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4.1 OVERVIEW

This chapter is divided into two main sections, viz. (1) model fitting, featuring the

principles of, and examples of, the use of regression models, especially nonlinear

regression models, for data sets in food preservation and safety, and comparisons

of various modeling approaches and (2) the consequences of uncertainty, i.e., vari-

ation in the measurements, and its implications for product shelf life. These sections

are designated as 4.2 and 4.3, respectively. The chapter concludes with an epilogue,

in which the author raises a few additional issues (Section 4.4).

4.2 MODEL FITTING

This section examines various models used in predictive microbiology, focusing

attention upon those criteria and factors that have to be taken into account when the

models are being fitted. Also, criteria for assessing goodness-of-fit are presented.

4.2.1 The Models

Three groups of models will be considered in this chapter, which serve to illustrate

the various facets of modeling in predictive microbiology. The first group of data

(see Table A4.1) and their associated models involve lag time as a function of

temperature, and were examined recently by Oscar (2002). The lag time is usually

determined experimentally by fitting a primary model, or by noting the time taken

before perceptible growth of a bacterial culture is observed. Primary modeling is

the subject of Chapter 2 of this book.

Denoting the lag time by X, the models considered are:

Hyperbola model

X = exp[p/(T - q)] (4.1)

Extended hyperbola model

A. = \pliX - q)T (4.2)

Linear Arrhenius model (Davey, 1989)

X = exp[-(A + BIT + C/T2
)] (4.3)

Simple square-root model (Ratkowsky et al., 1983)

X=\l{[b{T-TmJf} (4.4)

The second group of data (see Table A4.2) was obtained from experiments conducted

by students in the on-going predictive microbiology research program at the Univer-

sity of Tasmania, on the maximum specific growth rate constant \i for three species

of microorganism as a function of temperature throughout the entire biokinetic
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temperature range. The models for fitting and predicting |i are confined here to just

two models, viz. the four-parameter square-root model of Ratkowsky et al. (1983)

# = b(T - 7\ ){1 - exp[C(7 - T
ax )]

}

(4.5)

and the cardinal temperature model of Rosso et al. (1993)

ll = u (T-T )(T-T . )

2
/[(T -T . )

2 {T-T ,)-r r opt x max / v min ' LV opt min ' x opt

'

(4.6)

(T -T )(T -T )(T
f
+T .

- IT)]x opt min ' x opt max 7 v opt mm ' J

In each of the above models, T represents temperature in degrees absolute,

although the only model in which it is essential that degrees absolute be employed

is the Linear Arrhenius model (4.3). The other models all involve differences between

temperatures, and therefore other temperature scales are acceptable, since they result

in equivalent answers. rmin and Tmax represent notional minimum and maximum
temperatures, respectively, the term "notional" meaning that these temperatures are

not to be interpreted as "true" minimum and maximum temperatures, although

various authors have mistakenly or misguidedly given them this interpretation (e.g.,

Dantigny and Molin, 2000). In 4.5 and 4.6, they are nothing more than intercepts

on the rate (|i.) axis, i.e., the temperatures at which the rate equals zero when a graph

of |i vs. Tis extrapolated outside the range of the observed data. In 4.6, the additional

cardinal temperature ropt represents the temperature at which growth is optimal (i.e.,

|i is greatest), and the fourth parameter |lopt is the maximum specific growth rate

corresponding to T v Thus, the cardinal temperature model (4.6) is the only one in

which all its parameters can be considered to be biologically interpretable, although

not necessarily achievable (i.e., rmin and rmax ). All other models contain arbitrary

constants, viz. p, q, m, A, B, C, b, and c, which are devoid of biological meaning.

They are simply parameters included in the model to enhance the curve-fitting

prospects of the model.

It should also be noted that 4.5 and 4.6 apply only in the range !Tmin < T < Tmax ,

and that outside these ranges, i.e., for T < Tmin and T > rmax , the rate |i is zero. To

be mathematically correct, these bounds should be stated along with the equation

definitions, but they are omitted here for simplicity, and it should be understood that

nonzero rates can only apply at temperatures between rmin and Tmax . It should also

be self-evident that when modeling data, using either of the above models, only

nonzero rates should be employed. Data corresponding to temperatures at which the

observed rates are zero need to be discarded when curve fitting.

4.2.2 Stochastic Assumptions

Equation 4.1 to Equation 4.6 are nonlinear regression models with two to four

parameters, which may be estimated using nonlinear regression modeling. Some of

the equations can be transformed by rearranging terms, thereby linearizing them.
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For example, the reason why 4.3 is called a "Linear Arrhenius" model can be seen

by rewriting it as:

In rate = ln(lA) = A + BIT + CIT

The result follows from the fact that a time, whether it is a lag time, a generation

time, or some other time-based variable, may be expressed as a rate by taking its

reciprocal. The right-hand side is a quadratic polynomial in 1/7, the reciprocal of

absolute temperature, a term that is often seen in Arrhenius-type models. Similarly,

Equation 4.4 may be rearranged as:

mte=J(l/l)=b(T-T.J
min

which shows that the model is in reality the simple square-root model of Ratkowsky

et al. (1982). Whether one should or should not transform response variables in this

manner is decided by the so-called stochastic assumption, i.e., the assumption that

one makes about how the response variable, the lag time X or the specific growth

rate constant |i, varies with change in the explanatory variable, the temperature T.

The lag time X will almost never have a homogeneous variance, as the lag time in

the suboptimal range tends to be much more variable at low temperatures where

growth rates are slow, than near the optimal temperature Topt . Therefore, for modeling

4.1 to 4.6, careful consideration has to be given to the form in which these models

are fitted, to reflect the stochastic assumption made.

For the specific growth rate constant |i, Ratkowsky et al. (1983), in the paper in

which the four-parameter square-root model (4.5) first appeared, assumed that the

variance was homogeneous in Vji ; that is, the transformed response V(I was

assumed to have the same variance at each temperature T. This implies that the

variance of the untransformed |i is a function of T, the variance increasing as |l

increases. The near constancy of the variance of vM has previously been demon-

strated by R.K. Lowry (unpublished data) on a variety of data sets when the square-

root model was first developed for suboptimal data sets (Ratkowsky et al., 1982).

On the other hand, Rosso et al. (1993) implicitly assumed that the variance of

|i was homogeneous (i.e., unchanging with 7). This assumption results in a different

set of parameter estimates from what is obtained by assuming that V|I is homoge-

neous in T. An alternative assumption, also frequently used in the predictive micro-

biology literature (e.g., see Schaffner, 1998), is that In \i is homogeneous in (I, where

In |l is the natural logarithm of the rate constant |i. (One may use "base 10"

logarithms but mathematicians prefer the "base e" natural logarithms.) Incorporation

of the stochastic assumption is most easily done by applying the transformation to

both the left-hand side and the right-hand side of the expression. The result is a

proliferation of forms in which the same basic equation may appear, each of which

depends upon the stochastic assumption. The equations that follow express the other

alternative forms in which the models used in this chapter may appear.
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Hyperbola model

Log assumption

\n(\/X) = -p/(T - q) (4.1a)

Square-root assumption

(l/X)=JcxV[-p/(T-q)] (4.1b)

Extended hyperbola model

Log assumption

ln(l/^) = —m In/? + m \n(T - q) (4.2a)

Square-root assumption

-v
(l/X)=[p/(T-q)]-mil

(4.2b)

Linear Arrhenius model

Log assumption

ln(lya) =A + B/T+ CIT1 (4.3a)

Square-root assumption

M (l/X) = Jexp(A + 5/r+C/r2
) (4.3b)

Simple square-root model

Square-root assumption

(l/X)=b(T-TJmm (4.4a)

Log assumption

ln(l/A,) = 2 In b + 2 ln(T - Tmin) (4.4b)

Four-parameter square-root model

Rate assumption

ti. = b\T - TmJH 1 - expfcCT - TmJ] } (4.5a)
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Log assumption

In M = 21og b + 21og(r- 7min ) + 21og{l - exV [c(T - TmJ]} (4.5b)

Cardinal temperature model

Square-root assumption

J{|i (T-T )(T-T )

2

/[(T -T )

2 (T-T )-(T -T )(T -T )(T +T -27)1}
\j opl max min opl min opf op/ min op/ max op/ min

(4.6a)

Log assumption

In \l = In^ + In (T - TmJ + 2 ln(J - T
rain )

-

ln[(7^ - rmin
)2(r - Topt)

- (Topl - TmJ(Topt
- TmJ(Topt + Tmin

- 2T)] (4.6b)

4.2.3 Data Sets and Software

To illustrate the methodology, and show the effects of the various stochastic assump-

tions, several groups of data are employed. The first group is given in Table A4.1,

and involves the lag time for the growth of Salmonella typhimurium on autoclaved,

and therefore sterile, ground chicken breast and thigh burgers at 2°C intervals from

8 to 48°C. Colonies were counted on inverted spiral plates after incubation at 30°C

for 24 h. The two sets of data (breast vs. thigh) enable a comparison of regressions

to be made to test whether the same model can successfully fit both data sets.

The second group of data is for the specific growth rate constant \i vs. temper-

ature, these being the same three data sets as used by Lowry and Ratkowsky (1983).

They involve an Alteromonas sp. (CLD38), the temperatures ranging between 1.3

and 29.9°C, a Pseudomonas Group I species (16L16) in the range of to 31.6°C,

and a mesophilic species Morganella morganii (M68) (formerly Proteus morganii),

with data in the range of 19 to 41.5°C. Unlike the data from Oscar (2002), turbidi-

metric measurements, rather than plate counts, were used. Table A4.2 lists these data

sets, which are used to compare the four-parameter square-root and cardinal tem-

perature models (4.5 and 4.6, respectively).

The third group of data is for the growth of Listeria monocytogenes and involves

five complete replicates of growth data throughout the entire biokinetic range for

temperature. Four of these replicates were used in a recently published study on

variation of branched-chain fatty acids (Nichols et al., 2002), with a fifth set of data

being added, which was not used in that study because it lacked fatty acid compo-

sitions. Different temperatures were obtained using a temperature gradient incubator

and growth was monitored by measuring the percentage of transmittance of light at

a wavelength of 540 nm. The data are given in Table A4.3, and are expressed as the

square root of rate vs. temperature in degree Celsius. Note that there are a few zero

rates at some low and some high temperatures. As indicated in Section 4.2.1, these
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data points have to be discarded before modeling can begin. These data sets will be

fitted using the square-root model (4.5) and are used here to illustrate methodology

for the examination of residuals and the effect of replication.

Nonlinear regression modeling was carried out using the SAS® statistical soft-

ware, Version 8.2, PROC NLIN. The Gauss-Newton method was chosen as the fitting

option. No derivatives need to be supplied, as the procedure computes them auto-

matically. A measure of nonlinear behavior of the parameter estimators, the Hougaard

measure of skewness (see Ratkowsky, 1990, pp. 27-28), was calculated using the

option Hougaard. Even when the regression model was linear, e.g., 4.3a, PROC NLIN
was still employed, as the Gauss-Newton method converges to the correct least-

squares estimates in a single iteration, irrespective of the initial parameter values.

4.2.4 Results of Model Fitting

4.2.4.1 Lag Time Modeling

Oscar (2002) concluded that lag times were similar for breast and thigh meat for all

temperatures in the data set of Table A4.1, probably as a consequence of the

autoclaving process, and combined the individual data sets (/? = 21 data points for

each) into a single data set (n = 42). The graphs shown in Figure 4.1a (time scale)

and Figure 4.1b (In rate scale) visually indicate that the data sets are similar, and

this will be confirmed by formal testing later in this chapter (see Section 4.2.5.2).

We will use the combined data set to test the efficacy of the models 4. 1 to 4.4 in

the paragraphs that follow.

Table 4.1 presents parameter estimates and their asymptotic standard errors

obtained by fitting models 4.1 to 4.4 to the data in Table A4.1 using the lag time X

as the response variable, and also from models 4.1a to 4.4b, which incorporate the

logarithmic and the square-root transformations, respectively, applied after convert-

ing lag time into rate by taking the reciprocal of X. Table 4.2 presents the residual

mean squares corresponding to these models.

Superficially, from Table 4.2 it appears that the extended hyperbola model (4.2)

is best, having a smaller residual mean square than the three alternative models when

lag time X is used as the response variable and also using the "log rate" stochastic

assumption, but the Linear Arrhenius model (4.3) has a slightly smaller error mean

square using the "square root of rate" assumption. Irrespective of assumption, the

hyperbola model (4.1) performs badly and the simple square-root model (4.4) is

intermediate. The parameter estimates given in Table 4.1 show a strong dependence

upon the stochastic assumption for all models. The reasons for this will be explored

in subsequent sections of this chapter.

4.2.4.2 Modeling [i

Table 4.3 lists the parameter estimates obtained from models 4.5 and 4.6 for the

data in Table A4.2 using the rate assumption i.e., with |l as the response variable,

and also with the square-root assumption (i.e., with VM as the response) and the

log assumption (i.e., with In |l as the response). Table 4.4 presents the residual mean

squares corresponding to these models.
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TABLE 4.1

Parameter Estimates and Their Asymptotic Standard Errors for Models 4.1

to 4.4 in Their Original and Transformed Forms, Data of Table A4.1 for

the Different Stochastic Assumptions

Assumption
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TABLE 4.3

Parameter Estimates from Models 4.5 and 4.6 Fitted to the Data of Table

A4.2 for the Different Stochastic Assumptions

Assumption

Model Parameter Square-Root Rate

CLD38 (Temperature Estimates in Kelvin)

Rate

(4.5) 4-Parameter square root

(4.6) Cardinal temperature

(4.5) 4-Parameter square root

(4.6) Cardinal temperature

(4.5) 4-Parameter square root

Tnun

max

b

Tmm
Tmax
T'opt

Mopt

Tmin

max

b

Tnun

Tmax
T'opt

Mopt

Tmin

T.

(4.6) Cardinal temperature

max

b

Tnun

Tmax
Tx
opt

"opt

Log Rate

266.9
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TABLE 4.4

Residual Mean Squares for Models 4.5 and 4.6 Fitted to the

Data of Table A.2 for the Different Stochastic Assumptions

Assumption

Model
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FIGURE 4.2 Observed and predicted rates vs. temperature for (a) CLD38 data, (b) 16L16

data, and (c) M68 data. Predicted rates were obtained using the cardinal temperature and

square-root models.
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F=a + p 1
X

1
+ p2

Z2 + + pX (4.8)

where XV X2, ...,X
p
are explanatory variables and Fa response variable, the param-

eters a, p, P 7 , p2, ..., pp
are estimated using the criterion of least squares. This widely

used criterion finds a set of parameter estimates that minimizes the sum of squares

of the differences between the observed and the fitted points, these differences being

referred to as the residuals. The ratio of the sum of squares of the residuals to the

corrected sum of squares of the response variable Y (the denominator being the sum

of squares of the observed Ys around its mean) is the complement of R2
, also known

as the "coefficient of determination," being the proportion of the total variation of

Y (about its mean) that is explained by the regression.

For a linear regression model with an intercept (e.g., A in Equation 4.3a), the

use of R2 as a measure of goodness-of-fit seems sensible, but even there it may be

misleading. As pointed out by Sen and Srivastava (1990, p. 14), R2 depends not only

on the sum of squares of the residuals, as one would wish, but also on the corrected

sum of squares of the response variable about its mean, and increasing the latter,

which has nothing to do with goodness-of-fit, can also increase R2
. For example,

the explanatory variables may be chosen such that half of them are in one closely

spaced group and the other half in another closely spaced group, with the two groups

spaced widely apart. This disposition of the Xs tends to make the denominator of

R2 large, while having no effect whatsoever upon how well the regression model fits

the observed data.

For linear regression models without an intercept, such as

Y = pZ (4.9)

or

y=p
1
x

1

+ p2
x

2
+ + ppxp

(4.io)

R2 cannot function as a goodness-of-fit criterion without modification. The modifi-

cation is usually made by defining R2 to be the complement of the ratio of the sum

of squares of the residuals to the uncorrected sum of squares, where the least-squares

regression line is determined by forcing the line to pass through the origin, i.e., the

point (0,0) on the (X,Y) axis.

Attempts have been made to generalize R2 by correcting it in such a way that it

becomes appropriate for nonlinear regression as well as for models without an

intercept, including models with stochastic assumptions other than the normal

(Nagelkerke, 1991). Rather than looking at the question from a theoretical point of

view, which involves complicated mathematics, we will look at a practical example.

Consider the data set for CLD38 using the square-root model with the stochastic

assumption that the variance is homogeneous in V|J . From Table 4.4, the residual

mean square was 5.924 x 10~6 for this data set. Carrying out the least-squares

regression analysis in the usual way, and presenting the results in the form of an

analysis of variance (ANOVA) table, leads to the following tabulation.
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Source of Variation df Sum of Squares Mean Squares Approx. F Pr > F

Regression
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the precision in the original data, is useful in assessing whether a given model truly

fits the data well. For the data sets from Table A4.1 and Table A4.2, the RMSEs are

simply the square roots of the entries in Table 4.2 and Table 4.4, respectively.

The most desirable situation occurs when each experimental condition in the

whole experiment is replicated, as that will enable one to calculate a measure of

precision from the contributions of the replications to the residual variance. If the

variances are of similar magnitude for each experimental condition, a pooled vari-

ance may be calculated. If the magnitudes of the residual mean square and the pooled

variance are similar, this suggests that the model fits the data well. If the residual

variance is much larger than the pooled variance, improvements to the model should

be sought. When experiments are not replicated, the data required to calculate the

pooled variance are not available. For the data given in Table A4.1, a pair of data

sets is available, and if it can be shown that the lag times obtained from the breast

data are not significantly different from those obtained from the thigh data, the two

data sets may be pooled. We will now formally carry out the tests of significance

to test the null hypothesis that the breast and thigh data sets are closely similar.

Since the extended hyperbola model, coupled with the log rate stochastic

assumption as model (4.2a), seemed to be best (from the residual mean squares of

Table 4.2), we will use that model to illustrate the procedure for testing whether the

breast and thigh data may be pooled. Fitting 4.2a to the data sets separately produces

regression results of which the following ANOVA table may be extracted:

Source of Variati
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We can now compare the residual sum of squares of 0.7217 with 39 df to the

"pooled" residual sum of squares of 0.4937 + 0.1696 = 0.6633 with 18 + 18 = 36

df. The difference between these two sums of squares is 0.7217 - 0.6633 = 0.0584

with 39 - 36 = 3 df. This leads to the following variance ratio test:

_ 0.0584/3

' 0.6633/36

This variance ratio of 1.057 has an F distribution with 3 and 36 df and is clearly

nonsignificant; hence, the breast and thigh data sets may be combined. We note that

the residual mean square for the combined data, 0.0185, is almost identical to the

pooled residual mean square of 0.0184, so that we have no hesitation in pooling

these two sets of data into a single combined set.

Even if the entire experiment cannot be replicated, there is merit in trying to

replicate some of the experimental conditions in one's experiment. Doing so provides

one with a pooled error against which the residual mean square may be formally

tested using the variance ratio test.

4.2.5.3 Examination of Residuals

Examination of the residuals is an important component of the evaluation of regres-

sion models, enabling the user to assess whether the model fits the data adequately.

A residual is defined as the difference between the observation and the fitted or

predicted value,

r
t
=y,-y,

where r. is the residual corresponding to the zth observation v., and y. is the

corresponding predicted value. Commonly used techniques for examining residuals

include plots of residuals vs. predicted values, normal probability plots, and calcu-

lating measures of influence. These procedures are described in books such as those

by Mendenhall and Sincich (1996) and Fox (1991), and are carried out by software

packages such as SAS (1990). Employing plots of residuals vs. predicted values and

normal probability plots and associated tests enables the modeler to examine the

assumptions inherent in regression analysis, such as normality of the residuals and

equality of the error variance. In particular, they readily identify outlying observa-

tions, some of which may be data entry errors. Measures of influence extend the

examination further, shedding further light on unusual observations.

4.2.5.3.1 The Runs Test

A simple first step in the examination of residuals is to order the residuals so that

they are arranged according to increasing order of the explanatory variable X (also

referred to as the "independent" or "regressor" variable), and then count the number

of runs of like-signed residuals. The more runs there are, the more the fitted model

tends to be centrally located within the set of data points, and thus the better the
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TABLE 4.5

Number of Runs of Like-Signed Residuals 2

Assumption

Model
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TABLE 4.6

Probability Values Associated with the Test of Normality

of the Residuals 3

Assumption

Model
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the larger the value of h
u
the greater the weight given to the z'th observation. The

average value of h is conveniently given by the ratio of the number of parameters

in the model to the total number of points n.

Another useful statistic is the Studentized residual, which is the ratio of the

ordinary residual r, to its standard error, the latter incorporating the leverage measure

hj. High values of this statistic, greater than two (say) in absolute magnitude, indicate

a significantly large residual. Other measures of influence include Cook's D (Cook,

1979) and the Dffits statistic (Belsley et al., 1980). These statistics produce a

combined measure of influence by coupling the effect of high leverage with the

measure of whether the observation is an outlier. Hence, a large value ofD or Dffits

usually results from both the leverage and the residual being large. D, is customarily

compared to critical values of the F distribution with numerator df equal to the

number of parameters estimated and denominator df equal to the residual df. If D
t

exceeds the 50th percentile of this F distribution, the observation is deemed to be

influential (see Mendenhall and Sincich, 1996).

Measures such as Cook's D and Dffits are intended for use with the "straight-

line" model (4.7) or with the multiple regression model (4.8), just in the same way

that R2 or adjusted R2 are intended to assess goodness-of-fit for such models. We
have seen in Section 4.2.5.1 that moving the "fulcrum" from the center of the line

or the plane to the origin of the coordinates results in an incorrect interpretation of

R2 or adjusted R2
if the standard definition of those measures is not modified.

Similarly, influence has to do with the distance that a point is from the fulcrum, and

whereas such a distance is unambiguous with models such as 4.7 and 4.8, various

problems of interpretation arise when one is dealing with a curvilinear regression,

such as the polynomial models to be discussed in Section 4.3.1 or nonlinear regres-

sion models, ones like 4.5 and 4.6, in which the parameters appear nonlinearly. In

any event, many of the methods for examining residuals are graphically based (such

as normal probability plots and graphs of residuals vs. fitted values), and tests of

significance should be considered to be only approximate. This is especially true

for nonlinear regression models because of bias in the predicted response values,

although such bias is typically small (see Ratkowsky, 1983, for discussion of the

effect of the so-called "intrinsic" nonlinearity).

Table 4.8 shows some results of applying measures of influence to the data sets

of Table A4.2, using the square-root model (4.5) coupled with the square-root

stochastic assumption. Similar to the results shown in Table 4.3 and Table 4.4, little

difference was observed between the parameter estimates obtained from the three

stochastic assumptions, as well as between models 4.5 and 4.6.

For the CLD38 data set, the average value of the leverage h
{
is 4/18 = 0.222,

since there are four parameters in the model and a total of 18 data points. Since

2(0.222) = 0.444, only the last data point, the one corresponding to t = 29.9°C,

exceeds this value and appears to be influential. Although the Studentized residual

is far below 2.0, Cook's D of 2.43 exceeds the critical value of 1.52 for the F
distribution with 4 and 14 df for the 50th percentile. Thus, the last data point should

be considered to be significantly influential without being an outlier. There are

indications that two of the interior points, the sixth and the ninth observations, have

high residuals. This is confirmed by looking at Figure 4.2a, which shows a very

2004 by Robin C. McKellar and Xuewen Lu



1237_C04.fm Page 170 Wednesday, November 12, 2003 12:49 PM

TABLE 4.8

Results of the Examination of Residuals from Use of Model 4.5 with the

Square-Root Stochastic Assumption for the Data of Table A4.2 a

Dbs
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TABLE 4.8 (Continued)

Results of the Examination of Residuals from Use of Model 4.5 with the

Square-Root Stochastic Assumption for the Data of Table A4.2 a

Obs Temp

21 31.6

Square

Root of

Rate

0.34220

Predicted

Square Root

of Rate

0.34075

Residual

0.00145

Leverage Studentized Cook's

h. Residual D

0.928 1.821 10.6762
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4.2.5.4 Measures of Nonlinear Behavior

Fitting of nonlinear regression models has become a relatively straightforward task

with the use of modern statistical packages. However, regression modeling should

not be viewed simply as a curve-fitting exercise, but one that requires thought and

subsequent evaluation and testing. The examination of residuals, for example, which

was the subject of the previous section, is part of the process of evaluation that

logically follows the routine fitting of a mathematical model to a data set. A further

step in that process is to ask whether there are other features of the model that may
or may not be deemed desirable in a mathematical model. When the fitted model

is a nonlinear regression model, one should ask whether the model is "close to

linear" or not.

The concept of a "close to linear" nonlinear regression model was advanced in

an earlier book (Ratkowsky, 1983). It was recognized then that some nonlinear

regression models could have severely biased parameter estimates, have a probability

distribution that was vastly different from that of a normal (Gaussian) distribution,

typically being skewed with a long right-hand or left-hand tail, and have excess

variance. This contrasts with linear regression models such as 4.7 and 4.8, which,

when the stochastic assumption of a normally distributed error term is valid, have

unbiased, normally distributed, minimum variance estimators. Although all nonlinear

regression models have biased parameter estimators, the various models differ in

the extent of the bias. The models that have only a very small bias in their estimates

were called "close to linear" by Ratkowsky (1983), whereas those that exhibited

severe bias were said to be "far from linear." In many models, parameter bias may
be reduced by reparameterization, i.e., changing the form in which the parameters

of the models appear. Other models can only be reparameterized at the price of

producing an awkward-appearing model. (See Ratkowsky [1983, 1990] for a detailed

discussion of these issues and for many examples of reparameterization.)

Several measures of nonlinear behavior have been advanced over the years, some

of which have not withstood the test of time. A very reliable indicator of nonlinear

behavior for an individual parameter estimator is based on Hougaard's measure of

skewness, described in Ratkowsky (1990, pp. 27-28), which exploits the close

connection between a nonlinear regression model's behavior and its expression in

biased, skewed parameter estimators. This measure is available in recent releases of

SAS® statistical software, PROC NLIN, using the option "Hougaard." Experience

with this measure suggests that if the Hougaard skewness measure is less than 0.1

in absolute value, the estimator of the parameter is very close to linear, but that if

its absolute value exceeds 0.25, the skewness is quite apparent (as may be seen, for

example, by carrying out a simulation study), and if it exceeds 1.0, considerable

nonlinear behavior of the estimator is present. Since skewness and bias (the differ-

ence between the mean value of a parameter's estimator and its true population

value) are closely correlated, a high skewness measure can be taken to mean a high

bias in the estimator of that parameter, and conversely, a low skewness measure

equates to a low bias.

Table 4.9 presents results for Hougaard's skewness measure for the parameters

of models 4.1 to 4.4, in combination with the data of Table A4.1 for the various
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TABLE 4.9

Hougaard Skewness Measures for Models 4.1 to 4.4 in Their Original

and Transformed Forms, Pooled Data of Table A4.1 for the Different

Stochastic Assumptions

Assumption

Model
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TABLE 4.10

Hougaard Skewness Measures for Models 4.5 and 4.6 Fitted to the

Data of Table A4.2 for the Different Stochastic Assumptions

Assumption

Model Parameter Square-Root Rate Rate Log Rate

CLD38 (Temperature Estimates in Kelvin)

(4.5) 4-Parameter square root Tmin
T,

(4.6) Cardinal temperature

max

b

Tmin
Tmax
T*opt

M-opt

0.001

0.281

0.274

0.190

-0.038

0.429

0.003

0.062

1 6L1 6 (Temperature Estimates in Kelvin)

(4.5) 4-Parameter square root Tmin
T,

(4.6) Cardinal temperature

max

b

Tmin
Tmax
T*opt

M*Pt

0.012

0.421

0.197

0.326

-0.006

0.742

0.072

0.137

M68 (Temperature Estimates in Kelvin)

(4.5) 4-Parameter square root Tmin
T,

(4.6) Cardinal temperature

max

b

Tmin
Tmax
T*opt

M-op,

-0.091

0.342

0.194

0.221

-0.133

0.434

0.014

0.020

0.002
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\i = a + bT + cP + dP (4.11)

When there is more than a single environmental factor, the number of parameters

of such models multiplies rapidly. For example, if temperature and salt concentration

(NaCl) are the environmental factors, the model would become, if all terms of the

polynomial up to third order are included,

H = a + bT +cP + dP+ e (NaCl) + /(NaCl) 2 + g(NaCl)3

+ MTNaCl) + iT^NaCl) + jP(NaCl) + /7\NaCl)2 + m^NaCl)2

+ nr(NaCl) 2 + oT(NzC\) 3 + pHNaCl) 3 + ^P(NaCl) 3

(4.12)

A total of 16 parameters (coefficients) have to be evaluated for this complete third-

order polynomial. This lack of parsimony often compels authors, for practical rea-

sons, not to go beyond second-order terms, so that the model becomes

(i
.

= a + bT +cP + d(NaCl) + e(NaCl) 2 + /T(NaCl) + ^(NaCl)
+ /ir(NaCl)2 + /T^(NaCl)2 (4.13)

which has "only" nine parameters. Aside from its nonaesthetic appearance, there

remains the practical question of whether such a model is capable of fitting real data.

As an example of the nonparsimonious nature of polynomials, let us look at one

of the illustrative data sets of Table A4.1, that for CLD38. The graphs in Figure 4.3

display the fit of a quadratic, a cubic, and a quartic (i.e., fourth degree) polynomial,

using the "rate" assumption (i.e., no transformation), and also show the observed

data points. The quadratic fit, involving three parameters, is very poor, there being

only four runs of like-signed residuals, with the predicted model underestimating the

observed data at very low temperatures and at temperatures near the optimum, and

0.08 -I

0.07 -

0.06 -

0.05 -

o
ra 0.04 H
DC

0.03 -

0.02 -

0.01 -

Quadratic

Cubic

Quartic

Observed

10 15 20

Temperature, deg C

25 30

FIGURE 4.3 Observed and predicted rates (fitted quadratic, cubic, and quartic polynomials)

vs. temperature. CLD38 data from Table A4.2.
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overestimating at moderate temperatures and very high temperatures. The cubic fit,

with four parameters, is a considerable improvement, but there are still only five runs

of like-signed residuals, and the residual mean square is 3.67 x 10~6
, much higher

than those for the square-root or cardinal temperature models. The quartic fit, with

five parameters, does very well with 1 1 runs of like-signed residuals, with a residual

mean square of 0.767 x 10~6
, which is almost as low as that of the square-root model

and lower than that of the cardinal temperature model (see Table 4.4). To achieve

this precision, however, one extra parameter beyond that required by the square-root

or cardinal temperature models had to be employed, and none of the five parameters

of the quartic polynomial is interpretable. In contrast, the square-root model has two

interpretable parameters and the cardinal temperature model has four.

4.2.6.2 Comparison of Models Using F Tests

A frequently used test in the statistical literature for comparing models is the F test,

employed extensively for formal testing of ANOVA models. In the food microbiol-

ogy literature, it has been used, for example, to describe the combined effects of

temperature, pH, and lactate on the growth of Listeria innocua (Houtsma et al.,

1996), to quantify the interactions of spoilage microorganisms (Pin and Baranyi,

1998) and to determine if a simple, nested model was sufficient to describe the

growth kinetics of a number of microorganisms (Delignette-Muller, 1998). Some
limitations of this method have been noted (McMeekin et al., 1993), for example,

(1) it cannot discriminate between models with the same number of parameters, or

nonnested models; (2) the significance of the F test is only approximate for nonlinear

regression models; (3) indiscriminate use of the F test may lead to overparameterized

models, i.e., ones with more terms and parameters than are necessary. Some of these

limitations are more serious than others; for example, the approximate nature of the

F test in nonlinear regression models is not serious, as the bias in the F test depends

upon the component of nonlinearity referred to as the "intrinsic" nonlinearity, and

this bias is typically small in most nonlinear regression models, except for very

small sample sizes (see Ratkowsky, 1983).

Models that typically are overparameterized are the polynomial models, criti-

cized in Section 4.2.6.1. Some authors have tried to reduce the number of parameters

by eliminating nonsignificant terms (e.g., Houtsma et al., 1996), but it is not clear

what purpose is really served by that procedure. First, for correctness, the eliminated

terms must be jointly nonsignificant, a conclusion that cannot be reached by applying

stepwise procedures such as forward or backward elimination. One should compare

the reduced model with the full model, which may be done using the F test, to see

whether inclusion of the extra terms significantly improves the fit. In any event, the

final model after terms have been eliminated is really no "better" than it was before

the unnecessary terms were deleted; that is, although there may appear to be less

unexplained variation in the response variable due to a smaller residual mean square,

because there are now more df for error than before, the effect is mainly cosmetic.

There is no substitute, when the goal is to produce accurate rate models or growth/no

growth interface models for predicting food product shelf life, for trying to build

the best possible mechanistic model for the process, or a close approximation to it.
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4.2.6.3 Models with Several Environmental Factors

Although the earliest successful models in food microbiology involved only tem-

perature, including the Belehradek-type models of which the square-root model is

a special case (Ratkowsky et al., 1982, 1983) and the Arrhenius-type relationships

(Schoolfield et al., 1981; Sharpe and DeMichele, 1977), it soon became apparent

that other growth-limiting environmental factors had to be taken into account. Mod-
els containing water activity (aw) in addition to temperature followed (e.g., Davey,

1989; McMeekin et al., 1987), and with time, the effect of hydrogen ion concentra-

tion in the form of pH (e.g., Adams et al., 1991) and the addition of weak acids

such as acetic acid and lactic acid were being considered (e.g., Presser et al., 1997).

A parsimonious model involving the combined effect of temperature, water

activity (or salt concentration), and the addition of a weak acid, such as lactic acid,

cannot be successfully achieved using polynomials such as 4.11 to 4.13. Baranyi et

al. (1996) promoted the desirability of models embodying known or assumed fea-

tures of the phenomenon under consideration. Van Impe et al. (2001) considered

models to be divided into three classes, following Ljung (1999), as white box models,

black box models, and gray box models. Deductive white box models require full

knowledge of the underlying physical mechanisms and a deep understanding of the

physical, chemical, and biochemical laws driving the process, a situation that is

rarely available at this moment in time. Black box models lie at the opposite end of

the scale. They take the experimental data as input information and produce output

variables with or without necessarily producing an equation or series of equations.

This inductive approach includes polynomial modeling and the use of artificial neural

networks, but models so produced cannot reflect physical considerations. A gray

box model is a compromise between the two extremes and is probably the standard

to which modelers in predictive food microbiology can realistically hope to achieve

at this point of time. Another alternative, suggested by Geeraerd et al. (2002), is to

retain the black box approach while incorporating a priori microbiological knowl-

edge into the modeling process so that overfitting of the data and unrealistic param-

eter estimates are prevented from occurring.

The approach taken by Presser et al. (1997) was an attempt to incorporate some

reasonable assumptions based upon physical chemistry into the modeling process.

They used the observation reported by Cole et al. (1990) that the growth rate of a

microorganism is directly proportional to the hydrogen ion concentration, and this

led directly to an expression for the effect of pH. Similarly, the well-known Hend-

erson-Hasselbalch equation of physical chemistry was used, which related the ratio

of the undissociated to the dissociated forms of a weak organic weak to the pH and

p^T
a , the latter being the pH at which the concentrations of the two forms are equal.

The resulting growth rate model (see Presser et al., 1997) for E. coli as a function

of temperature, pH, and added lactic acid concentration contained only six param-

eters to be estimated. This is in sharp contrast to a polynomial model, which would

have had to contain dozens of parameters to achieve the same level of prediction.

If the model fit exhibits shortcomings, then it can be amended to improve its

predictive ability, but the basic model form is a good foundation upon which to base

further fine-tuning.
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4.2.7 Replicated Data Sets

We now examine the data in Table A4.3, which, unlike the data in Table A4.1, can

be seen to be a group of data sets with genuine replication. The data of Table A4.

1

served as a surrogate for replication, since the results for breast meat were indistin-

guishable from those on thigh meat, making it possible to consider the two sets of

data to be replicates. The growth rate data for L. monocytogenes of Table A4.3 were

obtained from five separate runs using a temperature gradient incubator, on samples

of what was ostensibly the same material. Each data set is independent of the others.

The four-parameter square-root model (4.5) appears to be well suited to fit each

of the individual data sets, as may be seen from Figure 4.4. Parameter estimates and

their standard errors are given in Table 4.1 1. It is seen that there is a fair amount of

variability in the estimates of the two cardinal temperatures, with the Tmin estimates

varying between -1.0 and 2.3°C and the Tmax estimates varying between 45.5 and

48.3°C. Similarly, the measures of goodness-of-fit show considerable variation, with

the residual mean squares ranging by a factor of 3 between 1.0 x 10"5 and 3.0 x

10
-5 and the number of runs of like-signed residuals varying between only six runs

for Data Set 4 to a rather substantial 20 runs for Data Set 3. Nevertheless, there is

no correlation between number of runs of residuals and the normality of the set of

residuals, with Data Set 4 having a close-to-normal set of residuals and Data Sets

2 and 3 being marginally nonnormal. As can be seen from Figure 4.5, which shows

the pooled Data Sets 1 to 5 on a single graph with the square-root model (4.5) fitted

to the pooled data, there is a group of five data points in Data Set 1 in the suboptimal

temperature range of 27.5 to 32.8°C with much lower rates than those predicted by

the overall fitted model.

Pooling the residual sum of squares from the individual data sets leads to

0.000661 + 0.000493 + 0.000333 + 0.000478 + 0.000250 = 0.002215, with 22 +

23 + 23 + 23 + 24 = 1 15 df. The residual sum of squares for the pooled data set of

135 points is 0.00677 (see Table 4.11) with 131 df. The difference between these

two sums of squares is 0.00677 - 0.002215 = 0.00455 with 131-115=16 df. This

leads to the following variance ratio test:

0.00455/16
'

0.002215/115

This is clearly a highly significant F value (P < 0.001) and indicates model inade-

quacy. The question is whether this is due to a poor model or poor data. The

information in Figure 4.5 suggests that the model is adequate but that there are a

number of aberrant data points. This is further borne out by Figure 4.6, which is a

plot of the residuals vs. the fitted values from fitting 4.5 to the pooled set of 135

data points. There are seven data points that stand out as potential outliers, with

residuals exceeding 0.015 in absolute magnitude. These are indicated using a larger

font size.

Removing the data points with the seven biggest residuals and refitting model

4.5 to the remaining 128 data points results in a residual sum of squares of 0.00249

(see Table 4.1 1) with 124 df. The pooled residual sum of squares, recalculated from
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FlGU RE 4.5 Pooled data and fitted overall square-root model (Data from Nichols et al., Appl.
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FIGURE 4.6 Residuals vs. fitted values from overall model (n = 135). The seven largest

residuals are indicated using a larger font size. (Data from Nichols et al., Appl. Environ.

Microbiol., 68, 2809-2813, 2002.)

must be interpreted as indicating that there is significant variability among the five

data sets.

Looking more closely at the five sets of data, we see from the dates given in

Table A4.3 that Data Set 1 was obtained on 6 September 2000, Data Sets 2 and 3

were obtained on 25 September 2000, and Data Sets 4 and 5 were obtained on 14

December 2000. Data Sets 2 and 3 are, in fact, close replicates, as the "bar" run

from which Data Set 2 was obtained used tubes on one side of the temperature

gradient incubator, and the run from which Data Set 3 was obtained used tubes on

the other side of the incubator. Different stock solutions were employed for the two

runs, so that variation in the results would be a consequence of variation in the

inocula and not in the ambient conditions of the room in which the incubator was

housed. Similarly, Data Sets 4 and 5 are close replicates for the same reason.
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We now compare Data Sets 2 and 3 using the same test we used above. From

the results in Table 4.1 1, the pooled residual sum of squares is 0.000493 + 0.000333

= 0.000826 with 23 + 23 = 46 df. Combining the two data sets leads to a residual

sum of squares of 0.000847 with 50 df. The difference between these sums of squares

is 0.000847 - 0.000826 = 0.000021, with 50 - 46 = 4 df. This leads to the following

variance ratio test:

=
0.000021/4

=
' 0.000826/46

a nonsignificant F value that confirms that Data Sets 2 and 3 are close replicates.

Comparing Data Sets 4 and 5 in a similar way leads to a pooled residual sum

of squares of 0.000728 with 47 df, while combining the two data sets leads to a

residual sum of squares of 0.00103 with 51 df. The difference between these sums

of squares is 0.00103 - 0.000728 = 0.000302 with 51 - 47 = 4 df, leading to the

following variance ratio test:

=
0.000302/4

=
' 0.000728/47

This variance ratio is significant (P < 0.005), so the two data sets, although obtained

on the same bar run, cannot be considered to be close replicates. Removing the data

point responsible for the largest residual (T = 38.1°C; sqrate = 0.1297; Data Set 5)

still results in a significant variance ratio (F446 = 3.49), so the lack of closeness of

agreement of these two data sets cannot be attributed to a single outlying data point.

From Figure 4.5, one can visually observe that there are differences between Data

Set 4 and Data Sets 2 and 3. A formal test leads to F869 = 17.26, which is highly

significant. Hence, one must conclude that the data sets obtained on 14 December

are different from those obtained on 25 September. All are different from Data Set

1, obtained on 6 September, which exhibited a series of low rates in the mid-

temperature range.

Identifying deviant data points using analysis of residuals is desirable as a means

of directing attention to the possibility of experimental errors. However, one should

avoid deleting data points with large residuals unless there are good, objective

reasons for doing so, because of belief that errors were committed during the

experiment, resulting in erroneous readings. The indiscriminate use of data elimi-

nation may have the undesirable effect of leading to biased estimates of the param-

eters, and may produce a belief that the data set, modified by having its most deviant

points deleted, is of a better quality than is really justified.

Because five replicate data sets for the growth of L. monocytogenes were avail-

able, it was possible to see that, although each data set looked to be good in isolation,

the aberrant nature of Data Set 1 became apparent when all data were pooled and

plotted on a single graph (Figure 4.5). To the author's knowledge, very few replicate

data sets are available for turbidity measurements obtained using a temperature
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gradient incubator. Replication is desirable as it makes it possible to examine whether

the variation in experimental data is significant or not.

What explanations might be offered to explain the variation among the five data

sets discussed here? An obvious one is operator error in using the temperature

gradient incubator, but this is unlikely in the present case because the experimenters

were very experienced. Another explanation has to do with their use of the modified

Gompertz function as a primary model to estimate the lag time and the maximum
specific growth rate at each temperature. That model may not have been an appro-

priate one for determining these parameters, especially as the cultures were harvested

when the individual incubation tubes reached a transmittance value of only 27 to

30%. A second explanation may be that the secondary model, the four-parameter

square-root model (4.5), was inadequate or inappropriate. This is unlikely, as the

information in Figure 4.4 and in Table 4.11 indicates that 4.5 is a good model for

these data. Another explanation may lie with the equipment itself, or with the room

in which the incubator was housed, as its ambient temperature is probably not

adequately controlled. Although it is not possible to be certain about the true expla-

nation for the variation observed among the data sets in question, it is always

important for investigators to consider the various possibilities, so that one may
improve the experimental procedure, or the modeling process that follows collection

of the data, or both.

4.3 UNCERTAINTY IN LAG TIMES AND GENERATION
TIMES, AND ITS CONSEQUENCES

In this section, we look at uncertainty in some of the basic parameters that are

measured or derived from experimentation and data analysis in predictive food

microbiology, and its consequences for food production and safety. Uncertainty is

an ever-present phenomenon, one which may be reduced by careful quality control,

but which may never be totally eliminated.

A fundamental issue of the discipline of predictive food microbiology (perhaps

its most important one) is the accurate prediction of the shelf life of a food product

so that the product remains edible throughout the whole of that period. We have seen

in some of the earlier sections of this chapter (e.g., 4.2.4.2) that modeling of some of

the important derived parameters such as the maximum specific growth rate (J occurs

in a transformed rate domain; that is, |l, which has units of reciprocal time, is

transformed by taking its square root (e.g., Equation 4.5 or Equation 4.6a) or its

logarithm (e.g., Equation 4.5b or Equation 4.6b) when it is to be used in a modeling

exercise or various other statistical calculations. The reason for applying one of these

transformations is that the untransformed growth rate has undesirable statistical prop-

erties. Generally, the probability distribution of |i is nonnormal (i.e., not a Gaussian

distribution), which means, among other things, that the variance of the distribution

is not independent of its mean. By applying a transformation such as the square root

or logarithm to the growth rate, the transformed variable comes close to having a

normal distribution. The random variable will then be symmetrically distributed

around the mean, with a variance that does not depend upon the mean. Since the mean
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and variance are the two parameters of the normal distribution, having a good estimate

of these parameters from a sample of size n (say) enables the user to have confidence

about the probability of obtaining an observation from the distribution of the trans-

formed variable that falls outside of any specified bound. For example, the probability

of an observation being more than two standard deviations from the mean can be

calculated using a table of the t distribution with n - 1 df. If the random variable is

not normally distributed, one may be able to make a similar calculation if its distri-

bution is known, but usually with more difficulty than if the random variable is normal.

The situation is even more complicated when one considers time-based vari-

ables or derived parameters such as lag time, generation time, and shelf life. While

square roots of rate or logarithms of rate may be normally distributed, lag times,

generation times, and shelf lives never are, tending instead to have long-tailed

distributions. In the following subsection, we review the distributional features of

these time-domain quantities.

4.3.1 The Distribution of Lag Time and Generation Time

The distribution of lag time and generation time is a nonnormal distribution of which

the variance usually falls somewhere between being proportional to the square of

the mean or to the cube of the mean; that is, if we denote the mean (lag or generation)

time by 0, then the variance, if denoted by V, is usually given by

V=c02
(4.14)

or

V=c0 3
(4.15)

or by an exponent of that is a noninteger value lying somewhere between 2 and

3, with c being a proportionality constant (see McMeekin et al., 1993; Ratkowsky

et al., 1991; Schaffner, 1998). There are some well-known probability distributions

with variances having the properties defined above. For example, the gamma and

Weibull distributions have the variance proportional to the square of the mean, as

given by 4.14, and the inverse-Gaussian distribution has its variance proportional to

the cube of the mean, as given by 4.15. There are other lesser-known distributions

with the same properties.

Data to test whether the exponent of is 2, 3, or some other value are hard to

find, as they require many replicate runs carried out at each of a sequence of

temperatures. Although one might expect to obtain a reasonable prediction of the

population mean from a relatively small sample size, say 10 to 15 values, sample

variances are more variable than sample means and many dozens of trials are needed

to obtain a good prediction of the variance. Using the data of Neumeyer given in

Appendix 4A.4 of McMeekin et al. (1993) on generation times for the growth of

Staphylococcus aureus 3b from 12.5 to 35C, it was established that 4.15 was a

reasonable model for the relationship between the variance and the mean (see Table

4.8 and associated text of McMeekin et al. [1993] for the methodology used).
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Nevertheless, sample sizes were rather small, ranging from n = 1 to 18. Only two

temperatures had n > 10.

A far larger data set (n = 125) for examining the question of the correct model

between a probability distributions variance and mean is that of Macario, reported

in Ratkowsky et al. (1996), for the generation time of Pseudomonas fluorescens

in the temperature range of 2.4 to 16.3°C, obtained using nutrient broth in a

temperature gradient incubator. Grouping the temperature data into 1°C intervals

produced 15 intervals with sample sizes ranging between 2 and 17. The estimates

of the means and variances were plotted against temperature as the ratios V/0, V702
,

and V703
. The regression line of V702 against temperature was the one with the

least correlation, suggesting that 4.14 was the best model for those data. This

suggested to Ratkowsky et al. (1996) that the Macario data could be modeled by

4.14 with the scale parameter c = 0.006676 estimated by assuming that a gamma
distribution was a suitable probability distribution for the data (see Ratkowsky et

al., 1996, for a detailed description of the methodology employed). It should have

been realized that the gamma distribution, which contains only two parameters, is

only one possible probability distribution having the property given by 4.14.

Although the assumption of a gamma distribution led to predicted variances that

were in the right "ball park" when compared with the experimental variances, the

predicted standardized skewness coefficient of 0.163 indicated only a small amount

of skewness, as the histograms in Figure 2 of Ratkowsky et al. (1996) were scarcely

distinguishable from those of a normal distribution. Later, Hutchinson (1998)

pointed out that the error made by Ratkowsky et al. (1996) was to believe that V702

being a constant told one something about the shape of the distribution, e.g.,

whether it was skewed.

Hutchinson (1998) pointed out that to determine the real shape of the distribution,

one would have to look at the data for each temperature separately, and that would

require dozens of observations at each temperature. Clearly, the Macario data set,

averaging ca. 8 points per temperature, was too small for this. He further showed

that if one could assume that the "shifted gamma distribution" were a suitable

probability distribution for those data, having a third parameter that measured the

extent to which the mean was shifted upwards from zero, one could obtain a fitted

distribution with a considerable skewness. However, until such time as microbiolo-

gists can readily produce many replicated data sets at each temperature, the question

of the true amount of skewness in data that obey models 4.14 and 4.15 will not be

answered. In the following section, we explore how knowledge of the true distribu-

tion for lag time and generation time may be used to obtain accurate predictions

about the likely shelf life of a food product.

4.3.2 The Prediction of Shelf Life

The shelf life (keeping time of a food product), subject to spoilage owing to a

spoilage organism, can be predicted from lag time and generation time if there are

appropriate models for these parameters expressed in terms of temperature T, water

activity aw, hydrogen ion concentration (pH), concentration of undissociated weak

acid, and any other factors influencing them.
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Denoting mean lag time by tL and mean generation time by tG , the shelf life may
be estimated by the expression

Shelf life = tL + tG ln(QC )/ln 2 (4.16)

where C is the initial bacterial concentration and Cf is the maximum permissible

concentration (e.g., in cfu/ml), where permissible means the product is deemed to

be spoiled. The first term of the expression is the lag time before growth effectively

begins, and the longer the value of tL , the longer the shelf life. The second term of

the expression calculates the number of generations through which the microorgan-

ism develops from its initial concentration to its final concentration. Note that the

above assumes that the generation time is independent of the numbers of bacteria

present. If that assumption is too naive, or too crude an approximation, one may
predict Cf from a model (such as the modified Gompertz curve — see chapter on

Primary Modeling).

An example of the use of 4.16 will now be presented. Consider the data on the

growth ofAeromonas hydwphila (aerobic atmosphere), from Palumbo et al. (1991).

For T = 19°C, added salt = 3.5%, pH = 6.3 and added sodium nitrite = 50, and

assuming C = 10 and C
f
= 1.0 x 107 cfu/ml, the lag time tL was determined to be

60 h and the generation time tG was determined to be 2.6 h, using a square-root

model. Using 4.16, the keeping time is calculated as

Shelf life = 60.0 + 2.6 ln(107/10)/ln 2 = 112 h

The second approach, which does not assume a constant generation time, can be

made using a computer package such as the pathogen modeling program (PMP),

developed by the USDA/ARS/ERRC Microbial Food Safety Unit. From PMP, the

lag phase duration tL is 48.2 and the generation time tG is 2.7 h, corresponding to

the above environmental factors. The calculated time to reach the level of concern

107 cfu/ml is 105 h, which is similar to the 112 h calculated using 4.16.

The important thing about the above calculation is that in either approach only

mean values of lag or generation times are used. The variability of these parameters,

and their probability distributions, as discussed in Section 4.3.1, has not entered into

the calculation. We will now take a brief look at how variability may affect the result

obtained, and lead to a larger or smaller shelf life.

We reconsider the data of Macario, discussed in Section 4.3.1. It was found that

it was reasonable to assume that the ratio of the variance to the square of the mean

was constant, which is equivalent to assuming that the coefficient of variation is

constant. Ratkowsky et al. (1996) further assumed, naively as Hutchinson (1998)

later demonstrated, that this implied that one could use the gamma distribution,

which has two parameters, for these data. Estimating the scale parameter to be c =

0.006676, we calculated predicted mean generation times for any temperature and

the distribution of generation time under the assumption that the gamma distribution

was an appropriate one for those data. For example, at T= 2.4C, the mean generation

time was determined to be = 615.2 min (see Table 2 of Ratkowsky et al., 1996)

and a series of predicted probabilities, denoted by , were calculated at that
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temperature. Thus, for P = 0.000001, = 405.1 min, for P = 0.001, 9 = 471.5 min,

for P = 0.999, 8 = 782.3 min, for P = 0.999999, 9 = 885.8 min; and so on (see

Table 4 of Ratkowsky et al., 1996). What do these numbers signify? For example,

they tell us that although the mean generation time may be 615.2, there is a one in

a thousand chance that the generation time may be as low as 471.5 and a one in a

million chance that it may be as low as 405.1. From the point of view of food

acceptability, these values, if used in 4.16 in place of 615.2, would lead to a much-

reduced shelf life. At the other end of the scale, there is a one in a thousand chance

that the generation time may be as high as 782.3 and a one in a million chance that

it may be as high as 885.8. These values would lead to a prolonged shelf life

compared to the expected shelf life based upon the mean generation time. Note that

471.5 and 782.3 are not equally distant from 615.2, and that neither are 405.1 and

885.8. This is a consequence of the asymmetry inherent in a distribution such as the

gamma distribution. However, as pointed out by Hutchinson (1998), this distribution

is not particularly skewed, and to get a good estimate of the true skewness would

require many replicates at each temperature.

4.4 EPILOGUE

In this epilogue, the author raises a few issues that he has considered over the years.

The first two subsections deal with beliefs, held by at least some modelers, that the

author feels are erroneous. Because they have appeared in the food microbiology

literature, these issues need to be raised. In the final two subsections, some newer

or less familiar modeling methods are discussed, which have found, or will find,

their way into the predictive modeling literature in the near future.

4.4.1 Use of the Expressions "Fail Safe" and "Fail

Dangerous" for Models

There seems to be a widespread use of the expressions "fail safe" and "fail danger-

ous" in the food microbiological literature when applied to models. Assuming that

one has unbiased, carefully collected data, fail-safe refers to a model that overpredicts

the rate at which a spoilage or pathogenic organism will grow, or predicts overly

stringent conditions at the growth/no growth interface for growth to occur. Con-

versely, fail-dangerous refers to a model that under-predicts the actual growth rate

or fails to predict conditions at which growth will actually occur. In either case, the

model must be deemed to be inadequate. To use the expression fail-safe to exonerate,

exculpate, or absolve the modeler, scientist, or regulator from doing a better job

seems to be just taking the easy way out. There is really only one kind of model

that should find a place in the food microbiology literature, and that is a good model.

Good models are those that closely mimic the rate at which spoilage or pathogenic

organisms grow or which closely predict the position of the growth/no growth

interface. Bad models are all other kinds.

The issue is not an academic one, but a practical one. Fail-safe can be taken to

a ludicrous extreme, by adopting a "model" that always predicts that a pathogenic

microorganism will grow, even under conditions so stringent as to be virtually
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impossible. Using this model, all food products would be declared unsafe to con-

sume. We live on a planet in which a very high proportion of its human inhabitants

do not get enough food to eat. Death by starvation is still a global problem and

adequate nutrition, to help people ward off debilitating or potentially fatal diseases,

is a worldwide problem. An extreme fail-safe model might suggest that food that is

in reality safe to eat should be avoided or destroyed. We should always remember

that death and disease could be caused as much by the nonavailability of food as

well as by its being contaminated or spoiled. In the more affluent world economies,

a fail-safe mentality also overlooks the producer's point of view. Food that is safe

to be sold and consumed may, as a result of overzealous regulations resulting from

inadequate modeling, have to be discarded, leading not only to lower profitability

but less availability and choice to the consumer. In addition, any resulting added

costs tend to get passed on to the consumer.

4.4.2 Correlation between Parameters

There seems to be a strong belief on the part of certain researchers that a regression

model with low correlation between its parameters is, in some sense, "better" than

one with high parameter correlation. For example, Rosso et al. (1993) found that

the three cardinal temperature parameters in 4.6 were linearly correlated, a condition

that they felt was "unexpected" (see title of their paper). No rational reasons were

advanced as to why uncorrelated parameters are deemed to be superior to correlated

ones. It is the present author's experience that there is no connection between

parameter correlation and the properties of the estimators of the parameters in

nonlinear regression models (Ratkowsky, 1983, 1990). It simply has nothing to do

with the more important question of whether the estimators of the parameters are

unbiased, jointly normally distributed, and attain the so-called "minimum variance

bound." It might be nice to have a nonlinear regression model that not only is "close

to linear" (see Section 4.2.5.4), but also has uncorrelated parameters. The present

writer has never found such a model.

4.4.3 Artificial Neural Networks as an Alternative

to Statistical Modeling

Various alternatives to statistical modeling are starting to appear in the predictive

microbiology literature, some of which are likely to prove appealing to a new

generation of modelers. Probably the most important of these involves the use of

artificial neural networks (ANN) in one form or other (they have also been referred

to as computational neural networks, artificial computational neural networks, or

general regression neural networks). An early exposition in the predictive microbi-

ology literature of the methodology of this approach, which would be classified as

a black box approach using the system of Ljung (1999), is that given by Hajmeer

et al. (1997), who described some of the computational details and gave an example

of its use on microbial growth data. ANNs operate by analogy to the human nervous

system, where input variables provide an incoming signal to a neuron, are modified

in a "hidden" neuron layer, and finally converted to an output signal by an appropriate
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"transfer function." The application by Hajmeer et al. (1997) to anaerobic growth

data obtained by Zaika et al. (1994) on Shigella flexneri as a function of pH, NaCl,

and NaN02 concentrations, used a hidden layer consisting of 20 nodes (neurons),

because their "training cycles" indicated that their goodness-of-flt measures became

stable when 20 nodes were used. Some compromises need to be made, since by

increasing the number of training cycles and the number of hidden nodes indefinitely,

one can fit "training sets" perfectly, but at the risk of poorly predicting subsequent

validation (testing) sets. This is, of course, directly analogous to regression modeling,

where the use of too many terms in a regression model may result in overfitting the

original data set and a poor fit to validation data sets.

Geeraerd et al. (1998) used a low-complexity ANN to convert the incoming

signal from environmental factors such as temperature, pH and salt concentration

to an output signal embodied in parameters such as the maximum growth rate, the

lag time, and the initial population size. They referred to their model as a "hybrid

gray box" model because the ANN models were used only to describe the effect of

an influencing factor such as temperature on an output parameter such as |imax , which

was then used in a dynamic growth model to predict the growth of the microbial

population with time.

Jeyamkondan et al. (2001) used commercially available neural network software,

which enabled them to examine different network structures quickly with little effort,

a feature that is appealing to users who know some basic principles of neural

networks but are not experts in neural network programming. They chose a general

regression neural network (GRNN) to predict response parameters such as generation

time and lag phase duration from input data involving changes in temperature, NaCl,

pH, etc. for three microorganisms. They compared use of the GRNN to that of more

traditional statistical models and found that the GRNN predictions were far superior

to predictions from statistical models for training data sets, but similar to, or slightly

worse than statistical model predictions for test data sets. They concluded that neural

networks were adequate for food safety tests and for new product development. To

assess goodness-of-fit, they investigated the performance of various statistical indices

and concluded that the use of the mean absolute relative residual, the mean relative

percentage residual, and the root mean square residual, in conjunction with graphical

plots such as the bias plot and the residual plot, were sufficient for comparing

competing models.

More recently, Hajmeer and Basheer (2002, 2003) proposed a probabilistic

neural network (PNN) for use on growth/no growth data and compared its classifi-

catory performance to that of a linear logistic regression model, a nonlinear logistic

regression model of the kind proposed by Ratkowsky and Ross (1995), and a

feedforward error backpropagation artificial neural network (FEBANN), and found

that the optimal PNN gave the lowest misclassification rates. It should be pointed

out, though, that the "nonlinear" logistic regression model that they derived using

their training data subset was not a true nonlinear logistic model, since the cardinal

parameters aw min , rmin , and Tmax were assumed to be fixed constants, taken from the

paper of Salter et al. (2000), and not estimated as free parameters. Because of this,

the resulting model was really a linear logistic model and not capable of doing as

well as a true nonlinear logistic regression model.
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At this early stage in the use of ANNs, it is difficult to forecast how valuable

they might be in predictive microbiology to predict the conditions under which food

products should be stored to guarantee their safety and quality. One question that

arises is whether ANN models are "portable," i.e., whether other workers can readily

use them in the way that they can use statistical models that have expressions in the

form of mathematical equations. In this regard, hybrid models may prove to be

attractive, where the ANN may serve to produce a primary model, in a similar way

in which the modified Gompertz model or the model of Baranyi et al. (1993) is

used, followed by a more traditional secondary model where the outputs from the

ANN are then expressed as functions of the environmental factors.

4.4.4 Principal Components Regression and Partial

Least-Squares Regression

There are other alternatives to ANN that might be used by a new generation of

modelers. Jeyamkondan et al. (2001) mentioned principal component regression

(PCR) and partial least-squares regression (PLS) as two statistical techniques of

multivariate analysis that might be employed when the underlying relationships

are not known. PCR has been known for some time, and is available in many
standard statistical packages. Given a set of n experimental units on which mea-

surements have been made of p explanatory variables, a principal component

analysis can reduce those p variables to a smaller set (say 2 or 3) of "canonical"

variates, upon which regression analysis of various response variables may then

be performed. The canonical variates (i.e., the principal components) are linear

combinations of the p explanatory variables and have the property that they are

orthogonal (i.e., uncorrelated) to each other, unlike the original set of p variables,

at least some of which are likely to be highly correlated. If the canonical variates

are easily interpretable, the contributions of each variate to the explanation of the

response variable can be quantified, because of their orthogonality. Hence, PCR
has the potential to be a useful technique, provided that the canonical variates are

subject to interpretation.

PLS is a much newer technique and at the moment is poorly understood by

users, but is gaining increasing application. It can be contrasted with PCR and with

another technique, called reduced rank regression (RRR), when the response vari-

ables form a multivariate set. Whereas PCR extracts successive linear combinations

of the explanatory variables to explain as much predictor sample variation as pos-

sible, RRR extracts successive linear combinations of the set of response variables

to explain as much response sample variation as possible. PLS tries to balance the

two objectives by simultaneously explaining response variation and predictor vari-

ation. The same caveats that applied to ANN modeling apply here as well. Just as

the use of too many nodes or too many training cycles can lead to over-fitting the

training set of data and poor prediction in test data sets forANN modeling, extracting

too many factors in PLS can also lead to overfitting. Like ANN modeling, the use

of validation, by splitting one's data set into a training set and a test set, is an integral

part of the modeling process.
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Time can only tell how useful such techniques might be to predictive microbi-

ology, but one has to anticipate that a new generation of modelers is certain to

come forward with applications employing one or more of these procedures. One

must retain an open mind to their use, but at the same time avoid uncritical

acceptance of them. In addition, the restriction inherent in all these techniques,

which involve linear combinations of variables, may limit the general applicability

of the methodology. After all, the world we live in is not a linear one, and it is a

rare circumstance in mathematical modeling when a linear model explains natural

phenomena adequately.

APPENDIX

TABLE A4.1
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TABLE A4.2

Specific Growth Rate Constant ]i vs. Temperature for Three Data Sets

Alteromonas sp. (CLD38) Pseudomonas sp. (16L16) Morganella morganii (M68)

T(°C)
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TABLE A4.3

Growth Rate Data of Listeria monocytogenes, Presented as Square Root of

Rate vs. Temperature, Five Replicates

Data Set 1

(6 Sept 2000)

7-(°C) M

Data Set 2 Data Set 3 Data Set 4 Data Set 5

(25 Sept 2000) (25 Sept 2000) (1 4 Dec 2000) (1 4 Dec 2000)

7-(°C) 7-(°C) r(°c) 7-(°C)

1.8
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