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3.1 INTRODUCTION

Changes in populations of microorganisms in foods over time (i.e., "microbial

kinetics") are governed by storage conditions ("extrinsic" factors) and product

characteristics ("intrinsic" factors). Collectively these have been termed "environ-

mental parameters." They may represent simple situations, e.g., where the storage

temperature is the only important factor influencing microbial kinetics, but in many

foods the environmental parameters that influence microbial kinetics are complex

and dynamic and include the combined effects of extrinsic factors such as temper-

ature and storage atmosphere; intrinsic factors such as water activity, pH, naturally

occurring organic acids, and added preservatives; and interactions between groups

of microorganisms.

Consistent with the widely accepted terminology introduced by Whiting and

Buchanan (1993), we term those models that describe the response of microorgan-

isms to a single set of conditions over time as "primary" models (see Chapter 2).

Models that describe the effect of environmental conditions, e.g., physical, chemical,

and biotic features, on the values of the parameters of a primary model are termed

"secondary" models.

Knowledge of the environmental parameters that most in uence growth of

microorganisms in foods is essential for the development, as well as for the practical

use, of predictive microbiology models. Secondary models that do not include all

the environmental parameters important in a food are said to be "incomplete" (Ross,

Baranyi, McMeekin, 2000) and require expansion (or simple "calibration" if those

factors are constant) to accommodate their effect on microbial kinetics. The envi-

ronmental parameters that are important for particular foods, however, are not always

known. In those situations the systematic approach of predictive microbiology can

help to elucidate the microbial ecology of the product.
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In this chapter we consider a range of types of secondary models including

those that model the probability that a predicted kinetic response will occur. The

chapter includes descriptions and comparison of models, as considerations for

development of robust, secondary models. Appendix A3. 1 details methods to mea-

sure environmental factors of importance— an essential element of the application

of predictive microbiology.

3.1.1 Philosophy, Terminology, and Methodology

The history of predictive microbiology, including the philosophical motivations of

Roberts and Jarvis (1983), who first proposed the concept, w as traced by Ross and

McMeekin (1994). From a purely pragmatic perspective, predictive microbiology

aims to collect and make accessible computerized data on the behavior of microbial

populations in response to defined environmental conditions, but mathematical mod-

eling also provides a useful and rigorous framework for the hypothetico-deductive

scientific process. To develop a consistent framework that enables us to understand

and predict the microbial ecology of foods it is desirable to integrate the patterns

of microbial behavior revealed in predictive modeling studies with knowledge of

the physiology of microorganisms and physical and chemical processes and phe-

nomena that occur in foods and food processes (Ross, Baranyi, McMeekin, 2000).

Various types and categorizations of models are recognized. Empirical models

are, essentially, pragmatic and simply describe a set of data in a convenient mathe-

matical relationship with no consideration of underlying phenomena. Mechanistic

models are built up from theoretical bases and, if they are correctly formulated, can

allow the response to be interpreted in terms of known physical, chemical, and

biological phenomena. An advantage of mechanistic approaches is that they tend to

provide a better foundation for subsequent development and expansion of models;

i.e., taken to their logical extreme, models for specific situations would simply be

special, or reduced, cases of a much larger and holistic model that describes, quan-

titatively, the microbial ecology of foods. The process of developing models that are

able to be integrated readily with other models so as to describe more complex

phenomena has been termed "nesting" or "embedding." A fuller explanation of the

bene ts of that approach w as provided by Baranyi and Roberts (1995).

In one sense, a model is the mathematical expression of a hypothesis. If this

approach is adopted, it follows that the parameters in such models might be readily

interpretable properties of the system under study, and that the mathematical form of

the model would enable interpretation of the interactions between those factors.

Interpretability of model parameters is a feature highly valued by many authors in the

predictive microbiology literature (e.g., Augustin and Carlier, 2000a,b; Rosso et al.,

1993; Wijtzes et al., 1995). Although the development of predictive microbiology has

seen the embedding ofmore and more mechanistic elements, or at least models whose

structure and parameterization reflects known or hypothesized underlying phenomena,

in practice many models currently available in predictive microbiology are not purely

empirical, and none are purely mechanistic (Ross, Baranyi, McMeekin, 2000).

Another, often cited, advantage of mechanistic models is that if they are built on

sound theory they are more likely to facilitate prediction by extrapolation. Conversely,
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as none of the models in use in predictive microbiology can be considered to be

mechanistic, they can only be used to make predictions by interpolation. (Determi-

nation of the interpolation region encompassed by a model is discussed in Sections

3.2.5 and 3.4.3.4.) It is perhaps ironic, then, that 20 years of experience in predictive

microbiology has not demonstrated the practical usefulness of mechanistic models

that have been proposed to date (see Section 3.2.4). In general, even with good quality

data the mechanistic models do not provide better fit and are us ually harder to work

with than quasi-mechanistic or empirical models currently used.

Predictive microbiology is a specific application of the field of mathematical

modeling and, as such, the same rules of modeling as are applied in those other

disciplines are relevant to the development of predictive food microbiology models.

These have been discussed by various authors (Draper and Smith, 1981; McMeekin
et al., 1993; Ratkowsky, 1993), and an overview is presented in Table 3.1.

Experimental methods and design considerations relevant to kinetic models were

discussed in detail in McMeekin et al. (1993; Chapter 2), Davies (1993), and Legan

et al. (2002) and are also discussed in Chapter 1 . Two points that we feel are necessary

to reiterate are the limitations of the central composite design in predictive micro-

biology studies, and consideration of spoilage domains when growth of spoilage

microorganisms is studied. Legan et al. (2002) accentuated the importance of exper-

imental design in growth modeling studies stating:

in other disciplines, such as engineering, central composite designs are commonly used

for developing response surface models. For microbiological modeling, however, these

designs have serious limitations and should be avoided. Central composite designs

concentrate treatments in the centre of the design space and have fewer treatments in

the extreme regions where biological systems tend to exhibit much greater variability.

Microbial food spoilage is dynamic and in some cases relatively small changes in

environmental parameters cause a complete shift in the micro or a responsible for

product spoilage. Thus, to avoid modeling growth of spoilage microorganisms under

conditions where they have no in uence on quality , a product-oriented approach that

includes determination of the spoilage domain of specific micoor ganisms is often

required (Dalgaard, 2002).

We will not comment further on methodology appropriate to development ofkinetic

models, other than to say that to develop reliable secondary models an understanding

of microbial physiology and its interaction with food environments and storage and

processing conditions must be borne in mind in the design of experiments including

the preparation of cultures and interpretation of measurements of population changes.

This issue is particularly explored and exempli ed in Section 3 .4.4.4 concerning exper-

imental considerations relevant to the development of growth limits models.

3.2 SECONDARY MODELS FOR GROWTH RATE AND
LAG TIME

Implicit in the appropriate development and use of secondary models in predictive

food microbiology is the ability to characterize foods, and the environment they
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TABLE 3.1

Some Considerations in the Selection of Models

Subject

Parameter estimation

properties

Stochastic assumption

Parameter

interpretability

Parsimony

Interpolation region

Correct qualitative

features

"Extendibility"

(embedding, nesting)

Reasons

Relates to the procedure and reliability of estimating the model parameters.

In general, models should have parameters that are independent, identically

distributed, normal or "iidn" (see, e.g., Ratkowsky, 1993)

The form of the model, and choice of response variables, should be such

that the difference between prediction and observations (or some

mathematical transformation of them) is normally distributed, and that the

magnitude of the error is independent of the magnitude of the response

modeled. If not, the fitting can be dominated by some data, at the expense

of other data

As noted in the text, it is useful if the parameters have biological/

physical/chemical interpretations that can be readily related to the

independent and dependent variables. This can simplify the process of

model creation and also aid in understanding of the model (This may be

less important than the behavior and performance of the model.)

Models should have no more parameters than are required to describe the

underlying behavior studied. Too many parameters can lead to a model that

ts the error in the data, i.e., generates a model that is specific to a particular

set of observations. Nonparsimonious models have poor predictive ability

No models in predictive microbiology can be considered to be mechanistic

and predictions can be made by interpolation only. Thus, the interpolation

region de nes the useful range of applicability of the model. The

interpolation region is affected by not only the range of individual variables,

but also the experimental design (see Section 3.2.5)

In mathematical terms, these are the analytical properties of the model

function. They include convexity, monotonity, locations of extreme, and

zero values. If biological considerations prescribe any of these, the model

should reflect those properties accurately

When a model is developed further (such as to include more or dynamically

changing environmental factors) the new, more complex model should

embody the old, simpler model as a special case

Source: Modi ed from Ross, T, Baranyi, J., and McMeekin, TA. In Encyclopaedia ofFoodMicrobiology,

Robinson, R., Bart, C.A., and Patel, P. (Eds.), Academic Press, London, 2000, pp. 1699-1710.

present to contaminating microorganisms, in terms of those biotic and abiotic ele-

ments that affect the dynamics of the microbial population of interest. Methods to

characterize the physicochemical environment, including temperature, gaseous

atmosphere, salt and/or water activity, pH and organic acids, spices, smoke, and

other components, are discussed in detail in Appendix A3.1. These topics are also

considered in Chapter 5, including discussion of the in uence o f other organisms

and heterogeneity in the environment. Another important element is the ability to

characterize temporal changes in the environment. Techniques for modeling micro-

bial population dynamics under time-varying conditions are considered in Chapter 7.
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Within predictive microbiology the development and application of secondary

models for growth rates and lag times have been extensively reviewed (Buchanan,

1993b; Davey, 1999; Farber, 1986 ; ICMSF, 1996a,b; McDonald and Sun, 1999;

McMeekin et al, 1993; Ross, 1999a,b; Ross and McMeekin, 1994; Skinner et al.,

1994; Whiting, 1995). This section describes types of secondary growth rate and

lag time models that are currently available, but with particular focus on more

recent developments, and also includes a detailed tabulation of models available

for specific microorganisms.

3.2.1 Square-Root-Type Models

3.2.1.1 Temperature

As discussed later (Section 3.2.4), in many cases the classical Arrhenius equation

is inappropriate to describe the effect of suboptimal temperature on growth rates of

microorganisms because the (apparent) activation energy (E
a) itself is temperature

dependent. To overcome this problem Ratkowsky et al. (1982) suggested a simple

empirical model (Equation 3.1). When this model was fitted to experimental growth

rates the data were square-root transformed to stabilize their variance and this simple

model and its numerous expansions are named square-root-type, Ratkowsky -type,

or Beleradek-type models (McMeekin et al., 1993). These models, and the closely

related cardinal parameter models (see Section 3.2.3), are probably the most impor-

tant group of the secondary models within predictive microbiology.

Jii =b-(T-T .

) (3.1)
V " max v mm y v y

where b is a constant and T is the temperature. The parameter Tmin, a theoretical

minimum temperature for growth, is the intercept between the model and the tem-

perature axis (Figure 3.1). Tmin is a model parameter and its value can be 5 to 10°C

lower than the lowest temperature at which growth is actually observed. This inter-

pretation differs from that embodied in the cardinal parameter models, as discussed

in Section 3.2.3 and Chapter 4).

From growth rates measured at several different constant temperatures the

values of b and Tmin in Equation 3.1 can be determined by classical model tting

techniques (see Chapter 4). Recently it was suggested that b and Tmin could be

estimated from a single, optimally designed, experiment where growth resulting

from a temperature profile is recorded (Bernaerts et al., 2000). These authors

concluded that such an optimal, dynamic, one-step experiment would reduce the

experimental work required to develop a model signi cantly and would have sub-

stantial potential within predictive microbiology. So far this technique has not found

wider use within predictive microbiology and its ability to estimate model param-

eters accurately remains to be con rmed for different microorganisms and environ-

mental parameters.

Ratkowsky et al. (1983) expanded Equation 3.1 to include the entire biokinetic

range of growth temperatures (Equation 3.2, Figure 3.1). From this model the optimal
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Temperature (°C)

FIGURE 3.1 Simulation of Equation 3.1 (solid line) and Equation 3.2 (dashed line), b =

0.025 h°-
5/°C, T]nui

= -8°C, c = 0.30°C- 1,and Tmax = 40°C.

growth temperature can be determined by solving the following equation: c x (Topt
- rmin) = exp[c x (ropt - rmin)] - 1 (McMeekin et al., 1993).

Ai M max =b-(T- TV ) • (1 - exp(c(r - T ))) (3.2)

where b and c are constants, T is the temperature, rmin the theoretical minimum
temperature below which no growth is possible, and Tmax is the theoretical maximum
temperature beyond which growth is not possible.

While Ratkowsky et al. (1982, 1983) settled for an exponent of 2, the original

Beleradek models had a variable exponent value. Dantigny (1998) and Dantigny and

Molin (2000) used the concepts of dimensionless growth rate variables (effectively

the same as the gamma factor concept; see Section 3.2.3) to explore the most

appropriate value of the exponent for bacterial growth rate data using Beleradek-

type models. They reported a correlation between the estimate of Tmin and the

exponent value used and found that when Tmin and the exponent were simultaneously

fitted by nonlinear re gression, thermophiles had lower fitted e xponent values than

did mesophiles or psychrotrophic organisms. They reported that the use of the square-

root model leads to an underestimation of the minimum temperature for growth

when the exponent value is significantly less than 2.

3.2.1.2 Water Activity

McMeekin et al. (1987) found that growth responses of Staphylococcus xylosus

followed Equation 3.1 at different values of water activity. Tmin was constant and
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thus independent of water activity and Equation 3.3 was suggested to describe the

combined effect of temperature and water activity (McMeekin et al., 1987).

M =b-(T-T . )-a -a . (3.3)" max v mm ' -\l w w mm v '

where b and Tmm are as previously de ned, aw is the water activity, and aw min is the

theoretical minimum water activity below which growth is not possible.

Later, Miles et al. (1 997) suggested that Equation 3.4 be used to take into account

the effect of the entire biokinetic ranges of both temperature and water activity.

M =b-(T-T . )-Q-exp(c(T-T ))) (a -a . )(1
- exp(d(a -a )))"max v rmn-/ v .rv \ max /7/ \f v w wmin /v -^ v v w wmax 777

(3.4)

where b, c, T, Tmin, Tmax, aw and aw min are as previously defined, d is a fitted constant,

and aw max is a theoretical maximum water activity beyond which growth is not

possible.

Most food-related microorganisms grow at water activities very close to 1.000

and in those cases the expanded water activity term (i.e., containing aw max) in

Equation 3.4 is not needed to predict growth in foods. However, some microorgan-

isms, e.g., several marine bacteria, have a substantial requirement for minerals. To

model growth responses of these microorganisms, the inhibitory effect of high water

activities, i.e., low salt concentrations, must be taken into account. For the human
pathogen Vibrio parahaemolyticus, awmax has been determined to be 0.998. Some
seafood spoilage bacteria are more inhibited by high water activity; e.g., growth of

Halobacterium salinarium was only observed at aw values below 0.9 (Chandler and

McMeekin, 1989; Doe and Heruwati, 1988; Miles et al., 1997).

3.2.1.3 pH

Vox Yersinia enterocolitica, Adams et al. (1991) found that growth responses followed

Equation 3.1 at different values of pH. Again, Tmm was constant and Equation 3.5

was suggested.

m =b-(T-T )JpH-pH . (3.5)
V " max v min y

\j -* * min v y

where pH mm is the theoretical minimum pH below which growth is not possible and

other parameters are as previously defined.

On the basis of the observation of Cole et al. (1990) that growth rate was

proportional to hydrogen ion concentration, Presser et al. (1997) introduced the

following quasi-mechanistic term to describe the effect of pH on bacterial growth:
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P max
= Pop,x(l-10^'""

p//

) (3.6a)

By analogy, another term was introduced for superoptimal (i.e., alkaline) pH con-

ditions, leading to the following model for the entire biokinetic pH range:

M max = IV x (1
"

1
pHmia

~pH
) x (1 " 1

pH~pH™
) (3 .6b)

The validity of that term was evaluated against an extensive data set for Escherichia

coli growth, including variables of temperature, water activity, and lactic acid con-

centration for a range of acid and alkaline environmental pH levels (see Equation 3.10).

Wijtzes et al. (1995, 2001) continued the development of square-root-type mod-

els and suggested Equation 3.7 for growth responses of Lactobacillus curvatus at

different temperatures, aw values, and pH

V=b-(aw -awmJ-(pH-pHimJ-(pH-pHmJ-(T-Tmnf (3.7)

3.2.1.4 Other Factors

Equation 3.8 was suggested to model the effect of carbon dioxide-enriched (%C0
2 )

atmospheres on growth of the specific spoilage organism Photobacterium phospho-

reum on sh (Dalgaard, 1995; Dalgaard et al., 1997). Later, similar but square-root-

transformed terms were used to model the effect of C0
2
and sodium lactate (NaL)

on growth of Lactobacillus sake and Listeria monocytogenes at a constant pH
(Equation 3.9; Devlieghere et al., 1998, 2000a,b, 2001).

(%ca -%ca)
M =b(T-T . ) x -^ — (3.8)"max v min / (\/r^r\ v '

2 max
"V

•"*max V min

>max = b

•(T-T . )V mm 'mm

aw~ aww* (3.9)

• [CO, -CO,
-v 2 max 2

• JNaL -NaL
v max

As noted above, a more comprehensive square-root-type model that includes the

effects of temperature, pH, water activity, and lactic acid has been suggested and

developed in a series of publications (Presser et al., 1997; Ross, 1993a,b; Salter et al.,

1998; Tienungoon, 1988) and has been applied to Listeria monocytogenes and Escher-

ichia coli growth rates. It was presented in its most complete form in Ross et al. (2003):
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U = Cr* max

x(T-Tmm )x(l-exp(dx(T-T)))max

x . fa ^a ~ x (1 - expfe

x

(a -a )))^7 w wmin v r\&\w wmax ///

Xa/i-IO^""^
x
A/i_io

p//"-p//°'« (3.10)

x 1-

x 1-

L4C

1/ x(l + 10
p//"M")

rain v J

LAC

D . x(l + 10mm v

/*fl
-pff

mm )

where c, d, and g are fitted parameters, LAC is the lactic acid concentration (mM),

^min the minimum concentration (iriM) of undissociated lactic acid that prevents

growth when all other factors are optimal, Dinin the minimum concentration (mM) of

dissociated lactic acid that prevents growth when all other factors are optimal, pK
a
is

the pH for which concentrations of undissociated and dissociated lactic acid are equal,

reported to be 3.86 (Budavari, 1989), and all other terms are as previously defined.

One of the advantages of the square-root-type models, and the cardinal param-

eters models, is that their form enables them to be readily simplified into models

for special cases; e.g., in Equation 3.10, if one factor is held constant then the terms

involving that factor simply reduce to constants.

An example is a model developed for Listeria monocytogenes (Ross et al, in

press; WHO/FAO, in press), in which the superoptimal water activity term is not

relevant, and in which a term for the effect of nitrite on L. monocytogenes growth

rate was also included. That novel term was based on analysis of the predictions of

the Pathogen Modeling Program (Buchanan, 1993a; www.arserrc.gov/mfs/patho-

gen.htm). The fitted model is shown in Equation 3.11.

M max
= 0.1626

x(T- 0.60) x (1 - exp(0. 129 x (T - 5 1 .0)))

xJ(a -0.925)
w

xJl-lO^-p*

x 1-
LAC

4.55x(l + 10
pH"386

)

(

493 - NIT x 1 +
v

(6.5 -pH)

2

\

/

\

/

(3.11)

\

'493

/

where NIT is the concentration of nitrite and all other terms are as previously defined.

As shown in Figure 3.2, Equation 3.10 and Equation 3.11 represent a new

generation of square-root-type models where the level of lactic acid in uences the
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range of pH values for which growth is theoretically observed, reflecting the known

interaction between pH and undissociated lactic acid, and also the individual growth

rate suppressing effects of hydrogen ion concentration and undissociated lactic acid

concentration. This was not the case for the environmental parameters included in

Equation 3.1 to Equation 3.9. In those models, each term expressed how an envi-

ronmental factor reduced the growth rate of a microorganism. However, for those

models the expected multidimensional growth space was not influenced by levels

of the different environmental parameters. This limitation of predictive models for

growth rate has been recognized and has led, in part, to the development of growth/no

growth models (discussed in Section 3.2.3 and Section 3.4). To make accurate

predictions, a model can include terms to force the predicted growth rate to zero

(Augustin and Carlier, 2000b; Le Marc et al., 2002). Alternatively, the probability

of growth under the test conditions can first be assessed using a growth boundary

model. If growth is possible, a growth rate model in combination with a lag time

model can be used to estimate the extent of growth (Ross et al., in press; WHO/FAO,
in press).

It is also notable that the pH and lactic acid terms in Equation 3. 10 are effectively

gamma-model type terms (see Section 3.2.2), in which the effect of the level of

growth rate inhibitor is scaled between and 1, where 1 represents no inhibition,

i.e., the optimal level of that environmental factor. In the case of lactic acid, the

optimal level would be 0, while for pH the optimum is ~7. This illustrates the close

relationship between square-root-type models, and those that embody the gamma
concept, such as the cardinal parameter models.

3.2.2 The Gamma Concept

The concept of dimensionless growth factors, now known as the gamma (y) concept,

was introduced in predictive microbiology by Zwietering et al. (1992). Later, minor

changes and new developments were added (Wijtzes et al., 1998, 2001; Zwietering,

1999; Zwietering et al., 1996).

The gamma (y) concept relies on:

1. The observation (e.g., Adams et al., 1991; McMeekin et al., 1987) that

many factors that affect microbial growth rate act independently, and that

the effect of each measurable factor on growth rate can be represented by

a discrete term that is multiplied by terms for the effect of all other growth

rate affecting factors, i.e.:

(i, = /temperature) x/aw) x/(pH) x /(organic acid)

xXother^ x/(other
2)

x ... ../(otherj

2. That the effect on growth rate of any factor can be expressed as a fraction

of the maximum growth rate (i.e., the rate when that environmental factor

is at the optimum level)
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FIGURE 3.2 Simulation of Equation 3.7 (a) and Equation 3.10 (b) at a fixed temperature

and water activity. pH
inin

is 4.0 and pH^^ is 9.0. For Equation 3.10, U
ir]hl

= 10 mM and Dmax

= 1000 mM The concentrations of lactic acid (LAC) depicted are mM (dashed line), 50

mM (dotted line), and 100 mM (dash-dotted line).

Under completely optimal conditions each microorganism has a reproducible

maximum growth rate, notwithstanding the potential effect of strain variability. As
any environmental factor becomes suboptimal the growth rate declines in a predict-

able manner, and the extent of that inhibition can be related to the optimum growth

rate by calculating the relative rate at the test condition compared to that at the

optimum. Thus, under the gamma concept approach, the cumulative effect of many

factors poised at suboptimal levels can be estimated from the product of the relative

inhibition of growth rate due to each factor, as indicated by Equation 3.12. The

relative inhibitory effect of a specific environmental variable is described by a growth

factor "gamma" (y), a dimensionless measure that has a value between and 1 (e.g.,

Equation 3.13 to Equation 3.15).
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The relative inhibitory effect can be determined from the "distance" between

the optimal level of the factor and the minimum (or maximum) level that completely

inhibits growth by recourse to a predictive model. In the gamma model approach,

the reference growth rate is |imax, so that reference levels of temperature, water

activity, etc. are those that are the optimum for growth rate, usually represented as

Topt, #w opt, pHopt, etc. The combined effect of several environmental factors is then

determined by multiplication of their respective y factors (Equation 3.16).

Y =
Growth rate at actual environmental conditions

Growth rate at optimal environmental conditions

P max(7>„pH,etc.)

M max opt

(3.12)

y(T) =
T-Tmm

\ 2

T -T -

y opt mm j

(3.13)

YK) =
a — aw w mm

1 — aw mm

y(pH) =
{pH-pH^ydpH-pH)

(PHn„,
~ PHmm ) • (PHn™ - PHo,Jopt opt

(3.14)

(3.15)

P,»x = P max opt V(T)-y(aJ-y(pH) (3.16)

The effect of environmental parameters like carbon dioxide, sodium lactate, and

nitrite has also been included in square-root-type models (see, e.g., Equation 3.8 to

Equation 3.11). The absence of these inhibitory substances is optimal for growth

and therefore the calculation of y factors requires information only about the lowest

concentration of each substance that prevents growth (or, similarly, the maximum
level that can be tolerated before growth ceases) analogous to minimum inhibitory

concentrations (MICs).

y(co
2 )
=

' /<>co2max -%co2

v-

V
%co, _ - %co,

t2 max 2 opt

r%co2wK -%co2

v

/ V
%co

2 max J

(3.17)

3.2.2.1 Expanding Existing Models

Given that there is a finite number of models (see Table 3.5 and Table 3.6), and that

few models include factors of relevance to all foods, some workers have attempted

to integrate terms for specific variables from one model into another to suit a specific
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food and the conditions of interest. Because of the assumption of independent action

of growth rate inhibitors, the dimensionless y factors can, in principle, be readily

exchanged between existing models and, at the time of writing, this is increasingly

being done. Values of parameters like \imax, [\ ovP Tnmv Topt , awmm, pHmm, pHopt, pHmax,

and %C02max from which gamma factors can be derived are known for a considerable

number of food-related pathogenic microorganisms. The approach was possibly

taken to its logical conclusion by Augustin and Carlier (2000a,b) who collated, and

integrated into a single model, literature data and observations for more than 15

factors in foods that affect the growth rate of L. monocytogenes.

For spoilage bacteria from chilled foods, growth kinetics at low temperatures

are often well characterized but values of (Jmax, |i
opt, ropt, pHopt , and pHmax are fre-

quently unknown or have not been determined accurately. This is the case, for

example, for the specific spoilage organisms Photobacterium phosphoreum,

Shewanella piitrefaciens, and Brochothrix thermosphacta. In this situation the clas-

sical gamma concept cannot be used to develop a secondary model. However, when
a simple square-root-type model including the effect of temperature and, e.g., C0

2 ,

has been developed for chilled product stored at a known pH (pH
ref)

and water

activity (aw ref)
then these models can be expanded at suboptimal growth conditions

by addition of y-like factors, as shown in Equation 3.18 (Dalgaard et al., 2003).

Umax
= b

• (T-T . )v mm /nun

^C0lmax -%C02
)l%CQlmm (3.18)

Ma - a . ) I (a , — a . )A/ v w w mm / v w ref w mm y

(pH-pHmJ/(pHref
- PHmJ

Clearly, this approach should be used with some caution because the assumption

of independent action has not been tested for all environmental factor combinations.

Thus, the range of applicability of the expanded model should be evaluated, e.g.,

by comparison with data from challenge tests or naturally contaminated products

(Gimenez and Dalgaard, in press). (Section 3.2.5 discusses the expansion of existing

polynomial models.)

3.2.3 Cardinal Parameter Models

Cardinal parameter models (CPMs) were introduced to predictive microbiology in

1993 and have become an important group of empirical secondary models (Augustin

and Carlier, 2000a,b; Le Marc et al., 2002; Messens et al., 2002; Pouillot et al.,

2003; Rosso, 1995, 1999; Rosso et al., 1993, 1995; Rosso and Robinson, 2001).

The basic idea behind CPMs is to use model parameters that have a biological or

graphical interpretation. When models are fitted to experimental data by nonlinear

regression (see Chapter 4), this has the obvious advantage that appropriate starting

values are easy to determine. General CPMs rely on the assumption that the inhib-

itory effect of environmental factors is multiplicative, an assumption that was
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formalized in the gamma (y) concept discussed above (Section 3.2.2). Thus, general

CPMs consist of a discrete term for each environmental factor, with each term

expressed as the growth rate relative to that when thatfactor is optimal; i.e., each

term has a numerical value between and 1 . At optimal growth conditions all terms

have a value of 1 and thus (imax is equal to |i.
t
(Equation 3.19).

Equation 3. 19 to Equation 3.21 show a CPM that includes the effect of temper-

ature (T), water activity (aw), pH, inhibitory substances (c
z) and qualitative factors

(k) on (imax (Augustin and Carlier, 2000a). This extensive CPM was developed from

available literature data from many studies for growth of Listeria monocytogenes.

The inhibitory substances included (1) undissociated acetic acid, lactic acid, and

citric acid, (2) Na-benzoate, K-sorbate, and the undissociated form of sodium nitrite,

and (3) glycerol monolaurin, butylated hydroxy anisole, butylated hydroxytoluene,

fer^-butylhydroquinone, C0
2 , caffeine, and phenol. In addition, the effect of com-

petitive growth of microorganisms and the inhibitory effect due to specific types of

foods were included in the model as qualitative factors.

n p

M IMx = KP,
CM

1
{T)-CM

i{aJ-CMl(pH)-Y[y(c l)-\\ k
j (319)

i=\ 7=1

CM,a

0.

(X-X )-(X-X . )v may / V mm J

n

max mm
.71-1(x -x

. ) -[(X
t
-x . yoc-x

t
)-(x

t
-x)V nnt mm-' L\ nnt mm-' \ nnt / V nnt max-'opt mm opt mm opt opt

«n-\)-X
t
+X -«!)]vv y opt mm /J

0.

X < x„.mm

(3.20)

X . <x<xmm max

x>xmax

Yfe) =
(i-c./Mic.y

o.

c <MIC.
i i

c >MIC.
(3.21)

where X is temperature, water activity, or pH. Xmin and Xmax are, respectively, the

values ofX
t
below and above which no growth occurs, Xopt is the value at which

Umax is equal to its optimal value (iopt . MIC
t
is the minimal inhibitory concentration

of specific compounds above which no growth occurs.

Within predictive microbiology various CPMs were developed during the 1 990s

and in the same period different cardinal parameter temperature models were inde-

pendently developed in other fields, e.g., to predict the effect of temperature on

growth rates (r) of crops (Equation 3 .22; Yan and Hunt, 1 999; Yin and Wallace, 1 995).

(

r = 7imax

T-Tmm
\

T -T
V opt mm i

(
T -T
max

\

T -T
v max opt J

T —Tmax opt

T -T
opt mm

(3.22)

2004 by Robin C. McKellar and Xuewen Lu



1237_C03.fm Page 78 Wednesday, November 12, 2003 12:40 PM

~V

TABLE 3.2

Parameter Values in Square-Root Type (Sqrt) and Cardinal Parameter

Models (CPM)

min opt ^o Pt

Organism Sqrt CPM Sqrt CPM Sqrt CPM Sqrt CPM Reference

Escherichia coli 2.9 4.9 41.0 41.3 49.2 47.5 2.3 2.3 Rosso et al. (1993)

Salmonella Typhimurium 3.8 5.7 39.8 40.0 51.1 49.3 1.7 1.7 Oscar (2002)

pH min PH c i
pH ma Ropt

Sqrt CPM Sqrt CPM Sqrt CPM Sqrt CPM

Listeria monocytogenes 4.2 4.6 7.0 7.1 9.8 9.4 1.0 0.95 Rosso et al. (1995)

In several ways CPMs resemble square-root models and responses of the two

types of models can be practically identical, e.g., for the effect of temperature, water

activity, and pH (Oscar, 2002, Rosso et al., 1993, 1995). Parameters in the two types

of models are typically named Timn, Tmax, aw min , aw max, pHmm, and pHmax . However,

these model parameters are not de ned in entirely the same way for CPMs and

square-root-type models. In fact, when identical data are fitted to the two types of

models square-root-type models estimate lower Tirdn, #w Illin,
and pHmin values and

higher rmax, #wmax, and pHmax values (Table 3.2; see also Chapter 4).

rmm values estimated by CPMs and square-root-type models often differ by

~2°C as shown in Table 3.2. Table 3.3 shows that a 2°C difference of a rmin value
has a pronounced effect on (Jmax values predicted by both a square-root-type model

and a CPM. Thus, parameter values estimated by using one of these types of models

TABLE 3.3

Effect of 7"

min Values (-1°C and +1°C) on \imax Values Predicted by a

Square-Root and a Cardinal Parameter Model at 4, 8, and 12°C

Square-Root Model 3 Cardinal Parameter Model'

Temperature

(°C)
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FIGURE 3.3 Simulation of the model \imax
= u opt

x CM2(7), with CM
2
(T) given by Equation

3.23 and with7^ of-6°C, T
x
of 1 °C, T

c
of 12°C, 7

0Pt
of37°C, and Tmax of45°C. u opt was 1 .0 lr 1

.

cannot be used with the other type of model. This situation is similar to the

estimation of |imax values by some primary growth models. Modi ed Gompertz

models (Gibson et al., 1987; Zwietering et al., 1990), e.g., overestimate |i.max by

-15% (Dalgaard et al., 1994; Membre et al., 1999; Whiting and Cygnarowicz-

Provost, 1992) and their growth rate values should not be used together with the

exponential, the logistic, or other Richards family of growth models that rely on

accurate |imax values.

Classical CPMs (Equation 3.19 and Equation 3.20) as well as square-root-type

models describe a straight line relation between suboptimal temperatures and

|imax (Figure 3.1 and Figure 4.4 [Chapter 4]). It has been reported by Bajard et al.

(1996) that a different, biphasic, relationship can be observed for some strains of

Listeria monocytogenes. More recently, Le Marc et al. (2002) observed a biphasic

relationship for a strain of Listeria innocua. Le Marc et al. (2002) suggested an

expanded CPM (Equation 3.23) to simulate this type of growth response (Figure

3.3). In Equation 3.23, r
c
is the change temperature and T

x
corresponds to the T

1Xihl

value in a classical cardinal temperature model (Rosso et al., 1993). McMeekin et

al. (1993), however, cautioned against the interpretation of apparently continuously

curved relationships as the combination of two linear responses, and provided a

simple illustration of the effect. It should also be noted that other workers (e.g.,

Nichols et al., 2002a,b; see also Chapter 4) have not observed the "curvature" in

the low temperature region of L. monocytogenes growth.
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CM (T) =

(T-T.)
2 (T-T )v

l
7 v max 7

(T -T)-[(T -T)-(T-T
f
)-(T -T )(T . + T -2T)]v opt l

7 LV opt l
7 v opt-' v opt max 7 v opt 1 7J

(T -T) 2 (T-T )v c l
7 v max 7

,T<T<T
in ax

- /
J* _J- \ 2

min

<r„ - r,) [(rw - r,) -(Te
- r ,)

-

(r ,
- r„) • (r , + r, - 2 r

c )]opt opt opt opt
T-T

\ c min J

mm,
T . <T<T

(3.23)

As stated above, general CPMs rely on the assumption that different environ-

mental parameters have independent and thereby multiplicative effects on (imax

(Equation 3.19). The successful use of many general CPMs and square-root-type

models has shown this assumption to be reasonable for wide ranges of environmental

conditions. However, numerous studies have shown that the growth range of a

microorganism to one environmental condition is affected by other environmental

factors (see Section 3.4). This suggests that the predictive accuracy of general CPMs
can be improved by taking into account interactions between environmental param-

eters, particularly where one factor is sufficiently stringent that it reduces the growth

range of the organism in other environmental "dimensions."

Various approaches have been suggested to describe growth limits under the

influence of multiple variables (see Section 3.4.4). Two such approaches have been

suggested for direct incorporation in CPMs and are discussed briefly here. Augustin

and Carlier (2000b) developed a global secondary model for L. monocytogenes,

including terms for interactions that prevented growth. Absolute minimal cardinal

values X^
[n

were estimated by assuming that all inhibitory substances were absent.

Similarly, absolute minimal inhibitory concentrations MIC® were estimated for

optimal concentrations of other environmental parameters (X =Xopt). Then, interac-

tion between environmental parameters was taken into account by modifying each

of the X°
in

values (Equation 3.24) and the MIC® values, depending on levels of

other environmental parameters. After calculation of appropriate rmin , aw min , pHmin ,

and MIC
f
values, growth rates were then predicted by using Equation 3.19 to

Equation 3.21.

r
a

n

X =X -(X -X°. )mm opt x opt min 7

1-
C.

\
(

V
?=1

MIC.
' /

Y -Y
opt

-0

\

y - ru

. opt min j

r v^ 1/3

Z -Z
opt

z -z°.
V opt mill j

(3.24)

with X, 7, and Z being temperature, pH, or water activity.

A different approach was used by Le Marc et al. (2002) to model the interactive

effects of temperature, pH, and concentration of undissociated organic acids (HA)

on growth of Listeria innocua. Cardinal parameter values were kept constant and

the space of environmental factors was divided into (1) the independent effect space

(^ = 1), (2) the interaction space (0 < ^ < 1), and (3) the no growth space (^ = 0)

(Equation 3.25 to Equation 3.27).
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M max
= KB,

CM
i CO CM, {pH) x{\HA\) %(T, PH, [HA]) (3.25)

Z,(<tfT,pH,ULA)) =

1 y<0
2(1 - v) 9 < y < 1

V|/>1

(3.26)

¥ =I
<P,

2n (i-v
(3.27)

with (pr =(WCM2CO)-> <?pH = {\-CM
l
(pH))\im& ^ UndissocjatedLacticAcid(JJLA)

= 1 - (ULA/MICULA)) and where e
i
are the environmental factors. For calculation of

CM
2
(T) and CM^pH), see Equation 3.20. Le Marc et al. (2002) selected a value of

0.5, which was used for 9.

The performance of the two approaches to model interaction between environ-

mental parameters is considered in greater detail in Section 3.4.4. As shown above,

CPMs that take into account the effect of interaction between environmental param-

eters are relatively complicated models. Thus, these models are not fully in agree-

ment with the originally cardinal parameter modeling approach, i.e., that CPM uses

only simple biological meaningful parameters that microbiologists are familiar with

and that are easy to use by biologists (Rosso et al., 1993), and raises questions about

whether those models are the most parsimonious forms available.

The model suggested by Augustin and Carlier (2000b) predicts the effect of

interaction between temperature, pH, and lactic acid concentration on growth of

Listeria monocytogenes to be more pronounced than the effect predicted for Listeria

innocua by the model of Le Marc et al. (2002). For example, the Augustin and

Carlier (2000b) model predicts no growth of Listeria monocytogenes at 8°C, pH
6.0, and with 200 mM of lactic acid, whereas at this condition the model of Le Marc

et al. (2002) predicts growth and also that there is no interactive effect of the

environmental factors (t
>
= 1). Recently, Gimenez and Dalgaard (in press) found the

model of Augustin and Carlier (2000b) to substantially underestimate growth of

Listeria monocytogenes in cold-smoked salmon. This could indicate that the model

is in fact overestimating the importance of the interaction between at least some sets

of environmental factors.

In a similar vein Ratkowsky and Ross (1995), recognizing the relationship

between absolute limits for each environmental factor and their relationship to the

parameters of square-root-type models and CPMs, experimented with the use of a

kinetic model as the basis of a growth boundary model using linear logistic regres-

sion. This approach is discussed later (see Section 3.4.3.2).

The classical CPMs, in particular those including the effect of temperature, water

activity, or pH, are now popular and used for many purposes within predictive

microbiology (see Table 3.5 and Table 3.6). As one example a cardinal temperature

and pH model has been combined with classical models of microbial kinetics, i.e.,
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models that rely on yield factors and maintenance constants. In this way, production

of curvacin A by Lactobacillus curvatus LTH 1174 growing in MRS broth was

successfully modeled between 20 and 38°C and at pH values from 4.8 to 7.0

(Messens et al., 2002). Other examples include the use for CPMs to predict the

radial growth rate of molds on solidi ed laboratory media (Panagou et al., 2003;

Rosso and Robinson, 2001; Sautour et al., 2001). The ability of these models to

predict growth in foods deserves further study.

For practical use of secondary predictive models it is important to know the

precision of the predicted responses. With CPMs it has been suggested to determine

cardinal parameters values for a number of different strains within each of the

microbial species of interest (Membre et al., 2002). In this way a measure of intra-

species variability can be obtained. As an example, variability in the pHmin value for

10 strains of E. coli was ±0.20 corresponding to approximately four times the

experimental error (Membre et al., 2002). More recently Pouillot et al. (2003)

suggested the use of a CPM together with a Bayesian procedure for parameter

estimation. This approach includes the use of hyperparameters and allows uncer-

tainty (due to imperfect knowledge or data) and true variability (e.g., due to differ-

ence between strains) to be determined separately (see also Chapter 4). The approach

seems most interesting and de nitely deserves to be studied further for different

secondary predictive models.

3.2.3.1 Secondary Lag Time Models and the Concept

of Relative Lag Time

When exponentially growing microorganisms are transferred from one environment

into another, similar environment, growth usually continues without delay, i.e., a lag

time is rarely observed. However, when the two environments differ, a lag time is

often observed. Similarly, when microorganisms in the lag or stationary phases are

transferred into identical or new environmental conditions a lag time may continue

or result, respectively. Depending on the physiological state of the microorganisms,

the magnitude of the shift in the environmental conditions, and the new environmental

conditions themselves, the duration of the lag time may range from to in nity.

Development of secondary lag time models is complicated by the fact that lag

time is in uenced not only by the actual environmental conditions but also by

previous environmental conditions and the physiological status of the cell, i.e., the

growth phase of microorganisms at the time of transfer between environments and

their "enzymatic readiness" to exploit the specific carbon and energy resources

within the new environment. Within predictive microbiology, two main approaches

have been used for development of secondary lag time models: (1) models where

lag time and growth rate are modeled independently and (2) models where lag time

is assumed proportional to the generation time. The latter group of models typically

rely on the assumption that microorganisms need to perform a given amount of work

to adapt to a new environment and that the rate at which this work can be done

depends on the growth rate potential of the organism in the new environment

(Robinson et al., 1998).
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In the former approach, lag times or lag rates (i.e., reciprocal of lag time) are

typically log-transformed to stabilize the variance of these data. Frequently, poly-

nomial models (see Section 3.2.5) or artificial neural networks (see Section 3.2.6)

have been used to develop independent secondary lag time models (Table 3.5). To

model the effect of temperature downshifts, temperature upshifts, and physiological

status of cells (e.g., exponential phase, stationary phase, starved, frozen, dried),

separate polynomial models have been used for the different physiological conditions

(Whiting and Bagi, 2002). When square-root-type and Arrhenius-type models are

used for lag time modeling, lag rates are modeled or reciprocal forms of the growth

rate models are used (see Section 3.2.1 and Section 3.2.4; Table 3.5 and Table 3.6).

Zwietering et al. (1994), e.g., used a square-root model (Equation 3.2) with

identical values of the parameters Tmin , c, and Tmsx to model lag time and growth

rate— only the value of b differed between the two models. Specific secondary lag

time models for particular environmental parameters have also been suggested, e.g.,

a hyperbola model for the effect of temperature (Equation 3.28; Oscar, 2002; Zwi-

etering et al., 1994):

X = P
T-q

(3.28)

where X is the lag time, T the temperature, p the rate of change of lag time as a

function of temperature, q the temperature at which lag time is in nite, and m is an

exponent to be estimated.

Baranyi and Roberts (1994), Smith (1985), and McMeekin et al. (1993) have

observed that lag times for identical inocula introduced to (at least some) envi-

ronmental conditions are inversely proportional to growth rates and thus propor-

tional to generation times (Tgen). This generalization has limits, however, as dis-

cussed further below and probably is most relevant to changes in environmental

temperature . For example, Zwietering et al. (1994) showed that for the effect of

temperature on Lactobacillus plantarum the product of |imax and lag time (k) was

constant and had an average value close to 2. In these situations secondary lag

time models can be derived directly from a growth rate model by using the simple

concept of relative lag time (RLT; Equation 3.29) in common use but first defined

by Mellefont and Ross (2003). Clearly, RLT reflects the physiological status of

microorganisms introduced into a new environment as well as the difference

between their actual and their previous environments, and can be interpreted as

the amount of work the cell has to do to change its physiology (e.g., enzymes,

membrane composition, number of ribosomes) to be able to grow at |imax in that

new environment.

Baranyi and Roberts (1994) suggested a primary model to estimate lag times

from microbial growth curves and this model allowed determination of the para-

meters h , q , and a all of which reflect the physiological state of microorganisms

and, thereby, their readiness to grow in a given environment (Equation 3.29; Chapter

2). It can be seen that the parameter RLT is directly proportional to h .
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^ = rlt x = **>t.W2)

gen r
1-max

(3.29)

( 1
"\

X-ii =RLT-\n(2) = h = In 1 +— =-ln(oc )"max v y o v o J

where all parameters have meanings as indicated earlier.

Experimental methods to determine the physiological status of low levels of

microorganisms in foods remain to be developed. Thus, for the time being these

parameters have mainly theoretical importance.

The RLT concept is practically very useful for development of secondary lag

time models, but it should be used with caution. Delignette-Muller (1998) eval-

uated data from nine studies where the effect of temperature, pH, NaCl, and

NaN0
2
on lag time and generation time on different food-borne microorganisms

had been modeled independently. In four of the nine studies, RLT was constant

and an independent lag time model was not needed. However, primarily pH and

NaCl in uenced RLT in the remaining studies. On the basis of large amounts of

experimental data, Ross (1999a) showed the distribution of RLT of B. stearother-

mophilus, Clostridium perfringens, E. coli, L. monocytogenes, Salmonella, and

S. aureus included peaks in the range 3 to 6 under a very wide range of experi-

mental conditions. These distributions were similar to those presented by Augus-

tin and Carlier (2000a), who observed a median RLT of 3.09 for L. monocytogenes

(n = 1176). Using extreme environmental shifts, and severely growth-limiting

outgrowth conditions, the hypothesis that RLT values have an upper limit was

tested (Mellefont et al., 2003, in press). It was found that most RLTs were in the

range 4 to 6, and that RLTs greater than 8 could not be induced within the

experimental system employed. These observations suggest that while lag time

is apparently highly variable, RLT is more uniform and reproducible. Distribu-

tions of RLT can be used in stochastic modeling studies, for example, microbial

food safety risk assessments, where they could be used as plausible default

assumptions if specific lag time information was not available. This approach can

also simplify the growth modeling process because use of the RLT as a variable

enables the effects of growth rate and lag to be predicted by a single growth rate

model, as explained above.

The RLT concept implies that X is at a minimum value (A,min) when the growth

rate is optimal (|iopt). This relation has been used together with CPMs to obtain

simple secondary lag time models (Equation 3.30 and Equation 3.31; Augustin

and Carlier, 2000a; Le Marc et al., 2002; Pouillot et al., 2003; Rosso, 1995,

1999a,b).

X . -LI ,

X= — opt
(3.30)

" max

2004 by Robin C. McKellar and Xuewen Lu



1237_C03.fm Page 85 Wednesday, November 12, 2003 12:40 PM

X = ™ (3.31)
CM

2
(J) CM

2(0"CM (pH)

For RLT models to be used in practice it must be known if, and to what extent,

abrupt or smooth shifts in environmental parameters like temperature, pH, and water

activity in uence RLT.

Data presented by Rosso (1999a,b) suggested that the effect of shifts in temper-

ature and pH on growth of E. coli during fermentation of yoghurt was appropriately

predicted by a CPM that relied on assumption of a constant RLT. Augustin et al.

(2000) suggested a model to take into account the effect of growth phase and

temperature history of L. monocytogenes on its RLT. For temperature downshifts

the RLT increased from ~0 for a temperature shift of 0-5°C to ~2 for a downshift

of 30-35°C. To model the effect of temperature downshifts and upshifts on RLT of

L. monocytogenes, Delignette-Muller et al. (2003) recently used the data of Whiting

and Bagi (2002) and suggested simple biphasic linear models. Separate models were

used for inoculum with different physiological states. For E. coli, Mellefont and

Ross (2003) found a similar effect of temperature downshifts whereas temperature

upshifts had no systematic effect on RLT. For abrupt downshifts and upshifts in

water activity the data of Mellefont et al. (2003) suggest that simple biphasic linear

models, with different slopes for down- and upshifts, may be appropriate to predict

RLT of both Gram-negative and Gram-positive food-borne bacteria. The universality

of these responses remains unclear. For example, RLTs of S. aureus and L. mono-

cytogenes were largely unaffected by abrupt osmotic shifts over a wide range of salt

concentrations, whereas RLT of Gram-negative cells was strongly affected. More

research is required before models that are as reliable as existing growth rate models

can be developed for lag time, or RLT.

3.2.4 Secondary Models Based on the Arrhenius Equation

3.2.4.1 The Arrhenius Equation

The empirical Arrhenius-van't Hoff relationship:

rate = A exp(AE
a

I RT) (3.32)

or its mechanistic interpretation and modi cation due to Eyring (1935) based in

absolute reaction-rate theory:

rate = KTexpiAH* I RT) (3.33)

where the parameters may be interpreted as follows: A is a constant related to the

number of collisions between reactants per unit time, E
a
the activation energy, R the

gas constant (8.314 J/K/mol), T the temperature in Kelvin, K is similar to A but

includes steric and entropic effects, and A//J is the enthalpy difference between the
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transition state complex and the reactants, are well established in chemistry to

describe the effects of temperature on the rate of chemical reactions. Taking the

logarithm of both sides of Equation 3.32:

In (rate) = ln(A) x AE/RT

and reparameterizing the equation becomes:

In (rate) = A' +
(

V

AE

R

\

J

x
r i a

\Tj

Thus, if ln(rate) is plotted against the resulting plot is a straight line over

temperature ranges relevant to microbial growth and allows estimation of the "acti-

vation energy" of the reaction, as shown in Figure 3.4. The activation energy can

be used to characterize the reaction.

Temperature (°C)

76.84 66.84 56.84 46.84 36.84 26.84 16.84 6.84 -3.16 -13.16 -23.16

6 A 1 1 1 1
!

1 1 ; 1 1
1-

0.00286 0.00306 0.00326 0.00346 0.00366

1/(Temperature [K])

0.00386

FIGURE 3.4 Diagram showing the effect of temperature on reaction rate predicted using the

Arrhenius model (Equation 3.33; solid line) and the effect of temperature on microbial growth

rate (dashed line) for a representative mesophilic organism. The "activation energy" is esti-

mated from the slope of the solid line, multiplied by the universal gas constant. Over a narrow

range of temperatures, the microbial growth rate follows the Arrhenius model prediction

(Equation 3.29). This range has been termed the "normal physiological range" (NPR). At

temperatures above or below the NPR, microbial growth rate deviates markedly from that

predicted by the Arrhenius model.
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It has been argued that because all life processes are the result of chemical

reactions, the growth rate of organisms that cannot achieve thermal homeostasis

should also be described by Arrhenius kinetics. Within a narrow range of temperature

this is true. In practice, however, when microbial growth rate data for the full

biokinetic temperature range are presented as an Arrhenius plot, the data are far

from linear as shown in Figure 3.4, and con rmed by numerous studies (Heitzer et

al., 1991; McMeekin et al., 1993; Schoolfield et al., 1981).

A range of secondary models, based on adherence to the reaction kinetics

described by the Arrhenius model, but including terms to account for the observed

deviations, have been proposed. These models fall into two groups:

1. Those based on putative mechanistic modifications of the Arrhenius

models

2. Those based on empirical modifications

3.2.4.2 Mechanistic Modifications of the Arrhenius Model

Models in this category include those of Johnson and Lewin (1946) to describe the

high-temperature growth of bacteria, Hultin (1955) to describe rates of enzymatic

catalysis in the low temperature region, Sharpe and DeMichele (1977) who syn-

thesized these two equations to produce a model for the temperature dependence

of bacterial growth rate in the entire biokinetic region, the model of Schoolfield et

al. (1981), which is a reparameterization of the Sharpe and DeMichele model to

overcome difficulties in tting by nonlinear regression, and the models of

McMeekin et al. (1993) and Ross (1993a, 1999b). The latter models incorporate

contemporary knowledge of the thermodynamics of protein folding to overcome

failures in the Schoolfield et al. model related to unrealistic parameter estimate

(Ratkowsky et al, 1991).

The above models were originally developed to provide an interpretation of

microbial growth rates or enzyme-catalyzed reaction rates, in response to tempera-

ture but their mechanistic basis makes them attractive for use as secondary models.

This class of secondary models have previously been reviewed (McMeekin et

al., 1993; Ratkowsky et al., 1991; Ross, 1999b; Ross and McMeekin, 1994). In

summary, all of the models are based on the assumption that there is a single,

enzyme-catalyzed, rate-limiting reaction in any microorganism. This reaction is

characterized by an activation energy, which governs the rate of reaction in response

to temperature, according to Arrhenius kinetics. Enzymes are proteins, however, and

are themselves subject to the effects of temperature. The functional activity of

enzymes is dependent upon their shape, or conformation, but they are flexible —
the flexibility being required to achieve their catalytic function. Because temperature

affects the bonds in the molecule, if the temperature changes too much, the confor-

mation becomes so disrupted that denaturation takes place, both at high and low

temperatures. These denaturation events are reversible, but at high temperatures if

the temperature increases suf ciently, irreversible denaturation takes place (Ross,

1999b). Thus, these models include terms to model the probability, as a function of

temperature, that the enzyme is in its metabolically active conformation and use this
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estimate to modify the predictions of the Arrhenius model. Equation 3.34 to Equation

3.36 are examples of this form of model.

Model of Hmshelwood (1946):

rate = A, cxV(-EJRT)-A2
cxV(-Eahigh

/RT (3.34)

where R,T,A, and E
Q
have the same meaning as above. EaUgh is the activation energy

of the high-temperature denaturation of the rate-limiting enzyme.

Model of Schoolfield et al. (1981):

T
(25) 298

exp-
HJ I

R
1

\

,298 T

j

K
1 + exp

T

\

J

+ exp
T

\

J

(3.35)

where T is the absolute temperature, R is the universal gas constant, and, for modeling

bacterial growth, the other parameters have been interpreted as follows: K is the

response (e.g., generation) time, p a scaling factor equal to the response rate (l/K)

at 25°C, HA the activation energy of the rate-controlling reaction, HL the activation

energy of denaturation of the growth-rate-controlling enzyme at low temperatures,

HH the activation energy of denaturation of the growth-rate-controlling enzyme at

high temperatures, TV2 the lower temperature at which half of the growth-rate-
Li

controlling enzyme is denatured, and T
l/2

is the higher temperature at which half

of the growth-rate-controlling enzyme is denatured.

Model of Ross (1999b):

rate =

CT exp(A/f !
/ RT)

1 + exp(-n(AH * -TAS* +AC [(T -T+H)- T\n(T I

T

*
g )])

/

RT)

(3.36)

where C is a parameter whose value must be estimated, AHJ the activation enthalpy

of the reaction catalyzed by the enzyme controlling the overall reaction rate, AC
p

the difference in heat capacity (per mole amino acid residue) between the native

(catalytically active) and denatured state of the enzyme, TH* the temperature (K) at

which the ACp contribution to enthalpy is 0, T5 * the temperature (K) at which the

AC
p
contribution to entropy is 0, AH* the value of enthalpy at TH* per mole amino

acid residue, AS* the value of entropy at Ts * per mole amino acid residue, T the

temperature (K), R the gas constant (8.314 J/K/mol), and n is the number of amino

acid residues in the enzyme.

Equation 3.34 to Equation 3.36 include the simple Arrhenius model in the

numerator of the equation. The denominators in Equation 3.35 and Equation 3.36,

however, model the probability that the enzyme is in its active conformation. When
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essentially another form of the Johnson and Lewin (1946) model. Recent studies

(Ratkowsky et al., unpublished) have con rmed that Equation 3.36 does describe

bacterial temperature-growth rate curves well for a wide range of species, and, in

contrast with earlier models, that the estimated parameter values are realistic and

consistent with the theoretical bases of the model.

3.2.4.3 Empirical Modifications of the Arrhenius Model

A second class ofArrhenius-based models for growth rate and reciprocal of lag time

have been presented by Davey and coworkers. Davey (1989) introduced an Arrhe-

nius-type model for the effects of temperature and water activity, which is linear

and thus allows for explicit solution of the optimum parameter values. This model

has the form:

c a
In (rate) = C + -J- + -f + Cm + C

A
a* (3.37a)

T T

where T is temperature (K), aw has its usual meaning, and C , C 1? C2 , C3 , C4
are

coef cients to be determined.

Davey (1989) reported that the model described well seven data sets from the

literature and subsequently demonstrated the ability of the model to also describe the

reciprocal of lag phase duration (Davey, 1991). Davey (1994) fitted a variation of the

model to the data ofAdams et al. (1991) for Yersinia enterocolitica growth. The model

included terms for temperature and pH, and is analogous to Equation 3.37a:

C C
In (rate) = C + -± + -± + C

3
pH + C

4
pH 2

(3.37b)

where T is temperature (K), pH has its usual meaning, and C , C l5
C

2 , C3 , C4
are

coef cients to be determined.

On the basis of these observations, Davey (1994) extended his earlier proposed

general model structure for linear Arrhenius models (Davey, 1989) to account for the

effect of multiple environmental factors affecting growth rate to the following form:

j

In (rate) = C + ]T (C
2,._^ +C2

2
,r) (3.37c)

1=1

where j environmental factors, V, act in combination to affect the growth of the

modeled organism, and C , C 1? C2 , ... , C. are coefficients to be determined.

This general form was applied by Davey and Daughtry (1995) to data of Gibson

et al. (1988) for Salmonella growth in response to temperature, NaCl, and pH. Thus,

their equation had the form:
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c c
ln(rate) = C + -^ + -|- + C

3
S+ C

4
S2 + C

5
/?# + C

6
/?#

2
(3.37d)

where S is salt concentration (% w/v).

While the above model forms are empirical, they also recognize implicitly the

temperature dependence of microbial growth rates. Daughtry et al. (1997) invoked

chemical reaction rate theory to develop an alternative mechanistic model based on

the Arrhenius equation. Those workers cited Levenspiel (1972) as stating that cur-

vature in Arrhenius plots can arise if there are two, or more, reactions that "compete"

to limit the reaction rate and dominate under different conditions so that the overall

effect of temperature is the synthesis of the individual activation energies for the

rate-limiting reactions at different temperatures. Daughtry et al. (1997) considered

that bacterial growth was likely to be such a system.

By assuming that the "heat of reaction" (equivalent to the activation energy or

activation enthalpy in the above discussion) is a polynomial function of temperature,

the following modi ed Arrhenius model was developed:

C
ln(rate) = C + -^ + C

2
lnT (3.38)

This model fitted experimental data as well as the temperature-only form of Equation

3.37a.

The "linear Arrhenius" or "Davey" models have been used to model growth of

molds on solid microbiological media (Molina and Giannuzzi, 1999; Panagou et al.,

2003). Panagou et al. (2003) preferred cardinal parameter and gamma-concept-type

models (see Sections 3.2.2 and 3.2.3) over the Davey model because of their inter-

pretable parameter values. Davey models have also been applied to UV and thermal

inactivation and data describing the combined effects of pH and water activity on

thermal inactivation, including vitamin denaturation (see Section 3.3), but they have

not been widely adopted by other workers. McMeekin et al. ( 1 993) and Davey (200 1

)

identi ed a close correlation between estimates of coef cients C
1
and C2, and C

3

and C
4, of Equation 3.37a, suggesting that the model was overparameterized.

3.2.4.4 Application of the Simple Arrhenius Model

For the entire biokinetic temperature range, growth rates of microorganisms are

described less appropriately by the Arrhenius-type equations (Equation 3.34 to

Equation 3.36) than by square-root-type and cardinal parameter models (see Section

3.2.4.2; Rosso et al., 1993; Zwietering et al., 1991). However, Arrhenius-type models

remain useful as secondary kinetic models for less extensive ranges of storage

temperatures (Table 3.5 and Table 3.6). Koutsoumanis and Nychas (2000) used

Equation 3.32 to model the effect of temperatures between and 15°C on nmax and

reciprocal lag time of naturally occurring pseudomonads growing aerobically on a

type of Mediterranean sh. Koutsoumanis et al. (2000) also expanded the classical
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Arrhenius model to take into account the combined effect of temperature and C0
2

on growth rates of spoilage bacteria in modified atmosphere packed fresh fish

(Equation 3.39).

Infix ) =^r max /

E
a_

R

t

x
1

V ref

J.

T

\

+ ln(a ,-dL, x%CO.)
CO, (3.39)

/

where T, E
a , and R have their usual meaning, %C0

2
is the equilibrium concentration

of C0
2
in the headspace gas, dco is a constant expressing the effect of C0

2
on

Mmax and TKf and |iTefare temperature and maximum specific growth rate, respectively,

at 273 K and %C0
2

. The term including dco in Equation 3.39, describing C0
2

inhibition of growth rate, was previously suggested by Kalina (1993).

The simple Arrhenius model has also been used to calculate relative rates of

spoilage (RRS) (Equation 3.37). RRS for a food product is de ned as the shelf life

(determined by sensory evaluation) at a reference temperature (rref) divided by the

shelf life observed at the actual storage temperature (Equation 3.40).

RRS =
Shelf life at T

ref

Shelf life at T
= exp

E (
A

R
x

1 1
\

V
T T

ref J

(3.40)

where T, E
a , and R have their usual meaning and T

ief
is a reference temperature at

which the shelf life is known.

RRS models are interesting because they enable shelf life to be predicted at

different temperatures and for products where the specific spoilage organisms or the

type of reaction responsible for spoilage are not known. For an unusually tempera-

ture-sensitive modified atmosphere packed shrimp product (E
a
> 100 kJ/mol), Equa-

tion 3.40 described the effect of temperature (0 to 25°C) on shelf life more appro-

priately than a similarly formulated RRS model relying on the square-root model

(Equation 3.1). However, a simple exponential RRS model was as useful as Equation

3.40. That the Arrhenius and exponential RRS models performed better than the

square-root model was due to the fact that different groups of microorganisms were

responsible for spoilage at low and high storage temperatures, respectively (Dalgaard

and Jorgensen, 2000). This situation is common and a reason why entirely empirical

RRS models can be more appropriate for shelf-life prediction than kinetic models

relying on growth of known spoilage microorganisms. In fact, kinetic models for

growth of spoilage bacteria are generally useful only for shelf-life prediction within

the spoilage domain of a specific microorganism (Dalgaard, 2002).

3.2.5 Polynomial and Constrained Linear

Polynomial Models

Of the types of secondary models applied within predictive microbiology polyno-

mial models are probably the most common. As shown in Table 3.5 and Table 3.6,
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the effect of many different environmental parameters (e.g., temperature, NaCl/a^

pH, nitrite, C0
2 , organic acids, and natural antimicrobials) has been described by

these linear models. Polynomial models were extensively used during the 1990s

and they remain widely applied although square-root-type and CPMs are becoming

increasingly popular (Table 3.5). Polynomial models are attractive, rst, because

they are relatively easy to fit to experimental data by multiple linear regression,

which is available in most statistical packages. Second, polynomial models allow

virtually any of the environmental parameters and their interactions to be taken

into account. Thus, application of polynomial models is a simple way to summarize

information from a data set. Once the coefficients in a polynomial model have been

estimated, the information is easy to use particularly if the model is included in

application software. In fact, the application software packages Pathogen Modeling

Program and Food MicroModel rely primarily on the use of polynomial models

(www.arserrc.gov/mfs/pathogen.htm; Buchanan, 1993a; McClure et al., 1994a).

To illustrate the use of polynomial models a quadratic equation used by McClure

et al. (1993) is shown below (Equation 3.41):

\ny =p
x
+ p2

x
{
+ p3

x
2
+ p4

x
3
+ pA

x
l

x
1
+ p6

x^x
3

(3.41)

+p7
x

2
x

3
+ ps

x
7
~ + p9

x\ + pl0
x

7
- + e

"max'where In y denotes the natural logarithm of the modeled growth responses (y = (J,

lag time or maximum population density [MPD], or the modified Gompertz model

parameters B or AT): p, (i= 1, ..., 10) are the coefficients to be estimated; x
1

is the

temperature (°C); x
2
is the pH; x

3
is NaCl (% w/v); e is a random error supposed to

have zero mean and constant variance.

As shown by Equation 3.41 the same polynomial equation can be used to model

different microbial growth responses. Actually, many studies have modeled the effect

of environmental conditions on specific parameters in primary growth models, par-

ticularly B, M, and C in the modified Gompertz model. Measures of lag time, growth

rate, or time for, e.g., a 1000-fold increase in the cell concentration are then calculated

at specific environmental conditions from the predicted value ofB, M, and C (Bucha-

nan and Phillips, 2000; Eifert et al., 1997; Skinner et al., 1994; Zaika et al., 1998).

Growth responses to be modeled are typically In- or log 10-transformed (Equation

3.41) and it is common practice to transform the growth response without trans-

forming the model.

However, polynomial models have properties that limit their usefulness as

secondary predictive models. Polynomials include many coefficients that have no

biological interpretation. As an example, Equation 3.41 uses 10 coefficients to model

the effect of three environmental parameters. With four environmental parameters,

polynomials with 15 coefficients are frequently used. The high number of coeffi-

cients and their lack of biological interpretation make it dif cult to compare poly-

nomial models with other secondary predictive models. The important information

included in, e.g., the Tmin parameter of a square-root-type model, is not provided

by a polynomial model.
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Higher order polynomial models, e.g., cubic or quadratic models have been

criticized for being too flexible and for attempting to model, rather than eliminate,

experimental error (Chapter 4; Baranyi et al., 1996; Sutherland et al., 1996). Because

of the very flexible nature of higher order polynomial models they should not be

used as secondary models within predictive microbiology unless very high quality

experimental data are available and support the application of these models. Fur-

thermore, because quadratic polynomial models are highly flexible they should only

be used to provide predictions by interpolation. Baranyi et al. (1996) pointed out

that the interpolation region of a polynomial model is the minimum convex poly-

hedron (MCP) defined by the ranges of the environmental parameters used to develop

the model, i.e., the experimental design. These authors also stressed that the inter-

polation region (Figure 3.10) can be substantially smaller than the rectangular

parallelepiped whose sides are given by the endpoints of the ranges of environmental

parameters, termed the "nominal variable space" (Baranyi et al., 1996).

Determination of the interpolation region of a polynomial model is not self-

evident and requires information about ranges of the environmental parameters used

to develop the model. Pin et al. (2000) suggested a method to determine if a specific

environmental condition is inside or outside the interpolation region of a particular

polynomial model. This method relies on the iterative algorithm used by the Solver

add-in of Microsoft Excel and thus is readily accessible to many users. However,

we believe for it to become widely used the calculation of interpolation regions

should be included in dedicated predictive modeling application software.

To overcome the problem that quadratic polynomial models can be too exible,

and therefore in some situations provide predictions that are not logical, the appli-

cation of constrained polynomial models was recently suggested (Geeraerd et al.,

in press). With this approach, the basic idea is to combine a priori information about

the effect of environmental parameters on growth responses with classical polyno-

mial models. For example, at suboptimal conditions it was assumed that the growth

rate should always increase for increasing temperature and aw values and decrease

for increasing C0
2
levels. Thus, the partial derivative of the model with respect to

temperature and aw should always be positive whereas the partial derivative of the

model with respect to C0
2
should always be negative. Coef cients of the polynomial

model were then fitted with the constraints obeyed at all edges of the experimental

design. The constrained polynomial model was fitted by the usual process of min-

imizing the sum of squared errors and the tting was carried out using the Optimi-

zation Toolbox within the MatLab software (Geeraerd et al., in press). As compared

to classical polynomial models, constrained polynomial models have the clear advan-

tage of being more robust but the clear disadvantage of being substantially more

dif cult to t. Simpli cation of the tting process seems necessary before con-

strained polynomial models nd wide application in predictive microbiology.

Masana and Baranyi (2000a) described methods for integration of new data into

existing polynomial models, pointing out that the interpolation region of the newly

developed model can be unexpectedly small and also presenting methods for quan-

tifying the increased risk of inadvertent extrapolation (Baranyi et al., 1996). Poly-

nomial models feature many cross-product terms, making the addition of new terms

much more complex than with models embodying the gamma concept (Section
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3.2.2). Nonetheless, when expanding a model by the addition of data for a new
variable, Masana and Baranyi (2000b) demonstrated that the original model can be

retained as a special case of the expanded model, by holding the terms of the original

model, i.e., those that do not contain the new variable, as constants during the model

tting process for the expanded model.

3.2.6 Artificial Neural Networks

Arti cial neural networks (ANNs) are algorithms that can be used to perform

complex statistical modeling between a set of predictor variables and response

variables. Their particular advantage is that they have the potential to approximate

underlying relationships of any complexity between those variables. They have been

used to generate secondary models for microbial growth rates and lag times (Garcia-

Gimeno et al., 2002, 2003; Geeraerd et al., 1998a; Jeyamkondan et al., 2001; Lou

and Nakai, 2001; Najjar et al., 1997), growth under uctuating environmental con-

ditions (Cheroutre-Vialette and Lebert, 2000; Geeraerd et al., 1998a), microbial

inactivation (Geeraerd et al., 1998b), and have been proposed as an alternative to

logistic regression modeling techniques (Tu, 1996). Their potential to replace logistic

regression for growth limits modeling (see Section 3.4) has also been described

(Hajmeer and Basheer, 2002, 2003 a,b) in which context they have been termed

"probabilistic neural networks" (PNNs).

Hajmeer et al. (1997) and Hajmeer and Basheer (2002, 2003a) describe the

principles ofANNs and related technologies in the context of predictive microbiol-

ogy, and numerous texts are dedicated to the subject but the following is largely

drawn from the succinct and lucid description of Tu (1996).

Arti cial neural networks were conceived decades ago by researchers attempting

to reproduce the function of the human brain, i.e., its ability to learn and remember,

but it was only in the 1980s that the "back-propagation" technique was rediscovered,

enabling such computational systems to "learn" mathematical relationships between

input and output variables.

Neural networks are effectively a series of mathematical relationships between

predictor variables ("input nodes"), a series of hidden "nodes," and an output variable

("output node") (Figure 3.6). Each input node is related to each hidden node, and

each hidden node is related to the output node, by some mathematical function.

Each input is given a weight during the "training" routines, the value of each hidden

node being the sum of a weighted linear combination of the input node values. In

addition, bias values can be added to the weighted values of the inputs. These are

analogous to the intercept in regression equations, while the weights are analogous

to coef cients of the independent variables. The output node receives a weighted

input from each of the hidden nodes, to which is often applied a logistic transfor-

mation or other function (the "activation function") to determine the overall output.

A set of input and corresponding output values is presented to the network, the

error is evaluated, and the weights are then adjusted to minimize the difference

between the predicted output and that which was observed. This process of adjust-

ment of weights is the back-propagation step and involves algorithms based on

complex equations. Input data are continuously presented to the neural network until

2004 by Robin C. McKellar and Xuewen Lu



INPUT LAYER

and NODES

Temperature S X
( T* )

pH

f pH* )

HIDDEN LAYER

and NODES

*w

W
(T, HN1)

rafT

W (aw,HN1

OUTPUT LAYER

>®

ro

I

Oo

3'

cro
o

<
a

a
w
a-
pa

c
<
o
3
cr
o

oo

o

FIGURE 3.6 Diagram ofan imaginary arti cial neural network that might be used in predictive microbiology. The output is the response of the population

of microorganisms to variations in the temperature, pH, and water activity of their growth medium. (The diagram is fully explained in the text.)
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the overall error has been minimized, a process analogous to the iterative routines

employed in nonlinear regression software. Optimal training algorithms can, at this

time, only be determined empirically. Additionally, when usingANNs other elements

of the modeling require experimentation, including the number of training cycles

(too many can reduce predictive performance), the number of nodes in the hidden

layer, and the ideal learning rate (the magnitude of change in the weights for each

training case).

In Figure 3.6, the input, hidden, and output layers are shown, as well as the

connections between them. Nodes are represented by circles. The W^ terms indicate

the weight applied to the inputs to hidden nodes. (Not all weights are represented

in the diagram.) The hidden nodes have a transformation applied to them, e.g., a

logistic function represented by the functions hi, hi, etc. Thus, in the example:

hi = l/(l+exp(Bias 1 + W
(T> HN1) x T* + Ww HN1) x pH* + W(aw> HN1) x aw *))

and, similarly:

Output =1/(1+ exp(B2 + W
(hl)

+ W
(h2)))

Suf cient data are required so that a subset of data can be used to train the ANN,
while the remainder is used to test the predictive ability of the ANN. One complete

cycle of the training data set is called an "epoch" and the duration of the training

is often described as the number of epochs required to minimize the error in the

training set.

Tu (1996) compared the advantages and disadvantages of the ANN approach to

those of traditional statistical regression modeling, as summarized in Table 3.4.

Evaluation of the approach as applied to predictive models for microbial growth is

presented below, and in relation to growth limits models in Section 3.4.2. Further

comment is provided in Chapter 4, Section 4.4.3.

The use ofANN in predictive growth modeling remains relatively little devel-

oped, and direct comparison of the performance of different ANN techniques is still

lacking. To describe growth curves, Schepers et al. (2000) concluded ANN was less

appropriate than classical nonlinear sigmoidal growth models. Cheroutre-Vialette

and Lebert (2000), however, found a recurrent (i.e., back-propagation)ANN suitable

to predict growth of Listeria monocytogenes under constant and uctuating pH and

NaCl conditions. As shown in Table 3.5 and Table 3.6, several secondary ANN
models have been developed including models for Aeromonas hydrophila, Brocho-

thrix thermosphaca, Escherichia coli, lactic acid bacteria, Listeria monocytogenes,

and Shigella exneri. These secondary ANN models have been compared with

polynomial, square-root-type, and cardinal parameter models. The comparisons

showed ANN typically fitted experimental data better and in most cases provided

slightly more accurate predictions. Thus, in general, ANN may provide slightly

improved predictions. Commercial neural network software is available and devel-

opment of ANNs has become relatively easy. However, ANN is a data-driven

approach and this could be a drawback because a secondary model that can be

written as an equation with coef cients and parameters is not produced. The
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TABLE 3.4

Advantages and Disadvantages of Neural Network Approaches to Modeling

Disadvantages

Neural networks are a "black box" and have limited

ability to specifically identify possible causal

relationships between predictor and response

variables

Neural network models may be more dif cult to

use in the field

Neural network modeling requires greater

computational resources

Neural network models are prone to over tting

Advantages

Neural networks require less formal statistical

training to develop

Neural network models can implicitly detect

complex nonlinear relationships between

predictor and response variables

Neural network models have the ability to detect

all possible interactions between predictor

variables

Neural networks can be developed using multiple

different training algorithms

Neural network model development is empirical,

and many methodological issues remain to be

resolved

Source: After Tu, J.V. J. Clin. Epidemiol, 11, 1225-1231, 1996.

incorporation of classical secondary models in user-friendly application software

has been essential for the usefulness of predictive microbiology in industry, teaching,

and research. It remains to be demonstrated whether successful ANN models can,

in a similar way, be communicated to and conveniently applied by wide groups of

users within predictive microbiology.

3.3 SECONDARY MODELS FOR INACTIVATION

There are relatively few models that consider the effects of multiple environmental

factors on the rate of death of microorganisms, and these are discussed in Chapter

2 and Chapter 5. Some available inactivation models are also summarized in Table

3.5 and Table 3.6.

3.4 PROBABILITY MODELS

3.4.1 Introduction

Models to predict the likelihood, as a function of intrinsic and extrinsic factors, that

growth of a microorganism of concern could occur in a food were rst explored in

the 1970s. Those models were concerned with prediction of the probability of

formation of staphylococcal enterotoxin or botulinum toxin within a specified period

of time under de ned conditions of storage and product composition (Genigeorgis,

1981; Gibson et al., 1987). Phenomena that have been modeled using this approach
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TABLE 3.5

Examples of Secondary Models for Growth of Pathogenic and

Indicator Microorganisms
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TABLE 3.5 (Continued)

Examples of Secondary Models for Growth of Pathogenic and

Indicator Microorganisms
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TABLE 3.5 (Continued)

Examples of Secondary Models for Growth of Pathogenic and

Indicator Microorganisms
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TABLE 3.5 (Continued)

Examples of Secondary Models for Growth of Pathogenic and

Indicator Microorganisms

Microorganisms and

References

Type of

Secondary

Model

Gimenez and Square-root

Dalgaard (in press)

Salmonella

Gibson et al. (1988)c Polynomial

Response

Variables

M n

GT, lag

Davey and
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TABLE 3.5 (Continued)

Examples of Secondary Models for Growth of Pathogenic and

Indicator Microorganisms

Microorganisms and

References
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TABLE 3.6

Examples of Secondary Models for Growth of Spoilage Microorganisms

Microorganisms and
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TABLE 3.6 (Continued)

Examples of Secondary Models for Growth of Spoilage Microorganisms

Microorganisms and
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TABLE 3.6 (Continued)

Examples of Secondary Models for Growth of Spoilage Microorganisms

Microorganisms and
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Logistic regression is a widely used statistical modeling technique— and is the

technique of choice — when the outcome of interest is dichotomous (i.e., has only

two possible outcomes). It is widely used in medical research (e.g., Hosmer and

Lemeshow, 1989). Because regression techniques do not exist for dichotomous data,

the regression equation is usually related to the log odds, or logit, of the outcome

of interest. This has the effect of transforming the response variable from a binary

response to one that extends from -oo to +°o re ecting the possible ranges of the

predictor variables, and has desirable mathematical features also (Hosmer and Leme-

show, 1989). The logit function is de ned as:

logit P = log(iV(l - P)) (3.42)

where P is the probability of the outcome of interest.

Logit P is commonly described as some function Y of the explanatory variables, i.e.:

logit P = 7 (3.43)

Equation 3.43 can be rearranged to:

1/(1 + e~Y ) = P

or

eY/(\ +eY
) = P

where Y is the function describing the effects of the independent variables.

The latter parameterizations appear in some of the earlier probability modeling

literature.

Zhao et al. (2001) assessed the performance of linear and logistic regression to

model percentage data that are "bounded," and may be considered as rescaled

probability values. It was con rmed that logistic regression provided a much more

accurate description of percentage data than linear regression, which had the insur-

mountable problem of predicting values outside the range of the data (i.e., less than

0% or greater than 100%).

3.4.2.2 Confounding Factors

Probability modelers used logistic regression to de ne the probability that detectable

toxins would be produced within a specified period of time and under specified

product composition and storage conditions. Models were based on the idea that a

product was safe/acceptable or that it was not. Nonetheless, the responses measured

in "probability modeling" were related to a number of factors that were in turn

related to the growth of the organism under study and, in some cases, also included

elements of survival. This approach appears to have arisen from the ideas ofRiemann
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(1967) that the success of a preservation method with regard to C. botulinum is

related to the probability that one spore will germinate and give rise to toxin in the

nished product. In general, to assess the effect of preservation conditions on

probability of toxin production, the probability of growth from a single cell is

estimated as the number of spores able to initiate growth under the test conditions

(usually determined by MPN [most probable number] methods) divided by the

number originally inoculated (Lund, 1993). Often a series of increasingly dilute

inocula are subjected to the test conditions to determine the minimum fraction able

to initiate detectable growth under the test conditions.

It might be expected that the probability of detection would increase with time.

Indeed, Lindroth and Genigeorgis (1986) recognized that the probability of growth

detection was also dependent upon the lag time of the inoculum, its initial density,

and the duration of the study. They introduced a modi cation to the logit model to

specifically model these effects. That model was subsequently used in a number of

other studies (Baker et al., 1990; Ikawa and Genigeorgis, 1987). Whiting and Call

(1993) criticized earlier models for probability of C. botulinum outgrowth and toxin

production because they did not specifically monitor the time at which growth/toxin

formation was rst detected, and specifically modeled the probability of formation

of toxin as a function of time and storage conditions using the logistic function, i.e.,

the probability of detectable growth, when plotted as a function of time, is a sigmoid

curve. That approach was further re ned (Whiting and Oriente, 1997 ; Whiting and

Strobaugh, 1 998) by inclusion of the inoculum density as an independent variable

in the model.

Clearly, the probability of the responses in many of these traditional probability

models is strongly related to the growth rate of the organism under the experimental

conditions, leading Ross and McMeekin (1994) to conclude that the distinction that

had traditionally been made between probability and kinetic models was an arti cial

one. Similarly, Baker et al. (1990) noted that "The rate of P increase ... expresses

the growth rate ...
."

However, under some experimental conditions P does not always reach an

asymptote of 1 . This is evident in the data of Whiting and colleagues (Whiting and

Call, 1993; Whiting and Oriente, 1997; Whiting and Strobaugh, 1998), of Chea et

al. (2000), and of Razavilar and Genigeorgis (1998). It had also been described

earlier by Lund et al. (1987) who introduced to predictive microbiology a model

that recognizes that under some conditions, no matter how long one waits, not all

samples will show growth/toxigenesis.

While the above studies considered spores, Razavilar and Genigeorgis (1998)

applied a logistic regression approach to the probability of growth initiation within

58 days of Listeria monocytogenes and other Listeria species in response to

combinations of pH, salt, temperature, and methyl paraben, sodium propionate,

sodium benzoate, and potassium sorbate (Table 3.5). Their results, also, suggested

that under near-growth-limiting environmental conditions the asymptotic probabil-

ity of growth (i.e., given in nite incubation time) was sometimes less than 1.

Stewart et al. (2001) also commented that while kinetic models predict the mean
growth rate, these estimates may be meaningless under stressed conditions owing

to natural variability in biological responses. Similarly, Lund (1993) employed the
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Gompertz model (see Chapter 2) to model the time-dependent probability of growth

of L. monocytogenes Scott A as a function of environmental factors. Even at near-

growth-limiting pH (4.3), however, the asymptote of the log(Pgrowth) was still close

to 1.

The above studies suggest that as environmental conditions become more inhib-

itory to growth, not only does the probability that growth will be observed during

the course of the experiment decrease, but the probability that growth is possible also

decreases. This may be because the generation or lag time of all cells within the

inoculum becomes in nitely long. Under these conditions, one begins to identify the

absolute limits to microbial growth under combined stresses, i.e., the G/NG interface.

3.4.3 Growth/No Growth Interface Models

Microbial growth is restricted to nite ranges for any environmental factor, with

growth rate sometimes declining abruptly within a very small increment of change

of environment. Individual factor limits have been determined and collated (e.g.,

ICMSF, 1996a). That the growth range of microorganisms for one factor is reduced

when a second environmental factor is less than optimal is also well recognized, and

underlies the Hurdle concept (Leistner et al., 1985) also known as (multiple) barrier

technology, or combined processes (Gorris, 2000). While the physiological basis of

this synergy remains incompletely understood, the ability to de ne the limits to

growth under combined environmental factors has enormous practical application in

maintaining the microbial safely and quality of foods. Whether pathogens grow at

all and the position of the G/NG boundary are of more interest than their growth

rate because any growth implies a potential to cause harm to consumers. Similarly,

so-called shelf-stable foods are sold, stored, and consumed over long periods of time.

Therefore, the ability of spoilage organisms to grow at all implies that they have the

potential to multiply to suf cient numbers to cause spoilage (Jenkins et al., 2000).

In the early to mid-1990s, a vein of experimentation using logistic regression

techniques was begun with the aim of developing models that could de ne absolute

limits to microbial growth in multifactorial space, irrespective of time of incubation

or number of cells in the inoculum. One impetus for this research was the problem

of listeriosis (Parente et al., 1998; Tienungoon et al., 2000). Strategies proposed to

control the threat of listeriosis included "zero tolerance" (i.e., not detectable in a

25-g sample) of the presence of L. monocytogenes in foods that could support its

growth, or to limit levels of contamination at the point of consumption to less than

100 cfu/g. Thus, foods that did not support the growth of L. monocytogenes were

considered to pose signi cantly less risk and to require much less regulatory "atten-

tion" and testing. It was, therefore, of great commercial interest to be able to predict,

without the need for protracted and expensive challenge testing, the potential for

growth of specific bacteria within a particular food or, equivalently, product formu-

lation options that would preclude growth.

Models de ning combinations of environmental conditions that just prevent

growth have become known as "G/NG interface," "growth boundary," or more simply

"growth limits" models. The importance of growth boundary models for the design

of safe foods and setting of food safety regulations, for the design of shelf-stable
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foods, and as a means of empowering the Hurdle concept by allowing it to be applied

quantitatively has been discussed by various authors (Masana and Baranyi, 2000b;

McMeekm et al., 2000; Ratkowsky and Ross, 1995; Schaffner and Labuza, 1997).

Various approaches have been suggested to de ne the G/NG boundary. For

convenience, these are discussed below under three broad groupings:

1. Empirical, deterministic, approaches

2. Logistic regression techniques

3. Arti cial neural networks

Table 3.7 provides an overview of G/NG models published since 1990.

3.4.3.1 Deterministic Approaches

The rst explicit de nition of a microbial G/NG interface appears to be Pitt (1992),

who derived regression equations from published data to describe the tempera-

ture/water activity interface for a atoxin production and Aspergillus spp. growth.

The equation used to describe the interaction between temperature and water activity

limits for growth was:

r (minmax) = 19 ^ ± /(g56.71 - 2289 X (1. 172 - tf ))
g v v ^ w

where J C1™™8*) are the upper and lower temperature limits for growth at the specified

water activity.

A similar equation was presented for a atoxin production. The predicted inter-

faces from both models are shown in Figure 3.7 .

To describe the pH/aw(NaC1) interface of the food spoilage organism Brocothrix

thermosphacta, Masana and Baranyi (2000b) derived the midpoints of growth and

no-growth observations by interpolation and fitted a polynomial function to those

data. They noted that under some conditions, the interface was completely dominated

by one factor or the other, so that their nal model consisted of a pH vs. aw parabolic

curve and a NaCl-constant line. They also considered the effects of inoculum level

on the interface, which was determined at 25°C for up to 24 days of incubation.

Examples of the interface are shown in Figure 3.8.

Membre et al. (2001) estimated levels of sorbate that prevented growth of

Penicillium brevicompactum in bakery products containing various levels of benzoate

by extrapolation of kinetic data. Equations were derived to de ne growth-preventing

combinations of sorbate and benzoate and were used to limit the range of predictions

from the kinetic model they developed for P. brevicompactum growth rate.

Other workers have noted that the form and parameters of CPMs imply absolute

limits to microbial growth, and suggested approaches to de ning the G/NG interface

based on estimates of cardinal parameters. In this vein Ratkowsky and Ross (1995),

recognizing the relationship between absolute limits for each environmental factor

and their relationship to the parameters of square-root-type models and CPMs,

experimented with the use of a kinetic model as the basis of a growth boundary
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Summary of Published Growth Boundary Models

Experimental Design



TABLE 3.7 (Continued)

Summary of Published Growth Boundary Models

Reference Organism

Bolton and

Frank

(1999)

Listeria

mono-

cytogenes

Strain

Mixture

(equal

numbers) of

ScottA, Brie

1,71

Switzerland,

2379 LA

Medium

Soft fresh

cheese

(similar to

"Mexican

style"

cheese)

Experimental Design

Environmental

Factors

Moisture

(% w/w)

salt (% w/w)

pH

Ranges

Lower Upper Levels Replicates

42

2

5

60

8

6.5

Total Data

Points

288

Measured by? Time Limit

Viable count 21 and 42

days

4

6

Other

Binary or "ordinal"

logistic

regression using

SAS PROC
LOGISTIC with

link functions.

For the latter,

three responses : P

of growth, stasis,

or death

(according to

change in viable

count; ±0.5 log

CFU) were

modeled

I

Oo

3'

CTQ
O

to

<
o
a.
i=s

o
IT.

c
<

I
c

tooo

4-o
-J

Salter et al.



Tienungoon

et al.

(2000)

Listeria

mono-

cytogenes

(Scott A, L5
separate

models)

TSB-YE Temperature 3.1

aw (NaCl) 0.928

pH 3.7

Lactic acid

(mM)

36.2

0.995

7.8

500

30

60

10

14

1 to 4

Lopez-Malo
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TABLE 3.7 (Continued)

Summary of Published Growth Boundary Models

Experimental Design

Reference Organism Strain

Stewart etal. Staphylococ- 5 strain

(2001) cus aureus cocktail

Medium

BHI Broth

Environmental

Factors

Ranges

Lower Upper Levels Replicates

aw (glycerol) 0.95

Initial pH 4.5

K-sorbate (ppm)

or

Total Data

Points Measured by? Time Limit

0.84

7

4

4



Membre et



TABLE 3.7 (Continued)

Summary of Published Growth Boundary Models

Reference Organism

Battey and

Schaffner

(2001)

Spoilage

bacteria:

Acineto-

bacter

calco-

aceticus and

Gluconobac-

ter oxydans

a
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model using linear logistic regression. This approach is discussed further below in

Section 3.4.3.2.

The approaches ofAugustin and Carlier (2000b) and Le Marc et al. (2002) were

presented in Section 3.2.3. Essentially, these approaches are empirical. They are

based on assumed interactions between factors and are not fitted to G/NG data. An
example of the response predicted by these approaches is shown in Figure 3.11.

0.95-

> 0.91
'*-•

o
(0

i-

(0

% 0.8fr|

0.8-

0.75 i i i i i i i i i

10 15 20 25 30 35 40 45 50 55

Temperature (°C)

FIGURE 3.7 Predicted temperature-water activity interface for mold {Aspergillus spp.)

growth (dashed line) and a atoxin production (solid line) from the model of Pitt (1992).
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4-60
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'w

FIGURE 3.8 Data and modeled growth/no-growth boundary for Brochothrix thermosphacta
i

in response to pH and water activity at 25°C. Water activity data were rescaled to bw V 1-a
The data are for an inoculum of 1.5 x 106 cells/well (), or for an inoculum of 1.5 x 10 1 and

1.5 x 10 3 cells/well (A). (Reproduced from Masana, MO. and Baranyi, J. Food Microbiol.,

17, 485^193, 2000b. With permission.)
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FIGURE 3.9 Data obtained from separate experiments for the growth/no-growth (G/NG)

boundary of Escherichia coli. Data are from Salter et al. (2000) (circles) and from unpub-

lished results of the authors (diamonds). Near the G/NG boundary, the data obtained from

discrete experiments do not form a smooth (monotonic) boundary, suggesting that small

differences in experimental procedures can signi cantly affect the position of the boundary.

Open symbols denote no-growth conditions, and solid symbols indicate that growth was

observed.

The above approaches can be considered to be deterministic; i.e., they predict

only one position (-Pgrowth
= 0.5) for the boundary, although the position of boundaries

can be adjusted by "weighting" data in the case of Masana and Baranyi (2000b) or

by selecting an appropriate value for in the case of the Le Marc et al. (2002)

approach (see Section 3.2.3). While the data ofMasana and Baranyi (2000b) included

tenfold replication, the midpoints of the most "extreme" conditions that did allow

growth, and the least "extreme" conditions that did not allow growth were estimated

by interpolation and considered to represent 50% probability of growth. Other

workers have suggested that some problems require higher levels of con dence that

growth will not occur, so that methods that enable de nition of the interface at

selected levels of statistical con dence may have greater utility.

Another approach that implicitly characterizes the G/NG interface is that of

combined growth and death models in which the rate of growth and rate of death

under specified conditions are estimated simultaneously. The G/NG interface can be

inferred from those combinations of conditions where growth rate and death rate

are equal (see, e.g., Jones and Walker, 1993; Jones et al., 1994). A similar approach

is evident in Battey et al. (2001) who modeled both the rates of growth and rates

of death of spoilage molds in ready to drink beverages. The G/NG interface was

given, implicitly, as that set of conditions where the rate of growth was equal to the

rate of death.
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Ratkowsky et al. (1991) noted that as environmental conditions become more

inhibitory to microbial growth the variability in growth rates increases widely, which

implies that the probability that growth occurs at all becomes uncertain, because the

left-hand tail of the growth rate distribution falls below zero. This is supported in

the results of Whiting and colleagues (Whiting and Call, 1993; Whiting and Oriente,

1997; Whiting and Strobaugh, 1998), where Pmax (the proportion of spores that

successfully germinated and initiated growth) was shown to decline at increasingly

stringent conditions. Conversely, Masana and Baranyi (2000b) observed, as have

other workers (McKellar and Lu, 2001; Presser et al, 1998; Salter et al., 2000;

Tienungoon et al., 2000), that the difference in conditions that allow growth and

those that do not is usually abrupt, and often at or beyond the limits of resolution

of instruments commonly used to measure such differences. Thus, Masana and

Baranyi (2000b) questioned the need for approaches that model the transition

between conditions leading to high probability of growth and those leading to low

probabilities of growth. While this abrupt transition appears consistent within rep-

licated experiments it is less certain, however, that the same consistency is true

between experiments. Figure 3.9, showing experimental data, suggests that responses

near the boundary may be inconsistent when data from several discrete experiments

are combined. This may suggest subtle, but important, differences in response related

to the physiology of the inoculum, or its concentration. Furthermore, it suggests that

the ability to characterize probabilities of growth under specified sets of conditions

may be an important element of growth boundary models and that the boundary

may not be "absolute" but depend on the physiological state of the cell and, by

inference, on the size of the inoculum. This will be discussed further in Section 3.4.4.

3.4.3.2 Logistic Regression

Ratkowsky and Ross (1995) and others (Bolton and Frank, 1999; Jenkins et al.,

2000; Lanciotti et al, 2001; Lopez-Malo et al., 2000; McKellar and Lu, 2001;

Parente et al., 1998; Stewart et al., 2001, 2002; Uljas et al., 2001) reintroduced the

use of logistic regression to model categorical data (i.e., growth or no growth) in

predictive microbiology, enabling probabilistic determination of the G/NG bound-

ary. Use of the logit function enabled the probability of growth under specific sets

of conditions to be estimated, so that the G/NG boundary could be specified at

selected levels of con dence.

Ratkowsky and Ross (1995) aimed to model absolute limits to growth in mul-

tifactorial space, but only had available data based on a 72-h observation period.

While most other workers have preferred polynomial functions to describe the effect

of independent variables on the logit function, in the former approach a square-root-

type kinetic model was In-transformed and used as the basis of the function relating

the logit of probability of growth to independent variables, e.g., temperature, water

activity, pH. This approach was adopted in an attempt to retain some level of

biological interpretability of the models, a desire echoed by others (Augustin and

Carher, 2000a,b; Le Marc et al., 2002).

The form of the G/NG interface model of Presser et al. (1998) was derived from

the kinetic model of Presser et al. (1997) for the growth rate of E. coli (see Equation

2004 by Robin C. McKellar and Xuewen Lu



1237_C03.fm Page 120 Wednesday, November 12, 2003 12:40 PM

3.10). Novel data were generated specifically to assess the limits of E. coli growth

under combinations of temperature, pH, aw and lactic acid. The corresponding G/NG
model had the form:

LogitP = 28.0 + 8.90 ln(a„ - 0.943)

+ 2.01n(r-4.00) + 4.59 ln(l - 1039-ph
) (3.44)

+ 6.961n[l -LACI{\0.1 x (1 + 10ph"3 -86
))]

+ 3.061n[l -LAC/(S23 x (1 + 10386-ph))]

where all terms are as de ned in Section 3.2.1.

Some parameters in that model had to be determined independently, i.e., were

not determined in the regression, and were derived from the fitted values of square-

root-type kinetic models. Essentially the same approach was adopted by Lanciotti

et al. (2001) to develop G/NG models for B. cereus, S. aureus, and Salmonella

enteritidis. Ratkowsky (2002) commented on the increased exibility in being able

to determine all of the parameters in the model during the regression, and subsequent

studies developed the approach, eventually leading to a novel nonlinear logistic

regression technique (Salter et al., 2000; Tienungoon et al., 2000). Ratkowsky (2002)

pointed out that nonlinear logistic regression was a new statistical technique and

discussed bene ts and problems with that approach specifically in relation to growth

limits modeling. A problem with models of the form of Equation 3.44 is that for

conditions more extreme than the parameters corresponding to Tmin, pHmin, aw min,

etc., and which are tested experimentally though not expected to permit growth, the

terms containing those parameters would become negative. As all of those terms are

associated with a logarithmic transformation, the expression cannot be calculated

during the regression and such values are ignored in the model tting process, or

have to be eliminated from the data set before the tting process begins. This, in

turn, affects the values of the parameters of the fitted model. Ratkowsky (2002)

comments that an objective method for selection and deletion of such data is nec-

essary', but does not yet exist.

Bolton and Frank (1999) extended the binary logistic regression approach by

recoding growth and no growth data to allow a third category: survival, or stasis.

They termed this approach ordinal logistic regression. Parente et al. (1998)

"reversed" the response variable, and applied logistic regression techniques to the

probability of survival/no survival of L. monocytogenes in response to bacteriocins,

pH, EDTA, and NaCl. Stewart et al. (2001) modeled the probability of growth of

S. aureus within 6 months of incubation at 37°C, and at reduced water activity

achieved by various humectants. They also compared the growth boundary with the

boundary for enterotoxin production, and observed a close correlation between the

two criteria.

Growth limits models have also been developed for spoilage organisms including

Saccharomyces cerevisiae (Lopez-Malo et al., 2000) and Zygosaccharomyces bailii

(Jenkins et al., 2000) and cocktails ofSaccharomyces cerevisiae, Zygosaccharomyces

bailii, and Candida lipolytica (Battey et al., 2002). Interestingly, the study of Jenkins

et al. (2000), while encompassing broader ranges of factor combinations, con rmed
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the simpler and earlier model of Tuynenburg Muys (1971). That model, which

specifies combinations of molar salt plus sugar and percent undissociated acetic acid

for stability of acidic sauces, still forms the basis of the industry standard for those

products. This observation suggests that limits to growth under combined conditions

can be highly reproducible.

3.4.3.3 Relationship to the Minimum Convex

Polyhedron Approach

The concept of the MCP was introduced by Baranyi et al. (1996) (see Figure 3.10)

to describe the multifactor "space" that just encloses the interpolation region of a

predictive kinetic model. If the interpolation region exactly matched the growth

region of the organism then the MCP would also describe the growth limits of the

organism. In practice, however, it would be impossible to undertake suf cient

measurements to completely de ne the MCP; i.e., the MCP has "sharp" edges

because of the method of its calculation, whereas from available studies (see Figures

3.8 and 3.9) the G/NG interface forms a continuously curved surface. However, it

might also be possible to use no-growth data to create a no-growth MCP and to

combine the growth MCP and no-growth MCP to de ne a region within which the

G/NG boundary must lie. This approach has been assessed and compared to a model

of the form of Equation 3.43 by Le Marc and colleagues (Le Marc et al., 2003).

These workers concluded that the logistic regression modeling approach produced

a smoother response surface, more consistent with observations, but that the MCP
approach had the advantage of being directly linked to observations and therefore

was not a prediction from a model.

FIGURE 3.1 Interpolation region (MCP) for a model that includes four-factor combinations

(7, pH, NaCl, NaN0
2).

The interpolation region shown is that for NaCl = 0.5%, but is based

on the complete data set. Solid circles indicate conditions under which observations have

been made, while the lines represent the edges of the MCP. (From Masana, M.O. and Baranyi,

J. Food Microbiol. , 17, 367-374, 2000a. With permission.)
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3.4.3.4 Artificial Neural Networks

Recently, Hajmeer and Basheer (2002, 2003a,b) demonstrated the use of a Proba-

bilistic Neural Network (PNN) approach to de nition of the G/NG interface. PNNs
are a form ofANN (see Section 3.2.6). In a series of papers, based on modeling the

data of Salter et al. (2000) for the effects of temperature and water activity (due to

NaCl) on the growth limits of E. coli, Hajmeer and Basheer concluded that their

PNN models provided a better description of the data of Salter et al. (2000) than

did the nonlinear logistic regression method referred to above. Their conclusion is

considered in more detail in Section 3.4.3.5 below.

It should be noted that neither the logistic regression models described above,

nor the PNN, produce an equation that describes the interface. Rather, the output of

those models is the probability that a given set of conditions will allow growth. To

de ne the interface, it is necessary to rearrange the model for some selected value

of P to generate an equation that describes the G/NG boundary.

3.4.3.5 Evaluation of Goodness of Fit and Comparison

of Models

Methods for evaluation of performance of logistic regression models include the

receiver operating curve (ROC; also referred to as the concordance rate), the Hos-

mer-Lemeshow goodness-of- t statistic, and the maximum rescaled R 2
statistic.

These are considered in greater detail in Tienungoon et al. (2000).

Brie y, the ROC is obtained from the proportion of events that were correctly

predicted compared to the proportion of nonevents that were correctly predicted.

The closer the value is to 1 , the better the level of discrimination. In epidemiological

studies, ROC values > 0.8 are considered excellent. ROC values for G/NG models

are typically much higher.

The Hosmer-Lemeshow index involves grouping objects into a contingency

table and calculating a Pearson chi-square statistic. Small values of the index indicate

a good t of the model.

The maximum rescaled R 2 value is proposed for use with binomial error as an

analogy to the R 2 value used with normally distributed error. The closer the value

is to 1 , the greater is the success of the model in predicting the observed outcome

from the independent variables. Zhao et al. (2001) cite the deviance test and graphical

tools such as the index plot and halfnormal plot as methods for determining goodness

of t of linear logistic regression models.

Other methods based on calculation of indices from the "confusion matrix"

(Hajmeer and Basheer, 2002, 2003b) or the equivalent "contingency matrix"

(Hajmeer and Basheer, 2003a) were used to compare performance between models

derived from different approaches and applied to the same data.

Another method of evaluation is to compare the fitted model to independent data

sets (Bolton and Frank, 1999; Masana and Baranyi, 2000b; Tienungoon et al., 2000)

although, generally, such data are not readily available (see, e.g., McKellar and Lu,

2001). The model of Tienungoon et al. (2000) for L. monocytogenes growth bound-

aries showed very good agreement with the data ofMcClure et al. (1989) and George
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et al. (1988) despite that different strains were involved. There is also a remarkable

level of similarity between the observations of Tienungoon et al. (2000) and the

observations of Le Marc et al. (2002) on growth limits of L. innocna. Several

publications, however, report growth of L. monocytogenes at temperatures lower

than the minimum growth limit predicted by the Tienungoon et al. (2000) model,

possibly indicating strain variation or that the experimental design failed to recognize

important elements that facilitate L. monocytogenes growth at temperatures < 3°C,

i.e., that an inappropriate growth substrate was used. Similarly, McKellar and Lu

(2001) reported that their model failed to predict growth of E. coli 0157:H7 under

conditions where it had been previously reported, although it should be noted that

their model was limited to observation of growth within 72 h. Bolton and Frank

(1999) compared the predictions of their growth limits models for L. monocytogenes

in cheese to the data of Genigeorgis et al. (1991) for L. monocytogenes growth in

market cheese. The models predicted correctly in 65% of trials (42-day model) and

81% of trials (21 -day model).

Given the diversity of approaches, it is pertinent to ask: does one method for

de ning the G/NG interface perform better than another? As with kinetic models,

the ability to describe a specific experimental data set does not necessarily reflect

the ability to predict accurately the probability of growth under novel sets of con-

ditions. While measures of performance of logistic regression models are available,

they can be readily affected by the data set used. Perfect agreement between observed

and modeled data responses may not be possible if there are anomalies in the data.

Figure 3.11 provides a clear example. Nonetheless, for many growth limits models

high rates of concordance (typically >90%) have been reported. As noted earlier, in

epidemiological logistic regression modeling, rates higher than 70% are considered

to represent good ts to the data, implying that the limits to microbial growth are

highly reproducible when well-controlled experiments are conducted.

To date, only one direct comparison of G/NG modeling approaches has been

presented (Hajmeer and Basheer, 2002, 2003a,b) but this was based on one data set

only, i.e., that of Salter et al. (2000) for the growth limits of E. coli in tempera-

ture/water activity space. Only by comparing the performance of different modeling

approaches applied to multiple data sets does an appreciation of overall model

performance emerge. Nonetheless, to illustrate differences between models and give

some appreciation of their overall performance we compare several models using

the data of Salter et al. (2000) for the growth limits of E. coli R3 1 in response to

temperature and water activity. The model types compared are:

1. The PNN of Hajmeer and Basheer (2003a), which those authors were

able to summarize as a relatively simple equation

2. A model of the type of Equation 3.44 fitted to a subset of the Salter et

al. (2000) data set by Hajmeer and Basheer (2003a) (It should be noted

that, contrary to what is stated in that publication, the model presented

by Hajmeer and Basheer was not generated by nonlinear logistic regres-

sion but by a two-step linear logistic regression as described in Presser et

al., 1998)
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FIGURE 3.1 1 Comparison of predicted no growth boundaries for four modeling approaches

applied to the data of Salter et al. (2000) (circles) for the growth limits of Escherichia coli

R31 in response to temperature and water activity (NaCl) combinations. Approach ofHajmeer

and Basheer PNN (heavy solid line); Linear Logistic /Equation 3.44 (heavy dashed line); Le

Marc et al. (2002) (light solid line); Augustin and Carlier (2000a) (light dashed line). The

data set was subsequently augmented with new data (diamonds), which reveals that none of

the models extrapolate reliably. (Solid symbols: growth; open symbols: no growth.)

3. A model of the type of Le Marc et al. (2002; Equation 3.25 to Equation

3.27), where Tmax = 49.23°C (to be consistent with the logistic regression

model parameter), awmm = 0.948, and Tmhl = 8.8°C, based on the minimum
water activity and temperature, respectively, at which growth were

observed

4. A model of the type of Augustin and Carlier (2000b; Equation 3.24)

assuming that Tmin = 8.8°C and awmin = 0.948, consistent with the param-

eter values used for the Le Marc et al. (2002) model

The predicted interfaces are shown in Figure 3.1 1, together with the data used

to generate the models. (Note that the subsets of 143 of the 179 data of Salter et al.

(2000) used by Hajmeer and Basheer (2003a) to t the PNN and the Equation 3.44

type model were not identi ed.)

When compared to the full data set, the level of misprediction ranged from ~15

to 20 of the 179 data points for each of the models, suggesting that the level of

performance was not greatly different despite very different modeling approaches.*

A complication in the comparison of G/NG model performance is that most of the

* It should be noted that this analysis disagrees with the results of Hajmeer and Basheer (2002) who

reported only two to four mispredictions for the total (i.e., training and validation) data set.
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data are readily predicted, e.g., those that fall outside the known limits for growth

for individual environmental factors when all other factors are optimal. Such data

can "overwhelm" the data in which one is most interested, i.e., in the relatively

narrow region where factors interact to reduce the biokinetic ranges and, yet more

specifically, where the probability of growth rapidly changes from "growth is very

likely" to "growth is very unlikely." These data de ne the interface and, consequently,

data closest to the interface are more important when comparing model performance.

This has implications for experimental design, as discussed in Section 3.4.4 below.

To assess whether one model might be preferred on theoretical grounds, as

adjudged by its ability to extrapolate reliably, the predictions of all models in the

temperature range above 35°C can be compared to data subsequently generated,

shown in Figure 3.11, and not used to generate the models. Clearly, none of the

models extrapolate well.

From the above comparison, it appears that despite very different modeling

approaches and degrees of complexity of modeling, there is currently little to dif-

ferentiate those approaches on the basis of their ability to describe the G/NG interface

or on their ability to predict outside the interpolation region.

3.4.4 Experimental Methods and Design Considerations

As suggested above, currently there is little mechanistic understanding of how
environmental factors interact to prevent bacterial growth and it must be recognized

as a possibility that there is no single, common mechanism underlying the observed

boundaries for different factor combinations. Consequently, it is not possible from

rst principles to design the optimal experiment that captures the essential informa-

tion that will characterize the response and lead to reliable models. Instead, at this

time, experimental methods must be focused toward gaining enough data in the

interface region to be able to describe empirically the limits to growth.

First of all, two approaches may be distinguished that could affect the experi-

mental methods chosen. In one, the interest is in whether growth/toxin production,

etc. is possible within some specified time limit, which may be related to the shelf

life of the product. In other approaches, the objective is to de ne absolute limits to

growth, i.e., the most extreme combinations of factors that just allow growth. McKel-

lar and Lu (2001) argue that there is always a time limit imposed on G/NG modeling

studies. Strategies exist, however, that provide greater con dence that the "absolute"

limits to growth are being measured. Some of these are discussed below.

3.4.4.1 Measuring Both Growth and Inactivation

Several groups have assessed both growth and inactivation in their experimental

treatments (McKellar and Lu, 2001; Parente et al., 1998; Presser et al., 1999;

Razavilar and Genigeorgis, 1998). In this way the position of the boundary is inferred

from two "directions." If growth is not observed, an observer cannot be sure whether

growth is not possible or has not occurred yet. If it is known that at some more

extreme condition inactivation occurs, it can be inferred that the G/NG boundary

lies between those two sets of conditions.
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A potential problem with this strategy is that cultures can initially display some

loss of viability, but with survivors eventually initiating growth; i.e., population

decline cannot unambiguously be interpreted as "growth is not possible." Numerous

studies (e.g., Mellefont et al., 2003) have demonstrated that rapid transfer of a culture

from one set of conditions to another that is more stressful can induce injury and

death, but that survivors will eventually adjust and be able to grow. This has been

termed the Phoenix phenomenon (Shoemaker and Pierson, 1976). Such regrowth

has been reported in the context ofG/NG modeling (Bolton and Frank, 1 999; Masana

and Baranyi, 2000b; Parente et al., 1998; Tienungoon et al., 2000).

Clearly, an experimenter interested in determining the "absolute" G/NG bound-

ary will need to maximize the resistance of the inoculum to stress on exposure to

the new, more stressful, environment. The use of stationary phase cultures as inocula

would seem to be a minimum requirement. It may be necessary to habituate cultures

to the test conditions (e.g., growth at conditions just less harsh) prior to inoculation

into the test conditions to maximize the chance that growth, if possible, will be

observed. One way to maximize the likelihood of observing the most extreme growth

limits would be to use cultures growing at the apparent limits as inocula into slightly

more stringent conditions. This also has the advantage of minimizing growth lags

on inoculation into a harsher environment.

3.4.4.2 Inoculum Size

Masana and Baranyi (2000b) indicated that inoculum size affected the position of

the boundary. Robinson et al. (1998) reported similar effects of inoculum density

on bacterial lag times. While it is clear that time to detection would depend on

inoculum density, growth detection methods were not cell-density-dependent in

those studies. Parente et al. (1998) also reported that a decrease in inoculum size

decreased the probability of survival. If the shock of transfer is known to inactivate

a xed proportion of the cells in the inoculum, to develop a robust model it will be

necessary to use an inoculum that ensures that even after inactivation there is a high

probability that at least one cell will survive.

The above observations lend support to the hypothesis that it is the distribution

of physiological states of readiness to survive and multiply in a new environment

that determines the position of the G/NG boundary, i.e., all other things being equal,

the more cells in the inoculum the more likely it is that there is one cell that has

the capacity to survive and grow. This also reinforces the equivalence between G/NG
boundary modeling and the modeling of conditions that lead to in nite lag times.

The importance of the distribution of lag times on the observed lag times of whole

populations has been discussed by Baranyi (1998).

There may be more involved reasons for inoculum density-dependent responses

also, such as chemical messaging between cells (see, e.g., Miller and Bassler, 2001

;

Winans and Bassler, 2000).

In conclusion, if the aim is to determine absolute limits to growth, a higher

number of cells is preferable. Masana and Baranyi (2000b) stated that growth

boundaries "represented the chance of growth for each sample; therefore, to assure

a low probability of growth in many samples, it will be more relevant to consider
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boundaries for high inoculum levels." Equally, as noted above, steps to maximize

the cell's chances of survival and growth in the environment are also recommended.

There is potentially a caveat, however, that needs to be applied. Maximum
population densities of batch cultures are reported to decline under increasingly

harsh growth conditions. Thus, the use of high inocula may mask the true position

of the G/NG boundary if the inoculum used is already denser than the MPD of the

organism in a very stressful test environment.

3.4.4.3 Are There Absolute Limits to Microbial Growth?

In the above discussion it has been implicitly assumed that there are absolute limits

to microbial growth under combined environmental stresses. It is pertinent to exam-

ine this assumption.

Numerous authors have noted that, within an experiment, the transition between

conditions that allow growth, and those that do not, is abrupt and that usually all

replicates at the last growth condition grow, while all the replicates at the rst-growth-

preventing condition do not (Masana and Baranyi, 2000; Presser et al. , 1 998; Tienungoon

et al., 2000). McKellar and Xu (2001), for example, reported that of 1820 conditions

tested, all ve replicates of each condition either grew or did not grow. This abruptness,

however, is not always evident in the modeled results (Tienungoon et al., 2000).

Conversely, between experiments by the same researcher, using the same meth-

ods and the same strain, results are not always reproducible. Figure 3.9 provides an

example and Masana and Baranyi (2000b) make the same observation of their data

for Brochothrix thermosphacta. At the same time, however, there is evidence of

excellent reproducibility of boundaries between independent workers, using different

strains, and different methods in different locations. The results of Tienungoon et

al. (2000) were highly consistent between two strains tested, and more notably, with

those of George et al. (1988) and Cole et al. (1990) presented a decade earlier,

including different strains in one case. There is also a remarkable similarity between

the pH/temperature G/NG interface of Listeria innocua reported by Le Marc et al.

(2002) and the same interface for two species of L. monocytogenes presented in

Tienungoon et al. (2000).

Jenkins et al. (2000) noted that the boundary they derived for the growth limits

of Zygosaccharomyces baillii in beverages was very consistent with a model devel-

oped 30 years earlier for the stability of acidic sauces.

Stewart et al. (2002) noted that with S. aureus, as conditions became increasingly

unfavorable for growth, the contour lines (Pgrowth) they generated drew closer and

closer together, suggesting that conditions were approaching absolute limits that do

not allow growth. Conversely, there are examples where one group's observations

do not agree well with another's for an analogous organisms/environmental pair

(e.g., Bolton and Frank, 1999; McKellar and Xu, 2001). Delignette-Muller and Rosso

(2000) reported strain variability in the minimum temperature for growth.

While the above discussion points to heterogeneity in the physiological readiness

of bacteria to grow in a new environment, Masana and Baranyi (2000b) also infer

that differences in microenvironments, particularly within foods, could also be a

source of heterogeneity in observed growth limits.
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In conclusion, there is a body of experimental evidence that suggests that growth

boundaries, if carefully determined, might be highly reproducible. Conversely, coun-

terexamples exist. It remains to be determined whether the incongruous results arise

from signi cant and measurable differences in methodology, e.g., the detection time

used in the respective studies, or are due to uncontrollable sources (Table 3.7).

3.4.4.4 Experimental Design

As noted above, it is not possible from rst principles to design the optimal exper-

iment that captures the information to characterize the G/NG boundary. Various

authors have suggested physiological interpretations (Battey et al, 2001; Battey and

Schaffner, 2001; Jenkins et al., 2000; Lopez-Malo et al., 2000; McMeekin et al.,

2000) but none have yet been experimentally tested.

Thus, an empirical approach that aims to collect as much information in the

region of most interest, i.e., the G/NG interface, is recommended by most workers.

Several groups of researchers have indicated that they use a two-stage modeling

process. The rst uses a coarse grid of conditions of variables to roughly establish

the position of the boundary. The second phase monitors responses at conditions

near the boundary and at close intervals of the environmental parameters. Variable

combinations far from the interface, at which growth is either highly likely or highly

unlikely, do not provide much information to the modeling process, which seeks to

de ne the interface with a high level of precision. Equally, it is ideal to use a design

that gives roughly equal numbers of conditions where growth is, and growth is not,

observed (Jenkins et al., 2000; Legan et al., 2002; Masana and Baranyi, 2000b, Uljas

et al., 2001). Pragmatically, Legan et al. (2002) recommend setting up "marginal"

and "no-growth" treatments rst because these treatments will run for the longest

time (possibly several months). Those conditions in which growth is expected to be

relatively quick can be set up last because they only need monitoring until growth

is detected.

The nature of these studies necessarily involves long incubation times. Legan

et al. (2002) noted that particular care must be taken to ensure that the initial

conditions do not change over time solely as a result of an uncontrolled interaction

with the laboratory environment. Prevention of dessication or uptake of water vapor

requires particular attention. Changes resulting from microbial activity may, how-

ever, be an important part of the mechanism leading to growth initiation and should

not be stabilized at the expense of growth that would naturally occur in a food.

Legan et al. (2002) comment that, for example, maintaining the initial pH over time

is typically neither possible nor practical, even in buffered media, and that allowing

a change in pH due to growth of the organism more closely mimics what would

happen in a food product than maintaining the initial pH over time.

3.4.4.5 Conclusion

From the above discussion, unambiguous de nition of the G/NG boundary of an

organism in multidimensional space presents several paradoxical challenges. While

an experimenter will do well to remember these considerations in the interpretation
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of his/her results, it seems probable that methods that have been used to date will

have come close to identifying the "true" G/NG boundary, and that the position of

the boundary will move only slightly if an experimenter acts to control all of the

above variables and to maximize the potential for the observation of growth in the

chosen experimental system.

While the discussion has not focused specifically on appropriate methods for

probability of growth within a defined time, many of the same principles and

considerations will apply.

Moreover, the field of growth limits modeling, while having an equally long

history as kinetic modeling, now seems to be quite disjointed, with little rigorous

comparison of approaches, let alone agreement on the most appropriate model

structures or experimental methods. In particular, the earlier work in probability

modeling seems to have been ignored by some more contemporary workers, without

reasons being indicated.

The results of G/NG studies are clearly of great interest to food producers and

food safety managers. It is perhaps time, then, that the G/NG modeling community

seeks to find common ground and to begin to develop a rigorous framework for the

development, and interpretation, of growth limits studies.

APPENDIX A3.1 — CHARACTERIZATION OF
ENVIRONMENTAL PARAMETERS AFFECTING

MICROBIAL KINETICS IN FOODS

A3.1.1 Temperature

In most situations, temperature is the major environmental parameter in uencing

kinetics of microorganisms in food and its effect is included in most predictive

microbiology models. During processing, storage, and distribution the temperature

of foods can vary substantially, frequently including periods of temperature abuse

for chilled foods (see, e.g., Audits International, 1999; James and Evans, 1990;

O'Brien, 1997; Sergelidis et al., 1997). Thus, it is an important property of secondary

models that they can predict the effect of changing temperatures on microbial

kinetics and application of these models relies on information about product tem-

perature and its possible variation over time. Numerous types of thermometers,

temperature probes, and data loggers are available (McMeekin et al, 1993, pp.

257-269; seagrant.oregonstate.edu/extension/ sheng/loggers.html) to measure the

temperature of foods or food processing equipment. Infrared non-contact thermom-

eters are often appropriate for foods but their use is limited for process equipment

with stainless surfaces.

A3.1.2 Storage Atmosphere

Foods are typically stored aerobically, vacuum packed, or by using modi ed atmo-

sphere packing (MAP). "Controlled atmosphere packaging" can be considered a

special case of MAP. MAP foods are exposed to an atmosphere different from both
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air and vacuum packed usually involving mixtures of the gasses carbon dioxide

(C0
2),

nitrogen (N
2),

and oxygen (0 2 ).

2
and C0

2
in uence growth of most microorganisms and secondary predictive

models must take their effect into account. The solubility of
2
in water, and thereby

into the water phase of foods, is low (~0.03 1/1) but it can be important for growth

and metabolism of microorganisms in both aerobic and MAP-stored products

(Dainty and Mackey, 1992). Numerous techniques and instruments are available to

determine
2
in the gas phase or dissolved in food. Microelectrodes to determine

gradients of dissolved
2

in foods are available (www.instechlabs.com/oxy-

gen.html; www.microelectrodes.com/) but models to predict the effect of such

gradients remain to be developed. To account for the effect of aerobic or vacuum

packed storage of foods a categorical approach has been used within predictive

microbiology. For aerobic conditions growth media with access to air have been

agitated. For vacuum packed foods microorganisms typically have been grown

under 100% N
2

.

C0
2
inhibits growth of some microorganisms substantially and, to predict micro-

bial growth in MAP foods, it is important to determine the equilibrium concentration

in the gas phase or the concentration of C0
2
dissolved into the foods water phase.

At equilibrium, the concentration of C0
2
dissolved into the water phase of foods

is proportional to the partial pressure of C0
2
in the atmosphere surrounding the

product. Henry's law (Equation A3.1) provides a good approximation for the solu-

bility of C0
2

.

COA— =KH PC02
(A3.1)

In Equation A3. 1, KH is Henry's constant (mg/l/atm) and pC0
2
is the partial pressure

(atm) of C0
2

. Between and 160°C the temperature dependence of the Henry's

constant can be predicted by Equation A3. 2:

r-i _^_ -iKH (mg - 1 - atm ) =

101325-2.4429 (A3 -2)

exp(-6.8346 + 1 .2817 10
4

/ K - 3.7668 • 10
6

/ K 2 + 2.997 • 10
3

/ K 3

)

where K is the absolute temperature (Carroll et al., 1991). Those authors expressed

Ku as MPa/mole fraction. In Equation A3.2 the constants 101,325 Pa/atm and 2.4429

was used to convert this unit into mg C0
2
/1 H

2
0/atm.

For MAP foods in exible packaging the partial pressure of C0
2
is conveniently

determined from the percentage of C0
2
inside the pack. A range of analytical

methods is available to determine C0
2
concentration in gas mixtures or concentra-

tions of dissolved C0
2
(Dixon and Kell, 1989; www.pbi-dansensor.com/Food.htm).

As shown from Equation A3.1 and Equation A3.2, the concentration of C0
2

dissolved in the water phase of a MAP food with 50% C0
2
in the headspace gas at

equilibrium is 1.67 g/1 at 0°C and 1.26 g/1 at 8°C. Because of the high solubility of
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C0
2
in water the gas composition in the headspace of MAP foods changes after

packaging. The equilibrium gas composition is in uenced by several factors, e.g.,

the percentage ofC0
2
in the initial headspace gas (%C0

2

Imtial
), the initial gas/product

volume ratio (G/P), temperature, pH, lipids in the food, respiration of the food, and,

of course, permeability of the packing lm. Different mass-balance equations to

predict the rate of adsorption and solubility ofC0
2
have been suggested (Devlieghere

et al, 1998; Dixon and Kell, 1989; Gill, 1988; Lowenadler and Ronner, 1994;

Simpson et al., 2001 a,b; Zhao et al., 1995). In chilled foods the rate of absorption

of C02 is rapid compared to growth of microorganisms. Therefore, to predict micro-

bial growth in these MAP foods it is suf cient to take into account the equilibrium

concentration of C02 .

Devlieghere et al. (1998) suggested Equation A3. 3 to predict the concentration

of C0
2
in the water phase as a function of %C0

2

Imtial and G/P. In Equation A3. 3,

dC02 is the density of C0
2 (1.976 g/1).

/

V

G
P

\

dC0
2
+ KH

)

(G

\(~ir} "1Equilibrium

L 2-1 aqueous

V P
dC0

2
+ KH

)

( 4

V 100
KH —- %CO*nitial dC0

2P J

2
(A3.3)

Equation A3. 3 does not take into account the effect of the storage temperature and

Devlieghere et al. (1998) developed a polynomial model to predict the concentration

of dissolved C0
2
as a function of %C0

2

Imtial
, G/P, and temperature. If, for example,

%C0
2

Imtial
is 25, the polynomial model predicts that a G/P ratio of three results in

higher concentration of dissolved C0
2
than does a G/P ratio of 4, which is not

logical. In contrast we have found that the combined use of Equation A3. 2 and

Equation A3. 3 provides realistic predictions for concentrations of dissolved C02 . It

also seems relevant to include the effect of product pH on dissolved C0
2 , and thereby

the equilibrium concentration of C0
2
in the gas phase of MAP foods.

A3.1.3 Salt, Water-Phase Salt, and Water Activity

While temperature is the single most important storage condition in uencing growth

of microorganisms in foods, NaCl is the most important product characteristic in

many foods. The concentration of NaCl in foods can be determined as chloride by

titration (Anon., 1995a). Instruments to determine NaCl indirectly from conductivity

measurements are available but extensive calibration for particular types of products

may be required. In fresh and intermediate moisture foods, NaCl is dissolved in the

water phase of the products.

To predict the effect of NaCl on growth of microorganisms in these products

the concentration of water-phase salt (WPS) or relative humidity, i.e., the water

activity (aw) must be determined (Equation A3.4 to Equation A3.7).

Water-phase salt can be calculated from Equation A3.4:
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% Water phase salt =

%NaCl (w/v) x 100/(100 - % dry matter +%NaCl (w/v)) (A3.4)

Water activity is a fundamental property of aqueous solutions and is de ned as:

a = -5- (A3.5)w
Po

where p is the vapor pressure of the solution and p is the vapor pressure of the

pure water under the same conditions of temperature, etc.

For mixtures of NaCl and water there is a direct relation between the WPS
content and aw (Resnik and Chirife, 1988; Equation A3.6 and Equation A3. 7). For

cured foods where NaCl is the only major humectant these relations are valid as

documented, e.g., for cold-smoked salmon (Jorgensen et al., 2000) and processed

"delicatessen" meats (Ross and Shadbolt, 2001). To determine water activity of

foods, instruments relying on the dew point method are now widely used because

of their speed (providing results within a few minutes), robustness, and reliability

but other methods and instruments are available (Mathlouthi, 2001).

aw = 1-0.0052411 -%WPS- 0.00012206 -%WPS2
(A3.6)

% WPS =8-140.01 -(a -0.95) -405. 12 -(a -0.95)
2

(A3.7)w / v w

A3.1.4 pH

For many microorganisms, small pH variations in the pH range ~6 to -7 have very

little or no effect on population kinetics. In more acidic foods, however, pH per se

can greatly in uence microbial kinetics but can also accentuate the effect of other

added preservative compounds. The pH of solid foods is often determined by homog-

enizing 10 g of a sample with 10 to 20 ml of distilled water and measuring the pH
of the suspension using a standard combined electrode.

A3.1.5 Added Preservatives Including Organic Acids,

Nitrate, and Spices

High concentrations of organic acids occur naturally in some foods and various

organic acids including acetic acid, ascorbic acid, benzoic acid, citric acid, lactic

acid, and sorbic acid are frequently added to foods. Organic acids can inhibit growth

of microorganisms markedly and secondary models to predict their inhibitory effect

are frequently needed. As for NaCl the secondary models must take into account

the concentration of organic acids in the water phase of products. In addition,

secondary models may need to describe the combined effect of organic acids and

other environmental parameters particularly the pH.
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In solution, organic acids exist either as the dissociated (ionized) or undissociated

species. The Henderson-Hasselbalch equation (Equation A3. 8) relates the proportion

of undissociated and dissociated forms of organic acid to pH and pK
a
according to

the following expression:

[A-]/[HA] = 10H-PKa (A3.8)

where [HA] is the concentration of undissociated form of the acid, [A~] the concen-

tration of dissociated (ionized) form of the acid, and pK
a
is the pH at which the

concentrations of the two forms are equal.

While both the dissociated and the undissociated forms of organic acids have

inhibitory effects on bacterial growth the undissociated form is more inhibitory,

usually by two to three orders ofmagnitude, than the dissociated form (Eklund, 1989).

Cross-multiplying and rearranging Equation A3.8 to solve for [HA] gives:

[HA] = [LAC]/(1 + 10PH"PKa) (A3. 9)

where [LAC] is the total lactic acid concentration and all other terms are as previously

de ned.

As the concentration of an undissociated acid increases the growth rate of

microorganisms decreases, eventually ceasing completely at a level described as the

MIC. This behavior, and its dependence on the interaction of pH and total organic

acid concentration, is included explicitly in several secondary models (Augustin and

Carrier, 2000a; Presser et al., 1997).

Simple enzyme kits are available to determine several of the organic acids that

are important in foods. Simultaneous determination of a range of organic acids is

possible by HPLC analysis and is often an appropriate method to use (Dalgaard and

Jorgensen, 2000; Pecina et al., 1984).

Nitrite can be added to some types of meat products and its concentration in the

water phase of products must be taken into account when secondary predictive

models for these products are developed. Colorimetric methods are available to

measure the concentration of nitrite in foods (Anon., 1995b; Karl, 1992).

Spices and herbs can have substantial antimicrobial activity and appropriate

terms may need to be included in secondary models (Koutsoumanis et al., 1999;

Skandamis and Nychas, 2000). The concentration of active antimicrobial compo-

nents in spices, herbs, and essential oils can vary substantially as a function, e.g.,

of geographical region and season (Nychas and Tassou, 2000; Sofos et al., 1998).

Therefore, the development of accurate secondary predictive models most likely will

have to rely on the concentration of their active antimicrobial components. Recently,

Lambert et al. (2001) showed the antimicrobial effect of the oregano essential oil

quantitatively corresponded to the effect of its two active components, i.e., thymol

and carvacrol. To quantitatively determine active components in spices, herbs, and

essential oils appropriate extracts can be analyzed by GC/MS techniques (Cosentino

et al., 1999; Cowan, 1999).
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A3. 1.6 Smoke Components

It has long been known that high concentrations of smoke components have strong

antimicrobial activity (Shewan, 1949). Today many meat and seafood products are

smoked but typically less intensively than some decades ago. However, even mod-

erate concentrations of smoke components can in uence growth rates, growth

limits, and rates of death/inactivation of microorganisms in foods (Leroi et al.,

2000; Leroi and Joffraud, 2000; Ross et al., 2000b; Sunen, 1998; Thurette et al.,

1998). Thus, to obtain accurate prediction of microbial kinetics in smoked foods

it is important to include terms for the effect of smoke components in secondary

models. Phenols are important antimicrobials in wood smoke, or in liquid smokes,

and a few secondary models include the total phenol concentration as an environ-

mental parameter (Augustin and Carlier 2000a,b; Gimenez and Dalgaard, in press;

Membre et al., 1997).

Classical colorimetric methods can be used to determine the total concentration

of phenols in smoked foods. These methods rely on formation of colored complexes,

e.g., between phenols and Gibb's reagent (2,6-dichloroquinone-4-chloroimide) or 4-

aminoantipyrine (Leroi et al., 1998; Tucker, 1942). The total phenol concentration

is a crude measure of how intensely foods have been smoked. By using GC/MS
techniques more detailed information about specific smoke components can be

obtained (Guillen and Errecalde, 2002; McGill et al., 1985; Toth andPotthast, 1984).

In the future, secondary models may be developed to include the effect of specific

phenols, other specific smoke components, and possibly their interaction with NaCl.

During the smoking of foods, phenols and other smoke components are mainly

deposited in the outer 0.5 cm of the product (Chan et al., 1975). Modeling the effect

of the spatial distribution in foods is another challenge.

A3.1.7 Other Environmental Parameters

The environmental parameters discussed above include those that are of major

importance in traditional methods of food preservation. Many modern methods of

food preservation also rely on combinations of these environmental parameters.

However, the effect of a few well-known and several emerging food processing

technologies relies on the antimicrobial effect of other environmental parameters,

e.g., bacteriocins, gamma irradiation, high electric field pulses, high pressure, and

UV light. Secondary models for the effect of some of these environmental parameters

have been developed but will not be discussed here in detail. Other environmental

parameters related to food structure and to the effect of microbial metabolism on

changes in environmental parameters are discussed in Chapter 5 whereas the effect

of time-varying environmental parameters is discussed in Chapter 7.
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