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FIGURE 2.1 Stages of a bacterial growth curve.

2.1 GROWTH MODELS

2.1.1 Introduction

The concept of the primary model is fundamental to the field of predictive micro-

biology (see the definition of a model in the Preface). A primary model for microbial

growth aims to describe the kinetics of the process with as few parameters as

possible, while still being able to accurately define the distinct stages of growth. A
typical bacterial growth curve is shown in Figure 2.1. When the increase in popu-

lation density (usually defined as the base 10 logarithm of cell numbers) is plotted

against time, the resulting curve usually has four phases, referred to respectively as

the lag, exponential, stationary, and death or decline phases.

In the only book published thus far that is devoted exclusively to the field of

predictive microbiology, McMeekin et al.
1 provide an excellent review and discus-

sion of the classical sigmoid growth functions, especially the modified logistic and

Gompertz equations. As they point out, these are empirical applications of the

original logistic and Gompertz functions. They lack mechanistic interpretability

though the original logistic and Gompertz functions are considered mechanistic

models. Over the last decade, a new generation of bacterial growth curve models

have been developed that are purported to have a mechanistic basis: for example,

the Baranyi model,23 the Hills model,45 the Buchanan model,6 and the heterogeneous

population model.7 In addition to the book by McMeekin et al., other authors have

provided reviews of microbial growth models. 38-11

In this chapter, we will review the modified logistic and Gompertz equations as

well as the new models that were not covered by McMeekin et al.
1 and discuss their

applications. We will compare these models based on their performance in predictive

microbiology applications.
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2.1.2 The Logistic and the Gompertz Functions

Sigmoidal functions have been the most popular ones used to fit microbial growth

data since these functions consist of four phases, similar to the microbial growth

curve. 9 The most commonly used are the modified logistic (Equation 2.1) and the

modified Gompertz (Equation 2.2) introduced by Gibson et al.
12

:

logx«) = A+ C
(2.1)

log x{t) = A + Cexp{- exp[-B(t - Af)]

}

(2.2)

where x(t) is the number of cells at time t, A the asymptotic count as t decreases to

zero, C the difference in value of the upper and lower asymptote, B the relative

growth rate at M, andM is the time at which the absolute growth rate is maximum. 19

The above functions use log x(t) instead of x(t) as the response variable. Thus,

they are not simply reparameterizations of the original logistic 13 ' 14 and Gompertz 15

functions, but are "modified" functions. The original logistic and Gompertz functions

are considered to be mechanistic; however, the modified functions are empirical.

The parameters of the modified Gompertz equation can be used to characterize

bacterial growth as follows 1
:

<? = 2.718

lag time = Af-(1 //?) + -

(2.3)
BC/e

exp onential growth rate = BC I e

generation time = log(2)e / BC = 0.8183 / BC

The expression in Equation 2.3 for lag time is different from the following Equation

2.4 proposed by Gibson et al.
12 and other workers 16,17

:

lag time = M (2.4)
B

As explained by McMeekin et al.,
1 Equation 2.3 is a more general and correct

expression for the lag time.

In order to simplify the fitting process, reparameterized versions of the Gompertz

equation have been proposed 18,19
:
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where A = log 10 -x (log 10 cfu x ml [

), x is the initial cell number, C the asymptotic

increase in population density (log 10 cfu x ml *), R
g
the growth rate (log

10
cfu h '),

and X is the lag-phase duration (h).

2.1.2.1 Applications of the Logistic Model

There have been limited examples of fitting of microbial growth data using the

logistic function, since the Gompertz function, which is asymmetric about the point

of inflection unlike the logistic function,9 '20 '21 is generally preferred. Some recent

examples include modeling of fish spoilage22-24 and colony diameter of fungi. 25 A
variation of the logistic model with a breakpoint at the transition between the lag

phase and the exponential phase has also been used to model the lag phase of

Listeria monocytogenes 26

2.1.2.2 Applications of the Gompertz Equation

The Gompertz equation has been used extensively by researchers to fit a wide variety

of growth curves from different microorganisms. Some of the recent models devel-

oped with the Gompertz function include those for Yersinia enterocolitica 21 Sta-

phylococcus aureus

i

2 *'29 L. monocytogenes,30 Vibrio parahaemolyticus 33 and Bacil-

lus cereus. 32,33

The Gompertz function has also been applied to growth curves based on turbidity

data34 ; mixed cultures of Pseudomonas spp. and Listeria spp. 35 '36
; Lactobacillus

curvatus31
', spoilage of vegetables,38 beer, 39 and meat40

; and germination and growth

of Clostridium botulinum..A{

There are, however, some limitations associated with the use of the Gompertz

function. The Gompertz rate (|imax) is always the maximum rate and occurs at an

arbitrary point of inflection42-44 ; thus the generation time can be underestimated by

as much as 13%. 31 In addition, since the slope of the function cannot be zero, the

lower asymptote must be lower than the inoculum level, giving a negative X for

some data sets.
43 Another limitation is that, in order to get a good fit, experimental

data are required over the whole growth range. 121

2.1.3 Baranyi Model

In a series of papers,2 '3,10 Baranyi and coworkers introduced a mechanistic model

for bacterial growth. Briefly, the lag phase is attributed to the need to synthesize an

unknown substrate q that is critical for growth. Once cells have adjusted to the new

environment, they grow exponentially until limited by restrictions dictated by the

growth medium; thus:
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Time

FIGURE 2.2 Example of a growth curve generated by the Baranyi and McKellar models.

Parameters are defined in the text.

dx q(t)

r

dt q(t) +

1

•H max
1-

V

' x(t)
A

\ max /

m\

X(t) (2.6)

/

where x is the number of cells at time t, xmax the maximum cell density, and q(t) is

the concentration of limiting substrate, which changes with time:

dq

dt
= H max q(t) (2.7)

The initial value of q (q ) is a measure of the initial physiological state of the cells.

A more stable transformation of q may be defined as:

/

h
Q
= In

\

1 +
v q

= LL Xr max (2.8)

oy

The parameter m characterizes the curvature before the stationary phase. When
m-\ the function reduces to a logistic curve, a simplification of the model that is

often assumed. Thus, the final model has four parameters: x , the initial cell number;

h ; xmax ; and |i-max . The output of this model (and the relationship between h , X, and

|lmax ) is shown in Figure 2.2.45

An explicit version of the Baranyi model has also been derived:
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v
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V
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o 7

where y(t) = In jc(f) , y = In x , and v is the rate of increase of the limiting

substrate, generally assumed to be equal to \imax

2.1.3.1 Applications of the Baranyi Model

Since its inception in the early 1990s, the Baranyi model has been used extensively

to model microbial growth. The popularity of this model has been facilitated by the

availability of two programs: DMFit, an Excel add-in; and MicroFit, a stand-alone

fitting program, distributed by the Institute of Food Research in the U.K.

(http://www.ifr.bbsrc.ac.uk/Safety/DMFit/default.html). The model was used for

growth modeling of a wide variety of microorganisms, the results of which are

included in the Food MicroModel software.46 Some recent applications were related

to Listeria monocytogenes,47,48 B. cereus 49 Escherichia coli,
50

Y. enterocolitica,51

increasing colony diameter of heat-resistant fungi,52 and spoilage in green asparagus

and vegetable salad. 53 '54

One of the advantages of the Baranyi model is that it is readily available as a

series of differential equations that allow modeling in a dynamic environment,

generally resulting from nonisothermal temperature profiles. This form of the model

was used to describe the behavior of E. coli at suboptimal temperatures,55 and to

develop and validate a dynamic growth model for L. monocytogenes in fluid whole

milk.5657 It has also been used to study the influence of either slowly58 or rapidly59

changing temperature on the growth of L. monocytogenes and Salmonella.

2.1.4 Hills Model

A general theory of spatially dependent bacterial growth in heterogeneous systems

was developed by Hills and coworkers.45 This was achieved by combining a struc-

tured-cell kinetic model with reaction-diffusion equations describing transport of

nutrients.4 The model was based in part on the concept of DNA synthesis and cell

division being dependent on the excess cell biomass.

Assume M is the total biomass in the culture and N is the total number of cells

in the culture. It can be shown that for inoculation with stationary-phase cells,

Af(*) = Af(0)exp(Af)

N(t) = N(0)[k
n
exp(Ar) + Aexp(-£/)] / (A + k

n )

(2.11)

A and k are rate constants; in general, they depend on all the environment factors.

The expression for N(t) in Equation 2.1 1 has a much simpler form than the empirical
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Gompertz function for fitting population growth, being a biexponential function

where the second term, involving the rate of DNA synthesis, gives rise to the

observed lag behavior. The lag time and the doubling time have the following

relationships:

rLAO =A-
1

log[l + (A/^)]
(2.12)

tLAG /tD =(ln2)-
l

log[l + (A/k
n )]

This shows that if the rate constants A and k
n
have similar activation energies, the

ratio of lag to doubling time should be nearly independent of temperature. This

model takes no account of possible lag behavior in the total biomass (M).

The above model can also be generalized to spatially inhomogeneous systems

such as food surfaces.4 If more detailed kinetic information on cell composition is

available, more complex multicompartment kinetic schemes can be incorporated. A
two-compartment kinetic model of bacterial population dynamics has been devel-

oped that is capable of describing the phenomena of lethal and sublethal injury,

resuscitation, and transient conditions. A more general three-compartment kinetic

model has been developed to interpret lag behavior in total biomass. These models

can be further generalized to describe growth in spatially heterogeneous systems. 5

2.1.4.1 Applications of Hills Model

There have been few applications of the Hills model. The above two-compartment

kinetic cell model was shown to fit batch-growth data for L. monocytogenes4 and

for Salmonella typhimurium. 5 More recently, the model was used for modeling viable

counts of S. typhimurium in gel cassettes.60

2.1.5 Buchanan Three-Phase Linear Model

Buchanan et al.
6 proposed a three-phase linear model. It can be described by three

phases: lag phase; exponential growth phase; and stationary phase:

Lag Phase:

For*<*MG, N
t
= N

Exponential Growth Phase:

For tLAG < t < tMAX , N
t
= N + \L(t - tLAG) (2. 1 3)

Stationary Phase:

For t > tMAX, N
t
= NMAX

where N
t
is the log of the population density at time t (log cfu ml-1

); JV the log of

the initial population density (log cfu ml-1
); NMAX the log of the maximum population
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and on cooked chicken62 and ground chicken63 breast meat. Fitting was accomplished

using a useful nonlinear regression software package called Prism (GraphPad Soft-

ware, San Diego, CA) in which an if-then statement defines the model:

N
t
=N

o
+mt^tIAa,0,\i-(t-tIAa )] (2.16)

with symbols defined in Equation 2.13. A two-phase model was also used to model

growth of E. coli 0157:H7. 64

2.1.6 McKellar Model

One of the limitations of existing models is that they all assume a homogeneous

population of cells. A heterogeneous population model was recently proposed in

which growth was expressed as a function of two distinct cell populations.7 Cells

can exist in one of two "compartments" or states: growing or nongrowing. All growth

was assumed to originate from a small fraction of the total population of cells that

are present in the growing compartment at t = 0. Subsequent growth is based on the

following logistic equation:

dG .,

= G-\L
dt N

V
vMAxy

(2.17)

where G is the number of growing cells in the growing compartment. The majority

of cells were considered not to contribute to growth, and remained in the nongrowing

compartment, but were included in the total population. While this is an empirical

model, it does account for the observation that growth in liquid culture is dominated

by the first cells to begin growth, and that any cells that subsequently adapt to growth

are of minimal importance.7

This model has an interesting relationship with the Baranyi model. It is derived

from a different initial premise, that microbial populations are heterogeneous rather

than homogeneous. It is based on two populations of cells that behave differently,

rather than a single population. The sum of the two populations effectively describes

the transition from lag to exponential phase, and defines a new parameter G , the

initial population capable of growth. Reparameterization of the model led to the

finding that a relationship existed between |i.max and X, which is shown in Figure

2.2,
7 and which had been derived by Baranyi from a more mathematical argument. 3

Baranyi65
later supported the geometric relationship in Figure 2.2, and stated that

the initial physiological state of the whole population could reside in a small sub-

population. Thus, the McKellar model constitutes a simplified version of the Baranyi

model, and has the same parameters.

The concept of heterogeneity in cell populations was extended further to the

development of a combined discrete-continuous simulation model for microbial

growth.66 At the start of a growth simulation, all of the cells were assigned to the

nongrowing compartment. A distribution of individual cell lag times was used to

generate a series of discrete events in which each cell was transferred from the
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nongrowing to the growing compartment at a time corresponding to the lag time for

that cell. Once in the growing compartment, cells start growing immediately accord-

ing to Equation 2.17. The combination of the discrete step with the continuous

growth function accurately described the transition from lag to exponential phase.

This model was further modified to include a continuous adaptation phase prior to

the discrete event. 67 A new physiological state parameter p was proposed that

represents the mean of the initial individual cell physiological states. This model is

dynamic in both the lag and exponential phases, and thus is useful for simulating

the behavior of individual cells in a changing environment.

2.1.6.1 Applications of the McKellar Model

This model has not been used extensively for modeling microbial growth partly

because of its similarity to the Baranyi model. It is also a compartmental model,

and as such cannot be fitted easily using conventional nonlinear regression programs.

This model was fitted to data for growth of L. monocytogenes at 5 to 35°C, and

compared to the Gompertz model.7 Values for |lmax were slightly higher with this

model, and X were generally shorter than found with the Gompertz model. Goodness-

of-flt analysis suggested that the McKellar model generally fit the data better than

the Gompertz.

2.1.7 Other Models

There have been a large number of alternative models proposed for modeling micro-

bial growth. Many of the earlier ones have been thoroughly discussed by McMeekin

et al.,
1 and will not be discussed further here.

Whiting and Cygnarowicz-Provost68 suggested a quantitative four-parameter

model for the germination, growth, and decline of C. botulinum, and the growth of

L. monocytogenes. Jones and Walker69 developed an equation to predict growth,

survival, and death of microorganisms based on data obtained using Y. enterocolitica

in varying pH and sodium chloride concentrations at different temperatures. Van

Impe et al.
70 proposed a dynamic first-order differential equation to predict both

microbial growth and inactivation, with respect to both time and temperature. We
are expecting more accurate and more mechanistic primary models when people

gain more knowledge on the kinetics of individual cells and behavior of bacteria.

Recently, a series of three models has been proposed in which |l can increase, remain

constant, or decrease with time. 71 The latter two models bear some resemblance to

those discussed earlier; however, the concept of (J increasing with time was designed

to accommodate the observation that recombinant E. coli initially grew rapidly in a

bioreactor because of high substrate concentrations.

2.1.8 Examples of Growth Model Fitting

It seems appropriate at this point to provide an example of how some of the more

popular and useful functions may be used to fit experimental growth data. The data

selected (taken from an earlier study7
) were for the growth of L. monocytogenes at

5°C (Table 2.1). The models used in this comparison were Gompertz using Equation

2004 by Robin C. McKellar and Xuewen Lu
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TABLE 2.1

Growth Data for Listeria monocytogenes

at 5°C

Time (d)

6

24

30

48

54

72

78

99

126

144

150

168

174

191

198

216

239

266

291

316

336

342

360

384

log cfu ml 1

4.8

4.7

4.7

4.7

4.9

5.1

5.3

5.4

5.9

6.3

6.9

6.9

7.2

7.3

7.7

7.8

8.3

8.8

9.1

9.2

9.3

9.7

9.7

9.7

9.5

2.5, Baranyi using Equation 2.6 and Equation 2.7, McKellar using Equation 2.17,

and Buchanan using Equation 2.13. Nonlinear regression analysis was done using

the ModelMaker® software (Modelkinetix, Old Beaconsfield, Bucks, U.K.,

www.modelkinetix.com), which uses the Runge-Kutta method for solving differen-

tial equations. Initial parameter estimates were made using the simplex method, and

regression was performed using the Marquardt algorithm. The Baranyi and McKellar

models gave values for |i max directly, since they were in the form of differential

equations, and modeled the cell number rather than log
10

cfu ml-1
. The Gompertz

and Buchanan models were applied directly to log 10 cfu ml-1
data, and thus the rate

parameter (/? ) obtained from the fitting had to be converted to |i max using the

relationship \lmax
= R -In 10. The X parameter for the Gompertz and Buchanan

models was obtained directly from the fitting, while the values for the Baranyi and

McKellar models were derived from the h parameter values using the following

relationship: h = \i max
• X . The Baranyi model (BaranyiMF) was also fitted using the

MicroFit software, in which the model was reparameterized to fit X directly. The
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TABLE 2.2

Results of Model Fitting to Growth Data

Model3
\i (h" 1

) k (d) Log xQ Log xmax DF RMSE

BaranyiMF
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FIGURE 2.4 Comparison of growth models fitted to viable count data of Listeria monocy-

togenes grown at 5°C.

on the difficulties in modeling X, and the role of the physiological state, can be found

in Chapter 9, and a more complete discussion of model fitting can be found in

Chapter 4.

2.1.9 Comparison of Existing Models

Zwietering et al.
18

statistically compared several different modified sigmoidal func-

tions (Logistic, Gompertz, Richards, Schnute, and Stannard) using the Mest and the

F-test. In most of the cases, the modified Gompertz expression was regarded as the

best model to describe the growth data both in terms of statistical accuracy and ease

of use when compared to other sigmoidal functions.

Baranyi et al.
2 compared the output of their model with that of the Gompertz,

and concluded that the goodness of fit was generally at least as good. They also

showed that their model gave estimates for lag and growth rate that were slightly

lower than in the Gompertz case. Baranyi et al. also compared their model to those

of Hills 10 and Buchanan72 and stated that these models are special cases of the

Baranyi model. Baranyi argues that the Buchanan model has merit in its simplicity,

but that the model lacks the capability of simulating dynamic behavior.72 Buchanan

et al.
6 asserted that their three-phase model is comparable to, and more robust than,

either the Gompertz or the Baranyi models, especially when experimental data were

minimal. The three-phase linear and Baranyi models predicted similar maximum
population densities. These values were typically smaller than the values provided

by the Gompertz model. Garthright44 strongly supports the three-phase model, and

points out its superiority in describing the lag and exponential phases as compared

to the Gompertz. He concludes that the nonlinear approach does not achieve any

advantage over the three-phase linear approach for environmental applications. This

model appears particularly appropriate for modeling conditions where growth is

poor, and an upper asymptote cannot be accurately fixed. The Baranyi model and

the McKellar model can also be used when stationary-phase data are lacking.
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Other comparisons between growth models have been made. A comparison of

the logistic, Gompertz, and Baranyi models for fish spoilage showed that the logistic

function was similar to the Baranyi but easier to fit.
73 A comparison between Gomp-

ertz and Baranyi models gave better fit with the Baranyi model, and a higher growth

rate with Gompertz.74 The Gompertz function was found to be more appropriate

than the Baranyi model for monitoring C0
2
evolution as an indicator of bacterial

growth.75 Other workers have compared the Baranyi and Gompertz models, and have

concluded that the Baranyi function gave better parameter estimates as compared to

the Gompertz.76

At the present time it is not possible to select one growth model as the most

appropriate representation of bacterial growth. If simple is better, then the three-

phase model is probably sufficient to represent fundamental growth parameters

accurately.4477 There does appear to be general agreement in relationship to under-

lying principles, and emphasis should be placed on the development and use of

models and parameters that can be easily understood by food microbiologists. 77

However, in spite of Garthright's assertion that straight line simplicity is sufficient

to model growth,44 the development of more complex models (and subsequently

more mechanistic models) will depend on an improved understanding of cell behav-

ior at the physiological level.

2.2 SURVIVAL MODELS

2.2.1 Introduction

Our ability to understand and model the survival of pathogens in foods or during

processing of food is critical to the safety of the food supply. Thus, models to

describe microbial death due to heating have been used since the 1920s, and con-

stitute one of the earliest forms of predictive microbiology. Much of the early work

centered around the need to achieve destruction of C. botulinum spores in low acid

canned foods, 17
'
78,79 and much effort has been put towards characterizing the kinetics

of spore inactivation. In this section of the chapter we will focus on the evolution

of survival modeling from the classical linear approach to the more complex models

required to describe inactivation curves that deviate from linearity.

2.2.2 Classical Linear Models

It has always been assumed that spore inactivation follows simple first-order reaction

kinetics under isothermal conditions:

dS
t—^ = -k'S

t
(2.18)

dt

where S
t
is the survival ratio (NJNQ)

and k' is the rate constant. Thus the number of

surviving cells decreases exponentially:
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S,=e-k't
(2.19)

and when expressed as log
10 , gives:

log S. = -kt (2.20)

where k = k'/ln 10. The well-known D-value (time required for a 1-log reduction)

is thus equal to Ilk, where k is the slope (Figure 2.5). The D-values can also be

expressed as:

D -value =
log N, - log N

t

(2.21)

When log D-values are plotted against the corresponding temperatures, the reciprocal

of the slope is equal to the z-value, which is the increase in temperature required

for a 1-log decrease in D-value (Figure 2.5; inset). The rate constant can also be

related to the temperature by the Arrhenius equation:

k = N e

F A

RT
(2.22)

where E
a
is the activation energy, R the universal gas constant, and T is the temper-

ature in Kelvin.

From the first-order reaction it is not possible to achieve complete destruction

of all C. botulinum spores in a given volume of product; one spore will always be

Time (min)

FIGURE 2.5 Geometric description of D- and z-values. (From McKellar, R.C., Modelling

the effectiveness of pasteurization, in Dairy Processing: Maximizing Quality, Smit, G., Ed.,

CRC Press Inc./Woodhead Publishing, 2003 pp. 104-129. With permission.)
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left in a can if a sufficient number of cans are examined. Thus it is generally assumed

that a 12-log reduction (also known as 12D) is sufficient to achieve "commercial

sterility," or an acceptable level of risk of survival of C. botulinum. Knowledge of

the D-values of representative strains allows the determination of the F -value, which

is the time required to achieve 12D, assuming a z-value of 10°C. At 121°C, F is

equal to 2.5 min for most strains of C. botulinum. 11

Comparable standards for other food-borne pathogens do not exist; however, it

is generally accepted that a 4- or 5 -log reduction is considered adequate, depending

on the product. An extensive amount of work has gone into the determination of D-

and z-values for various pathogens. Thermal stability of pathogens such as L. mono-

cytogenes* salmonellae,81 and E. coli 0157:H7 82 has been well documented and

summarized in recent reviews.

2.2.3 Nonlinear Models

2.2.3.1 Nonlinearity Issues

The canning industry has enjoyed an enviable record of safety, and thus the concept

of logarithmic death of microorganisms has persisted, and is now considered

accepted dogma. In spite of this, nonlinear survival curves were reported for some

bacteria almost 100 years ago. 83 In general there are two classes of nonlinear curves;

those with a "shoulder" or lag prior to inactivation, and those that exhibit tailing.

These two phenomena may be present together, or with other observed kinetics such

as biphasic inactivation. A wide variety of complex inactivation kinetics have been

reported, and several of these are shown in Figure 2.6. The theoretical basis for

assuming logarithmic behavior for bacteria is based on the assumptions that bacterial

populations are homogeneous with respect to thermal tolerance, and that inactivation

is due to a single critical site per cell.
83 Both of these assumptions have been

questioned, and thus concerns have been raised regarding the validity of extrapolation

of linear inactivation curves. 84 -85

Stringer et al.
82 have summarized the possible explanations for nonlinear kinetics

into two classes: those due to artifacts and limitations in experimental procedure

and those due to normal features of the inactivation process. The first class encom-

passes such limitations as variability in heating procedure; use of mixed cultures or

populations; clumping; protective effect of dead cells; method of enumeration; and

poor statistical design. The second class includes such situations as possible multiple

hit mechanisms; natural distribution of heat sensitivity; and heat adaptation. These

two classes roughly parallel the two concepts reviewed by Cerf85 to explain tailing

in bacterial survival curves. The first of these (the "mechanistic" approach) also

makes the assumption of homogeneity of cell resistance and proposes that thermal

destruction follows a process analogous to a chemical reaction. In this approach,

deviations from linearity are attributed mainly to artifacts; however, tailing is also

related to the mechanism of inactivation or resistance. In the "vitalistic" approach,

it is assumed that the cells possess a normal heterogeneity of heat resistance; thus

survival curves should be sigmoidal or concave upward. 85
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FIGURE 2.6 Examples of thermal death curves: (a) lag or shoulder, with either linear (dotted

line), power law where p > 1 (broken line), or monophasic logistic (solid line) models; (b)

concave with power law where/? < 1; (c) biphasic logistic; and (d) sigmoidal.

There has been considerable controversy between the two schools of thought, and

the literature is divided on the validity of nonlinear survival curves as representing

the true state of the cell population. There is certainly evidence that inconsistencies

in experimental protocols or the use of incorrect media can lead to artifacts; however,

there is little convincing evidence that clumping of cells or the protective effect of

dead cells is consistently responsible for nonlinear survivor curves. The current belief

is, notwithstanding some contribution by artifacts, that cells do exhibit heterogeneity

in thermal sensitivity, and the majority of modeling approaches now make this assump-

tion. There is also inconsistency in actually defining what is meant by an artifact. If

one assumes that an artifact in this context is anything that interferes with obtaining

a linear death curve, then many of the situations currently classified as artifacts may
be natural behavior of cell populations. This is particularly obvious in the study of

spore inactivation where standardized suspensions are difficult to obtain, and much

effort has been expended to remove artifacts such as genetic variants. The difficulty

in obtaining linear kinetics may be a signal that, in most cases, nonlinearity is the norm.

The current theories of microbial inactivation must be revisited in light of recent

improved understanding of the effect of heat on microorganisms. We now know that

cells do not exist simply as alive or dead, but may also experience various degrees

of injury or sublethal damage, which may give rise to apparent nonlinear survival

curves. 82 The induction of heat resistance in food-borne pathogens due to expression

of heat shock proteins has been extensively documented in recent years, and may
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contribute to apparent nonlinearity, particularly tailing.8286 '87 Thus it appears impor-

tant to model the actual conditions or situations experienced by bacteria in foods

rather than relying on simplifications. Survival modeling should also include a more

complete understanding of the molecular events underpinning microbial resistance

to the environment.

It seems likely that heterogeneity within bacterial populations is responsible in

most cases for nonlinear survival curves, and most recent attempts to model survival

employ distributions. The use of distributions to account for nonlinearity is not new;

log normal distributions had been suggested for this purpose as early as 1942. 83

Other distributions such as logistic, gamma, and Weibull have also been suggested;

Weibull is the favored approach at the moment (see later). There is no complete

agreement on the use of distributions,83 and it is clear that this approach cannot

adequately account for changes in heat resistance occurring during heating.

Our lack of understanding of the key physiological aspects of microbial inactivation

and the complexities of nonlinear behavior suggest that a truly mechanistic model for

thermal inactivation will not be developed in the near future. One approach to quanti-

tating bacterial survival might be the thermal death point concept common to the

canning industry. This approach allows one to define the conditions required to achieve

a target log reduction, and makes no statement regarding the kinetics of that destruction.

This approach has a number of attractive advantages; however, it would still be influ-

enced by such artifacts as changes in heat resistance of a culture and cell injury. 83

2.2.3.2 Shoulder/Tail Models

2.23.2.1 Linear Approach

Inactivation curves that deviate from simple exponential often have a lag or shoulder

region prior to the exponential inactivation. This shape of inactivation curve is

probably the most commonly experienced by researchers. A simple linear model to

account for this behavior was developed by Whiting 88
:

\ogN = <

logN when < t < t
L

( n
logAf

n
- — (t-t

r ) when t>t
f

(2.23)

\Dj

where tL is the lag prior to inactivation.

An example of the output of this model is the dotted line in Figure 2.6a. The

advantage of this model is that linear regression can be used. This simple model has

been used effectively to describe the nonthermal inactivation of L. monocytogenes

as a function of organic acid and nitrite concentrations89-92 and under reduced

oxygen. 93 A similar two-phase linear model was described for thermal inactivation

of L. monocytogenes by Breand et al.
94

It is quite common for the lag or shoulder region of the survival curve to be

highly variable. This makes it difficult to develop secondary models to describe the

influence of the environment on the lag. Thus, survival using this model is often

described as the time required for a 4-log reduction (r4D )
89 '92 '95

:
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t4D= t
L
+4 ' D (2.24)

2.2.3.2.2 Nonlinear Approach

Complex inactivation kinetics requires the use of nonlinear functions. It should be

noted that nonlinearity as it relates to mathematical functions means that the param-

eters in the equation are nonlinear; the resulting curve may or may not appear linear.

Linear regression can be easily performed by most spreadsheet programs; however,

nonlinear regression is an iterative process that is supported by more specialized

software. These software packages are readily available; thus considerable advances

have been made in the development of nonlinear models.

Another of the more common shapes of survival curves is the concave curve,

which has no lag, and a single, tailing population (Figure 2.6b). This function is

best represented by the power law:

log
D

(2.25)

where p is the power. A concave curve is produced when p < 1 (Figure 2.6b), and

a convex (or shoulder) shape results from p > 1 (broken line in Figure 2.6a). A
power law function has been used to model curvature in survival curves for Entero-

coccus faecium96 and alkaline phosphatase97 in milk. Other, seemingly novel, func-

tions that have been derived to fit concave survival curves are really in fact power

law functions. 98,99

Tailing survival curves can also be represented by the exponentially damped

polynomial model. In this model, deviation from simple linear kinetics, experienced

while heating Staphylococcus aureus in skim milk, was fitted with the nonlinear

function 100
:

N
log— = -kte~

h
(2.26)

where k is the rate coefficient and X is the damping coefficient.

As discussed earlier, a logistic equation may be used in growth modeling to

modify the simple exponential growth to account for limiting the maximum popu-

lation size as a result of nutrient limitation. In the same way, a logistic function can

be used to account for death being limited by the amount of some stress factor or

damage to the cell.
101 This "mirror image" of the logistic function is called the Fermi

equation, and is used for sigmoidal decay curves, which are symmetric:

i

N
i

TV,
o

1 i

~ bti

1 + e
b(t-tL )

(2.27)

whereN is the population (cfu ml l

) surviving at time t\N is the population surviving

at time 0; b is the maximum specific death rate; and tL is the lag phase prior to
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inactivation. This equation has been modified to account for situations where one

may find both a primary, heat-sensitive population and a secondary more heat-

resistant population88
:

i
N

i

F(l + e"¥i ) (1-F)(1 + <TVi )

b
x
(t-tL )

d + e^'-'L') (\ + e
u^-' L >)
b2 (t-tL )

(2.28)

where Z?j is the maximum specific death rate for the primary population and b2 is

the maximum specific death rate for the secondary population. Traditional D-values

may be calculated as 2.3/b for each population. Lag phases are not always present,

and this can be accounted for by setting the value of tL to zero. An example of the

output of this function is given in Figure 2.6c. The biphasic logistic model has been

used to model inactivation of spores of C. botulinum, 102 and the nonthermal inacti-

vation of L. monocytogenes90 -92 '93 and S. aureus. 103 This model has also been applied

to the thermal inactivation of bovine milk catalase 104 and E. faecium 96 during high-

temperature short-time (HTST) pasteurization, and inactivation of E. faecium during

bologna sausage cooking. 105 In situations where a single population exists, F can be

set equal to 1 (solid line in Figure 2.6a).

Other variations of the logistic function have been suggested. A four-parameter

logistic model was proposed by Cole et al.
106

:

y = a +
co-a

4g(t-x) (2.29)

\ + e oj-a

where y = log 10 cfu ml
-1

; x = log
10
time; a = upper asymptote; CO = lower asymptote;

X = position of maximum slope; and o = maximum slope. This model was applied

to the survival of Y. enterocolitica at suboptimal pH and temperature, 107 and the

thermal inactivation of Salmonella typhimurium,im C. botulinum, 109 Salmonella

enteritidis, and E. coli.
no

As was shown earlier, the asymmetric Gompertz function has considerable

advantages when fitting bacterial growth curves. In keeping with the trend to use

mirror images of growth functions to describe inactivation, a reparameterized form

of the Gompertz function was suggested by Linton et al.
111

:

log
TV.

= Cexp(- exp(A + Bt)) - Cexp(- exp(A)) (2.30)

This function has been used to fit nonlinear survival curves of L. monocytogenes

in buffer 111 and infant formula. 112 An example of the Gompertz function is given

in Figure 2.6d. Other applications for the Gompertz equation include the effect of

combined high pressure and mild heat on the inactivation of Escherichia coli and

S. aureus in milk and poultry, 113 and the inhibition of Enterobacteriaceae and

Clostridia during sausage curing. 114 In a similar fashion, the mirror image of the
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TABLE 2.3

Survival Data from Pediococcus sp.

NRRL B2354 at 62°C

Time (min)
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FIGURE 2.7 Example of fitting nonlinear survival data for Pediococcus NRRL B2354 using

monophasic logistic (solid line) and two-phase linear (broken line) models. (From McKellar,

R.C., Modelling the effectiveness of pasteurization, in Dairy Processing: Maximizing Quality,

Smit, G., Ed., CRC Press Inc./Woodhead Publishing, 2003 pp. 104-129. With permission.)

2.2.4 Distributions

One recent development in the modeling of bacterial survival is the use of distribu-

tions. This is based on the assumption that lethal events are probabilistic rather than

deterministic. With a large initial population of cells, a continuous function can be

used, much like with a chemical reaction (although a chemical reaction appears

deterministic only because of the large number of molecules involved). The survival

curve for a single cell is a step function, where a cell exists as either alive or dead 117
:

S
i

(t) =
1 (alive) for t < t

c

(dead) for t > t

(2.31)

where t
c
is the inactivation time. Since all cells would not be expected to die at the

same time, values of t
c
would follow some sort of distribution. The Weibull distri-

bution is used in engineering to model time to failure, and so it seems appropriate

for modeling bacterial inactivation. The distribution of t
c
would then follow the

probability density function (PDF) for the Weibull (solid line in Figure 2.8):

PDF = P

a

r t\

va;

P-i
a

(2.32)

where a and P are parameters relating to the scale and shape of the distribution,

respectively. 118 The survival curve is then the cumulative distribution function (CDF)

(dotted line in Figure 2.8):
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FIGURE 2.8 Probability density (solid line) and cumulative probability distribution (broken

line) for the Weibull distribution.

CDF = e
a

(2.33)

It can be easily seen that the CDF of the Weibull distribution is essentially a

reparameterization of the power law function (Equation 2.25). In the same fashion,

the Fermi equation described earlier is the CDF of a log normal PDF.21 '86

The Weibull parameter (P) has a very distinct influence on the shape of the

survivor curve. When p < 1, a concave survival curve is obtained, and when P > 1,

the curve is convex. Interestingly, the simple exponential model described earlier is

a special case of the Weibull distribution when p = 1, providing further support for

the use of the Weibull distribution as an effective modeling approach for microbial

survival. Further, the value of p can have some implications for possible mechanisms

of inactivation. When p < 1, there is an indication that the remaining cells are more

resistant to the treatment, while when P > 1 , an accumulation of the lethal effect is

observed resulting in increasing rate of destruction with time. The classical D-value

from linear survival curves can be related to the 90% percentile of the CDF, which

is the time (t
d)

required to reduce the number of microorganisms by a factor of 10 118
:

t
d
=a(2.303) p

(2.34)

There have been a number of recent applications of the Weibull distribution to

model survival curves for species of Bacillus and Clostridium spp., 98 Salmo-

nella, 119 * 120 and E. coli. nx Van Boekel 118 has fitted the Weibull distribution to a large

number of survival curves obtained from the literature. In almost all cases, the P
values were different from 1, indicating that the classical linear model may not be

generally applicable. Temperature had a significant effect on the a but not the p
parameter. In order to determine if the Weibull distribution is appropriate for a
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FIGURE 2.9 Model for spore activation and survival.

particular survival curve, a so-called hazard plot 118121 of ln(-ln S) vs. In t should

give a straight line. It should also be noted that, when survival curves are modeled

using distributions, the presence of a "shoulder" can be attributed to the spread of

a distribution being small relative to its mean or mode. 122

2.2.5 Spores

Modeling the inactivation of bacterial spores presents a unique problem. Spore-

forming bacteria such as Bacillus and Clostridium spp. can exist in a dormant (spore)

stage that is highly heat resistant. Germination of spores can be achieved by treatment

with sublethal heat. 123 Because of the extreme heat resistance of some of these micro-

organisms, activated spore preparations have traditionally been used to establish ster-

ilization protocols in the canning and ultrahigh temperature industries. 124 As described

earlier, the classical view of microbial thermal inactivation ascribes a first-order

reaction to the process; however, it has been difficult to consistently achieve simple

exponential inactivation with spore preparations. These variations manifest themselves

as a shoulder on the decay curve, which has been attributed to activation of spores,

and subsequent differences in the heat resistance of dormant and activated spores. 125

Consistent populations of activated spores are difficult to obtain; thus the shoulder is

often ignored, and D-values are calculated from the linear portion of the decay curve.

More sophisticated models have been developed to account for the nonlinear

aspects of survival curves. These include terms describing the germination of spores

prior to inactivation (for descriptions of earlier models, see).
124-126 Figure 2.9 indi-

cates the process of activation of dormant spores {N
x
) into activated (A

2 )
spores with

rate constant of ka . The activated spores are then inactivated by heat treatment (Ay

at a rate equal to kd2 . The model also allows for possible inactivation of dormant

spores (AT3) at a rate equal to kd[ . All reactions are considered to be independent first-

order. The simplest form of this model was described by Shull et al.,
127 and assumes

that only activated spores can be killed (k
dl
= 0) and thus:

dN
1

dt
= -k A,

a 1
(2.35)

dN
2

dt
= k A, -k nN (2.36)

The model proposed by Rodriguez et al.
128' 129 advances the Shull model by

assuming that the dormant spores can also be inactivated:
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dN
x

dt
= -(k

d2
+ k

a
)N

]
(2.37)

and kd2 = kdV Sapru et al.
124 further extended the model to include a different rate

of inactivation for dormant spores (kdl ^ kd2 ). The Sapru model is more general and

includes the Shull and Rodriguez models as special cases. This model was proposed

for use with Bacillus stereothermophilus at sterilization temperatures, and an explicit

form has been presented 125
:

NAt) = NA0)e~(ka+kdl)t
(2.38)

N
2
(f) = N

2
(Q)e~

kd2
' + B-N

l
(0)(l- e~

m
)e

-At\ _-kd2 t

(2.39)

with

B =
A

(2.40)

a cl\ dl (2.41)

and where N
x(0) and A^2(0) are the number of dormant and activated cells, respec-

tively, at t = 0. An example output from the Sapru model is shown in Figure 2.10.

With ^(0) at 1 x 108 and -/V2(0) at 1 x 10 5
, the initial rapid increase in surviving

cells is the result of spore activation. This is followed by an exponential decrease

O
>

8-i

7-

U)

6-

5-

—

i

1 1 1 1 1 1 1 1 1 1

-10 10 20 30 40 50 60 70 80 90 100

Time (min)

FIGURE 2.10 Output of model for spore activation and survival. (From McKellar, R.C.,

Modelling the effectiveness of pasteurization, in Dairy Processing: Maximizing Quality, Smit,

G., Ed., CRC Press Inc./Woodhead Publishing, 2003 pp. 104-129. With permission.)
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in surviving cells. This model has been expanded further to include subpopulations

of spores having different heat resistances. 130

2.2.6 Processing Models

2.2.6.1 Thermal

Thermal inactivation of microorganisms in static or batch systems is usually

described by the D- and z-value concepts as discussed above, with temperature

generally held constant. The situation in canning operations or continuous flow

systems such as HTST pasteurization, sterilization, and ultrahigh temperature pro-

cesses is somewhat more complex, due to nonisothermal conditions. In addition, the

kinetics of inactivation in continuous systems differs from that in batch systems

since in these systems there are additional factors such as pressure and shear forces

that can influence microbial survival. 131 As most modern processes are continuous,

it is necessary to have information on survival of microorganisms; however, few

studies have been published in which laboratory or pilot plant continuous flow

systems have been studied. 131

In order to deal with nonisothermal conditions, Bigelow's 132 model has been the

standard for the low-acid canned food industry for many decades. In this approach,

the processing time F is determined by integrating the exposure time at various

temperatures, T[f], to time at a reference temperature, TRef
133

:

J

(T(Q-TRef )

F= I 10 z dt (2.42)

This model is considered to be an approximation of the Arrhenius model, which is

valid over a wide range (4 to 160°C) of temperatures 133
:

rl
R

(
1

T Z
PE = —\e v /v 0J dt (2.43)

where PE = integrated lethal effect, or pasteurization effect; E
a
= energy of activa-

tion, J mol-1
; R = 8.314 J mol-1 K_1

; T= temperature, K; T = reference temperature,

345 K; t = time, s; t = reference time, 15 s. The reference temperature (345 K or

72°C) and time (15 s) correspond to the International Dairy Federation standard for

pasteurization. 134

It is often necessary for food processors to demonstrate that the process they

wish to use is effective in delivering the required lethal effect for the product and

microorganism of concern. The integrated lethal effect is a useful concept, as it

allows two or more processes that use different time/temperature combinations to

be compared for efficacy against food-borne pathogens; however, there are few data

available relating microbial survival to processing conditions. This is of particular

concern in the case of pasteurization of milk, where the only accepted test for proper
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pasteurization is the alkaline phosphatase (AP) test. The relationship between AP
inactivation and survival of food-borne pathogens is largely unknown, as is the

response of AP to processing under alternative time/temperature combinations.

Thus, modeling of HTST pasteurization of milk was studied extensively by McKel-

lar and coworkers.

The residence times in each section of a pilot-scale HTST pasteurizer and in

each of six holding tubes with nominal holding times of 3 to 60 s were calibrated

using the standard salt test. Temperatures were taken at the beginning and end of

each section using thermocouples. The PE could then be determined for each selected

holding time/temperature combination using Equation 2.43. Raw milk at a constant

flow rate was allowed to equilibrate at each time/temperature, and a sample was

taken at the outflow for analysis. Residual enzyme activity or microbial survivors

were matched with the corresponding PE for fitting.
97

The fitting was accomplished using an iterative procedure in which the log 10%
initial activity or viable counts were regressed on PE, with the value of EJR varied

to minimize the error sum of squares. Nonlinearity (generally concavity) in the data

was modeled using a power transformation (Equation 2.25). The final model was

of the form97
:

log
10
% initial activity = a + b- PE (

(2.44)

where a = intercept, b = slope, and c = power. Generally, the parameter estimates

for at least three trials were pooled, and the model for AP is shown in Table 2.5.

There is also a need to develop models for milk enzymes that might be used to

confirm processing at temperatures above or below pasteurization. Higher temper-

atures (>75°C) are appropriate for processing of more viscous products (such as ice-

cream mix), while temperatures below pasteurization (63 to 65°C; termed subpas-

teurization or thermization temperatures) are used to extend the storage life of bulk

TABLE 2.5

Model Parameters for Inactivation of Various Milk Enzymes

and Food-Borne Pathogens during High-Temperature Short-Time

Pasteurization

Target
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FIGURE 2.1 1 Linear model relating pasteurization effect (PE) and residual activity of lac-

toperoxidase during high-temperature short-time (HTST) pasteurization of bovine milk.

milk. Lactoperoxidase (LP) and y-glutamyl transpeptidase (TP) are two naturally

occurring milk enzymes that are inactivated at higher temperatures. 135 Model param-

eters for these two enzymes are given in Table 2.5. An example of an inactivation

curve for LP is given in Figure 2.11, with the dotted lines representing the 95%
confidence limits. There is close agreement among the three trials plotted, a char-

acteristic common for all enzyme models. Models have also been developed for

catalase 104 and oc-L-fucosidase (FC), 136 which are appropriate for subpasteurization

temperatures (Table 2.5).

Survival models for several food-borne pathogens have also been derived. List-

eria innocua, a nonpathogen, is often used as a substitute for L. monocytogenes in

situations (such as food processing environments) where it would be undesirable to

introduce pathogens. 137 A model developed for L. innocua (Table 2.5) was shown

to underpredict inactivation of L. monocytogenes', thus predictions are "fail-safe."
138

Enterococcus faecium, a nonpathogen, is also used as a model organism for patho-

gens, particularly in Europe. 139 The inactivation curve for this microorganism devi-

ated strongly from linearity, and there were large intertrial variations. Thus, a random

coefficient model using Equation 2.28 was used to fit the data. 96 The average In D-

values for the two populations were 0.825 and 2.856. Models were also generated

for Enterobacter sakazakii, an "emerging" pathogen found contaminating infant

formula. 140 Model parameters compared with those for L. monocytogenes (Table 2.5)

showed that E. sakazakii was more sensitive to pasteurization.

Linear models for milk enzymes were characterized by limited intertrial vari-

ability (Figure 2.1 1). This allowed validation of models using data from other trials

that were not used in the construction of the models. In contrast, considerable

variation was noted in experiments with microorganisms; thus a different approach
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FIGURE 2.12 Probability densities for a-L-fucosidase, Listeria monocytogenes, and alkaline

phosphatase generated from linear models for high-temperature short-time (HTST) pasteur-

ization using Analytica®, with holding temperature and time of 66°C for 16 s.

was taken. Model parameters were incorporated into risk analysis software (@RISK,

Palisade Corporation, Newfield, NY) as normal distributions, with means taken from

Table 2.5 and standard deviations taken from the intertrial variations. When simu-

lations were performed (1500 iterations), outcomes (log reduction in this case) were

expressed as distributions.

Simulated log reductions were generated for AP, FC, and L. monocytogenes

using a holding time of 65°C/15 s (thermization), and the probability density func-

tions are shown in Figure 2.12. These conditions resulted in a narrow band of

probabilities for AP, with greater predicted range for both FC and L. monocytogenes.

AP is not completely inactivated, while FC (a potential indicator of thermization)

experiences a >2 log reduction in most iterations. The mean log reduction of L.

monocytogenes under these conditions is >3.

Models that can predict the probability of achieving a desired level of safety are

an important addition to risk assessment models, which are still largely qualitative

and based primarily on expert opinion (see Chapter 6 for a more complete discussion

on expert systems). The pasteurization models described above have been incorpo-

rated into the risk analysis software Analytica® (Lumina Decision Systems, Los

Gatos, CA), a commonly used software for building risk assessment models for the

food industry. These models are now being incorporated into the USDA's Pathogen

Modeling Program (available from http://www.arserrc.gov/mfs/pathogen.htm).

2.2.6.2 Alternative Technologies

Thermal treatment has been the traditional method for processing of many foods;

however, with the increased consumer demand for fresh, less processed foods, new

technologies have evolved. Some of these are based on temperature, such as micro-

wave, radio frequency (RF), and ohmic heating, while others depend on other forms

of microbial inactivation, such as high pressure (HP), pulse electric field (PEF),
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pulsed or ultraviolet light, and ultrasound. In 1998, the U.S. Food and Drug Admin-

istration commissioned the Institute of Food Technologists to provide scientific

review and analysis of issues in food safety, food processing, and human health.

The first of these reports, entitled "Kinetics of Microbial Inactivation for Alternative

Food Processing Technologies," was released in 2000 141 and is available at the

following web site: http://vm.cfsan.fda.gov/~comm/ift-toc.html. Since this report

comprehensively reviews the scientific literature and makes recommendations for

future research, it is beyond the scope of this chapter to reproduce this body of work.

Instead, several key areas will be highlighted.

Many novel thermal technologies base their antimicrobial effect on temperature;

thus inactivation of microorganisms can be modeled using the traditional calculations

for D-value and z-value (see earlier). Processes that depend on other mechanisms

of inactivation such as HP and PEF require modified equations with different param-

eters. For example, HP effects on microbial population can be modeled using a

function similar to the traditional Z)-value 142
:

log

' D^

K
DRJ

(P-P»)
(2.45)

•R

where DR = the decimal reduction time at a reference pressure PR and zR is the

pressure required for a 1-log reduction in D-value. An alternative model has been

proposed by Weemaes et al.
143

:

\n(k) = \n(kR )-
rV{P-P^

v
RTA

(2.46)

J

where kR is the reaction rate constant, and PR the reference pressure, V the activation

volume constant, P the pressure, and TA the absolute temperature. With PEF pro-

cessing, a model describing the influence of the electric field intensity on reduction

of microbial population can be described, which is similar to those used for thermal

and pressure processing:

log
' D^

K
DRJ

(E-ER )

(2.47)

'E

where DR is the decimal reduction time at a reference field intensity ER , and the

electric field coefficient zE is the increase in the electric field intensity E required to

reduce the D-value by 1-log. An alternative model based on the Fermi equation was

proposed by Peleg 144
:

1

E-E„ (2.48)

l + e K
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where E
d

is the electric field intensity when the microbial population has been

reduced to 50%, and K is a coefficient based on the slope of the survivor curve. A
similar model was proposed by Hulsheger et al.

145
:

N

f \
t

K
fcj

E-Ec

(2.49)

where t is the treatment time, t
c
the minimum treatment time for inactivation, E

c
the

minimum field strength for inactivation, and K is a specific rate constant. This

function is similar to Equation 2.48 except that it also accounts for exposure time

at a given electric field intensity.

The Institute of Food Technologies report has raised a number of relevant issues

that would benefit from some discussion here. Kinetic parameters for microbial

populations exposed to thermal treatment are well documented and provide a good

basis upon which to develop models for alternative thermal processes. The nonther-

mal models described above assume that microbial inactivation is a first-order

reaction; however, as mentioned earlier, there is little direct evidence supporting this

view. It will be necessary to further evaluate the adequacy of linear survival models,

and to hopefully develop a universal model applicable to both thermal and non-

thermal processes. In addition, experimental protocols have been found to be inad-

equate to provide statistically reliable parameters for microbial reduction resulting

from exposure to alternative technologies. This is particularly a problem with high

pressure processing, where data are needed at different pressures with control of

temperature and product. The inactivation mechanism for thermal destruction of

microbes is generally well known, and evidence for additional independent mecha-

nisms with processes such as ohmic heating is still lacking. Further work is needed

to elucidate the mechanism of inhibition with alternative treatments such as PEF
and HP, and to assess possible synergistic effects between alternative technologies

and temperature.

2.2.7 Injury/Repair Models

Almost without exception, available models for microbial growth and death have

been developed using fully viable, unstressed cells; thus the resulting models rep-

resent the idealized scenario. It is well known that bacterial cells exposed to some

form of sublethal stress require an adaptation or recovery period prior to growth;

however, mathematical models do not incorporate the influence of stress. This was

emphasized in a study designed to model the evolution of a log phase in L. mono-

cytogenes, induced by acid, alkaline, and osmotic shocks. 146 When lag-phase cells

(which are more sensitive to environmental stress than stationary-phase cells) were

exposed to changes in pH or increased levels of NaCl, the subsequent generation

times predicted by commercially available software were shorter than the observed

experimental generation times.

The physiological events that account for microbial injury and repair are poorly

understood; thus there have been very few attempts to apply mathematical models
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FIGURE 2.13 Change in populations of uninjured (O), injured (), and dead (•) cells

during sublethal heating according to Equation 2.50.

to the phenomena of bacterial cell injury and resuscitation. The models that do exist

are of two general types: those that aim to quantitate the extent of injury with

increased exposure to stress, and those that attempt to predict the time required for

repair and recovery of viability.

Several attempts have been made to model the extension of the lag phase in

response to stress. A model to describe the relationship between lag prior to growth

and stress duration was proposed by Breand et al.
147 This model was developed to

reflect the observation that the lag increased with increasing stress duration, and

then decreased to a minimum lag at longer stress times. The empirical model

described the influence of stress on the lag with a linear function, followed by a

logistic decrease. Cheroutre-Vialette and Lebert148 proposed the use of a recurrent

neural network to model the changes in lag phase and growth rate experienced by

L. monocytogenes exposed to osmotic and pH shock. Lambert and van der Ouderaa 149

compared the relative ability of the Bioscreen (see Chapter 1) and viable counts to

quantitate the inactivation of microorganisms by disinfection. They proposed a

simple first-order inactivation reaction with accumulation of injured cells prior to

complete loss of viability:

fc fc,

A
{

-> A
2
-^ P (2.50)

where A
x
are the uninjured cells, A2 the injured cells, and P are the dead cells. k

x

and k2 are rate constants for injury and death, respectively. Populations of viable,

injured, and dead cells were simulated based on the data of Lambert and van der

Ouderaa, 149 and are shown in Figure 2.13. These responses were confirmed using

image analysis of colony sizes on agar plates; viable and injured cells could be

distinguished on the basis of size. Colony size was also used to quantitate cells of

L. monocytogenes that had been injured by exposure to heat or starvation. 150 The

colony size distribution was normal for uninjured cells, but demonstrated a right-
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hand skew with injured cells. Percent sublethal injury could be related to colony

area using a linear function. More recent studies using the flow cytometer to measure

the distribution of the lag times of individual cells of Lactobacillus plantarum also

showed a deviation from normality with heat-treated cells. The extreme value dis-

tribution was found to be the best function for fitting both injured and uninjured cells:

F(x) = 1- exp
(

v

exp
x — a

b
(2.51)

-J

where a and b are unknown parameters.

There are few studies that aim to model the recovery of cells from injury. Injured

cells can be differentiated on the basis of increased sensitivity to selective media

(e.g., 5% NaCl), and it is thus possible to develop models to predict the time required

for cells to repair damage due to stress. This process is complicated by our lack of

information on the true nature of injury in bacterial cells, and the mechanism by

which cells recover. The two-compartment kinetic model developed by Hills and

Mackey to describe bacterial growth4 was revised and extended to account for cell

injury and resuscitation. 5 In the revised model, there are rate constants for injury

(R) and resuscitation (R
T), and parameters to describe the decrease (a) and increase

(b) of the injury and resuscitation curves. 5 This model was used to fit data from the

resuscitation of L. monocytogenes after exposure to sublethal heat. 151
It was shown

that resuscitation could best be described with a reduced model with the parameter

for increasing rate of recovery (b
T)

eliminated. A quadratic regression model was

subsequently derived that expressed the lag as a function of temperature and the

initial number of injured cells. 151

2.2.8 Combined Growth/Death Models

There have been a limited number of attempts to combine growth and death functions

into single models. These are often simply combinations of functions such as the

Gompertz or logistic with their mirror images. For example, a two-term model

describing the behavior of Lactobacillus spp. during the ripening of fermented

sausage incorporated a Gompertz function for both growth and death. 152 In a similar

fashion, the logistic function and its mirror image, the Fermi equation, have been

combined.21 ' 101 The latter model has been expanded to include a proposed distribution

of cell resistances to stress, resulting in a death model that varies in shape. 21 The

Baranyi model for growth was also combined with its mirror image to describe

growth and death for Brochothrix thermosphacta. 115 In this model, a smoothing

function was included to account for the transition between growth and death phases.

Other combined functions have used simple exponential growth and

decline. 68 ' 153 ' 154 In one of these models,68 the lag phase preceding growth was handled

by a first-order step that represented spore germination, repair, or adaptation. Jones

et al.
153 described the adaptation of cells to growth as a transition between cells in

two states, immature and mature. This model reduced to a simple balance between

growth and death, with variations in division and mortality rates being described by

empirical functions. 153
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It is questionable if expressing death as a mirror image of growth is valid.

There is little direct evidence that the lag phases preceding growth or death are

due to similar physiological phenomena, although a convincing theoretical argu-

ment has been offered in support of this hypothesis. 65
It seems likely, however,

that the stationary phase of growth and the "tailing" phase of inactivation are the

result of different physiological processes. Models that address growth and death

as different processes, and attempt to describe the response of microbes to their

environment in terms of transitions between states, would seem to be the most

useful for future development.68' 153
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