NPS52SS76111

NAVAL POSTGRADUATE SCHOOL Monterey, California

SOFTWARE ERROR DETECTION
MODELS, VALIDATION TESTS
AND PROGRAM COMPLEXITY MEASURES
by
N. F. Schneidewind G. T. Howard
M. Kirchgaessner

November 1976

Npproved for public release; distribution unlimited

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral Isham Linder
Jack R. Brosting Superintendent Provost

The work reported herein was supported by the Naval Air Development Center, Warminster, Pennsylvania.

Reproduction of all or part of this report is authorized.

This report was prepared by:

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entored)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NPS-52SS76111	2. GOVT ACCESSION NO.

16. DISTRIBUTION STATEMENT (Of thit Repori)

Approved for putlic release;
distribution unlimited
17. DISTRIBUTION STATEMENT (Of the aboffract ontorod in Biock 20, if differont from Report)
18. SUPPL EMENTARY NOTES
19. KEY WORDS (Continue on reverse side if necessary and fdentlfy by block number)

Software measurement
Program Structure
Software error
20. ABSTRACT (Continue an revorse alde if neceosary and identity by block nuatoer)

This report describes a continuing research effort in software reliability which was first reported in "System Test Methodology," Naval Postgraduate School, Vol I NPS55SS75072A, Vol. II NPS 55SS75072B(1975). The work just completed involved: improvement of the software error simulation model; validation of the software error simulation model; and analysis of program complexity with simulation and analytical models, using 44 Naval Tactical Data System procedures. The results which were achieved are the following:
(1) all validation tests were passed; however simulation results were generally higher than analytical results and (2) the general direction of the relationship between complexity measures and error detection was as expected; however, considerable variability was exhibited when single independent variables were used. It appeared that a multivariable model involving error detection and several program complexity measures would be more appropriate.

TABLE OF CONTENTS

INTRODUCTION I-1
DESCRIPTION OF ERROR SIMULATION PROGRAM II-1
VALIDATION TESTS III-1
ANALYSIS OF COMPLEXITY MEASURES IV-1
SUMMARY V-I
REFERENCES R-1
APPENDIX A: FLOW CHART OF ERROR A-1
SIMULATION PROGRAM (MAIN), ANDSUBROUTINE (SEED)
APPENDIX B: DIRECTED GRAPHS, B-1
SIMULATION AND ANALYTICAL RESULTS

I. INTRODUCTION

This report describes and documents the research conducted at the Naval Postgraduate School (NPS) during FY 76-77 on the System Test Methodology project sponsored by the Naval Air Development Center (NADC). The project began in FY 75-76. Previous reports were "System Test Methodology," Vol. I, NPS55Ss75072A and Vol. II, NPS55Ss75072B, July 1975, published by the Naval Postgraduate School [1]. Several publications in the open literature have resulted from this research [2, 3, 4]. This work covered three areas:
a. Software error simulation and analytic models.
b. System test simulation model.
c. Partitioned tests for software error analysis.

Computer programs were developed and provided to NADC for the simulation and analytic models of a. Of the three areas, it was felt a. had the greatest potential for improving software reliability. Consequently, the following efforts were undertaken in FY 76-77:

- Improvement of the software error simulation model.
- Validation of the software error simulation model.
- Analysis of program complexity measures.

These topics are covered in Sections II, III, and IV, respectively. A brief overview of each topic, in the order listed above, will be given here.

> Sections of the simulation program which involved execution and repair times were removed because: (l) current research interests are structural characteristics and error detection properties of programs, rather than timing aspects and (2) cpu time required by these parts of the program were too high in relation to the need for this information. The new error insertion feature (simulates the
possibility of new error insertion as a result of error correction) was removed because this process is not well understood. Therefore, it was difficult to prescribe the appropriate probability distributions and conditions which should govern error insertion in a simulation. User instructions are provided in Section II. A program listing of the simulation model is included with this report. Validation tests of the simulation model were performed with respect to: (1) mean number of errors seeded, (2) probability of arc traversa and (3) number of arc and path traversals. Validation tests were conducted with respect to the analytical model. We did not conduct validation tests of either the analytical or simulation model with respect to the error detection process in real programs, although Naval Tactical Data System program structures and error parameters were used in some of our studies. Thus, validation tests were limited to a test of the correctness of our concept of error detection. The analytical model was used as the standard for comparing simulation results. Independent appraisals by NADC and NPS personnel have concluded that the analytical model's equations accurately represent the error detection process as originally conceived. Validation with respect to actual program error detection processes will be attempted in future research. The third area involved using the models to study the relationship between program structure and error detection properties. Naval Tactical Data System programs were used for this investigation.

II. DESCRIPTION OF ERROR SIMULATION PROGRAM

Summary

This program is designed to simulate the error detection process in a portion of computer software, represented here as a directed graph. The graph consists of nodes representing merging or branching points in the software and arcs representing the sequences of instructions between the nodes. There are no real limitations on the topology of the graphs which can be handled by the program except that multiple arcs between the same two nodes are not permitted. If such arcs are desired, they can be artifically handled by introducing additional dummy nodes on each of the multiple arcs. The program is currently dimensioned for thirty nodes. This could easily be changed although some formats would also have to be modified.

In the specification of the graph, the user can input the length (number of instructions) of each arc or allow them all to be set internally to the same length of 10 .

The locations of the errors in the graph can also be specified by the user, or the program can place the errors by a random process. When this is done random numbers representing the distance between errors are drawn from the exponential distribution. The errors are then placed in the arcs corresponding to these randomly selected instructions.

The MAIN program simulates the process of running an input through the directed graph. Each input finds all errors on its path in a single pass. The single input is terminated when it reaches a node from which no arcs emanate.

The selection of which arc to follow from a given node is made randomly (uniform) using IZ as the random number seed. The seed is used to generate a new random number which serves as the next seed. The seed IZ is not reset to its initial value when the graph is reseeded with errors. Thus the random process IZ continues to run sequentially until the run ends.

For the graph which is input, the data specifies (among other items)
a) the number of inputs per replication
b) the number of replications per seeding
c) the number of seedings

The main elements of the model are discussed in more detail in the following sections.

1. error seeding
2. branching
3. error Einding
4. data input
5. computations performed
6. Error Seeding

The user has the option of planting errors in the arcs of the directed graph or he can allow the program to seed the errors randomly. If the user chooses to let the program place the errors, he must specify the parameter MEANER as part of the input data. This parameter is used by the program as the mean of the distribution which determines the distance between successive errors. It is conveniently interpreted as the mean number of instructions between errors.

Since the arc lengths and distances between errors are treated internally as floating point numbers, it is not necessary that arc lengths be integer, although that is the proper interpretation when the length is measured by the number of instructions. It may be desirable to measure length in some other way related to the complexity of the instructions and the program permits this.

Unless the user specifies the individual arc lengths $X(K, J)$, they will all be set internally to 10 (line 95). The random selection of arc lengths is not a feature of this program but a simple modification would permit this, if desired. If so, a random number seed (say IY) would have to be specified above line 95. To avoid correlation with the other random processes in the program the symbols IX, IW, and IZ should not be used as the seed.

The random seeding of errors is done in the subroutine SEED. The arcs of the graph is assumed to be arranged in "natural order" so that arc (i,j) precedes (k,l) if $i<k$, and arc (i,j) precedes (i,l) if $j<1$. Each arc (i,j) has a specified length $X(I, J)$ and
it is convenient to think of these lengths as being laid out sequentially on the real line beginning at the origin.

Using the seed IX, a random number ERI is drawn from the exponential distribution with mean 1 and rescaled by multiplying it (in floating point) by the parameter MEANER to yield XERI. Thus the quantity XERI is a sample from the exponential distribution whose mean is MEANER. The quantity XERI is used as the distance from the last seeded error to the next. A comparison is made to ascertain in which arc the error should be placed and the process is repeated with a new value of XERI until the location of the "next" error falls beyond the total length of all arcs combined. At this point the seeding process is complete and the SEED subroutine returns control to the main program. The variables set in SEED and placed in common with the MAIN program include $\operatorname{ISEED}(I, J)=$ The number of errors seeded in the arc ij for every arc $\operatorname{SVSEED}(I, J)=A$ saved copy of $\operatorname{ISEED}(I, J)$ NINST $=$ total number of instructions NSEED $\quad=$ total number of errors seeded.

When errors are planted by the user, the subroutine SEED is not called, and the variables NINST and NSEED are not computed.
2. Branching

This section discusses the branching mechanism which governs the path taken by an individual input traversing the directed graph.

Node one is assumed to be the input node to the directed graph and any node having no arcs leaving it is a terminal node. To preclude endless cycling, it is necessary that the graph have at least one terminal node which can be reached from node 1 . Except for node 1 no special ordering of nodes is required. An arc can go from any node to any node. There is no special significance to an arc which begins and ends on the same node. Such self-loops may be used to model repetitive processes which are repeated a variable number of times. The number of repetitions is not controlled by the user but is determined by the branching process which randomly selects the next node in the sequence of nodes encountered by a particular input.

The branching process from a particular node is begun by counting the number of arcs NUMSUC which emanate from the current node designated as NODE. Then using the seed IZ, a random number U is selected from the uniform distribution on the interval 0 to 1. The quantity $K=1+N U M S U C * U$ is computed. Note that K can assume any integer value from 1 to NUMSUC and that these are all equally likely.

It is convenient to think of the arcs emanating from NODE as being arranged in natural order as the first, second, third, ..., NUMSUC. Then the K th arc emanating from NODE is selected as the node to which the input advances.
3. Error Finding

The number of errors placed in an arc ij is ISEED(I,J). When the traversal of a particular arc is simulated by the program, it is assumed that all errors in that arc are detected by that input and corrected before subsequent inputs are run. Thus after traversal of arc ij the variable ISEED(I,J) is set to 0 . The variable SVSEED(I,J) is available for replacing the original errors when desired. The total number of errors detected by any input is cumulated and recorded as NFIND (line 166).

Other error finding mechanisms are possible and may prove realistic if sufficient data becomes available to reveal more about the: error finding process. For example, it may be more realistic to assume that when an arc is traversed its errors are exposed to detection but may or may not actually be found depending on some random process. An assumption of this type could be accommodated in this model if some modifications are made.
4. Data Input

The required data is described below. Each card or group of cards is described in a separate section.
(a) MINPUT, NUMOUT, NREPET, MEANER, N. The format is (5I5)

MINPUT is the number of different inputs desired within each
replication (dimensioned 50)
NUMOUT is the number of replications within each repetition
NREPET is the number of repetitions or re-seedings. With each
reseeding NUMOUT replications are performed and in each of those
there are MINPUT inputs.
MEANER is the mean distance between seeded errors
N is the number of nodes in the graph (currently dimensioned for 30)
(b) The graph structure is read in as described below. The number of cards is variable but can not exceed $N+1$.

Each card has format of (16I5) although typically many fields will not be used.

The first field identifies a node from which arcs emanate.
The second field gives the number of arcs (\leq I4).
The remaining 14 fields (if required) identify the nodes to which these arcs go.

The above information is repeated for each node from which arcs emanate.

This section of data is terminated by a card with 99 punched in columns 4 and 5.
(c) The following cards are optional. If used, they specify the arc lengths.

The format is 2 I5, $7(I 5, F 5.0)$.

The first field identifies the from node.
The second field specifies the number of arcs.
The next fields are used in pairs and have the following meanings.
first field, identifies a to node.
second field, specifies the arc length.

This section is terminated with a 99 in cols 4 and 5. This card is not optional.
(d) If the user wishes to plant the errors in arcs of his choice instead of letting the program seed the errors randomly, the following cards are used.

The format is (16I5).

Field one specifies a from node

Field two specifies the number of arcs emanating from the node in which errors are to be planted.

The next fields are used in pairs.

- first in pair, identifies the to node
- second in pair, specifies the number of errors in the arc just defined

This section is terminated with 99 in cols 4 and 5. (not optional)
(e) The last card is used to specify an output option. The variable name is MOUT.

The format is (I5)

If a 0 is punched, only summary output is given.

If a 1 is punched, detailed information about the seeding, the paths, etc is given. This should be used only for small values of the product NUMOUT * NREPET.

If this product exceeds 25, the program sets MOUT=0 as protection against extensive output.
5. Computations Performed by the Program
a. As discussed in section A-1 the program simulates MINPUT inputs for each of NUMOUT replications and the entire process is repeated for NREPET seedings. This section describes the computation performed in producing the summary output.

Let i = 1,..., MINPUT
$j=1, \ldots$, NUMOUT
$k=1, \ldots$, NREPET.
$x_{i j k}=$ number of errors found on input i, replication j of seeding k. For each seeding k a summary is produced giving the average number of errors found for each input and the standard deviation of the number of errors found on each input. These are defined as follows:

INPUT NUMBER i

AVE NUMBER ERRORS FOUND

$$
x_{i \cdot k}=\sum_{j=1}^{\text {NUMOUT }} x_{i j k} / \text { NUMOUT }
$$

STD DEV

$$
\sigma_{i \cdot k}=\left[\sum_{j=1}^{\text {NUMOUT }}\left(x_{i j k}-x_{i \cdot k}\right)^{2} /(\text { NUMOUT-1) }]^{1 / 2}\right.
$$

After all NREPET seedings have been analyzed a summary output is produced giving the average number of errors found for each input and the standard deviation of the number of errors found. These quantities are defined as:

SUMMARY FOR INPUT i

AVERAGE ERRORS FOUND

$$
x_{i} \ldots=\sum_{j} \sum_{k} x_{i j k}{ }^{\prime}(\text { NUMOUT }) \cdot(\text { NREPET })
$$

$$
\sigma_{i \ldots}=\left[\sum_{j} \sum_{k}\left(x_{i j k}-x_{i \ldots} .\right)^{2} /((\text { NUMOUT }) \cdot(\text { NREPET })-1)\right]^{1 / 2}
$$

b. To assist in relating these computations to the the program, the following section is included.
for each input i

$$
\begin{aligned}
& \operatorname{IFOUND}(\quad)=\sum_{j} x_{i j k} \text { for } k \text { given } \\
& \operatorname{SFOUND}(,)=\sum_{j}\left(x_{i j k}\right)^{2} \text { for } k \text { given } \\
& \text { CUMSQR() }=\sum_{j} \sum_{k}\left(x_{i j k}\right)^{2}, \text { the cumulative number of (squared) } \\
& \text { errors found for all replications } \\
& \text { and seedings. }
\end{aligned}
$$

SVAVE () $=\sum_{k} \sum_{j} x_{i j k / N U M O U T}$

TAVE $\quad=\sum_{j} \sum_{k} x_{i j k /(N U M O U T) .(N R E P E T) . ~}^{\text {i }}$
The quantity $\sigma_{i} .$. , the standard deviation is computed using the following relationships:

$$
\begin{aligned}
& \sigma_{i} \ldots=\left[\sum_{j} \sum_{k}\left(x_{i j k}-x_{i} . .\right)^{2} /((\text { NUMOUT }) \cdot(\text { NREPET })-1)\right]^{1 / 2} \\
& \left.=\left[\left[\sum_{j} \sum_{k} x_{i j k}^{2}-(\text { NUMOUT }) \cdot(\text { NREPET }) x_{i \ldots}^{2}\right] /(\text { NUMOUT }) \cdot(\text { NREPET })-1\right)\right]^{1 / 2} \\
& =\left[\left[\operatorname{CUMSQR}()-(\text { NUMOUT })(\text { NREPET })(\text { TAVE })^{2}\right] /((\text { NUMOUT)(NREPET })-1)\right]^{1 / 2} .
\end{aligned}
$$

This section describes ralidation tests of the simulation model; the analytical model [l] was used as the standard. The test results are preceded by a brief description of the analytical model. Hypothesis tests were conducted of: (1) mean number of errors seeded, (2) probability of arc traversal and (3) numbers of arc and path traversals. Tests of mean number of detected errors were not performed because an efficient method of computing the variance from the analytical model was not available. The standard deviation of detected errors was needed to calculate confidence limits. Although the simulation model computes an estimate of the variance, this calculation could not be used because, without the analytical model variance, it could not be validated. However, a notable achievement has been the development of an algorithm for computing the variance of number of errors detected from the analytical model [5]. Work is proceeding on obtaining a solution in closed form. When a computer program is available for the closed form solution, validation tests will be conducted of simulation model mean number of detected errors and the variance.

Analytical Model

The analytical model [1] computes the exptected number of detected errors for each input. Designating the original expected number of errors in arc $i j$ as $\mu_{i j}$ for the arc between nodes i and j and $p_{i j}$ as the probability of traversing arc ij one or more times, the expected number of detected errors in arc $i j$ for the first input is $\mu_{i j} p_{i j}$. The expected number of errors remaining in arc ij after the first input is $\mu_{i j}\left(1-p_{i j}\right)$. The expected number of errors detected on the second input is $\mu_{i j}\left(I-p_{i j}\right) p_{i j}$. The expected number of errors detected on the $k=$ th input is

$$
\begin{equation*}
e(k)=\mu_{i j}\left(1-p_{i j}\right)^{k-1} p_{i j} \tag{1}
\end{equation*}
$$

When the expected number of detected errors is added over all arcs, we have

$$
\begin{equation*}
E(k)=\sum_{i j} \mu_{i j}\left(I-p_{i j}\right)^{k-1} p_{i j} \tag{2}
\end{equation*}
$$

for the total expected number of detected errors on the $k-\frac{t h}{}$ input. The initial $\mu_{i j}$ can be interpreted as the mean number of errors per arc which is originally present, in which case the $\mu_{i j}=\bar{\mu}_{i j}$ are equal for all arcs, or as a specified number of errors in each arc. In the latter case, the $H_{i j}$ will be different. When comparing simulation and analytical results, $\vec{\mu}_{i j}$ is used in (1) if the simulation is repeated for a number of seedings and $\mu_{i j}$ is used in (1) if only one seeding is used.

When an actual program is available for analysis, the number of source statements in an arc $s_{i j}$ and the mean number of source statements between errors M (obtained from historical module error records) can be used to obtain the $\mu_{i j}$ in (2) by the computation $\mu_{i j}=s_{i j} / M$. Then (2) becomes

$$
\begin{equation*}
E(k)=\left(\sum_{i j} s_{i j}\left(l-p_{i j}\right)^{k-1} p_{i j}\right) / M \tag{3}
\end{equation*}
$$

If it is desired to calculate (3) as the fraction of original errors detected, then (3) is divided by U, the expected number of original errors in a program. We obtain $U=S / M$, where S is the total number of statements in the program. If the program is a procedure of a larger module, s is the number of statements in the procedure and M is the mean number of errors between statements of the module. Thus when calculated on a fractional basis, (3) becomes

$$
\begin{equation*}
E(k) / U=\left(\sum_{i j} s_{i j}\left(I-p_{i j}\right)^{k-1} p_{i j}\right) / S . \tag{4}
\end{equation*}
$$

It is important to use (4) when comparing detected errors from different size programs, since we would expect to find more errors in larger programs.

The probability of traversing arc ij is computed by multiplying the probability of reaching node i by the branch probability for arc $i j, 1 / n$, where n is the number of arcs emanating from node i. The probability of reaching node i is the sum of the traversal probabilities of arcs which enter node i.

Navy Tactical Data system (NTDS) program listings were converted to directed graphs. After constructing the graphs, the numbers of nodes, arcs, paths and source statements were recorded. Simulation and analytical results were obtained for 44 procedures in two modules. The data were obtained in order to compare simulation and analytical results and to analyze complexity

Abstract

measures (see Section IV). Although any values of M could have been used for these purposes, the values were computed from S / U where S and U were actual numbers of module source statements and total reported errors, respectively. In the model, the distance between errors refers to statements executed and not statements on the program listing. M is equal to the model mean distance when module testing starts (all U errors are present) and all statements are executed once (S statements).

Appendix B contains the directed graphs and tables pertaining to the simulation and analytical solutions for 31 procedures of one module and 13 procedures of a second module of the NTDS. The graphs and tables show numbers of nodes, arcs, paths and source statements. Simulation and analytical results are shown for mean number and mean fraction of errors detected and probability of arc traversal for every arc of every directed graph for a single input. Simulation results were obtained for 100 repetitions and 100 replications where a repetition is an error seeding and a replication is a path. One hundred replications were used for each of 100 repetitions.

Validation Tests

a. Mean Number of Errors Seeded.

Errors are seeded in the simulation model with exponentially distributed distances (number of source statement) between errors. This is equivalent to a Poisson distribution of number of errors seeded per arc, with the mean number seeded being proportional to arc length. The total number of errors seeded in the directed graph is also Poisson distributed with mean S / M and standard deviation $(S / M)^{1 / 2}$. Since the sample was $N=100$ seedings, the normal approximation of the Poisson was used. Since the variance is known, the test statistic:
$Z=(\vec{X}-(S / M)) /(S / M N)^{1 / 2}$, where \vec{X} is the mean number of errors seeded over N seedings with $M=21$ statements between errors. A two sided test was used with $\alpha=.05$. Eight Module 1 NTDS procedures were tested for error seeding separately and independently of the results shown in Appendix B for error detection.

$$
\begin{aligned}
& H_{O}: \mu=S / M \\
& H_{1}: \mu \neq S / M \\
& \text { Reject } H_{O} \text { if }|z|>1.96
\end{aligned}
$$

The results of the hypothesis tests are shown in Table III-l.

TABLE III-1

Mean Error Seeding Tests

Procedure	S	S / M	$\underline{\text { x }}$	$\underline{(S / M)^{1 / 2}}$	2
8	10	. 476	. 550	. 690	1.072
14	9	. 429	. 430	. 655	. 015
25	8	. 381	. 400	. 617	. 308
34	15	. 714	. 780	. 845	. 781
39	17	. 810	. 840	. 900	. 333
47	12	. 571	. 680	. 756	1.442
48	13	. 619	. 700	. 787	1.0292
53	11	. 524	. 630	. 724	1.464

Although H_{0} would be accepted in each of the above tests, the simulation error seeding was consistently high.

Another test involved a graph with a single input and a single exit node. The arc joining these nodes had a length of 10 and the parameter MEANER was set to 1 so that the expected number of seeded errors was 10 . The subroutine SEED was called 1000 times to seed errors in this arc, and the mean number of errors seeded was 9.995. This test was conducted by running a 1000 inputs through the graph and since each input traverses the single arc the number of errors found is the same as the number seeded $\left(Z=(10-9.9995) /(10 \cdot 1000)^{1 / 2}=.00005\right)$.
b. Probability of Arc Traversal

Traversals on a given arc or path are independent and the probability of traversal is constant on successive trials. The number of traversals in an arc ij is binomially distributed. The probability of arc traversal is $P_{i j}$ and the relative frequency of traversal obtained from simulation is $P_{i j}$ ' so that $E\left(P_{i j}^{\prime}\right)=P_{i j}$ and $V\left(P_{i j}^{\prime}\right)=P_{i j}\left(I-P_{i j}\right) / N$, where N is the number of independent trails (100 replications $\times 100$ repetitions $=10,000$ trials). Since a normal approximation can be used when N is this large and the variance is known, the test statistic

$$
Z=\left(P_{i j}^{\prime}-P_{i j}\right) /\left(P_{i j}\left(1-P_{i j}\right) N\right)^{1 / 2}
$$

was employed for a two sided test with $\alpha=.05$. Eight procedures listed in Appendix B (different procedures than used in seeding tests) were randomly selected. A branch node of each of the eight procedures and its outgoing arcs were also randomly selected.

$$
\begin{aligned}
& H_{0}: \mu=P_{i j} \\
& H_{1}: \mu \neq P_{i j}
\end{aligned}
$$

Reject H_{0} if $|z|>1.96$

The results of the hypothesis tests are shown in Table III-2. The hypothesis H_{0} would be accepted in each case. Simulation and analytical results are close, as can be seen by examining Appendix B.

TABLE III-2

Probability of Arc Traversal Tests

Module/ Procedure	Arc	$P_{i j}^{\prime}$	P_{ij}	$\left(\left(P_{i j}\right)\left(1-P_{i j}\right)\right)^{1 / 2}$	$\|z\|$
1/28	4,5	. 1256	. 1250	. 331	. 181
1/28	4,6	. 1235	. 1250	. 331	. 453
1/29	2,3	. 5014	. 5000	. 500	. 280
1/29	2,6	. 4986	. 5000	. 500	. 280
1/44	5,6	. 2458	. 2500	. 433	. 970
1/44	5,k	. 2419	. 2500	. 433	1.871
1/49	4,5	. 1260	. 1250	. 331	. 302
1/49	4,8	. 1232	. 1250	. 331	. 544
1/60	6,7	. 1225	. 1250	. 331	. 755
1/60	6,17	. 1213	. 1250	. 331	1.118
2/23	2,3	. 4947	. 5000	. 500	1.060
2/23	2,4	. 5053	. 5000	. 500	1.060
2/48	5,6	. 1869	. 1875	. 390	. 154
2/48	5,7	. 1850	. 1875	. 390	. 641
2/86	5,12	. 2524	. 2500	. 433	. 554
2/86	5,20	. 2472	. 2500	. 433	. 647

c. Numbers of Arc and Path Traversals

The branching mechanism was tested by including in the program a traversal counter which records the number of times each arc is traversed during a program run. The correct functioning of the counter was confirmed by obtaining detailed output (MOUT $=1$) for several different graphs and manually confirming that the count corresponded to the detailed output.

Several runs were made to test the actual traversal count against the expected number. Two specific tests are reported below:

1. The graph with a single input node connected to each of 4 terminal nodes was used in a run with 1 input, 4000 replications, and 1 seeding. The expected number of traversals on each arc is 1000, and the traversal counter showed 994, 1004, 1006, 996 as the observed frequencies. These values easily pass a chi square test at the 99% confidence level $\quad\left(x^{2}=.104, x_{3, .99}^{2}=11.34\right)$.
2. A second test used a graph with node 1 connected to nodes 2 and 3 , node 3 connected to nodes 4 and 5, and node 5 connected to nodes 6 and 7 . In addition 10 inputs were used to test if the branching mechanism works for multiple inputs. The test used 100 replications and 2 seedings. The graph has a total of four paths from input to termination. The expected number of traversals for the path terminating at each node is shown below along with the actual number of traversals produced in this test. These values also pass the chi square test at the 99% confidence level $\left(x^{2}=.419, x_{3, .99}^{2}=11.34\right)$.

path ending at	2	4	6	7
expected traversals	1000	500	250	250
actual traversals	1011	491	253	245

IV. ANALYSIS OF COMPLEXITY

One objective of the research was to identify complexity measures which could be used to estimate the difficulty of detecting errors in a program. If these measures could be identified, they would prove useful in program design and testing. Complexity measures would be used during program design to avoid structures which are difficult to test and during testing to allocate resources to testing on the basis of estimated difficulty of error detection.

Four complexity measures were evaluated: numbers of nodes (Nn), arcs, (Na), paths (Np) and source statements (S). A brief explanation will be given of the significance of these measures as indices of difficulty of error detection. These measures were developed for 31 procedures of one NTDS module and 13 procedures of another NTDS module. A procedure is a subset of a module.

Nodes

Nodes can be categorized as follows:
a. Start. Signifies program beginning. No entry and one or more exits.
b. Terminal. Signifies program end. One or more entries and no exit.
c. Branch. Single entry and multiple exits.
d. Merge. Multiple entries and single exit.
e. Merge and Branch. Multiple entries and exits.
f. Transfer. Single entry and exit. Commonly used to signify a call to a sub-procedure and to indicate the return point in the calling procedure.
g. Dummy. A special case of f. An artificial node in the simulation for handling parallel arcs.
h. Transient. Nodes which delineate the beginning and ending of sub-procedures.

As compared to a structure with a start node, terminal node and one arc connecting the two, the addition of nodes in categories c, d, and e will add to the number of paths and decrease the probability of reaching certain arcs. Thus, error detection is affected. Transfer nodes do not affect the structure of a program, but do add to its complexity because these nodes correspond to a point of transfer of control to a sub-procedure and a return to the calling procedure. Transient nodes were not counted in N n because transient nodes are part of a sub-procedure; however, the transient nodes were necessary in order to complete certain paths in the directed graph. Dummy nodes were not counted as part of $N n$ because they were used only to specify a directed graph in the model and did notcontribute to program complexity. All other nodes were counted. It would be useful in future work to develop an additional measure consisting only of nodes involving branching, since the presence of these nodes may cause the probabilities of arc traversal in the outgoing arcs to be less than the probabilities in incoming arcs, thus increasing the difficulty of error detection in paths which contain the outgoing arcs.

Arcs

Transient arcs are arcs contained in sub-procedures. These arcs were not counted in Na. However, these arcs were needed to complete certain paths in the directed graphs. An entire sub-procedure was represented by two nodes (start and end nodes) and one arc. This was done because it was infeasible to represent in the model an entire module of approximately 2000 source statements and many interconnected procedures. Secondly, the point of view was adopted that sub-procedures called by procedures have been checked out and any errors detected reside in the main procedure. Thus the sub-procedure

$$
I V-2
$$

was treated as a zero source statement (no errors were seeded) arc. This treatment corresponds to viewing the test of a procedure as a unit test in which it is assumed that interacting units (sub-procedures) are working; the focus is on finding errors in the main procedure. An important facet of testing is tre integration test in which the focus is on the interactions between units. The model could be employed in this vein by conceiving of each procedure as an arc and the nodes as branch points to entire procedures. It was not necessary to depict transient nodes and arcs, since these components do not affect the error finding mechanism in the model. However, it was considered important to document the actual program structure rather than the structure required by the model.

Dumny arcs were not counted in Na because they were used only to represent parallel arcs in the model and did not contribute to program complexity.

An increase in the number of arcs increases the number of paths and, hence, makes error finding more difficult.

Paths

We define a path as a series of connected nodes and arcs which begins with a start node and ends with a terminal node. A definitional problem arises in the case of paths which contain cycles. A graph containing cycles has an infinite number of paths. However, for our purposes, traversals in cycles were counted the minimum number of times. A cycle contained in a path was traversed one time. This treatment of paths is consistent with the model assumption that all errors in an arc are detected on the first traversal. Cycles in the model do not represent DO loops in a program, where the program is forced to iterate in a loop a
specified number of times. Rather, a cycle contains nodes and arcs which may be revisited.

As the number of paths in a program increases, error finding becomes more difficult because the number of areas in the program which must be searched increases. It should be noted that number of paths is not independent of number of nodes and arcs; number of paths is a function of number of nodes and arcs.

Source Statements
The number of source statements S will affect error detection in the model because an assumption of the model is that the number of original errors in a program is proportional to the number of source statements. Based on this assumption, error detection would increase as program size increases, all other factors (number of paths) being equal. In order to not mask the effect of other factors, the number of errors detected on the first input $E(1)$, as a fraction of the original number of errors U, is used instead of $E(1)$. The relationship between error detection and S is complex because error detection depends on both U (a function of S) and structural properties (paths).

Structural properties are not independent of number of source statements. Since few programs are written as one line of code or a single arc, the number of nodes, arcs and paths will, in general, increase with number of source statements.

Analysis of Complexity Measures
Values of $\mathrm{Nn}, \mathrm{Na}, \mathrm{Np}, \mathrm{S}$ and $\mathrm{E}(1) / \mathrm{U}$ (analytical solution) are tabulated in Table IV-1. Plots of $E(1) / \mathrm{U}$ versus $\mathrm{Nn}, \mathrm{Na}, \mathrm{Np}$ and S
are shown in Figures IV-1 to IV-4, respectively. Points are plotted for both Module 1 and Module 2. Since the data were shown to be highly nonlinear when plotted on a linear scale, the data were plotted first on semi-log and then on log-log scales (Figures IV-I to IV-4) to see whether a straight line would emerge indicative of a non-linear relationship. As seen in the figures, the data are still scattered on a log-log scale. In many cases there are multiple values of errors detected for a given value of complexity. This result suggests that error detection is a function of multiple complexity measures. However, lack of independence among variables makes the identification of a multi-variate relationship difficult. Other measures, such as path length, connectivity and reachability, may prove more illuminating as indices of error detection.

In order to more clearly indicate the relationship between error detection and a single complexity measure, multiple values of $E(I) / U$ were averaged (for three or more values) and plotted in Figures IV-5 and $I V-6$ for paths and nodes, respectively. These curves provide a better indication of the inverse relationship between error detection and complexity. However, the reduced sample which results from averaging is inadequate for fitting an equation to the data.

TABLE IV-1

COMPLEXITY MEASURES

Module/ Procedure	Nn	Na	Np	S	$\underline{E(1) / U}$
1/2	12	21	26	37	. 1700
1/8	8	11	3	10	. 6000
1/11	6	7	3	8	. 5938
1/14	4	5	4	9	. 7222
1/19	17	25	7	22	. 3295
1/22	18	26	11	30	. 3458
1/25	8	10	2	8	. 6875
1/28	12	16	4	24	. 6145
1/29	20	28	13	47	. 6463
1/30	7	10	5	10	. 3563
1/34	11	15	3	15	. 9167
1/35	12	16	3	11	. 8636
1/36	17	24	3	31	. 4032
1/39	15	24	10	17	. 3526
1/44	15	24	7	21	. 4256
1/47	12	16	4	12	. 7500
1/48	14	21	7	13	. 6538
1/49	13	19	7	19	. 2829
1/53	11	18	9	11	. 4531
1/57	22	31	12	26	. 2726
1/60	22	34	16	24	. 3317
1/75	17	24	8	20	. 6800
1/76	13	18	5	19	. 4803
1/77	10	16	9	10	. 6000
1/79	19	28	3	23	. 3804
1/81	6	8	3	7	. 5000
1/87	14	20	6	25	. 4700
1/91	18	28	9	14	. 2514
1/92	4	5	3	9	. 4444
1/93	23	33	12	34	. 2289
1/95	16	26	10	19	. 2325

TABLE IV-1 (cont'd)
COMPLEXITY MEASURES

Module/ Procedure	Nn	Na	$\underline{\mathrm{Np}}$	\underline{S}	$\underline{E(1) / \mathrm{U}}$
$2 / 15$	9	12	5	10	.4750
$2 / 23$	8	10	3	12	.6667
$2 / 41$	9	13	12	13	.5192
$2 / 46$	23	32	18	32	.3212
$2 / 47$	22	34	36	33	.2060
$2 / 48$	12	18	14	17	.4651
$2 / 79$	9	12	5	11	.5455
$2 / 86$	20	29	6	33	.3775
$2 / 90$	11	17	8	23	.2446
$2 / 99$	19	27	10	23	.4620
$2 / 122$	12	18	6	20	.4313
$2 / 137$	10	15	11	23	.3505
$2 / 149$	16	24	9	35	.3964

Legend

Nn: number of nodes, with dummy nodes (nodes associated with dummy parallel arcs) and transient nodes (nodes associated with called procedures) eliminated.

Na: number of arcs, with dummy arcs and transient arcs (arcs associated with called procedures) eliminated.

Np: number of paths, with paths involving cycles counted minimum number of times.

S: number of source language statements.
E(l)/U: expected fraction errors detected on first imput obtained with analytical model.

										-									
					,		-	,		,		,	,	-	,	-		-	-
					-		-	=	-				-	-	T	-			
					$\underline{\square}$										-				
					-					T					-				
					-										,	-			
					T														
					-														
					,			8						-	-	-			
					-		,	9	0						,	-			
					.			\bigcirc						-	-				
								\%											
								\cdots	3						-				
					-			\square	$\stackrel{\sim}{\sim}$	4				-	-	-	.		
					-			$\stackrel{3}{4}$	3	0					-	-			
								-	9	3									,
					:			c	-2	\%				-	-	-		-	
					4			$\stackrel{\square}{\square}$								*			
								\%		\%				*		*			
								\%											
								+								.			
					-			\cdots								-			
					,			2	,						\cdots				
														\cdot					
								$\stackrel{4}{2}$											
								7	-	,				.					
										-				-					
										T					,				
								\square											
					-			1							-				
					,										-				
															-				

-		-	\square		\cdots				\cdots	-	-	E	-	
.														
		,			T									
		c			T.	,		T		-	-	-		
		\%						-	-	\square	-	-	-	
		\%				-	-	-	\square	---	-	\square	-	
-		4			\cdots	-	-	-	-	-	\square	-	-	
													+	
-		-	.		$\underline{+}$	-	1		-1.	-	\pm	-	$\underline{+}$	
	4				-	-	-		+	-	\square	-	+	
					-	-		-	-	-	-	+		
					\#			!	-	\square				

$\frac{-6}{4}|+1|$
 +1 $1+1$ -

V. SUMMARY

This report covered the following areas:

- Description of the modified error simulation model
. Validation tests of the simulation model
- Analysis of program complexity measures

A description of the revised simulation model was presented in Section II. The data input format was described in Section II-4. A flowchart appears in Appendix A.

Validation tests on the simulation model were described in Section III. Some of the tests used data shown in Appendix B. These data show: directed graphs, properties of the directed graphs, simulation solutions and analytical solutions for 44 NTDS procedures. Validation tests were conducted for error seeding and arc/path traversal. All hypothesis (validation) tests were passed. However, simulation results were consistently higher than analytical results.

Program complexity measures were analyzed in section IV. Four complexity measures -- numbers of nodes, arcs, paths and source statements -were plotted against fraction expected detected errors obtained from the analytical solution. The data were obtained from the NTDS procedures of Appendix B. Although the direction of the plots (error detection inversely related to complexity measures) was as expected, considerable variability in the data were exhibited. The variability indicated error detection was a function of several complexity measures instead of one. There were multiple values of error detection for many values of complexity measure. When these values were averaged the effect of a single complexity measure became
clearer. However, the reduced sample size made quantitative analysis infeasible. Although the four factors are potentially useful as measures of complexity, no single factor stood out as being a major determinant of error detection.

REFERENCES

[1] G. H. Bradley, G. T. Howard, N. F. Schneidewind, T. F. Green, and G. W. Montgomery, "System Test Methodology," Vol. I, Naval Postgraduate School, NPS55Ss75072A and Vol. II, NPS55Ss75072B, July 1975.
[2] G. H. Bradley, T. F. Green, G. T. Howard and N. F. Schneidewind, "Structure and Error Detection in Computer Software," Proceedings AIIE Conference, pp. 54-59, 1975.
[3] N. F. Schneidewind and T. F. Green, "Simulation of Error Detection in Computer Programs," Proceedings of the Symposium on the Simulation of Computer Systems, National Bureau of Standards, pp. 101-105, 1975.
[4] T. F. Green, N. F. Schneidewind, G. T. Howard, and T. Pariseau, "Program Structures, Complexity and Error Characteristics," Proceedings of the Computer Engineering Conference, Microwave Research Institute, Polytechnic Institute of New York, 1976.
[5] S. Litwin and R. J. Pariseau, "Variance of the Number of Errors Detected During a Set of Random Passes Through an Error Laden Graph," Naval Air Development Center Technical Memorandum, 52T:1 76-STS-001, 6 April 1976.

APPENDIX A

FLOW CHART FOR ERROR

```
SIMULATION PROGRAM (MAIN),
AND SUBROUTINE (SEED)
```


A-3

[^0]Call the number NUMSUC

If NUMSUC=0, GO TO 96
Otherwise, continue

If NUMSUC=1, that node is next.
If NUMSUC > 1 , select randomly the next
node. (I is the index of the next node)

If MOUT=0 continue.
Otherwise, write the index L

NTRAV (NODE, L) $=$ NTRAV (NODE, L) +1
(count the number of traversals)

```
If ISEED(NODE,L)=0, GO TO 95.
Otherwise, continue. An error has been
detected
```


If MOUT=0 continue.
Otherwise, write "ERROR ROUND IN PREVIOUS ARC"

802
NFIND=NFIND+ISEED (NOD E,L)
SEED $($ NODE ,L $)=0$

If MOUT=0, continue.
Otherwise, write
"THE PATH SEED IZ IS NOW"

Do 120, for each input
1, ..., MINPUT

TAVE=SVAVE ()
NREPET

TVAROK $=\frac{\text { CUMSQR()-NUMOUT*NREPET*TAVE*TAVE }}{\text { NUMOUT*NREPET-1 }}$

TSDOK= TVAROK**. 5
(all in floating point)

$\operatorname{ISEED}($ this $\operatorname{arc})=\operatorname{ISEED}(\quad)+1$ NSEED=NSEED +1

APPENDIX B

DIRECTED GRAPHS, SIMULATION AND ANALYTICAL RESULTS

1. Notation used in Appendix B
i: node i
j: node j
$P_{i j}^{\prime}$: relative frequency of traversing arc $i j$ one or more times (simulation model)
$P_{i j}$: probability of traversing arc ij one or more times (analytical model).
$S_{i j}$: number of source statements in arc ij.
$E(1)=\sum_{i j} P_{i j} S_{i j} / M:$ expected number of errors detected on first input, obtained from analytical model, where M is the mean number of source statements between errors ($M=21$ for Module 1 and $M=51$ for Module 2).
$U=S / M$: expected number of errors in a program, where S is the number of source statements in a program.
$E^{\prime}(1) / U=\sum_{i j} P_{i j} S_{i j} / S:$ expected Eraction of number of errors detected on first input.

E'(1): mean number of errors detected on first input obtained from simulation model.
$E^{\prime}(1) / U=\left(E^{\prime}(1) / S\right) M:$ mean fraction of number of errors detected on first input (given as a percentage at the bottom of directed graphs).
*: indicates that $P_{i j}^{\prime}$ has no meaning because ratio of number of traversals in arc ij to total number of input traversals is greater than one, because arc ij is part of a cycle.
2. Notes.

- The number of source statements (x) and number of machine instructions in an arc are indicated by (x / y) alongside the arc. No number or zero means there are zero statements/instructions in an arc. (These are trans of control arcs). In some cases the number of machine instructions was not available.
- Since the simulation model does not accomodate parallel arcs, a dummy node was inserted in each parallel arc.
- Nodes associated with sub-procedures (entry and exit nodes) are designat by letters. The entire sub-procedure is indicated by a dotted line and is counted as one arc.


```
MuILEE Of nC\dot{c}s:14
```

Numífi cf aIcs： 23
就エ上ニr of Eatrs： 26
Mu：LeI $C \hat{I}$ scuice stmts．： 37
ミリヒエage ELICI ECunc： $0.31: 4$

```
\[
\text { Eercentage EIIcEs Ecund: } 17.04
\]
```

	$\underline{\text { i }}$	$\underline{\text { j }}$	$\mathrm{p}^{\prime}{ }_{i j}$	$p_{i j}$	$\mathrm{s}_{\text {ij }}$
	1	2	1.0000	1.0000	4
	2	3	. 4948	. 5000	1
	2	14	. 5052	. 5000	0
	3	4	. 2480	. 2500	2
	3	8	. 2468	. 2500	0
	4	5	. 1250	. 1250	3
	4	14	. 1230	. 1250	0
	5	6	. 0645	. 0625	4
	5	8	. 0605	. 0625	0
	6	7	. 0315	. 0313	0
	6	8	. 0330	. 0313	4
	7	8	. 0315	. 0313	0
	8	9	. 1860	. 1875	1
	8	14	. 1858	. 1875	0
	9	10	. 0949	. 0938	1
	9	14	. 0911	. 0938	0
	10	11	. 0475	. 0469	1
	10	14	. 0474	. 0469	0
	11	12	. 0233	. 0234	2
	11	14	. 0242	. 0234	0
	12	13	.0101	. 0117	0
	12	14	. 0132	. 0117	14
	13	14	. 0101	. 0117	0
$\sum_{i j} p_{i j} s_{i j}$	$=$				37
$E(1)=.2995$					
$E(1) / U=$	-				

Muther of ncíes:13
sumber of arcs: 14
Nuルt 3
Nuaber cf scerce stats.: 10
Average errci Ecuno: 0.2523

	\underline{i}	$\underline{1}$	$p^{\prime}{ }^{\prime j}$	$\mathrm{P}_{i j}$	${ }^{\text {ij }}$
	1	2	1.0000	1.0000	3
	2	3	. 4947	. 5000	3
	2	9	. 5053	. 5000	0
	3	A	. 4947	. 5000	0
	4	5	. 4947	. 5000	1
	5	C	. 4947	. 5000	0
	6	7	. 4947	. 5000	1
	7	8	. 2497	. 2500	0
	7	9	. 2450	. 2500	2
	8	9	. 2497	. 2500	0
	A	B	. 4947	. 5000	0
	B	4	. 4947	. 5000	0
	C	D	. 4947	. 5000	0
	D	6	. 4947	. 5000	0
					10
$\sum_{i j} p_{i j} s_{i j}=6.0000$					
$E(1)=.2857$					
$E(1) / U=$	$=$				


```
Nuater of nodes:6
MurLEE cf aICE: 7
Muriter of Eatrs: 3
Number cf sctice stats.: 8
\qErage errci fcund: 0.1974
zerceatage errcrs iounde: 5i.ez
```

Module 1
Procedure 11

	100 Replications		100 Repetitions	
\underline{i}	\underline{j}	$\mathrm{p}^{\prime} \mathrm{ij}$	$\mathrm{P}_{\text {ij }}$	$\mathrm{S}_{\text {ij }}$
1	2	1.0000	1.0000	2
2	3	. 4947	. 5000	1
2	4	. 5053	. 5000	0
3	4	. 2497	. 2500	1
3	6	. 2450	. 2500	0
4	5	. 7550	. 7500	2
6	5	. 2450	. 2500	2

$\sum_{i j} p_{i j} S_{i j}=4.75$
$E(1)=.2262$
$E(1) / U=.5938$


```
Muater of ncoies:6
Murier cf arcs: 7
Nutrer of faths: 4
Muifter cf scirce stots.: 9
Average EIrcI fourc: 0.2585
```


\underline{i}	j	$p^{\prime}{ }_{i j}$	$\mathrm{p}_{\text {ij }}$	$\mathrm{s}_{\text {ij }}$
1	2	?. 0000	1.0000	4
2	3	. 4983	. 5000	0
2	4	. 5017	. 5000	2
3	4	. 4983	. 5000	0
4	5	. 4994	. 5000	0
4	6	. 5006	. 5000	3
5	6	. 4994	. 5000	$\underline{0}$
				9
$\sum_{i j} p_{i j} s_{i j}=6.5000$				
$E(1)=.3095$				
E (1)				

Number of ncies:19
Muater cf arcs: 26
Muaber of paths: 7
Hugber cf source stats.: 22
$\begin{aligned} \text { verage errgt fucund: }\end{aligned}$ 0.2885
percentace errars found: 27.54

$\underline{\underline{1}}$	j	$\underline{p}^{\prime}{ }_{i j}$	$\mathrm{p}_{i j}$	${ }^{\text {ij }}$
1	2	1.0000	1.0000	3
2	3	. 4948	. 5000	1
2	19	. 5052	. 5000	0
3	4	*	. 2500	0
3	5	. 4948	. 5000	4
4	3	*	. 2500	0
5	A	. 4948	. 5000	0
6	7	*	. 1667	1
7	8	*	. 0909	3
7	14	*	. 1000	1
8	A	*	. 0909	0
9	10	*	. 1538	2
10	A	*	. 1538	0
11	12	*	.1538	2
12	A	*	. 1538	0
13	19	. 2206	. 2222	1
14	15	*	. 0500	3
14	19	. 0560	. 0556	0
15	A	*	. 0500	0
16	19	. 2182	. 2222	1
A	B	*	. 5000	0
B	6	*	. 1667	0

$$
B-12
$$


```
HuIfL\inE Of ncícs: 25
Humber cef arcs:30
```

luater of paths: 11
Mutber císcrice stats.: 30
Average EIICI found: 0.4105

```
ミexcentayミ Eracrs tound: 2e.7:
```

\underline{i}	j	$p^{\prime}{ }_{i j}$	$p_{i j}$	${ }^{\text {ij }}$
1	2	1.0000	1.0000	4
2	3	. 4950	. 5000	4
2	19	. 5050	. 5000	0
3	4	. 2490	. 2500	0
3	5	. 2460	. 2500	3
4	5	. 2490	. 2500	0
5	6	. 1280	. 1250	1
5	7	. 1179	. 1250	1
5	8	. 1234	. 1250	1
5	9	. 1257	. 1250	1
6	16	. 1280	. 1250	2
7	15	. 1179	. 1250	2
8	10	. 1885	. 1875	3
9	14	. 1257	. 1250	1
10	A	. 1885	. 1875	0
11	12	. 1885	. 1875	2
12	C	. 1885	. 1875	0
13	18	. 1885	.1875	0
14	8	. 0651	. 0625	0
14	15	. 0606	. 0625	1
15	16	. 1785	. 1875	1
16	17	. 3065	. 3125	1
17	E	. 3065	. 3125	0
18	19	. 4950	. 5000	2
A	B	. 1885	. 1875	0
B	11	. 1885	. 1875	0
C	D	. 1885	. 1875	0
D	13	. 1885	. 1875	0
E	F	. 3065	. 3125	0
F	18	. 3065	. 3125	0

$\sum_{i j} p_{i j} s_{i j}=10.375$
$E(1)=.4940$
$E(I) / U=.3458$


```
Nuyber of ncies:12
```

Number cf arcs: 12
Nurber of eaths: 2
Huaíe ci scurce stmts.: 8
Average errcr found: 0.2324

```
EeIcentagミ eIIcrs fcund: oi.01
```



```
Mua上\inI Of ncdes: 17
Number ci arcs:19
```

Wuaber of Eaths： 4
Numier ci sctrce stats．： 24
Average errcr foudd： 0.6400
EヒICEntact ミIrcさる found： 56.00

100 Replications 100 Repetitions

i	j	$p^{\prime}{ }_{i j}$	$p_{i j}$	$\mathrm{s}_{\text {ij }}$
1	2	1.0000	1.0000	5
2	3	. 4975	. 5000	2
2	11	. 5025	. 5000	0
3	4	. 2491	. 2500	6
3	12	. 2484	. 2500	0
4	5	. 1256	. 1250	0
4	6	. 1235	. 1250	0
5	6	. 1256	. 1250	0
6	7	. 7516	. 7500	5
7	A	. 7516	. 7500	0
8	9	. 7516	. 7500	1
9	C	. 7516	.7500	0
10	13	. 7516	. 7500	1
11	6	. 5025	. 5000	4
12	13	. 2484	. 2500	0
A	B	. 7516	. 7500	0
B	8	. 7516	. 7500	0
C	D	. 7516	. 7500	0
D	10	. 7516	. 7500	0

$\sum_{i j} p_{i j} S_{i j}=14.75$
$E(1)=.7024$
$E(1) / U=.6145$

$$
\begin{aligned}
& \text { Module } 1 \\
& \sum_{i j} P_{i j} S_{i j}=30.375 \\
& E(I)=1.4464 \\
& E(I) / U=.6463
\end{aligned}
$$

$$
\text { Procedure No. } 29
$$

(continued)


```
Murier of ncies:
7
Muriter ce arcs:10
```

MuxEヒc cf catrs: 5
burber cf scuice stats.: 10
$\therefore \eta \in E a g \equiv$ ersct founc: 0.1049

```
percentace errors founa: 34.03
```


100 Replications 100 Repetitions

$\underline{\text { i }}$	i	$\underline{\mathrm{j}}$	$p^{\prime}{ }^{\prime j}$	$\mathrm{P}_{\text {ij }}$	${ }^{\text {ij }}$
1	1	2	1.0000	1.0000	2
2	2	3	. 4943	. 5000	1
2	2	7	. 5057	. 5000	0
3	3	4	. 2500	. 2500	1
3	3	7	. 2443	. 2500	0
4	4	5	. 1276	. 1250	1
4	4	6	. 1224	. 1250	0
5	5	6	. 0638	. 0625	0
5	5	7	. 0638	. 0625	2
6	6	7	. 1862	.1875	3
					10
$\sum_{i j} p_{i j} s_{i j}=3.5625$					
$E(1)=.1696$					
$E(1) / U=.3563$					


```
Nurler of ncíes: 16
Wurter ci aIcs:18
```

Mut亡er of patts: 3
Huøber cf scurce stmts.: 15
มverage etIcr fcund: 0.5455

```
\[
\text { EsIcentagserrces found } 76.51
\]
```

i	$\underline{1}$	$p^{\prime}{ }_{i j}$	$\mathrm{P}_{\text {ij }}$	${ }^{\text {s }}$ ij
1	2	1.0000	1.0000	2
2	A	1.0000	1.0000	0
3	4	1.0000	1.0000	1
4	5	. 4994	. 5000	1
4	7	. 5006	. 5000	0
5	6	. 2475	. 2500	0
5	7	. 2519	. 2500	1
6	7	. 2475	. 2500	0
7	8	1.0000	1.0000	5
8	c	1.0000	1.0000	0
9	10	*	1.0000	2
10	C	*	1.0000	0
11	12	1.0000	1.0000	3
C	D	*	1.0000	0
D	9	*	1.0000	0
D	11	1.0000	1.0000	0
A	B	1.0000	1.0000	0
B	3	1.0000	1.0000	0
				15
$\sum_{i j} p_{i j} s_{i j}=13.75$				
$E(1)=.6548$				
$E(1) / U=.9167$				


```
Muater of ncées:14
```

Sumber cf aIcs: 17
Xuruter of catbs: 3
Vureer of scurce stats.: 11
Average ExIct found: 0.3575
 68.27

Mcdule: 1

Murber cf ncícs:
21
Burécéciarcs:
26
viuater of gatns:3

NuIter cf sctice stats.: 31
Av=rage €rrcr founc̃:
0.5203

EEこCEnこege EIfces found: 35.25

		$p_{i j}^{\prime}$	$\mathrm{p}_{i j}$	${ }^{\text {ij }}$
1	2	1.0000	1.0000	2
2	3	. 4964	. 5000	12
2	17	. 5036	. 5000	0
3	4	. 2449	. 2500	3
3	6	. 2515	. 2500	0
4	A	,2449	. 2500	0
5	6	*	. 2500	0
6	7	*	. 2500	4
7	A	*	. 2500	0
8	9	*	. 2500	2
9	A	*	. 2500	0
10	11	*	. 2500	2
11	A	*	. 2500	0
12	13	*	. 2500	1
13	C	*	. 2500	0
14	15	*	. 2500	4
15	A	*	. 2500	0
16	17	. 4964	. 5000	1
A	B	*	. 5000	0
B	5	*	. 2500	0
B	8	*	. 2500	0
B	10	*	. 2500	0
B	12	*	. 2500	0
B	16	. 4964	. 5000	0

C	D	*	.2500	0
D	14	$*$.2500	0
			31	

$\Sigma P_{i j} S_{i j}=12.5000$
$E(1)=.5952$
$E(1) / u=.4032$


```
Muaker of ncíces:17
```

Nueter of arcs: 25
Muiter of Faths: 10
lumber cf scexce stots.: 17
Average errcr founc: 0.2637

$$
\text { Eercentaçerrcrs found: } 32.57
$$

$\underline{\text { i }}$	$\underline{1}$	$p^{\prime}{ }_{i j}$	$\underline{p}_{i j}$	$\mathrm{s}_{\text {ij }}$
1	2	1.0000	1.0000	4
2	3	. 4954	. 5000	1
2	14	. 5046	. 5000	0
3	4	. 2490	. 2500	1
3	14	. 2464	. 2500	0
4	5	. 1258	. 1250	1
4	14	. 1232	. 1250	0
5	6	. 0631	. 0625	1
5	14	. 0627	. 0625	0
6	7	. 0299	. 0313	1
6	14	. 0332	. 0313	0
7	8	. 0162	.0156	1
7	14	.0137	.0156	0
8	9	. 0090	. 0078	1
8	13	. 0072	. 0078	1
9	10	. 0040	. 0039	1
9	11	. 0050	. 0039	0
10	11	. 0040	. 0039	1
11	A	. 0123	. 0117	0
12	15	. 0123	. 0117	1
14	15	. 9877	. 9883	1
13	11	. 0033	. 0039	1
13	14	. 0039	. 0039	0
A	B	. 0123	. 0117	0
B	12	. 0123	. 0117	0
				17

$\sum_{i j} p_{i j} s_{i j}=6.0117$
$E(1)=.2863$
$E(1) / U=.3536$


```
Nu|ber of nodes:27
```

Number cf arcs: 30
Nü上er ci patts: 7
Number cif source stats.: 21
Average error founc: 0.3554
Pgrcentace errces found: 35.54

100 Replications 100 Repetitions

$\underline{\text { i }}$	$\underline{2}$	$p^{\prime} i j$	$p_{i j}$	$s^{\text {ij }}$
1	2	1.0000	1.0000	2
2	A	1.0000	1.0000	0
3	4	1.0000	1.0000	1
4	5	. 4877	. 5000	1
4	6	. 5123	. 5000	0
5	6	. 2458	. 2500	1
5	K	. 2419	. 2500	0
6	7	. 3846	. 3750	7
6	C	. 3735	. 3750	0
7	E	. 3946	. 3750	0
8	9	. 3846	. 3750	/ 1
9	10	. 1952	.1875	4
9	14	. 1894	.1875	0
10	G	. 1952	. 1875	0
11	12	. 1952	. 1875	2
12	I	. 4371	. 4375	0
13	14	. 4371	. 4375	1
14	27	. 6265	. 6250	1
G	H	. 1952	. 1875	0
Hi	11	. 1952	. 1875	0
A	B	1.0000	1.0000	0
B	3	1.0000	1.0000	0
C	D	. 3735	. 3750	0
D	27	. 3735	. 3750	0

E	F	.3735	.3750	0
F	8	.3846	.3750	0
I	J	.4371	.4375	0
K	13	.4371	.4375	0
L	12	.2419	.2500	0
				0
				2500

$\Sigma p_{i j} s_{i j}=8.9375$
$E(1)=.4256$
$E(1) / u=.4256$


```
Number of nodes:19
```

Mu区ber of arcs: 20
Nuaber of paths: 4
Hutber of source stats. 12
sverage arror found: 0.4231
Rercentage errors found: 74.04

100 Replications 100 Repetitions

Nuater of noces:
23
Number ci arcs:
26
Nuater of patts:
7
Number císcirce stmts.:
13
$\begin{array}{ll}\text { Average } \in I r c r \text { found: } & 0.3287 \\ \text { Eercentage eircis iound: } & 53.16\end{array}$

$\underline{\text { i }}$	$\underline{1}$	$p^{\prime} i j$	$p_{i j}$	${ }^{\text {ij }}$
1	2	1.0000	1.0000	2
2	3	. 4943	. 5000	1
2	8	. 5057	. 5000	0
3	4	. 2520	. 2500	1
3	G	. 2423	. 2500	0
4	5	. 1288	. 1250	0
4	6	. 1232	. 1250	1
5	6	. 1288	. 1250	0
6	A	. 2520	. 2500	0
7	8	. 2520	. 2500	0
8	9	. 7577	. 7500	14
9	C	. 7577	. 7500	0
10	11	. 7577	. 7500	1
11	12	. 3766	. 3750	1
11	14	. 3811	. 3750	0
12	E	. 3766	. 3750	0
13	14	. 3766	. 3750	0
14	15	. 7577	. 7500	2
A	B	. 2520	. 2500	0
B	7	. 2520	. 2500	0
C	D	. 7577	. 7500	0
D	10	. 7577	. 7500	0
E	F	. 3766	. 3750	0

B-40

F	13	.3766	.3750	0
G	H	.2423	.2500	0
H	15	.2423	.2500	0
				13

$\sum p_{i j} s_{i j}=8.5000$
$E(I)=.4048$
$E(1) / u=.6538$


```
Number cf ncäes:15
```

Nu氏ber of arcs: 20
Number of paths: 7
Number of scuice stats.: 19
Average erict found: 0.2217

```
\[
\text { gercentage errors found: } 24.50
\]
```


Module 1 Procedure 49

100 Replications 100 Repetitions

$$
B-43
$$


```
Nuater of ncaes:11
```

Murber cf arcs: 18
Nurber of fatrs: 9
Mumber cf scurce stmis.: 11
Average errcr found: 0.1876
EfIcentace errcrs found: 35.81

100 Replications
100 Repetitions

Humber of nodes: 30
lumber of arcs:
35
Haber of paths: 12

Average error found: 0.2910
percentage errors found 23.50

$\underline{\text { i }}$	j	$p^{\prime}{ }_{i j}$	$\mathrm{p}_{i j}$	${ }^{\text {ij }}$
1	2	1.0000	1.0000	2
2	3	. 4972	. 5000	1
2	19	. 5028	. 5000	1
3	A	. 4972	. 5000	0
4	5	. 4972	. 5000	1
5	6	. 2511	. 2500	1
5	9	. 2461	. 2500	0
6	7	. 1228	. 1250	1
6	19	. 1283	. 1250	0
7	8	. 0621	. 0625	1
7	21	. 0607	. 0625	1
8	9	. 0309	. 0313	0
8	19	. 0312	.0313	0
9	10	. 2770	. 2813	2
10	11	. 1407	. 1407	0
10	12	. 1363	. 1407	1
12	13	. 1644	. 1720	5
13	C	. 1644	. 1720	0
14	15	. 1644	.1720	1
15	16	. 0842	. 0860	3
15	18	. 0802	. 0860	0
16	E	. 0842	. 0860	0
17	18	. 0842	. 0860	0

$$
B-47
$$

18	22	.1644	.1720	2
19	G	.6949	.6875	0
20	22	.6949	.6875	1
21	12	.0281	.0313	2
21	19	.0326	.0313	0
E	F	.0842	.0860	0
F	17	.0842	.0860	0
A	B	.4972	.5000	0
B	4	.4972	.5000	0
H	H	.6949	.6875	0
C	D	.6949	.6875	0
D	14	.1644	.1720	0

$\Sigma p_{i j} s_{i j}=7.0874$
$E(1)=.3375$
$E(I) / u=.2726$

Nuater of ncies:28
Nưber Cí arcs: 37
Murber of faths:16
NuIfer cf sctice stats.: 24
AVErage ErIct found: 0.3336
Eercentage Eircrs found: 29.19

$\underline{\text { i }}$	i	$p^{\prime} i j$	$p_{i j}$	${ }^{\text {i }}$ [
1	2	1.0000	1.0000	3
2	3	. 4987	. 5000	1
2	12	. 5013	. 5000	0
3	4	. 2438	. 2500	1
3	17	. 2549	. 2500	0
4	A	. 2438	. 2500	0
5	6	. 2438	. 2500	1
6	7	. 1225	. 1250	1
6	17	. 1213	. 1250	0
7	8	. 0626	. 0625	1
7	19	. 0599	. 0625	1^{\prime}
8	9	. 0303	. 0313	1
8	12	. 0323	. 0313	0
9	10	. 0172	. 0156	1
9	12	. 0131	. 0156	0
10	11	.0090	. 0078	0
10	12	. 0082	. 0078	2
11	12	. 0090	. 0078	0
12	E	*	. 6095	0
13	14	*	. 6095	1
14	15	*	. 3047	4
14	18	*	. 4063	0
15	C	*	. 3047	0

$$
B-50
$$

16	18	*	. 2188	1
17	18	. 3762	. 3750	1
18	22	1.0000	1.0000	1
19	12	. 0295	. 0313	0
19	20	. 0304	. 0313	2
20	C	. 0304	. 0313	0
21	12	*	. 1641	1
C	D	*	. 3282	0
D	16	*	. 2188	0
D	21	*	. 1461	0
A	B	. 2438	. 2500	0
B	5	. 2433	. 2500	0
E	F	*	. 6095	0
F	13	*	. 6095	0

$\sum p_{i j} s_{i j}=7.9613$
$E(1)=.3791$
$E(1) / u=.3317$
humber of nodes:
24
fumber ci aIcs:
28
ruaber of paths:
8
Hutubr ci scurce stats.: 20
Average error found: 0.5433
Parcertage srrose found: 57.05

\underline{i}	i	\underline{p}^{\prime}	$\mathrm{p}_{\text {ij }}$	$\mathrm{s}_{\text {i }}$
1	2	1.0000	1.0000	4
2	3	. 5020	. 5000	4
2	5	. 4980	. 5000	0
3	A	. 5020	. 5000	0
4	5	*	. 3750	1
5	6	*	. 3750	1
5	12	. 5066	. 5000	0
6	c	*	. 3750	0
7	8	*	. 3750	2
8	A	*	. 3750	0
9	10	*	. 3000	2
10	A	*	. 3000	0
11	12	. 4934	. 5000	0
12	13	1.0000	1.0000	2
13	E	1.0000	1.0000	0
14	15	1.0000	1.0000	1
15	16	. 4937	. 5000	0
15	17	. 5063	. 5000	1
16	17	. 4937	. 5000	0
17	24	1.0000	1.0000	2
A	B	*	. 7500	0
B	4	*	. 3750	0
B	9	*	. 3000	0

B	11	.4934	.5000	0
E	F	1.0000	1.0000	0
F	14	1.0000	1.0000	0
C	D	$*$.3750	0
D	7	$*$.3750	0
				20

$\Sigma p_{i j} s_{i j}=13.6000$
$E(1)=.6476$
$E(1) / u=.6800$

Nuater of ncoies:15
Number cf arcs: 19
Nurber of patts: 5
Number cf sctice stuts.: 19
Average errcr found: 0.3893
EEICEntaç EIIcrs Eounま: 43.03

Module 1 Procedure 76

100 Replications 100 Repetitions

$\underline{1}$	$\underline{1}$	$p^{\prime} i j$	$\mathrm{p}_{i j}$	$\mathrm{s}_{\text {ij }}$
1	2	1.0000	1.0000	2
2	3	. 4941	. 5000	2
2	10	. 5059	. 5000	0
3	4	.2431	. 2500	4
3	13	. 2510	. 2500	0
4	A	. 2431	. 2500	0
5	6	*	. 1250	3
6	A	*	. 1250	0
7	8	*	. 1250	2
8	A	*	. 1250	0
9	10	. 2431	. 2500	0
10	11	. 7490	. 7500	6
11	12	*	. 3750	0
11	13	. 7490	. 7500	0
12	11	*	. 3750	0
A	B	. 7493	. 2500	0
B	5	*	. 1250	0
B	7	*	. 1250	0
B	9	. 2431	. 2500	0
				19

$\sum p_{i j} s_{i j}=9.1250$
$E(1)=.4345$
$E(1) / u=.4803$

$$
B-56
$$


```
iuuter of ncces:17
```

Number cíarcs: 20
Murer of faths: 9
dumber císcirce stmts.: 10
AVミreg@ srrci fcunc: 0.2425
EEfcentace Exfc=s founá: 50.93

Module 1 Procedure 77

100 Replications 100 Repetitions

$\underline{\text { i }}$	i	$\underline{p}^{\prime} \quad \underline{i j}$	$\mathrm{p}_{\text {ij }}$	$s_{i j}$
1	2	1.0000	1.0000	2
2	3	. 4972	. 5000	2
2	5	. 5028	. 5000	0
3	4	. 2506	. 2500	0
3	5	. 2466	. 2500	2
4	5	. 2506	. 2500	0
5	A	1.0000	1.0000	0
6	7	1.0000	1.0000	1
7	8	. 4979	. 5000	1
7	9	. 5021	. 5000	0
8	9	. 2513	. 2500	1
8	E	. 2466	. 2500	0
9	c	. 7534	. 7500	0
10	11	. 7534	. 7500	1
c	D	. 7534	. 7500	0
D	10	. 7534	. 7500	0
A	B	1.0000	1.0000	0
B	6	1.0000	1.0000	0
E	F	. 2466	. 2500	0
F	11	. 2466	. 2500	0
				10
$\Sigma p_{i j} s_{i j}=6.0000$				
$E(1)=.2857$				
$E(I) / u=.6000$				
B-58				


```
Muab\inr Of acdes:25
```

Nutber cf arcs: 31
Nuaber of paths: 3
Mumber of sotrce stmts.: 23
Av@rage frror founc: 0.3628
きaICeacagき errors found: 33. 13

100 Replications 100 Repetitions

\underline{i}	j	$p_{i j}^{\prime}$	$\mathrm{p}_{\text {ij }}$	${ }^{\text {ij }}$
1	2	1.0000	1.0000	2
2	3	. 4965	. 5000	3
2	E	. 5035	. 5000	0
3	4	. 2458	. 2500	2
3	6	. 2507	. 2500	0
4	A	. 2458	. 2500	0
5	6	*	. 2500	0
6	7	*	. 3750	2
7	A	*	. 3750	0
8	9	*	. 2500	2
9	A	*	. 2500	0
10	11	*	. 2500	2
11	C	*	. 2500	0
12	13	*	. 2500	3
13	A	*	. 2500	0
14	15	*	. 2500	2
15	A	*	. 2500	0
16	17	*	. 2500	3
17	A	*	. 2500	0
18	25	. 4965	. 5000	2
A	B	*	. 5000	0
B	5	*	. 2500	0

$$
B-60
$$

B	8	*	. 2500	0
B	10	*	. 2500	0
B	14	*	. 2500	0
B	16	*	. 2500	0
B	18	. 4965	. 5000	0
E	F	. 5035	. 5000	0
F	25	. 5035 .	. 5000	0
C	D	*	. 2500	0
D	12	*	. 2500	0
$\Sigma p_{i j} s_{i j}=8.7500$				
$E(1)=.4167$				
$E(1) / u=.3804$				

dumber of ncícs: 8
ivurbsc of arcs: 9
Nutter of EatEs: 3
Nuuter cif scrice stots.: 7
Average errcr founa: 0.1449
 43.67

Module 1			Procedure	
\underline{i}	$\underline{\mathrm{j}}$	$\mathrm{p}_{i j}^{\prime}$	p_{ij}	$s_{i j}$
1	2	(1)	1.0000	2
2	3		. 5000	1
2	6		. 5000	0
3	4		. 2500	3
3	6		. 2500	0
4	A		. 2500	0
A	B		. 2500	0
B	5		. 2500	0
5	6		. 2500	1
				7
$\sum_{i j} p_{i j} s_{i j}=$		3.50		
$E(1)=$. 1667		
$E(1) / U=$. 5000		

Nuaber of ncães: 21
Nuaber of arcs: 24
Hurber of paths: 6
Hu円ber cf sçrce stats.: 25
Average error founc: 0.5029
parcencage errors found: 42.24

$$
B-64
$$

Module 1 Procedure 87

100 Replications 100 Repetitions

\underline{i}	i	$\underline{p}^{\prime}{ }^{\prime}$	$p_{i j}$	${ }^{\text {ij }}$
1	2	1.0000	1.0000	2
2	A	1.0000	1.0000	0
3	4	1.0000	1.0000	4
4	5	. 4915	. 5000	1
4	10	. 5085	. 5000	0
5	6	. 2438	. 2500	2
5	12	. 2477	. 2500	0
6	7	. 2572	. 2500	0
6	8	. 2444	. 2500	3
7	8	. 2572	. 2500	0
8	c	. 5016	. 5000	0
9	22	. 5016	. 5000	1
10	11	. 5085	. 5000	2
11	6	. 2578	. 2510	4
11	21	. 2507	. 2500	0
12	13	. 2477	. 2500	4
13	E	. 2477	. 2500	0
14	21	. 2477	. 2500	2
E	F	. 2477	. 2500	0
F	14	. 2477	. 2500	0
A	B	1.0000	1.0000	0
B	3	1.0000	1.0000	0

C	D	.5016	.5000	0
D	9	.5016	.5000	0

$$
\begin{aligned}
& \sum p_{i j} s_{i j}=11.7500 \\
& E(1)=.5595 \\
& E(1) / u=.4700
\end{aligned}
$$

ticdule: 1

Number of nodes:
22
Number cf arcs:
30
UuIbs of patbs:
9
Nurber of source stats. :
14
Average error founa:
0.1438
zercentage errors fcund:
21.57

Module 1 Procedure 91

100 Replications 100 Repetitions

\underline{i}	1	$p^{\prime}{ }_{i j}$	$p_{i j}$	$s_{\text {ij }}$
1	2	1.0000	1.0000	2
2	3	. 4957	. 5000	1
2	22	. 3043	. 5000	0
3	4	. 2494	. 2500	1
3	22	. 2463	. 2500	0
4	5	. 1254	. 1250	1
4	17	. 1240	. 1250	0
5	6	. 0628	. 0625	1
5	14	. 0626	. 0625	0
6	7	. 0301	. 0313	1
6	22	. 0327	. 0313	0
7	A	. 0301	. 0313	0
8	9	*	. 0157	1
9	10	*	. 0078	1
9	14	. 0085	. 0078	0
10	11	*	. 0039	1
10	22	. 0054	. 0039	0
11	20	*	. 0039	0
12	13	. 0162	. 0153	1
13	14	. 0082	. 0078	0
13	22	. 0080	. 0078	0
14	15	. 0793	. 0860	1
15	18	. 0793	. 0860	0

16	17	.0793	.0860	0
17	22	.2033	.2110	2
C	D	.0793	.0860	0
D	16	.0793	.0860	0
A	B	.0348	.0313	0
B	8	.0186	.0157	0
B	12	.0162	.0157	0
			14	
$E p_{i j} s_{i j}=3.5195$				
$E(1)=.1676$				
$E(1) / u=.2514$				

הuater of rcces：5
Numér of aIcs： 6
Nuater of paths： 3
ねuaよもI cf scrice stats．： 9
Average erccr found： 0.1837
 42 －シう

$\underline{\text { i }}$	$\underline{2}$	$\mathrm{p}_{i j}^{\prime}$	$\mathrm{p}_{\text {ij }}$	${ }^{\text {i }}$ ij
1	2	1.0000	1.0000	2
2	3	. 4995	. 5000	1
2	5	. 5005	. 5000	0
3	4	. 2499	. 2500	0
3	5	. 2497	. 2500	6
4	5	. 2499	. 2500	0

$\sum_{i j} p_{i j} s_{i j}=4.0$
$E(1)=.1905$
$E(1) / U=.4444$


```
Nuaiter of ncdes:25
```

tuxter cf arcs: 34
Hurter of Eatts: 12
Nurter císcurce stots.: 34
Average errcr found: 0.3972

```EEICEntagミEIrcrs found: 24.53
```

Module 1 Procedure 93
100 Replications 100 Repetitions

\underline{i}	i	$\underline{p}^{\prime}{ }_{i j}$	$\mathrm{p}_{\underline{\text { i }}}$	$\mathrm{s}_{\text {ij }}$
1	2	1.0000	1.0000	2
2	3	. 4996	. 5000	1
2	19	. 5004	. 5000	0
3	4	. 2537	. 2500	1
3	. 20	. 2459	. 2500	0
4	5	. 1301	. 1250	2
4	20	. 1236	. 1250	0
5	6	. 0659	. 0625	8
5	23	. 0642	. 0625	0
6	7	. 0339	. 0313	2
6	9	. 0320	. 0313	0
7	8	*	. 0157	0
7	12	. 0339	. 0313	1
8	7	*	. 0157	0
9	10	. 0320	. 0313	2
10	11	*	. 0157	0
10	12	. 0320	. 0313	0
11	10	*	. 0157	0
12	13	. 0659	. 0625	5
13	A	. 0659	. 0625	0
14	15	*	. 3125	2
15	16	*	. 1563	0

15	17	*	. 3125	2
16	15	*	. 1563	0
17	A	*	. 3125	0
18	23	. 4629	. 4688	1
19	21	. 5004	. 5000	1
20	21	. 3695	. 3750	3
21	A	. 8699	. 8750	0
22	23	. 4729	. 4688	1
A	B	*	. 9375	0
B	14	*	. 3125	0
B	18	. 4629	. 4688	0
B	22	. 4729	. 4688	0

$\sum p_{i j} s_{i j}=7.7814$
$E(1)=.3705$
$E(1) / u=.2289$


```
Nuater of nciecs:18
```

Number cf aIcs: 27
Nuater of patts: 10
Numier cf scurce stmts.: 19
Average erici founci: 0.1822
EErcentaç ミrrcrs found: 20.14

Module 1 Procedure 95

100 Replications 100 Repetitions

i	j	$p_{i j}^{\prime}$	$p_{i j}$	$s_{i j}$
1	2	1.0000	1.0000	2
2	3	.4964	.5000	2
2	16	.5036	.5000	0
3	4	.2470	.2500	1
3	12	.2494	.2500	1
4	5	.1229	.2250	1
4	16	.1241	.1250	0
5	6	.0633	.0625	1
5	13	.0596	.0625	0
6	7	.0315	.0313	1
6	16	.0318	.0313	1
7	16	16	.0166	.0156

14	A	.1896	. 1914	1
15	16	. 0960	. 0977	0
A	B	. 1938	. 1953	0
B	11	. 0978	.0977	0
B	15	. 0960	.0977	0
				19
$\sum p_{i j} s_{i j}=4.4180$				
$E(1)=.2104$				
$E(1) / u=.2325$				

Huader ci nodes: 11
Mur上er cf arcs: 13
Wuater cf Eatts: 5
Nuater cf scerce stots.: 10
Average errcr found: 0.0836

$$
\text { Eercentace Errcrs found: } 42.64
$$

MODULE 2 Procedure 15

100 Replications 100 Repetitions

\underline{i}	1	$\underline{p}^{\prime}{ }_{i j}$	$\underline{p_{i j}}$	$\mathrm{s}_{\text {ij }}$
1	2	1.0000	1.0000	0
2	3	. 4944	. 5000	3
2	9	. 5056	. 5000	0
3	4	. 4992	. 2500	0
3	5	. 4994	. 5000	2
4	3	. 4992	. 2500	0
5	6	*	. 5000	3
6	A	*	. 5000	0
7	8	*	. 5000	1
8	5	*	. 2500	1
8	9	. 4944	. 5000	0
A	B	*	. 5000	0
B	7	*	. 5000	0

$$
\begin{aligned}
\sum p_{i j} s_{i j} & =4.7500 \\
E(1) & =.0931 \\
E(1) / u & =.4750
\end{aligned}
$$


```
NuIter Of ncces: 10
Number cf arcs: 11
Number of fat上s: 3
Nuaber cf sctice stmts.: 12
Av\inrage EIrcr founc: 0.1592
Eszcentage Errcrs found: 57.6́s
```

B-80

MODULE 2 Procedure 23 100 Replications 100 Repetitions

$\underline{1}$	i	$p^{\prime}{ }^{\prime}$	$\mathrm{p}_{\text {ij }}$	$s_{\text {ij }}$
1	2	1.000	1.000	3
2	3	. 4947	. 5000	1
2	4	. 5053	. 5000	0
3	4	. 2497	. 2500	1
3	6	. 2450	. 2500	1
4	5	. 7550	. 7500	3
5	8	. 7550	. 7500	2
6	A	. 2450	. 2500	0
7	8	. 2450	. 2500	1
A	B	. 2450	. 2500	0
B	7	. 2450	. 2500	0

$$
\begin{aligned}
\sum p_{i j} s_{i j} & =8.0000 \\
E(1) & =.1569 \\
E(1) / u & =.6667
\end{aligned}
$$


```
Nuaker of ncícs:10
```

NuxLer cf arcs: 14
Muyter of catrs: 12
wuter cf sclice stats.: 13
Average errcr found: 0.1554

```EヒエCEntage ExICEs Founa:5C. 96
```

$$
B-82
$$

100 Replications 100 Repetitions

$$
B-83
$$

Number of nodes:
Number of arcs:
Number of paths:18

Number of source stmts.: 32
Average error found:
0.1657

Percentage errors found: 26.41

Module 2 Procedure 46

 100 Replications 100 Repetitions| \underline{i} | j | $P^{\prime} \quad i j$ | $\mathrm{P}_{\text {ij }}$ | $\mathrm{s}_{\text {ij }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 1.0000 | 1.0000 | 3 |
| 2 | 6 | 1.0000 | 1.0000 | 0 |
| 5 | 23 | . 3908 | . 3906 | 2 |
| 6 | 7 | 1.0000 | 1.0000 | 2 |
| 7 | 8 | . 4955 | . 5000 | 2 |
| 7 | 23 | . 5045 | . 5000 | 0 |
| 8 | 9 | . 4955 | . 5000 | 2 |
| 9 | 10 | . 2485 | . 2500 | 1 |
| 9 | 14 | . 2470 | . 2500 | 1 |
| 10 | 5 | . 1220 | . 1250 | 0 |
| 10 | 11 | . 1265 | . 1250 | 2 |
| 11 | 5 | . 0642 | . 0625 | 0 |
| 11 | 12 | . 0623 | . 0625 | 4 |
| 12 | 5 | . 0333 | . 0313 | 0 |
| 12 | 13 | . 0290 | . 0313 | 2 |
| 13 | 5 | . 0290 | . 0313 | 0 |
| 14 | 15 | . 1228 | . 1250 | 1 |
| 14 | 21 | . 1242 | . 1250 | 1 |
| 15 | 16 | . 0607 | . 0625 | 1 |
| 15 | 21 | . 0621 | . 0625 | 0 |
| 16 | 5 | . 0330 | . 0313 | 0 |
| 16 | 17 | . 0277 | . 0313 | 1 |
| 17 | 24 | . 0277 | . 0313 | 0 |
| 18 | 19 | . 1051 | . 1094 | 0 |
| | | | | |

$\underline{1}$	1	$p^{\prime}{ }_{i j}$	$\mathrm{p}_{i j}$	$\mathrm{s}_{\text {ij }}$
1	2	1.0000	1.0000	3
2	3	. 4915	. 5000	2
2	22	. 5085	. 5000	0
3	4	. 2443	. 2500	2
3	5	. 2472	. 2500	0
4	5	. 1231	. 1250	2
4	22	. 1212	. 1250	0
5	6	. 1874	. 1875	2
5	7	.1829	. 1875	0
6	7	. 0928	. 0938	1
6	22	. 0946	. 0938	0
7	8	.1403	.1406	1
7	21	. 1354	. 1406	0
8	9	. 0719	. 0703	1
8	21	. 0684	. 0703	0
9	10	. 0352	. 0352	1
9	21	. 0367	. 0352	0
10	11	. 0184	.0176	1
10	18	. 0168	. 0176	0
11	12	. 0089	. 0088	0
11	22	. 0095	. 0088	1
12	13	. 0089	. 0088	3
13	A	. 0089	. 0088	0


```
Muater of ncices:16
```

Nuxter of arcs: 21
Nuater of patrs: 14
Nutber císctice stuits.: 17
Average $\in I I c r$ fcund: 0.1530
EEICentagsericts found: 47.4 C

Module 2 Procedure 48
100 Replications $\quad 100$ Repetitions

\underline{i}	j	$p^{\prime}{ }_{i j}$	$\mathrm{p}_{\text {ij }}$	$\mathrm{s}_{\text {ij }}$
1	2	1.0000	1.0000	3
2	3	. 4934	. 5000	2
2	14	. 5066	. 5000	0
3	4	. 2444	. 2500	2
3	5	. 2490	. 2500	0
4	5	. 1229	. 1250	2
4	14	. 1215	. 1250	0
5	6	. 1869	. 1875	0
5	7	. 1850	. 1875	1
6	7	. 1869	. 1875	0
7	8	. 3719	. 3750	2
8	A	. 3719	. 3750	0
9	10	. 3719	. 3750	1
10	11	. 1863	. 1875	1
10	13	. 1856	. 1875	0
11	12	. 0979	. 0938	0
11	13	. 0884	. 0938	1
12	13	. 0979	. 0938	0
13	14	. 3719	. 3750	2
A	B	. 3719	. 3750	0
B	9	. 3719	. 3750	0
				17
7.9063				
. 1550				


```
Nu|LEE Of ncdes:13
```

Auxter cf arcs： 14
シuロ上 5
ねurfer cf sctice stats．： 11
AVEエag＠EIICI ÉCunc： 0.1379
 53.94


```
\uater of ncdes:30
```

NutEEr Cf arcs: 34
Nu』ber of faths: 6
Nu!tef cf sctice stats.: 33
Average errci found: 0.2042

EEzceatage Eircry founs: 31.55

$$
\text { B-9 } 4
$$

Nuaber cf ncícs:13
Nut上er cf arcs: 18
Nuater of fatts: 8
Wuater cf scerce stats.: 23
av 0.0958

$$
\text { Efrcentage Eriors found: } 21.24
$$

Module 2 Procedure 90 100 Replications 100 Repetitions

	i	j	$p^{\prime}{ }_{i j}$	$\mathrm{p}_{i j}$	$\mathrm{s}_{\text {ij }}$
	1	2	1.0000	1.0000	2
	2	3	. 4925	. 5000	1
	2	11	. 5075	. 5000	0
	3	4	. 2427	. 2500	1
	3	5	. 2498	. 2500	0
	4	5	. 1249	. 1250	1
	4	11	. 1178	. 1250	2
	5	A	. 3747	. 3750	0
	6	7	*	. 2500	3
	7	8	*	.1875	3
	7	11	. 3747	. 3750	0
	8	7	\star	. 0938	8
	8	9	*	. 1875	1
	9	A	*	.1875	0
	10	7	*	. 2500	1
	A	B	*	.3750	0
	B	6	*	. 2500	0
	B	10	*	. 2500	0
					23
$\sum P_{i j}{ }^{S}{ }_{i j}=5.625$					
E (1)	. 1				
$E(1) / \mathrm{u}$. 2				

Percentage errors found: 33.55

$\underline{1}$	\underline{j}	$\underline{p}^{\prime}{ }_{i j}$	$p_{i j}$	s_{ij}
1	2	1.0000	1.0000	2
2	3	. 4981	. 5000	1
2	11	. 5019	. 5000	0
3	4	. 2506	. 2500	1
3	18	. 2475	. 2500	0
4	5	. 1307	. 1250	2
4	6	. 1199	. 1250	0
5	6	. 0643	. 0625	2
5	18	. 0664	. 0625	0
6	7	. 6861	. 6875	0
7	8	*	. 6875	3
8	A	*	. 6875	0
9	10	*	. 6875	1
10	7	*	. 3438	0
10	18	. 6861	. 6875	0
11	12	. 5019	. 5000	2
12	13	. 2483	. 2500	3
12	17	. 2536	. 2500	0
13	E	. 2483	. 2500	0
14	15	. 2483	. 2500	2
15	G	. 2483	. 2500	0
16	17	. 2483	. 2500	0
17	6	. 5019	. 5000	3
18	19	1.0000	1.0000	1
B-100				

A	B		*	. 6875	0
B	9		*	. 6875	0
E	F		. 2483	. 2500	0
F	14		. 2483	. 2500	0
G	H		. 2483	. 2500	0
H	16		. 2483	. 2500	0
					23
$\sum p_{i j} s_{i j}$	$=$	10.625			
E (1)	$=$. 20833			
$E(1) / U$	$=$. 4620			


```
Nuak\inI cf ncdes:18
```

Numíer cf aIcs: 21
Nuater of Eaths: 6
Nuater cf scixce stats.: 20
Average erici founo: 0.1685
 42.99

$\underline{\text { i }}$	$\underline{1}$	$p^{\prime}{ }_{i j}$	$\mathrm{p}_{i j}$	${ }^{\text {ij }}$
1	2	1.0000	1.0000	3
2	3	. 4945	. 5000	1
2	12	. 5055	. 5000	1
3	4	. 2480	. 2500	1
3	5	. 2465	. 2500	1
4	5	. 1232	. 1250	2
4	12	.1248	. 1250	1
5	6	*	. 1875	0
5	8	. 3697	. 3750	4
6	A	*	. 1875	0
7	5	*	. 1875	0
8	C	. 3697	. 3750	0
9	10	. 3697	. 3750	5
10	E	. 3697	. 3750	0
11	12	. 3697	. 3750	1
A	B	*	.1875	0
B	7	*	. 1875	0
C	D	. 3697	. 3750	0
D	9	. 3697	. 3750	0
E	F	. 3697	. 3750	0
F	11	. 3697	. 3750	0

```
\sum p ij s}\mp@subsup{}{ij}{}=8.62
E(1) = . 1691
E(1)/u=.4313

```

NuILEI of ncíces:13

```
むumと ..... 17
Buater of eaths： ..... 11
औucter cf scuice stots．： ..... 23
Average errct found： ..... 0.1178
```ミここcきntage eracrs ̇ouns：26.12
```


## MODULE 2 Procedure 137

100 Replications 100 Repetitions

$\underline{\text { i }}$	$\underline{j}$	$p^{\prime}{ }_{i j}$	$\mathrm{p}_{i j}$	${ }^{\text {s }}$ ij
1	2	1.0000	1.0000	2
2	3	. 4994	. 5000	1
2	9	. 5006	. 5000	1
3	4	. 2482	. 2500	0
3	5	. 2512	. 2500	1
4	5	. 2482	. 2500	0
5	6	. 4994	. 5000	2
6	7	. 2503	. 2500	2
6	8	. 2491	. 2500	0
7	8	. 1269	. 1250	1
7	9	. 1234	. 1250	0
8	9	. 1863	. 1875	0
8	11	.1897	. 1875	12
9	12	. 8103	. 8125	0
10	11	. 8103	. 8125	1
12	13	. 8103	. 8125	0
13	10	. 8103	. 8125	0

$\sum p_{i j}{ }^{s}{ }_{i j}=8.0625$
$E(1)=.15809$
$E(1) / u=.3505$


```
NuIter of noces:18
```

Nurber cf arcs: ..... 25
Nuarer of patrs: ..... 9
Nurter cf sctrce stats.: ..... 35
Average errci found: ..... 0.2357

```EEICEntaç EIrcrs Eound: 34.34
```


## Module 2 Procedure 149

100 Replications 100 Repetitions

$\underline{i}$	j	$\mathrm{p}^{\prime}{ }^{1 j}$	$\mathrm{P}_{i j}$	$s_{\text {ij }}$
1	2	1.0000	1.0000	2
2	3	. 4895	. 5000	1
2	8	. 5105	. 5000	0
3	4	. 2410	. 2500	2
3	16	. 2485	. 2500	0
4	5	. 1213	. 1250	4
4	16	. 1197	. 1250	0
5	6	. 0604	. 0625	0
5	16	. 0609	. 0625	0
6	7	*	. 0625	4
7	6	*	. 03125	0
7	16	. 0604	. 0625	2
8	9	. 5105	. 5000	5
9	10	. 5105	. 5000	2
10	A	. 5105	. 5000	0
11	12	. 5105	. 5000	1
12	13	*	. 5000	2
13	12	*	. 3750	0
13	14	*	. 5000	6
14	12	*	. 3333	0
14	15	*	. 5000	1
15	12	*	. 2500	0

15 ..... 16
.5105 .5000 ..... 3
A B .5105 .5000 ..... 0
B 11 .5105 . 5000 ..... 035
$\sum p_{i j} S_{i j}=13.8750$
$\mathrm{E}(1)=.2721$
$E(1) / \mathrm{u}=.3964$
Mr. Richard Pariseau ..... 4Naval Air Development CenterWarminster, Pennsylvania
Defense Documentation Center ..... 2
Cameron Station
Arlington, Virginia ..... 22314
Naval Postgraduate School
Dean of Research ..... 2
Knox Library ..... 2
W. R. Church Computer Center Library ..... 1
Prof. G. Bradley ..... 1
CDR C. Gibfried ..... 1
Prof. G. Howard ..... 1
Prof. C. Jones ..... 1
Prof. N. Schneidewind ..... 12

$$
U 176713
$$

DUDLEY KNOX LIBRARY - RESEARCH REPURI
56853010606189


[^0]:    Count the arcs leaving NODE.

