propeUed  by  peddles  or  by  a  sell, 
with  the  aid  of  an  outrigger. 

JHoMtering.  in  Ar<Mleeturey  covering  with  plaster  cement  or  mortar  upon  walls 
or  laths.  In  England,  termed  laying^  if  in  one  or  two  coat  work  •  and  pricking  19^ 
If  in  three-coat  work. 

Pluwtber  block.    A  bearing  to  receive  and  support  the  jeiuriuU  of  a  shalk 

Pokwre,   Tdcsts  of  one  piece,  withQut  to|i4b 


ORTHOORAPHT  OF  TECHNICAL  WOBDS  AND  TGBMS.  IO47 

Poppelt.  In  Ifavol  Arehittchu%  pleees  of  Mniber  Mt  p«rp«ndicQltr  to  a  Taflnrs 
bilge- ways,  and  extending  to  her  bottom,  to  support  her  in  launching. 

Porch.  An  arched  vtUibuU  at  the  entnince  of  a  building.  A  vestibale  supported 
by  columns.    A  portico. 

PorUco,  A  gallery  near  to  the  ground,  the  sides  being  open.  A  pUutza  enoom* 
passed  with  arches  supported  by  oolumns,  where  persons  may  walk;  the  roof  may 
be  flat  or  vaulted. 

Pouw^oMM.  A  loose,  porous,  volcanic  substance,  composed  of  sUicious,  argilla. 
ceous,  and  calcareous  earths  and  iron. . 

Prue.     In  JfecAantCf,  to  raise  with  a  lever.     To  ;>ry  and  a  pry  are  eomptloiu. 

Proa,  Flying.  A  narrow  canoe,  the  outer  or  tee  side  being  nearly  flat.  A  (htttie- 
work,  projecting  several  feet  to  tne  windward  side,  supports  a  solid  bearing,  in  the 
form  of  a  canoe.    Used  in  the  Ladrone  Islands. 

Purlin.  In  Carpentry,  a  piece  of  timber  laid  horizontal  upon  the  rafters  «f  a 
roof,  to  support  the  covering. 

Bump.    In  ArckUedwre.,  a  flight  of  steps  on  a  line  tangential  to  the  «tep&    A 
.  concave  sweep  connecting  a  higher  and  lower  portion  of  a  railing,  wall,  etc    A 
sloping  line  of  a  surface,  as  an  inclined  platform. 

BarefacUon.    The  act  or  process  of  distending  bodies,  bjr  separating  their  parts 
and  rendering  them  more  rare  or  porous.     It  is  opposed  to  Condensation. 
Rebate.    In  Mechanics,  to  pare  down  an  edge  of  a  board  or  a  plate  for  the  purpose 

of  receiving  another  board  or  plate  by  lapping.    To  lap  and  unite  edges  of  boards 
and  plates.    In  NcuhU  ArchxtecturCy  the  grooves  in  the  side  of  the  keel  for  receiving 
the  garboard  strake  of  plank. 
CramoBly  written  BMtt. 

Remou.  Eddy  water  without  progressive  action,  in  bed  of  a  river;  a  return  of 
water  agamst  direction  of  flow  of  a  river. 

Bmdering.  In  Architecturef  laying  plaster  or  mortar  upon  mortar  or  walls. 
Sendered  and  Set  refers  to  two  costs  or  layers,  and  Aemfered,  FUmsML,  «n4  Set^  to 
three  coats  or  layers. 

Beniform.    Kidney-shaped. 

ILuin.    The  residuum  of  the  distillation  of  turpentine,    sodn  is  a  eomptka. 

Riband.    In  Navai  ArchUedurt,  a  long,  narrow,  flexible  piece  of  timber. 

Rinur.  A  bit  or  boring  tool  for  making  a  tapering  hole.  In  Mechanics,  to  Rim* 
is  to  bevel  out  s  hold  Riming.  The  opening  of  the  seams  between  the  planks  of  a 
reesel  for  the  purpose  of  calking  them. 

Rotary.    Turning  upon  an  axis,  as  a  wheel 

RynA.  The  tnetallie  collar  In  the  upper  mlll-stone  by  which  it  is  connected  to 
the  spindle. 

Sagging.  A  term  applied  to  the  hull  of  a  vessel  when  her  centre  drops  below  her 
snds    The  converse  of  Hogging. 

SeaUop.    To  mark  or  cut  an  edge  Into  segments  of  circles 

Bcareemeni.    A  set  back  In  the  face  of  a  wall  or  in  a  bank  of  earth.    A  fboting. 

Scar/.  To  Join ;  to  piece ;  to  unite  two  pieces  of  timber  at  their  ends  by  running 
the  end  of  one  over  and  upon  the  other,  and  bolting  or  securing  them  together. 

Scend.    The  settling  of  a  vessel  below  the  level  of  her  keel 

Selvagee.  A  strap  made  of  rope-yams,  without  being  twisted  or  Iskl  ap,  snd  re> 
tained  in  form  by  knotting  it  at  intervals. 

Sennit.    Braided  cordage. 

Sewage.    The  matter  borne  off  by  a  sewer. 

Sewe±  In  nautical  language,  the  condition  of  a  vessel  aground ;  she  is  said  to  bs 
imoid  by  as  nrneli  ss  the  diffiBrenoe  In  depth  of  water  around  her  sad  her  floattng 
depth. 

Sewerage.    The  system  of  sewers 

Skakgk    Crsolrad  or  splits  or  tm  timber  Ioofl«ly  put  together. 

Mkammg.    Leather  fyrepsred  ftom  the  skin  of  a  chamois  goat 


I04^  OKTHOGEAPHY  OF  TECHNICAL  WORDS  AND  TKBlCa 

Sheer.  In  Naval  ArtkUeeture^  llM  earn  w  bend  of  a  ahip^s  dick  or  8lde&  Ta 
fAe«r,  to  slip  or  wove  asM*. 

Shtert.  Elevated  spars  connected  at  tiie  upper  ends,  and  used  to  elevuie  lieavj 
twdies,  as  masts,  etc. 

Skim.  In  Naval  ArehUecture,  a  piece  of  wood  or  iron  let  into  a  slack  place  in  e 
frame,  plauk,  or  plate  to  fill  out  to  a  foir  surface  or  line. 

Shoal.    A  great  multitude;  a  crowd;  a  multitude  of  fish. 

Sekotl  is  •  corrapUoa. 

Shoar.  An  oblique  brace,  the  upper  end  reeling  against  the  substance  tc  be  sup* 
ported. 

SkoUt.    Pieces  of  plank  under  tbe  heels  of  shoars,  eta 

Shoot  A  passage-way  on  the  side  of  a  steep  bill,  down  which  wood,  coal,  etc.,  ara 
thrown  or  slid.    The  artificial  or  uatunU  oontraotioa  Of  a  river.    A  young  pig 

Sidewite.    aeeSdgcurise, 

Signalled.    Communicated  by  8ignal& 

Bigmimdt  wfan  applM  to  aigiials,  U  a  miMppliealioti  of  irordt. 

SiU.    A  piece  of  timber  upon  which  a  buildiug  rests;  the  horizontal  piece  of  tim- 
ber or  stone  at  the  bottom  of  a  tVamod  case. 
Sijpf^on.    A  curved  tiibe  or  pipe  designed  U>  draw  fluids  out  of  vessela 

Skeg.  The  extreme  after-part  of  the  keel  of  a  vessel;  the  portion  that  supportt 
the  rudder-post. 

SkuUwiie.    Oblique;  not  perpendicular. 

Sleek.    To  make  smooth.    ReAise;  small  ooaL 

Sleeker.  A  spherical-shaped,  curved,  or  plane-surftced  instrament  with  which  to 
smooth  surfaces. 

Slue.    The  turning  of  a  substance  upon  an  nxis  within  its  figure. 

Snying.  A  term  applied  to  planks  when  their  edges  oi  their  ends  are  carved  or 
rounded  upward,  as  a  strake  at  the  ends  of  a  fliU-modelled  vessel 

filpeUl.  A  piece  of  stone,  etc. ,  chipped  off  by  the  stroke  of  a  hammer  or  the  force 
of  a  blow.     SpalUng^  breaking  up  of  ore  into  small  piecea 

SpandrH.  In  ArchiUctwre,  tbe  irregular  triangular  space  between  the  outer  lines 
or  extrados  of  an  arch,  a  horizontal  line  drawn  from  its  apex,  and  a  vertical  line 
from  Us  springing. 

Spomon,  An  addition  to  the  outer  side  of  the  h  nil  of  a  steam  vessel,  commencing 
near  the  light  water-line  and  running  up  to  the  wheel  guards;  applied  for  the  paf* 
pose  of  shielding  the  deck-beams  from  Uie  shock  of  a  sea. 

Spnruon-tided.  The  hull  of  a  vessel  is  so  termed  when  her  frames  have  the  out- 
tine  of  a  sponson,  and  the  space  afforded  by  the  curvature  is  included  in  the  hold. 

JE^fomding,  8ponti»fi,  ate.,  are  corrnpttona. 

Squilgee.  A  wooden  fnstmment,  alike  to  a  hoe,  Its  edge  fiioed  with  leather  or 
vulcanized  rubber,  used  to  focilitate  tbe  drying  of  wet  floors,  or  decks  of  a  vessel 

Stack.  In  Maeanry.  a  number  of  chimneys,  or  pipes  standing  together.  Tht 
diimney  of  a  blast  fufnace. 

Tha  appllciitioii  of  thia  word  to  the  ainokfl-pip«  of  a  steam-boiler  ia  wholly  erroneous. 

Slope.  In  Engineering,  the  interval  or  distance  between  two  elevations,  in  shovil- 
ling,  throwing,  or  lifting. 

Sleeving.    The  elevation  of  a  vessel^s  bowsiprit,  cathead,  etft 

Stroke.    A  breadth  of  plank. 

SirtU.    An  oblique  brace  to  support  a  rafter. 

Style.    The  gnomon  of  a  san-dial 

Sump.    In  Miningy  a  pit  or  well  into  which  water  may  be  led  fh>m  a  mine  or  work. 

Surcingle.  A  belt,  band,  or  girth,  which  passes  over  a  saddle  or  blanket  upon  ■ 
horse's  back. 

Svjoge.  To  bear  or  force  down<  An  instrnmeot  having  a  groove  on  Its  under 
side  for  the  purpose  of  giving  shape  to  any  piece  subjected  to  it  wjhen  receiving  a 
iMOw  Arom  a  hammer. 


OBTHOGBAPHY  OF  TSCHNICAJU  WOSDS  AND  TBiKMS.  IO49 

8ff]^tered.  Overtapplng  the  ehamftred  edge  of  one  pUnk  upon  the  chamfered 
edge  of  aoother  in  such  a  manner  that  the  Joint  shall  be  a  plane  mrlhce. 

Talut.  In  Architecture,  the  slope  or  batter  of  a  wall,  parapet,  etc.  In  Oeolofjy^ 
a  sloping  heap  of  rubble  at  foot  of  a  qlifll 

remptate.  In  Architeeture^  a  wooden  bearing  to  receive  the  end  of  a  girder  to 
distribute  its  weight 

TempleL    A  mold  cut  to  an  exact  section  of  any  piece  or  structure. 

Tenon.    The  end  of  a  pieoe  of  wood,  cat  into  the  form  of  a  rectangular  prism,  dc 
signed  to  be  set  into  a  cavity  of  a  like  form  iu  another  piece,  which  is  termed  the 
mortige. 

Terring.    The  earth  overlying  a  quarry 

Tester.    The  top  covering  of  a  bedstead 

Tholes.    The  pins  in  the  gunwale  of  a  boat  which  an  OBed  as  rowlocka 

Thwarts.    The  atbwartship  seats  in  a  boat 

Tide-rode.  The  situation  of  a  vessel  at  anchor,  when  she  rides  in  directioii  ot  tti 
current  instead  of  the  wind. 

Tire.    The  metal  hoop  that  binds  the  felloes  of  a  wheel 

Tompieu.  The  stopper  ot  a  piece  of  ordnanocL  The  iron  bottom  to  which  grapo 
■hot  are  secured. 

Treenails.  Wooden  pins  employed  to  secare  the  planking  of  a  vesMl  to  the 
Ckamee 

Trepan.  In  Mining^  the  Instrument  nsed  in  the  comminution  of  rock  in  earth* 
boring  at  great  depths. 

Trestle.  The  flrame  of  a  table;  a  m«/vable  form  of  support  In  Mast-making^  two 
pieces  of  timber  set  horizontally  upon  opposite  sides  of  a  mast-head 

Tries.    In  Seamanship,  to  haul  or  tie  up  by  means  of  a  rope  or  tricing- lino. 

TueiroH  or  Tuyere.  The  noszle  of  a  bellows  or  blast-pipe  in  a  foige  or  smelting* 
fhrnace. 

Vice,    In  Mechanics,  a  press  to  hold  fast  anything  to  be  worked  upon 

^oyal  In  Seamanshipy  a  purchase  applied  to  the  weighing  of  an  anchor,  leading 
to  a  capstan. 

Wagon.  An  open  or  partially  enclosed  four-wheeled  vehicle,  adapted  for  the 
transportation  of  persons,  goods,  etc. 

Wear.  In  noMtieal  language,  to  put  a  vessel  upon  a  contrary  tack  by  taming 
her  around  stem  to  the  wind. 

Weir.  A  dam  across  a  river  or  stream  to  arrest  the  water;  a  fence  of  twigs  01 
stakes  in  a  stream  to  divert  the  run  of  fish. 

Whippletree.    The  bar  to  which  the  traces  of  harness  are  (kstened. 

Wind-rode.  The  situation  of  a  vessel  at  anchor,  when  she  rides  in  direction  of 
the  wind  instead  of  the  current 

Windrow.    A  row  or  line  of  hay,  etc ,  raked  together. 

Withe.  An  instrument  fitted  to  the  end  of  a  boom  or  mast,  with  a  ring,  throajh 
ivhlch  a  boom  is  rigged  out  or  mast  set  up. 

Woold.    To  wind ;  particularly  to  bind  a  rope  around  a  spar,  etc 

i^LcLdenda. 

Astragal  In  ArdUteeture,  a  round  molding,  surrouuding  the  head  or  base  or  a 
column.    In  Gunnery,  a  like. molding  on  cannon  near  the  mouth. 

Creosote:    An  oily  colorless  liquid,  procured  from  coal-tar. 

Flume,  a  chunnei  for  conducting  water,  as  that  by  which  the  surplus  water  of  a 
canal  is  led  to  n  lower  level 

Forebaif.  The  part  of  a  Mill-race  or  Penstock,  fkrom  which  water  flows  upon  a 
water- wheel. 

Grillage.  A  frame,  constructed  of  beams  laid  in  parallel  rows,  and  crossed  at 
right  angles,  with  others  notched  over  them. 

Designed  to  unlforroty  dlstribate  or  extend  the  area  of  a  foundation. 


I050  OKiUOQiUPHY  OF  TXOUNXCAl.  WOKD8  AND  UfiKMS. 

ffupotenui^,    GowmoQly,  b«t  incorrectly,  hjpoiheattiQ: 

Jetty  In  IVaml  AroMUeiwrt,  a  pier  that  Juts  out  or  projects  into  a  river  or  a 
sea,  a  lanaing  place.  »  «  v*  » 

Kibble.    In  Mining,  a  metallic  bucket  in  which  ore  is  drawn  up  to  the  surface. 

X^wiiM.    One  or  two  ArustumBor a  right-angled  metaUic  wedge, aet  inverted  or 
dove -tailed  and  keyed  in  a  wedge-formed  slot,  in  stone  or  like  solid  subsSnce 
whereby  it  may  be  lifted  and  laid  without  the  \m  of  aliog&  »uuBHuice, 

or'vSd^  t^°  -B»^««n»iflf,  a  cylindrical  pillar  terminating  a  wing  wall  of  a  brid^^e 

Parcelled.  NautieaL  Wrapped  with  canvas  or  tarred  rope,  to  resist  wear  fi-om 
friction. 

Payed.    Nautical.    Painted,  tarred,  or  gfoaaed,  to  resiH  moisture  and  wear. 

penstock,  xn  wrtiflcial  conduit  for  water  to  a  water-wheel,  and  nimished  with  a 
flood-gate. 

RaveL    To  disentanfle,  untwist,  or  unweavf.  Tli«  wul  pif«»  Un  U  wboUy  w|^rflii<.a» 

Boil.    To  render  turbid,  to  stir  or  mix. 

Scabble.    The  dressing  of  the  faces  of  rough  stones,  w  with  »  brond  QhiseL 

Served,  Service,  IfctutifaL  The  layer  of  wrappiug,  as  spun  yarn,  lines,  etc., 
around  a  stay  or  rope,  to  resist  friction  and  wear. 

ShackU,  or  Clevis.  An  open  link  set  in  a  chain,  secured  by  a  pin  running  through 
eyes  in  its  ends,  which,  when  withdrawn,  admits  chain  to  be  parted  at  that  point 

SoJjU.  In  Architecture,  the  under  side  of  an  opening ;  the  lower  surface  of  a 
vault  or  arch;  also  the  under  surface  of  an  arch  between  columns. 

Splay.  In  Architecture,  a  sloped  eurface,  or  ope  making  an  oblique  angle  with 
another.    A  large  chamber. 

Strike,  in  Geology,  is  the  compass  direction  of  the  intersection  Of  th^  pllWQ  of 
stratified  rock  with  the  plane  of  the  liorizon. 

Altart.    In  Naval  Arektieeture,  the  steps  on  the  sides  and  end  of  a  marine  dock. 

Gin.  An  instrument  operated  by  men  of  animals  for  the  raising  or  drawing  of 
heavy  bodies;  usually  a  vertical  revolving  windlass  and  lever. 

Sump.  In  SaM  works,  a  pond  in  which  the  sea  or  saline  water  is  retained  fbr  use 
in  the  future. 

Skeet.  Nauticca.  A  Bcoop  with  a  long  handle,  for  use  in  weltiD|  the  sails  or  thf 
sides  of  a  vessel. 

Wya.    The  vertloal  standards  on  which  the  telescope  j(  a  TbeoUolita  or  T^vel  is 
supported,  and  which  admits  of  their  being  reversed  by  a  reversal  of  its  ends 
When  the  telesoope  ia  reversed  by  roti^ion  on  its  trunniow^  (ho  instrument  is 
termed  a  Transit 

Cantcdev&r.  -ab  angular  lever,  as  a  projecting  bracket  under  a  balcony,  the  eaves 
of  a  building  or  the  span  of  a  bridge,  when  the  intrados  is  defined  by  lines  from  the 
abutments,  at  an  angle  eleva^ns  ^om  the  hori^op. 

Cuiwl,  in  ^ttvek^  Architfictur^.  A  d^lvoU  atiij  Ilot  bottomed  vessel,  alike  tp  a 
tcoio  ;  adapted  for  transportation  of  heavy  materia),  in  the  raising  of  sunl^en  ves^ 
«els,  etc.,  aud  for  tUe  traiisportat ion  of  heavy  materials,  as  armaments  f^om  vessels 
to  a  shore^  etc.,  commonly,  but  erroueously,  a  scow. 

Soma.   An  open  and  flat-bottome^  fOPSSli  adapted  for  operation  In  sballow  water. 

^procffft.  A,  radial  projection  on  the  circumference  of  a  whe^li  U>  ^Qgago  the 
links  of  a  chaih,  as  thos9  Op  the  wheel  base  of  a  capstan. 

Spud.  In  Mechanics,  A  spade-like  instrument  for  recovering  a  tool  in  a  tube 
well,  in  Surveying.  A  nail  driven  in  a  monument  or  stake,  to  designate  a  line  or 
point 

Beam.  Iq  MecJianics.  When  vibrating,  as  in  a  Vertical  or  Side-lever  Steam  or 
other  Engine,  it  is  simply  a  Beam,  as  Main,  Overhead,  Side-lever,  Air-pump,  et& 

Working  Ii  raperflaoai,  and  Walking  Is  a  local  vulgarism. 

Swe.  In  Mining.  A  separation  of  coarse  and  fine  grains  or  parts.  In  Jfec^iitof 
or  Arts.  A  weak,  viscous,  and  glutinous  substance  or  varnish.  In  Qeometrf^  or 
Volume,  the  application  of  it  to  areas,  structures,  etc,  is  otdoctiraable. 

Comiption  of  Assixe,  a  Statute  of  measun  and  price. 


OBTHOGBAPHY  OF  TECHNICAL  WORDS  AND  TERMS.    10$  1 

AdjiUage.    An  opening  in  a  vessel  for  tbe  efflux  of  a  fluid. 

Archean.  Oldest  period  of,  geological  time.  A  term  given  to  crystalline  schists 
and  massive  rocks  underneath  the  oldest  fossiliferous  stratified  rocks. 

Bascule  Bridge.  A  bridge  structure  for  tbe  passage  of  vessels  in  a  river;  by 
which  a  single  or  divided  floor  is  counterpoised  by  the  weight  of  the  inner  end  or 
ends.    The  whole  of  the  movable  floor  or  floors  resting  on  a  transverse  shaft. 

Beton.  Artificial  stone  made  by  the  admixture  of  broken  stone,  shingle,  gravel, 
etc.,  with  hydraulic  cement  and  water.  When  mixed  with  lime  it  is  termed  Con- 
crete. 

Breast-summer.  A  beam  of  metal,  stone,  or  wood,  designed  to  sustain  a  wall  over 
a  doorway  or  like  opening  or  floor;  a  lintvl. 

Chaplet.'  A  metallic  support  or  Stud,  set  in  a  mold  to  sustain  a  core  against  the 
pressure  of  the  metal  when  fluid 

Crab.  A  shafl,  vertical  or  horizontal,  constructed  as  a  rope-drum;  for  the  draw- 
ing or  raising  of  heavy  bodies,  and  operated  by  a  winch  or  handspikes  in  the 
manner  of  a  windlass  or  capstan. 

Dolmen  or  Tolm,en.  (Celtic.)  A  Druidical  monument  con.sisting  of  a  large  stone 
set  horizontal  on  two  verticiU  stones  at  a  short  distance  apart,  and  a  few  feet  in 
height  (Breton.)  An  excavated  stone  containing  human  remains.  Also  Cromlech. 
A  large  flat  and  crooked  stone,  set  horizontal  upon  four  others  set  vertical,  alike  to 
a  table. 

Firmer  Tools.  Short  chisels  and  gouges,  as  distinguished  from  ordinary  long- 
bladed,  and  usually  operated  by  hand.  The  gouge  is  ground  upon  its  outer  side; 
the  ordinary  upon  its  inner. 

Flitch.  In  Construction. —The  combination  of  wood  with  iron,  either  in  plates 
or  a  flanged  beiim. 

Gantry.     A  frame  of  posts  and  header,  to  support  a  travelling  winch,  wherewith 
heavy  weights,  as  stone  for  foundation  walls,  or  machines,  may  be  raised  and  trans 
ported. 

Jag.  A  rough  point  or  barb  on  the  projecting  surfaces  of  metal ;  produced  by 
nicking  it,  as  with  a  chisel,  or  l)y  casting.  Jaggers.  The  rough  projections. 
Jagging.  The  insertion  of  a  jagged  or  serrated  bar,  shaft,  or  eye-bolt  in  a  casting, 
to  prevent  its  being  easily  withdrawn. 

Key.  In  Mechanics,  a  tapered  wedge  used  in  connection  with  a  gib  and  strap, 
and  also  with  brasses;  to  a^ust  the  length  of  the  rod  to  which  they  are  attached. 
A  Cottar. 

Lacustrine.  Pertaining  to  a  lake,  and  applied  to  deposits  which  are  present  in 
hike  basins. 

Lewis.  A  combination  of  one  or  two  d(»vetailed  iron  pieces,  with  a  shackle  eye 
and  bolt;  set  into  a  dovetailed  under  cut  in  a  body  of  stone,  marble,  or  cement 
block,  and  set  out  and  secured  by  the  insertion  of  a  wedge.  Lewis  BolL  A  bolt 
with  a  jagged  end,  for  insertion  in  a  block  of  stone,  etc.,  and  leaded  in. 

LxUing.  The  laying  or  insertion  of  a  paste,  cement,  or  adhesive  material  of  plas- 
tic consistency,  in  or  over  a  crevice  or  between  Joints  of  a  pipe,  etc. 

MawlreL  A  metal  spindle  for  chucking  lathe  work.  A  tapered  metal  rod  or 
ibrmer  on  which  nuts,  etc.,  etc.,  are  dressed  to  shape. 

Moraine.    Material  as  rocks,  earth,  etc.,  pushed  or  deposited  by  glaciers. 

Pein.  The  lesser  head  of  a  hammer,  and  is  termed  Ball  when  it  is  spherical*, 
Cross  when  in  the  form  of  a  round-edged  ridge,  at  right  angles  to  the  axis  of  the 
handle;  and  Straight,  when  a  like  ridge  is  in  the  plane  of  the  handle. 

Pierre  Perdue.  Lost  or  random  stone  projected  in  water,  usually  for  a  base  to  a 
superstructure,  or  to  construct  a  Breakwater.    Riprap. 

Scrim.  A  screen  or  shade ;  a  thin,  coarse  cloth,  used  for  temporary  windows  or 
doors  in  a  building  in  progress  of  completion. 

'  Seepage.  Percolation ;  oozing  fluid  or  moisture;  also,  the  volume  of  a  fluid  that 
percolates. 

Stope.  A  step,  an  excavation  in  a  mine  to  enable  ore  to  be  rendered  accessible 
by  a  shaft  or  drift.    To  remove  the  contents  of  a  vein. 

SuUage.    Scoriae,  cinder,  scurf,  eto.,  which  floats  on  the  sarfooe  ol  molten  metal- 

TaMe,    The  oomieotioD  oC  two  or  more  blocks  and  a  rope 

XHB    SHU