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9.1 INTRODUCTION

The objective of food safety microbiology is to eliminate or at least significantly

reduce the concentration of pathogenic microbes in food and to prevent their resus-

citation and multiplication. Predictive microbiology focuses on the quantitative

methods used to achieve this goal.

In a mathematical sense, a predictive model is a mapping between the environ-

ment of the microbial cells and their response. While primary models describe how

the microbial cell concentration changes with time in a constant environment (see

Chapter 2), a secondary model (such as D values vs. temperature; see Chapter 3)

expresses a typical parameter of the response as a function of the environmental

factors. Both the environment and the response are characterized by one or more,

possibly dynamic, variables (i.e., they may change with time during observation).

Temperature changing with time is an example of a dynamic environment (see

Chapter 7); growth/survival curves are examples of dynamic responses, either in

constant or dynamic environments.

In accordance with the standard approach to modeling, microbial responses are

studied from a distinguished time point — the zero time of observation. Naturally,

this zero time is when the environment of the cells undergoes a sudden change.

Researchers should know, or at least implicitly assume the conditions at this zero

time to provide initial values for modeling. Such initial values are, for example, the

initial composition of natural flora (in the case of food environment) or the inoculum

level and initial physiological state of the studied cells. Respectively, we can speak

about actual (current) and previous (historical or preinoculum) environments — the

initial values are the result of the previous environment.

A major obstacle in the development of predictive microbiology is that it is

difficult to acquire data at low levels of cell concentration. Currently, commonly

available counting methods can only measure cell concentrations of higher than

approximately 10 cells per gram of sample. Therefore, it is frequently problematic

to validate predictive microbiology models since most of them focus on situations

when the cell concentration is relatively low and the measurements are inaccurate.

Growth modeling concentrates on the early stages of microbial growth in the

actual environment. As mentioned, the previous environment affects growth in the

actual environment, which effect gradually diminishes after inoculation. This is called

the adjustment process; the time during which it happens is called the lag period.

Death modeling deals with decay in microbial concentration having two main

causes: thermal inactivation, when death is relatively fast; and nonthermal death,

which is generally a much slower process. Although the physiological mechanisms

of the two can be completely different, it is possible to construct mathematical

models for them in an analogous way. What is more, to some extent, growth and

death modeling can also be discussed analogously. Accordingly, we show some basic

techniques to model the effect of history on growth and death in a parallel way.

We also present a comparative review of the applied deterministic and stochastic

models. Deterministic models can always be treated as sort of "averaged out"

versions of stochastic models. However, "smoothing down" the biological variability

means a certain loss of information— the question is just how much. Biology itself
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always has stochastic elements, but sometimes they are small enough (or we hope

they are small enough) to be negligible. In this case, the applied model (and its one

or more variables and processes) is reduced to be deterministic, which is simpler

and easier to handle. However, such a reduction can be misleading when the random

elements are significant. For example, when modeling the lag period of a population

of relatively few cells (the "dormant" phase of the "log cone. vs. time curve" before

exponential growth), the random effects originating from the variability among the

cells cannot be ignored. Similarly, when modeling the number of survivors in an

adverse environment, the stochastic variability of the resistance of individual cells

can also become significant.

Many authors have studied the effect of history on the lag time before growth

(Augustin et al., 2000a; Augustin and Carlier, 2000; Beumer et al., 1996; Breand et

al., 1999; Buchanan and Klavitter, 1991; Dufrenne et al., 1997; Gay et al., 1996;

Hudson, 1993; Mackey and Kerridge, 1988; Membre et al., 1999; Stephens et al.,

1997; Walker et al., 1990; Wang and Shelef, 1992) and on the shoulder period before

exponential death (Cotterill and Glauert, 1969; Manas et al., 2001; Ng et al., 1962;

Sherman and Albus, 1923; Strange and Shon, 1964). In this chapter, we attempt to

provide a simple modeling approach to take into account the history effect via the

concept of initial work/damage done before the exponential growth/death phase.

First, we apply a deterministic model at population level (i.e., when the population

size is represented by a single continuous variable), after which we discuss similar

questions at single-cell level, using stochastic processes, when the variability among

individual cells is also taken into account.

9.2 MODELING THE HISTORY EFFECT AT
POPULATION LEVEL (DETERMINISTIC

MODELING)

9.2.1 Traditional Rvrameters

Throughout this chapter, x(t) denotes the cell concentration at the time t, and y(t)

denotes its natural logarithm. The slope of the "y(f) vs. time" curve is the (instan-

taneous) specific rate, denoted by \l(t). Its maximum value, |imax , is the maximum
specific rate. It is positive for growth and negative for death (Figure 9.1a and Figure

9.1b). The maximum specific rate is measured at the inflexion point of the curve,

if it has a sigmoid shape (Figure 9.1a). If the model is biphasic (Figure 9.1b), then

this maximum does not necessarily exist. In this case, (J max is meant in an asymptotic

sense: \l(t) —> (J max as t —> °°. In fact, we define the biphasic class of models by

the criterion that \i(t) converges monotonically from a small, |i.(0) initial rate, to a

finite value.

In the case of growth, the most frequently modeled parameter is the maximum
specific growth rate, or one of its rescaled versions: the rmax maximum rate in terms

of log 10 cell concentration, or the doubling time, T
d

. Note the relation between them:

r„« = lWln 10; Td = In 2/^max (9.1)
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FIG U RE 9.1 (a) Main parameters of a sigmoid growth curve. The maximum specific growth

rate |i.max can be measured at the inflexion point of the curve, (b) Main parameters of a biphasic

survival curve. The instantaneous specific death rate converges to a limit value |i
r'max.

In the case of survival (or inactivation), instead of the analogous "halving time,"

it is more common to use the time to a decimal reduction, called D value:

D = -In 10/fJ max (9.2)

The reason for this slight inconsistency is historical: the first predictive models were

created to describe thermal inactivation processes and, at high temperatures, the

decimal reduction times were more practical to use than halving times.

Some authors use the maximum specific rate and some the rate of the log
10

x(f)

function, which can be obtained by an ln(10) ~ 2.3 conversion factor from [{(t). Most

frequently, cell concentration data are given in terms of log
10
of the cell number per

volume. However, the maximum specific rate has a more universal theoretical mean-

ing as shown by the formulae below:

dy d(\n x) dx I x

dt dt dt
m (9.3)
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that is,

— « ll At (9.4)max
X

The left-hand side of the latter equation denotes a relative increase or decrease of

the population in At time. Therefore, the following interpretation can be given for

the maximum specific rate: the probability that, at the time t, a single cell divides

(growth) or dies (death), during the small [t, t + At] interval, is about \x(t)At; i.e.,

proportional to the length of At, with the factor \x(t). This is a fundamental link

between the specific growth rate measured at population level and the probability

of division at single-cell level.

Another important, frequently modeled parameter is the lag time (for growth),

or shoulder period (for survival), which is denoted by X throughout this chapter. For

sigmoid curves (Figure 9.1a), it is traditionally defined as the time when the tangent

of the y(t) curve with the maximum slope crosses the initial level, y = In x
Q

(Pirt,

1975). (It is irrelevant whether the natural logarithm or log
10

is used to define the

lag or shoulder.) For biphasic curves (Figure 9.1b), to find a good "geometrical"

definition is not so straightforward as pointed out below.

The definition of lag/shoulder does not have the strong basis that would connect

the parameter to a single-cell equivalent, as in the case of the specific rate. Baranyi

(1998) discussed the mathematical relation between the lag of the population (as

defined above) and the lag times of the participating individual cells (see later in

this chapter). He showed that the population lag depends on the subsequent specific

growth rate and the initial cell number, even if the individual lag times do not.

Another anomaly can be shown by means of biphasic models. It is natural to expect

that, if a series of tangents drawn to the y(t) curves converges to a limit value (see

Figure 9.1b), then the intersections with the initial v level also converge, in which

case the lag could be defined by the limit value. Baranyi and Pin (2001) showed a

biphasic death model where this was not true; the intersection, denoting the end of

the shoulder period, would not converge, as t —> °°, although the specific death rate

did converge.

9.2.2 Replacing the Lag Rrameter with a Rjysiological

Sate Parameter

For growth, the "waiting time" of the individual cells is due to an adjustment process

before the exponential growth. For survival curves, the shoulder period is due to an

initial resistance before exponential death (such as in the case of the multitarget

theory, Hermann and Horst, 1970). As shown by Baranyi (2002), it is not easy to

relate the distribution of the "waiting times" of individual cells to the apparent

lag/shoulder parameter of the population, measured in the traditional way.

Baranyi and Roberts (1994) suggested that the lag should be considered as a

derived parameter, a consequence of both the actual environment (via the specific

growth rate), and the history of the cells (via a newly introduced parameter, the

initial physiological state of the cells). Their method can be outlined as follows.
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FIGU RE 9.2 Interpretation of the oc physiological state. h = -ln(a ) = A,|imax is the "work

to be done," which is the same for different temperatures. h is an initial value, as is \nx .

Just as y is an initial value, we can introduce another value in order to quantify

the "suitability" of the population to the current environment (i.e., the history effect).

Let this quantity be denoted by oc (which comes from the term adjustmentfunction,

in the original paper). Let it be a dimensionless number between and 1. For growth,

consider it as the fraction of the initial cells, which, without a lag, would be able to

produce the same final growth as the original x initial cells with a lag. (Although

the real situation is not like this, it is easier to think about a this way. In reality,

a is the mean value of the respective parameters of the individual cells. The point

is, as we will see later, that it does not matter if we think of it as "oc , the fraction

of the cells that are able to grow," or "each cell is oc -suitable")

By simple geometry (see Figure 9.2), it can be shown that

X =
-ln(cc n )

M

(9.5)

max

This formula expresses our expectation that the lag time depends on both the actual

environment, represented by |i max , and the history of the cells, characterized by oc .

The history effect appears as an initial value, and this will be called the initial

physiological state. Note that it does not represent simply the "health" of the cells,

rather their suitability to the actual environment. Its extreme values are a = 0, in

which case the lag is infinitely long, and oc = 1, when all the cells enter the

exponential phase immediately and the lag time is 0. The effect of the initial

physiological state on the lag is shown in Figure 9.3.

In terms of biological interpretability, the main advantages of using oc , instead

of lag, are:

1. It is an initial value, affecting the lag, and this is in accord with our

mechanistic thinking.
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time

FIG U RE 9.3 Depending on the cc physiological state, the lag can change while the maximum
specific growth rate remains the same.

2. It has a very strong connection with similar parameters of the individual

cells: the physiological state of the population is equal to the average of

the physiological states of the initial cells, irrespective of their number

(Baranyi, 1998).

3. It can be interpreted, via the individual cells, even if no traditional lag

can be measured on the bacterial curve (for example, when it does not

reach its inflexion point).

9.2.3 A Rescaling of the Rmio logical Parameter Riovides

a New Interpretatio n

An interpretation of the history effect is also possible by means of the inverse of

the physiological state. Introduce h
Q
= ln(l/a ) = -In a . It can be conceived as an

initial hurdle, or the "work to be done" during the lag (Robinson et al., 1998; see

Figure 9.2). As we see, it is the product of the lag and the maximum specific growth

rate. Observe that, using the doubling time, T
d
= In 2/|i.max relation, the following

formula can be obtained:

h
Q
=ln2

T,
(9.6)

The quantity X/T
d

is often called "relative lag" (McMeekin et al., 2002) and it is

essentially the same as h . Some authors have reported that it is unaffected by small

changes of temperature (Pin et al., 2002; Robinson et al., 1998) and pH (McKellar

et al., 2002a). This can be explained as follows: the more suitable the cells are to

the new environment, the less work they have to carry out to adapt. Therefore, the

lag is longer at lower temperatures because the "work to be done," after the inocu-

lation, is carried out more slowly, although the amount of work is the same (Figure

9.4). Authors studying the effect of history and actual growth conditions on the work

to be done during the lag include Delignette-Muller (1998), Robinson et al. (1998),

Pin et al. (2002), and Augustin et al. (2000a).
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FIGURE 9.4 As the temperature decreases, the work to be done (the difference between

In x and ln(oc x )) is the same, while the maximum specific growth rate (i max becomes

smaller and the lag becomes longer. The work to be done during the lag is also carried out

at slower rates.

The parameter h = -In oc , the "work to be done" before the exponential phase,

plays the role of a bridge between the history and the actual environment. With an

analogy, imagine that cells are crossing this bridge. If its angle is horizontal (h
Q
=

0; no difficulty to overcome), then there is no lag. If it is vertical (h = <*>), then the

work to be done is infinitely big, the lag is infinitely long. On the other hand, if the

temperature is higher then every movement is quicker and so is the crossing (lag),

although the work to be done is the same (Figure 9.4). It can be expected that this

work is smaller when adjusting to a more favorable environment than the opposite

way (Delignette-Muller, 1998; Robinson et al., 1998). This theory explains why the

environmental effect on the lag has always been much less accurately predicted

(Dufrenne et al., 1997; McKellar et al., 2002b; McMeekin et al., 2002; Robinson et

al., 1998; Whiting and Bagi, 2002) than the specific growth rate. The lag also depends

on the history, the details of which often have not even been recorded, let alone

taken into account in the model.

9.3 MODELING THE HISTORY EFFECT AT SINGLE-CELL

LEVEL (STOCHASTIC MODELING)

9.3.1 Nature of Stochastic Modeling

Finer details of the effect of history on growth/death can be seen through a closer

look at the distribution of the division/survival times of individual cells. As men-

tioned in Section 9.1, if only deterministic models are used to describe responses

of microbial populations then the variability among single cells is ignored. This is

a problem because predicting microbial variability is increasingly important for

Quantitative Microbial Risk Assessment. This variability of the responses increases

under stress conditions, which makes predictions even less accurate.

A characteristic feature of stochastic modeling is that it sometimes provides

unexpected results. An example of this is the relation between the doubling time of

a growing population and the average generation time of the individual cells in the
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population. Depending on the distribution of the individual generation times, these

two quantities can be markedly different. If the generation times follow the classical

exponential distribution, then their average is l/|imax , while the doubling time is

known to be In 2/|i.max , where |i.max is the (constant) maximum specific growth rate

of the population. Baranyi and Pin (2001) described the exponential growth as a

Poisson birth process and showed that with this approach the doubling time depends

on the number of cells, from l/|i-max , when the number of cells is 1, converging to

In 2/|lmax , when the number of cells increases.

9.3.2 Physiological Sate and Lag Parameters for

Sngle Cells

Let N(t) be the number of cells in a defined space, at the time t (remember, that x{f)

denoted the concentration of the cells). Let the lag for the ith cell of the initial

population be denoted by x, (/ = 1,2,..., N). We assume that they are identically

distributed independent random variables, and their mean value is x. Note that x, is

less than the time to the first division of the /th cell, which also includes the first

generation time.

Define the physiological states a, (i = 1,2,... JV) for the individual cells by a,=

exp (-|i raaxX,), analogously to the deterministic theory. A basic theorem of Baranyi

(1998) is that the average of the individual physiological states is the same as the

physiological state of the population, irrespective of the distribution of the individual

lag times. Moreover, if ^(AO denotes the (traditionally defined) lag of the population

consisting of TV cells, then

N N
-Hi,.

,1" ,1 e

X(N) = --\n-^ = -— ln-^ (9.7)
\L N \i N

This formula is demonstrated in Figure 9.5. The more cells there are in the inoculum,

the shorter is the expected population lag, converging to a limit value, A,min . Notice

that the correct model for single-cell-generated curve is bi-phasic; the curvature for

higher inoculum is caused by the distribution of the individual lag times.

Various authors have reported that at a very low inoculum (approximate to 1

cell per total volume of sample), the lag time is longer than expected (Augustin et

al., 2000b; Gay et al., 1996; Stephens et al., 1997). However, as the above formula

shows, this finding can also be explained by statistical means without extra biological

assumptions. The lag time decreases with the initial cell number because the expo-

nentially growing subgenerations of the cells with the shortest lag times will quickly

dominate the whole population.

In particular, Baranyi and Pin (2001) showed the mathematical relation between

the respective parameters (mean and variance) of the individual lag times and those

of the population consisting of TV cells. From these formulae, the distribution of

individual lag times is per se different from the distribution of the population lag

times. This was confirmed by the observation of Stephens et al. (1997) on heat-
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FIG U RE 9.5 Simulating four single-cell-generated growth curves (y = 0) growing separately,

and two separate growth curves generated by four cells each (y = In 4). The traditional lag

times X of the subpopulations are estimated by curve fitting. Observe that the X(N) mean

population lag converges to a limit value XUm while its variance (the spread of the growth

curves as a function of their inoculum) converges to zero (see Figure 9.6). Symbols: simulated

points; continuous thin lines: fitted curves; continuous thick lines: expected curves.

injured Salmonella cells. The calculations provided another reason why the lag time

should not be considered as a primary growth parameter but as the result of the initial

physiological state (oc ), the inoculum size and the maximum specific growth rate.

Smelt et al. (2002) estimated the population lag as the minimum of the individual

lag times. Our formula shows that the population lag is greater than the minimum
of the individual lag times, but closer to it than to the arithmetical mean.

9.3.3 A Simulation Rogram

To demonstrate the effect of the inoculum on the distribution of the population lag,

we developed a simulation program. One hundred growth curves from different

inoculum sizes were generated. The distribution functions used by the simulation

were based on the theory of Baranyi and Pin (2001).

We assumed that the individual lag times followed the gamma distribution, with

the parameters p and v, so the mean individual lag is T = /?/V. The biological

interpretation of this scenario is that the cells have to carry out p consecutive tasks,

and the times required by the individual tasks are independent, exponentially dis-

tributed random variables, with the parameter v (i.e., the average time required for

each task was 1/v).

The parameter p represented the amount of work to be done during the lag time

(h = p). Partly for simplicity, partly for mechanistic reasons, v = |lmax was assumed.

The generation times, g j9
of individual cells, after the lag phase, followed the

exponential distribution with the parameter |l
raax

.

With the usual terminology for stochastic processes, the initial state of the system

is (M0), meaning that there are N cells in the lag phase and in the exponential

phase at the starting time (t ). The time t
x

of the first division in the population is
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that of the cell with the smallest value for the sum of its lag time, xis and its first

generation time, g t
.

t
x
=min(x

1
+ gu ... XN + gN)

After the first division, N- 1 cells remain in lag phase while 2 cells are in exponential

growth phase. Thus the state of the system is (N - 1, 2). The time t2 of the second

division will be the minimum of the first division times among the N - I cells

remaining in the lag phase and the division times of the two daughter cells:

t
2
= min(x, + g l9

... XN_ {
+ gN_ l9

t
x
+ gN+v f, + gN+2 )

This second division can happen to a cell in exponential or in lag phase.

1. If a cell in lag phase divides, then the state of the system will be (N - 2,

4) and the time of the third division will be t3
= min(x

y
+ g l3

..., TN_2 +

£/v-2> h + 8n+u h + 8n+2-> h + 8n+3> h + 8n+a)-

2. If a cell in exponential phase divides, then the system jumps into the

state (N - 1,3). Apart from numbering the daughter cells, the time to the

third division will be t3
= min^ + g l9

..., xN_ {

+ gN_u t
x
+ gN+2, t2 + gN+3,

h + ^^+4)-

The iteration can be continued in a similar manner and this is what our simulation

program did, until the population had a given number of cells. One hundred growth

curves were generated for each selected inoculum size. The parameters h and |lmax

were chosen close to practical values: h = 4 and |lmax = 0.5 h-1
. Thus the gamma

parameters to simulate the individual lag times were p = 4 and v = 0.5 Ir 1 (mean

individual lag = 8 h) and the parameter of the exponential distribution to simulate

the individual generation times was 0.5 Ir 1 (mean generation time = 2 h). The

traditionally interpreted lag time of each population curve was estimated by fitting

a biphasic (no upper asymptote) version of the model of Baranyi and Roberts (1994).

Figure 9.5 shows typical examples of the generated population curves (originating

from one and four cells). As can be seen, in the case of a single initial cell, when

the inoculum is In x = 0, the population lag (X, measured by the tangent to the

exponential phase) is close to the theoretical individual lag (x, = 8 h).

If the inoculum size increases then, from the formula

r

UN)
N->c

urn
Ln

M

1 +
v

MX

P

\

(9.8)

/

the population lag converges to Aaim= 8 -In 2 = 5.54. This convergence is shown in

Figure 9.5. Figure 9.6 shows the distribution of the population lag times as a function

of the inoculum size.
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FIGU RE 9.6 As the inoculum size increases, the population lag time decreases, converging

to a limit value. Its variance converges to zero.

9.3.4 Lag/Survival Distribution of Sngle Cells and

Lag /Shoulder of R) pulatio n Curves

A general result from Baranyi (2002) connects the expected population growth curve

with the distribution of single-cell kinetics:

x(t) = N
ft \

je" ir- s)

f(s)ds+jf(s)ds

Vo

(9.9)

/

where /(0 denotes the (common) probability density function (pdf) of the individual

lag times. It is analogous to the formula of Kormendy et al. (1998) for death curves:

x(t) = N
oo

J>*(
s)ds (9.10)

where g(s) is the probability density function of the individual cells' death rate (i.e.,

the reciprocal of their survival time). The big difference is that while the probability

distribution of the individual survival times determines the whole death curve (actu-

ally by a Laplace transformation, as the formula shows) that of the individual lag

times does not. In both models, the first compartments are "dormant" states, but the

second ones are totally different: for growth, it is the state of exponential growth,

characterized by the specific growth rate; for survival curves, it is a "death phase"

without any parameter.

The formulae above represent a one-to-one mapping between thef(f) distribution

and the population growth/death curve. The problem is that, in practice, this mapping

works only in one direction. The expected population curve can be easily derived

from the distribution of the individual lag times, but vice versa it would need
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unrealistically accurate data. This is an example where the performance of stochastic

techniques is much better than that of their deterministic counterparts.

9.3.5 History Bfect on the Sho ulder Rriods

of Survival Curves

For survival curves, with the notations as above, let x
t
be the time for the zth cell to

die, and assume that it is distributed exponentially, with the mean value x (pure

Poissonian death process). In this case, F{t) = 1 - e~t/x
, so the survival curve is y(f)

= \n N - t/l. Therefore, in this case, the survival curve is linear and there is no

shoulder parameter: X = 0.

Analogously with our approach to modeling the distribution of individual lag

times for growth, consider now the situation when T
i
(i = 1,..., TV) follow the gamma

distribution, with the parameters p > 1 and v > 0, where the expected value of the

survival time for a cell is x = pN . This is interpreted by Baranyi and Pin (2001) in

the following way: the cell needs p damaging hits (see the multihit theory in Casolari,

1988), and the times
;
(j = 1,...,/?) between the hits are independent, exponentially

distributed variables, with a common mean value = 7/V. Then the survival time

of the z'th cell is

X e
;

(9-1Dx. =

therefore x, (i = 1,..., A/) are gamma distributed. In this case, as shown by the

authors, the derivative of y(t) converges to a constant, namely v, the limit shoulder

still does not exist if p > 1. In practice, the shoulder would be measured by v and

the smallest detectable value of y(t), which means that the shoulder measurement

would depend on the precision of the measurement method! This inconsistency

makes the shoulder parameter unsuitable for modeling. Instead, the p parameter

quantifying the "damage to be done" should be modeled, which is analogous to the

h parameter for growth curves.

Another well-known interpretation of the shoulder is the so-called multitarget

model (Hermann and Horst, 1970). According to that, a cell has p targets that are

being hit synchronously (not consecutively as in the previous case). The times needed

to destroy the targets, 6^ (j = 1,..., /?), are independent, exponentially distributed

variables with the common mean value of 1/v and the cell is live until all targets

are inactivated. Therefore, the survival time of the zth cell is

X.=max6. (9.12)
' \<j<p J

and F(f) = (1 - e~vt)p , where p > 1. The population survival curve is now

y(t) = In AT + ln(l - (1 - e-v9") (9.13)

2004 by Robin C. McKellar and Xuewen Lu



~V

1237_C09.fm Page 298 Wednesday, November 12, 2003 1:08 PM

which converges to the

ya (t)
= In N - v • (t - In pN) (9. 14)

linear asymptote. Therefore, the limit shoulder parameter can be calculated as

X = \np/v (9.15)

This shows another analogy to the modeling of the history effect on growth: the "In

/?" quantity could be used to characterize the initial "damage to be done," and the

shoulder period depends on the magnitude of the initial damage and on the rate as

the damage is being done.

9.4 CONCLUDING REMARKS

In this chapter, we showed that the history effect can be quantified either by the

"initial physiological state" or the "work to be done" parameters; they are simply

rescaled versions of each other. The traditional lag parameter has become a derived

one, useful for static conditions only. By introducing a variable for the rate at which

the work is carried out before the exponential phase, the model can be used for

dynamic conditions, too. This concept was successfully applied in a series of papers

(Baranyi et al., 1995, 1996) describing the entire bacterial growth profile (not only

the exponential phase) under fluctuating conditions.

The priority of a is purely a modeling concept; it does not mean that when

fitting a bacterial growth curve, oc and not the lag should be estimated. The formula

X = -lna /|i.max to calculate the lag expresses the view that both the history and the

current environment influence the lag. This has practical consequences when devel-

oping more complex, dynamic models or, for example, when developing predictive

software packages. These commonly require the user to provide values for the

environmental factors, from which the maximum specific rate (or one of its rescaled

versions) and a default lag are predicted. If the user gives the inoculum, then the

whole growth curve can be constructed, too. What our theory suggests is that it is

not only the inoculum that cannot be predicted from the current environment, but

also the initial physiological state, oc . This is shown in Figure 9.2: there are two

independent initial points on the y axis:

1. An inoculum value (y )

2. A point through which the tangent drawn to the inflexion will pass (which

is h = -lna lower than the inoculum)

Sometimes the value of the initial physiological state should be simply a = 1,

expressing the fact that the preinoculation conditions are the same as the current

environment.

As has been mentioned, many features of the shoulder period before the expo-

nential death phase can be discussed analogously to those of the lag period before
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the exponential growth phase. Baranyi and Pin (2001) showed that the multitarget

theory of inactivation (Hermann and Horst, 1970), modeling the shoulder before the

exponential death rate, provides a parallel between the initial "damage to be done"

for death and the hQ "work to be done" for growth. The "bridge" between the history

and the current environment is characterized by h either for growth (Figure 9.2) or

death (the mirror image of Figure 9.2).

The question can be raised of why the distribution of individual lag times is

important once different distributions can result in practically the same population

curve. The answer lies in the interest of Quantitative Microbial Risk Assessment in

the distribution of the quantity "time to a certain level" (such as time to infective

dose or time to legally allowed concentration). The distribution of that time depends

heavily on the distribution of individual lag times.

Modeling the effect of history is more efficient with stochastic techniques, but

also more data- and maths-demanding. Deterministic models are able to produce

"averaged out" solutions only, and studying the variability around those predictions

is vital in Quantitative Microbial Risk Assessment.
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