
M
JUUI*

The 8051
Microcontroller

The 8051 Microcontroller
ARCHITECTURE, PROGRAMMING,
and APPLICATIONS

Kenneth J. Ayala
Western Carolina University

WEST PUBLISHING COMPANY
ST. PAUL NEW YORK - LOS ANGELES SAN FRANCISCO

Copyediting: Technical Texts, Inc.

Text and Cover Design: Roslyn Stendahl, Dapper Design

Cover Image: Christopher Springmann, The Stock Market

Composition: G & S Typesetters, Inc.

Artwork: George Barile, Accurate Art

COPYRIGHT © 1991 By WEST PUBLISHING COMPANY
50 W. Kellogg Boulevard

P.O. Box 64526

St. Paul, MN 55164-0526

All rights reserved

Printed in the United States of America ©
98 97 96 95 94 93 92 91 8 7 6 5 4 3 2 10

Library of Congress Cataloging-in-Publication Data

Ayala, Kenneth J.

The 8051 microcontroller : architecture, programming,

and applications / Kenneth J. Ayala.

p. cm.

Includes index.

ISBN 0-314-77278-2 (soft)

1. intet 8051 (Computer) 2. Digital control systems.

I. Title.

QA76.8.I27A93 1991

004.165—dc20 90-12928

CIP

-D>
To John Jamison of VMI and

John Peatman of Georgia Tech,

both of whom made this book possible

Contents

1 MICROPROCESSORS AND MICROCONTROLLERS 1

Introduction 1

Microprocessors and Microcontrollers 2

Microprocessors 2
Microcontrollers 3

Comparing Microprocessors and Microcontrollers 4
The 280 and the 8051 4
A Microcontroller Survey 5

Four-Bit Microcontroller 5

Eight-Bit Microcontrollers 6

Sixteen-Bit Microcontrollers 7
Thirty-Two Bit Microcontrollers 8

Development Systems for Microcontrollers 9
Summary 9
Questions 10

2 THE 8051 ARCHITECTURE 11

Introduction 11

8051 Microcontroller Hardware 11

The 8051 Oscillator and Clock 16
Program Counter and Data Pointer 17
A and B CPU Registers 17
Flags and the Program Status Word (PSW) 18
Internal Memory 19
Internal RAM 19
The Stack and the Stack Pointer 19
Special Function Registers 21

Internal ROM 22
Input/Output Pins, Ports, and Circuits 22

Port 23
Port 1 25

VII

ViH CONTENTS

Port 2 25
Port 3 25

External Memory 26
Connecting External Memory 26

Counter and Timers 28
Timer Counter Interrupts 29
Timing 30
Timer Modes of Operation 30
Timer Mode 30
Timer Mode 1 30
Timer Mode 2 31

Timer Mode 3 32
Counting 32

Serial Data Input/Output 32
Serial Data Interrupts 32
Data Transmission 34
Data Reception 34
Serial Data Transmission Modes 34
Serial Data Mode O-Shift Register Mode 34
Serial Data Mode 1 -Standard UART 35

Mode 1 Baud Rates 36
Serial Data Mode 3 37

Interrupts 37
Timer Flag Interrupt 39
Serial Port Interrupt 39
External Interrupts 39
Reset 40
Interrupt Control 40
Interrupt Enable/Disable 40
Interrupt Priority 41
Interrupt Destinations 41
Software Generated Interrupts 41

Summary 41

Questions 42

MOVING DATA 44
Introduction 44
Addressing Modes 45
Immediate Addressing Mode 45
Register Addressing Mode 45
Direct Addressing Mode 47
Indirect Addressing Mode 49

External Data Moves 50
Code Memory Read-Only Data Moves 51

PUSH and POP Opcodes 52
Data Exchanges 53
Example Programs 54
Summary 56
Problems 57

CONTENTS ix

LOGICAL OPERATIONS 59
Introduction 59
Byte-Level Logical Operations 60
Bit-Level Logical Operations 62

Internal RAM Bit Addresses 62
SFR Bit Addresses 62
Bit-Level Boolean Operations 63

Rotate and Swap Operations 66
Example Programs 68
Summary 69
Problems 70

ARITHMETIC OPERATIONS 71
Introduction 71

Flags 72
Instructions Affecting Flags 72

Incrementing and Decrementing 73
Addition 74
Unsigned and Signed Addition 74
Signed Addition 75
Multiple-Byte Signed Arithmetic 76

Subtraction 77
Unsigned and Signed Subtraction 78
Unsigned Subtraction 78
Signed Subtraction 78

Multiplication and Division 80
Multiplication 80
Division 80

Decimal Arithmetic 81

Example Programs 82
Summary 84
Problems 85

JUMP AND CALL OPCODES 86
Introduction 86
The Jump and Call Program Range 87

Relative Range 87
Short Absolute Range 88
Long Absolute Range 88

Jumps 89
Bit Jumps 89
Byte Jumps 90
Unconditional Jumps 90

Calls and Subroutines 92
Subroutines 92
Calls and the Stack 92

CONTENTS

Calls and Returns 93
Interrupts and Returns 94
Example Problems 95
Summary 97
Problems 98

AN 8051 MICROCONTROLLER DESIGN 100
Introduction 100
A Microcontroller Specification 101

A Microcontroller Design 102
External Memory and Memory Space Decoding 102
Reset and Clock Circuits 102
Expanding I/O 103
Memory-Mapped I/O 104
Part Speed 106
Production Concerns 106

Testing the Design 107
Crystal Test 107
ROM Test 107
RAM Test 108

Timing Subroutines 110
Time Delays 110
Pure Software Time Delay 111

Software Polled Timer 112
Pure Hardware Delay 114

Lookup Tables for the 8051 117
PC as a Base Address 118
DPTR as a Base Address 120

Serial Data Transmission 121

Character Transmission Using a Time Delay 123
Character Transmission by Polling 124
Interrupt-Driven Character Transmission 125
Receiving Serial Data 126
Polling for Received Data 126
Interrupt-Driven Data Reception 127

Summary 128
Problems 129

8 APPLICATIONS 131
Introduction 131

Keyboards 132
Human Factors 132
Key Switch Factors 132
Key Configurations 133
Programs for Keyboards 134
A Scanning Program for Small Keyboards 136
Interrupt-Driven Programs for Small Keyboards 139

CONTENTS Xi

Program for a Large Matrix Keyboard 147
Displays 151

Seven-Segment Numeric Display 151

Intelligent LCD Display 155
Pulse Measurement 158
Measuring Frequency 158
Pulse Width Measurement 161

D/A and A/D Conversions 162
D/A Conversions 163
A/D Conversion 165

Multiple Interrupts 166
Hardware Circuits for Multiple Interrupts 173

Putting it all Together 177
Summary 181
Problems 182

SERIAL DATA COMMUNICATION 1 85
Introduction 185
Network Configurations 186
8051 Data Communication Modes 189
Mode 0: Shift Register Mode 189
Mode 1 : Standard 8-Bit UART Mode 192
Modes 2 and 3: Multiprocessor 197

Summary 202
Problems 202

Appendix A 8051 Operational Code Mneumonics 203

Appendix B How to Use the Assembler 212

Appendix C How to Use the Simulator 220

Appendix D The 8255 Programmable I/O Port 233

Appendix E Control Registers 236

Index 238

Preface

The microprocessor has been with us for some fifteen years now, growing from an awkward

4-bit child to a robust 32-bit adult. Soon, 64- and then 128-bit wizards will appear to

crunch numbers, spreadsheets, and, CAD CAM. The engineering community became

aware of, and enamored with, the 8-bit microprocessors of the middle to late I970's. The

bit size, cost, and power of these early CPUs were particularly useful for specific tasks

involving data gathering, machine control, human interaction, and many other applica-

tions that granted a limited intelligence to machines and appliances.

The personal computer that was spawned by the 8-bit units predictably became faster

by increasing data word size and more complex by the addition of operating system hard-

ware. This process evolved complex CPUs that are poorly suited to dedicated applications

and more applicable to the generic realm of the computer scientist and system program-

mer. Engineering applications, however, did not change; these applications continue to

be best served by 8-bit CPUs with limited memory size and I/O power. Cost per unit

also continues to dominate processing considerations. Using an expensive 32-bit micro-

processor to perform functions that can be as efficiently served by an inexpensive 8-bit

microcontroller will doom the 32-bit product to failure in any competitive marketplace.

Many designers continue to use the older families of 8-bit microprocessors. The

8085, 6502, 6800, and Z80 are familiar friends to those of us who had our first successes

with these radical new computers. We know their faults and idiosyncrasies; we have, quite

literally, tons of application software written for them. We are reluctant to abandon this

investment in time and money.

New technology makes possible, however, a better type of small computer—one with

not only the CPU on the chip, but RAM, ROM, Timers, UARTS, Ports, and other com-

mon peripheral I/O functions also. The microprocessor has become the microcontroller.

Some manufacturers, hoping to capitalize on our software investment, have brought

out families of microcontrollers that are software compatible with the older micro-

processors. Others, wishing to optimize the instruction set and architecture to improve

speed and reduce code size, produced totally new designs that had little in common with

their earlier microprocessors. Both of these trends continue.

This book has been written for a diverse audience. It is meant for use primarily by

those who work in the area of the electronic design and assembly language programming

of small, dedicated computers.

An extensive knowledge of electronics is not required to program the microcontroller.

Many practitioners in disciplines not normally associated with computer electronics-

transportation. HVAC, mechanisms, medicine, and manufacturing processes of all types

—

can benefit from a knowledge of how these "smart chips" work and how they can be used

to improve their particular product.

Persons quite skilled in the application of classical microprocessors, as well as novice

users who have a basic understanding of computer operation but little actual experience,

should all find this book useful. The seasoned professional can read Chapter 2 with some

care, glance at the mnemonics in Chapters 3 through 6, and inspect the applications in

Chapters 7, 8, and 9. The student may wish to quickly read Chapter 2, study the mnemonics

and program examples carefully in Chapters 3 through 6, and then exercise the example

programs in Chapters 7, 8, and 9 to see how it all works.

The text is suitable for a one- or two-semester course in microcontrollers. A two

semester course sequence could involve the study of Chapters 1 to 6 in the first semester

and Chapters 7.8, and 9 in the second semester in conjunction with several involved stu-

dent programs. A one-semester course might stop with Chapter 7 and use many short

student assignments drawn from the problems at the end of each chapter. The only pre-

requisite would be introductory topics concerning the basic organization and operation

of any digital computer and a working knowledge of using a PC compatible personal

computer.

No matter what the interest level, I hope all groups will enjoy using the software that

has been included on a floppy disk as part of the text. It is my belief that one should not

have to buy unique hardware evaluation boards, or other hardware-specific items, in order

to "try out" a new microcontroller. I also believe that it is important to get to the job of

writing code as easily and as quickly as possible. The time spent learning to use the hard-

ware board, board monitor, board communication software, and other boring overhead is

time taken from learning to write code for the microcontroller.

The programs included on the disk, an 8051 assembler named A5I , and a simulator,

named S5I . were both written by David Akey of PseudoCorp. Newport News, Virginia.

PseudoCorp has provided us all with a software development environment that is not only

easy to use but one that we can uniquely configure for our own special purposes. Details

on the assembler and simulator are provided in the proper appendixes; use them as early as

possible in your studies. Many points that are awkward to explain verbally become clear

when you see them work in the simulator windows! Further information on products

developed by PseudoCorp follows this Preface.

I have purposefully not included a great deal of hardware-specific information with

the text. If your studies include building working systems that interface digital logic to the

microcontroller, you will become very aware of the need for precise understanding of

the electrical loading and timing requirements of an operating microcontroller. These

details are best discussed in the manufacturer's data book(s) for the microcontroller and

any associated memories and interface logic. Timing and loading considerations are not

trivial; an experienced designer is required to configure a system that will work reliably.

Hopefully, many readers will be from outside the area of electronic design and are mainly

concerned with the essentials of programming and interfacing a microcontroller. For these

users, I would recommend the purchase of complete boards that have the electrical design

completed and clear directions as to how to interface common I/O circuits.

Many people have played a part in writing this book. Special thanks go to all of the

following people:

The reviewers of the early, really rough, drafts of the text:

Richard Barnett, Purdue University

Richard Castellucis, Southern College of Technology

Jerry Cockrell, Indiana State University

James Grover, University of Akron

Chris Conant, Broome Community College-New York

Alan Cocchetto, Alfred State College- New York

for their thoughtful criticisms and words of encouragement.

Cecil A. Moore, Staff Applications Engineer for Intel Corporation in Chandler,

Arizona, whose meticulous comments have greatly improved the technical accuracy

and readability of the text.

Tom Tucker of West Publishing for his willingness to experiment.

Anne, my wife, for many years of patience and understanding.

My students, past and present, who have taught me much more than I have taught

them.

Finally, let me thank you, the reader. I would be very grateful if any errors of omission or

commission are gently pointed out to me by letter or telephone. Thank you for your help.

Kenneth J. Ayala

Western Carolina University

Cullowhee, North Carolina

Microprocessors

and Microcontrollers

Chapter Outline

Introduction

Microprocessors and Microcontrollers

The Z80 and the 8051

A Microcontroller Survey

Development Systems

for Microcontrollers

Summary

Introduction

The past two decades have seen the introduction of a technology that has radically changed

the way in which we analyze and control the world around us. Born of parallel develop-

ments in computer architecture and integrated circuit fabrication, the microprocessor, or

"computer on a chip," first became a commercial reality in 1971 with the introduction of

the 4-bit 4004 by a small, unknown company by the name of Intel Corporation. Other,

more well-established, semiconductor firms soon followed Intel's pioneering technology

so that by the late 1970s one could choose from a half dozen or so microprocessor types.

The 1970s also saw the growth of the number of personal computer users from a

handful of hobbyists and "hackers" to millions of business, industrial, governmental,

defense, educational, and private users now enjoying the advantages of inexpensive

computing.

A by-product of microprocessor development was the microcontroller. The same fab-

rication techniques and programming concepts that make possible the general-purpose

microprocessor also yielded the microcontroller.

Microcontrollers are not as well known to the general public, or even the technical

community, as are the more glamorous microprocessors. The public is, however, very

well aware that "something" is responsible for all of the smart VCRs, clock radios, wash-

CHAPTER ONE

ers and dryers, video games, telephones, microwaves, TVs, automobiles, toys, vending

machines, copiers, elevators, irons, and a myriad of other articles that have suddenly be-

come intelligent and "programmable." Companies are also aware that being competitive

in this age of the microchip requires their products, or the machinery they use to make

those products, to have some "smarts."

The purpose of this chapter is to introduce the concept of a microcontroller and sur-

vey a representative group. The remainder of the book will study one of the most popular

types, the 8051, in detail.

Microprocessors and Microcontrollers

Microprocessors and microcontrollers stem from the same basic idea, are made by the

same people, and are sold to the same types of system designers and programmers. What

is the difference between the two?

Microprocessors

A microprocessor, as the term has come to be known, is a general-purpose digital com-

puter central processing unit (CPU). Although popularly known as a "computer on a

chip," the microprocessor is in no sense a complete digital computer.

Figure 1 . 1 shows a block diagram of a microprocessor CPU, which contains an arith-

metic and logic unit (ALU), a program counter (PC), a Stack pointer (SP), some working

registers, a clock timing circuit, and interrupt circuits.

To make a complete microcomputer, one must add memory, usually read-only pro-

gram memory (ROM) and random-access data memory (RAM), memory decoders, an

oscillator, and a number of input/output (I/O) devices, such as parallel and serial data

ports. Additionally, special-purpose devices, such as interrupt handlers, or counters, may

FIGURE 1.1 A Block Diagram of a Microprocessor

Arithmetic

and
Logic Unit

Accumulator

Working Register(s)

Program Counter Stack Pointer

Clock

Circuit

Interrupt

Circuits

MICROPROCESSORS AND MICROCONTROLLERS 3

be added to relieve the CPU from time-consuming counting or timing chores. Equipping

the microcomputer with a mass storage device, commonly a floppy disk drive, and I/O

peripherals, such as a keyboard and a CRT display, yields a small computer that can be

applied to a range of general-purpose software applications.

The key term in describing the design of the microprocessor is "general-purpose."

The hardware design of a microprocessor CPU is arranged so that a small, or very large,

system can be configured around the CPU as the application demands. The internal CPU
architecture, as well as the resultant machine level code that operates that architecture, is

comprehensive but as flexible as possible.

The prime use of a microprocessor is to fetch data, perform extensive calculations on

that data, and store those calculations in a mass storage device or display the results for

human use. The programs used by the microprocessor are stored in the mass storage de-

vice and loaded into RAM as the user directs. A few microprocessor programs are stored

in ROM. The ROM-based programs are primarily small fixed programs that operate pe-

ripherals and other fixed devices that are connected to the system. The design of the mi-

croprocessor is driven by the desire to make it as expandable as possible, in the expecta-

tion of commercial success in the marketplace.

Microcontrollers

Figure 1 .2 shows the block diagram of a typical microcontroller, which is a true computer

on a chip. The design incorporates all of the features found in a microprocessor CPU:

ALU, PC, SP, and registers. It also has added the other features needed to make a com-

plete computer: ROM, RAM, parallel I/O, serial I/O, counters, and a clock circuit.

Like the microprocessor, a microcontroller is a general-purpose device, but one

which is meant to fetch data, perform limited calculations on that data, and control its

FIGURE 1.2 A Block Diagram of a Microcontroller

ALU Timer/Counter
I/O

Port

Accumulator

Internal

ROM

Register(s) I/O

Port

Internal

RAM
Interrupt

Circuits

Clock

Circuit
Stack Pointer

Program Counter

CHAPTER ONE

environment based on those calculations. The prime use of a microcontroller is to control

the operation of a machine using a fixed program that is stored in ROM and that does not

change over the lifetime of the system.

The design approach of the microcontroller mirrors that of the microprocessor: make

a single design that can be used in as many applications as possible in order to sell, hope-

fully, as many as possible. The microprocessor design accomplishes this goal by having a

very flexible and extensive repertoire of multi-byte instructions. These instructions work

in a hardware configuration that enables large amounts of memory and I/O to be con-

nected to address and data bus pins on the integrated circuit package. Much of the activity

in the microprocessor has to do with moving code and data words to and from external

memory to the CPU. The architecture features working registers that can be programmed

to take part in the memory access process, and the instruction set is aimed at expediting

this activity in order to improve throughput. The pins that connect the microprocessor to

external memory are unique, each having a single function. Data is handled in byte, or

larger, sizes.

The microcontroller design uses a much more limited set of single- and double-byte

instructions that are used to move code and data from internal memory to the ALU. Many
instructions are coupled with pins on the integrated circuit package; the pins are "pro-

grammable"—that is, capable of having several different functions depending upon the

wishes of the programmer.

The microcontroller is concerned with getting data from and to its own pins; the ar-

chitecture and instruction set are optimized to handle data in bit and byte size.

Comparing Microprocessors and Microcontrollers

The contrast between a microcontroller and a microprocessor is best exemplified by

the fact that most microprocessors have many operational codes (opcodes) for moving

data from external memory to the CPU; microcontrollers may have one, or two. Micro-

processors may have one or two types of bit-handling instructions; microcontrollers will

have many.

To summarize, the microprocessor is concerned with rapid movement of code and

data from external addresses to the chip; the microcontroller is concerned with rapid

movement of bits within the chip. The microcontroller can function as a computer with the

addition of no external digital parts; the microprocessor must have many additional parts

to be operational.

The Z80 and the 8051

To see the differences in concept between a microprocessor and a microcontroller, in the

following table we will examine the pin configurations, architecture, and instruction sets

for a very popular 8-bit microprocessor, the Zilog Z80, and an equally ubiquitous micro-

controller, the 8-bit Intel 8051:

Z80 8051

Pin Configurations

Total pins 40 40

Address pins 16 (fixed) 16

Data pins 8 (fixed) 8

Interrupt pins 2 (fixed) 2

I/O pins 32

Continued

MICROPROCESSORS AND MICROCONTROLLERS

Z80 8051

Architecture

8-bit registers 20 34

16-bit registers 4 2

Stack size 64K 128

Internal ROM 4K bytes

Internal RAM 128 bytes

External memory 64K 128K bytes

Flags 6 4

Timers 2

Parallel port 4

Serial port 1

Instruction Sets

(types/variations)

External moves 4/14 2/6

Block moves 2/4

Bit manipulate 4/4 12/12

Jump on bit 3/3

Stack 3/15 2/2

Single byte 203 49

Multi-byte 490 62

Note that the point here is not to show that one design is "better" than the other; the

two designs are intended to be used for different purposes and in different ways. For ex-

ample, the Z80 has a very rich instruction set. The penalty that is paid for this abundance

is the number of multi-byte instructions needed, some 71 percent of the total number.

Each byte of a multi-byte instruction must be fetched from program memory, and each

fetch takes time; this results in longer program byte counts and slower execution time

versus single-byte instructions. The 8051 has a 62 percent multi-byte instruction content;

the 8051 program is more compact and will run faster to accomplish similar tasks.

The disadvantage of using a "lean" instruction set as in the 8051 is increased pro-

grammer effort (expense) to write code; this disadvantage can be overcome when writing

large programs by the use of high-level languages such as BASIC and C, both of which

are popular with 8051 system developers. The price paid for reducing programmer time

(there is always a price) is the size of the program generated.

A Microcontroller Survey

Markets for microcontrollers can run into millions of units per application. At these vol-

umes the microcontroller is a commodity item and must be optimized so that cost is at a

minimum. Semiconductor manufacturers have produced a mind-numbing array of designs

that would seem to meet almost any need. Some of the chips listed in this section are no

longer in regular production, most are current, and a few are best termed "smokeware":

the dreams of an aggressive marketing department.

Four-Bit Microcontrollers

In a commodity chip, expense is represented more by the volume of the package and the

number of pins it has than the amount of silicon inside. To minimize pin count and pack-

age size, it is necessary that the basic data word-bit count be held to a minimum, while

still enabling useful intelligence to be implemented.

CHAPTER OWE

Although 4 hits, in this era of 64-bit "tnaximicros," may seem somewhat ludicrous,

one must recall that the original 4004 was a 4-bit device, and all else followed. Indeed, in

terms of production numbers, the 4-bit microcontroller is today the most popular micro

made. The following table lists representative models from major manufacturers* data

books. Many of these designs have been licensed to other vendors.

RAM ROM
Manufacturer : Model Pins: I/O Counters (bytes) (bytes) Other Features

Hitachi :HMCS40 28:10 — 32 512 10-bit ROM
National :COP420 28:23 1 64 IK Serial bit I/O

OKI:MSM6411 16:11 — 32 IK

TI:TMS 1000 28 : 23 — 64 IK LED display

Toshiba :TLCS47 42:35 2 128 2K Serial bit I/O

These 4-bit microcontrollers are generally intended for use in large volumes as true

1 -chip computers; expanding externa! memory, while possible, would negate the cost ad-

vantage desired. Typical applications consist of appliances and toys; worldwide volumes

run into the tens of millions.

Eight-Bit Microcontrollers

Eight-bit microcontrollers represent a transition zone between the dedicated, high volume,

4-bit microcontrollers, and the high performance, 16- and 32-bit units that will conclude

this chapter.

Eight bits has proven to be a very useful word size for small computing tasks. Ca-

pable of 256 decimal values, or quarter-percent resolution, the 1 -byte word is adequate for

many control and monitoring applications. Serial ASCII data is also stored in byte sizes,

making 8 bits the natural choice for data communications. Most integrated circuit memo-
ries and many logic functions are arranged in an 8-bit configuration that interfaces easily

to data buses of 8 bits.

Application volumes for 8-bit microcontrollers may be as high as the 4-bit models, or

they may be very low. Application sophistication can also range from simple appliance

control to high-speed machine control and data collection. For these reasons, the micro-

controller vendors have established extensive "families" of similar models. All feature

a common language, but differ in the amount of internal ROM, RAM. and other cost-

sensitive features. Often the memory can be expanded to include off-chip ROM and

RAM; in some cases, the microcontroller has no on-board ROM at all, or the ROM is an

Electrically Reprogrammable Read Only Memory (EPROM).

The purpose of this diversity is to offer the designer a menu of similar devices that can

solve almost any problem. The ROMless or EPROM versions can be used by the designer

to prototype the application, and then the designer can order the ROM version in large

quantities from the factory. Many times the ROM version is never used. The designer

makes the ROMless or EPROM design sufficiently general so that one configuration may
be used many times, or because production volumes never justify the cost of a factory

ROM implementation. As a further enticement for the buyer, some families have members

with fewer external pins to shrink the package and the cost; others have special features

such as analog-to-digital (A/D) and digital-to-analog (D/A) converters on the chip.

The 8-bit arena is crowded with capable and cleverly designed contenders; this is the

growth segment of the market and the manufacturers are responding vigorously to the

marketplace. The following table lists the generic family name for each chip, but keep

MICROPROCESSORS AND MICROCONTROLLERS

in mind that ROMless, EPROM, and reduced pin-count members of the family are also

available. Each entry in the table has many variations; the total number of configurations

available exceeds a total of eighty types for the eleven model numbers listed.

Manufacturer : Model Pins : I/O

Intel: 8048 40:27

Intel: 8051 40:32

National :COP820 28:24

Motorola: 6805 28:20

Motorola :68HC 11 52:40

Rockwell: 6500/1 40:32

Signetics:87C552 68:48

TI:TMS7500 40:32

TI:TMS370C050 68:55

Zilog:Z8 40:32

Zilog:Z8820 44:40

RAM ROM
Counters (bytes) (bytes)

64 IK1

128 4K

64

64

256

IK

IK

8K

64 2K
256 8K
128 2K

256 4K

128 2K

272 8K

Other Features

External memory
to8K

External memory to

128K; serial port

Serial bit I/O

Serial ports; A/D;

watch dog timer

(WDT)

Serial port; A/D; WDT
External memory

to64K

External memory to

112K; A/D; serial

ports; WDT
External memory to

124K; serial port

External memory to

128K; serial port

£>— CAUTION

Not all of the pins can be used for general-purpose I/O and addressing external memory at the

same time. The sales literature should be read with some care to see how many of the pins have

more than one function. Inspection of the table shows that the designers made tradeoffs: ex-

ternal memory addressing for extra on-chip functions. Generally, the ability to expand memory
off of the chip implies that a ROMless family member is available for use in limited production

numbers where the expense of factory programming can be avoided. Lack of this feature

implies that the chip is meant for high production volumes where the expense of factory-

programmed parts can be amortized over a large number of devices.

Sixteen-Bit Microcontrollers

Eight-bit microcontrollers can be used in a variety of applications that involve limited cal-

culations and relatively simple control strategies. As the requirement for faster response

and more sophisticated calculations grows, the 8-bit designs begin to hit a limit inherent

with byte-wide data words. One solution is to increase clock speeds; another is to increase

the size of the data word. Sixteen-bit microcontrollers have evolved to solve high-speed

control problems of the type that might typically be confronted in the control of ser-

vomechanisms, such as robot arms, or for digital signal processing (DSP) applications.

The designs become much more focused on these types of real-time problems; some
generality is lost, but the vendors still try to hit as many marketing targets as they can. The
following table lists only three contenders. Intel has recently begun vigorously marketing

iln* XO'U. |;unilv OMu-r vendors ;irc expected lo appear as this market segment grows in

tmptMUUHC.

RAM ROM
Manufacturer: Model Pins: I/O Counters (bytes) (bytes) Other Features

Hitachi : H8/532 84:65 5 IK 32K External memory to

I megabyte; serial

port; A/D; pulse

width modulation

Intel: 8096 68:40 2 232 8K External memory to

64K; serial port;

A/D; WDT; pulse

width modulation

National :HPCI6164 68:52 4 512 16K External memory to

64K; serial port;

A/D; WDT; pulse

width modulation

The pulse width modulation (PWM) output is useful for controlling motor speed; it

can be done using software in the 8-bit units with the usual loss of time for other tasks.

The 16- (and 32-) bit controllers have also been designed to take advantage of high-

level programming languages in the expectation that very little assembly language pro-

gramming will be done when employing these controllers in sophisticated applications.

Thirty-Two Bit Microcontrollers

Crossing the boundary from 16 to 32 bits involves more than merely doubling the word

size of the computer. Software boundaries that separate dedicated programs from super-

visory programs are also breached. Thirty two bit designs target robotics, highly intelli-

gent instrumentation, avionics, image processing, telecommunications, automobiles, and

other environments that feature application programs running under an operating system.

The line between microcomputers and microcontrollers becomes very fine here.

The design emphasis now switches from on-chip features, such as RAM, ROM,
timers, and serial ports, to high-speed computation features. The following table provides

a general list of the capability of the Intel 80960:

HARDWARE FEATURES SOFTWARE FEATURES

132-pin ceramic package Efficient procedure calls

20 megahertz clock Fault-handling capability

32-bit bus Trace events

Floating-point unit Global registers

512-byte instruction cache Efficient interrupt vectors

Interrupt control Versatile addressing

All of the functions needed for I/O, data communications, and timing and counting are

done by adding other specialized chips.

This manufacturer has dubbed all of its microcontrollers "embedded controllers,"

a term that seems to describe the function of the 32-bit 80960 very well.

MICROPROCESSORS AND MICROCONTROLLERS

Development Systems

for Microcontrollers

Summary

What is needed to be able to apply a microcontroller to your product? That is, what pack-

age of hardware and software will allow the microcontroller to be programmed and con-

nected to your application? A package commonly called a "development system" is

required.

First, trained personnel must be available either on your technical staff or as consul-

tants. One person who is versed in digital hardware and computer software is the mini-

mum number.

Second, a device capable of programming EPROMs must be available to test the

prototype device. Many of the microcontroller families discussed have a ROMIess ver-

sion, an EPROM version, or an Electrically Erasable and Programmable Read Only Mem-
ory (EEPROM) version that lets the designer debug the hardware and software prototype

before committing to full-scale production. Many inexpensive EPROM programmers are

sold that plug into a slot of most popular personal computers. More expensive, and more

versatile, dedicated programmers are also available. An alternative to EPROMs are vendor-

supplied prototype cards that allow code to be down loaded from a host computer, and the

program run from RAM for debugging purposes. An EPROM will eventually have to be

programmed for the production version of the microcontroller.

Finally, software is needed, along with a personal computer to host it. The minimum

software package consists of a machine language assembler, which can be supplied by the

microcontroller vendor or bought from independent developers. More expensive software

mainly consisting of high-level language compilers and debuggers is also available.

A minimum development system, then, consists of a personal computer, a plug-in

EPROM programmer, and a public-brand assembler. A more extensive system would con-

sist of vendor-supplied dedicated computer systems with attendant high-level software

packages and in-circuit emulators for hardware and software debugging. In 1990 dollars,

the cost for the range of solutions outlined here is from $1000 to $10,000.

The fundamental differences between microprocessors and microcontrollers are:

n Microprocessors are intended to be general-purpose digital computers while micro-

controllers are intended to be special-purpose digital controllers.

n Microprocessors contain a CPU, memory addressing circuits, and interrupt han-

dling circuits. Microcontrollers have these features as well as timers, parallel and

serial I/O, and internal RAM and ROM.

° Microcontroller models vary in data size from 4 to 32 bits. Four-bit units are pro-

duced in huge volumes for very simple applications, and 8-bit units are the most

versatile. Sixteen- and 32-bit units are used in high-speed control and signal pro-

cessing applications.

° Many models feature programmable pins that allow external memory to be added

with the loss of I/O capability.

10 CHAPTER ONE

Questions

1

.

Name four major differences between a microprocessor and a microcontroller.

2. The 8051 has 40 pins on a Dual Inline Package (DIP) package, yet the comparison with

the Z80 microprocessor totals 58 pins. Explain this difference.

3. Name 20 items that have a built-in microcontroller.

4. Name 10 items that should have a built-in microcontroller.

5. Name the most unusual application of a microcontroller that you have seen actually

for sale.

6. Name the most likely bit size for each of the following products.

Modem

Printer

Toaster

Automobile engine control

Robot arm

Small ASCII data terminal

Chess player

House thermostat

7. Explain why ROMIess versions of microcontrollers exist.

8. Name two ways to speed up digital data processing.

9. List three essential items needed to make up a development system for programming

microcontrollers.

10. Search the literature and determine whether any manufacturer has announced a 64-bit

microcontroller.

The 8051 Architecture

Chapter Outline

Introduction

8051 Microcontroller Hardware

External Memory

Counters and Timers

Serial Data Input/Output

Interrupts

Summary

Introduction

The first task faced when learning to use a new computer is to become familiar with the

capability of the machine. The features of the computer are best learned by studying the

internal hardware design, also called the architecture of the device, to determine the type,

number, and size of the registers and other circuitry.

The hardware is manipulated by an accompanying set of program instructions, or

software, which is usually studied next. Once familiar with the hardware and software, the

system designer can then apply the microcontroller to the problems at hand.

A natural question during this process is "What do I do with all this stuff?" Similar to

attempting to write a poem in a foreign language before you have a vocabulary and rules

of grammar, writing meaningful programs is not possible until you have become ac-

quainted with both the hardware and the software of a computer.

This chapter provides a broad overview of the architecture of the 805 1 . In subsequent

chapters, we will cover in greater detail the interaction between the hardware and the

software.

8051 Microcontroller Hardware

11

The 805 1 microcontroller actually includes a whole family of microcontrollers that have

numbers ranging from 8031 to 8751 and are available in N-Channel Metal Oxide Silicon

(NMOS) and Complementary Metal Oxide Silicon (CMOS) construction in a variety of

12 CHAPTER TWO

FIGURE 2.1a 8051 Block Diagram

u O
r
o

Arithmetic

and
Logic Unit

Special-

Function

Registers

RAM

— I/O

— A0-A7
— D0-D7—

A B
8-Bit Data and

Address Bus -C

—1
o
Q_

— I/O

1 V r

ROMPC
DPTR
DPH
DPL

o
CM

O
Q-

I/O

_ A8-A15

to o
0_

I/O

EA — System
Timing

System
Interrupts

Timers

Data Buffers

Memory Control

Byte/Bit

Addresses

Special-

Function

Registers

— Interrupt

— Counter
™~ Serial Data

ALE —
PSEN —

Register

Bank 3

IE
— RD-WR

XTAL1 —
XTAL2 — IP

RESET — PCON

Register

Bank 2

Vcc — SBUF

GND — SCON

TCON
1

Register

Bank 11

1

TMOD
TLO

THO
Register

BankO
1 TL1

\ THl

1

1

Internal RAM Structure

package types. An enhanced version of the 805 1 , the 8052, also exists with its own family

of variations and even includes one member that can be programmed in BASIC. This gal-

axy of parts, the result of desires by the manufacturers to leave no market niche unfilled,

would require many chapters to cover. In this chapter, we will study a "generic" 8051,

housed in a 40-pin DIP, and direct the investigation of a particular type to the data books.

The block diagram of the 8051 in Figure 2.1a shows all of the features unique to micro-

controllers:

Internal ROM and RAM
I/O ports with programmable pins

Timers and counters

Serial data communication

THE 8051 ARCHITECTURE 13

FIGURE 2.1b 8051 Programming Model

Register

Bank

8 1 EO*

A

Register

8 | FO'

B

Register

Math Registers

30

General-

Purpose

Area

2F

20

Bit

Address

Area

IF

18

Register

Bank

3

17

10

Register

Bank
2

OF

08

Register

Bank
1

07 R7

06 R6

05 R5

04 R4

03 R3

02 R2

01 Rl

00 RO

Byte

Addresses
Internal

RAM

7F

00

8 | B8'

IP

Register

8 | A8'

(E

Register

8 | 89

TMOD
Register

8 1 88'

TCON
Register

Interrupt Registers Timer Control Registers

8C

THO
Counter

8A

TLO
Counter

8D

TH1
Counter

86

TL1
Counter

Timer/Counter Registers

98'

SCON
Register

8 | 99

SBUF
Register

87

PCON
Register

DO'

PSW
Register

Serial Data Registers Flags

8 1 81

Stack

Pointer

Bit Addresses for this RAM Area Only

8 | 83 | 8 | 82"

Data Pointer

DPH I DPL

8 |
80'

PortO

Latch

8 | 90'

Port 1

Latch

Number of

Bits

Direct Byte Address

Indicates Bit Addressable

FFF

16 | No Address

Program Counter

8 | AO' 8 | BO*

Port 2

Latch

Port 3
Latch

000

Internal

ROM

14 CHAPTER TWO

The figure also shows the usual CPU components: program counter, ALU, working regis-

ters, and clock circuits.'

The 805 1 architecture consists of these specific features:

Eight-bit CPU with registers A (the accumulator) and B

Sixteen-bit program counter (PC) and data pointer (DPTR)

Eight-bit program status word (PSW)

Eight-bit stack pointer (SP)

Internal ROM or EPROM (875 1) of (803 1) to 4K (805 1

)

Internal RAM of 128 bytes:

Four register banks, each containing eight registers

Sixteen bytes, which may be addressed at the bit level

Eighty bytes of general-purpose data memory

Thirty-two input/output pins arranged as four 8-bit ports: P0-P3

Two 16-bit timer/counters: TO and Tl

Full duplex serial data receiver/transmitter: SBUF

Control registers: TCON, TMOD, SCON, PCON, IP, and IE

Two external and three internal interrupt sources

Oscillator and clock circuits

The programming model of the 8051 in Figure 2.1b shows the 8051 as a collection of

8- and 16-bit registers and 8-bit memory locations. These registers and memory locations

can be made to operate using the software instructions that are incorporated as part of the

design. The program instructions have to do with the control of the registers and digital

data paths that are physically contained inside the 8051 , as well as memory locations that

are physically located outside the 8051

.

The model is complicated by the number of special-purpose registers that must be

present to make a microcomputer a microcontroller. A cursory inspection of the model is

recommended for the first-time viewer; return to the model as needed while progressing

through the "remainder of the text.

Most of the registers have a specific function; those that do occupy an individual

block with a symbolic name, such as A or THO or PC. Others, which are generally indis-

tinguishable from each other, are grouped in a larger block, such as internal ROM or

RAM memory.

Each register, with the exception of the program counter, has an internal 1-byte ad-

dress assigned to it. Some registers (marked with an asterisk * in Figure 2.1b) are both

byte and bit addressable. That is, the entire byte of data at such register addresses may be

read or altered, or individual bits may be read or altered. Software instructions are gener-

ally able to specify a register by its address, its symbolic name, or both.

A pinout of the 8051 packaged in a 40-pin DIP is shown in Figure 2.2 with the full

and abbreviated names of the signals for each pin. It is important to note that many of the

1 Knowledge of the details of circuit operation that cannot be affected by any instruction or external data, while

intellectually stimulating, tends to confuse the student new to the 805 1 . For this reason, this text will concentrate

on the essential features of the 805 1 ; the more advanced student may wish to refer to manufacturers' data books

for additional information.

THE 8051 ARCHITECTURE 15

FIGURE 2.2 8051 DIP Pin Assignments

Port 1 Bit

Port 1 Bit 1

Port 1 Bit 2

Port 1 Bit 3

Portl Bit 4

Port 1 Bit 5

Port 1 Bit 6

Port 1 Bit 7

Reset Input

Port 3 Bit

{Receive Data)

Port 3 Bit 1

(XM IT Data)

Port 3 Bit 2
(Interrupt 0)

Port 3 Bit 3

(Interrupt 1)

Port 3 Bit 4

(Timer Input)

Port 3 Bit 5

(Timer 1 Input)

Port 3 Bit 6

(Write Strobe)

Port 3 Bit 7

(Read Strobe)

Crystal Input 2

Crystal Input 1

Ground

1 P1.0 ^~-^ Vcc 40

2 Pl.l (ADO)PO.O 39

3 PI.

2

(ADl)PO.l 38

4 P1.3 (AD2)P0.2 37

5 PI.

4

(AD3)P0.3 36

6 PI.

5

(AD4)P0.4 35

7 PI.

6

(AD5)P0.5 34

8 PI.

7

(AD6)P0.6 33

9 RST (AD7)P0.7 32

10 P3.0{RXD) (VppVEA 31

11 P3.KTXD) (PROG)ALE 30

12 P3.2(INTO) PSEN 29

13 P3.30NT1) (A15)P2.7 28

14 P3.4(T0) (A14)P2.6 27

15 P3.5CT1) (A13)P2.5 26

16 P3.6(WR) (A12)P2.4 25

17 P3.7(RD) (A1DP2.3 24

18 XTAL2 (A10JP2.2 23

19 XTAL1 (A9JP2.1 22

20 Vss (A81P2.0 21

+ 5V

Port Bit

(Address/Data 0)

Port Bit 1

(Address/Data 1)

Port Bit 2
(Address/Data 2)

PortO Bit 3

(Address/Data 3)

PortO Bit 4
(Address/Data 4)

Port Bit 5

(Address/Data 5)

Port Bit 6

(Address/Data 6)

PortO Bit 7

{Address/Data 7)

External Enable

(EPROM Programming Voltage)

Address Latch Enable

(EPROM Program Pulse)

Program Store Enable

Port 2 Bit 7

(Address 15)

Port 2 Bit 6

(Address 14)

Port 2 Bit 5

(Address 13)

Port 2 Bit 4

(Address 12)

Port 2 Bit 3
(Address 11)

Port 2 Bit 2

(Address 10)

Port 2 Bit 1

(Address 9)

Port 2 Bit

(Address 8)

Note: Alternate functions are shown below the port name (in parentheses). Pin num-

bers and pin names are shown inside the DIP package.

16 CHAPTER TWO

pins are used for more than one function (the alternate functions are shown in parentheses

in Figure 2.2). Not all of the possible 8051 features may be used at the same time.

Programming instructions or physical pin connections determine the use of any multi-

function pins. For example, port 3 bit (abbreviated P3.0) may be used as a general-

purpose I/O pin, or as an input (RXD) to SBUF, the serial data receiver register. The

system designer decides which of these two functions is to be used and designs the hard-

ware and software affecting that pin accordingly.

The 8051 Oscillator and Clock

The heart of the 805 1 is the circuitry that generates the clock pulses by which all internal

operations are synchronized. Pins XTAL1 and XTAL2 are provided for connecting a reso-

nant network to form an oscillator. Typically, a quartz crystal and capacitors are em-

ployed, as shown in Figure 2.3. The crystal frequency is the basic internal clock fre-

quency of the microcontroller. The manufacturers make available 8051 designs that can

run at specified maximum and minimum frequencies, typically 1 megahertz to 16 mega-

hertz. Minimum frequencies imply that some interna] memories are dynamic and must

always operate above a minimum frequency, or data will be lost.

Communication needs often dictate the frequency of the oscillator due to the require-

ment that internal counters must divide the basic clock rate to yield standard communica-

tion bit per second (baud) rates. If the basic clock frequency is not divisible without a

remainder, then the resulting communication frequency is not standard.

FIGURE 2.3 Oscillator Circuit and Timing

ci

il lh

TCrystal ^^
or

I I

Ceramic Resonator

lr tt
I

C2

18XTAL2

8051 DIP

19XTAL1

Crystal or Ceramic Resonator Oscillator Circuit

Oscillator

Frequency

f

P2 PI P2 PI P2 PI P2 PI P2 PI P2 PI P2

TrumrLTLTijuijijijinj
State 1 State 2 State 3 State 4 State 5 State 6

One Machine Cycle

Address Latch
Enable (ALE)

8051 Timing

THE 8051 ARCHITECTURE 17

Ceramic resonators may be used as a low-cost alternative to crystal resonators. How-
ever, decreases in frequency stability and accuracy make the ceramic resonator a poor

choice if high-speed serial data communication with other systems, or critical timing, is to

be done.

The oscillator formed by the crystal, capacitors, and an on-chip inverter generates a

pulse train at the frequency of the crystal, as shown in Figure 2.3.

The clock frequency, /, establishes the smallest interval of time within the micro-

controller, called the pulse, P, time. The smallest interval of time to accomplish any

simple instruction, or part of a complex instruction, however, is the machine cycle. The

machine cycle is itself made up of six states. A state is the basic time interval for discrete

operations of the microcontroller such as fetching an opcode byte, decoding an opcode,

executing an opcode, or writing a data byte. Two oscillator pulses define each state.

Program instructions may require one, two, or four machine cycles to be executed,

depending on the type of instruction. Instructions are fetched and executed by the micro-

controller automatically, beginning with the instruction located at ROM memory address

OOOOh at the time the microcontroller is first reset.

To calculate the time any particular instruction will take to be executed, find the num-

ber of cycles, C, from the list in Appendix A. The time to execute that instruction is then

found by multiplying C by 12 and dividing the product by the crystal frequency:

C x 12d
Tmst =

crystal frequency

For example, if the crystal frequency is 16 megahertz, then the time to execute an ADD
A, Rl one-cycle instruction is .75 microseconds. A 12 megahertz crystal yields the con-

venient time of one microsecond per cycle. An 1 1 .0592 megahertz crystal, while seem-

ingly an odd value, yields a cycle frequency of 921.6 kilohertz, which can be divided

evenly by the standard communication baud rates of 19200, 9600, 4800, 2400, 1200, and

300 hertz.

Program Counter and Data Pointer

The 8051 contains two 16-bit registers: the program counter (PC) and the data pointer

(DPTR). Each is used to hold the address of a byte in memory.

Program instruction bytes are fetched from locations in memory that are addressed by

the PC. Program ROM may be on the chip at addresses OOOOh to OFFFh, external to the

chip for addresses that exceed OFFFh, or totally external for all addresses from OOOOh to

FFFFh. The PC is automatically incremented after every instruction byte is fetched and

may also be altered by certain instructions. The PC is the only register that does not have

an internal address.

The DPTR register is made up of two 8-bit registers, named DPH and DPL, that are

used to furnish memory addresses for internal and external code access and external data

access. The DPTR is under the control of program instructions and can be specified by its

16-bit name, DPTR, or by each individual byte name, DPH and DPL. DPTR does not

have a single internal address; DPH and DPL are each assigned an address.

A and B CPU Registers

The 8051 contains 34 general-purpose, or working, registers. Two of these, registers A
and B, comprise the mathematical core of the 8051 central processing unit (CPU). The

other 32 are arranged as part of internal RAM in four banks, B0-B3, of eight registers

each, named R0 to R7.

18 CHAPTER TWO

The A (accumulator) register is the most versatile of the two CPU registers and is

used for many operations, including addition, subtraction, integer multiplication and divi-

sion, and Boolean bit manipulations. The A register is also used for all data transfers be-

tween the 805 1 and any external memory. The B register is used with the A register for

multiplication and division operations and has no other function other than as a location

where data may be stored.

Flags and the Program Status Word (PSW)

Flags are I -bit registers provided to store the results of certain program instructions. Other

instructions can test the condition of the flags and make decisions based upon the flag

states. In order that the flags may be conveniently addressed, they are grouped inside the

program status word (PSW) and the power control (PCON) registers.

The 805 1 has four math flags that respond automatically to the outcomes of math

operations and three general-purpose user flags that can be set to I or cleared to by the

programmer as desired. The math flags include carry (C), auxiliary carry (AC), overflow

(OV), and parity (P). User flags are named F0, GFO, and GF1; they are general-purpose

flags that may be used by the programmer to record some event in the program. Note that

all of the flags can be set and cleared by the programmer at will. The math flags, however,

are also affected by math operations.

The program status word is shown in Figure 2.4. The PSW contains the math flags,

user program flag F0, and the register select bits that identify which of the four general-

purpose register banks is currently in use by the program. The remaining two user flags,

GFO and GFl , are stored in PCON, which is shown in Figure 2. 1 3.

FIGURE 2.4 PSW Program Status Word Register

7 6 5 4 3 2 1

CY AC F0 RSI RSO OV — p

THE PROGRAM STATUS WORD (PSW) SPECIAL FUNCTION REGISTER

Bit Symbol Function

Carry flag; used in arithmetic, JUMP, ROTATE, and BOOLEAN instructions

Auxiliary carry flag; used for BCD arithmetic

User flag

Register bank select bit 1

Register bank select bit

Select register bank

Select register bank 1

Select register bank 2

Select register bank 3

7 CY
6 AC
5 F0

4 RS1

3 RSO

OV

RS1 RSO

1

1

1 1

Overflow flag; used in arithmetic instructions

Reserved for future use

Parity flag; shows parity of register A: 1 = Odd Parity

Bit addressable as PSW.O to PSW. 7

THE 8051 ARCHITECTURE 19

Detailed descriptions of the math flag operations will be discussed in chapters that

cover the opcodes that affect the flags. The user flags can be set or cleared using data move

instructions covered in Chapter 3.

Internal Memory

A functioning computer must have memory for program code bytes, commonly in ROM,
and RAM memory for variable data that can be altered as the program runs. The 805 1 has

internal RAM and ROM memory for these functions. Additional memory can be added

externally using suitable circuits.

Unlike microcontrollers with Von Neumann architectures, which can use a single

memory address for either program code or data, but not for both, the 805 1 has a Harvard

architecture, which uses the same address, in different memories, for code and data. In-

ternal circuitry accesses the correct memory based upon the nature of the operation in

progress.

Internal RAM
The 128-byte internal RAM, which is shown generally in Figure 2.1 and in detail in Fig-

ure 2.5, is organized into three distinct areas:

1. Thirty-two bytes from address OOh to IFh that make up 32 working registers or-

ganized as four banks of eight registers each. The four register banks are num-

bered to 3 and are made up of eight registers named R0 to R7. Each register

can be addressed by name (when its bank is selected) or by its RAM address.

Thus R0 of bank 3 is RO (if bank 3 is currently selected) or address 1 8h (whether

bank 3 is selected or not). Bits RSO and RSI in the PSW determine which bank

of registers is currently in use at any time when the program is running. Register

banks not selected can be used as general-purpose RAM. Bank is selected

upon reset.

2. A /w'f-addressable area of 16 bytes occupies RAM byte addresses 20h to 2Fh,

forming a total of 128 addressable bits. An addressable bit may be specified by

its bit address of OOh to 7Fh, or 8 bits may form any byte address from 20h to

2Fh. Thus, for example, bit address 4Fh is also bit 7 of byte address 29h. Ad-

dressable bits are useful when the program need only remember a binary event

(switch on, light off, etc.). Internal RAM is in short supply as it is, so why use a

byte when a bit will do?

3. A general-purpose RAM area above the bit area, from 30h to 7Fh, addressable

as bytes.

The Stack and the Stack Pointer

The stack refers to an area of internal RAM that is used in conjunction with certain op-

codes to store and retrieve data quickly. The 8-bit stack pointer (SP) register is used by the

8051 to hold an internal RAM address that is called the "top of the stack." The address

held in the SP register is the location in internal RAM where the last byte of data was

stored by a stack operation.

When data is to be placed on the stack, the SP increments before storing data on the

stack so that the stack grows up as data is stored. As data is retrieved from the stack, the

byte is read from the stack, and then the SP decrements to point to the next available byte

of stored data.

20 CHAPTER TWO

FIGURE 2.5 Internal RAM Organization

00

IF R7

IE R6

ID R5

1C R4

IB R3

1A R2

19 Rl

18 RO

17 R7

16 R6

15 R5

14 R4

13 R3

12 R2

11 Rl

10 RO

OF R7

OE R6

OD R5

OC R4

OB R3

OA R2

09 Rl

08 RO

07 R7

06 R6

05 R5

04 R4

03 R3

02 R2

01 Rl

00 RO

Working

Registers

2F 7F 78

2E 77 70

2D 6F 68

2C 67 60

2B 5F 58

2A 57 50

29 4F 48

28 47 40

27 3F 38

26 37 30

25 2F 28

24 27 20

23 IF 18

22 17 10

21 OF 08

20 07 00

Bit Addressable

7F

General Purpose

Note: Byte addresses are shown to the left; bit addresses registers are shown inside

a location.

Operation of the stack and the SP is shown in Figure 2.6. The SP is set to 07h when

the 8051 is reset and can be changed to any internal RAM address by the programmer.

The stack is limited in height to the size of the internal RAM. The stack has the poten-

tial (if the programmer is not careful to limit its growth) to overwrite valuable data in the

register banks, bit-addressable RAM, and scratch-pad RAM areas. The programmer is

responsible for making sure the stack does not grow beyond pre-defined bounds!

The stack is normally placed high in internal RAM, by an appropriate choice of the

number placed in the SP register, to avoid conflict with the register, bit, and scratch-pad

internal RAM areas.

THE 8051 ARCHITECTURE 21

FIGURE 2.6 Stack Operation

SP = 0A
Store Data

Address OA
Get Data

SP = OA

SP = 09
Store Data

Address 09
Get Data

SP = 09

SP = 08
Store Data

Address 08
Get Data

SP = 08

SP = 07 Address 07 SP = 07

Storing Data on the Stack

(Increment then store)

Internal RAM
(Get then decrement)

Getting Data From the Stack

Special Function Registers

The 805 1 operations that do not use the internal 1 28-byte RAM addresses from OOh to 7Fh

are done by a group of specific internal registers, each called a special-function register

(SFR), which may be addressed much like internal RAM, using addresses from 80h

toFFh.

Some SFRs (marked with an asterisk * in Figure 2. lb) are also bit addressable, as is

the case for the bit area of RAM. This feature allows the programmer to change only what

needs to be altered, leaving the remaining bits in that SFR unchanged.

Not all of the addresses from 80h to FFh are used for SFRs, and attempting to use an

address that is not defined, or "empty," results in unpredictable results. In Figure 2. lb,

the SFR addresses are shown in the upper right corner of each block. The SFR names and

equivalent internal RAM addresses are given in the following table:

INTERNAL RAM
ADDRESS (HEX)NAME FUNCTION ADI

A Accumulator 0E0

B Arithmetic 0F0

DPH Addressing external memory 83

DPL Addressing external memory 82

IE Interrupt enable control 0A8
IP Interrupt priority 0B8

P0 Input/output port latch 80

P1 Input/output port latch 90

P2 Input/output port latch A0
P3 Input/output port latch 0B0

PCON Power control 87

PSW Program status word 0D0
SCON Serial port control 98

SBUF Serial port data buffer 99

Continued

22 CHAPTER TWO

INTERNAL RAM
NAME FUNCTION ADDRESS (HEX)

SP Stack pointer 81

TMOD Timer/counter mode control 89

TCON Timer/counter control 88
TLO Timer low byte 8A
THO Timer high byte 8C
TL1 Timer 1 low byte 8B

TH1 Timer 1 high byte 8D

Continued

Note that the PC is not part of the SFR and has no internal RAM address.

SFRs are named in certain opcodes by their functional names, such as A or THO, and

are referenced by other opcodes by their addresses, such as OEOh or 8Ch. Note that any

address used in the program must start with a number; thus address EOh for the A SFR
begins with 0. Failure to use this number convention will result in an assembler error

when the program is assembled.

Internal ROM
The 8051 is organized so that data memory and program code memory can be in two

entirely different physical memory entities. Each has the same address ranges.

The structure of the internal RAM has been discussed previously. A corresponding

block of internal program code, contained in an internal ROM, occupies code address

space OOOOh to OFFFh. The PC is ordinarily used to address program code bytes from

addresses OOOOh to FFFFh. Program addresses higher than OFFFh, which exceed the inter-

nal ROM capacity, will cause the 8051 to automatically fetch code bytes from external

program memory. Code bytes can also be fetched exclusively from an external memory,

addresses OOOOh to FFFFh, by connecting the external access pin (EA pin 31 on the DIP)

to ground. The PC does not care where the code is; the circuit designer decides whether

the code is found totally in internal ROM, totally in external ROM, or in a combination of

internal and external ROM.

Input/Output Pins, Ports, and Circuits

One major feature of a microcontroller is the versatility built into the input/output (I/O)

circuits that connect the 8051 to the outside world. As noted in Chapter 1 , microprocessor

designs must add additional chips to interface with externa! circuitry; this ability is built

into the microcontroller.

To be commercially viable, the 8051 had to incorporate as many functions as were

technically and economically feasible. The main constraint that limits numerous functions

is the number of pins available to the 805 1 circuit designers. The DIP has 40 pins, and the

success of the design in the marketplace was determined by the flexibility built into the use

of these pins.

For this reason, 24 of the pins may each be used for one of two entirely different

functions, yielding a total pin configuration of 64. The function a pin performs at any

given instant depends, first, upon what is physically connected to it and, then, upon what

software commands are used to "program" the pin. Both of these factors are under the

complete control of the 8051 programmer and circuit designer.

THE 8051 ARCHITECTURE 23

Given this pin flexibility, the 8051 may be applied simply as a single component with

I/O only, or it may be expanded to include additional memory, parallel ports, and serial

data communication by using the alternate pin assignments. The key to programming an

alternate pin function is the port pin circuitry shown in Figure 2.7.

Each port has a D-type output latch for each pin. The SFR for each port is made up

of these eight latches, which can be addressed at the SFR address for that port. For in-

stance, the eight latches for port are addressed at location 80h; port pin 3 is bit 2 of the

P0 SFR. The port latches should not be confused with the port pins; the data on the latches

does not have to be the same as that on the pins.

The two data paths are shown in Figure 2.7 by the circuits that read the latch or pin

data using two entirely separate buffers. The top buffer is enabled when latch data is read,

and the lower buffer, when the pin state is read. The status of each latch may be read from

a latch buffer, while an input buffer is connected directly to each pin so that the pin status

may be read independently of the latch state.

Different opcodes access the latch or pin states as appropriate. Port operations are

determined by the manner in which the 8051 is connected to external circuitry.

Programmable port pins have completely different alternate functions. The configura-

tion of the control circuitry between the output latch and the port pin determines the nature

of any particular port pin function. An inspection of Figure 2.7 reveals that only port 1

cannot have alternate functions; ports 0, 2, and 3 can be programmed.

The ports are not capable of driving loads that require currents in the tens of milli-

amperes (mA). As previously mentioned, the 8051 has many family members, and many
are fabricated in varying technologies. An example range of logic-level currents, volt-

ages, and total device power requirements is given in the following table:

Parameter voh loh vol <d v
i(In vih l.h Pt

CMOS 2.4 V -60 MA .45 V 1.6 mA ,9 V |10/iA| 1.9 V |10/iA| 50 mW
NMOS 2.4V -80 /aA .45 V 1.6 mA ,8 V -800 jaA 2.0 V 10 ^A 800 mW

These figures tell us that driving more than two LSTTL inputs degrades the noise

immunity of the ports and that careful attention must be paid to buffering the ports when
they must drive currents in excess of those listed. Again, one must refer to the manufac-

turers' data books when designing a "real" application.

PortO

Port pins may serve as inputs, outputs, or, when used together, as a bi-directional low-

order address and data bus for external memory. For example, when a pin is to be used as

an input, a 1 must be written to the corresponding port latch by the program, thus turn-

ing both of the output transistors off, which in turn causes the pin to "float" in a high-

impedance state, and the pin is essentially connected to the input buffer.

When used as an output, the pin latches that are programmed to a will turn on the

lower FET, grounding the pin. All latches that are programmed to a 1 still float; thus,

external pullup resistors will be needed to supply a logic high when using port as an

output.

When port is used as an address bus to external memory, internal control signals

switch the address lines to the gates of the Field Effect Transistories (FETs). A logic 1 on

an address bit will turn the upper FET on and the lower FET off to provide a logic high at

the pin. When the address bit is a zero, the lower FET is on and the upper FET off to

FIGURE 2.7 Port Pin Circuits

Vcc

Read Latch Bit

Internal Bus

Write to Latch

Read Pin Data

Read Latch Data

Internal Bus

Write to Latch

Read Pin Data

Control Signals

Address

Read Latch Bit

Internal Bus

Write to Latch

Read Pin Data

Alternate Output

Read Latch Bit

Internal Bus

Write to Latch

Read Pin Data

Alternate Input

D Q

CL Q

Enhancement-
Mode I

Control

Logic

PortSFR Latch

Two Oscillator

Periods

?FET
[

Vcc

Q

CL Q

Internal

FET
Pullup

PortSFR Latch

9

D Q

CL q

Vcc

Control

Logic

lJV

Port SFR Latch

IS
Depletion -

Mode FET

Internal FET Pullup

Pin

O.X

Port Pin Configuration

lal
—

,p Sr . fPirT

tf
2

Port 1 Pin Configuration

Internal

FET
Pullup

Pin

2.X

Port 2 Pin Configuration

Port 3 Pin Configuration

THE 8051 ARCHITECTURE 25

provide a logic low at the pin. After the address has been formed and latched into external

circuits by the Address Latch Enable (ALE) pulse, the bus is turned around to become a

data bus. Port now reads data from the external memory and must be configured as an

input, so a logic 1 is automatically written by internal control logic to all port latches.

Portl

Port 1 pins have no dual functions. Therefore, the output latch is connected directly to the

gate of the lower FET, which has an FET circuit labeled "Internal FET Pullup" as an

active pullup load.

Used as an input, a 1 is written to the latch, turning the lower FET off; the pin and the

input to the pin buffer are pulled high by the FET load. An external circuit can overcome

the high impedance pullup and drive the pin low to input a or leave the input high for a 1

.

If used as an output, the latches containing a 1 can drive the input of an external

circuit high through the pullup. If a is written to the latch, the lower FET is on, the

pullup is off, and the pin can drive the input of the external circuit low.

To aid in speeding up switching times when the pin is used as an output, the internal

FET pullup has another FET in parallel with it. The second FET is turned on for two

oscillator time periods during a low-to-high transition on the pin, as shown in Figure 2.7.

This arrangement provides a low impedance path to the positive voltage supply to help

reduce rise times in charging any parasitic capacitances in the external circuitry.

Port 2

Port 2 may be used as an input/output port similar in operation to port 1 . The alternate use

of port 2 is to supply a high-order address byte in conjunction with the port low-order

byte to address external memory.

Port 2 pins are momentarily changed by the address control signals when supplying

the high byte of a 16-bit address. Port 2 latches remain stable when external memory is

addressed, as they do not have to be turned around (set to 1) for data input as is the case

for port 0.

Port 3

Port 3 is an input/output port similar to port 1. The input and output functions can be

programmed under the control of the P3 latches or under the control of various other spe-

cial function registers. The port 3 alternate uses are shown in the following table:

PIN ALTERNATE USE SFR

P3.0--RXD Serial data input SBUF

P3.1--TXD Serial data output SBUF

P3.2--INTO External interrupt TCON.1

P3.3--INT1 External interrupt 1 TCON.3

P3.4--TO External timer input TMOD
P3.5--T1 External timer 1 input TMOD
P3.6--WR External memory write pulse —
P3.7--RD External memory read pulse —

Unlike ports and 2, which can have external addressing functions and change all

eight port bits when in alternate use, each pin of port 3 may be individually programmed

to be used either as I/O or as one of the alternate functions.

26 CHAPTER TWO

External Memory
The system designer is not limited by the amount of internal RAM and ROM available

on chip. Two separate external memory spaces are made available by the 16-bit PC and

DPTR and by different control pins for enabling external ROM and RAM chips. Internal

control circuitry accesses the correct physical memory, depending upon the machine cycle

state and the opcode being executed.

There are several reasons for adding external memory, particularly program memory,

when applying the 8051 in a system. When the project is in the prototype stage, the

expense— in time and money—of having a masked internal ROM made for each program

"try" is prohibitive. To alleviate this problem, the manufacturers make available an

EPROM version, the 8751 , which has 4K of on-chip EPROM that may be programmed

and erased as needed as the program is developed. The resulting circuit board layout will

be identical to one that uses a factory-programmed 805 1 . The only drawbacks to the 875

1

are the specialized EPROM programmers that must be used to program the non-standard

40-pin part, and the limit of "only" 4096 bytes of program code.

The 8751 solution works well if the program will fit into 4K bytes. Unfortunately,

many times, particularly if the program is written in a high-level language, the program

size exceeds 4K bytes, and an external program memory is needed. Again, the manufac-

turers provide a version for the job, the ROMless 8031. The EA pin is grounded when

using the 8031 , and all program code is contained in an external EPROM that may be as

large as 64K bytes and that can be programmed using standard EPROM programmers.

External RAM, which is accessed by the DPTR, may also be needed when 128 bytes

of internal data storage is not sufficient. Externa! RAM, up to 64K bytes, may also be

added to any chip in the 8051 family.

Connecting External Memory

Figure 2.8 shows the connections between an 8031 and an external memory configuration

consisting of I6K bytes of EPROM and 8K bytes of static RAM. The 805 1 accesses exter-

nal RAM whenever certain program instructions are executed. External ROM is accessed

whenever the EA (external access) pin is connected to ground or when the PC contains an

address higher than the last address in the internal 4K bytes ROM (OFFFh). 8051 designs

can thus use internal and external ROM automatically; the 8031 , having no internal ROM,
must have EA grounded.

Figure 2.9 shows the timing associated with an external memory access cycle. Dur-

ing any memory access cycle, port is time multiplexed. That is, it first provides the

lower byte of the 16-bit memory address, then acts as a bidirectional data bus to write or

read a byte of memory data. Port 2 provides the high byte of the memory address during

the entire memory read/write cycle.

The lower address byte from port must be latched into an external register to save

the byte. Address byte save is accomplished by the ALE clock pulse that provides the

correct timing for the '373 type data latch. The port pins then become free to serve as a

data bus.

If the memory access is for a byte of program code in the ROM , the PSEN (program

store enable) pin will go low to enable the ROM to place a byte of program code on the

data bus. If the access is for a RAM byte, the WR (write) or RD (read) pins will go low,

enabling data to flow between the RAM and the data bus.

The ROM may be expanded to 64K by using a 27512 type EPROM and connecting

the remaining port 2 upper address lines AI4-A15 to the chip.

At this time the largest static RAMs available are 32K in size; RAM can be expanded

to 64K by using two 32K RAMs that are connected through address A14 of port 2. The

FIGURE 2.8

EA

External Memory Connections

H 31

o
a.

8031

o
CL

FIGURE 2.9 External Memory Timing

3dPortO

Port 2

ALE Pulse

PSEN Pulse

-A7 I X D0-D7
|X

IX A8-A15 X
i^H Latch Address

External Memory Addressing

PSEN

Enable ROM
Reading ROM Using PSEN I

Read Pulse

Write Pulse

RD

Enable Read

WR

Enable Write

Accessing RAM Using RD or WR

28 CHAPTER TWO

FIGURE 2.10 TCON and TMOD Function Registers

7 6 5 4 3 2 1

TF1 TR1 TFO TRO IE1 IT1 IEO ITO

THE TIMER CONTROL (TCON) SPECIAL FUNCTION REGISTER

Bit Symbol Function

Timer 1 Overflow flag. Set when timer rolls from all ones to zero. Cleared when processor

vectors to execute interrupt service routine located at program address 001 Bh.

TF1

TR1

TFO

TRO

IE1

IT1

IEO

Timer 1 run control bit. Set to 1 by program to enable timer to count; cleared to by

program to halt timer. Does not reset timer.

Timer Overflow flag. Set when timer rolls from all ones to zero. Cleared when processor

vectors to execute interrupt service routine located at program address OOOBh.

Timer run control bit. Set to 1 by program to enable timer to count; cleared to by

program to halt timer. Does not reset timer.

External interrupt 1 edge flag. Set to 1 when a high to low edge signal is received on port 3

pin 3.3 (INTO. Cleared when processor vectors to interrupt service routine

located at program address 0013h. Not related to timer operations.

External interrupt 1 signal type control bit. Set to 1 by program to enable external interrupt 1

to be triggered by a falling edge signal. Set to by program to enable a low level

signal on external interrupt 1 to generate an interrupt.

External interrupt edge flag. Set to 1 when a high to low edge signal is received on port 3

pin 3.2 (INTO). Cleared when processor vectors to interrupt service routine located at

program address 0003h. Not related to timer operations.

Continued

first 32K RAM (0O00h-7FFFh) can then be enabled when A15 of port 2 is low, and the

second 32K RAM (8000h-FFFFh) when A15 is high, by using an inverter.

Note that the WR and RD signals are alternate uses for port 3 pins 16 and 17. Also,

port is used for the lower address byte and data; port 2 is used for upper address bits. The

use of external memory consumes many of the port pins, leaving only port 1 and parts of

port 3 for general I/O.

Counters and Timers

Many microcontroller applications require the counting of external events, such as the

frequency of a pulse train, or the generation of precise internal time delays between com-

puter actions. Both of these tasks can be accomplished using software techniques, but

software loops for counting or timing keep the processor occupied so that other, perhaps

more important, functions are not done. To relieve the processor of this burden, two 16-bit

up counters, named TO and Tl , are provided for the general use of the programmer. Each

counter may be programmed to count internal clock pulses, acting as a timer, or pro-

grammed to count external pulses as a counter.

THE 8051 ARCHITECTURE 29

Bit Symbol

ITO

Function

External interrupt signal type control bit. Set to 1 by program to enable external interrupt

to be triggered by a falling edge signal. Set to by program to enable a low level

signal on external interrupt to generate an interrupt.

Bit addressable as TCON.O to TCON.7

7 6 5 4 3 2 1

Gate C/T Ml MO Gate C/T Ml MO

Timer 1][Timer

THE TIMER MODE CONTROL (TMOD) SPECIAL FUNCTION REGISTER

Bit Symbol

7/3 Gate

6/2

5/1

C/T

M1

4/0 MO

Function

OR gate enable bit which controls RUN/STOP of timer 1 10. Set to 1 by program to enable

timer to run if bit TR1 /0 in TCON is set and signal on external interrupt INT1 /0 pin is

high. Cleared to by program to enable timer to run if bit TR1 /0 in TCON is set.

Set to 1 by program to make timer 1/0 act as a counter by counting pulses from external

input pins 3.5 (T1) or 3.4 (TO). Cleared to by program to make timer act as a timer

by counting internal frequency.

Timer/counter operating mode select bit 1 . Set/cleared by program to select mode.

Timer/counter operating mode select bit 0. Set/cleared by program to select mode.

Ml

1

1

MO

1

1

Mode

1

2

3

TMOD is not bit addressable

The counters are divided into two 8-bit registers called the timer low (TLO, TL 1) and

high (THO, TH1) bytes. All counter action is controlled by bit states in the timer mode

control register (TMOD), the timer/counter control register (TCON), and certain program

instructions.

TMOD is dedicated solely to the two timers and can be considered to be two duplicate

4-bit registers, each of which controls the action of one of the timers. TCON has control

bits and flags for the timers in the upper nibble, and control bits and flags for the external

interrupts in the lower nibble. Figure 2. 10 shows the bit assignments forTMOD and TCON.

Timer Counter Interrupts

The counters have been included on the chip to relieve the processor of timing and count-

ing chores. When the program wishes to count a certain number of internal pulses or

external events, a number is placed in one of the counters. The number represents the

maximum count less the desired count, plus one. The counter increments from the initial

number to the maximum and then rolls over to zero on the final pulse and also sets a timer

flag. The flag condition may be tested by an instruction to tell the program that the count

has been accomplished, or the flag may be used to interrupt the program.

30 CHAPTER TWO

FIGURE 2.1 1 Timer/Counter Control Logic

Timer

Oscillator

Frequency

Gate Bit In TMOD

INTl/0 Input Pin

+ 12d

CfT = (TMOD Timer Operation)

Counter

Tl/0 Input Pin JC/T = 1 fTMOD Counter Operation)

TRl/OBitlnTCON

-^- To Timer Stages

Timing

If a counter is programmed to be a timer, it will count the internal clock frequency of the

8051 oscillator divided by 12d. As an example, if the crystal frequency is 6.0 megahertz,

then the timer clock will have a frequency of 500 kilohertz.

The resultant timer clock is gated to the timer by means of the circuit shown in Figure

2.1 1. In order for oscillator clock pulses to reach the timer, the C/T bit in the TMOD
register must be set to (timer operation). Bit TRX in the TCON register must be set to 1

(timer run), and the gate bit in the TMOD register must be 0, or external pin INTX must

be a 1 . In other words, the counter is configured as a timer, then the timer pulses are gated

to the counter by the run bit and the gate bit or the external input bits INTX.

Timer Modes of Operation

The timers may operate in any one of four modes that are determined by the mode bits,

M I and M0, in the TMOD register. Figure 2.12 shows the four timer modes.

Timer Mode

Setting timer X mode bits to 00b in the TMOD register results in using the THX register

as an 8-bit counter and TLX as a 5-bit counter; the pulse input is divided by 32d in TL so

that TH counts the original oscillator frequency reduced by a total 384d. As an example,

the 6 megahertz oscillator frequency would result in a final frequency to TH of 15625

hertz. The timer flag is set whenever THX goes from FFh to OOh, or in .0164 seconds for

a 6 megahertz crystal if THX starts at OOh.

Timer Mode 1

Mode l is similar to mode except TLX is configured as a full 8-bit counter when the

mode bits are set to 01b in TMOD. The timer flag would be set in .1311 seconds using

a 6 megahertz crystal.

THE 8051 ARCHITECTURE 31

FIGURE 2.12 Timer 1 and Timer Operation Modes

Pulse

Input

(Figure 2. 11)

TLX 5 Bits THX8Bits TFX *" Interrupt

Timer Mode 13 - Bit Timer/Counter

Pulse

Input

(Figure 2.11)

TLX 8 Bits THX8Bits TFX -^- Interrupt

Timer Mode 1 16 -Bit Timer/Counter

Pulse

Input

{Figure 2.11)

TLX 8 Bits

THX8Bits

TFX - Interrupt

Reload TLX

Timer Mode 2 Auto- Reload of TL from TH

Pulse

Input

(Figure 2. 11)

TL0 8Bits TFO ^- Interrupt

r
TH0 8Bits TF1

TR1 Rit _

Timer Mode 3 Two fl -Bit Timers Using TimerO

In TCON

Timer Mode 2

Setting the mode bits to 10b in TMOD configures the timer to use only the TLX counter as

an 8-bit counter. THX is used to hold a value that is loaded into TLX every time TLX
overflows from FFh to OOh. The timer flag is also set when TLX overflows.

This mode exhibits an auto-reload feature: TLX will count up from the number in

THX, overflow, and be initialized again with the contents of THX. For example, placing

32 CHAPTER TWO

9Ch in THX will result in a delay of exactly .0002 seconds before the overflow flag is set

if a 6 megahertz crystal is used.

Timer Mode 3

Timers and 1 may be programmed to be in mode 0, 1, or 2 independently of a similar

mode for the other timer. This is not true for mode 3; the timers do not operate indepen-

dently if mode 3 is chosen for timer 0. Placing timer 1 in mode 3 causes it to stop count-

ing; the control bit TR1 and the timer 1 flag TFI are then used by timer 0.

Timer in mode 3 becomes two completely separate 8-bit counters. TL0 is controlled

by the gate arrangement of Figure 2. 1 1 and sets timer flag TF0 whenever it overflows from

FFh to OOh. TH0 receives the timer clock (the oscillator divided by 12) under the control

of TR1 only and sets the TFI flag when it overflows.

Timer 1 may still be used in modes 0, 1 , and 2, while timer is in mode 3 with one

important exception: No interrupts will be generated by timer 1 while timer is using the

TFI overflow flag. Switching timer I to mode 3 will stop it (and hold whatever count is in

timer I). Timer 1 can be used for baud rate generation for the serial port, or any other

mode 0, 1 , or 2 function that does not depend upon an interrupt (or any other use of the

TFI flag) for proper operation.

Counting

The only difference between counting and timing is the source of the clock pulses to the

counters. When used as a timer, the clock pulses are sourced from the oscillator through

the divide-by- 1 2d circuit. When used as a counter, pin TO (P3.4) supplies pulses to

counter 0, and pin T 1 (P3.5) to counter 1 . The C/T bit in TMOD must be set to 1 to enable

pulses from the TX pin to reach the control circuit shown in Figure 2. 11.

The input pulse on TX is sampled during P2 of state 5 every machine cycle. A change

on the input from high to low between samples will increment the counter. Each high and

low state of the input pulse must thus be held constant for at least one machine cycle to

ensure reliable counting. Since this takes 24 pulses, the maximum input frequency that

can be accurately counted is the oscillator frequency divided by 24. For our 6 megahertz

crystal, the calculation yields a maximum external frequency of 250 kilohertz.

Serial Data Input/Output

Computers must be able to communicate with other computers in modern multiprocessor

distributed systems. One cost-effective way to communicate is to send and receive data

bits serially. The 8051 has a serial data communication circuit that uses register SBUF to

hold data. Register SCON controls data communication, register PCON controls data

rates, and pins RXD (P3.0) and TXD (P3.1) connect to the serial data network.

SBUF is physically two registers. One is write only and is used to hold data to be

transmitted out of the 8051 via TXD. The other is read only and holds received data from

external sources via RXD. Both mutually exclusive registers use address 99h.

There are four programmable modes for serial data communication that are chosen by

setting the SMX bits in SCON. Baud rates are determined by the mode chosen. Figure 2. 13

shows the bit assignments for SCON and PCON.

Serial Data Interrupts

Serial data communication is a relatively slow process, occupying many milliseconds per

data byte to accomplish. In order not to tie up valuable processor time, serial data flags are

FIGURE 2.13 SCON and PCON Function Registers

7 6 5 4 3 2 1

SMO SMI SM2 REN TB8 RB8 Tl Rl

THE SERIAL PORT CONTROL (SCON) SPECIAL FUNCTION REGISTER

Bit Symbol Function

Serial port mode bit 0. Set/cleared by program to select mode.SMO

SM1

SM2

4 REN

3 TB8

2 RB8

Tl

Rl

Serial port mode bit 1 . Set/cleared by program to select mode.

SMO SM

1

Mode Description

Shift register; baud = f/12

1 1 8-bit UART; baud - variable

1 2 9-bit UART; baud = f/32 or f/64

1 1 3 9-bit UART; baud = variable

Multiprocessor communications bit. Set/cteared by program to enable multiprocessor

communications in modes 2 and 3. When set to 1 an interrupt is generated if bit 9 of

the received data is a 1 ; no interrupt is generated if bit 9 is a 0. If set to 1 for mode 1

,

no interrupt will be generated unless a valid stop bit is received. Clear to if mode
is in use.

Receive enable bit. Set to 1 to enable reception; cleared to to dissable reception.

Transmitted bit 8. Set/cleared by program in modes 2 and 3.

Received bit 8. Bit 8 of received data in modes 2 and 3; stop bit in mode 1. Not used in

mode 0.

Transmit interrupt flag. Set to one at the end of bit 7 time in mode 0, and at the beginning

of the stop bit for other modes. Must be cleared by the program.

Receive interrupt flag. Set to one at the end of bit 7 time in mode 0, and halfway through

the stop bit for other modes. Must be cleared by the program.

Bit addressable as SCON.O to SCON.

7

7 6 5 4 3 2 1

SMOD — — — GF1 GFO PO 1DL

THE POWER MODE CONTROL (PCON) SPECIAL FUNCTION REGISTER

Bit Symbol Function

7 SMOD Serial baud rate modify bit. Set to 1 by program to double baud rate using timer 1 for

modes 1, 2, and 3. Cleared to by program to use timer 1 baud rate.

Not implemented.

General purpose user flag bit 1. Set/cleared by program.

General purpose user flag bit 0. Set/cleared by program.

Power down bit. Set to 1 by program to enter power down configuration for CHMOS
processors.

Idle mode bit. Set to 1 by program to enter idle mode configuration for CHMOS
processors. PCON is not bit addressable.

6-4 —

3 GF1

2 GFO

1 PD

IDL

34 CHAPTER TWO

included in SCON to aid in efficient data transmission and reception. Notice that data

transmission is under the complete control of the program, but reception of data is unpre-

dictable and at random times that are beyond the control of the program.

The serial data flags in SCON, TI and RI, are set whenever a data byte is transmitted

(TI) or received (RI). These flags are ORed together to produce an interrupt to the pro-

gram. The program must read these flags to determine which caused the interrupt and then

clear the flag. This is unlike the timer flags that are cleared automatically; it is the respon-

sibility of the programmer to write routines that handle the serial data flags.

Data Transmission

Transmission of serial data bits begins anytime data is written to SBUF. TI is set to a 1

when the data has been transmitted and signifies that SBUF is empty (for transmission

purposes) and that another data byte can be sent. If the program fails to wait for the TI flag

and overwrites SBUF while a previous data byte is in the process of being transmitted, the

results will be unpredictable (a polite term for "garbage out").

Data Reception

Reception of serial data will begin if the receive enable bit (REN) in SCON is set to 1 for

all modes. In addition, for mode only, RI must be cleared to also. Receiver interrupt

flag RI is set after data has been received in all modes. Setting REN is the only direct

program control that limits the reception of unexpected data; the requirement that RI also

be for mode prevents the reception of new data until the program has dealt with the old

data and reset RI.

Reception can begin in modes 1 , 2, and 3 if RI is set when the serial stream of bits

begins. RI must have been reset by the program before the last bit is received or the

incoming data will be lost. Incoming data is not transferred to SBUF until the last data bit

has been received so that the previous transmission can be read from SBUF while new

data is being received.

Serial Data Transmission Modes

The 805 1 designers have included four modes of serial data transmission that enable data

communication to be done in a variety of ways and a multitude of baud rates. Modes are

selected by the programmer by setting the mode bits SMO and SM 1 in SCON. Baud rates

are fixed for mode and variable, using timer 1 and the serial baud rate modify bit (SMOD)
in PCON, for modes 1, 2, and 3.

Serial Data Mode —Shift Register Mode

Setting bits SMO and SMI in SCON to 00b configures SBUF to receive or transmit eight

data bits using pin RXD for both functions. Pin TXD is connected to the internal shift

frequency pulse source to supply shift pulses to external circuits. The shift frequency, or

baud rate, is fixed at 1/12 of the oscillator frequency, the same rate used by the timers

when in the timer configuration. The TXD shift clock is a square wave that is low for

machine cycle states S3-S4-S5 and high for S6-S1-S2. Figure 2.14 shows the timing

for mode shift register data transmission.

When transmitting, data is shifted out of RXD; the data changes on the falling edge

of S6P2, or one clock pulse after the rising edge of the output TXD shift clock. The sys-

tem designer must design the external circuitry that receives this transmitted data to re-

ceive the data reliably based on this timing.

THE 8051 ARCHITECTURE 35

FIGURE 2.14 Shift Register Mode Timing

Shift Data Out

S6P2

I I I I

RXD Data Out

TXD Clock

RXD Data In

DO Dl D2 D3 I D4 D5 D6 D7 External Data Bits Shifted Out

Ii2l3l4l5l6l7l8
"nifTLiirujrujnijrLijnj^

!l l 2 1

3

U \b
~6

1

7

l{
I

I

S3P1 | S6P1
|

DO Dl D2 D3 D4

I I

External Data Bits Shifted In

D5 D6 D7

S5P2
Shift Data In

Received data conies in on pin RXD and should be synchronized with the shift clock

produced at TXD. Data is sampled on the falling edge of S5P2 and shifted in to SBUF on

the rising edge of the shift clock.

Mode is intended not for data communication between computers, but as a high-

speed serial data-collection method using discrete logic to achieve high data rates. The

baud rate used in mode will be much higher than standard for any reasonable oscillator

frequency; for a 6 megahertz crystal, the shift rate will be 500 kilohertz.

Serial Data Mode 1—Standard UART

When SMO and SMI are set to 01b, SBUF becomes a 10-bit full-duplex receiver/

transmitter that may receive and transmit data at the same time. Pin RXD receives all data,

and pin TXD transmits all data. Figure 2. 15 shows the format of a data word.

Transmitted data is sent as a start bit, eight data bits (Least Significant Bit, LSB,

first), and a stop bit. Interrupt flag TI is set once all ten bits have been sent. Each bit

interval is the inverse of the baud rate frequency, and each bit is maintained high or low

over that interval.

Received data is obtained in the same order; reception is triggered by the falling edge

of the start bit and continues if the stop bit is true (0 level) halfway through the start bit

interval. This is an anti-noise measure; if the reception circuit is triggered by noise on the

transmission line, the check for a low after half a bit interval should limit false data

reception.

Data bits are shifted into the receiver at the programmed baud rate, and the data word

will be loaded to SBUF if the following conditions are true: RI must be 0, and mode bit

SM2 is or the stop bit is 1 (the normal state of stop bits). RI set to implies that the

program has read the previous data byte and is ready to receive the next; a normal stop bit

will then complete the transfer of data to SBUF regardless of the state of SM2. SM2 set

to enables the reception of a byte with any stop bit state, a condition which is of limited

use in this mode, but very useful in modes 2 and 3. SM2 set to 1 forces reception of only

"good" stop bits, an anti-noise safeguard.

Of the original ten bits, the start bit is discarded, the eight data bits go to SBUF, and

the stop bit is saved in bit RB8 of SCON. RI is set to 1 , indicating a new data byte has

been received.

36 CHAPTER TWO

FIGURE 2.1 5 Standard UART Data Word

Receiver Samples Data in Center of Bit Time

tdle State LA I I I 1^1 Idle State

I 1 I 2 | 3 I 4 f 5 t 6 I 7

L L I I J L L_
Start Bit ^ _ Data Bits

1

Minimum Of

One Stop Bit

Bit Time = —
f

If RI is found to be set at the end of the reception, indicating that the previously

received data byte has not been read by the program, or if the other conditions listed are

not true, the new data will not be loaded and will be lost.

Mode 1 Baud Rates

Timer I is used to generate the baud rate for mode 1 by using the overflow flag of the timer

to determine the baud frequency. Typically, timer 1 is used in timer mode 2 as an autoload

8-bit timer that generates the baud frequency:

7 SMOD

tk„.^ = Xl haud
32d

oscillator frequency

12d x [256d - (TH1)]

SMOD is the control bit in PCON and can be or 1 , which raises the 2 in the equation to a

value of 1 or 2.

If timer 1 is not run in timer mode 2, then the baud rate is

'haud

(SMOD

32d
x (timer 1 overflow frequency)

and timer I can be run using the internal clock or as a counter that receives clock pulses

from any external source via pin Tl

.

The oscillator frequency is chosen to help generate both standard and nonstandard

baud rates. If standard baud rates are desired, then an 1 1 .0592 megahertz crystal could be

selected. To get a standard rate of 9600 hertz then, the setting of TH1 may be found as

follows:

TH1 = 256d -

if SMOD is cleared to 0.

2° 11.0592 x 10*

32d 12 x 9600d
= 253.0000d - OFDh

Serial Data Mode 2—Multiprocessor Mode

Mode 2 is similar to mode 1 except 1 1 bits are transmitted: a start bit, nine data bits, and a

stop bit, as shown in Figure 2.16. The ninth data bit is gotten from bit TB8 in SCON
during transmit and stored in bit RB8 of SCON when data is received. Both the start and

stop bits are discarded.

The baud rate is programmed as follows:

' haud

2

I SMOD

64d
x oscillator frequency

THE 8051 ARCHITECTURE 37

FIGURE 2.16 Multiprocessor Data Word

Receiver Samples Data in Center of Bit Time

Idle State II I UJ_L1J Idle State

r t J

1 1 1|l|2|3l4|5|6|7J8J9
J I I J J L I I L—

Start Bit
Data Bits

Minimum Of
One Stop Bit

Bit Time = —
f

Here, as in the case for mode 0, the baud rate is much higher than standard communica-

tion rates. This high data rate is needed in many mu I ti-processor applications. Data can be

collected quickly from an extensive network of communicating microcontrollers if high

baud rates are employed.

The conditions for setting RI for mode 2 are similar to mode 1 : RI must be before

the last bit is received, and SM2 must be or the ninth data bit must be a 1 . Setting RI

based upon the state of SM2 in the receiving 805 1 and the state of bit 9 in the transmitted

message makes multiprocessing possible by enabling some receivers to be interrupted by

certain messages, while other receivers ignore those messages. Only those 805 Ts that

have SM2 set to will be interrupted by received data which has the ninth data bit set to 0;

those with SM2 set to 1 will not be interrupted by messages with data bit 9 at 0. All re-

ceivers will be interrupted by data words that have the ninth data bit set to 1; the state of

SM2 will not block reception of such messages.

This scheme allows the transmitting computer to "talk" to selected receiving comput-

ers without interrupting other receiving computers. Receiving computers can be com-
manded by the "talker" to "listen" or "deafen" by transmitting coded byte(s) with the

ninth data bit set to 1 . The 1 in data bit 9 interrupts all receivers, instructing those that are

programmed to respond to the coded byte(s) to program the state of SM2 in their respec-

tive SCON registers. Selected listeners then respond to the bit 9 set to messages, while

all other receivers ignore these messages. The talker can change the mix of listeners by

transmitting bit 9 set to 1 messages that instruct new listeners to set SM2 to 0, while others

are instructed to set SM2 to 1

.

Serial Data Mode 3

Mode 3 is identical to mode 2 except that the baud rate is determined exactly as in mode 1

,

using Timer 1 to generate communication frequencies.

Interrupts

A computer program has only two ways to determine the conditions that exist in internal

and external circuits. One method uses software instructions that jump on the states of

flags and port pins. The second responds to hardware signals, called interrupts, that force

the program to call a sub-routine. Software techniques use up processor time that could be

devoted to other tasks; interrupts take processor time only when action by the program

is needed. Most applications of microcontrollers involve responding to events quickly

enough to control the environment that generates the events (generically termed "real-

FIGURE 2.17 IE and IP Function Registers

7 6 5 4 3 2 1

EA — ET2 ES ET1 EX1 ETO EXO

THE INTERRUPT ENABLE (IE) SPECIAL FUNCTION REGISTER

Bit Symbol Function

Enable interrupts bit. Cleared to by program to disable all interrupts; set to 1 to permit

individual interrupts to be enabled by their enable bits.

EA

ET2

ES

ET1

EX1

ETO

EXO

Not implemented.

Reserved for future use.

Enable serial port interrupt. Set to 1 by program to enable serial port interrupt; cleared

to to disable serial port interrupt.

Enable timer 1 overflow interrupt. Set to 1 by program to enable timer 1 overflow

interrupt; cleared to to disable timer 1 overflow interrupt.

Enable external interrupt 1. Set to 1 by program to enable INT1 interrupt; cleared to to

disable INT1 interrupt.

Enable timer overflow interrupt. Set to 1 by program to enable timer overflow interrupt;

cleared to to disable timer overflow interrupt.

Enable external interrupt 0. Set to 1 by program to enable INTO interrupt; cleared to to

disable INTO interrupt.

Bit addressable as IE.0 to IE.

7

7 6 5 4 3 2 1

— — PT2 PS PT1 PX1 PTO PXO

THE INTERRUPT PRIORITY (IP) SPECIAL FUNCTION REGISTER

Bit Symbol Function

Not implemented.

Not implemented.

Reserved for future use.

Priority of serial port interrupt. Set/cleared by program.

Priority of timer 1 overflow interrupt. Set/cleared by program.

Priority of external interrupt 1 . Set/cleared by program.

Priority of timer overflow interrupt. Set/cleared by program.

Priority of external interrupt 0. Set/cleared by program.

Note: Priority may be 1 (highest) or (lowest)

Bit addressable as IPO to IP.7

7 —

6 —

5 PT2

4 PS

3 PT1

2 PX1

1 PTO

PXO

THE 8051 ARCHITECTURE 39

time programming"). Interrupts are often the only way in which real-time programming

can be done successfully.

Interrupts may be generated by internal chip operations or provided by external

sources. Any interrupt can cause the 8051 to perform a hardware call to an interrupt-

handling subroutine that is located at a predetermined (by the 8051 designers) absolute

address in program memory.

Five interrupts are provided in the 8051. Three of these are generated automatically

by internal operations: timer flag 0, timer flag 1 , and the serial port interrupt (RI or TI).

Two interrupts are triggered by external signals provided by circuitry that is connected to

pins INTO and INT1 (port pins P3.2 and P3.3).

All interrupt functions are under the control of the program. The programmer is able

to alter control bits in the interrupt enable register (IE), the interrupt priority register (IP),

and the timer control register (TCON). The program can block all or any combination of

the interrupts from acting on the program by suitably setting or clearing bits in these regis-

ters. The IE and IP registers are shown in Figure 2. 17.

After the interrupt has been handled by the interrupt subroutine, which is placed by

the programmer at the interrupt location in program memory, the interrupted program

must resume operation at the instruction where the interrupt took place. Program resump-

tion is done by storing the interrupted PC address on the stack in RAM before changing

the PC to the interrupt address in ROM. The PC address will be restored from the stack

after an RETI instruction is executed at the end of the interrupt subroutine.

Timer Flag Interrupt

When a timer/counter overflows, the corresponding timer flag, TF0 or TF1, is set to I.

The flag is cleared to when the resulting interrupt generates a program call to the appro-

priate timer subroutine in memory.

Serial Port Interrupt

If a data byte is received, an interrupt bit, RI, is set to 1 in the SCON register. When a data

byte has been transmitted an interrupt bit, TI, is set in SCON. These are ORed together to

provide a single interrupt to the processor: the serial port interrupt. These bits are not

cleared when the interrupt-generated program call is made by the processor. The program

that handles serial data communication must reset RI or TI to to enable the next data

communication operation.

External Interrupts

Pins INTO and INT1 are used by external circuitry. Inputs on these pins can set the inter-

rupt flags IE0 and IE 1 in the TCON register to I by two different methods. The IEX flags

may be set when the INTX pin signal reaches a low level, or the flags may be set when a

high-to-low transition takes place on the INTX pin. Bits IT0 and IT1 in TCON program

the INTX pins for low-level interrupt when set to and program the INTX pins for transi-

tion interrupt when set to I

.

Flags IEX will be reset when a transition-generated interrupt is accepted by the pro-

cessor and the interrupt subroutine is accessed. It is the responsibility of the system de-

signer and programmer to reset any level-generated external interrupts when they are

serviced by the program. The external circuit must remove the low level before an RETI is

executed. Failure to remove the low will result in an immediate interrupt after RETI, from

the same source.

40 CHAPTER TWO

Reset

A reset can be considered to be the ultimate interrupt because the program may not block

the action of the voltage on the RST pin. This type of interrupt is often called "non-

maskable," since no combination of bits in any register can stop, or mask the reset action.

Unlike other interrupts, the PC is not stored for later program resumption; a reset is an

absolute command to jump to program address OOOOh and commence running from there.

Whenever a high level is applied to the RST pin, the 8051 enters a reset condition.

After the RST pin is brought low, the internal registers will have the values shown in the

following table:

REGISTER VALUE(HEX)

PC oooo

DPTR 0000

A 00

B 00

SP 07

PSW 00

PO-3 FF

IP XXXOOOOOb
IE OXXOOOOOb
TCON 00

TMOD 00

THO 00

TLO 00

TH1 00

TL1 00

SCON 00

SBUF XX

PCON OXXXXXXXb

Internal RAM is not changed by a reset; however, the states of the internal RAM
when power is first applied to the 805 1 are random. Register bank is selected upon reset

as all bits in PSW are 0.

Interrupt Control

The program must be able, at critical times, to inhibit the action of some or all of the

interrupts so that crucial operations can be finished. The IE register holds the program-

mable bits that can enable or disable all the interrupts as a group, or if the group is en-

abled, each individual interrupt source can be enabled or disabled.

Often, it is desirable to be able to set priorities among competing interrupts that may

conceivably occur simultaneously. The IP register bits may be set by the program to assign

priorities among the various interrupt sources so that more important interrupts can be

serviced first should two or more interrupts occur at the same time.

Interrupt Enable/Disable

Bits in the EI register are set to 1 if the corresponding interrupt source is to be enabled and

set to to disable the interrupt source. Bit EA is a master, or "global," bit that can enable

or disable all of the interrupts.

Summary

THE 8051 ARCHITECTURE 41

Interrupt Priority

Register IP bits determine if any interrupt is to have a high or low priority. Bits set to l

give the accompanying interrupt a high priority while a assigns a low priority. Interrupts

with a high priority can interrupt another interrupt with a lower priority; the low priority

interrupt continues after the higher is finished.

If two interrupts with the same priority occur at the same time, then they have the

following ranking:

1. IE0

2. TFO

3. IE1

4. TF1

5. Serial - RI OR TI

The serial interrupt could be given the highest priority by setting the PS bit in IP to I , and

all others to 0.

Interrupt Destinations

Each interrupt source causes the program to do a hardware call to one of the dedicated

addresses in program memory. It is the responsibility of the programmer to place a routine

at the address that will service the interrupt.

The interrupt saves the PC of the program, which is running at the time the interrupt

is serviced on the stack in internal RAM. A call is then done to the appropriate memory
location. These locations are shown in the following table:

INTERRUPT ADD

IE0 0003

TFO 000B

IE1 0013

TF1 001

B

SERIAL 0023

A RETI instruction at the end of" the routine restores the PC to its place in the inter-

rupted program and resets the interrupt logic so that another interrupt can be serviced.

Interrupts that occur but are ignored due to any blocking condition (IE bit not set or a

higher priority interrupt already in process) must persist until they are serviced, or they

will be tost. This requirement applies primarily to the level-activated INTX interrupts.

Software Generated Interrupts

When any interrupt flag is set to I by any means, an interrupt is generated unless blocked.

This means that the program itself can cause interrupts of any kind to be generated simply

by setting the desired interrupt flag to 1 using a program instruction.

The internal hardware configuration of the 8051 registers and control circuits have been

examined at the functional block diagram level. The 805 1 may be considered to be a col-

lection of RAM, ROM, and addressable registers that have some unique functions.

42 CHAPTER TWO

Register Bit

A 8

B 8

PC 16

DPTR 16

SP 8

PSW 8

P0-P3 8

THO/TLO 8/8

TH1/TL1 8/8

TCON 8

TMOD 8

SBUF 8

SCON 8

PCON 8

IE 8

IP 8

SPECIAL-FUNCTION REGISTERS

Primary Function Bit Addressable

Math, data manipulation Y
Math Y
Addressing program bytes N
Addressing code and external data N
Addressing internal RAM stack data N
Processor status Y
Store I/O port data Y
Timer/counter N
Timer/counter 1 N
Timer/counter control Y
Timer/counter control N
Serial port data N
Serial port control Y

Serial port control, user flags N
Interrupt enable control Y
Interrupt priority control Y

DATA AND PROGRAM MEMORY
Internal Bytes Function

RAM 128 R0-R7 registers, data storage, stack

ROM 4K Program storage

External Bytes Function

RAM 64K Data storage

ROM 64K Program storage

EXTERNAL CONNECTION PINS

Function

Port pins 36 I/O, external memory, interrupts

Oscillator 2 Clock

Power 2

Questions

Find the following using the information provided in Chapter 2.

1. Size of the interna! RAM.

2. Internal ROM size in the 8031.

3. Execution time of a single byte instruction for a 6 megahertz crystal.

4. The 16-bit data addressing registers and their functions.

5. Registers that can do division.

6. The flags that are stored in the PSW.

7. Which register holds the serial data interrupt bits TI and RI.

8. Address of the stack when the 805 1 is reset.

9. Number of register banks and their addresses.

10. Ports used for external memory access.

11. The bits that determine timer modes and the register that holds these bits.

THE 8051 ARCHITECTURE 43

12. Address of a subroutine that handles a timer 1 interrupt.

13. Why a low-address byte latch for external memory is needed.

14. How an I/O pin can be both an input and output.

15. Which port has no alternate functions.

16. The maximum pulse rate that can be counted on pin Tl if the oscillator frequency is

6 megahertz.

17. Which bits in which registers must be set to give the serial data interrupt the highest

priority.

18. The baud rate for the serial port in mode for a 6 megahertz crystal.

19. The largest possible time delay for a timer in mode 1 if a 6 megahertz crystal is used.

20. The setting of TH1, in timer mode 2, to generate a baud rate of 1200 if the serial port is

in mode 1 and an 1 1 .059 megahertz crystal is in use. Find the setting for both values of

SMOD.

21. The address of the PCON special-function register.

22. The time it will take a timer in mode I to overflow if initially set to 03AEh with a

6 megahertz crystal.

23. Which bits in which registers must be set to 1 to have timer count input pulses on pin

TO in timer mode 0.

24. The register containing GF0 and GF1

.

25. The signal that reads external ROM.

26. When used in multiprocessing, which bit in which register is used by a transmitting

8051 to signal receiving 805 Ts that an interrupt should be generated.

27. The two conditions under which program opcodes are fetched from external, rather than

internal, memory.

28. Which bits in which register(s) must be set to make INTO level activated, and INT1 edge

triggered.

29. The address of the interrupt program for the INTO level-generated interrupt.

30, The bit address of bit 4 of RAM byte 2Ah.

Moving Data

Chapter Outline

Introduction

Addressing Modes

External Data Moves

PUSH and POP Opcodes

Data Exchanges

Example Programs

Summary

Introduction

A computer typically spends more time moving data from one location to another than it

spends on any other operation. It is not surprising, therefore, to find that more instructions

are provided for moving data than for any other type of operation.

Data is stored at a source address and moved (actually, the data is copied) to a desti-

nation address. The ways by which these addresses are specified are called the addressing

modes. The 8051 mnemonics are written with the destination address named first, fol-

lowed by the source address.

A detailed study of the operational codes (opcodes) of the 805 1 begins in this chapter.

Although there are 28 distinct mnemonics that copy data from a source to a destination,

they may be divided into the following three main types:

1. MOV destination, source

2. PUSH source or POP destination

3. XCH destination, source

The following four addressing modes are used to access data:

1. Immediate addressing mode

2. Register addressing mode

44

MOVING DATA 45

3. Direct addressing mode

4. Indirect addressing mode

The MOV opcodes involve data transfers within the 805 1 memory. This memory is

divided into the following four distinct physical parts:

1. Internal RAM
2. Internal special-function registers

3. External RAM
4. Internal and external ROM

Finally, the following five types of opcodes are used to move data:

1. MOV
2. MOVX
3. MOVC
4. PUSH and POP

5. XCH

Addressing Modes
The way in which the data sources or destination addresses are specified in the mnemonic
that moves that data determines the addressing mode. Figure 3.1 diagrams the four ad-

dressing modes: immediate, register, direct, and indirect.

Immediate Addressing Mode

The simplest way to get data to a destination is to make the source of the data part of the

opcode. The data source is then immediately available as part of the instruction itself.

When the 8051 executes an immediate data move, the program counter is automat-

ically incremented to point to the byte(s) following the opcode byte in the program mem-
ory. Whatever data is found there is copied to the destination address.

The mnemonic for immediate data is the pound sign (#). Occasionally, in the rush to

meet a deadline, one forgets to use the # for immediate data. The resulting opcode is

often a legal command that is assembled with no objections by the assembler. This omis-

sion guarantees that the rush will continue.

Register Addressing Mode

Certain register names may be used as part of the opcode mnemonic as sources or destina-

tions of data. Registers A, DPTR, and R0 to R7 may be named as part of the opcode

mnemonic. Other registers in the 8051 may be addressed using the direct addressing

mode. Some assemblers can equate many of the direct addresses to the register name (as is

the case with the assembler discussed in this text) so that register names may be used in

lieu of register addresses. Remember that the registers used in the opcode as R0 to R7 are

the ones that are currently chosen by the bank-select bits, RSO and RSI in the PSW.

The following table shows all possible MOV opcodes using immediate and register

addressing modes:

46 CHAPTER THREE

Mnemonic

MOV A,#n
MOV A.Rr

MOV Rr,A

MOV Rr,#n

MOV DPTR,#nn

Operation

Copy the immediate data byte n to the A register

Copy data from register Rr to register A
Copy data from register A to register Rr

Copy the immediate data byte n to register Rr

Copy the immediate 16-bit number nn to the DPTR register

FIGURE 3.1 Addressing Modes

Opcode (#n) Next Byte(s)

Instruction Data

Immediate Addressing Mode

Data

Register Addressing Mode

Data

Direct Addressing Mode

Source Only

Instruction Source

Or

Destination

Instruction Source

Or

Destination

(fflDnl

ROOrRl

Data

Indirect Addressing Mode

Source

Or

Destination

Address

MOVING DATA 47

A data MOV does not alter the contents of the data source address. A copy of the data

is made from the source and moved to the destination address. The contents of the destina-

tion address are replaced by the source address contents. The following table shows ex-

amples of MOV opcodes with immediate and register addressing modes:

Mnemonic Operation

MOV A,#OFlh Move the immediate data byte Flh to the A register

MOV A,R0 Copy the data in register RO to register A
MOV DPTR,#OABCDh Move the immediate data bytes ABCDh to the DPTR
MOV R5,A Copy the data in register A to register R5
MOV R3,# ICh Move the immediate data byte ICh to register R3

CAUTION

It is impossible to have immediate data as a destination.

All numbers must start with a decimal number (0-9), or the assembler assumes the number is

a label.

Register-to-register moves using the register addressing mode occur between registers A and

RO to R7.

Direct Addressing Mode

AH 128 bytes of internal RAM and the SFRs may be addressed directly using the single-

byte address assigned to each RAM location and each special-function register.

Internal RAM uses addresses from 00 to 7Fh to address each byte. The SFR addresses

exist from 80h to FFh at the following locations:

SFR ADDRESS (HEX)

A 0E0

B 0F0

DPL 82

DPH 83

IE 0A8

IP 0B8

P0 80

PI 90

P2 0A0
P3 0B0

PCON 87

PSW 0D0
SBUF 99

SCON 98

SP 81

TCON 88

TMOD 89

THO 8C
TLO 8A
TH1 8D
TL1 8B

Note the use of a leading for all numbers that begin with an alphabetic (alpha) character.

RAM addresses 00 to lFh are also the locations assigned to the four banks of eight

working registers, R0 to R7. This assignment means that R2 of register bank can be

48 CHAPTER THREE

addressed in the register mode as R2 or in the direct mode as 02h. The direct addresses of

the working registers are as follows:

BANK ADDRESS BANK ADDRESS
REGISTER (HEX) REGISTER (HEX)

RO 00 2 RO 10

R1 01 2 R1 11

R2 02 2 R2 12

' R3 03 2 R3 13

R4 04 2 R4 14

R5 05 2 R5 15

R6 06 2 R6 16

R7 07 2 R7 17

1 RO 08 3 RO 18

1 R1 09 3 R1 19

1 R2 OA 3 R2 1A

1 R3 OB 3 R3 1B

1 R4 OC 3 R4 1C

1 R5 OD 3 R5 ID

1 R6 OE 3 R6 1E

1 R7 OF 3 R7 1F

Only one bank of working registers is active at any given time. The PSW special-

function register holds the bank-select bits, RSO and RS 1 , which determine which register

bank is in use.

When the 805 1 is reset, RSO and RS 1 are set to 00b to select the working registers in

bank 0, located from OOh to 07h in internal RAM. Reset also sets SP to 07h, and the stack

will grow up as it is used. This growing stack will overwrite the register banks above bank

0. Be sure to set the SP to a number above those of any working registers the program

may use.

The programmer may choose any other bank by setting RSO and RSI as desired; this

bank change is often done to "save" one bank and choose another when servicing an

interrupt or using a subroutine.

The moves made possible using direct, immediate, and register addressing modes are

as follows:

Mnemonic

MOV A,add

MOV add,A

MOV Rr,add

MOV add,Rr

MOV add,#n

MOVaddI,add2

Operation

Copy data from direct address add to register A
Copy data from register A to direct address add

Copy data from direct address add to register Rr

Copy data from register Rr to direct address add

Copy immediate data byte n to direct address add

Copy data from direct address add2 to direct address addl

The following table shows examples of MOV opcodes using direct, immediate, and

register addressing modes:

Mnemonic

MOV A,80h

MOV 80h,A

MOV 3Ah,#3Ah
MOV R0,12h

Operation

Copy data from the port pins to register A
Copy data from register A to the port latch

Copy immediate data byte 3Ah to RAM location 3Ah
Copy data from RAM location I2h to register R0

MOVING DATA 49

MOV 8Ch,R7

MOV 5Ch,A

MOV 0A8h.77h

Copy data from register R7 to timer high byte

Copy data from register A to RAM location 5Ch

Copy data from RAM location 77h to IE register

CAUTION

MOV instructions that refer to direct addresses above 7Fh that are not SFRs will result in errors.

The SFRs are physically on the chip; all other addresses above 7Fh do not physically exist.

Moving data to a port changes the port latch; moving data from a port gets data from the

port pins.

Moving data from a direct address to itself is not predictable and could lead to errors.

Indirect Addressing Mode

For all the addressing modes covered to this point, the source or destination of the data is an

absolute number or a name. Inspection of the opcode reveals exactly what are the addresses

of the destination and source. For example, the opcode MOV A,R7 says that the A regis-

ter will get a copy of whatever data is in register R7; MOV 33h,#32h moves the hex

number 32 to hex RAM address 33.

The indirect addressing mode uses a register to hold the actual address that will

finally be used in the data move; the register itself is not the address, but rather the number

in the register. Indirect addressing for MOV opcodes uses register RO or Rl , often called

"data pointers," to hold the address of one of the data locations, which could be a RAM
or an SFR address. The number that is in the pointing register (Rp) cannot be known un-

less the history of the register is known. The mnemonic symbol used for indirect address-

ing is the "at" sign, which is printed as @.
The moves made possible using immediate, direct, register and indirect addressing

modes are as follows:

Mnemonic

MOV @Rp,#n
MOV @Rp,add
MOV @Rp,A
MOV add,@Rp
MOV A,@Rp

Operation

Copy the immediate byte n to the address in Rp
Copy the contents of add to the address in Rp
Copy the data in A to the address in Rp
Copy the contents of the address in Rp to add

Copy the contents of the address in Rp to A

The following table shows examples of MOV opcodes, using immediate, register,

direct, and indirect modes

Mnemonic

MOV A,@RO
MOV @Rl,#35h
MOV add,@R0
MOV@Rl,A
MOV @R0,80h

Operation

Copy the contents of the address in RO to the A register

Copy the number 35h to the address in Rl

Copy the contents of the address in RO to add

Copy the contents of A to the address in Rl

Copy the contents of the port pins to the address in RO

CAUTION
The number in register Rp must be a RAM or an SFR address.

Only registers RO or R1 may be used for indirect addressing.

50 CHAPTER THREE

FIGURE 3.2 External Addressing using MOVX and MOVC
r~

8051

»

Read Write

MOVX @ Rp

Read ' Write Read

A Register
Data

External

RAM

Data

Internal

and

External

ROM

ROOrRl

1 MOVX @ DPTR
DPTR

MOVC A, @A + DPTR
DPTR + A

MOVC A, @A + PC
PC + A

JL

External Data Moves

As discussed in Chapter 2, it is possible to expand RAM and ROM memory space by

adding external memory chips to the 805 1 microcontroller. The external memory can be

as large as 64K bytes for each of the RAM and ROM memory areas. Opcodes that access

this external memory always use indirect addressing to specify the external memory.

Figure 3.2 shows that registers RO, Rl, and the aptly named DPTR can be used to

hold the address of the data byte in external RAM. RO and Rl are limited to external

RAM address ranges of OOh to OFFh, while the DPTR register can address the maxi-

mum RAM space of OOOOh to OFFFFh.

An X is added to the MOV mnemonics to serve as a reminder that the data move is

external to the 8051, as shown in the following table.

Mnemonic

MOVX A,@Rp
MOVXA,@DPTR
MOVX @Rp,A
MOVX @DPTR,A

Operation

Copy the contents of the external address in Rp to A
Copy the contents of the external address in DPTR to A
Copy data from A to the externa! address in Rp
Copy data from A to the external address in DPTR

The following table shows examples of external moves using register and indirect

addressing modes:

Mnemonic

MOVX @DPTR,A
MOVX @R0,A

Operation

Copy data from A to the 16-bit address in DPTR
Copy data from A to the 8-bit address in RO

MOVING DATA 51

MOVX A,@R1 Copy data from the 8-bit address in Rl to A
MOVX A,@DPTR Copy data from the 16-bit address in DPTR to A

£>— CAUTION
All external data moves must involve the A register.

Rp can address 256 bytes; DPTR can address 64K bytes.

MOVX is normally used with external RAM or I/O addresses.

Note that there are two sets of RAM addresses between 00 and OFFh: one internal and one

external to the 8051.

Code Memory Read-Only Data Moves

Data moves between RAM locations and 8051 registers are made by using MOV and

MOVX opcodes. The data is usually of a temporary or "scratch pad" nature and disap-

pears when the system is powered down.

There are times when access to a preprogrammed mass of data is needed, such as

when using tables of predefined bytes. This data must be permanent to be of repeated use

and is stored in the program ROM using assembler directives that store programmed data

anywhere in ROM that the programmer wishes.

Access to this data is made possible by using indirect addressing and the A register in

conjunction with either the PC or the DPTR, as shown in Figure 3.2. In both cases, the

number in register A is added to the pointing register to form the address in ROM where

the desired data is to be found. The data is then fetched from the ROM address so formed

and placed in the A register. The original data in A is lost, and the addressed data takes

its place.

As shown in the following table, the letter C is added to the MOV mnemonic to high-

light the use of the opcodes for moving data from the source address in the Code ROM to

the A register in the 805 1

:

Mnemonic Operation

MOVC A,@A+ DPTR Copy the code byte, found at the ROM address formed by

adding A and the DPTR, to A
MOVC A,@A + PC Copy the code byte, found at the ROM address formed by

adding A and the PC, to A

Note that the DPTR and the PC are not changed; the A register contains the ROM byte

found at the address formed.

The following table shows examples of code ROM moves using register and indirect

addressing modes:

Mnemonic Operation

MOV DPTR,#I234h Copy the immediate number 1234h to the DPTR
MOV A,#56h Copy the immediate number 56h to A
MOVC A,@A+DPTR Copy the contents of address 128Ah to A
MOVC A,@A+PC Copies the contents of address 4059h to A if the PC

contained 4000h and A contained 58h when the opcode

is executed.

52 CHAPTER THREE

CAUTION

The PC is incremented by one (to point to the next instruction) before it is added to A to form

the final address of the code byte.

All data is moved from the code memory to the A register.

MOVC is normally used with internal or external ROM and can address 4K of internal or 64K

bytes of external code.

PUSH and POP Opcodes

The PUSH and POP opcodes specify the direct address of the data. The data moves

between an area of internal RAM, known as the stack, and the specified direct address.

The stack pointer special-function register (SP) contains the address in RAM where data

from the source address will be PUSHed, or where data to be POPed to the destination

address is found. The SP register actually is used in the indirect addressing mode but

is not named in the mnemonic. It is implied that the SP holds the indirect address when-

ever PUSHing or POPing. Figure 3.3 shows the operation of the stack pointer as data is

PUSHed or POPed to the stack area in internal RAM.
A PUSH opcode copies data from the source address to the stack. SP is incremented

by one before the data is copied to the internal RAM location contained in SP so that the

data is stored from low addresses to high addresses in the internal RAM. The stack grows

up in memory as it is PUSHed. Excessive PUSHing can make the stack exceed 7Fh (the

top of internal RAM), after which point data is lost.

A POP opcode copies data from the stack to the destination address. SP is decre-

mented by one after data is copied from the stack RAM address*to the direct destination to

ensure that data placed on the stack is retrieved in the same order as it was stored.

The PUSH and POP opcodes behave as explained in the following table:

Mnemonic Operation

PUSH add Increment SP; copy the data in add to the internal RAM address

contained in SP

POP add Copy the data from the internal RAM address contained in SP to add;

decrement the SP

FIGURE 3.3 PUSH and POP the Stack

— Push Y —*-

— PushX —*-

SP + 2 Y — PopY-

SP + 1 X — Pop X -

1
SP

Increment Before

PUSHing
Internal

RAM

SP

SP - 1

SP -2

Decrement After

POPing

MOVING DATA 53

The SP register is set to 07h when the 8051 is reset, which is the same direct address

in internal RAM as register R7 in bank 0. The first PUSH opcode would write data to R0
of bank 1 . The SP should be initialized by the programmer to point to an internal RAM
address above the highest address likely to be used by the program.

The following table shows examples of PUSH and POP opcodes:

Mnemonic Operation

MOV 81h,#30h Copy the immediate data 30h to the SP
MOV R0, #0ACh Copy the immediate data ACh to R0
PUSH OOh SP = 31h; address 31h contains the number ACh
PUSH OOh SP = 32h; address 32h contains the number ACh
POP 01 h SP = 3 In; register Rl now contains the number ACh
POP 80h SP = 30h; port latch now contains the number ACh

CAUTION

When the SP reaches FFh it "rolls over" to OOh (R0).

RAM ends at address 7Fh; PUSHes above 7Fh result in errors.

The SP is usually set at addresses above the register banks.

The SP may be PUSHed and POPed to the stack.

Note that direct addresses, not register names, must be used for most registers. The stack

mnemonics have no way of knowing which bank is in use.

Data Exchanges

MOV, PUSH, and POP opcodes all involve copying the data found in the source address to

the destination address; the original data in the source is not changed. Exchange instruc-

tions actually move data in two directions: from source to destination and from destination

to source. All addressing modes except immediate may be used in the XCH (exchange)

opcodes:

Mnemonic Operation

XCH A,Rr Exchange data bytes between register Rr and A
XCH A,add Exchange data bytes between add and A
XCH A,@Rp Exchange data bytes between A and address in Rp
XCHD A,@Rp Exchange lower nibble between A and address in Rp

Exchanges between A and any port location copy the data on the port pins to A, while

the data in A is copied to the port latch. Register A is used for so many instructions that

the XCH opcode provides a very convenient way to "save" the contents of A without the

necessity of using a PUSH opcode and then a POP opcode.

The following table shows examples of data moves using exchange opcodes:

Mnemonic Operation

XCH A,R7 Exchange bytes between register A and register R7
XCH A,0F0h Exchange bytes between register A and register B
XCH A,@R1 Exchange bytes between register A and address in Rl

XCHD A,@R1 Exchange lower nibble in A and the address in Rl

54 CHAPTER THREE

CAUTION

All exchanges are internal to the 8051

.

All exchanges use register A.

When using XCHD, the upper nibble of A and the upper nibble of the address location in Rp do
not change.

This section concludes the listing of the various data moving instructions; the remain-

ing sections will concentrate on using these opcodes to write short programs.

Example Programs

Programming is at once a skill and an art. Just as anyone may learn to play a musical

instrument after sufficient instruction and practice, so may anyone learn to program a

computer. Some individuals, however, have a gift for programming that sets them apart

from their peers with the same level of experience, just as some musicians are more tal-

ented than their contemporaries.

Gifted or not, you will not become adept at programming until you have written and

rewritten many programs. The emphasis here is on practice; you can read many books on

how to ride a bicycle, but you do not know how to ride until you do it.

If some of the examples and problems seem trivial or without any "real-world" appli-

cation, remember the playing of scales on a piano by a budding musician. Each example

will be done using several methods; the best method depends upon what resource is in

short supply. If programming time is valuable, then the best program is the one that uses

the fewest lines of code; if either ROM or execution time is limited, then the program that

uses the fewest code bytes is best.

EXAMPLE PROBLEM 3.1

Copy the byte in TCON to register R2 using at least four different methods.

Method 1: Use the direct address for TCON (88h) and register R2.

Mnemonic Operation

MOV R2,88h Copy TCON to R2

Method 2: Use the direct addresses for TCON and R2.

Mnemonic Operation

MOV 02h,88h Copy TCON to direct address 02h (R2)

Method 3: Use Rl as a pointer to R2 and use the address of TCON.

Mnemonic Operation

MOV Rl,#02h UseRl as a pointer to R2
MOV @RI ,88h Copy TCON byte to address in RI (02h = R2)

Method 4: Push the contents of TCON into direct address 02h (R2).

Mnemonic Operation

MOV8ih,#0lh Set the SP to address Olh in RAM
PUSH 88h Push TCON (88h) to address 02h (R2)

MOVING DATA 55

EXAMPLE PROBLEM 3.2

Set timer TO to an initial setting of 1234h.

Method 1: Use the direct address with an immediate number to set THO and TLO.

Mnemonic Operation

MOV 8Ch,#12h Set THO to 12h

MOV 8Ah,#34h Set TLO to 34h

Totals: 6 bytes, 2 lines

* Method 2: Use indirect addressing with RO for TLO and Rl for THO.

Mnemonic Operation

MOV R0,#8Ah Copy 8Ah, the direct address of TLO, to RO
MOV Rl ,#8Ch Copy 8Ch, the direct address of THO, to Rl

MOV @R0,#34h Copy 34h to TLO
MOV @R 1 ,# 1 2h Copy 1 2h to THO

Totals: 8 bytes, 4 lines

The first method is also the better method in this example.

EXAMPLE PROBLEM 3.3

Put the number 34h in registers R5, R6, and R7.

Method 1: Use an immediate number and register addressing.

Mnemonic Operation

MOV R5,#34h Copy 34h to R5
MOV R6,#34h Copy 34h to R6
MOV R7,#34h Copy 34h to R7

Totals: 6 bytes, 3 lines

Method 2: Since the number is the same for each register, put the number in A and

MOV A to each register.

Mnemonic Operation

MOV A,#34h Copy a 34h to A
MOV R5,A Copy A to R5
MOV R6.A Copy A to R6
MOV R7,A Copy A to R7

Totals: 5 bytes, 4 lines

Method 3: Copy one direct address to another.

Mnemonic Operation

MOV R5,#34h Copy 34h to register R5
MOV 06h,05h Copy R5 (add 05) to R6 (add 06)

MOV 07h,06h Copy R6 to R7
Totals: 8 bytes, 3 lines

56 CHAPTER THREE

EXAMPLE PROBLEM 3.4

Put the number 8Dh in RAM locations 30h to 34h.

Method 1: Use the immediate number to a direct address:

Mnemonic Operation

MOV 30h,#8Dh Copy the number 8Dh to RAM address 30h

MOV 31h,#8Dh Copy the number 8Dh to RAM address 31 h

MOV 32h,#8Dh Copy the number 8Dh to RAM address 32h

MOV 33h,#8Dh Copy the number 8Dh to RAM address 33h

MOV 34h,#8Dh Copy the number 8Dh to RAM address 34h

Totals: 15 bytes, 5 lines

Method 2: Using the immediate number in each instruction uses bytes; use a register to

hold the number:

Mnemonic Operation

MOV A,#8Dh Copy the number 8Dh to the A register

MOV 30h,A Copy the contents of A to RAM location 30h

MOV 3 In,A Copy the contents of A to the remaining addresses

MOV 32h,A

MOV 33h,A

MOV 34h,A Totals: 12 bytes, 6 lines

Method 3: There must be a way to avoid naming each address; the PUSH opcode can

increment to each address:

Mnemonic Operation

MOV 30h,#8Dh Copy the number 8Dh to RAM address 30h

MOV 81h,#30h Set the SP to 30h

PUSH 30h Push the contents of 30h (= 8Dh) to address 31h

PUSH 30h Continue pushing to address 34h

PUSH 30h

PUSH 30h Totals: 14 bytes, 6 tines

Summary

£>— COMMENT
Indirect addressing with the number in A and the indirect address in R1 could be done; how-

ever, Rl would have to be loaded with each address from 30h to 34h. Loading Rl would take

a total of 17 bytes and 1 1 lines of code. Indirect addressing is advantageous when we have

opcodes that can change the contents of the pointing registers automatically.

The opcodes that move data between locations within the 8051 and between the 8051 and

external memory have been discussed. The general form and results of these instructions

are as follows.

Instruction Type Result

MOV destination, source Copy data from the internal RAM source address to the

internal RAM destination address

MOVING DATA 57

MOVC A,source Copy internal or external program memory byte from the

source to register A
MOVX destination, source Copy byte to or from external RAM to register A
PUSH source Copy byte to internal RAM stack from internal RAM

source

POP destination Copy byte from internal RAM stack to internal RAM
destination

XCH A, source Exchange data between register A and the internal RAM
source

XCHD A, source Exchange lower nibble between register A and the

internal RAM source

There are four addressing modes: an immediate number, a register name, a direct

internal RAM address, and an indirect address contained in a register.

Problems

Write programs that will accomplish the desired tasks listed below, using as few lines of

code as possible. Use only opcodes that have been covered up to this chapter. Comment
on each line of code.

1. Place the number 3Bh in internal RAM locations 30h to 32h.

2. Copy the data at internal RAM location Flh to RO and R3.

3. Set the SP at the byte address just above the last working register address.

4. Exchange the contents of the SP and the PSW.

5. Copy the byte at internal RAM address 27h to external RAM address 27h.

6. Set Timer 1 to A23Dh.

7. Copy the contents of DPTR to registers RO (DPL) and Rl (DPH).

8. Copy the data in external RAM location 0123h to TLO and the data in external RAM
location 0234h to THO.

9. Copy the data in internal RAM locations 12h to I5h to internal RAM locations 20h to

23h: Copy 12h to 20h. 13h to 2Ih, etc.

10. Set the SP register to 07h and PUSH the SP register on the stack; predict what number is

PUSHed to address 08h.

11. Exchange the contents of the B register and external RAM address 02CFh.

12. Rotate the bytes in registers RO to R3; copy the data in RO to Rl, Rl to R2, R2 to R3,

and R3 to RO.

13. Copy the external code byte at address 007Dh to the SP.

14. Copy the data in register R5 to external RAM address 032Fh.

15. Copy the internal code byte at address 0300h to external RAM address 0300h.

US. Swap the bytes in timer 0; put TLO in THO and THO in TLO.

17. Store DPTR in external RAM locations OI23h (DPL) and 02BCh (DPH).

18. Exchange both low nibbles of registers RO and Rl; put the low nibble of RO in Rl, and

the low nibble of Rl in RO.

58 CHAPTER THREE

19. Store the contents of register R3 at the internal RAM address contained in R2. (Be sure

the address in R2 is legal.)

20. Store the contents of RAM location 20h at the address contained in RAM location 08h.

21. Store register A at the internal RAM location address in register A.

22. Copy program bytes OlOOh to 0I02h to internal RAM locations 20h to 22h.

23. Copy the data on the pins of port 2 to the port 2 latch.

24. PUSH the contents of the B register to TMOD.

25. Copy the contents of external code memory address 0040h to IE.

26. Show that a set of XCH instructions executes faster than a PUSH and POP when saving

the contents of the A register.

Logical Operations

Chapter Outline

Introduction

Byte-Level Logical Operations

Bit-Level Logical Operations

Rotate and Swap Operations

Example Programs

Summary

Introduction

One application area the 805 1 is designed to fill is that of machine control . A large part of

machine control concerns sensing the on-off states of external switches, making deci-

sions based on the switch states, and then turning external circuits on or off.

Single point sensing and control implies a need for byte and bit opcodes that operate

on data using Boolean operators. All 8051 RAM areas, both data and SFRs, may be ma-

nipulated using byte opcodes. Many of the SFRs, and a unique internal RAM area that is

bit addressable, may be operated upon at the individual bit level. Bit operators are notably

efficient when speed of response is needed. Bit operators yield compact program code that

enhances program execution speed.

The two data levels, byte or bit, at which the Boolean instructions operate are shown

in the following table:

BOOLEAN OPERATOR 8051 MNEMONIC

AND
OR
XOR
NOT

ANL (AND logical)

ORL (OR logical)

XRL (exclusive OR logical)

CPL (complement)

There are also rotate opcodes that operate only on a byte, or a byte and the carry flag,

to permit limited 8- and 9-bit shift-register operations. The following table shows the

rotate opcodes:

59

60 CHAPTER FOUR

Mnemonic

RL

RLC

RR
RRC

SWAP

Operation

Rotate a byte to the left; the Most Significant Bit (MSB) becomes the

Least Significant Bit (LSB)

Rotate a byte and the carry bit left; the carry becomes the LSB, the

MSB becomes the carry

Rotate a byte to the right; the LSB becomes the MSB
Rotate a byte and the carry to the right; the LSB becomes the carry, and

the carry the MSB
Exchange the low and high nibbles in a byte

Byte-Level Logical Operations

The byte-level logical operations use all four addressing modes for the source of a data

byte. The A register or a direct address in internal RAM is the destination of the logical

operation result.

Keep in mind that all such operations are done using each individual bit of the desti-

nation and source bytes. These operations, called byte-level Boolean operations because

trie entire byte is affected, are listed in the following table:

Mnemonic Operation

ANL A,#n AND each bit of A with the same bit of immediate number n; put the

results in A
ANL A,add AND each bit of A with the same bit of the direct RAM address; put

the results in A
ANL A,Rr AND each bit of A with the same bit of register Rr; put the results in A
ANL A,@Rp AND each bit of A with the same bit of the contents of the RAM

address contained in Rp; put the results in A
ANL add,

A

AND each bit of A with the direct RAM address; put the results in

the direct RAM address

ANL add,#n AND each bit of the RAM address with the same bit in the number n;

put the result in the RAM address

ORL A,#n OR each bit of A with the same bit of n; put the results in A
ORL A,add OR each bit of A with the same bit of the direct RAM address; put

the results in A
ORL A,Rr OR each bit of A with the same bit of register Rr; put the results in A
ORL A,@Rp OR each bit of A with the same bit of the contents of the RAM

address contained in Rp; put the results in A
ORL add,

A

OR each bit of A with the direct RAM address; put the results in the

direct RAM address

ORL add,#n OR each bit of the RAM address with the same bit in the number n;

put the result in the RAM address

XRL A,#n XOR each bit of A with the same bit of n; put the results in A
XRL A,add XOR each bit of A with the same bit of the direct RAM address; put

the results in A
XRL A,Rr XOR each bit of A with the same bit of register Rr; put the results in A
XRL A,@Rp XOR each bit of A with the same bit of the contents of the RAM

address contained in Rp; put the results in A
XRL add,

A

XOR each bit of A with the direct RAM address; put the results in the

direct RAM address

LOGICAL OPERATIONS 61

XRL add,#n XOR each bit of the RAM address with the same bit in the number n;

put the result in the RAM address

CLR A Clear each bit of the A register to zero

CPL A Complement each bit of A; every l becomes a 0, and each becomes

a 1

Note that no flags are affected unless the direct RAM address is the PSW.

Many of these byte-level operations use a direct address, which can include the port

SFR addresses, as a destination. The normal source of data from a port is the port pins; the

normal destination for port data is the port latch. When the destination of a logical opera-

tion is the direct address of a port, the latch register, not the pins, is used both as the

source for the original data and then the destination for the altered byte of data. Any port

operation that must first read the source data, logically operate on it, and then write it

back to the source (now the destination) must use the latch. Logical operations that use the

port as a source, but not as a destination, use the pins of the port as the source of the data.

For example, the port latch contains FFh, but the pins are all driving transistor

bases and are close to ground level. The logical operation

ANL P0,#0Fh

which is designed to turn the upper nibble transistors off, reads FFh from the latch, ANDs
it with OFh to produce OFh as a result, and then writes it back to the latch to turn these

transistors off. Reading the pins produces the result OOh, turning all transistors off, in

error. But, the operation

ANL A,P0

produces A = OOh by using the port pin data, which is OOh.

The following table shows byte-level logical operation examples:

Mnemonic Operation

MOV A,#0FFh A - FFh

MOV R0,#77h R0 = 77h

ANL A,R0 A = 77h

MOV 15h,A !5h = 77h

CPL A A = 88h

ORL 15h,#88h 15h = FFh

XRL A,15h A - 77h

XRL A,R0 A = OOh

ANLA,15h A = OOh

ORL A,R0 A = 77h

CLR A A = OOh

XRL l5h,A 15h = FFh

XRL A.RO A = 77h

Note that instructions that can use the SFR port latches as destinations are ANL, ORL,
and XRL.

CAUTION

If the direct address destination is one of the port SFRs, the data latched in the SFR, not the pin

data, is used.

No flags are affected unless the direct address is the PSW.

Only internal RAM or SFRs may be logically manipulated.

62 CHAPTER FOUR

Bit-Level Logical Operations

Certain internal RAM and SFRs can be addressed by their byte addresses or by the address

of each bit within a byte. Bit addressing is very convenient when you wish to alter a single

bit of a byte, in a control register for instance, without having to wonder what you need to

do to avoid altering some other crucial bit of the same byte. The assembler can also equate

bit addresses to labels that make the program more readable. For example, bit 4 of TCON
can become TRO, a label for the timer run bit.

The ability to operate on individual bits creates the need for an area of RAM that

contains data addresses that hold a single bit. Internal RAM byte addresses 20h to 2Fh

serve this need and are both byte and bit addressable. The bit addresses are numbered

from OOh to 7Fh to represent the 128d bit addresses (16d bytes x 8 bits) that exist from

byte addresses 20h to 2Fh. Bit of byte address 20h is bit address OOh, and bit 7 of byte

address 2Fh is bit address 7Fh. You must know your bits from your bytes to take advan-

tage of this RAM area.

Internal RAM Bit Addresses

The availability of individual bit addresses in internal RAM makes the use of the RAM
very efficient when storing bit information. Whole bytes do not have to be used up to store

one or two bits of data.

The correspondence between byte and bit addresses are shown in the following table:

BYTE ADDRESS (HEX) BIT ADDRESSES (HEX)

20 00-07
21 08-OF

22 10-17

23 IS— IF

24 20-27
25 28-2F

26 30-37
27 38-3F

28 40-47
29 48-4F
2A 50-57

2B 58-5F

2C 60-67
2D 68- 6F

2E 70-77
2F 78-7F

Interpolation of this table shows, for example, the address of bit 3 of internal RAM byte

address 2Ch is 63h, the bit address of bit 5 of RAM address 21h is ODh, and bit address

47h is bit 7 of RAM byte address 28h.

SFR Bit Addresses

All SFRs may be addressed at the byte level by using the direct address assigned to it, but

not all of the SFRs are addressable at the bit level. The SFRs that are also bit addressable

form the bit address by using the five most significant bits of the direct address for that

SFR, together with the three least significant bits that identify the bit position from posi-

tion (LSB) to 7 (MSB).

LOGICAL OPERATIONS 63

The bit-addressable SFR and the corresponding bit addresses are as follows:

SFR DIRECT ADDRESS (HEX) BIT ADDRESSES (HEX)

A 0E0 0E0-0E7

B 0F0 0F0-0F7

IE 0A8 0A8-0AF
IP 0B8 0B8-0BF

PO 80 80-87

PI 90 90-97
P2 0A0 0A0-0A7
P3 0B0 0B0-0B7
PSW 0D0 0D0-0D7
TCON 88 88-8F
SCON 98 98-9F

The patterns in this table show the direct addresses assigned to the SFR bytes all have

bits 0-3 equal to zero so that the address of the byte is also the address of the LSB. For

example, bit 0E3h is bit 3 of the A register. The carry flag, which is bit 7 of the PSW, is

bit addressable as 0D7h. The assembler can also "understand" more descriptive mne-

monics, such as P0.5 for bit 5 of port 0, which is more formally addressed as 85h.

Figure 4.1 shows all the bit-addressable SFRs and the function of each addressable

bit. (Refer to Chapter 2 for more detailed descriptions of the SFR bit functions.)

Bit-Level Boolean Operations

The bit-level Boolean logical opcodes operate on any addressable RAM or SFR bit.

The carry flag (C) in the PSW special-function register is the destination for most of the

opcodes because the flag can be tested and the program flow changed using instructions

covered in Chapter 6.

The following table lists the Boolean bit-level operations.

Mnemonic Operation

ANL C,b AND C and the addressed bit; put the result in C
ANL C,/b AND C and the complement of the addressed bit; put the result in C; the

addressed bit is not altered

ORL C,b OR C and the addressed bit; put the result in C
ORL C,/b OR C and the complement of the addressed bit; put the result in C; the

addressed bit is not altered

CPL C Complement the C flag

CPL b Complement the addressed bit

CLR C Clear the C flag to zero

CLR b Clear the addressed bit to zero

MOV C,b Copy the addressed bit to the C flag

MOV b,C Copy the C flag to the addressed bit

SETB C Set the flag to one

SETB b Set the addressed bit to one

Note that no flags, other than the C flag, are affected, unless the flag is an addressed bit.

As is the case for byte-logical operations when addressing ports as destinations, a

port bit used as a destination for a logical operation is part of the SFR latch, not the pin. A
port bit used as a source only is a pin, not the latch. The bit instructions that can use

a SFR latch bit are: CLR, CPL, MOV, and SETB.

64 CHAPTER FOUR

FIGURES 4.1 Bit-Addressable Control Registers

7 6 5 4 3 2 1

CY AC FO RSI RSO OV Reserved P

PROGRAM STATUS WORD (PSW) SPECIAL FUNCTION REGISTER. BIT ADDRESSES DOh to D7h.

Bit Function

7 Carry flag

6 Auxiliary carry flag

5 User flag

4 Register bank select bit 1

3 Register bank select bit

2 Overflow flag

1 Not used (reserved for future)

Parity flag

7 6 5 4 3 2 1

EA Reserved Reserved ES ET1 EX1 ETO EXO

INTERRUPT ENABLE (IE) SPECIAL FUNCTION REGISTER. BIT ADDRESSES A8h TO AFh.

Bit Function

7 Disables all interrupts

6 Not used (reserved for future)

5 Not used (reserved for future)

4 Serial port interrupt enable

3 Timer 1 overflow interrupt enable

2 External interrupt 1 enable

1 Timer interrupt enable

External interrupt enable

EA disables all interrupts when cleared to 0; if EA = 1 then each individual interrupt wilt be enabled if 1, and

disabled if 0.

7 6 5 4 3 2 1

* * Reserved PS PT1 PX1 PTO PXO

INTERRUPT PRIORITY (IP) SPECIAL FUNCTION REGISTER. BIT ADDRESSES B8h to BFh.

Bit Function

7 Not implemented

6 Not implemented

Continued

LOGICAL OPERATIONS 65

Bit Function

5 Not used (reserved for future)

4 Serial port interrupt priority

3 Timer 1 interrupt priority

2 External interrupt 1 priority

1 Timer interrupt priority

External interrupt priority

The priority bit may be set to 1 (highest) or (lowest).

7 6 5 4 3 2 1

TF1 TR1 TFO TRO IE1 IT1 IEO ITO

TIMER/COUNTER CONTROL (TCON) SPECIAL FUNCTION REGISTER. BIT ADDRESSES 88h to 8Fh.

Bit Function

7 Timer 1 overflow flag

6 Timer run control

5 Timer overflow flag

4 Timer run control

3 External interrupt 1 edge flag

2 External interrupt 1 mode control

1 External interrupt edge flag

External interrupt mode control

Alt flags can be set by the indicated hardware action; the flags are cleared when interrupt is serviced by

the processor.

7 6 5 4 3 2 1

SMO SMI SM2 REN TB8 RB8 Tl Rl

SERIAL PORT CONTROL (SCON) SPECIAL FUNCTION REGISTER. BIT ADDRESSES 98h to 9Fh.

Bit Function

7 Serial port mode bit

6 Serial port mode bit 1

5 Multiprocessor communications enable

4 Receive enable

3 Transmitted bit in modes 2 and 3

2 Received bit in modes 2 and 3

1 Transmit interrupt flag

Receive interrupt flag

66 CHAPTER FOUR

Bit-level logical operation examples are shown in the following table:

Mnemonic Operation

SETB OOh Bit of RAM byte 20h = 1

MOV C.OOh C = 1

MOV 7Fh,C Bit 7 of RAM byte 2Fh - 1

ANL C,/00h C = 0; bit of RAM byte 20h = f

ORL C.OOh C = 1

CPL 7Fh Bit 7 of RAM byte 2Fh -

CLR C C -
ORL C,/7Fh C = t ; bit 7 of RAM byte 2Fh =

-p>— CAUTION

Only the SFRs that have been identified as bit addressable may be used in bit operations.

If the destination bit is a port bit, the SFR latch bit is affected, not the pin.

ANL C,/b and ORL C,/b do not alter the addressed bit b.

Rotate and Swap Operations

The ability to rotate data is useful for inspecting bits of a byte without using individual bit

opcodes. The A register can be rotated one bit position to the left or right with or without

including the C Mag in the rotation. If the C flag is not included, then the rotation involves

the eight bits of the A register. If the C flag is included, then nine bits are involved in the

rotation. Including the C flag enables the programmer to construct rotate operations in-

volving any number of bytes.

The SWAP instruction can be thought of as a rotation of nibbles in the A register.

Figure 4.2 diagrams the rotate and swap operations, which are given in the following table:

Mnemonic

RL A

RLC A

RR A

RRC A

SWAP A

Operation

Rotate the A register one bit position to the left; bit A0 to bit Al, Al to

A2, A2 to A3, A3 to A4, A4 to A5, A5 to A6. A6 to A7, and A7 to A0
Rotate the A register and the carry flag, as a ninth bit, one bit position to

the left; bit A0 to bit Al , Al to A2, A2 to A3, A3 to A4, A4 to A5,

A5 to A6, A6 to A7, A7 to the carry flag, and the carry flag to A0
Rotate the A register one bit position to the right; bit A0 to bit A7, A6 to

A5, A5 to A4, A4 to A3, A3 to A2, A2 to Al, and At to A0
Rotate the A register and the carry flag, as a ninth bit, one bit position to

the right; bit A0 to the carry flag, carry flag to A7, A7 to A6, A6 to

A5, A5 to A4, A4 to A3, A3 to A2, A2 to Al , and Al to A0
Interchange the nibbles of register A; put the high nibble in the low nibble

position and the low nibble in the high nibble position

Note that no flags, other than the carry flag in RRC and RLC, are affected. If the carry is

used as part of a rotate instruction, the state of the carry flag should be known before the

rotate is done.

FIGURE 4.2 Register A Rotate Operations

RLA

LOGICAL OPERATIONS 67

7 6 5 4 3 2 1

C 7 6 5 4 3 2 10
— -- -- -*" *- H" "*- "* -*—

'

Carry Flag RLCA

LP 6 5 4 3 2 1

RRA

7 6 5 4 3 2 10 C

RRCA Carry Flag

7 6 5 4 3 2 1

High Nibble Low Nibble

1 .

SWAP A

The following table shows examples of rotate and swap operations:

Mnemonic Operation

MOV A,#0A5h A = 10100101b = A5h
RR A A = 11010010b = D2h

RR A A = 01101001b = 69h

RRA A = 101 10100b = B4h

RR A A = 01011010b = 5Ah
SWAP A A = 10100101b - A5h
CLRC C = 0; A = 10100101b = A5h

RRCA C = 1; A = 01010010b - 52h

RRCA C = 0; A = 10101001b - A9h
RLA A = 01010011b = 53h

RLA A = 101001 10b = A6h

68 CHAPTER FOUR

SWAP A C = 0; A = 01101010b = 6Ah

RLC A C = 0; A = 1 1010100b = D4h

RLC A C = 1; A = 10101000b = A8h

SWAP A C - 1; A - 10001010b = 8Ah

CAUTION

Know the state of the carry flag when using RRC or RRL

Rotation and swap operations are limited to the A register.

Example Programs

The programs in this section are written using only opcodes covered to this point in the

text. The challenge is to minimize the number of lines of code.

EXAMPLE PROBLEM 4.1

Double the number in register R2, and put the result in registers R3 (high byte) and R4

(low byte).

Thoughts on the Problem The largest number in R2 is FFh; the largest result is lFEh.

There are at least three ways to solve this problem: Use the MUL instruction (multiply,

covered in Chapter 5). add R2 to itself, or shift R2 left one time. The solution that shifts

R2 left is as follows:

Mnemonic Operation

MOV R3,#00h Clear R3 to receive high byte

CLR C Clear the carry to receive high bit of 2 x R2

MOV A.R2 Get R2 to A
RLC A Rotate left, which doubles the number in A
MOV R4,A Put low byte of result in R4
CLR A Clear A to receive carry

RLC A The carry bit is now bit of A
MOV R3,A Transfer any carry bit to R3

:£>— COMMENT
Note how the carry flag has to be cleared to a known state before being used in a rotate

operation.

EXAMPLE PROBLEM 4.2

OR the contents of ports I and 2; put the result in external RAM location OlOOh.

Thoughts on the Problem The ports should be input ports for this problem to make any

physical sense; otherwise, we would not know whether to use the pin data or the port SFR
latch data.

The solution is as follows:

Mnemonic Operation

MOV A,90h Copy the pin data from port 1 to A
ORL A.OAOh OR the contents of A with port 2; results in A
MOV DPTR,#0l00h Set the DPTR to point to external RAM address

MOVX (o)DPTR,A Store the result

LOGICAL OPERATIONS 69

£>— COMMENT
Any time the port is the source of data, the pin levels are read; when the port is the destination,

the latch is written. If the port is both source and destination (read-modify-write instruc-

tions), then the latch is used.

EXAMPLE PROBLEM 4.3

Find a number that, when XORed to the A register, results in the number 3Fh in A.

Thoughts on the Problem Any number can be in A, so we will work backwards:

3Fh = A XOR N A XOR 3Fh - A XOR A XOR N - N

The solution is as follows:

Mnemonic Operation

MOV RO,A Save A in RO
XOR A,#3Fh XOR A and 3Fh; forming N
XOR A,R0 XOR A and N yielding 3Fh

Summary

£>— COMMENT
Does this program work? Let's try several A's and see.

A = FFh A XOR 3Fh = COh COh XOR FFh - 3Fh

A = OOh A XOR 3Fh = 3Fh 3Fh XOR OOh = 3Fh

A = 5Ah A XOR 3Fh = 65h 65h XOR 5Ah = 3Fh

Boolean logic, rotate, and swap instructions are covered in this chapter. Byte-level opera-

tions involve each individual bit of a source byte operating on the same bit position in the

destination byte; the results are put in the destination, while the source is not changed:

ANL destination, source

ORL destination, source

XRL destination, source

CLR A

CPL A

RR A

RLA
RRC A

RLC A

SWAP A

Bit-level operations involve individual bits found in one area of internal RAM and

certain SFRs that may be addressed both by the assigned direct-byte address and eight

individual bit addresses. The following Boolean logical operations may be done on each

of these addressable bits:

ANL bit

ORL bit

70 CHAPTER FOUR

CLR bit

CPL bit

SETB bit

MOV destination bit, source bit

Problems

Write programs that perform the tasks listed using only opcodes that have been discussed

in this and previous chapters. Write comments for each line of code and try to use as few

lines as possible.

1. Set Port 0, bits 1 ,3,5, and 7, to one; set the rest to zero.

2. Clear bit 3 of RAM location 22h without affecting any other bit.

3. Invert the data on the port pins and write the data to port 1

.

4. Swap the nibbles of R0 and Rl so that the low nibble of R0 swaps with the high nibble

of Rl and the high nibble of R0 swaps with the low nibble of Rl

.

5. Complement the lower nibble of RAM location 2Ah.

6. Make the low nibble of R5 the complement of the high nibble of R6.

7. Make the high nibble of R5 the complement of the low nibble of R6.

8. Move bit 6 of R0 to bit 3 of port 3.

9. Move bit 4 of RAM location 30h to bit 2 of A.

10. XOR a number with whatever is in A so that the result is FFh.

1 1

.

Store the most significant nibble of A in both nibbles of register R5; for example, if

A = B6h. then R5 = BBh.

12. Store the least significant nibble of A in both nibbles of RAM address 3Ch; for example,

if A = 36h, then3Ch = 66h.

13. Set the carry flag to one if the number in A is even; set the carry flag to zero if the

number in A is odd.

14. Treat registers RO and Rl as 16-bit registers, and rotate them one place to the left; bit 7

of RO becomes bit of R 1 . bit 7 of R I becomes bit of RO, and so on

.

15. Repeat Problem 14 but rotate the registers one place to the right.

16. Rotate the DPTR one place to the left; bit 15 becomes bit 0.

17. Repeat problem 16 but rotate the DPTR one place to the right.

18. Shift register B one place to the left; bit becomes a zero, bit 6 becomes bit 7. and so

on. Bit 7 is lost.

Arithmetic Operations

Chapter Outline

Introduction

Flags

Incrementing and Decrementing

Addition

Subtraction

Multiplication and Division

Decimal Arithmetic

Example Programs

Summary

Introduction

Applications of microcontrollers often involve performing mathematical calculations on

data in order to alter program flow and modify program actions. A microcontroller is not

designed to be a "number cruncher," as is a genera)-purpose computer. The domain of the

microcontroller is that of controlling events as they change (real-time control). A suffi-

cient number of mathematical opcodes must be provided, however, so that calculations

associated with the control of simple processes can be done, in real time, as the controlled

system operates. When faced with a control problem, the programmer must know whether

the 8051 has sufficient capability to expeditiously handle the required data manipulation.

If it does not, a higher performance model must be chosen.

The 24 arithmetic opcodes are grouped into the following types:

Mnemonic

INC destination

DEC destination

ADD/ADDC destination,source

SUBB destination, source

MULAB

Operation

Increment destination by 1

Decrement destination by 1

Add source to destination without/with carry (C)

flag

Subtract, with carry, source from destination

Multiply the contents of registers A and B

71

72 CHAPTER FIVE

Flags

DIV AB Divide the contents of register A by the contents of

register B
DA A Decimal Adjust the A register

The addressing modes for the destination and source are the same as those discussed in

Chapter 3: immediate, register, direct, and indirect.

A key part of performing arithmetic operations is the ability to store certain results of

those operations that affect the way in which the program operates. For example, adding

together two one-byte numbers results in a one-byte partial sum, because the 8051 is and

eight-bit machine. But it is possible to get a 9-bit result when adding two 8-bit numbers.

The ninth bit must be stored also, so the need for a one-bit register, or carry flag in this

case, is identified. The program will then have to deal with the ninth bit, perhaps by

adding it to a higher order byte in a multiple-byte addition scheme. Similar actions may

have to be taken when a larger byte is subtracted from a smaller one. In this case, a borrow

is necessary and must be dealt with by the program.

The 8051 has several dedicated latches, or flags, that store results of arithmetic opera-

tions. Opcodes covered in Chapter 6 are available to alter program flow based upon the

state of the flags. Not alt instructions change the flags, but many a programming error has

been made by a forgetful programmer who overlooked an instruction that does change

a flag.

The 805 1 has four arithmetic flags: the carry (C), auxiliary carry (AC), overflow (OV),

and parity (P).

Instructions Affecting Flags

The C, AC, and OV flags are arithmetic flags. They are set to 1 or cleared to automat-

ically, depending upon the outcomes of the following instructions. The following instruc-

tion set includes all instructions that modify the flags and is not confined to arithmetic

instructions:

INSTRUCTION MNEMONIC FLAGS AFFECTI

ADD C AC OV
ADDC C AC OV
ANL Cdirect C

CJNE C

CLR C C =

CPL C C = C

DA A C

DIV C =0 OV
MOV Cdirect C

MUL C =0 OV
ORL Cdirect C

RLC C

RRC c

SETB C C - 1

SUBB C AC OV

One should remember, however, that the flags are all stored in the PSW. Any instruc-

tion that can modify a bit or a byte in that register (MOV, SETB, XCH, etc.) changes the

flags. This type of change takes conscious effort on the part of the programmer.

ARITHMETIC OPERATIONS 73

A flag may be used for more than one type of result. For example, the C flag indicates

a carry out of the lower byte position during addition and indicates a borrow during sub-

traction. The instruction that last affects a flag determines the use of that flag.

The parity flag is affected by every instruction executed. The P flag will be set to a \

if the number of 1 *s in the A register is odd and will be set to if the number of 1 *s is even.

AH O's in A yield a l's count of 0, which is considered to be even. Parity check is an

elementary error-checking method and is particularly valuable when checking data re-

ceived via the serial port.

Incrementing and Decrementing

The simplest arithmetic operations involve adding or subtracting a binary 1 and a number.

These simple operations become very powerful when coupled with the ability to repeat the

operation—that is, to "INCrement" or "DECrement"—until a desired result is reached.'

Register, Direct, and Indirect addresses may be INCremented or DECremented. No math

flags (C, AC, OV) are affected.

The following table lists the increment and decrement mnemonics.

Mnemonic

INC A
INC Rr

INC add

INC @ Rp
INC DPTR
DEC A
DECRr
DEC add

DEC @ Rp

Operation

Add a one to the A register

Add a one to register Rr

Add a one to the direct address

Add a one to the contents of the address in Rp
Add a one to the 16-bit DPTR
Subtract a one from register A
Subtract a one from register Rr

Subtract a one from the contents of the direct address

Subtract a one from the contents of the address in register Rp

Note that increment and decrement instructions that operate on a port direct address alter

the latch for that port.

The following table shows examples of increment and decrement arithmetic

operations:

Mnemonic

MOV A,#3Ah
DEC A
MOV R0,#15h

MOV 15h,#t2h

INC @R0
DEC I5h

INCRO
MOV 16h,A

INC @R0
MOVDPTR,#12FFh
INC DPTR
DEC 83h

Operation

A = 3Ah
A = 39h

RO = I5h

Internal RAM address 15h = 12h

Internal RAM address 1 5h = 1 3h

Internal RAM address 15h = 12h

RO = 16h

Internal RAM address 16h = 39h

Interna] RAM address 16h = 3Ah
DPTR = 12FFh

DPTR = I300h

DPTR = I200h (SFR 83h is the DPH byte)

'This subject will be explored in Chapter 6.

74 CHAPTER FIVE

CAUTION

Addition

Remember: No math flags are affected.

All 8-bit address contents overflow from FFh to OOh.

DPTR is 16 bits; DPTR overflows from FFFFh to OOOOh.

The 8-bit address contents underflow from OOh to FFh.

There is no DEC DPTR to match the INC DPTR.

All addition is done with the A register as the destination of the result. All addressing

modes may be used for the source: an immediate number, a register, a direct address, and

an indirect address. Some instructions include the carry flag as an additional source of a

single bit that is included in the operation at the least significant bit position.

The following table lists the addition mnemonics.

Mnemonic Operation

ADD A,#n Add A and the immediate number n; put the sum in A
ADD A,Rr Add A and register Rr; put the sum in A
ADD A,add Add A and the address contents; put the sum in A
ADD A,@Rp Add A and the contents of the address in Rp; put the sum in A

Note that the C flag is set to I if there is a carry out of bit position 7; it is cleared to

otherwise. The AC flag is set to 1 if there is a carry out of bit position 3; it is cleared

otherwise. The OV flag is set to I if there is a carry out of bit position 7, but not bit

position 6 or if there is a carry out of bit position 6 but not bit position 7, which may be

expressed as the logical operation

OV = C7 XOR C6

Unsigned and Signed Addition

The programmer may decide that the numbers used in the program are to be unsigned

numbers—that is, numbers that are 8-bit positive binary numbers ranging from OOh to

FFh. Alternatively, the programmer may need to use both positive and negative signed

numbers.

Signed numbers use bit 7 as a sign bit in the most significant byte (MSB) of the group

of bytes chosen by the programmer to represent the largest number to be needed by the

program. Bits to 6 of the MSB, and any other bytes, express the magnitude of the num-

ber. Signed numbers use a 1 in bit position 7 of the MSB as a negative sign and a as a

positive sign. Further, all negative numbers are not in true form, but are in 2's comple-

ment form. When doing signed arithmetic, the programmer must know how large the

largest number is to be—that is, how many bytes are needed for each number.

In signed form, a single byte number may range in size from 10000000b, which

is - 1 28d to 01 1 1 1 1 1 1 b, which is + 1 27d. The number 00000000b is OOOd and has a posi-

tive sign, so there are 128d negative numbers and 128d positive numbers. The C and OV
flags have been included in the 8051 to enable the programmer to use either numbering

scheme.

Adding or subtracting unsigned numbers may generate a carry flag when the sum ex-

ceeds FFh or a borrow flag when the minuend is less than the subtrahend. The OV flag is

not used for unsigned addition and subtraction. Adding or subtracting signed numbers can

ARITHMETIC OPERATIONS 75

lead to carries and borrows in a similar manner, and to overflow conditions due to the

actions of the sign bits.

Unsigned Addition

Unsigned numbers make use of the carry flag to detect when the result of an ADD opera-

tion is a number larger than FFh. If the carry is set to one after an ADD, then the carry can

be added to a higher order byte so that the sum is not lost. For instance,

95d = 010J 1 1 lib

189d = lOUUOtb

284d 1 00011100b - 284d

The C flag is set to 1 to account for the carry out from the sum. The program could add the

carry flag to another byte that forms the second byte of a larger number.

Signed Addition

Signed numbers may be added two ways: addition of like signed numbers and addition

of unlike signed numbers. If unlike signed numbers are added, then it is not possible

for the result to be larger than — 128d or + 127d, and the sign of the result will always be

correct. For example,

-001d = lltlllllb

+027d = 0001101 lb

+026d 0001 1010b = +026d

Here, there is a carry from bit 7 so the carry flag is 1 . There is also a carry from bit 6, and

the OV flag is 0. For this condition, no action need be taken by the program to correct

the sum.

If positive numbers are added, there is the possibility that the sum will exceed -f I27d,

as demonstrated in the following example;

+100d - 01100100b

+050d - 00110010b

+ 150d 10010110b- -106d

Ignoring the sign of the result, the magnitude is seen to be +22d which would be correct if

we had some way of accounting for the + I28d, which, unfortunately, is larger than a

single byte can hold. There is no carry from bit 7 and the carry flag is 0; there is a carry

from bit 6 so the OV flag is 1

.

An example of adding two positive numbers that do not exceed the positive limit is:

+045d = 00101 101b

+075d= 01001011b

+ 120d 011 11000b = 120d

Note that there are no carries from bits 6 or 7 of the sum; the carry and OV flags are

bothO.

The result of adding two negative numbers together for a sum that does not exceed the

negative limit is shown in this example:

-030d = lUOOOlOb

-050d = 1 1001 1 10b

-080d 101 10000b = -080d

76 CHAPTER FIVE

c ov

1

1

1 1

Here, there is a carry from bit 7 and the carry flag is 1 ; there is a carry from bit 6 and the

OV flag is 0. These are the same flags as the case for adding unlike numbers; no correc-

tions are needed for the sum.

When adding two negative numbers whose sum does exceed — I28d, we have

-070d = lOlMOlOb
-070d = 101 11010b

-140d OlllOlOOb^ +116d

Or, the magnitude can be interpreted as — 1 2d, which is the remainder after a carry out of

— 1 28d. In this example, there is a carry from bit position 7, and no carry from bit position

6, so the carry and the OV flags are set to 1 . The magnitude of the sum is correct; the sign

bit must be changed to a 1

.

From these examples the programming actions needed for the C and OV flags are as

follows:

FLAGS ACTION

None
Complement the sign

None

Complement the sign

A general rule is that if the OVflag is set, then complement the sign. The OV flag also

signals that the sum exceeds the largest positive or negative numbers thought to be needed

in the program.

Multiple-Byte Signed Arithmetic

The nature of multiple-byte arithmetic for signed and unsigned numbers is distinctly

different from single byte arithmetic. Using more than one byte in unsigned arithmetic

means that carries or borrows are propagated from low-order to high-order bytes by the

simple technique of adding the carry to the next highest byte for addition and subtracting

the borrow from the next highest byte for subtraction.

Signed numbers appear to behave like unsigned numbers until the last byte is reached.

For a signed number, the seventh bit of the highest byte is the sign; if the sign is negative,

then the entire number is in 2*s complement form.

For example, using a two-byte signed number, we have the following examples:

+ 32767d = 01111111 IIllMIlb = 7FFFh

+00000d = 00000000 00000000b = OOOOh

-OOOOld = 11111111 llllllllb = FFFFh

-32768d = 10000000 00000000b = 8000h

Note that the lowest byte of the numbers OOOOOd and -32768d are exactly alike, as are the

lowest bytes for +32767d and -OOOOld.

For multi-byte signed number arithmetic, then, the lower bytes are treated as un-

signed numbers. All checks for overflow are done only for the highest order byte that

contains the sign. An overflow at the highest order byte is not usually recoverable. The

programmer has made a mistake and probably has made no provisions for a number larger

than planned. Some error acknowledgment procedure, or user notification, should be in-

cluded in the program if this type of mistake is a possibility.

ARITHMETIC OPERATIONS 77

The preceding examples show the need to add the carry flag to higher order bytes in

signed and unsigned addition operations. Opcodes that accomplish this task are similar to

the ADD mnemonics: A C is appended to show that the carry bit is added to the sum in bit

position 0.

The following table lists the add with carry mnemonics:

Mnemonic Operation

ADDC A,#n Add the contents of A, the immediate number n, and the C flag; put

the sum in A
ADDC A,add Add the contents of A, the direct address contents, and the C flag;

put the sum in A
ADDC A,Rr Add the contents of A, register Rr, and the C flag; put the sum in A
ADDC A,@Rp Add the contents of A, the contents of the indirect address in Rp,

and the C flag; put the sum in A

Note that the C, AC, and OV flags behave exactly as they do for the ADD commands.

The following table shows examples of ADD and ADDC multiple-byte signed arith-

metic operations:

Mnemonic Operation

MOV A,#lCh A = ICh

MOVR5,#0Alh R5 = Alh
ADD A,R5 A = BDh; C = 0, OV =

ADD A,R5 A = 5Eh; C = 1 , OV = 1

ADDC A,#10h A = 6Fh; C = 0, OV =

ADDC A,#10h A = 7Fh; C = 0, OV =

£>— CAUTION

ADDC is normally used to add a carry after the LSB addition in a multi-byte process. ADD is

normally used for the LSB addition.

Subtraction

Subtraction can be done by taking the 2's complement of the number to be subtracted, the

subtrahend, and adding it to another number, the minuend. The 8051 , however, has com-

mands to perform direct subtraction of two signed or unsigned numbers. Register A is the

destination address for subtraction. All four addressing modes may be used for source

addresses. The commands treat the carry flag as a borrow and always subtract the carry

flag as part of the operation.

The following table lists the subtract mnemonics.

Mnemonic Operation

SUBB A,#n Subtract immediate number n and the C flag from A; put the result

in A
SUBB A,add Subtract the contents of add and the C flag from A; put the result in A
SUBB A,Rr Subtract Rr and the C flag from A; put the result in A
SUBB A,@Rp Subtract the contents of the address in Rp and the C flag from A;

put the result in A

78 CHAPTER FIVE

Note that the C flag is set if a borrow is needed into bit 7 and reset otherwise. The AC flag

is set if a borrow is needed into bit 3 and reset otherwise. The OV flag is set if there is a

borrow into bit 7 and not bit 6 or if there is a borrow into bit 6 and not bit 7. As in the case

for addition, the OV Flag is the XOR of the borrows into bit positions 7 and 6.

Unsigned and Signed Subtraction

Again, depending on what is needed, the programmer may choose to use bytes as signed

or unsigned numbers. The carry flag is now thought of as a borrow flag to account for

situations when a larger number is subtracted from a smaller number. The OV flag indi-

cates results that must be adjusted whenever two numbers of unlike signs are subtracted

and the result exceeds the planned signed magnitudes.

Unsigned Subtraction

Because the C flag is always subtracted from A along with the source byte, it must be set

to if the programmer does not want the flag included in the subtraction. If a multi-byte

subtraction is done, the C flag is cleared for the first byte and then included in subsequent

higher byte operations.

The result will be in true form, with no borrow if the source number is smaller than

A, or in 2's complement form, with a borrow if the source is larger than A. These are not

signed numbers, as all eight bits are used for the magnitude. The range of numbers is from

positive 255d (C = 0, A = FFh) to negative 255d (C = 1, A = Olh).

The following example demonstrates subtraction of larger number from a smaller

number:

0I5d= 00001111b

SUBB iOOd = 01100100b

-085d 1 1010101 lb = 17ld

TheC flag is set to 1, and theOV flag is set to 0. The 2's complement of the result is085d.

The reverse of the example yields the following result:

lOOd = 01100100b

015d = 00001111b

085d 01010101b - 085d

The C flag is set to 0, and the OV flag is set to 0. The magnitude of the result is in true form.

Signed Subtraction

As is the case for addition, two combinations of unsigned numbers are possible when sub-

tracting: subtracting numbers of like and unlike signs. When numbers of like sign are

subtracted, it is impossible for the result to exceed the positive or negative magnitude

limits of + 127d or — 128d, so the magnitude and sign of the result do not need to be

adjusted, as shown in the following example:

+ lOOd = 01 100100b (Carry flag = before SUBB)
SUBB +I26d = 011111 10b

-026d I IMOOMOb = -026d

There is a borrow into bit positions 7 and 6; the carry flag is set to 1 , and the OV flag is

cleared.

ARITHMETIC OPERATIONS 79

The following example demonstrates using two negative numbers:

-061d = 11000011b (Carry flag = before SUBB)
SUBB -116d - 10001 100b

+055d 001 101 lib - +55d

There are no borrows into bit positions 6 or 7, so the OV and carry flags are cleared to zero.

An overflow is possible when subtracting numbers of opposite sign because the situa-

tion becomes one of adding numbers of like signs, as can be demonstrated in the following

example:

-099d = 1001 1 101b (Carry flag = before SUBB)
SUBB +100d = 01100100b

-199d 00111001b = +057d

Here, there is a borrow into bit position 6 but not into bit position 7; the OV flag is set to 1

,

and the carry flag is cleared to 0. Because the OV flag is set to I, the result must be

adjusted. In this case, the magnitude can be interpreted as the 2's complement of 7 Id, the

remainder after a carry out of I28d from 199d. The magnitude is correct, and the sign

needs to be corrected to a 1

.

The following example shows a positive overflow:

+087d = 01010111b (Carry flag - before SUBB)
SUBB -052d = llOOIIOOb

+ 139d 1000101 lb = -117d

There is a borrow from bit position 7, and no borrow from bit position 6; the OV flag and

the carry flag are both set to 1 . Again the answer must be adjusted because the OV flag is

set to one. The magnitude can be interpreted as a +01 Id, the remainder from a carry out

of 128d. The sign must be changed to a binary and the OV condition dealt with.

The general rule is that if the OV flag is set to 1 , then complement the sign bit. The

OV flag also signals that the result is greater than — 128d or + 127d.

Again, it must be emphasized: When an overflow occurs in a program, an error has

been made in the estimation of the largest number needed to successfully operate the pro-

gram. Theoretically, the program could resize every number used, but this extreme proce-

dure would tend to hinder the performance of the microcontroller.

Note that for all the examples in this section, it is assumed that the carry flag =

before the SUBB. The carry flag must be before any SUBB operation that depends upon

C — is done.

The following table lists examples of SUBB multiple-byte signed arithmetic

operations:

Mnemonic Operation

MOV 0D0h,#00h Carry flag -

MOV A,#3Ah A - 3Ah
MOV 45h,#13h Address 45h = 13h

SUBB A,45h A = 27h; C = 0, OV =
SUBB A,45h A = 14h; C = 0, OV =
SUBB A,#80h A = 94h; C = 1, OV = 1

SUBB A,#22h A = 71h; C = 0, OV =

SUBB A,#0FFh A = 72h; C = 1, OV =

80 CHAPTER FIVE

£>— CAUTION

Remember to set the carry flag to zero if it is not to be included as part of the subtraction

operation-

Multiplication and Division

The 8051 has the capability to perform 8-bit integer multiplication and division using the

A and B registers. Register B is used solely for these operations and has no other use

except as a location in the SFR space of RAM that could be used to hold data. The

A register holds one byte of data before a multiply or divide operation, and one of the

result bytes after a multiply or divide operation.

Multiplication and division treat the numbers in registers A and B as unsigned. The

programmer must devise ways to handle signed numbers.

Multiplication

Multiplication operations use registers A and B as both source and destination addresses

for the operation. The unsigned number in register A is multiplied by the unsigned number

in register B, as indicated in the following table:

Mnemonic Operation

MUL AB Multiply A by B; put the low-order byte of the product in A, put the

high-order byte in B

The OV flag will be set if A x B > FFh. Setting the OV flag does not mean that an error

has occurred. Rather, it signals that the number is larger than eight bits, and the program-

mer needs to inspect register B for the high-order byte of the multiplication operation. The

carry flag is always cleared to 0.

The largest possible product is FEOlh when both A and B contain FFh. Register A
contains Olh and register B contains FEh after multiplication of FFh by FFh. The OV flag

is set to 1 to signal that register B contains the high-order byte of the product; the carry

flag is 0.

The following table gives examples of MUL multiple-byte arithmetic operations:

Mnemonic Operation

MOV A,#7Bh A - 7Bh

MOV OFOh,#02h B = 02h

MUL AB A = OOh and B = F6h; OV Flag =

MOV A,#0FEh A - FEh

MUL AB A = 14h and B = F4h; OV Flag = 1

£>— CAUTION

Note there is no comma between A and B in the MUL mnemonic.

Division

Division operations use registers A and B as both source and destination addresses for the

operation. The unsigned number in register A is divided by the unsigned number in regis-

ter B, as indicated in the following table:

ARITHMETIC OPERATIONS 81

Mnemonic Operation

DIV AB Divide A by B; put the integer part of quotient in register A and the

integer part of the remainder in B

The OV flag is cleared to unless B holds OOh before the DIV. Then the OV flag is set to l

to show division by 0. The contents of A and B, when division by is attempted, are

undefined. The carry flag is always reset.

Division always results in integer quotients and remainders, as shown in the following

example:

= 1 2 (quotient) and 9 (remainder)

When done in hex:

B - 017d 213 [(12 x 17) + 91

C (quotient) and 9 (remainder)
B = 011h

The following table lists examples of DIV multiple-byte arithmetic operations:

Mnemonic Operation

MOV A,#0FFh A - FFh (255d)

MOV 0F0h,#2Ch B = 2C (44d)

DIV AB A = 05h and B = 23h [255d = (5 x 44) + 35]

DIV AB A = OOh and B = 05h |05d = (0x 35) + 5]

DIV AB A = OOh and B = OOh [OOd = (0 x 5) + 0]

DIV AB A = ?? and B = ??; OV flag is set to one

£>— CAUTION

The original contents of B (the divisor) are lost.

Note there is no comma between A and B in the DIV mnemonic.

Decimal Arithmetic

Most 8051 applications involve adding intelligence to machines where the hexadecimal

numbering system works naturally. There are instances, however, when the application

involves interacting with humans, who insist on using the decimal number system. In such

cases, it may be more convenient for the programmer to use the decimal number system to

represent all numbers in the program.

Four bits are required to represent the decimal numbers from to 9 (0000 to 1001)

and the numbers are often called Binary coded decimal (BCD) numbers. Two of these

BCD numbers can then be packed into a single byte of data.

The 8051 does all arithmetic operations in pure binary. When BCD numbers are being

used the result will often be a non-BCD number, as shown in the following example:

49BCD = 01001001b

+38BCD = 00111000b

87BCD 10000001b = 8IBCD

Note that to adjust the answer, an 06d needs to be added to the result.

82 CHAPTER FIVE

The opcode that adjusts the result of BCD addition is the decimal adjust A for addi-

tion (DA A) command, as shown in the following table:

Mnemonic Operation

DA A Adjust the sum of two packed BCD numbers found in A register; leave

the adjusted number in A.

The C flag is set to 1 if the adjusted number exceeds 99BCD and set to otherwise. The

DA A instruction makes use of the AC flag and the binary sums of the individual binary

nibbles to adjust the answer to BCD. The AC flag has no other use to the programmer and no

instructions—other than a MOV or a direct bit operation to the PSW—affect the AC flag.

It is important to remember that the DA A instruction assumes the added numbers

were in BCD before the addition was done. Adding hexadecimal numbers and then using

DA A will not convert the sum to BCD.
The DA A opcode only works when used with ADD or ADDC opcodes and does not

give correct adjustments for SUBB, MUL or DIV operations. The programmer might best

consider the ADD or ADDC and DA A as a single instruction and use the pair automat-

ically when doing BCD addition in the 805 1

.

The following table gives examples of BCD multiple-byte arithmetic operations:

Mnemonic Operation

MOV A,#42h A = 42BCD
ADD A,#13h A = 55h; C =

DA A A = 55h; C =
ADD A,#17h A = 6Ch; C =

DA A A = 72BCD; C =

ADDC A,#34h A - A6h; C =

DA A A = 06BCD; C = 1

ADDC A,#llh A = 18BCD;C =

DA A A = 18BCD;C =

{>^ CAUTION -

All numbers used must be in BCD form before addition.

Only ADD and ADDC are adjusted to BCD by DA A.

Example Programs

The challenge of the programs presented in this section is writing them using only opcodes

that have been covered to this point in the book. Experienced programmers may long for

some of the opcodes to be covered in Chapter 6, but as we shall see, programs can be

written without them.

EXAMPLE PROBLEM 5.1

Add the unsigned numbers found in internal RAM locations 25h, 26h, and 27h together

and put the result in RAM locations 30h (MSB) and 31h (LSB).

Thoughts on the Problem The largest number possible is FFh + FFh -OlFEh + FFh -

02FDh, so that two bytes will hold the largest possible number. The MSB will be set to

and any carry bit added to it for each byte addition.

ARITHMETIC OPERATIONS 83

To solve this problem, use an ADD instruction for each addition and an ADDC to the

MSB for each carry which might be generated. The first ADD will adjust any carry flag

which exists before the program starts.

The complete program is shown in the following table:

Mnemonic

MOV31h,#00h
MOV A,25h

ADD A,26h

MOV RO,A
MOV A,#00h
ADDC A,31h

MOV 3 In,A
MOV A,R0

ADD A,27h

MOV 39h,A

MOV A,#00h
ADDCA,3Ih
MOV 31h,A

Operation

Clear the MSB of the result to

Get the first byte to be added from location 25h

Add the second byte found in RAM location 26h

Save the sum of the first two bytes in RO
Clear A to 00

Add the carry to the MSB; carry = after this operation

Store MSB
Get partial sum back

Form final LSB sum

Store LSB
Clear A for MSB addition

Form final MSB
Store final MSB

COMMENT
Notice how awkward it becomes to have to use the A register for all operations. Jump instruc-

tions, which will be covered in Chapter 6, require less use of A.

EXAMPLE PROBLEM 5.2

Repeat problem 5.1 using BCD numbers.

Thoughts on the Problem The numbers in the RAM locations must be in BCD before

the problem begins. The largest number possible is 99d + 99d = 198d + 99d = 297d, so

that up to two carries can be added to the MSB.
The solution to this problem is identical to that for unsigned numbers, except a DA A

must be added after each ADD instruction. If more bytes were added so that the MSB
could exceed 09d, then a DA A would also be necessary after the ADDC opcodes.

The complete program is shown in the following table:

Mnemonic

MOV 31h,#00h

MOV A,25h

ADD A,26h

DA A
MOV R0,A

MOV A,#00h

ADDC A,31h

MOV 3ih,A

MOV A,R0

ADD A,27h

DA A
MOV 30h,A

MOV A,#00h

ADDC A,3In

MOV 31h,A

Operation

Clear the MSB of the result to

Get the first byte to be added from location 25h

Add the second byte found in RAM location 26h

Adjust the answer to BCD form

Save the sum of the first two bytes in RO
Clear A to 00

Add the carry to the MSB; carry = after this operation

Store MSB
Get partial sum back

Form final LSB sum

Adjust the final sum to BCD
Store LSB
Clear A for MSB addition

Form final MSB
Store final MSB

84 CHAPTER FIVE

COMMENT
When using BCD numbers, DA A can best be thought of as an integral part of the ADD
instructions.

EXAMPLE PROBLEM 5.3

Multiply the unsigned number in register R3 by the unsigned number on port 2 and put the

result in external RAM locations lOh (MSB) and 1 Ih (LSB).

Thoughts on the Problem The MUL instruction uses the A and B registers; the prob-

lem consists of MOVes to A and B followed by MOVes to the external RAM. The com-

plete program is shown in the following table:

Mnemonic

MOV A,0A0h

MOV 0F0h,R3

MUL AB
MOV RO,#llh

MOV @RO,A
DEC RO
MOV A,OFOh

MOV <a)R0,A

Operation

Move the port 2 pin data to A
Move the data in R3 to the B register

Multiply the data; A has the low order result byte

Set RO to point to external RAM location 1 Ih

Store the LSB in external RAM
Decrement RO to point to I Oh

Move B to A
Store the MSB in external RAM

COMMENT
Again we see the bottleneck created by having to use the A register for all external data

transfers.

More advanced programs which do signed math operations and multi-byte multiplication and

division will have to wait for the development of Jump instructions in Chapter 6.

Summary
The 8051 can perform all four arithmetic operations: addition, subtraction, multiplication,

and division. Signed and unsigned numbers may be used in addition and subtraction; an

OV flag is provided to signal programmer errors in estimating signed number magnitudes

needed and to adjust signed number results. Multiplication and division use unsigned

numbers. BCD arithmetic may be done using the DA A and ADD or ADDC instructions.

The following table lists the arithmetic mnemonics:

Mnemonic

ADD A, source

ADDC A, source

DA A

DEC source

DIV AB

Operation

Add the source byte to A; put the result in A and adjust the C and

OV flags

Add the source byte and the carry to A; put the result in A and

adjust the C and OV flags

Adjust the binary result of adding two BCD numbers in the A
register to BCD and adjust the carry flag

Subtract a 1 from the source; roll from OOh to FFh

Divide the byte in A by the byte in B; put the quotient in A and

the remainder in B; set the OV flag to 1 if B - OOh before the

division

ARITHMETIC OPERATIONS 85

INC source Add a 1 to the source; roll from FFh or FFFFh to OOh or OOOOh

MUL AB Multiply the bytes in A and B; put the high-order byte of the

result in B, the low-order byte in A; set the OV flag to 1 if the

result is > FFh

SUBB A, source Subtract the source byte and the carry from A; put the result in A
and adjust the C and OV flags

Problems

Write programs that perform the tasks listed using only opcodes that have been discussed

in this and previous chapters. Use comments on each line of code and try to use as few

lines as possible. All numbers may be considered to be unsigned numbers.

1. Add the bytes in RAM locations 34h and 35h; put the result in register R5 (LSB) and

R6 (MSB).

2. Add the bytes in registers R3 and R4; put the result in RAM location 4Ah (LSB) and

4Bh (MSB).

3. Add the number 84h to RAM locations 17h and 18h.

4. Add the byte in external RAM location 02CDh to internal RAM location 19h; put the

result into external RAM location OOCOh (LSB) and OOClh (MSB).

5-8. Repeat Problems 1 -4, assuming the numbers are in BCD format.

9. Subtract the contents of R2 from the number F3h; put the result in external RAM loca-

tion 028Bh.

10. Subtract the contents of RI from RO; put the result in R7.

11. Subtract the contents of RAM location 13h from RAM location 2Bh; put the result in

RAM location 3Ch.

12. Subtract the contents of THO from TH I ; put the result in TLO.

13. Increment the contents of RAM location 13h, 14h, and 15h using indirect addressing only.

14. Increment TL1 by lOh.

15. Increment external RAM locations OlOOh and 0200h.

16. Add a I to every external RAM address from OOh to 06h.

17. Add a 1 to every external RAM address from OlOOh to 0106h.

18. Decrement TLO. THO, TL1, and TH1.

19. Decrement external RAM locations 0123h and OlBDh.

20. Decrement external RAM locations 45h and 46h.

21. Multiply the data in RAM location 22h by the data in RAM location 15h; put the result

in RAM locations 19h (low byte), and lAh (high byte).

22. Square the contents of R5; put the result in RO (high byte), and Rl (low byte).

23. Divide the data in RAM location 3Eh by the number 12h; put the quotient in R4 and the

remainder in R5.

24. Divide the number in RAM location 15h by the data in RAM location I6h; put the result

in external RAM location 7Ch.

25. Divide the data in RAM location 13h by the data in RAM location 14h, then restore the

original data in 13h by multiplying the answer by the data in 14h.

Jump and Call Opcodes

Chapter Outline

Introduction

The Jump and Call Program Range

Jumps

Calls and Subroutines

Interrupts and Returns

Problems

Introduction

86

The opcodes that have been examined and used in the preceding chapters may be thought

of as action codes. Each instruction performs a single operation on bytes of data.

The jumps and calls discussed in this chapter are decision codes that alter the flow of

the program by examining the results of the action codes and changing the contents of the

program counter. A jump permanently changes the contents of the program counter if cer-

tain program conditions exist. A call temporarily changes the program counter to allow

another part of the program to run. These decision codes make it possible for the program-

mer to let the program adapt itself, as it runs, to the conditions that exist at the time.

While it is true that computers can't "think" (at least as of this writing), they can

make decisions about events that the programmer can foresee, using the following deci-

sion opcodes:

Jump on bit conditions

Compare bytes and jump if not equal

Decrement byte and jump if zero

Jump unconditionally

Call a subroutine

Return from a subroutine

Jumps and calls may also be generically referred to as "branches," which emphasizes that

two divergent paths are made possible by this type of instruction.

JUMP AND CALL OPCODES 87

The Jump and Call Program Range

A jump or call instruction can replace the contents of the program counter with a new

program address number that causes program execution to begin at the code located at the

new address. The difference, in bytes, of this new address from the address in the program

where the jump or call is located is called the range of the jump or call. For example, if a

jump instruction is located at program address OlOOh, and the jump causes the program

counter to become 0120h, then the range of the jump is 20h bytes.

Jump or call instructions may have one of three ranges: a relative range of + 127d,

— 128d bytes from the instruction /o/Zowmg the jump or call instruction; an absolute range

on the same 2K byte page as the instruction following the jump or call; or a long range of

any address from OOOOh to FFFFh, anywhere in program memory. Figure 6. 1 shows the

relative range of all the jump instructions.

FIGURE 6.1 Jump Instruction Ranges

Memory Address (HEX)

FFFF
LADD Limit

Next Page

PC + 127d

PC

PC - 128d

This Page

SADD Limit

Relative Limit J—
|
*

Next Opcode

Jump Opcode

Relative Limit

SADD Limit

I

JNC

JNB

Bit

Jumps

"I

I

I

I _JBC 'aJM^_

™T CJNE T
I

DJNZ

I

JZ

I

JNZ

Byte

Jumps

I SJMP

0000

UMP

-I

88 CHAPTER SIX

Relative Range

Jumps that replace the program counter contents with a new address that is greater than the

address of the instruction following the jump by I27d or less than the address of the in-

struction following the jump by 128d are called relative jumps. They are so named

because the address that is placed in the program counter is relative to the address where

the jump occurs. If the absolute address of the jump instruction changes, then the jump

address changes also but remains the same distance away from the jump instruction. The

address following the jump is used to calculate the relative jump because of the action of

the PC. The PC is incremented to point to the next instruction before the current instruc-

tion is executed. Thus, the PC is set to the following address before the jump instruction is

executed, or in the vernacular: "before the jump is taken."

Relative jumping has two advantages. First, only one byte of data need be specified,

either in positive format for jumps ahead in the program or in 2's complement negative

format for jumps behind. The jump address displacement byte can then be added to the PC
to get the absolute address. Specifying only one byte saves program bytes and speeds up

program execution. Second, the program that is written using relative jumps can be lo-

cated anywhere in the program address space without re-assembling the code to generate

absolute addresses.

The disadvantage of using relative addressing is the requirement that all addresses

jumped be within a range of +127d, — 128d bytes of the jump instruction. This range is

not a serious problem. Most jumps form program loops over short code ranges that are

within the relative address capability. Jumps are the only branch instructions that can use

the relative range.

If jumps beyond the relative range are needed, then a relative jump can be done to

another relative jump until the desired address is reached. This need is better handled,

however, by the jumps that are covered in the next sections.

Short Absolute Range

Absolute range makes use of the concept of dividing memory into logical divisions called

"pages." Program memory may be regarded as one continuous stretch of addresses from

OOOOh to FFFFh. Or, it may be divided into a series of pages of any convenient binary

size, such as 256 bytes, 2K bytes, 4K bytes, and so on.

The 8051 program memory is arranged as 2K byte pages, giving a total of 32d (20h)

pages. The hexadecimal address of each page is shown in the following table:

PAGE ADDRESS(HEX) PAGE ADDRESS(HEX) PAGE ADDRESS(HEX)

00 0000-07FF 0B 5800- 5FFF 16 B000-B7FF
01 0800-0FFF OC 6000- 67FF 17 B800-BFFF

02 1000- 17FF 00 6800- 6FFF 18 C000-C7FF
03 1800-1FFF 0E 7000- 77FF 19 C800-CFFF
04 2000-27FF OF 7800- 7FFF 1A D000-D7FF
05 2800-2FFF 10 8000- 8 7FF IB D800-DFFF
06 3000-37FF 11 8800- 8FFF 1C E000-E7FF
07 3800-3FFF 12 9000-97FF 1D E800-EFFF

08 4000-47FF 13 9800- 9FFF 1E F000-F7FF

09 4800-4FFF 14 A000-A7FF 1F F800-FFFF

0A 5000-57FF 15 A800-AFFF

Inspection of the page numbers shows that the upper five bits of the program counter

hold the page number, and the lower eleven bits hold the address within each page. An
absolute address is formed by taking the page number of the instruction following the

Jumps

JUMP AND CALL OPCODES 89

branch and attaching the absolute page range address of eleven bits to it to form the 16-bit

address.

Branches on page boundaries occur when the jump or call instruction finishes at

X7FFh or XFFFh. The next instruction starts at X800h or XOOOh, which places the jump

or call address on the same page as the next instruction after the jump or call. The page

change presents no problem when branching ahead but could be troublesome if the branch

is backwards in the program. The assembler should flag such problems as errors, so ad-

justments can be made by the programmer to use a different type of range.

Absolute range addressing has the same advantages as relative addressing; fewer

bytes are needed and the code is relocatable as long as the relocated code begins at the

start of a page. Absolute addressing has the advantage of allowing jumps or calls over

longer programming distances than does relative addressing.

Long Absolute Range

Addresses that can access the entire program space from OOOOh to FFFFh use long range

addressing. Long-range addresses require more bytes of code to specify and are relocat-

able only at the beginning of 64K byte pages. Since we are limited to a nominal ROM
address range of 64K bytes, the program must be re-assembled every time a long-range

address changes and these branches are not generally relocatable.

Long-range addressing has the advantage of using the entire program address space

available to the 8051 . It is most likely to be used in large programs.

The ability of a program to respond quickly to changes in conditions depends largely upon

the number and types of jump instructions available to the programmer. The 8051 has a

rich set of jumps that can operate at the bit and byte levels. These jump opcodes are one

reason the 8051 is such a powerful microcontroller.

Jumps operate by testing for conditions that are specified in the jump mnemonic. If

the condition is true, then the jump is taken—that is, the program counter is altered to the

address that is part of the jump instruction. If the condition is false, then the instruction

immediately following the jump instruction is executed because the program counter is

not altered. Keep in mind that the condition of true does not mean a binary 1 and that false

does not mean binary 0. The condition specified by the mnemonic is either true or false.

Bit Jumps

Bit jumps all operate according to the status of the carry flag in the PSW or the status of

any bit-addressable location. All bit jumps are relative to the program counter.

Jump instructions that test for bit conditions are shown in the following table:

Mnemonic Operation

JC radd Jump relative if the carry flag is set to 1

JNC radd Jump relative if the carry flag is reset to

JB b,radd Jump relative if addressable bit is set to 1

JNB b,radd Jump relative if addressable bit is reset to

JBC b,radd Jump relative if addressable bit is set, and clear the addressable bit to

Note that no flags are affected unless the bit in JBC is a flag bit in the PSW. When the bit

used in a JBC instruction is a port bit, the SFR latch for that port is read, tested, and

altered.

90 CHAPTER SIX

The following program example makes use of bit jumps:

ADDRESS
LOOP:

ADDA:

MNEMONIC
MOV A,#10h
MOV R0,A
ADD A.RO
JNC ADDA

ADDR:
MOV A,#10h
ADD A,RO
JNB 0D7h,ADDR
JBC 0D7h,L00P

COMMENT
A - lOh
RO = lOh
add RO to A

if the carry flag is 0, then no carry is

true; jump to address ADDA; jump until A

is FOh; the C flag is set to

1 on the next ADD and no carry is

false; do the next instruction
A = lOh; do program again using JNB
add RO to A {RO already equals lOh)

D7h is the bit address of the carry flag
the carry bit is 1; the jump to LOOP
is taken, and the carry flag is cleared
to

{>^ CAUTION

All jump addresses, such as ADDA and ADDR, must be within + 1 27d, - 1 28d of the instruction

following the jump opcode.

If the addressable bit is a flag bit and JBC is used, the flag bit will be cleared.

Do not use any label names that are also the names of registers in the 8051. These are called

"reserved" words and will cause great agitation in the assembler.

Byte Jumps

Byte jumps—jump instructions that test bytes of data—behave as bit jumps. If the condi-

tion that is tested is true, the jump is taken; if the condition is false,the instruction after

the jump is executed. AH byte jumps are relative to the program counter.

The following table lists examples of byte jumps:

Mnemonic

CJNE A,add,radd

CJNE A,#n,radd

CJNE Rn,#n,radd

CJNE @Rp,#n,radd

Operation

Compare the contents of the A register with the contents of the

direct address; if they are not equal , then jump to the relative

address; set the carry flag to 1 if A is less than the contents

of the direct address; otherwise, set the carry flag to

Compare the contents of the A register with the immediate

number n; if they are not equal, then jump to the relative

address; set the carry flag to 1 if A is less than the number;

otherwise, set the carry flag to

Compare the contents of register Rn with the immediate

number n; if they are not equal, then jump to the relative

address; set the carry flag to 1 if Rn is less than the number;

otherwise, set the carry flag to

Compare the contents of the address contained in register Rp
to the number n; if they are not equal, then jump to the

relative address; set the carry flag to 1 if the contents of the

address in Rp are less than the number; otherwise, set the

carry flag to

JUMP AND CALL OPCODES 91

DJNZ Rn,radd

DJNZ add,radd

JZ radd

JNZ radd

Decrement register Rn by I and jump to the relative address if

the result is not zero; no flags are affected

Decrement the direct address by I and jump to the relative

address if the result is not 0; no flags are affected unless the

direct address is the PSW
Jump to the relative address if A is 0; the flags and the A

register are not changed

Jump to the relative address if A is not 0; the flags and the A
register are not changed

Note that if the direct address used in a DJNZ is a port, the port SFR is decremented and

tested for 0.

Unconditional Jumps

Unconditional jumps do not test any bit or byte to determine whether the jump should be

taken. The jump is always taken. All jump ranges are found in this group of jumps, and

these are the only jumps that can jump to any location in memory.

The following table shows examples of unconditional jumps:

Mnemonic

JMP @A+DPTR

AJMP sadd

LJMP ladd

SJMP radd

NOP

Operation

Jump to the address formed by adding A to the DPTR; this is an

unconditional jump and will always be done; the address can

be anywhere in program memory; A, the DPTR, and the flags

are unchanged

Jump to absolute short range address sadd; this is an unconditional

jump and is always taken; no flags are affected

Jump to absolute long range address ladd; this is an unconditional

jump and is always taken; no flags are affected

Jump to relative address radd; this is an unconditional jump and

is always taken; no flags are affected

Do nothing and go to the next instruction; NOP (no operation) is

used to waste time in a software timing loop; or to leave room

in a program for later additions; no flags are affected

The following program example uses byte and unconditional jumps:

ADDRESS MNEMONIC
.ORG OlOOh

BGN: MOV A,#30h
MOV 50h,#00h

AGN: CJNE A,50h,AEQ
SJMP NXT

AEQ: DJNZ 50h,AGN
NOP

NXT: MOV R0,#0FFh
DWN: DJNZ RO.DWN

MOV A.RO
JNZ ABIG
JZ AZRO

COMMENT
begin program at OlOOh
A = 30h
RAM location 50h = OOh
compare A and the contents of 50h in RAM
SJMP will be executed if (50h) = 30h
count RAM location 50h down until (50h) =

A; (50h) will reach 30h before OOh
R0 = FFh
count R0 to OOh; loop here until done
A = R0 = OOh
the jump will not be taken
the jump will be taken

Continued

92 CHAPTER SIX

ADDRESS
Continued

ABIG:

AZRO:

HERE

MNEMONIC

NOP
ORG lOOOh

MOV A,#08h
MOV DPTR,#1000h
JMP (5>A +DPTR
NOP
NOP
AJMP AZRO

£>— CAUTION

COMMENT

; this address will not be reached
;start this segment of program code at

; lOOOh
;A = 08h (code at 1000. lh)

;DPTR = lOOOh (code at 1002, 3 ,4h)

;jump to location 1008h (code at 1005h

;
(code at 1006h)

; (code at 1007h)

; (code at 1008h, all code on page 2)

DJNZ decrements first, then checks for 0. A location set to OOh and then decremented goes to

Ffh, then FEh, and so on, down to OOh.

CJNE does not change the contents of any register or RAM location. It can change the carry

flag to 1 if the destination byte is less than the source byte.

There is no zero flag; the JZ and JNZ instructions check the contents of the A register for 0.

JMP @A+DPTR does not change A, DPTR, or any flags.

Calls and Subroutines

The life of a microcontroller would be very tranquil if all programs could run with no

thought as to what is going on in the real world outside. However, a microcontroller is

specifically intended to interact with the real world and to react, very quickly, to events

that require program attention to correct or control.

A program that does not have to deal unexpectedly with the world outside of the

microcontroller could be written using jumps to alter program flow as external conditions

require. This sort of program can determine external conditions by moving data from the

port pins to a location and jumping on the conditions of the port pin data. This technique is

called "polling" and requires that the program does not have to respond to external condi-

tions quickly. (Quickly means in microseconds; slowly means in milliseconds.)

Another method of changing program execution is using "interrupt" signals on cer-

tain external pins or internal registers to automatically cause a branch to a smaller program

that deals with the specific situation. When the event that caused the interruption has been

dealt with, the program resumes at the point in the program where the interruption took

place. Interrupt action can also be generated using software instructions named calls.

Call instructions may be included explicitly in the program as mnemonics or im-

plicitly included using hardware interrupts. In both cases, the call is used to execute a

smaller, stand-alone program, which is termed a routine or, more often, a subroutine.

Subroutines

A subroutine is a program that may be used many times in the execution of a larger pro-

gram. The subroutine could be written into the body of the main program everywhere it is

needed, resulting in the fastest possible code execution. Using a subroutine in this manner

has several serious drawbacks.

Common practice when writing a large program is to divide the total task among

many programmers in order to speed completion. The entire program can be broken into

smaller parts and each programmer given a part to write and debug. The main program

JUMP AND CALL OPCODES 93

can then call each of the parts, or subroutines, that have been developed and tested by each

individual of the team.

Even if the program is written by one individual, it is more efficient to write an oft-used

routine once and then call it many times as needed. Also, when writing a program, the

programmer does the main part first. Calls to subroutines, which will be written later,

enable the larger task to be defined before the programmer becomes bogged down in the

details of the application.

Finally, it is quite common to buy "libraries" of common subroutines that can be

called by a main program. Again, buying libraries leads to faster program development.

Calls and the Stack

A call, whether hardware or software initiated, causes a jump to the address where the

called subroutine is located. At the end of the subroutine the program resumes operation at

the opcode address immediately following the call. As calls can be located anywhere in

the program address space and used many times, there must be an automatic means of

storing the address of the instruction following the call so that program execution can

continue after the subroutine has executed.

The stack area of internal RAM is used to automatically store the address, called the

return address, of the instruction found immediately after the call. The stack pointer regis-

ter holds the address of the last space used on the stack. It stores the return address above

this space, adjusting itself upward as the return address is stored. The terms "stack" and

"stack pointer" are often used interchangeably to designate the top of the stack area in

RAM that is pointed to by the stack pointer.

Figure 6.2 diagrams the following sequence of events:

1. A call opcode occurs in the program software, or an interrupt is generated in the

hardware circuitry.

2. The return address of the next instruction after the call instruction or interrupt is

found in the program counter.

3. The return address bytes are pushed on the stack, low byte first.

4. The stack pointer is incremented for each push on the stack.

5. The subroutine address is placed in the program counter.

6. The subroutine is executed.

7. A RET (return) opcode is encountered at the end of the subroutine.

FIGURE 6.2 Storing and Retrieving the Return Address

*. S p +2
| - SP + 1

SP + 2 *

Program Counter

PCH PCL

1 1

1 1

r PCH — _l
_J

i
PCL SP+ 1

—*~

SP |
l

f SP Stack Area
RET RETI

PCH PCL

Program

ACALL
Counter

LCALL

Interrupt
Interna! RAM

94 CHAPTER SIX

8. Two pop operations restore the return address to the PC from the stack area in

internal RAM.

9. The stack pointer is decremented for each address byte pop.

All of these steps are automatically handled by the 8051 hardware. It is the responsi-

bility of the programmer to ensure that the subroutine ends in a RET instruction and that

the stack does not grow up into data areas that are used by the program.

Calls and Returns

Calls use short- or long-range addressing; returns have no addressing mode specified but

are always long range. The following table shows examples of call opcodes:

Mnemonic Operation

ACALL sadd Call the subroutine located on the same page as the address of the

opcode immediately following the ACALL instruction; push the

address of the instruction immediately after the call on the stack

LCALL ladd Call the subroutine located anywhere in program memory space; push

the address of the instruction immediately following the call on

the stack

RET Pop two bytes from the stack into the program counter

Note that no flags are affected unless the stack pointer has been allowed to erroneously

reach the address of the PSW special-function register.

Interrupts and Returns

As mentioned previously, an interrupt is a hardware-generated call. Just as a call opcode

can be located within a program to automatically access a subroutine, certain pins on the

8051 can cause a call when external electrical signals on them go to a low state. Internal

operations of the timers and the serial port can also cause an interrupt call to take place.

The subroutines called by an interrupt are located at fixed hardware addresses dis-

cussed in Chapter 2. The following table shows the interrupt subroutine addresses.

INTERRUPT ADDRESS (HEX) CALLED

IE0 0003

TFO 000B

IE1 0013

TF1 001

B

SERIAL 0023

When an interrupt call takes place, hardware interrupt disable flip-flops are set to pre-

vent another interrupt of the same priority level from taking place until an interrupt return

instruction has been executed in the interrupt subroutine. The action of the interrupt rou-

tine is shown in the table below.

Mnemonic Operation

RETI Pop two bytes from the stack into the program counter and reset the

interrupt enable flip-flops

Note that the only difference between the RET and RETI instructions is the enabling

of the interrupt logic when RETI is used. RET is used at the ends of subroutines called by

an opcode. RETI is used by subroutines called by an interrupt.

JUMP AND CALL OPCODES 95

ADDRESS
MAIN:

The following program example use a call to a subroutine.

MNEMONIC
MOV 81h,#30h
LCALL SUB
NOP

COMMENT
;set the stack pointer to 30h in RAM
;push address of NOP; PC = #SUB; SP = 32h
; return from SUB to this opcode

SUB:

ADDRESS

MOV A,#45h
RET

CAUTION

;SUB loads A with 45h and returns
;pop return address to PC; SP = 30h

Set the stack pointer above any area of RAM used for additional register banks or data memory.

The stack may only be 1 28 bytes maximum; which limits the number of successive calls with no

returns to 64.

Using RETI at the end of a software called subroutine may enable the interrupt logic erroneously.

To jump out of a subroutine (not recommended), adjust the stack for the two return address

bytes by POPing it twice or by moving data to the stack pointer to reset it to its original value.

Use the LCALL instruction if your subroutines are normally placed at the end of your program.

In the following example of an interrupt call to a routine, timer is used in mode to

overflow and set the timer interrupt flag. When the interrupt is generated, the program

vectors to the interrupt routine, resets the timer interrupt flag, stops the timer, and returns.

MNEMONIC
.ORG OOOOh
AJMP OVER
.ORG OOOBh
CLR 8Ch
RETI

COMMENT
;begin program at 0000

; jump over interrupt subroutine
;put timer interrupt subroutine here
;stop timer 0; set TRO =

; return and enable interrupt structure

OVER: MOV 0A8h,#82h
MOV 89h.#00h
MOV 8Ah,#O0h
MOV 8Ch.#00h
SET 8Ch

;enable the timer interrupt in the IE
;set timer operation, mode
; clear TLO
; clear THO
; start timer 0; set TRO = 1

the program will continue on and be interrupted when the timer has
timed out

CAUTION

The programmer must enable any interrupt by setting the appropriate enabling bits in the IE

register.

Example Problems

We now have all of the tools needed to write powerful, compact programs. The addition of

the decision jump and call opcodes permits the program to alter its operation as it runs.

96 CHAPTER SIX

! I

EXAMPLE PROBLEM 6.1

ADDRESS MNEMONIC
ONE: CLR C

MOV A,#2Ah
SUBB A,3Ch
JZ DONE
INC 3Ch
SJMP ONE

DONE: NOP

Place any number in internal RAM location 3Ch and increment it until the number equals

2Ah.

Thoughts on the Problem The number can be incremented and then tested to see

whether it equals 2Ah. If it does, then the program is over; if not, then loop back and

decrement the number again.

Three methods can be used to accomplish this task.

« Method 1:

COMMENT
;this program will use SUBB to detect equality
;put the target number in A

;subtract the contents of 3Ch; C is cleared
;if A = OOh, then the contents of 3Ch = 2Ah
;if A is not zero, then loop until it is

;loop to try again
;when finished, jump here and continue

£>— COMMENT

Method 2:

ADDRESS MNEMONIC
TWO: INC 3Ch

MOV A,#2Ah
XRL A,3Ch
JNZ TWO
NOP

As there is no compare instruction for the 8051, the SUBB instruction is used to compare A
against a number. The SUBB instruction subtracts the C flag also, so the C flag has to be cleared

before the SUBB instruction is used.

COMMENT
incrementing 3Ch first saves a jump later
this program will use XOR to detect equality
XOR with the contents of 3Ch; if equal, A = OOh
this jump is the reverse of program one
finished when the jump is false

£>— COMMENT
Many times if the loop is begun with the action that is to be repeated until the loop is satisfied,

only one jump, which repeats the loop, is needed.

Method 3:

ADDRESS MNEMONIC
THREE: INC 3Ch

MOV A,#2Ah
CJNE A,3Ch,THREE
NOP

COMMENT
begin by incrementing the direct address
this program uses the very efficient CJNE
jump if A and (3Ch) are not equal
all done

COMMENT
CJNE combines a compare and a jump into one compact instruction.

EXAMPLE PROBLEM 6.2

The number A6h is placed somewhere in external RAM between locations 01 OOh and

0200h. Find the address of that location and put that address in R6 (LSB) and R7 (MSB).

JUMP AND CALL OPCODES 97

Thoughts on the Problem The DPTR is used to point to the bytes in external memory,

and CJNE is used to compare and jump until a match is found.

ADDRESS MNEMONIC
MOV 20h,#0A6h
MOV DPTR, #OOFFh

MOR: INC DPTR
MOVX A,@DPTR
CJNE A,20h,M0R

MOV R7,83h
MOV R6,82h

COMMENT
;load 20h with the number to be found
; start the DPTR below the first address
; increment first and save a jump

;
get a number from external memory to A

; compare the number against (20h) and
;loop to MOR if not equal
;move DPH byte to R7
;move DPL byte to R6; finished

COMMENT
This program might loop forever unless we know the number will be found; a check to see

whether the DPTR has exceeded 0200h can be included to leave the loop if the number is not

found before DPTR = 0201 h.

EXAMPLE PROBLEM 6.3

Find the address of the first two internal RAM locations between 20h and 60h which con-

tain consecutive numbers. If so, set the carry flag to 1 , else clear the flag.

Thoughts on the Problem A check for end of memory will be included as a Called

routine, and CJNE and a pointing register will be used to search memory.

ADDRESS

NXT:

THRU
DUN:

BCK:

MNEMONIC
MOV 81h.#65h
MOV R0.#20h
MOV A,@R0
INC A
MOV lFh.A
INC R0
CALL DUN
JNC THRU
MOV A,@R0
CJNE A,lFh,NXT
SETB 0D7h
SJMP THRU
PUSH A

CLR C

MOV A,#61h
XRL A.RO
JNZ BCK
RET
POP A

CPL C

RET

COMMENT
set the stack above memory area
load RO with address of memory start
get first number
increment and compare to next number
store incremented number at lFh

point to next number
see if RO greater than 60h
DUN returns C = if over 60h
get next number
if not equal then look at next pair
set the carry to 1 ; finished
jump here if beyond 60h
save A on the stack
clear the carry
use XOR as a compare
A will be if equal
if not then continue
A 0, signal calling routine
get A back
A not 0, set C to indicate not done

COMMENT
Set the stack pointer to put the stack out of the memory area in use.

98 CHAPTER SIX

Summary

Jumps

Jumps alter program flow by replacing the PC counter contents with the address of the

jump address. Jumps have the following ranges:

Relative: up to PC + 127 bytes, PC - 128 bytes away from the PC

Absolute short: anywhere on a 2K-byte page

Absolute long: anywhere in program memory

Jump opcodes can test an individual bit, or a byte, to check for conditions that make

the program jump to a new program address. The bit jumps are shown in the following

table:

INSTRUCTION TYPE RESULT

JC radd Jump relative if carry flag set to 1

JNC radd Jump relative if carry flag cleared to

JB b,radd Jump relative if addressable bit set to 1

JNB b,radd Jump relative if addressable bit cleared to

JBC b,radd Jump relative if addressable bit set to 1 and clear bit to

Byte jumps are shown in the following table:

INSTRUCTION TYPE RESULT

CJNE destination,source, address Compare destination and source; jump to address if

not equal

DJNZ destination,address Decrement destination by one; jump to address if

the result is nor zero

JZ radd Jump A = OOh to relative address

JNZ radd lump A > OOh to relative address

Unconditional jumps make no test and are always made. They are shown in the fol-

lowing table:

INSTRUCTION TYPE RESULT

JMP <aA+DPTR Jump to 16-bit address formed by adding A to the DPTR

AJMP sadd Jump to absolute short address

LIMP ladd Jump to absolute long address

SJMP radd Jump to relative address

NOP Do nothing and go to next opcode

Call and Return

Software calls may use short- and long-range addressing; returns are to any long-range

address in memory. Interrupts are calls forced by hardware action and call subroutines

located at predefined addresses in program memory. The following table shows calls and

returns:

INSTRUCTION TYPE RESULT

ACALL sadd Calf the routine located at absolute short address

LCALL ladd Call the routine located at absolute long address

RET Return to anywhere in the program at the address found on the

top two bytes of the stack

RETI Return from a routine called by a hardware interrupt and reset

the interrupt logic

JUMP AND CALL OPCODES 99

Problems

Write programs for each of the following problems using as few lines of code as you can.

Place comments on each line of code.

1. Put a random number in R3 and increment it until it equals E 1 h.

2. Put a random number in address 20h and increment it until it equals a random number

put in R5.

3. Put a random number in R3 and decrement it until it equals Elh.

4. Put a random number in address 20h (LSB) and 2 lh (MSB) and decrement them as if

they were a single 16-bit counter until they equal random numbers in R2 (LSB) and

R3 (MSB).

5. Random unsigned numbers are placed in registers RO to R4. Find the largest number and

put it in R6.

6. Repeat Problem 3, but find the smallest number.

7. If the lower nibble of any number placed in A is larger than the upper nibble, set the

C flag to one; otherwise clear it.

8. Count the number of ones in any number in register B and put the count in R5.

9. Count the number of zeroes in any number in register R3 and put the count in R5.

10. If the signed number placed in R7 is negative, set the carry flag to I ; otherwise clear it.

11. Increment the DPTR from any initialized value to ABCDh.

12. Decrement the DPTR from any initialized value to 0033h.

13. Use R4 (LSB) and R5 (MSB) as a single 16-bit counter, and decrement the pair until

they equal OOOOh.

14. Get the contents of the PC to the DPTR.

15. Get the contents of the DPTR to the PC.

16. Get any two bytes you wish to the PC.

17. Write a simple subroutine, call it, and jump back to the calling program after adjusting

the stack pointer.

18. Put one random number in R2 and another in R5. Increment R2 and decrement R5 until

they are equal.

19. Fill external memory locations lOOh to 200h with the number AAh.

20. Transfer the data in internal RAM locations lOh to 20h to internal RAM locations 30h

to 40h.

21. Set every third byte in internal RAM from address 20h to 7Fh to zero.

22. Count the number of bytes in external RAM locations lOOh to 200h that are greater than

the random unsigned number in R3 and less than the random unsigned number in R4.

Use registers R6 (LSB) and R7 (MSB) to hold the count.

23. Assuming the crystal frequency is 10 megahertz, write a program that will use timer 1 to

interrupt the program after a delay of 2 ms.

24. Put the address of every internal RAM byte from 50h to 70h in the address; for instance,

internal RAM location 6Dh would contain 6Dh.

25. Put the byte AAh in all internal RAM locations from 20h to 40h, then read them back

and set the carry flag to I if any byte read back is not AAh.

An 8051 Microcontroller Design

Chapter Outline

Introduction

A Microcontroller Specification

A Microcontroller Design

Testing the Design

Timing Subroutines

Lookup Tables for the 8051

Serial Data Transmission

Summary

introduction

100

In this chapter a hardware configuration for an 8051 microcontroller, which will be used

for all of the example applications in Chapters 8 and 9, is defined. Programs that check the

initial prototype of the design (debugging programs) are given in this chapter, followed by

several common subroutines that can be used by programs in succeeding chapters.

The design of the microcontroller begins with an identified need and a blank piece of

paper or computer screen. The evolution of the microcontroller follows these steps;

1. Define a specification.

2. Design a microcontroller system to this specification.

3. Write programs that will assist in checking the design.

4. Write several common subroutines and test them.

The most important step is the first one. !f the application is for high-volume produc-

tion (greater than 10,000 units), then the task must be very carefully analyzed. A precise

or "tight" specification is evolved for what will become a major investment in factory-

programmed parts. As the volume goes down for any particular application, the specifica-

tions become more general as the designers attempt to write a specification that might fit a

wider range of applications.

AN 8051 MICROCONTROLLER DESIGN 101

The list leaves out a few real-world steps, most notably the redesign of the micro-

controller after it is discovered that the application has grown beyond the original specifi-

cation or, as is more common, the application was not well understood in the beginning.

Experienced designers learn to add a little "fat" to the specification in anticipation of the

inexorable need for "one more bit of I/O and one more kilobyte of memory."

A Microcontroller Specification

A typical outline for a microcontroller design might read as follows:

"A requirement exists for an intelligent controller for real-time control and data moni-

toring applications. The controller is part of a networked system of identical units that are

connected to a host computer through a serial data link. The controller is to be produced in

low volumes, typically less than one thousand units for any particular application, and it

must be low cost."

The 805 1 family is chosen for the following reasons:

Low part cost

Multiple vendors

Available in NMOS and CMOS technologies

Software tools available and inexpensive

High-level language compilers available

The first three items are very important from a production cost standpoint. The soft-

ware aids available reduce first costs and enable projects to be completed in a timely

manner.

The low-volume production requirement and the need for changing the program to fit

particular applications establish the necessity of using external EPROM to hold the appli-

cation program. In turn, ports (AD0-AD7) and 2 (A8-A15) must be used for inter-

facing to the external ROM and will not be available for I/O.

Because one possible use of the controller will be to gather data, RAM beyond that

available internally may be needed- External RAM is added for this eventuality. The

immediate consequence of this decision is that port 3 bits 6 (WR) and 7 (RD) are needed

for the external RAM and are not available for I/O. External memory uses the 28-pin

standard configuration, which enables memories as large as 64K to be inserted in the

memory sockets.

Commercially available EPROM parts that double in size beginning at 2K bytes can

be purchased. The minimum EPROM size selected is 8K and the maximum size is 64K.

These choices reflect the part sizes that are most readily available from vendors and parts

that are now beginning to enter high-volume production.

Static RAM parts are available in 2K, 8K, and 32K byte sizes; again, the RAM sizes

are chosen to be 8K or 32K to reflect commercial realities. The various memory sizes can

be incorporated by including jumpers for the additional address lines needed by larger

memories and pullup resistors to enable alternate pin uses on smaller memories.

The serial data needs can be handled by the internal serial port circuitry. Once again,

two more I/O pins of port 3 are used: bits 3.0 (RXD) and 3. 1 (TXD). We are left with ail

of port I for general-purpose I/O and port 3 pins 2-5 for general-purpose I/O or for exter-

nal interrupts and timing inputs.

Note that rapid loss of I/O capability occurs as the alternate port functions are used and

should be expected unless volumes are high enough to justify factory-programmed parts.

102 CHAPTER SEVEN

The handicap is not as great as it appears, however; two methods exist that are commonly

used to expand the I/O capability of any computer application: port I/O and memory-

mapped I/O.

Finally, we select a 16 megahertz crystal to take advantage of the latest high-speed

devices available, and the specification is complete. To summarize, we have

80C31-1 (ROMIess) microcontroller

64K bytes of external EPROM

32K bytes of external RAM
8 general-purpose I/O lines

4 general-purpose or programmable I/O lines

! full-duplex serial port

16 megahertz crystal clock

Now that the specification is complete, the design can be done.

A Microcontroller Design

The final design, shown in Figure 7. 1, is based on the external memory circuit found in

Chapter 2. Any I/O circuitry needed for a particular application will be added to the basic

design as required. A design may be done in several ways; the choices made for this design

are constrained by cost and the desire for flexibility.

External Memory and Memory Space Decoding

External memory is added by using port as a data and low-order address bus, and port 2

as a high-order address bus. The data and low addresses are time multiplexed on port 0.

An external 373 type address latch is connected to port to store the low address byte

whenever external memory is accessed. The low-order address is gated into the trans-

parent latch by the ALE pulse from the 8051 . Port then becomes a bidirectional data bus

during the read or write phase of a machine cycle.

RAM and ROM are addressed by entirely different control lines from the 8051 : PSEN
for the ROM and WR or RD for the RAM. The result is that each occupies one of two

parallel 64 kilobyte address spaces. The decoding problem becomes one of simply adding

suitable jumpers and pullup resistors so that the user can insert the memory capacity

needed. Jumpers are inserted so that the correct address line reaches the memory pin or

the pin is pulled high as required by the memory used. The jumper table in Figure 7. 1 for

the EPROM and RAM memories that can be inserted in the memory sockets shows the

jumper configuration. Figure 7.2 graphically demonstrates the relative sizes of the internal

and external memories available to the programmer.

Reset and Clock Circuits

The 8051 uses an active high reset pin. The reset input must go high for two machine

cycles when power is first applied and then sink low. The simple RC circuit used here will

supply system voltage (Vcc) to the reset pin until the capacitor begins to charge. At a

threshold of about 2.5 V, the reset input reaches a low level, and the system begins to run.

Internal reset circuitry has hysteresis necessitated by the slow fall time of the RC circuit.

AN 8051 MICROCONTROLLER DESIGN 103

FIGURE 7.1 8031 Microcontroller with External ROM and RAM
WR

3.6

CI 30PF

HI-
XTAL

16MHZ.

•Hr

T
x

C230PF.

3.5

3.4

3.3

3.2

3.1

3.0

1-7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

3.7

31 16 17 29

18

19

28
27

26

Port 2 25
24

23

22

21

8031

isrri)

14fT0)

12(INT01

llfTXD)

lO(RXD) 30

B 32

7 33

6 34

") Portl PortO !f4 36

3

2

1 a

37

38

39

C3 10ft r.

+ 5V« ^
R5.1K

RD

PSEN

X

J3

2.

Jl

R133K

A 15

A 14

A 13

R2 33K

X
A12

All

A 10

A9
AS

+5V

R3 33K

220E 20CE Hi-

1 NpP>

27 (PGM)

26 (N.C.)

2

23

21

24

25
EPROM
2764 <8K)

27128 (16K)

27256 (32K)

27512 (64K)

J5 i

A 12

All

A 10

A9
A8

A14

A 13

J4

22 OE
27R/W

1A14/N.C.

26A13/CE2

2

23

21

24

25

20(CE1)

RAM
6264 (8K)

62256 (32K)

Jumper Table

Reset

I

R4 8.2K

1

I

Memory Sze EPROM RAM
8K None None

16K Jl NA
32K Jl JE J4J5

64K J1J2J3 NA

The addition of a reset button enables the user to reset the system without having to turn

power off and on.

The clock circuit of Chapter 2 is added, and the design is finished.

Expanding I/O

Ports 1 and 3 can be used to form small control and bidirectional data buses. The data

buses can interface with additional external circuits to expand I/O up to any practical

number of lines.

104 CHAPTER SEVEN

FIGURE 7.2 8031 Memory Sizes

Internal RAM
OOh to FFh

MOV

External RAM
OOOOh to 7FFFh

External ROM
OOOOh to FFFFh

MOVX® Program ROM
MOVC®

There are many popular families of programmable port chips. The one chosen here is

the popular 8255 programmable interface adaptor, which is available from a number of

vendors. Details on the full capabilities of the 8255 are given in Appendix D. The 8255

has an internal mode register to which control words are written by the host computer.

These control words determine the actions of the 8255 ports, named A, B, and C, enab-

ling them to act as input ports, output ports, or some combination of both.

Figure 7.3 shows a circuit that adds an 8255 port expansion chip to the design. The

number of ports is now three 8-bit ports for the system. The penalty paid for expanding

I/O in this manner is a reduction in speed that occurs due to the overhead time needed to

write control bits to ports 1 and 3 before the resulting I/O lines selected can be accessed.

The advantage of using I/O port expansion is that the entire range of 805 1 instructions can

be used to access the added ports via ports 1 and 3.

Memory-Mapped I/O

The same programmable chip used for port expansion can also be added to the RAM
memory space of the design, as shown in Figure 7.4. The present design uses only 32K. of

AN 8051 MICROCONTROLLER DESIGN 105

FIGURE 7.3 Expanding I/O Using 8031 Ports

Port 3

8031 Port 1

15

14

13

12

11

10

CS

Reset

A0

Al

RD

WR

DO

Dl

D2

D3

D4

D5

D6

D7

6

35

9

8

5

36

34

33

32

31

30

29

28

27

8255

4 PAO

3 PA1

2 PA2

1 PA3

40 PA4

39 PA5

38 PA6

37 PA 7

18 PBO

19 PB1

20 PB2

21 PB3

22 PB4

23 PB5

24 PB6

25 PB7

14 PCO

15 PCI

16 PC2

17 PC3

13 PC4

12 PC5

11 PC6

10 PC7

the permitted 64K of RAM address space; the upper 32K is vacant. The port chip can be

addressed any time A15 is high (8000h or above), and the 32K RAM can be addressed

whenever A15 is low (7FFFh and below). This decoding scheme requires only the addi-

tion of an inverter to decode the memory space for RAM and I/O.

Should more RAM be added to the design, a comprehensive memory-decoding scheme

will require the use of a programmable array-type decoder to reserve some portion of mem-
ory space for the I/O port chips. Figure 7.4 shows a design that permits the addition of three

memory-mapped port chips at addresses FFF0h-FFF3h, FFF4h-FFF7h, FFF8h-FFFBh.
and FFFCh-FFFFh. RAM is addressable from OOOOh to FFEFh.

Memory-mapped I/O has the advantage of not using any of the 8051 ports. Disadvan-

tages include the loss of memory space for RAM that is used by the I/O address space, or

the addition of memory decoding chips in order to limit the RAM address space loss.

Programming overhead is about the same as for port I/O because only the cumbersome

MOVX instruction may be used to access the memory-mapped I/O.

For both types of I/O expansion, the cost of the system begins to mount. At some

point, a conventional microprocessor, with a rich set of I/O and memory instructions,

may become a more economical choice.

106 CHAPTER SEVEN

FIGURE 7.4 Expanding I/O Using Memory Mapping

To RAM CS Pin

A15

Reset

8051
Address Bus

P3.7
P3.6

8051
Address/Data Bus

— FFFC-F

FFF8-B ToB255— FFF4-7 CSPin

— FFFO-3

Reset

8255 Connections For Memory Mapping

Reset Circuit

Part Speed

One consideration, that does not appear on the design drawings, is the selection of parts

that will work at the system speeds determined by the crystal frequency. All memory parts

are priced according to the nanosecond of access time. The longer the access time (the

time it takes for a byte of data to be read or written from or to the device after the address

is valid), the cheaper the part. For our design, Figure 7.4 shows the timing involved in

reading data from the ROM and reading and writing data to the RAM. These times are

totally determined by the selection of the crystal frequency, and the designer must choose

memory parts that are fast enough to keep up with the microcontroller at the chosen fre-

quency. For our example, EPROMS with maximum access times of 1 50 ns and RAM with

access times of 400 ns must be used. These access times are representative of standard

commercial types currently available at the low end of the cost spectrum. These times are

worst-case times; actual access times are at least 30 percent longer.

Other parts, such as the '373 type latch can be any family from LSTTL to HCMOS.
The speeds of these parts far exceed the speed of the 8051

.

Production Concerns

The design omits many features that would be incorporated by a design-manufacturing

team. Chief among these are the inclusion of test-points, LED indicators, and other items

that should be added to enhance manufacturing and field service of the microcontroller.

AN 8051 MICROCONTROLLER DESIGN 107

These concerns are well beyond the scope of this book, but the wise designer always

ensures that the legitimate concerns of the technical, manufacturing, and service depart-

ments are addressed.

Testing the Design

ADDRESS

begin:

add2:

add3:

add4:

add5:

add6 :

Once the hardware has been assembled, it is necessary to verify that the design is correct

and that the prototype is built to the design drawing. This verification of the design is done

by running several small programs, beginning with the most basic program and building

on the demonstrated success of each.

Crystal Test

The initial test is to ensure that both the crystal and the reset circuit are working. The 805

1

is inserted in the circuit, and the ALE pulse is checked with an oscilloscope to verify that

the ALE frequency is 1/6 of the crystal frequency. Next, the reset button is pushed, and

all ports are checked to see that they are in the high (input) state.

ROM Test

The most fundamental program test is to ensure that the microcontroller can fetch and

execute programs from the EPROM. Code byte fetching can be tested by verifying that

each address line of the ROM is properly wired by using a series of repeated jump instruc-

tions that exercise all of the address lines. The test used here will jump to addresses that

are a power of two. Only one address line will be high, and all of the rest will be low. The

address pattern tests for proper wiring of each address line and also checks for shorts

between any two lines.

If the test is successful, the program stops at the highest possible ROM address. The

address bus can then be checked with a logic probe to verify that the highest address has

been reached. Correct operation is indicated by the highest order address bus bit, which

will appear constant. If not, the probe will blink indicating random program fetches.

The test is run by inserting the '373 latch, the programmed 64K EPROM, inserting

jumpers l - 3 and resetting the 805 1 . The test can be stopped at any address by jumping to

that address, as is done in the last statement in the following ROM test program:

MNEMONIC
.org OOOOh
ljmp add2
.org 0004h
ljmp add3
.org 0008h
ljmp add4
.org OOlOh
ljmp add5
.org 0020h
ljmp add6
.org 0040h
ljmp add7
.org 0080h

COMMENT
;start at the
; test address
;next jump at
; test address
;next jump at
; test address
;next jump at
; test address
;next jump at
;test address
;next jump at
;test address
;next jump at

bottom of ROM
lines A0 and Al
address 0004h (A2

line A2
address 0008h (A3

line A3
address OOlOh (A4
line A4
address 0020h (A5

line A5
address 0040h (A6

line A6
address 0080h (A7

Continued

108 CHAPTER SEVEN

ADDRESS MNEMONIC COMMENT
Continued

add7: ljmp add8 ; test address line A7
org OlOOh .next jump at address OlOOh (A8)

add8: ljmp add9 ; test address line A8
org 0200h ; next jump at address 0200h (A9)

add9: ljmp addlO ; test address line A9
org 0400h ;next jump at address 0400h (A10)

addlO: ljmp addll ; test address line A10
org 0800h ; next jump at address 0800h (All)

addll: ljmp addl2 ; test address line All
• org lOOOh ;next jump at address lOOOh (A12)

addl2: ljmp addl3 ; test address line A12
.org 2000h ;next jump at address 2000h (A13)

addl3: ljmp addl4 ; test address line A13
• org 4000h ; last jump at address 4000h (A14)

addl4: ljmp addl5 ; test address line A14
org 8000h ; test address line A15 and remain her

addl5: .ljmp addl5
; jump here in a loop

. end ; assembler use

This address, A15, will remain latched while A2-A14 will
remain low. AO and Al will vary as the bytes of the jump
instruction are fetched.

Inspection of the listing for this program in Figure 7.5 shows that all the address lines are

exercised.

RAM Test

Once sure of the ability of the microcontroller to execute code, the RAM can be checked. A
common test is to write a so-called checkerboard pattern to RAM—that is, an alternating

pattern of I and in memory. Writing bytes of 55h or AAh will generate such a pattern.

The next program writes this pattern to external RAM, then reads the pattern back

andchecks each byte read back against the byte that was written. If a check fails, then the

address where the failure occurred is in the DPTR register. Port 1 and the free bits of port 3

can then be used to indicate the contents of DPTR.
There are 14 bits available using these ports (the serial port is not in use now, so bits

3.0 and 3. 1 are free), and 15 are needed to express a 32K address range. The program will

test a range of 8K bytes at a time, using 13 bits to hold the 8K. address upon failure. Four

versions have to be run to cover the entire RAM address space. If the test is passed, then

bit 14 (port 3.5) is a 1. If the test fails, then bit 14 is a 0, and the other 13 bits hold the

address (in the 8K page) at which the failure occurred.

Interestingly, this test does not check for correct wiring of the RAM address lines. As

long as all address lines end on some valid address, the test will work. A wiring check

requires that a ROM be programmed with some unique pattern at each address that is a

power of two and read using a check program that inspects each unique address location

for a unique pattern.

The RAM test program is listed on the following page.

AN 8051 MICROCONTROLLER DESIGN 109

FIGURE 7.5 Assembled ROM Check Program

oooo
oooo
0004
0004
0008
0008
0010
0010
0020
0020
0040
0040
0080
0080
0100
0100
0200
0200
0400
0400
0800
0800
1000
1000
2000
2000
4000
4000
8000

020004

020008

020010

020020

020040

020080

020100

020200

020400

020800

021000

022000

024000

028000

8000 028000
8003

begin

add2:

add3:

add4:

add5:

add6:

add7:

add8:

add9:

addlO

addll:

addl2:

addl3;

addl4;

add!5;

-org

ljmp
.org
ljmp
• org
ljmp
org

ljmp
.org
ljmp
.org
ljmp
org

ljmp
• org
ljmp
org

ljmp
.org
ljmp
.org

ljmp
• org
ljmp
• org
ljmp
org

ljmp
• org

OOOOh
add2
0004h
add3
0008h
add4
OOlOh
add5
0020h
add6
0040h
add7
0080h
add8
OlOOh
add9
0200h
addlO
0400h
addll
0800h
addl2
lOOOh
addl3
2000h
addl4
4000h
addl5
8000h

ljmp addl5
. end

start at the bottom of ROM
test address lines AO and Al
next jump at address 0004h (A2)

test address line A2
next jump at address 0008h (A3)

test address line A3
next jump at address OOlOh (A4)
test address line A4
next jump at address 0020h (A5)
test address line A5
next jump at address 0040h (A6)
test address line A6
next jump at address 0080h (A7)

test address line A7
next jump at address OlOOh <A8)
test address line A8
next jump at address 0200h (A9)

test address line A9
next jump at address 0400h (A10)
test address line A10
next jump at address 0800h (All)
test address line All
next jump at address lOOOh (A12)
test address line A12
next jump at address 2000h (A13)
test address line A13
last jump at address 4000h (A14)
test address line A14 and remain
test address line A15 and remain
here
jump here in a loop
assembler use

ADDRESS

test

:

MNEMONIC
. equ ramstart , OOOOh
. equ rmstphi , 20h
.equ pattern, 55h
.equ good,20h
.equ bad.Odfh
.org OOOOh
mov p3,#0ffh
mov dptr, #ramstart
mov a,#pattern
movx @dptr,a

COMMENT
set RAM test start address
set RAM test high stop address
determine test pattern
RAM good pattern P3.5 = 1

RAM bad pattern, P3.5 =
begin test program at OOOOh
set Port 3 high
initialize DPTR
set pattern byte
write byte to RAM

Continued

110 CHAPTER SEVEN

ADDRESS
Continued

check:

here

:

fail:

there:

MNEMONIC

inc dptr
mov a,#rmstphi
cjne a.dph.test
mov dptr, #ramstart
movx a, @dptr
cjne a, #pattern, fail
inc dptr
mov a,#rmstphi
cjne a.dph, check
mov p3,#good
sjmp here
mov p3 , dph
anl p3,#bad
mov pi, dpi
sjmp there
end

£>— COMMENT

COMMENT

point to next RAM byte
check to see if at stop address
if not then loop until done
start read-back test
read byte from RAM
test against what was written
go to next byte if tested ok
check to see if all bytes tested
if not then check again
checked ok, set Port 3 to good
stop here
test failed, get address
set 3.5 to zero
set Port 1 to low address byte
stop there

Change the ramstart and rmstphi .equ hex numbers to check pages 2000h to 3FFFh, 4000h to

5FFFh, and 6000h to 7FFFh.

Note that a full 1 6-bit check for end of memory does not have to be done due to page bounda-

ries of (20)00, (40)00, (60)00, and (80)00h.

There is no halt command for the 8051 ; jumps in place serve to perform the halt function.

We have now tested all the external circuitry that has been added to the 8051. The

remainder of the chapter is devoted to several subroutines that can be used by the applica-

tion programs in Chapters 8 and 9.

Timing Subroutines

Subroutines are used by call programs in what is known as a "transparent" manner—-that

is, the calling program can use the subroutines without being bothered by the details of

what is actually going on in the subroutine. Usually, the call program preloads certain

locations with data, calls the subroutine, then gets the results back in the preload locations.

The subroutine must take great care to save the values of all memory locations in the

system that the subroutine uses to perform internal functions and restore these values be-

fore returning to the call program. Failure to save values results in occasional bugs in the

main program. The main program assumes that everything is the same both before and

after a subroutine is called.

Finally, good documentation is essential so that the user of the subroutine knows pre-

cisely how to use it.

Time Delays

Perhaps the most-used subroutine is one that generates a programmable time delay. Time

delays may be done by using software loops that essentially do nothing for some period,

or by using hardware timers that count internal clock pulses.

AN8051 MICROCONTROLLER DESIGN 111

The hardware timers may be operated in either a software or a hardware mode. In the

software mode, the program inspects the timer overflow flag and jumps when it is set. The

hardware mode uses the interrupt structure of the 8051 to generate an interrupt to the pro-

gram when the timer overflows.

The interrupt method is preferred whenever processor time is scarce. The interrupt

mode allows the processor to continue to execute useful code while the time delay is

taking place. Both the pure software and timer-software modes tie up the processor while

the delay is taking place.

If the interrupt mode is used, then the program must have an interrupt handling rou-

tine at the dedicated interrupt program vector location specified in Chapter 2. The program

must also have programmed the various interrupt control registers. This degree of "non-

transparency" generally means that interrupt-driven subroutines are normally written by

the user as needed and not used from a purchased library of subroutines.

Pure Software Time Delay

The subroutine named "softime" generates delays ranging from 1 to 65,535 milliseconds

by using register R7 to generate the basic 1 millisecond delay. The call program loads the

desired delay into registers A (LSB) and B (MSB) before calling Softime.

The key to writing this program is to calculate the exact time each instruction will

take at the clock frequency in use. For a crystal of 16 megahertz, each machine cycle

(12 clock pulses) is

12 pulses
Cycle Time = = .75 usJ

16,000,000 pulses/s
^

Should the crystal frequency be changed, the subroutine would have to have the internal

timing loop number "delay" changed.

Softime

Softime will delay the number of milliseconds expressed by the binary number, from 1 to

65,535d, found in registers A (LSB) and B (MSB). The call program loads the desired

delay into registers A and B and calls Softime. Loading zeroes into A and B results in an

immediate return.

The number after the comma in the comments section of the following program is the

number of cycles for that instruction.

ADDRESS MNEMONIC COMMENT
.equ delay, Oech ; for 996 /as time dela# = 222d

softime: -org OOOOh ;set origin
push 07h ;save R7
push ace ; save A for A = B = 00 test
orl a,b ;will be 00 if both 00
cjne a,#00h,ok ;return if all 00
pop ace ;keep stack balanced
sjmp done

ok: pop ace ;not all zeroes, proceed
timer: mov r7,#delay ;initialize R7, 1

onemil: nop ; tune the loop for 6 cycles, 1

nop ;this makes 2 cycles total, 1

nop ;3 cycles total, 1

Continued

112 CHAPTER SEVEN

ADDRESS MNEMONIC
Continued

nop
djnz r7, onemil

total delay is 6 cycles (

nop

total delay is 999.75 /is,

frequency used (1000 fis

djnz ace, timer
cjne a, b, bdown
sjmp done

bdown: dec b

sjmp timer
done : pop 07h

ret

. end

COMMENT

;4 cycles total, 1

; count R7 down; 6 cycles total, 2

(4.5 /as) x 222d = 999d ps.

; tune subroutine .75 /xs more

, which is as close as possible for the
= 4000/3 cycles)

; count A and B down as one
;A = 00. count B down until = 00
;if so then delay is done
; count B down and time again

; restore R7 to original value
; return to calling routine

COMMENT
Note that register A, when used in a defined mnemonic is used as "A." When used as a direct

address in a mnemonic (where any add could be used), the equate name ACC is used. The

equate usage is also seen for R7, where the name of the register may be used in those mne-

monics for which it is specifically defined. For mnemonics that use any add, the actual address

must be used.

The restriction on A = B - 00 is due to the fact that the program would initially count A from

00 ... FFh ... 00 then exit. If it were desired to be able to use this initial condition for A and B,

then an all zero condition could be handled by the test for 0000 used, set a flag for the condi-

tion, decrement B from 00 to FFh the first time B is decremented, then reset the flag for the

remainder of the program.

The accuracy of the program is poorest for a 1 millisecond delay due to time delay for the rest

of the program to set up and return. The actual delay if 0001 is passed to the subroutine is

1014.75 microseconds or an error of 1.5 percent.

Software Polled Timer

A delay that uses the timers to generate the delay and a continuous software flag test

(the flag is "polled" to see whether it is set) to determine when the timers have finished

the delay is given in this section. The user program signals the total delay desired by pass-

ing delay variables in the A and B registers in a manner similar to the pure software delay

subroutine. A basic interval of I millisecond is again chosen so that the delay may range

from I to 65,535 ms.

The clock frequency for the timer is the crystal frequency divided by 12, or one

machine cycle, which makes each count of the timer .75 microsecond for a 16 megahertz

crystal. A I millisecond delay gives

Count for 1000 microseconds = 1000/.75 = 1333.33 (1333)

Due to the fraction, we can not generate a precise I millisecond delay using the crystal

chosen. If accurate timing is important, then a crystal frequency that is a multiple of 12

AN 8051 MICROCONTROLLER DESIGN 113

must be chosen. Twelve megahertz is an excellent choice for generating accurate time

delays, such as for use in systems which maintain a time of day clock.

Timer will be used to count 1333 (0535h) internal clock pulses to generate the basic

1 millisecond delay; registers A and B will be counted down as TO overflows. The timer

counts up, so it will be necessary to put the 2's complement of the desired number in the

timer and count up until it overflows.

Timer

The time delay routine named "Timer" uses timer and registers A and B to generate

delays from 1 to 65,535d milliseconds. The calling program loads registers A (LSB) and

B (MSB) with the desired delay in milliseconds. Loading a delay of OOOOh results in an

immediate return.

ADDRESS

timer:

go:

onems

wait

:

dwnab

bdown;

done

:

MNEMONIC
.equ onemshi.Ofah
.equ onemslo,0cbh
.org OOOOh
push tlO

push thO

cjne a,#00h,go
orl a,b
jz done
clr A

anl tcon,#0cfh

anl tmod,#0f0h
orl tmod,#01h
mov tl0,#onemslo
mov thO , #onemshi
orl tcon,#10h
jbc tfO, dwnab
sjmp wait
anl tcon,#0efh
djnz ace, onems
cjne a, b, bdown
sjmp done
dec b

sjmp onems
pop thO
pop tlO
ret
. end

COMMENT

COMMENT
;2's complement of 535h = FACBh

;set program origin
;save timer contents

; test for A = 00
;A = 00, test for B = 00
;A will be 00 if A = B = 00
;B is not 00, clear A

; clear timer overflow and run
; flags in TC0N
; clear TO part of TM0D, set TO for
; timer operation, mode 1 (16 bit)
;set TO to count up from FACBh

; start timer
;poll TO overflow flag
;loop until TO overflows
;stop TO
; count A down and loop until zero
;if A = B = 00 then done, return

;decrement B and count again

; restore TO contents

TO cannot be used accurately for other timing or counting functions in the user program; thus,

there is no need to save the TCON and TMOD bits for TO. TO itself could be used to store data;

it is saved.

This program has no inherent advantage over the pure software delay program; both take up

all processor time. The software polled timer has a slight advantage in flexibility in that the

Continued

114 CHAPTER SEVEN

COMMENT
Continued

number loaded into TO can be easily changed in the program to shorten or lengthen the basic

timing loop. Thus, the call program could also pass the basic timing delay (in other memory
locations) and get delays that could be programmed in microseconds or hours.

One way for the program to continue to run while the timer times out is to have the program

loop back on itself periodically, checking the timer overflow flag. This looping is the normal

operating mode for most programs; if the program execution time is small compared with the

desired delay, then the error in the total time delay will be small.

Pure Hardware Delay

If lengthy delays must be done or processor time is so valuable that no time can be wasted

for even relatively short software delays, then the time delays must be done using a timer

in the interrupt mode. The program given in this section operates in the following manner:

1. The occurrence of a timer overflow will interrupt the processor, which then per-

forms a hardware call to whatever subroutine is located at the dedicated timer

flag interrupt address location in ROM.

2. The subroutine determines whether the time delay passed by the using program

is finished. (If not, an immediate return is done to the user program at the place

where it was interrupted. If the delay is up, then a call to the user part of the

program that needed the delay is done, followed by a return to the program

where it was interrupted.)

The time delay is initiated by the user program that stores the desired delay at an

external RAM location named "Savetime," and then calls "Startime," which sets the

timing in motion. The main program then runs while the delay is timing out.

This type of program must use the manufacturer-specified dedicated interrupt loca-

tions in ROM that contain the interrupt handling routines. For this reason, the user must

have placed some set of instructions at the ROM interrupt location before incorporating

the time delay subroutine program in the user program.

In this example, the following three subroutines have been placed at the interrupt

location in ROM:

1

.

Hardtime: a subroutine located at the timer flag interrupt location that determines

whether the time delay has expired (If time has not expired, then the subroutine

immediately returns to the main user program at the location where it was inter-

rupted by the timer flag; if time is up, then it calls the user program, "Usertime.")

2. Usertime: a subroutine, written by the user, that needed the delay (For this

example, the subroutine is simply a return.)

3. Stoptime: a subroutine that stops the timer

Note: To the assembler, the name of the subroutine can be in any combination of

uppercase or lowercase: for example, HARDTIME, hardtime, and HaRdTiMe are all

read as the same label name.

The hardware delay subroutine examined here uses timer 1 for the basic delay. When
timer 1 overflows and sets the overflow flag, the program will vector to location 001 Bh in

program memory if the proper bits in the interrupt control registers IE and IP are set.

As in previous examples, the user can set timer 1 for delays of 1 to 65,535 milli-

seconds by setting the desired delay in external RAM locations "Savetime" (LSB) and

"Savetime" + 1 (MSB), which is a two-byte address pointed to by DPTR. Registers A

AN 8051 MICROCONTROLLER DESIGN 115

and B cannot be used as in previous examples because to do so would preclude their use

for any other purpose in the program.

The hardware delay called "Hardtime" is listed in the following subsection. To avoid

confusion as to which is the subroutine and which is the user program, all user code will

begin with a label that starts with the name "User." Everything else is the timing routine.

Hardtime

The "Hardtime" subroutine is a hardware-only time delay. To start the delay, IE. 7 and

IE. 3 (EA and ET1) must be set and the subroutine "Startime" called. Three instructions

must be assembled at timer i location 001 Bh: LJMP hardtime, ACALL usertime (with the

label "Userdly"), and ACALL stoptime. The priority of the interrupt can be set at bit

IP.3 (PT1) to high (1) or low (0). An excerpt from the calling program follows to show

these details:

ADDRESS

userpgm:

userdly:

userover

here

:

MNEMONIC
. equ savetime , OOlOh
.org OOOOh
sjmp userover
.org OOlbh
ljmp hardtime
acall usertime
acall stoptime
reti
mov dptr, #savetime
mov a, #01h
movx @dptr,a
inc dptr
mov a,#10h
movx @dptr, a

orl ie, #88h
acall startime
sjmp here

COMMENT
; external RAM address for delay
; start user program
; jump over interrupt addresses
; interrupt location for TF1
;jump to time delay subroutine
;called if delay is up
;dissable timer interrupt
; return to main program

; point to delay address
; store desired delay, LSB first

;point to next byte (MSB)

;desired delay now stored
;enable Tl and all interrupts
; start time delay
;loop to simulate user program

the user program now continues while timer 1 runs until TF1 = 1.

the interrupt generated will vector to location OOlBh and execute
a jump to hardtime that will decrement the contents of savetime
until the desired time delay has been done; hardtime will return to
the main program if the delay is not finished, or to userdly if the
delay is up; userdly returns to call stoptime, which stops the timer
and returns to the RETI instruction for return to the main program

;set Tl for a 1 ms delay
;(see TIMER example)
; clear Tl part of TMOD
;set Tl to timer mode 1

; start timer 1

; return to calling program
;save registers to be used

startime

:

mov thl, #0fah
mov til, #0cbh
anl tmod,#0fh
orl tmod,#40h
orl tcon,#40h
ret

hardtime

:

push ace
push dph

Continued

116 CHAPTER SEVEN

ADDRESS
Continued

aff:

done

:

sava:

MNEMONIC

push dpi
mov dptr, #savetime
movx a,@dptr
dec a

cjne a,#OOh,aff
movx @dptr,a
inc dptr
movx a,@dptr
jz done
sjmp sava
cjne a,#Offh,sava
movx @dptr,a
inc dptr
movx a, @dptr
dec a

sjmp sava
pop dpi

pop dph
pop ace
ljmp userdly
movx @dptr,a
pop dpi

pop dph
pop ace
acall startime
reti

COMMENT

:get pointer to time delay
; count delay number down to 0000
low byte first
check for 0000
save low byte = 00
get high byte and look for 00

done if low, high byte =
not 0, delay again
if low byte = FF dec high
save low byte = FF
point to high byte
count high byte down

save the high byte
finished, jump to userdly
restore all registers used

continue at user delay
delay not up, save byte
restore saved registers

start Tl for next 1 ms
return to user program

the user program "usertime" can now be written as needed; a return
will be used to simulate the user routine

.

usertime: ret

after the user program is done then "stoptime" will stop timer Tl
and return to the interrupted main program

stoptime

:

anl tcon,#0bfh
ret

.end

;stop timer Tl
; return to reti

COMMENT
The minimum usable delay is 1 ms because a 1 ms delay is done to begin the delay interrupt

cycle.

All timing routines can be assembled at interrupt location 001 Bh if stack space is limited.

The RETI instruction is used when returning to the main program, after each interrupt, while

RET instructions are used to return from caffed routines.

There is no check for an initial delay of OOOOh.

AN 8051 MICROCONTROLLER DESIGN 117

Lookup Tables for the 8051

There are many instances in computing when one number must be converted into another

number, or a group of numbers, on a one-to-one basis. A common example is to change an

ASCII character for the decimal numbers to 9 into the binary equivalent (BCD) of those

numbers. ASCII 30h is used to represent OOd, 31h is Old, and so on, until ASCII 39h is

used for 09d.

Clearly, one way to convert from ASCII to BCD is to subtract a 30h from the ASCII

character. Another approach uses a table in ROM that contains the BCD numbers 00 to

09. The table is stored in ROM at addresses that are related to the ASCII character that is

to be converted to BCD. The ASCII character is used to form part of the address where its

equivalent BCD number is stored. The contents of the address "pointed" to by the ASCII

character are then moved to a register in the 8051 for further use. The ASCII character is

then said to have "looked up" its equivalent BCD number.

For example, using ASCII characters 30h to 39h we can construct the following pro-

gram, at the addresses indicated, using ,db commands:

ADDRESS MNEMONIC
.org 1030h
.db OOh
.db Olh
.db 02h
.db 03h
.db 04h
.db 05h
.db 06h
.db 07h
.db 08h
.db 09h

COMMENT
; start table at

; location 1030h
; location 1031h
; location 1032h
; location 1033h
; location 1034h
; location 1035h
; location 1036h
; location 1037h
; location 1038h
; location 1039h

ROM location 1030h
contains
contains
contains
contains
contains
contains
contains
contains
contains
contains

00 BCD
01 BCD
02 BCD
03 BCD
04 BCD
05 BCD
06 BCD
07 BCD
08 BCD
09 BCD

Each address whose low byte is the ASCII byte contains the BCD equivalent of that ASCII

byte. If the DPTR is loaded with lOOOh and A is loaded with the desired ASCII byte, then a

MOVC A,@A+DPTR will move the equivalent BCD byte for the ASCII byte in A to A.

Lookup tables may be used to perform very complicated data translation feats, in-

cluding trigonometric and exponential conversions. While lookup tables require space

in ROM, they enable conversions to be done very quickly, far faster than using computa-

tional methods.

The 8051 is equipped with a set of instructions that facilitate the construction and use

of lookup tables: the MOVC A,@A+DPTR and the MOVC A,@A+PC. In both cases A
holds the pointer, or some number calculated from the pointer, which is also called an

"offset." DPTR or PC holds a "base" address that allows the data table to be placed at

any convenient location in ROM. In the ASCII example just illustrated, the base address

is lOOOh, and A holds an offset number ranging from 30h to 39h.

Typically, PC is used for small "local" tables of data that may be included in the

body of the program. DPTR might be used to point to large tables that are normally as-

sembled at the end of program code.

In both cases, the desired byte of data is found at the address in ROM that is equal to

base + offset. Figure 7.6 demonstrates how the final address in the lookup table is calcu-

lated using the two base registers.

118 CHAPTER SEVEN

FIGURE 7.6 MOVC ROM Address Calculations

A + DPTR = Any Address From DPTR To DPTR + FFh >

A Register DPTR = Any Number nn

A + PC « Address From Nl To Nt + FFh

A Register PC = Address Of Next Instruction

DPTR + FFh

DPTR + 01

h

DPTR + OOh

PC + FFh

PC + 02h

PC + Olh

Next Instruction

MOVC A, @A + PC

MOVC A, @A+ DPTR

MOV DPTR, #nn

External ROM

PC = Nl

One limitation of lookup tables might be the appearance that only 256 different

values—corresponding to the 256 different values that A might hold—may be put in

a table. This limitation can be overcome by using techniques to alter the DPTR such that

the base address is changed in increments of 256 bytes. The same offset in A can point

to any number of data bytes in tables that differ only by the beginning address of the

base. For example, by changing the number loaded in DPTR from lOOOh to 1 IOOh in the

ASCII-to-BCD table given previously, the ASCII byte in A can now point to an entirely

new set of conversion bytes.

Both PC and DPTR base address programs are given in the examples that follow.

PC as a Base Address

Suppose that the number in A is known to be between OOh and OFh and that the number

in A is to be squared. A could be loaded into B and a MUL AB done or a local lookup

table constructed.

AN 8051 MICROCONTROLLER DESIGN 119

The table cannot be placed directly after the MOVC instruction. A jump instruction

must be placed between the MOVC and the table, or the program soon fetches the first

data byte of the table and executes it as code. Remember also that the PC contains the

address of the jump instruction (the Next Instruction, after the MOVC command) when

the table address is computed.

Pdook

The program "pclook" looks up data in a table that has a base address in the PC and the

offset in A. After the MOVC instruction, A contains the number that is the square of the

original number in A.

ADDRESS

pclook:

MNEMONIC
.org OOOOh
mov a,#0ah
add a,#02h
move a,@a+pc
sjmp over

COMMENT

find the square of OAh (64h)

adjust for two byte sjmp over
get equivalent data from table to A

jump over the lookup table

the lookup table is inserted here, at PC + 2. (PC = 0005h

over:

.db OOh

.db Olh

.db 04h

.db 09h

.db lOh

.db 19h

.db 24h

.db 31h

.db 40h

.db 51h

.db 64h

.db 79h

.db 90h

.db 0a9h

.db 0c4h

.db Oelh
sjmp over
. end

begin table here, 00A2 = 00

01 A2 = Old
02 A2 = 04d
03 A2 = 09d
04A2 = 16d
05 A2 = 25d
06 A2 = 36d
07A2 = 49d
08A2 = 64d
09A2 = 81d
0A A2 - lOOd
0BA2 = 121d
0CA2 = 144d
0DA2 - 169d
0EA2 = 196d
0FA2 = 225d
simulate rest of user program

Figure 7.7 shows the assembled listing of this program and the resulting address of the

table relative to the MOVC instruction.

COMMENT
The number added to A reflects the number of bytes in the SJMP instruction. If more code is

inserted between the MOVC and the table, a similar number of bytes must be added. Adding

bytes can result in overflowing A when the sum of these adjusting bytes and the contents of A
exceed 255d. If this happens, the lookup data must be limited to the number of bytes found by

subtracting the number of adjustment bytes from 255d.

120 CHAPTER SEVEN

FIGURE 7.7 Lookup Table using the PC

0000
oooo
0002
0004

0005
0007
0007
0008
0009
000A
OOOB
OOOC
OOOD
OOOE
OOOF
0010
0011
0012
0013
0014
0015
0016
0017
0019

740A pclook:
2402
83

.org 0000b
mov a,#Oah
add a.#02h
move a,@a+pc

8010 sjmp over
; the lookup table is inse

00 .db OOh
01 .db Olh
04 .db 04h
09 .db 09h
10 .db lOh

19 .db 19h
24 .db 24h
31 .db 3lh
40 .db 40h
51 .db 5lh
64 .db 64h
79 .db 79h
90 .db 90h
A9 .db 0A9h
C4 .db 0C4h
El .db OElh
80F over: sjmp over

.end

;find the square of OAh (64h)
;adjust for two byte sjmp over
;get equivalent data from table
;to A

;jump over the lookup table
rted here, at PC + 2 (PC = 0005h
begin table here, 00A2 = 00
01 A2 = Old
02 A2 = 04d
03A2 = 09d
04A2 = 16d
05A2 = 25d
06 A 2 = 36d
07 A 2 = 49d
08A2 = 64d
09 A 2 = 81d
OA A 2 = lOOd
0BA2 = 121d
0CA2 = I44d
0DA2 = I69d
0EA 2 = I96d

0FA2 = 225d
simulate rest of user program

DPTR as a Base Address

The DPTR is used to construct a lookup table in the next example. Remove the restriction

that the number in A must be less than 10h and Jet A hold any number from OOh to FFh.

The square of any number larger than OFh results in a four-byte result; store the result in

registers RO (LSB) and Rl (MSB).

Two tables are constructed in this section: one for the LSB and the second for the

MSB. A points to both bytes in the two tables, and the DPTR is used to hold two base

addresses for the two tables. The entire set of two tables, each with 256 entries, will not be

constructed for this example. The beginning and example values are shown as a skeleton

of the entire table.

Dptook

The lookup table program "dplook" holds the square of any number found in the A regis-

ter. The result is placed in RO (LSB) and Rl (MSB). A is stored temporarily in Rl in order

to point to the MSB byte.

ADDRESS MNEMONIC
.equ lowbyte,0200h
.equ hibyte,0300h
.org OOOOh

COMMENT
;base address of LSB table
;base address of MSB table

Continued

AN 8051 MICROCONTROLLER DESIGN 121

ADDRESS MNEMONIC
dplook: mov a,#5ah

mov rl.a
mov dptr, #lowbyte
move a,@a+dptr
mov r0 ,

a

mov a.rl
mov dptr, #hibyte
move a,@a+dptr
mov rl.a

here: sjmp here
.org lowbyte
.db OOh
.db Olh

;place rest of table up to the

.org lowbyte + 5ah

.db 0a4h
;place rest of LSB table here

.org hibyte

.db OOh

.db OOh
;place rest of table up to the

.org hibyte + 5ah

.db lfh
;place rest of MSB table here

.end

COMMENT
;find the square of 5Ah (lFA4h)
;store A for later use
;set DPTR to base address of LSB
;get LSB
; store LSB in R0
; recover A for pointing to MSB
;set DPTR to base address of MSB
;get MSB
; store MSB in Rl

; simulate rest of user program

;
place LSB table starting here
;00 A2 = 0000
;01 A2 = 0001

LSB of 59A2 here
;put LSB of 5AA2 here
;LSB is A4h

place MSB table starting here
00 A2 = 0000
01 A2 = 0001

MSB of 59A2 here
;put MSB of 5AA 2 here
;MSB is lFh

£>— COMMENT
Note that there are no jumps to "get over" the tables; the tables are normally placed at the end

of the program code.

A does not require adjustment; DPTR is a constant.

Figure 7.8 shows the assembled code; location 025Ah holds the LSB of 5A A 2, and

location 035Ah holds the MSB.

Serial Data Transmission

The hallmark of contemporary industrial computing is the linking together of multiple

processors to form a "local area network" or LAN. The degree of complexity of the LAN
may be as simple as a microcontroller interchanging data with an I/O device, as compli-

cated as linking multiple processors in an automated robotic manufacturing cell, or as

truly complex as the linking of many computers in a very high speed, distributed system

with shared disk and I/O resources.

All of these levels of increasing sophistication have one feature in common: the need

to send and receive data from one location to another. The most cost-effective way to meet

this need is to send the data as a serial stream of bits in order to reduce the cost (and bulk)

of multiple conductor cable. Optical fiber bundles, which are physically small, can be

used for parallel data transmission. However, the cost incurred for the fibers, the termina-

tions, and the optical interface to the computer currently prohibit optical fiber use, except

in those cases where speed is more important than economics.

122 CHAPTER SEVEN

FIGURE 7.8 Lookup Table using the DPTR

0200
0300
oooo
0000 745A dplook

0002 F9
0003 900200

0006 93

0007 F8
0008 E9

0009 900300

000C 93
000D F9
OOOE 80FE here:

0200

. equ lowbyte , 0200h

.equ hibyte,0300h

.org OOOOh
mov a,#5ah

mov rl.a
mov dptr , #lowbyte

move a, @a + dptr
mov rO , a

mov a,rl

mov dptr,#hibyte

move a.@a + dptr
mov rl.a
sjmp here

.org lowbyte

0200 00 .db OOh
0201 01 .db Olh
0202

;
place rest of table up to the

025A .org lowbyte + 5ah
025A A4 .db 0a4h
025B ;

place rest of LSB table here
0300 .org hibyte

0300 00 .db OOh
0301 00 .db OOh
0302 ;place rest of table up to the
035A .org hibyte + 5ah
035A IF .db lfh
035B ;place rest of MSB table here
035B .end

;base address of LSB table
;base address of MSB table

; find the square of 5Ah

;
<lFA4h)

; store A for later use
;set DPTR to base address
;of LSB
;get LSB
; store LSB in RO
; recover A for pointing
;to MSB
;set DPTR to base address
;of MSB
;get MSB
; store MSB in Rl
;simulate rest of user
; program
;place LSB table starting
;here
;00 A 2 = 0000
;01 A2 - 0001

LSB of 59 A2 here
;put LSB of 5AA2 here
;LSB is A4h

place MSB table starting
here
00 A2 = 0000
01 A2 = 0001

MSB of 59A2 here
;put MSB of 5A"2 here
;MSB is lFh

So pervasive is serial data transmission that special integrated circuits, dedicated solely

to serial data transmission and reception, appeared commercially in the early 1970s. These

chips, commonly called "universal asynchronous receiver transmitters," or UARTS, per-

form all the serial data transmission and reception timing tasks of the most popular data

communication scheme still in use today: serial 8-bit ASCII coded characters at pre-

defined bit rates of 300 to 19200 bits per second.

Asynchronous transmission utilizes a start bit and one or more stop bits, as shown

in Figure 7.9, to alert the receiving unit that a character is about to arrive and to signal

the end of a character. This "overhead" of extra bits, with the attendant slowing of data

byte rates, has encouraged the development of synchronous data transmission schemes.

Synchronous data transmission involves alerting the receiving unit to the arrival of data

AN 8051 MICROCONTROLLER DESIGN 123

FIGURE 7.9 Asynchronous 8-Bit Character

Idle State

™T Tr

i I

Start

Bit

Bit Time =

1
j j r T T3|4I5I6|7|8|

I J _L _L J J

Data Bits

t »

Idle State

Stop

Bit

by a unique pattern that starts data transmission, followed by a long string of characters.

The end of transmission is signaled by another unique pattern, usually containing error-

checking characters.

Each scheme has its advantages. For relatively short or infrequent messages, the

asynchronous mode is best; for long messages or constant data transmission, the synchro-

nous mode is superior.

The 8051 contains serial data transmission/receiver circuitry that can be programmed

to use four asynchronous data communication modes numbered from to 3. One of these,

mode 1, is the standard UART mode, and three simple asynchronous communication pro-

grams using this mode will be developed here. More complicated asynchronous programs

that use all of the communication modes will be written in Chapter 9.

Character Transmission Using a Time Delay

Often data transmission is unidirectional from the microcontroller to an output device,

such as a display or a printer. Each character sent to the output device takes from 33.3

to .5 milliseconds to transmit, depending upon the baud rate chosen. The program must

wait until one character is sent before loading the next, or data will be lost. A simple way
to prevent data loss is to use a time delay that delays the known transmission time of one

character before the next is sent.

ADDRESS

Sendchar

A program called "Sendchar" takes the character in the A register, transmits it, delays for

the transmission time, and then returns to the calling program. Timer 1 must be used to set

the baud rate, which is 1200 baud in this example. The delay for one ten-bit character

is 1000/120 or 8.4 milliseconds. The software delay developed in Section 7.5 is used for

the delay with the basic delay period of 1 milliseconds changed to .1 milliseconds by re-

defining "delay." Timer I needs to generate a final baud rate of 1200 at SBUF. Using a

16 megahertz crystal, the reload number is 256 - 16E6/(16 x 12 x 1200), which is

186.6 or integer 187. This yields an actual rate of 1208.

here

:

MNEMONIC
.org OOOOh
.set delay, 16h
mov a , # * A

'

acall sendchar
sjmp here

COMMENT

;basic delay = 22d x 4.5 = 99 /as

; for this example, send an A

; send it

; simulate rest of user program

Continued

124 CHAPTER SEVEN

ADDRESS
Continued

sendchar

:

MNEMONIC

anl tcon,#Ofh
orl tcon,#20h
mov thl,#0bbh
orl pcon,#80h
orl tcon,#40h
mov scon,#40h
mov sbuf.a
mov a,#54h
acall softime
ret

COMMENT

;alter timer 1 configuration only
; set timer 1 for mode 2 (auto reload)
;set reload number to 187d (256 - 69
;set SMOD bit to 1

;start timer 1 by setting TR1
;set serial port to mode 1

;load transmit register and wait
; delay for 8.4 ms (84d = 54h)
; wait
; character now sent

;softime will be simulated by a return instruction
softime : ret

.end ; assembler use only

{>— COMMENT
If timer 1 and the serial port have different uses in the user program, then push and pop
affected control registers. But remember, T1 and SBUF can only be used for one function at any

given time.

The use of the .set statement lets the user change the basic delay interval to different values in

the same program.

The 16 megahertz crystal does not yield convenient standard baud rates of 300, 1200, 2400,

4800, 9600, or 19200. The errors using this crystal for these rates are given in the following

table:

RATE ERROR (%)

300 .08

1200 .64

4800 2.12

9600 3.55

19200 8.51

The error grows for higher baud rates as ever smaller reload numbers are rounded to

the nearest integer. Using an 11.059 megahertz crystal reduces the errors to less than

.002 percent at the cost of speed of program execution.

Character Transmission by Polling

An alternative to waiting a set time for transmission is to monitor the TI flag in the SCON
register until it is set by the transmission of the last character written to SBUF. The polling

routine must reset TI before returning to the call program. Failure to reset TI will inhibit

all calls after the first, stopping all data transmission except the first character.

This technique has the advantage of simplicity; less code is used, and the routine does

not care what the actual baud rate is. In this example, it is assumed that the timer 1 baud

rate has been established at the beginning of the program in a manner similar to that used

in the previous example.

AN 8051 MICROCONTROLLER DESIGN 125

Xmit

The subroutine "xmit" polls the TI flag in the SCON register to determine when SBUF is

ready for the next character. The calling part of the user program follows:

ADDRESS

here

:

xmit

:

wait:

MNEMONIC
.org OOOOh
mov a, #'3*

acall xmit
sjmp here

mov sbuf.a
jnb scon. 1 .wait

clr scon.l
ret

. end

COMMENT

; send an ASCII 3 for this example
;send the character using xmit
; simulate remainder of user program

; transmit the contents of A and wait
;loop until TI = 1 (SBUF is empty)
; reset TI to

£>— COMMENT
TI remains a until SBUF is empty; when the 8051 is reset, or upon power up, TI is set to 0.

Interrupt-Driven Character Transmission

The third method of determining when transmission is finished is to use the interrupt

structure of the 8051. One interrupt vector address in program code, location 0023h, is

assigned to both the transmit interrupt, TI, and the receive interrupt, RI. When a serial

interrupt occurs, a hardware call to location 0023h accesses the interrupt handling routine

placed there by the programmer.

The user program "calls" the subroutine by loading the character to be sent into

SBUF and enabling the serial interrupt bit in the EI register. The user program can then

continue executing. When SBUF becomes empty, TI will be set, resulting in an immedi-

ate vector to 0023h and the subroutine placed there executed. The subroutine at 0023h,

called "serial," will reset TI and then return to the user program at the place where it was

interrupted.

This scheme is satisfactory for testing the microprocessor when only one character is

sent from the program. Long strings of character transmission will overload SBUF. Chap-

ter 9 contains routines that will build on this technique and send arbitrarily long strings

with no loss of data.

SBUFR

An interrupt-driven data transmission routine for one character which is assembled at the

interrupt vector location 0023h. A portion of the user program that activates the interrupt

routine is shown.

ADDRESS

sbufr

:

MNEMONIC
.org OOOOh
sjmp user
.org 0023h

COMMENT

;jump over interrupt vectors
;put serial interrupt routine here

Continued

126 CHAPTER SEVEN

ADDRESS
Continued

serial

:

user:

here

:

MNEMONIC

clr scon.l
reti

mov sbuf,#*X
orl ie,#90h
sjmp here
.end

COMMENT

; clear TI
; return to interrupted user program

.send an X in this example
; enable serial interrupt
; simulate remainder of program

{>— COMMENT
If TI is not cleared before the RETI instruction is used, there will be an immediate interrupt and

vector back to 0023h.

RETI is used to reset the entire interrupt structure, not to clear any interrupt bits.

Receiving Serial Data

Transmissions from outside sources to the 8051 are not predictable unless an elaborate

time-of-day clock is maintained at the sender and receiver. Messages can then be sent at

predefined times. A time-of-day clock generally ties up timers at both ends to generate the

required "wake-up" calls.

Two methods are normally used to alert the receiving program that serial data has

arrived: software polling or interrupt driven. The sending entity, or "talker," transmits

data at random times, but uses an agreed-upon baud rate and data transmission mode. The
receiving unit, commonly dubbed the "listener," configures the serial port to the mode
and baud rate to be used and then proceeds with its program.

If one programmer were responsible for the talker and another for the listener, lively

discussions would ensue when the units are connected and data interchange does not take

place. One common method used to test communication programs is for each programmer

to use a terminal to simulate the other unit. When the units are connected for the final test,

a CRT terminal in a transparent mode, which shows all data transmitted in both direc-

tions, is connected between the two systems to show what is taking place in the communi-

cation link.

Polling for Received Data

Polling involves periodically testing the received data flag Rl and calling the data receiving

subroutine when it is set. Care must be taken to remember to reset RI, or the same character

will be read again. Reading SBUF does not clear the data in SBUF or the RI flag.

The program can sit in a loop, constantly testing the flag until data is received, or run

through the entire program in a circular manner, testing the flag on each circuit of the

program. The loop approach guarantees that the data be read as soon as it is received;

however, very little else will be accomplished by the program while waiting for the data.

The circular approach lets the program run while awaiting the data.

In order not to miss any data, the circular approach requires that the program be able

to run a complete circuit in the time it takes to receive one data character. The time re-

straint on the program is not as stringent a requirement as it may first appear. The receiver

is double buffered, which lets the reception of a second character begin while a previous

character remains unread in SBUF. If the first character is read before the last bit of the

AN 8051 MICROCONTROLLER DESIGN 127

second is complete, then no data will be lost. This means that, after a two-character burst,

the program still must finish in one-character time to catch a third.

The character time is the number of bits per character divided by the baud rate. For

serial data transmission mode I , a character uses ten bits: start, eight code bits, and stop.

A 1 200 baud rate, which might be typical for a system where the talker and listener do not

interchange volumes of data, results in a character rate of 1 20 characters per second , or a

character time of 8.33 milliseconds. Using an average of 18 oscillator periods per instruc-

tion, each instruction will require 1.13 microseconds to execute, enabling a program

length of 7371 instructions. This large machine language program will suffice for many
simple control and monitoring applications where data transmission rates are low. If more

time is needed, the baud rate could be reduced to as low as 300 baud, yielding a program

size of over 29K bytes, which approaches half the maximum size of the ROM in our ex-

ample 8051 design.

The polling program for the loop approach follows:

ADDRESS
here

:

MNEMONIC
jnb scon. 0, here
clr scon.O
acall getchar

COMMENT
wait here until RI = 1

clear the RI bit
getchar is some user routine
which reads SBUF

The circular approach is very similar:

ADDRESS MNEMONIC
jnb scon.O there
clr scon.O
acall getchar

there: sjmp there
ret

.end

COMMENT
; test for RI = 1, go on if not
;clear the RI bit
;call user routine
;rest of user program getchar:
; simulate user routine

Interrupt-Driven Data Reception

When large volumes of data must be received, the data rate will overwhelm the polling

approach unless the user program is extremely short, a feature not usually found in sys-

tems in which large amounts of data are interchanged. Interrupt-driven systems allow the

program to run with brief pauses to read the received data. In Chapter 9, a program is

developed that allows for the reception of long strings of data in a manner completely

transparent to the user program.

Intdat

This interrupt-driven data reception subroutine assembles the program at 0023h, which is

the serial interrupt vector location.

ADDRESS

intdat

:

MNEMONIC
.org OOOOh
orl ie,#90h
sjmp over

COMMENT

; enable serial and all interrupts
;jump over the interrupt locations

Continued

128 CHAPTER SEVEN

ADDRESS
Continued

xmit

:

over

:

trans:
recv:

MNEMONIC

.org 0023h
jbc scon. 1, xmit
clr scon.O
lcall recv
reti

lcall trans
reti
sjmp over
ret

ret

COMMENT

;put serial interrupt program here
;if TI bit set, clear it and jump
;must have been RI, clear it
;call receive subroutine
; return to program where interrupted
;call transmit program
; return to program where interrupted

; dummy transmit /receive routines

COMMENT
If both RI and TI are set, this routine will service the transmit function first. After the RETI, which

follows the LCALL to trans, the RI bit will still be set, causing an immediate interrupt back to

location 0O23h where the receive routine will be called.

If the transmit or receive subroutines that are called take longer to execute than the character

time, then data will be lost. Long subroutine times would be highly unusual; however, it is

possible to overload any system by constant data reception.

Summary
An 8051 based microprocessor system has been designed that incorporates many features

found in commercial designs. The design can be easily duplicated by the reader and uses

external EPROM and RAM so that test programs may be exercised. Various size memo-
ries may be used by the impecunious to reduce system cost.

The design features are

External RAM: 8K to 32K bytes

External ROM: 8K to 64K bytes

I/O ports: 1-8 bit, port 1

Other ports: port 3.0 (RXD)
3.1 (TXD)

3.2 (INTO)

3.3 (INT1)

3.4 (TO)

3.5 (TI)

Crystal: 16 megahertz

Other crystal frequencies may be used to generate convenient timing frequencies. The

design can be modified to include a single step capability (see Problem 2).

Methods of adding additional ports to the basic design are discussed and several ex-

ample circuits that indicate the expansion possibilities of the 8051 are presented.

Programs written to test the design can be used to verify any prototypes that are built

by the reader. These tests involve verifying the proper operation of the ROM and RAM
connections.

AN 8051 MICROCONTROLLER DESIGN 129

Several programs and subroutines are developed that let the user begin to exercise the

8051 instruction code and hardware capabilities. This code can be run on the simulator or

on an actual prototype. These programs cover the most common types found in most

applications:

Time delays: software; timer, software polled; timer, interrupt driven

Lookup Tables: PC base, DPTR base

Serial data communications transmission: time delay, software polled, interrupt

driven

Serial data communications reception: software polled, interrupt driven

The foundations laid in this chapter will be built upon by example application pro-

grams and hardware configurations found in Chapters 8 and 9.

Problems

1. Determine whether the 8051 can be made to execute a single program instruction

(single-stepped) using external circuitry (no software) only.

2. Outline a scheme for single-stepping the 8051 using a combination of hardware and

software. (Hint: use an INTX.)

3. While running the EPROM test, it is found that the program cannot jump from 2000h to

4000h successfully. Determine what address line(s) is faulty.

4. Calculate the error for the delay program "Softime" when values of 2d, lOd and lOOOd

milliseconds are passed in A and B.

5. The program "Softime" has a bug. When A = OOh the delay becomes: (B + l)d x 256d x

delay. Find the bug and fix it without introducing a new bug.

6. Find the shortest and longest delays possible using "Softime" by changing only the

equate value of the variable "delay."

7. Give a general description of how you would test any time delay program. (Hint: use a

port pin.)

8. In the discussion for the program named "Timer," the statement is made that an accurate

1 ms delay cannot be done due to the need for a count of 1333.33 using a 16 megahertz

clock. Find a way to generate an accurate 60 second delay using TO for the basic delay

and some registers to count the TO overflows.

9. Calculate the shortest and longest delays possible using the program named "Timer" by

changing the initial value of TO.

10. Why is there no check for an initial timing value of OOOOh in the program named

"Hardtime"?

11. Write a lookup table program, using the PC as the base, that finds a one-byte square root

(to the nearest whole integer) of any number placed in A. For example, the square roots

of 01 and 02 are both 01 , while the roots of 03 and 04 are 02. Calculate the first four

and last four table values.

12. Write a lookup table, using the DPTR as the base, that finds a two-byte square root of

the number in A. The first byte is the integer value of the root, and the second byte is the

fractional value. For example, the square root of 02 is 01 ,6Ah. Calculate four first and

last table values.

130 CHAPTER SEVEN

13. Write a lookup table program that converts the hex number in A (0-F) to its ASCII

equivalent.

14. A PC based lookup table, which contains 256d values, is placed 50h bytes after the

MOVC instruction that accesses it. Construct the table, showing where the byte associ-

ated with A = OOh is located. Find the largest number which can be placed in A to

access the table.

15. Construct a lookup table program that converts the hex number in A to an equivalent

BCD number in registers R4 (MSB) and R5 (LSB).

16. Reverse Problem 15 and write a lookup table program that takes the BCD number in R4

(MSB) and R5 (LSB) and converts it to a hex number in A.

17. Verify the errors listed for the 16 megahertz crystal in the third comment after the pro-

gram named "Sendchar."

18. Verify the error listed for the 1 1 .059 megahertz crystal in the fourth comment after the

program named "Sendchar."

19. Does asynchronous communication between two microprocessors have to be done at

standard baud rates? Name one reason why you might wish to use standard rates.

20. Write a test program that will "loop test" the serial port. The output of the serial port

(TXD) is connected to the input (RXD), and the test program is run. Success is indicated

by port I pin 1 going high.

21. What is the significance of the transmit flag, TI, when it is cleared to 0? When set to 1?

22. Using the programmable port of Figure 7.3, write a program that will configure all ports

as outputs, and write a 55h to each.

23. Repeat problem 22 using the memory-mapped programmable port of Figure 7.4.

Applications

Chapter Outline

Introduction

Keyboards

Displays

Pulse Measurement

Multiple Interrupts

Putting it all Together

Summary

Introduction

131

Microcontrollers tend to be underutilized in many applications. There are several reasons

for this anomaly. Principally, the devices are so inexpensive that it makes little economic

sense to try to select an optimal device for each application. A new microcontroller in-

volves the expense of new development software and training for the designers and pro-

grammers that could easily cost more than the part savings. Also, some members of the

technical community are unfamiliar with the microcontroller due to a dearth of established

academic course offerings on the subject. These individuals tend to apply classic eight-bit

microprocessor families to problems that are more economically served by a micro-

controller. Finally, there is always the pressure to use the latest multibyte processor for

marketing reasons or just to keep up with the "state of the art."

The result of this application pattern is that microcontrollers tend to become obsolete at

a slower rate than their CPU cousins. The microcontroller will absorb more eight-bit CPU
applications as the economic advantage of using microcontrollers becomes compelling.

Application examples in a textbook present a picture of use that supports the previ-

ously-made claim of underutilization. Limitations on space, time, and the patience of the

reader preclude the inclusion of involved, multi-thousand line, real-time examples. We
will, instead, look at pieces of larger problems, each piece representing a task commonly
found in most applications.

One of the best ways to get a "feel" for a new processor is to examine circuits and

programs that address easily visualized applications and then to write variations. To assist

132 CHAPTER EIGHT

Keyboards

in this process, we will study in detail the following typical hardware configurations and

their accompanying programs:

Keyboards

Displays

Pulse measurements

A/D and D/A conversions

Multi-source interrupts

The hardware and software are inexorably linked in the examples in this chapter. The

choice of the first leads to the programming techniques of the second. The circuit designer

should have a good understanding of the software limitations faced by the programmer.

The programmer should avoid the temptation of having all the tricky problems handled by

the hardware.

The predominant interface between humans and computers is the keyboard. These range

in complexity from the "up-down" buttons used for elevators to the personal computer

QWERTY layout, with the addition of function keys and numeric keypads. One of the

first mass uses for the microcontroller was to interface between the keyboard and the main

processor in personal computers. Industrial and commercial applications fall somewhere

in between these extremes, using layouts that might feature from six to twenty keys.

The one constant in all keyboard applications is the need to accommodate the human

user. Human beings can be irritable. They have little tolerance for machine failure; watch

what happens when the product isn't ejected from the vending machine. Sometimes they

are bored, or even hostile, towards the machine. The hardware designer has to select keys

that will survive in the intended environment. The programmer must write code that will

anticipate and defeat inadvertent and also deliberate attempts by the human to confuse the

program. It is very important to give instant feedback to the user that the key hit has been

acknowledged by the program. By the light a light, beep a beep, display the key hit, or

whatever, the human user must know that the key has been recognized. Even feedback

sometimes is not enough; note the behavior of people at an elevator. Even if the "up" light

is lit when we arrive, we will push it again to let the machine know that "I'm here too."

Human Factors

The keyboard application program must guard against the following possibilities:

More than one key pressed (simultaneously or released in any sequence)

Key pressed and held

Rapid key press and release

All of these situations can be addressed by hardware or software means; software, which

is the most cost effective, is emphasized here.

Key Switch Factors

The universal key characteristic is the ability to bounce: The key contacts vibrate open

and close for a number of milliseconds when the key is hit and often when it is released.

These rapid pulses are not discernable to the human, but they last a relative eternity in

APPLICATIONS 133

the microsecond-dominated life of the microcontroller. Keys may be purchased that do

not bounce, keys may be debounced with RS flip-flops, or debounced in software with

time delays.

Keyboard Configurations

Keyboards are commercially produced in one of the three general hypothetical wiring con-

figurations for a 16-key layout shown in Figure 8.1. The lead-per-key configuration is

typically used when there are very few keys to be sensed. Since each key could tie up a

port pin, it is suggested that the number be kept to 16 or fewer for this keyboard type. This

configuration is the most cost effective for a small number of keys.

The X- Y matrix connections shown in Figure 8.1 are very popular when the number
of keys exceeds ten. The matrix is most efficient when arranged as a square so that N leads

for X and N leads for Y can be used to sense as many as N 2 keys. Matrices are the most

cost effective for large numbers of keys.

FIGURE 8.1 Hypothetical Keyboard Wiring Configurations

Key Key 1 Key 2 Key 3 Key 4 Key 5 Key 6 Key 7

• «-lf •-!• *-!• «-J# ©-If •"-»• #-!• «-J

Common

Key 8 Key 9 Key A Key B Key C Key D Key E Key F

f »Jf »-ly »-ly •-ly #Jy •-!
f

#Jy «J

(a) Lead • Per - Key Keyboard

RowO

Rowl

Row 2

Row 3

KeyO Keyl

L
Key 2 Key 3

1
Key 4

1
Key 8

1_T
KeyC

L

1
Key 5

T -
Key 9

T -
KeyD

T

1
Key 6

1
Key A

1
KeyE

1

J
Key 7

J
KeyB

1
KeyF

J

1 2

Columns

(b)X-Y Matrix Keyboard

Continued

134 CHAPTER EIGHT

FIGURE 8.1 Continued

KeyO

J

Common

Key 4

M
Key 8

KeyC

Key 1 Key 2 Key 3

J I l

T T t T T T I

Key 5

H
Key 9

l

KeyD

Key 6

1

H
Key A

i

KeyE

L

T T

i

Key 7

H
KeyB

L

KeyF

I

Rows

Columns

(c) Coded Keyboard

Coded keyboards were evolved originally for telephonic applications involving touch-

tone signaling. The coding permits multiple key presses to be easily detected. The quality

and durability of these keypads are excellent due to the high production volumes and in-

tended use. They are generally limited to 16 keys or fewer, and tend to be the most expen-

sive of all keyboard types.

Programs for Keyboards

Programs that deal with humans via keyboards approach the human and keyswitch factors

identified in the following manner:

Bounce: A time delay that is known to exceed the manufacturer's specification is

used to wait out the bounce period in both directions.

Multiple keys: Only patterns that are generated by a valid key pressed are ac-

cepted— all others are ignored—and the first valid pattern is accepted.

APPLICATIONS 135

Key held: Valid key pattern accepted after valid debounce delay; no additional keys

accepted until all keys are seen to be up for a certain period of time.

Rapid key hit: The design is such that the keys are scanned at a rate faster than any

human reaction time.

The last item brings up an important point: Should the keyboard be read as the pro-

gram loops (software polled) or read only when a key has been hit (interrupt driven)?

In general, the smaller keyboards (lead-per-key and coded) can be handled either

way. The common lead can be grounded and the key pattern read periodically. Or, the

lows from each can be active-low ORed, as shown in Figure 8.2, and connected to one of

the external INTX pins.

Matrix keyboards are scanned by bringing each X row low in sequence and detecting

a Y column low to identify each key in the matrix. X-Y scanning can be done by using

dedicated keyboard scanning circuitry or by using the microcontroller ports under pro-

gram control. The scanning circuitry adds cost to the system. The programming approach

takes processor time, and the possibility exists that response to the user may be sluggish if

the program is busy elsewhere when a key is hit. Note how long your personal computer

takes to respond to a break key when it is executing a print command, for instance. The

choice between adding scanning hardware or program software is decided by how busy the

processor is and the volume of entries by the user.

FIGURE 8.2 Lead-per-Key and Coded Keyboard Interrupt Circuits

To Port Pins

KeyO

Key 1

Common Lead

Lead -Per -Key

Keyboard

KeyF

AAAr + 5V

VW •+5V

To INTX

W •+5V

Common Lead

Two-Of-Eight 5
Coded Keyboard g

7

8

To Port Pins + 5V

A/W W*—
AWV

AAA^

To INTX

To Port Pins

136 CHAPTER EIGHT

A Scanning Program for Small Keyboards

Assume that a lead-per-key keyboard is to be interfaced to the microcontroller. The key-

board has ten keys (0-9), and the debounce time, when a key is pressed or released, is 20

milliseconds. The keyboard is used to select snacks from a vending machine, so the pro-

cessor is only occupied when a selection is made. The program constantly scans the key-

board waiting for a key to be pressed before calling the vending machine actuator sub-

routine. The keys are connected to port 1 (0-7) and ports 3.2 and 3.3 (8-9), as shown in

Figure 8.3.

The 8031 works best when handling data in byte-sized packages. To save internal

space, the ten-bit word representing the port pin configuration is converted to a single-byte

number.

Because the processor has nothing to do until the key has been detected, the time

delay "Softime" (see Chapter 7) is used to debounce the keys.

Getkey

The routine "Getkey" constantly scans a ten-key pad via ports and 3. The keys are

debounced in both directions and an "all-up" period of 50 milliseconds must be seen be-

fore a new key will be accepted. Invalid key patterns (more than one port pin low) are

rejected.

FIGURE 8.3 Keyboard Configuration for "Getkey" and "Inkey" Programs

KeyO

4

8031

APPLICATIONS 137

ADDRESS

getkey:

scan:

wait

:

MNEMONIC
.equ bounce, 14h
.equ next,32h

.equ newkey,70h

.equ flag.OOh

.org OOOOh
mov pl,#Offh
mov p3,#0ffh
acall keydown
jz scan
acall convert

jbc flag, scan
mov newkey,a

mov a,#bounce
acall softime
acall keydown
jz scan

acall convert

jbc flag, scan
cjne a, newkey , scan
acall vendit
acall keydown
jnz wait
mov a,#next

acall softime
acall keydown
jnz wait
sjmp scan

COMMENT
set debounce delay to 20d ms
set interval between keys to

50d ms
store accepted key in internal RAM
addressable bit 00 used as a flag

;set ports 1 and 3 as inputs

keydown looks for any key(s) down
if A = then no key(s) down; loop
convert returns flag set if not
valid
or A set to 00 to 09 for keys 0-9
store key and wait for debounce
time
then check to see if same key
wait 20 ms

see if a key is still down
if not down then must have been
noise
see if key is still valid and
matches
the original key found
check for equal
call vending machine subroutine
now wait for all keys to go up
wait until A = 00 : keys all up
wait 50d ms and see if all
still up

continue until keys are up
loop until keys up for 50d ms
get next key

"keydown" gets the contents of PI and P3 pins, which are connected
to the keys, and checks for any zero bits; no check is made to see
if more than one bit is low

;get state of PI keys to R0
;get state of P3 keys to A

;make bits 0,1, and 4-7 a one
; check for any one or more keys
;down
;A = FFh if all keys up, now 00
;if A not 00 then at least one key
;down

keydown: mov r0.pl
mov a,p3
orl a,#0f3h
anl a,r0

cpl a

ret

Continued

138 CHAPTER EIGHT

ADDRESS MNEMONIC COMMENT
Continued

"convert" checks for more than one key down; if more than one key
is down then addressable bit "flag" is set; if only one key is
down then the one-of-ten bit pattern is converted to an
equivalent 0-9 number in the A register and "flag" is reset
valid patterns (a single out of ten bits) are found by CJNE
operations; A is counted up for each test to match the key number

convert

one

:

two

:

three

:

four:

five :

six

:

seven

:

eight

:

nine

:

good:
check3

:

clr flag
clr a

mov rl.pl
mov r3

,
p3

orl 03h,#0f3h
cjne rl,#0feh,one
sjmp check3
inc a

cjne rl,#0fdh,two

sjmp check3
inc a

cjne rl,#0fbh, three
sjmp check3
inc a

cjne rl,#0f7h,four
sjmp check3
inc a

cjne rl,#0efh, five
sjmp check3
inc a

cjne rl,#Odfh,six
sjmp check3
inc a

cjne rl , #0bfh , seven
sjmp check3
inc a

cjne rl,#7fh,eight
sjmp check3
inc a

cjne r3 , #0fdh , nine
jnb p3.3 bad
sjmp good
inc a

cjne r3,#0f7h,bad
ret

jnb p3.3,bad

jnb p3.4,bad
sjmp good

assume that key hit is valid
A contains first possible key (00
get PI key pattern in Rl
get P3 key pattern in R3
make r3 bits 0,1 and 4-7 a one
search Rl for a legal pattern
check R3 for no key down
A contains next key possible (01)
continue this for all valid
patterns

A ^ 02

A ^ 03

A = 04

A ^ 05

A = 06

07

A « 08
now look for a key in R3
check that key 9 is up

A = 09
redundant check

if Rl has a low then P3 must be
high

Continued

APPLICATIONS 139

ADDRESS MNEMONIC
bad: setb flag

ret

softime: ret
vendit

:

ret
. end

COMMENT -

COMMENT
; signal an invalid key pattern

;simulate "softime" subroutine
;simulate "vendit" subroutine

The "convert" subroutine is looking for a single low bit. The CJNE patterns all have one bit low

and the rest high.

Multiple keys are rejected by "convert." Held keys are ignored as the program waits for a 50d

millisecond "all keys up" period before admitting the next key. The program loops so quickly

that it is humanly impossible to hit a key so that it can be missed.

The main program is predominantly a series of calls to subroutines which can each be written

by different programmers. Agreement on what data is passed to and received from the sub-

routines is essential for success, as well as a clear understanding of what 8051 registers and

memory locations are used.

Interrupt-Driven Programs for Small Keyboards

If the application is so time sensitive that the delays associated with debouncing and await-

ing an "all-up" cannot be tolerated, then some form of interrupt must be used so that the

main program can run unhindered.

A compromise may be made by polling the keyboard as the main program loops, but

all time delays are done using timers so that the main program does not wait for a software

delay. The "Getkey" program can be modified to use a timer to generate the delays associ-

ated with the key down debounce time and the "all-up" delay. The challenge associated

with this approach is to have the program remember which delay is being timed out. Re-

membering which delay is in progress can be handled using a flag bit, or one timer can be

used to generate the key-down debounce delay, and another timer to generate the key-up

delay. The flag approach is examined in the example given in this section.

The important feature of the program is that the main program will check a flag to

see whether there is any keyboard activity. If the flag is set, then the program finds the

key stored in a RAM location and resets the flag. The getting of the key is "transparent"

to the main program; it is done in the interrupt program. The keyboard is still polled by

the main program, but the interrupt program gets the key after that. The program named
"Hardtime" from Chapter 7 is used for the time delay. The keyboard user may notice

some sluggishness in response if the main program takes so long to loop that the keyboard

initiation sequence is not done every quarter-second or so.

Inkey

The program "lnkey" uses hardware timer Tl to generate all time delays. The keyboard

sequence is initiated when a key is found to be down; otherwise, the program continues

and checks for a key down in the next loop. A key down initiates a debounce time delay in

timer Tl and sets a timer flag to notify the interrupt program of the use of the timer. The

interrupt program checks that a key is still down and is valid. Valid keys are stored, and a

flag is set that may be tested by the main program. The interrupt program then begins the

key-up delay and sets the timer flag to signify this condition. After each key-up delay, the

interrupt program checks for all keys up. The time delay is reinitialized until all keys are

up and the timer interrupts are halted.

140 CHAPTER EIGHT

ADDRESS

inkey

:

MNEMONIC
. equ newkey,70h
.equ flag,00h
.equ newflg, Olh

.equ timflg, 02h

. equ bounce, 14h

.equ next,32h

. equ savetime.OOlOh

.org OOOOh

.sjmp over

COMMENT
; store any new key in RAM
addressable bit 00 used as a flag
; when newflg = 1 then there is

; a key
;timflg = for debounce, 1 for
; delay
;set debounce delay to 20d ms
;set interval between keys to

; 50d ms
; external RAM address for delay

;jump over interrupt locations

when Tl times out it vectors here and jumps to "hardtime" for the
desired delay. When the delay is up then the key program is called.

userdly

:

.org OOlbh
ljmp hardtime
acall usertime
reti

the main program begins here;
is a new key to be processed,
a key read is in progress

over

:

begin

mov pl,#0ffh
mov p3,#0ffh
clr newflg
clr flag
clr timflg
jbc newflg, key

jb tcon.6,mainprog
acall keydown
jz mainprog

acall convert
jz mainprog

mov newkey ,

a

clr timflg

mov dptr,#savetime
mov a, #bounce
movx @dptr ,a

inc dptr
mov a,#00h
movx @dptr,a

; interrupt location for TF1
;jump to time delay subroutine
;call usertime if delay done
; return to program when usertime
; done

the keyboard is scanned unless there
or Tl is counting, signifying that

;set ports 1 and 3 as inputs

; initialize all flags

; check if a key is waiting and
;get it

;if Tl is running then wait
; keydown looks for any key(s) down
;if A = then no key(s) down;

; go on
; check for a valid key
;
go on with main program if not

; valid
; store key and start debounce timer
;signal interrupt program Tl
; running
:

point to delay address
set 20 ms delay

point to next byte

desired delay now stored

Continued

APPLICATIONS 141

ADDRESS

key:
mainprog:

MNEMONIC
orl ie,#88h
acall startime
sjmp mainprog
mov a.newkey
sjmp begin

COMMENT
;enable interrupts and Tl interrupt
; start time delay go to mainprog

;get key and use in main program
; simulate main program and
;loop back

#»»*##*###*#»*#***#**#* CONVERT ******************************

"convert" checks for more than one key down; if more than one key
is down then addressable bit "flag" is set; if only one key is
down then the one-of-ten bit pattern is converted to an
equivalent 0—9 number in the A register and "flag" is reset
valid patterns (a single out of ten bits) are found by CJNE
operations; A is counted up for each test to match the key number

convert

one

two

three

four

five

six:

seven

eight:

nine:

clr flag
clr a

mov rl,pl
mov r3

, p3
orl 03h,#0f3h
cjne rl,#0feh,one
sjmp check3
inc a

cjne rl,#0fdh,two

sjmp check3
inc a
cjne rl,#0fbh, three
sjmp check3
inc a

cjne rl,#0f7h, four
sjmp check3
inc a

cjne rl , #0efh, five
sjmp check3
inc a
cjne rl,#0dfh,six
sjmp check3
inc a

cjne rl, #0bfh, seven
sjmp check3
inc a

cjne rl ,#7fh, eight
sjmp check3
inc a
cjne r3, #0fdh, nine
jnb p3.3 bad
sjmp good
inc a

cjne r3,#0f7h,bad

; assume that key hit is valid
;A contains first possible key (00
;get Fl key pattern in Rl
;get F3 key pattern in R3
;make R3 bits 0,1 and 4—7 a one
;search Rl for a legal pattern
; check R3 for no key down
;A contains next key possible (01)
;continue this for all valid
;patterns

;A = 02

A = 03

A = 04

A = 05

A = 06

;A = 07

;A = 08
; now look for a key in R3
; check key 9 is up

;A = 09
; redundant check

Continued

142 CHAPTER EIGHT

ADDRESS
Continued

good:

check3:

bad:

MNEMONIC

ret

jnb p3 .3, bad

jnb p3.4,bad
sjmp good
setb flag
ret

COMMENT

if Rl has a low then P3 must
be high

signal an invalid key pattern

»*****###*#*#»*»»*#**-»##»* HARDTIME *»****»*******»***«»»***»*»**

"hardtime" will count the interrupts generated by Tl until the
number placed in RAM location "savetime" is zero

hardtime

aff

:

done

:

sava:

push ace
push dph
push dpi
mov dptr, #savetime
movx a, @dptr
dec a

cjne a,#00h,aff
movx @dptr,a
inc dptr
movx a, @dptr
jz done
sjmp sava
cjne a,#Offh,sava
movx @dptr , a

inc dptr
movx a, @dptr
dec a

sjmp sava
pop dpi
pop dph
pop ace
Ijmp userdly
movx @dptr,a
pop dpi
pop dph
pop ace
acall startime
reti

save registers to be used

get pointer to time delay number
count delay number down to 0000
;low byte first
; check for 0000
; save low byte = 00
;get high byte and look for 00

done if low byte = high byte = 00
not 0000, reset Tl and delay again
if low byte is FF then dec high
save low byte = FF
point to high byte
count high byte down

save the high byte
delay is finished
restore all registers used

continue at user delay program
delay is not up, save the byte
restore saved registers

start Tl for next 1 ms delay
return to place in user program

****#«-#**#«.*****##*##**###«-*## KEYD0WN ******************************

"keydown" gets the contents of PI and P3 pins that are connected
to the keys and checks for any zero bits; no check is made to see
if more than one bit is low

keydown: mov r0.pl ;get state of PI keys to R0

Continued

APPLICATIONS 143

ADDRESS MNEMONIC
mov a,p3
orl a,#0f3h
aril a,rO

cpl a

ret

##********###****#****#»#*

"startime" initializes timer

startime: mov thl, #Ofah
mov til. #0cbh

anl tmod,#0fh
orl tmod,#40h
orl tcon,#40h
ret

COMMENT
;get state of P3 keys to A
;make bits 0,1, and 4-7 a one

; check, for any one or more
;keys down
;A = FFh if all keys up, now 00
;if A not 00 then one or more down

STARTIME *****************************

1 and enables timing to begin

;set Tl for a I ms delay
; {see "Timer" example in

; Chapter 7)

; clear Tl part of TM0D
;set Tl to timer mode 1

;start timer 1

; return to calling program

a-*-****-****************-******* STOPTIME *************************-****

" stoptime " disables Tl

stoptime: anl tcon,#0bfh
ret

;stop timer Tl

»»***»***»*»####»#**##*#»# USERTIME *****************************

"usertime, " the user program called from the interrupt program after
hardtime has timed out, will process the key and set the 50d ms
delay if the key was valid

usertime: acall stoptime
jb timflg.keyup
acall keydown
jz goback
acall convert
jbc flag, goback
cjne a.newkey, goback
setb newflg

delay: mov dptr , #savetime
mov a,#next
movx @dptr,a
inc dptr
mov a,#00h
movx @dptr,a
orl ie,#88h
acall startime
setb timflg

goback: ret

stop timer and determine Tl use
if a delay then see if keys up
see if a key is still down
if not down then must be noise
see if key is valid and matches
the original key found

set new key flag for main program
point to delay address
set 50d ms delay

point to next byte

desired delay now stored
enable interrupts and Tl interrupt
start time delay
set flag for delay condition

Continued

144 CHAPTER EIGHT

ADDRESS
Continued

keyup:

MNEMONIC

acall keydown
jnz delay
sjmp goback
. end

COMMENT

;see if keys are up after delay
;if not then delay again
; return with Tl stopped

£>— COMMENT
This program is large enough to require additional attempts to make it legible. All of the sub-

routines are arranged in alphabetical order.

Codekey

The completely interrupt-driven small keyboard example given in this section requires no

program action until a key has been pressed. Hardware must be added to attain a com-

pletely interrupt-driven event. The circuit of Figure 8.4 is used.

FIGURE 8.4 Keyboard Configuration Used for "Codekey" Program

Two-Of-Four
Coded Keyboard

Common

+ 5V

12 ONTO)

8031

Keyboard Code

Key Pins Low

1

2

3

1 5

2 5

3 5

4 5

4

5

6
7

1 6
2 6

3 6
4 6

8 1 7

9 2 7

APPLICATIONS 145

The keyboard is a two-of-eight type which codes the ten keys as follows:

KEY CODE(HEX)

EE

1 ED

2 EB

3 E7

4 DE

5 DD
6 DB

7 D7
8 BE

9 BD

An inspection of the code reveals that each nibble has only one bit that is low for each

key and that two of the eight bits are uniquely low for each key. If more than one key is

pressed, then three or more bits go low, signaling an invalid condition. This popular

scheme allows for up to 16 keys to be coded in this manner. Unlike the lead-per-key

arrangement, only four of the lines must be active-low ORed to generate an interrupt.

The hardware serves to detect when any number of keys are hit by using an AND gate

to detect when any nibble bit goes low. The high-to-low transition then serves to interrupt

the microcontroller on port 3.2 (INTO). The interrupt program reads the keys connected to

port 1 and uses timer TO to generate the debounce time and Tl for the keys-up delay. The
total delay possible at 16 megahertz for the timers is 49.15 milliseconds, which covers the

delay times used in the previous examples.

The program "Codekey" which is interrupt driven by a high-to-low transition on

INTO. Timers TO and Tl generate the debounce and delay times in an interrupt mode.

The INTO interrupt input is disabled until all keys have been seen up for the Tl delay.

A lookup table is used to verify that only one key is pressed.

ADDRESS

codekey:

keyint

:

timO:

MNEMONIC
.equ newkey,70h
. equ base,400h
.equ newflg.OOh
.org OOOOh
sjmp over
.org 0003h
sjmp keyint
.org OOObh
sjmp timO
.org OOlbh
sjmp timl
mov tl0,#0d4h
mov th0,#97h
setb tcon.4
clr ie.O
reti

push ace
push dpi

COMMENT
; store a new key in RAM
;base of lookup table
; addressable bit 00 for new key flag

;jump over interrupt locations
;this is the INTO interrupt vector

; timer TO interrupt vector

; timer Tl interrupt vector

;set TO for 20 ms delay
; count from 97D4h to 0000
; start timer TO
; disable INTO interrupt
; enable interrupt structure and
; return
; save registers used

Continued

146 CHAPTER EIGHT

ADDRESS
Continued

good:

Timl:

wait

:

over

:

simulate

key:

MNEMONIC

push dph
clr tcon.4
mov a, pi
mov dptr , #base
move a, @a+dptr
cjne a,#0ffh,good
pop dph
pop dpi
pop ace
setb ie.O
reti

mov newkey.a
setb newflg
anl tll,#00h
anl thl.#00h
setb tcon.6
pop dph
pop dpi
pop ace
reti

push ace
clr tcon.6
mov a, pi
cjne a,#Offh,wait
setb ie.O
pop ace
reti

anl tll,#00h
anl thl,#00h
setb tcon.6
pop ace
reti
mov tcon,#01h
mov ie,#8bh
mov tmod,#llh
jbc newflg, key
sjmp simulate
mov a.newkey
sjmp simulate
.org 04bdh

.db 09h

.db 08h

COMMENT

;stop TO
;get key pattern
;set DPTR to point to lookup table
;not valid = FFh

enable INTO interrupt
enable interrupt structure and
return
store the newkey
signal main program; new key present
set Tl for maximum delay (49.1 ms)

start timer Tl
restore retgisters

enable interrupt structure and
return
save A

stop Tl
see if keys up yet
all inputs will be high if all up
enable INTO for next key

restart Tl and delay again

start Tl

return with interrupt enabled
set INTO fo r falling edge interrupt

;
enable INTO, TO, and Tl interrupts
choose timer operation; mode 1

see if there is a new key and get it

simulate rest of program
get key and simulate rest of program

place lookup table here, keys 9
and 8

Continued

APPLICATIONS 147

ADDRESS MNEMONIC
.org 04d7h
.db 07h
.org 04dbh
.db 06h
.org 04ddh
.db 05h
.db 04h
.org 04e7h
.db 03h
.org 04ebh
.db 02h
.org 04edh
.db Olh
.db OOh
. end

COMMENT
;key 7

;key 6

;keys 5 and 4

;key 3

;key 2

;keys 1 and

COMMENT
The lookup table will work only if every bit from 0400h to 04FFh that is not a .db assignment is

FFh. Most EPROMS will be FFh when erased, and the assembler will not program unspecified

locations. The table will have to be assembled so that an FFh is at every non-key location if this

is not true.

Key bounce down is eliminated by the TO delay, and key bounce up, by the T1 delay. More than

two keys down is detected by the self-coding nature of the keyboard. A held key does not

interrupt the edge-triggered INTO input.

Program for a Large Matrix Keyboard

A 64-key keyboard, arranged as an 8-row by 8-column matrix will be interfaced to the

8051 microcontroller, as shown in Figure 8.5. Port 1 will be used to bring each row low,

one row at a time, using an 8-bit latch that is strobed by port 3.2. PI will then read the

8-bit column pattern by enabling the tri-state buffer from port 3.3. A pressed key will have

a unique row-column pattern of one row low, one column low. Multiple key presses are

rejected by either an invalid pattern or a failure to match for three complete cycles. Each

row is scanned at an interval of I millisecond, or an 8 millisecond cycle for the entire

keyboard. A valid key must be seen to be the same key for 3 cycles (24 milliseconds).

There must then be three cycles with no key down before a new key will be accepted. The

1 millisecond delay between scans is generated by timer TO in an interrupt mode.

Bigkey

The "Bigkey" program scans an 8 x 8 keyboard matrix using TO to generate a periodic

I ms delay in an interrupt mode. Each row is scanned via an external latch driven by port 1

and strobed by port 3.2. Columns are read via a tri-state buffer under control of port 3.3.

Keys found to be valid are passed to the main program by setting the flag "newflg" and

placing the key identifiers in locations "newrow" and "newcol." The main program

resets "newflg" when the new key is fetched. R4 is used as a cycle counter for successful

matches and up time cycles. R5 is used to hold the row scan pattern: only one bit low.

148 CHAPTER EIGHT

FIGURE 8.5 Circuit for "Bigkey" Program

Matrix Switch Connection

Row
i

1

2

3

4

5

6

7

l_.

Row

Column

8x8 Keyboard

Column

12 3 4 5 6

23456789
1817161514131211

19

2

5

6

9

12

15

16

19

1

11

-JWW

Pullup Network

Latch Row Pattern

373 Latch

+ 5V

'541 Tri- State Buffer

12P3.2

1P1.0

2P1.1

3P1.2

4 PI.

3

5P1.4

6 PI.

5

7P1.6

8 PI.

7

8031

Hl-Z

13P3.3
Read

Columns

ADDRESS MNEMONIC
. equ newrow,70h
.equ newcol ,71h

.equ newflg,00h

COMMENT
; store any valid key row address
; store any valid key column address
;use addressable bit as a new
;key flag

Continued

APPLICATIONS 149

ADDRESS

bigkey:

MNEMONIC
.equ upflg.Olh

.org OOOOh
sjmp over

The interrupt program begins here
the next interrupt in 1 ms

.org OOObh

mov tlO,#Ocbh
mov thO,#Ofah
push ace
push psw
mov pl,r5
setb p3.2
clr p3.2
mov pl.#Offh
clr p3.3

mov a, pi

setb p3.3
jb upflg.upyet

setb c

mov r3,#08h

look: rrc a

jnc test
djnz r3,look
mov a,r5
cjne a, newrow, goback
mov newrow, #00h

mov r4,#00h
sjmp goback

test

:

cjne a,#Offh,bad
here: rrc a

djnz r3,here
cjne r4, #00h, match

newone

:

mov newcol,

a

mov newrow, r5
inc r4
sjmp goback

match: push ace
mov a,r5

COMMENT
;upflag signals start of key up
; delay

;jump over TO interrupt to main
; program

TO is reloaded to permit

vector location for TO overflow
flag
reload TO for next interrupt

; save A and the flags

;get row scan pattern to port 1

[generate a strobe to the latch

; set PI as an input port
: read buffer and see if any
;key down

:
get column pattern
:disable buffer
;if upflg = 1 then wait for
;keys up
;set C to 1 and rotate A to find
;a low
;8 rotates will restore A to
[original
; see if only one zero in A (valid)
:if C = then see if A = FFh
go until C = or rotate finished
check for a key down previous scan

if so then not repeated; zero
newrow
if so then zero R4 and scan again

; return to main program
if A not all ones then invalid key
good pattern; restore A

R4 counts pattern matches
first time seen; see if it recurs

R4 contains key detected count

save A and check R5 for a new row

Continued

150 CHAPTER EIGHT

ADDRESS
Continued

good:

unk:

unkn:

bad:

upyet

:

notup:

goback

MNEMONIC

cjne a, newrow.unk
pop ace

cjne a, newcol , unkn
inc r4

c j ne r4 , #04h , goback
mov newrow,r5
mov newcol,

a

setb newflg
setb upflg
mov r4,#00h
sjmp goback
pop ace
mov r4,#00h
sjmp newone
mov r4,#00h
sjmp goback
cjne a, #0ffh, notup
inc r4

cjne r4,#18h, goback
clr upflg
mov r4.#00h
mov a,r5
rl a

mov r5,a
pop psw
pop ace

reti

COMMENT

;if no match then this is a new key
; restore A and check for a new

; column
;if no match then this is a new key
; match: see if 24 ms have expired
;keep if seen for at least 3 cycles
; save new key row and column

;set up flag for 3 cycles up
; reset R4 to count key up cycles

; restore new column pattern to A

; reset r4 to reflect a new key
;look for matches on next cycles
; reset match counter

; look for A = FFh

; R4 now counts 3 cycle of up time
;look for 24d scans {3 cycles)

; up time done, look for next key
; reset R4
; rotate R5 low bit to next row

; restore PSW and A

the interrupt program finishes here and the main program begins;

the main program would normally get the new key row and column
patterns and convert these to a single byte number

over

:

main:

simulate

mov r5,#0feh
mov tmod,#01h
mov tl0,#0cbh
mov th0,#0fah
mov ie.#82h
setb tcon.4
mov r4,#00h
clr upflg
clr newflg
jbc newflg, simulate
sjmp main
nop

sjmp main
.end

initialize R5 for bottom row low
set TO to mode 1

set TO for a 1 ms delay
count 1333d @ .75 /xs/count

enable the TO interrupt
start timer
reset R4 for no valid key
reset key up flag
reset new key flag
get key row and column addresses
simulate main program
main program would get addresses
here

APPLICATIONS 151

COMMENT

Displays

Once begun by the main program, TO continues to time out and generate the row scan pattern

in the interrupt program. To the main program, the keys appear in some unknown way; the

interrupt program is said to run in the "background."

There is considerable adjustment (tweak) in this program to accommodate keys with various

bounce characteristics. The debounce time can be altered in a gross sense by changing the

number of cycles (R4) for acceptance and in a fine way by changing the basic row scan time (TO).

This same program can be used to monitor any multipoint array of binary data points. The array

can be expanded easily to a 16 x 16 matrix by adding one more latch and tristate buffer and

using two more port 3 pins to generate the latch and enable strobes.

Note that only A can compare against memory contents in a CJNE instruction.

If keyboards are the predominant means of interface to human input, then visible displays

are the universal means of human output. Displays may be grouped into three broad

categories:

1. Single light(s)

2. Single character(s)

3. Intelligent alphanumeric

Single light displays include incandescent and, more likely, LED indicators that are

treated as single binary points to be switched off or on by the program. Single character

displays include numeric and alphanumeric arrays. These may be as simple as a seven-

segment numeric display up to intelligent dot matrix displays that accept an 8-bit ASCII

character and convert the ASCII code to the corresponding alphanumeric pattern. Intelli-

gent alphanumeric displays are equipped with a built-in microcontroller that has been op-

timized for the application. Inexpensive displays are represented by multicharacter LCD
windows, which are becoming increasingly popular in hand-held wands, factory floor ter-

minals, and automotive dashboards. The high-cost end is represented by CRT ASCII

terminals of the type commonly used to interface to a multi-user computer.

The individual light and intelligent single-character displays are easy to use. A port

presents a bit or a character then strobes the device. The intelligent ASCII terminals are

normally serial devices, which are the subject of Chapter 9.

The two examples in this section—seven-segment anfi intelligent LCD displays

—

require programs of some length.

Seven-Segment Numeric Display

Seven-segment displays commonly contain LED segments arranged as an "8," with one

common lead (anode or cathode) and seven individual leads for each segment. Figure 8.6

shows the pattern and an equivalent circuit representation of our example, a common cath-

ode display. If more than one display is to be used, then they can be time multiplexed; the

human eye can not detect the blinking if each display is relit every 10 milliseconds or so.

The 10 milliseconds is divided by the number of displays used to find the interval between

updating each display.

The example examined here uses four seven-segment displays; the segment informa-

tion is output on port 1 and the cathode selection is done on ports 3.2 to 3.5, as shown in

152 CHAPTER EIGHT

FIGURE 8.6 Seven-Segment LED Display and Circuit

Segment Pattern

a b c d e f g

liiiiU
Common Cathode

Segment Circuit

Figure 8.7. A segment will he lit only if the segment line is brought high and the common
cathode is brought low.

Transistors must be used to handle the currents required by the LEDs, typically

10 milliamperes for each segment and 70 milliamperes for each cathode. These are aver-

age current values; the peak currents will be four times as high for the 2.5 milliseconds

each display is illuminated.

The program is interrupt driven by TO in a manner similar to that used in the program

"Bigkey." The interrupt program goes to one of four two-byte character locations and

finds the cathode segment pattern to be latched to port l and the anode pattern to be latched

to port 3. The main program uses a lookup table to convert from a hex number to the

segment pattern for that number. In this way, the interrupt program automatically displays

whatever number the main program has placed in the character locations. The main pro-

gram loads the character locations and is not concerned with how they are displayed.

Svnseg

The program "svnseg" displays characters found in locations "chl" to "ch4" on four

common-cathode seven-segment displays. Port I holds the segment pattern from the low

byte of chx; port 3 holds the cathode pattern from the high byte of chx. TO generates a

2.5 ms delay interval between characters in an interrupt mode. The main program uses a

lookup table to convert from hex to a corresponding pattern. R0 of bank one is dedicated

as a pointer to the displayed character.

APPLICATIONS 153

FIGURE 8.7 Seven-Segment Display Circuit Used for "Svnseg" Program

+ 5V

Choose R for

Brightness.

a b c d e f g

Display 1

a b c d e f g

Display 2

a b c d e f

Display 3

a b c d e f g

Display 4

Q1-Q4
8 > 1000

7 PI.

6

8031

12 P3.2

13 P3.3

14 P3.4

15 P3.5

ADDRESS

svnseg:

MNEMONIC
.equ chl,50h
.equ ch2,52h
.equ ch3,54h
.equ ch4,56h
.org OOOOh
mov sp,#0fh
sjmp over

COMMENT
.'assign RAM character locations
; two bytes per character

jump over TO interrupt location
get the stack above bank one

Continued

154 CHAPTER EIGHT

ADDRESS
Continued

MNEMONIC COMMENT

begin the interrupt-driven program at the TO interrupt location

.org OOObh
mov tlO,#Ofbh
mov th0,#0f2h
setb psw.3
mov pl,@rO
inc rO

mov p3,@r0
inc rO

cjne r0,#58h,nxt
mov rO,#chl

nxt: clr psw.3
reti

; the main program loads sample
; interrupt

.

mov a.#00h
acall convert
mov chl, a

mov a,#01h
acall convert
mov ch2,a
mov a,#02h
acall convert
mov ch3,a
mov a,#03h
acall convert
mov ch4,a
setb psw.3
mov rO,#chl
inc rO

mov @r0,#20h
inc rO

inc rO

mov @r0,#10h
inc rO

inc rO

mov @r0. #08h
inc rO

inc rO

mov @r0,#04h
mov rO.#chl
mov tlO,#Ofbh
mov th0,#0f2h

; reload TO for next interrupt

; select bank one
;place segment pattern on port 1

; point to accompanying cathode pattern
;place cathode patten on port 3

; check for fourth character

;if ch4 just displayed go to chl
; return to register bank
; return to main program
characters and starts the TO

;use an example sequence of 0, 1, 2, 3

; convert to segment pattern and store

last segment pattern stored
select register bank one
set RO to point to chl RAM location
now load anode pattern for chl
set anode for character 1 only high
point to next character and continue
load ch2 pattern

load ch3 pattern

load ch4 pattern

point to RAM address for chl
load TO for first interrupt

Continued

APPLICATIONS 155

ADDRESS

here

:

MNEMONIC
mov tmod,#01h
mov ie,#82h
setb tcon.4
clr psw.3
sjmp here

COMMENT
;set TO to mode 1

; enable TO interrupt
;start timer
; return to register bank
;loop and simulate rest of program

convert uses the PC to point to the base of the 16-byte table

convert

:

inc a

mov a,@pc + a

ret
.db cOh
.db f9h

.db a4h

.db bOh

.db 99h

.db 92h

.db 82h

.db f8h

.db fOh

.db 98h

.db 88h

.db 83h

.db c6h

.db blh

.db 86h

.db 8eh

. end

compensate for RET byte
get byte
return with segment pattern in A

1

2

3

4
5

6

7
8

9

A

b
C

d

E
F

COMMENT
Using bank 1 3S a dedicated bank for the interrupt routine cuts down on the need for pushes

and pops. Bank 1 may be selected quickly, giving access to the eight registers while saving

the bank registers. Note that the stack, at reset, points to RO of bank 1 , so that it must be

relocated.

The intensity of the display may also be varied by blanking the displays completely for some
interval using the program.

Intelligent LCD Display

In this section, we examine an intelligent LCD display of two lines, 20 characters per line,

that is interfaced to the 8051. The protocol (handshaking) for the display is shown in

Figure 8.8, and the interface to the 8051 in Figure 8.9.

The display contains two internal byte-wide registers, one for commands (RS = 0) and

the second for characters to be displayed (RS = 1). It also contains a user-programmed

RAM area (the character RAM) that can be programmed to generate any desired character

that can be formed using a dot matrix. To distinguish between these two data areas, the

hex command byte 80 will be used to signify that the display RAM address OOh is chosen.

156 CHAPTER EIGHT

FIGURE 8.8 Intelligent LCD Display

G +5 -5

11111111 111
DO Dl 02 D3 D4 05 D6 D7 RS R/W EN

Intelligent LCD Display

BIT RS R/W D7 D6 D5 D4 D3 D2 D1 DO

1

1

1 1/0 s

DL

S/C R/L

N

1 Character address

1 Display data address

1 BF Current address

1 Character byte

1 1 Character byte

Function

Clear LCD and memory, home cursor

Clear and home cursor only

Screen action as display character written

S = 1/0: Shift screen/cursor

I/O = 1 /O: Cursor R/L, screen L/R

D = 1/0: Screen on /off

C = 1/0: Cursor on/off

B = 1/0: Cursor Blink/Noblink

S/C = 1/0: Screen/Cursor

R/L = 1/0: Shift one space R/L

DL = 1/0: 8/4 Bits per character

N = 1/0; 2/1 Rows of characters

F = 1/0; 5X10/5X7 Dots/Character

Write to character RAM Address after ihr

Write to display RAM Address after thr,

BF = 1/0: Busy/Notbusy

Write byte to last RAM chosen

Read byte from last RAM chosen

Port 1 is used to furnish the command or data byte, and ports 3.2 to 3.4 furnish rruK

ter select and read/write levels.

The display takes varying amounts of time to accomplish the functions listed in Hi*

ure 8.8. LCD bit 7 is monitored for a logic high (busy) to ensure the display is not <m r

written. A slightly more complicated LCD display (4 lines x 40 characters) is cunvntk

being used in medical diagnostic systems to run a very similar program.

Lcdisp

The program "lcdisp" sends the message "hello" to an intelligent LCD display shown in

Figure 8.8. Port 1 supplies the data byte. Port 3.2 selects the command (0) or dai;i 1 1

1

registers. Port 3.3 enables a read (0) or write (1) level, and port 3.4 generates an actiw

low-enable strobe.

APPLICATIONS 157

FIGURE 8.9 Intelligent LCD Circuit for "Lcdisp" Program

_ +5V -5V

Mi
1 2 3

Two Line x 20 Character

Intelligent LCD Display

14 13 12 11 10 9

D7 D6 D5 D4 D3 D2 Dl DO R/W RS

EN

Enable Low

14P3.4

8031

12P3.2
13P3.3

1P1.0

2P1.1

3P1.2

4P1.3
5P1.4

6P1.5

7P1.6

8P1.7

ADDRESS

lcdisp:

MNEMONIC
.org OOOOh
clr p3.2
clr p3.3
mov a,#3fh
acall strobe

mov a,#Oeh
acall strobe
mov a , #06h
acall strobe
mov a,#01h
acall strobe

setb p3.2
mov a,#'h'
acall strobe
mov a,#'e'
acall strobe
mov a,#'l'
acall strobe
acall strobe
mov a,#'o'
acall strobe

COMMENT

;select the command register

; select write level

; command 8 bits/char., 2 rows, 5 x 10

; strobe command to display

; command screen and cursor on, no blink

; command cursor right as data displayed

; clear all and home cursor

; select display data RAM register
;say "hello"

Continued

158 CHAPTER EIGHT

ADDRESS MNEMONIC
Continued

here

:

sjmp here

COMMENT

; message sent

the subroutine "strobe" is used to check for a display busy
condition, and pulse P3.3 high-low-high to enable the display
write or read

strobe

:

wait

:

mov pl,#Offh
setb p3.3
setb p3.4
clr p3.4
jb pi. 7, wait
setb p3.4
clr p3.3
setb p3.2
mov pi,

a

clr p3 .

4

setb p3.4
clr p3.2
ret
. end

configure port 1 as an input
set read level
generate read strobe

: enable the display
check for busy when BF = 1

end of read strobe
write character to display
choose data RAM
character to port 1

generate write strobe

return with display as before call

{>— COMMENT
If long character strings are to be displayed, then a subroutine could be written that receives

the beginning address of the string. The subroutine then displays the characters until a unique

"end-of-string" character is found.

Pulse Measurement

Sensors used for industrial and commercial control applications frequently produce pulses

that contain information about the quantity sensed. Varying the sensor output frequency,

using a constant duty cycle but variable frequency pulses to indicate changes in the mea-

sured variable, is most common. Varying the duration of the pulse width, resulting in

constant frequency but variable duty cycle, is also used. In this section, we examine pro-

grams that deal with both techniques.

Measuring Frequency

Timers TO and Tl can be used to measure external frequencies by configuring one timer as

a counter and using the second timer to generate a timing interval over which the first can

count. The frequency of the counted pulse train is then

Unknown frequency — Counter/timer

For example, if the counter counts 200 pulses over an interval of . 1 second generated by

the timer, the frequency is

UF = 200/. 1 = 2000 Hz

APPLICATIONS 159

Certain fundamental limitations govern the range of frequencies that can be mea-

sured. An input pulse must make a l-to-0 transition lasting two machine cycles, or f/24,

to be counted. This restriction on pulse deviation yields a frequency of 667 kilohertz using

our 16 megahertz crystal (assuming a square wave input).

The lowest frequency that can be counted is limited by the duration of the time inter-

val generated, which can be exceedingly long using all the RAM to count timer rollovers

(49. 15 milliseconds x 2 A 32768). There is no practical limitation on the lowest frequency

that can be counted.

Happily, most frequency variable sensors generate signals that fall inside of to

667 kilohertz. Usually the signals have a range of 1 ,000 to 10,000 hertz.

Our example will use a sensor that measures dc voltage from to 5 volts. At V the

sensor output is 1 ,000 hertz, and at full scale, or 5 volts, the sensor output is 6,000 hertz.

The correspondence is 1 volt per 1 ,000 hertz, and we wish to be able to measure the volt-

age to the nearest .01 V, or 10 hertz of resolution (assuming the sensor is this accurate).

A timing interval of I second generates a frequency count accurate to the nearest 1 hertz,

so an interval of . 1 s yields a count accurate to the nearest 10 hertz.

Another way to arrive at the desired timing interval, T, is to note that the desired

accuracy is

.01 V I I

= .002 = = —
5 V 512 29

and that the range of the counter is from T x fmin to T x fmax, or a range of T x

(fmax — fmin) from zero to full scale. The resolution of each counter bit is then

T x (fmax — fmin)
LSB —

2 n

where n is the desired number of bits to be resolved. For our example, T = 512/5000 —

. 1024 seconds; . I second yields a slightly better accuracy.

From earlier tries at generating decimal time delays in Chapter 7, it has been amply

demonstrated that these cannot be done perfectly using a 16 megahertz crystal (.75 micro-

second count interval). We will be close enough to meet our requirements.

Tl is used in the auto-reload mode 2 to generate overflow interrupts every 1 92 micro-

seconds (256 x .75 microseconds). These overflows are counted using R4 and R5 until

.100032 seconds have elapsed (521d overflows). For this example, TO is used as a counter

to count the external frequency that is fed to the port 3.4 (TO) pin during the Tl interval.

Using the interval chosen, the range of counts in TO becomes

0V = 1000 Hz x .100032 s = lOOd counts

5V = 6000 Hz x . 100032 s = 600d counts

.01 V = 10Hz x .100032 s = 1 count

which meets the desired accuracy specification.

Freq

The program "freq" uses TO to count an external pulse train that is known to vary in

frequency from 1000 to 6000 hertz. Tl generates an exact time delay of 192 microseconds

that is counted using registers R4 and R5 of bank I until Tl has overflowed 521d times, or

a total delay of . 100032 seconds.

160 CHAPTER EIGHT

ADDRESS

freq:

MNEMONIC
.equ frqflg.Ofh
.org OOOOh
mov sp,#0fh
sjmp over

COMMENT
;use addressable bit for a flag

;set stack above register bank one

; jump over the Tl interrupt location

Tl will overflow and vector here; R4 and R5 will be used as a

combined 16-bit counter to count the 52 Id overflows; the extra
microseconds needed to detect end of count and stop TO will
introduce a slight error

timup

go:

.org OOlbh
setb psw .

3

djnz r4. timup

dec r5
cjne r5,#0fdh,go
cjne r4,#0f7h, go

clr tcon.4
setb frqflg

clr tcon.6
clr psw.

3

reti

place program at Tl interrupt vector
switch to register bank 1

count R4 down and test for 521d
counts

count down from 0000 to FDF7h
209h = 521d
stop TO and set frqflg
main program can now process
frequency
stop Tl
return to register bank zero
total extra time to stop TO =

8.25 /is

209h

the main program sets up TO to be a counter and starts Tl ; the

flag frqflg is then watched until it is set by the interrupt
program; the main program must do this every time a frequency read
is desired; if continuous frequency determinations are desired by
the main program, then the interrupt program could call a subroutine
frequency handling program inserted before "go" in place of the
instruction that stops Tl.

over

:

simulate

getfrq:

setb psw.

3

mov r4,#00h
mov r5,#00h
clr psw.

3

mov tmod,#25h
mov tll,#00h
mov thl,#00h
mov tcon,#50h
mov ie,#88h
jbc frqflg, getfrq
sjmp simulate
nop
sjmp simulate
. end

;select register bank one
: reset R4 and R5

: restore to register bank zero
Tl mode 2 timer, TO mode 1 counter
count up from 00 and reset
reload with 00
start TO and Tl
enable Tl to interrupt
simulate main program getting data

place frequency subroutine here

APPLICATIONS 161

COMMENT
The longer the time taken to count, the more accurate the frequency will be (but remember, it

makes little sense to make the readout more accurate than the basic sensor). TO will overflow

at 65,535 or at the end of an interval of 10.92 s at fmax, which can be generated in T1 and R4,

R5. In this case, the accuracy would be to the nearest .09 hertz (.0001 volt).

If you wish to generate a delay closer to .1 s than used in the example, make T1 cycle in a

shorter period of time and count these shorter periods in R4, R5. Compensate for the 8.5 micro-

seconds it takes for the interrupt routine to determine that time is up.

Preloading TO with a number that causes TO to overflow to 0000 when fmin is present during T

will enable TO to read the voltage directly. For our example, presetting TO to FF9Ch will have

TO = 01F4h (500d) at fmax = 60,000 hertz for T = .1 s.

Pulse Width Measurement

Theoretically, if the input pulse is known to be a perfect square wave, the pulse frequency

can be measured by finding the time the wave is high (Th). The frequency is then

1

UF -
Th x 2

If Th is 200 microseconds, for example, then UF is 2500 hertz. The accuracy of the mea-

surement will fall as the input wave departs from a 50 percent duty cycle.

Timer X may be configured so that the internal clock is counted only when the corre-

sponding INTX pin is high by setting the GATE X bit in TMOD. The accuracy of the

measurement is within approximately one-half of the timer clock period, or .375 micro-

second for a 16 megahertz crystal. This accuracy can only be attained if the measurement

is started when the input wave is low and stopped when the input next goes low. Pulse

widths greater than the capacity of the counter, which is 49.152 milliseconds for a

16 megahertz crystal, can be measured by counting the overflows of the timer flag and

adding the final contents in the counter.

For the example in this section, the sensor used to measure the volt to 5 volts dc

voltage has a fixed frequency of !000 hertz or a period of 1 ms. For a volt input, the

sensor is high for 400 microseconds and low for 600 microseconds; when the sensor input

is 5 volts, the output is high for 900 microseconds and low for 100 microseconds. Each

volt represents 100 microseconds of time; the accuracy of the measurement is ±.00325

volts, which is within the specification of .01 volt.

To make the measurement, TO will be configured to count the internal clock when
INTO is high. The measurement is not started until INTOgoes from high to low, leaving a

minimum of 100 microseconds to start TO. The measurement is made while INTO is high

and stopped when INTO goes low again. The whole process can be interrupt driven by

using the interrupt flag associated with INTO. The IE0 flag can be set whenever INTO goes

from high to low to notify the program to start the pulse width timing and then to stop. A
variation of this program is currently in use to measure fabric width by measuring the

reflection time of a scanning laser.

Width

The program "Width" measures the width of pulses that are fed to the INTO pin, port 3.2

and that are known to vary from 400 to 900 microseconds. The program starts when the

interrupt flag IE0 is set and stops the next time the flag is set, indicating one complete

cycle of the input wave.

162 CHAPTER EIGHT

ADDRESS

width:

MNEMONIC
.equ wflg.OOh
.org OOOOh
sjump over

COMMENT
; flag set to notify main program

;jump over INTO flag vector location

the INTO edge triggered flag will vector here

stop:

.org 0003h
jbc tcon.4, stop
setb tcon.4
clr wflg
reti
setb wflg
reti

if TO is running, stop TO
if TO is not running, enable TO
reset wflg until next measurement
return with TO enabled
set flag for main program
return with TO stopped

the main program resumes here; the program monitors the flag that
indicates that a width measurement has just been made

over

:

simulate

getw:

;mov tmod,#09h
mov tcon,#01h
mov tlO,#0Oh
mov thO,#0Oh
mov ie,#81h
jbc wflg, getw
sjmp simulate
nop
mov tlO,#0Oh
mov th0,#00h
sjmp simulate
. end

;set TO to count when INTO high
; enable edge trigger for INTO
; reset TO

; enable external interrupt
;look. for wflg and get width

; real program would read TO for width
; reset TO

; simulate main program

£>^- COMMENT
If there is a considerable amount of electrical noise present on the INTO pin, an average value

of the pulse width could be found by measuring the widths of a number of consecutive pulses.

A counter could be incremented at the end of each cycle and the sum of the widths divided by

the counter contents. The noise should average to zero.

Frequency can be measured by timing the interval of a number (M) of high-to-low INTX inter-

rupts. Synchronize the timing by starting the timer at the first transition, and stop the timer at

the Mth + 1 transition. The frequency is then

M
UF= T

where T is the count in the timer.

D/A and A/D Conversions

Conversion between the analog and digital worlds requires the use of integrated circuits

that have been designed to interface with computers. Highly intelligent converters are

commercially available that all have the following essential characteristics:

APPLICATIONS 163

Parallel data bus: tri-state, 8-bit

Control bus: enable (chip select), read/write, ready/busy

The choice the designer must make is whether to use the converter as a RAM memory
location connected to the memory busses or as an I/O device connected to the ports. Once
that choice is made, the set of instructions available to the programmer becomes limited.

The memory location assignment is the most restrictive, having only MOVX available.

The design could use the additional 32K RAM address space with the addition of circuitry

for A 15. By enabling the RAM when A15 is low, and the converter when A 1 5 is high, the

designer could use the upper 32K RAM address space for the converter, as was done to

expand port capacity by memory mapping in Chapter 7. All of the examples examined

here are connected to the ports.

D/A Conversions

A generic R-2R type D/A converter, based on several commercial models, is connected to

ports 1 and 3 as shown in Figure 8. 10. Port 1 furnishes the digital byte to be converted to

an analog voltage; port 3 controls the conversion process. The converter has these features:

Vout = -Vref X (byte in/lOOH), Vref = ±10 V

Conversion time: 5 jas

Control sequence: CS then WR

For this example, a 1000 hertz sine wave that will be generated can have a program-

mable frequency. Vref is chosen to be —10 volts, and the wave will swing from +9.96
volts to volt around a midpoint of 4.48 volts. The program uses a lookup table to gener-

ate the amplitude of each point of the sine wave; the time interval at which the converter is

fed bytes from the table determines the wave frequency.

The conversion time limits the highest frequency that can be generated using S sample
point. In this example, the shortest period that can be used is

Tmin = S x 5 /its — 5S fxs, fmax = 200,000

S

FIGURE 8.10 D/A Converter Circuit for "Davcon" Program

Reference

P3.3 13

P3.2 12

8031

P1.0 1

Pl.l 2

PI.

2

3
P1.3 4

Pl.4 5

PI.

5

6

PI.

6

7

PI. 7 8

WR T

| Rfb
CS 1

12 8 <

To A Converter

7 6 5 4 16 15 14 1

, \. 1 Out r\

19 ^ -
\/ '

3 jS* l*"^ VO

1

Dl D2 03 D4 D5 D6 D7
Operational

Amplifier00

164 ' IIAI'll K II' >!ll

The design tension is high frequency versus high resolution. For a I000 hertz wave,

S could be 200d samples. In reality, we cannot use this many samples; the program cannot

fetch the data, latch it to port I , and strobe port 3.3 in 5 microseconds. An inspection of

the program will show that the time needed for a single wave point is 6 microseconds, and

setting up for the next wave takes another 2.25 microseconds. S becomes I66d samples

using the 6 microseconds interval, and the addition of 2.25 microseconds at the end of

every wave yields a true frequency of lOOl .75 hertz.

Davcon

The D/A converter program "Davcon" generates a I000 hertz sine wave using an 8-bit

converter. I66d samples are stored in a lookup table and fed to the converter at a rate of

one sample every 6 microseconds. The lookup table is pointed to in external ROM by the

DPTR, and Rl is used to count the samples. Numbers in parentheses indicate the number

of cycles.

ADDRESS

davcon:

repeat

:

next

:

MNEMONIC
.org OOOOh
clr p3.2
mov dptr , #table
mov rl,#0a6h
mov a, rl

move a, (?£a + dptr
mov pi,

a

clr p3.3
setb p3.3
djnz rl.next
sjmp repeat

COMMENT

; enable chip select to converter
;get base address to DPTR
;initialize Rl to 166d (1)

; offset into table (1)

;
get sample (2

)

; sample to port 1 (1

)

; write strobe low (1

)

; write strobe high (1

)

; loop for 166D samples (2)

; reload Rl and generate next wave (2

the lookup table begins here; a cosine wave is chosen to make the
table readable; the first 83 samples cover the wave from maximum to

1 less than 0; the next 83 cover the wave from to maximum. 83
samples per half-cycle means a sample every 2.17 degrees

table

:

.db OOh
. db ffh

.db feh

.db feh

.db fdh

.db fdh
;and so on un

.db 81h

.db 7ch
; near 180 deg
db Olh
db OOh
db OOh
db OOh
db OOh
db OOh

;no entry at A = OOh
;FFhcos - FFh. si

;7Fh + 7Fhcos 2 . 17 = FEh. s2
;7Fh + 7Fhcos 4 . 34 = FEh. s3

; sample 4
; sample 5

til we near 90 degrees:
;7Fh + 7Fhcos 88.9 = 81h. s42
;7Fh + 7Fhcos 91 . 1 = 7Ch. s43

rees we have:
7Fh + 7Fh cos 173.5 = Olh. s81
7Fh + 7Fh cos 175.7 - OOh. s82
7Fh + 7Fh cos 177.8 = OOh. s83
7Fh + 7Fh cos 180 = OOh. s84.
7Fh + 7Fh cos 182.2 - OOh. s85
7Fh + 7Fh cos 184.33 = OOh. s86

Continued

APPLICATIONS 165

ADDRESS MNEMONIC COMMENT
.db Olh ;7Fh + 7Fh cos 186.5 = Olh. s87

; finally, close to 360 degrees the table contains:
.db fbh ;s 161
.db fch ;s 162
.db fdh ;s 163
.db fdh ;s 164
.db feh ;s 165
.db feh ;s 166
. end

{>^- COMMENT
The program retrieves the data from the highest to the lowest address.

A/D Conversion

The easiest A/D converters to use are the "flash" types, which make conversions hased

upon an array of interna] comparators. The conversion is very fast, typically in less than

I microsecond. Thus, the converter can be told to start, and the digital equivalent of the

input analog value will be read one or two instructions later. Modern successive approxi-

mation register (SAR) converters do not lag far behind, however, with conversion times in

the 2-4 microsecond range for eight bits.

At this writing, flash converters are more expensive (by a factor of two) than the tradi-

tional SAR types, but this cost differential should disappear within four years. Typical

features of an eight-bit flash converter are

Data: Vin = Vref(-), data = OOh; Vin = Vref(+), data = FFh

Conversion time: 1 /as

Control sequence: CS then WR then RD

An example circuit, using a generic flash converter, is shown in Figure 8.11. Port 1 is

used to read the byte value of the input analog voltage, and port 3 controls the conversion.

FIGURE 8.11 A/D Converter Circuit for "Adconv" Program

P3.4 14

P3.3 13

P3.2 12

8031

P1.0 1

Pl.l 2

PI. 2 3

PI. 3 4

P1.4 5

PI.

5

6

PI.

6

7

PI.

7

8

+ VREF -

CS
WR

V Input

RD

13 6 8 12 11

1 Flash A To D Converter

2 3 4 5 14 15 16

DO Dl D2 D3 D4 D5

166 CHAPTER EIGHT

A conversion is started by pulsing the write line low, and the data is read by bringing the

read line low.

Our example involves the digitizing of an input waveform every lOOd microseconds

until lOOOd samples have been stored in external RAM.

Adconv

The program "Adconv" will digitize an input voltage by sampling the input every 100 fxs

and storing the digitized values in external RAM locations 4000h to 43E7h (lOOOd

samples). Numbers in parentheses are cycles. The actual delay between samples is 99.75

microseconds.

COMMENT
start storage at 4000h
delay in DJNZ loop for 87 usee
high byte of ending address
low byte of ending address

point to starting address in RAM
generate &3 to ADC
generate WR pulse (1)

(1) _
generate RD pulse (1)

get data fl)

end of RD pulse (1)

store in external RAM (2)

point to next and see if done (2

(1)

(2)

(1)

(2)

finished if both tests pass
delay for 87d /us

(2) x .75 /is x H6d = 87 fis

(2) 17d cycles (12.75 /as)

simulate rest of program

Using this program, we cou)d fill up the RAM in 3.2 s, which illustrates the volumes oi data that

can be gathered quickly by such a circuit. Realistic applications would feature some data reduc-

tion at the microcontroller before the reduced (massaged) data were relayed to a host computer.

ADDRESS MNEMONIC
. equ begin, 4000h
. equ delay, 74h
.equ endl ,43h
.equ end2,e8h
.org OOOOh

adconv: mov dptr , #begin
clr p3.2

next

:

clr p3.3
setb p3.3
clr p3.4
mov a, pi

setb p3.4
movx @dptr , a

inc dptr
mov a.dph
cjne a, #endl , wait
mov a, dpi
cjne a,#end2,wait
sjmp done

wait

:

mov rl,#delay
here : djnz rl.here

sjmp next
done

:

sjmp done
. end

—r^ COMMENT

Multiple Interrupts

The 8051 is equipped with two external interrupt input pins: INTO and INTl (P3.2 and

P3.3). These are sufficient for small systems, but the need may arise for more than two

interrupt points. There are many schemes available to multiply the number of interrupt

points; they all depend upon the following strategies:

APPLICATIONS 167

Connect the interrupt sources to a common line

Identify the interrupting source using software

Because the external interrupts are active low, the connections from the interrupt source to

the INTX pin must use open-collector or tri-state devices.

An example of increasing the INTO from one to eight points is shown in Figure 8. 1 2.

Each source goes to active low when an interrupt is desired. A corresponding pin on port 1

receives the identity of the interrupter. Once the interrupt program has handled the inter-

rupt situation, the interrupter must receive an acknowledgment so that the interrupt line

for that source can be brought back to a high state. Port 3 pins 3.3, 3.4, and 3.5 supply,

via a 3-to-8 decoder, the acknowledgment feedback signal to the proper interrupt source.

The decoder is enabled by port pin 3.0.

Multiple and simultaneous interrupts can be handled by the program in as complex a

manner as is desired. If there is no particular urgency attached to any of the interrupts then

they can be handled as the port 1 pins are scanned sequentially for a low.

A simple priority system can be established whereby the most important interrupt

sources are examined in the priority order, and the associated interrupt program is run

until finished. An elaborate priority system involves ordering the priority of each source.

The elaborate system acknowledges an interrupt immediately, thus resetting that source's

interrupt line, and begins executing the particular interrupt program for that source. A
new interrupt from a higher priority source forces the current interrupt program to be sus-

pended and the new interrupter to be serviced.

To acknowledge the current interrupt in anticipation of another, it is necessary to also

re-arm the INTX interrupt by issuing a "dummy" RET1 instruction. The mechanism for

accomplishing this task is illustrated in the program named "hipri." First, a low priority

scheme is considered.

FIGURE 8.12 Multiple-Source Interrupt Circuit Used in "Lopri" and "Hipri" Programs

+ 5V

Interrupt Routine Signals Source When Finished

Interrupt

Sources

-AAAr
+ 5V

rTrTrTrTrTrTrTT
o.c.

Output

Identifier Output

INTO

13 P3.3

14 P3.4
15 P3.5

8031

10 P3.0

12 P3.2

1 P1.0

2 Pl.l

3 PI.

2

4 PI.

3

5 P1.4
6 PI.

5

7 PI.

6

8 PI.

7

168 CHAPTER EIGHT

Lopri

The program "Lopri" scans port PI for the source of an interrupt that has triggered INTO.

The pins are scanned for a low and the scan resumed after any interrupt is found and

serviced. The interrupt source is acknowledged prior to a RETI instruction. R5 of bank 1

is used to store the next pin to be scanned, and R6 is used to scan the pins for a low. A
jump table is used to select the interrupt routine that matches the particular interrupt. Each

interrupt routine supplies the 3-to-8 decoder a unique acknowledge pattern before a RETI.

ADDRESS

lopri:

MNEMONIC
. equ ack,70h

.org OOOOh
sjmp over

COMMENT
; each interrupt routine loads its

; unique acknowledge byte in ack

;jump over the INTO interrupt address

The INTO interrupt will vector the program here

which:

low:

goback:

.org 0003h
mov ack,#0ffh
push ace
push dpi
push dph
setb psw.3
mov a,r5
orl a, pi

mov r6,#08h
rrc a

jnc low

djnz r6, which
sjmp goback
mov a,r6
subb a,#01h
rl a

mov dptr,#jmptbl
jmp (aa +dptr

mov a,r5
rl a

mov r5,a
clr psw.3
pop dph
pop dpi
pop ace
mov p3,ack
nop
nop
nop
mov p3,#0ffh
reti

pin

INTO vector address
place enable pattern in ack
save A

save DPTR

select register bank one
get pattern in R5 to A

OR the single zero in A with PI

rotate A through C eight times
find the zero starting at P1.0
keep rotating until low found
if not found then it was not this
return with no action taken
convert from l-of-8 low to number
A was 8 to 1, now 07 to 00
A is now OEh to 00 {two bytes/sjmp)
DPTR points to the base of jump table
jump to the matching interrupt
routine
rotate r5 to the next pin position

select register bank zero
restore register used in subroutine

each routine loads proper P3 pattern
give the interrupt circuit a few
microseconds to respond and remove
the low level before returning
enable the next interrupt to occur

Continued

APPLICATIONS 169

ADDRESS MNEMONIC COMMENT

the main program starts here followed by the interrupt routine jump
table (simulated)

over

:

simulate
jmptbl

:

mov sp,#Ofh
mov p3,#0ffh
setb psw.3
mov r5,#0feh
clr psw.3
mov ie,#81h
mov tcon,#00h
sjmp simulate
sjmp goback
sjmp goback
sjmp goback
sjmp goback
sjmp goback
sjmp goback
sjmp goback
sjmp goback
. end

; move stack above register bank one
;set port 3 to disable 3/8 all high
; select bank one and set R5 to one low
;port pin 1.0 selected
; return to bank zero
; enable INTO interrupt
; enable level trigger for INTO
; simulate main program
;simulate interrupt programs; pin 7
;6

;5

;4

;3

;2

;l

;0

COMMENT
The instruction JMP @A+DPTR has been used to select one of a number of jump addresses,

depending upon the number found in A. The simulated subroutines could be an SJMP to the

actual interrupt handling subroutine. Because each SJMP takes two bytes to execute, A has to

be doubled to point to every other byte in the jump table. When this action is not convenient, A
can use a lookup table to get a new A, which then accesses a jump address.

R5 has one bit low, and that bit acts as a mask when ORed with PI to find the low bit in P1

.

When the low pin does not match the R5 pattern, the RET) will immediately cause INTO to

interrupt again, and R5 will be set to the next pin position. The worst-case response time, if

eight pins must be searched before the low pin is found, will be in the order of 600 microseconds.

If INTO is triggered by noise, the routine returns after the first fruitless search with no action

taken and re-arms the interrupt structure.

The external interrupt flags are cleared when the program vectors to the interrupt address only

when the external interrupt is edge triggered. Level triggered interrupts must have the low

level removed before the RETI, or an immediate interrupt is regenerated. Each interrupt routine

loads the internal RAM location "ack" with the proper bit pattern to the decoder to enable and

decode the proper line to reset the interrupting source.

Hipri

Suppose that we wish to have a priority system by which the priority of each input pin is

assigned at a different level—that is, there are eight priority levels, and each higher level

can interrupt one at a lower level. Theoretically, this leads to at least nine return addresses

being pushed on the stack (plus any other registers saved), so the stack should be expected

to grow more than 18d bytes; it is set above the addressable bits at location 2Fh.

In order to enable the interrupt structure in anticipation of a higher level interrupt, it is

necessary to issue a RETI instruction without actually leaving the interrupt routine that

170 CHAPTER EIGHT

currently has the highest priority. One way to accomplish this task is to push on the stack

the address of the current interrupt routine to be done. Then, use a RETT that will return

to the address on the stack, the desired current interrupt subroutine, and also re-arm the

interrupt structure should another interrupt occur. The addresses of each subroutine can be

known before assembly by originating each at a known address, or the program can find

each address in a lookup table and push it on the stack, as illustrated in the example

program.

For this example, the priority of each interrupt source is equivalent to the port 1 pin to

which its identity line is connected. PI .0 has the highest priority, and PI .7, the lowest. A
lookup table is used to find the address of the subroutine to be pushed on the stack.

External interrupt INTO is connected to the common interrupt line from all sources. It

is enabled edge triggered whenever an interrupt routine is running so that any higher pri-

ority interrupt will be immediately acknowledged. If a lower priority interrupt occurs, it

will interrupt the program in progress long enough to determine the priority. The inter-

rupted subroutine will resume, and the lower level interrupt source priority will be saved

until the subroutine in progress is finished. All interrupting sources maintain their identity

lines low until they are acknowledged. The common interrupt line is reset immediately to

enable any other source to interrupt the 805 1

.

If a higher level source interrupts a lower priority interrupt, then the high priority

routine will interrupt the lower priority routine. The priority of the lower level interrupt

will be saved.

The program "Hipri*' assigns eight levels of priority to the interrupt sources con-

nected to port I . A lookup table is used to find the address of the interrupt handling sub-

routine that is pushed on the stack. A RETI instruction is then used to "return" to the

desired subroutine and re-arm the interrupt hardware on the 8051

.

ADDRESS

hipri

;

MNEMONIC
.org OOOOh
ljmp over

COMMENT

;jump over the INTO routine
the INTO interrupt will vector here to find the identity and
priority of the interrupt source

int

:

.org 0003h
push dph
push dpi

push ace
setb psw.3
clr p3.0
setb p3.0
mov dptr,#base
mov a,R5
orl a, PI

cjne a, #0ffh, higher
pop ace

pop dpi
pop dph
reti

INTO interrupt vectors here
save registers used

use register bank one
reset common INT line by strobing
pin 3.0
get base address of address table
get priority of current interrupt
determine if new interrupt is

higher
A will be FFh if new < old
not higher priority; return to
current

Continued

APPLICATIONS 171

ADDRESS MNEMONIC
higher: push Odh

jnb ace .0 , first
jnb ace. 1, second
jnb acc.2,third
jnb ace .3, fourth
jnb ace. 4, fifth
jnb ace. 5, sixth
jnb ace .6, seventh
jnb ace. 7, eighth
sjmp goback

first: mov r5>#0ffh
mov a,#00h

sjmp pushadd
second: mov r5,#0feh

mov a,#02h
sjmp pushadd

third: mov r5,#0fch
mov a,#04h
sjmp pushadd

fourth: mov r5,#0f8h
mov a,#06h
sjmp pushadd

fifth: mov r5,#0f0h
mov a,#08h
sjmp pushadd

sixth: mov r5,#0e0h
mov a,#0ah
sjmp pushadd

seventh: mov r5, #0c0h
mov a,#0ch
sjmp pushadd

eighth: mov r5,#80h
mov a,#0eh

pushadd: mov r6,a
inc a

move a,@a+dptr
push ace
mov a,r6
move a,@a+dptr
push ace
reti

goback: pop Odh
mov a, pi

cjne a,#0ffh,old

COMMENT
;higher priority; save old (R5)

;find higher priority interrupt

noise; return with no new interrupt
highest priority
load A with offset into lookup
table
'

'
pushadd " will push the address

may only be interrupted by P1.0
load A with offset for next program

interrupt by 0-1

interrupt by 0—2

interrupt by 0—3

interrupt .by 0—4

interrupt by 0—5

; interrupt by 0—6

:save A for second byte fetch
point to the low byte of the

;
address
get first program address low byte
;push the low byte
:get A back
;get the high byte of the address
push the high byte
execute subroutine; enable
interrupt
restore old priority mask
look at PI for more interrupts
see if any are waiting, or in
progress

Continued

172 CHAPTER EIGHT

ADDRESS
Continued

old:

next

:

MNEMONIC

pop ace
pop dpi
pop dph
clr psw.3
reti
orl a,r5

cjne a.#Offh,next
pop ace
pop dpi
pop dph
reti

pop ace
pop dpi
pop dph
ljmp int

COMMENT

;if none waiting then return to main

;
program

; return to register bank
; return to main program
;A = FFh if next interrupt
; waiting was
; itself interrupted
; get old interrupt values

; return to old interrupt in progress
; the waiting interrupt is a new one
;that has never begun to execu te
;jump to "int" as if an INTO has
;occured

the lookup table that contains the addresses of the eight interrupt
programs is assembled here ; the assembler knows all the actual
numbers at assembly time

progx is the actual interrupt
routine

base : .dw progl

.dw prog2

.dw prog3

.dw prog4

.dw prog5

.dw prog6

.dw prog7

.dw prog8
progl: nop

ljmp goback
prog2: nop

ljmp goback
prog3: nop

ljmp goback
prog4: nop

ljmp goback
prog5: nop

ljmp goback
prog6: nop

ljmp goback
prog7: nop

ljmp goback
prog8: nop

ljmp goback

simulate interrupt program.
be sure to acknowledge before ljmp
after subroutine has finished

Continued

APPLICATIONS 173

ADDRESS MNEMONIC COMMENT

the main program starts here; "progx
after the main program if desired

could have been assembled

over

here

mov sp,#2fh
setb tcon.O
setb psw.3
mov r5,#00h
mov ie,#81h
clr psw.3
sjmp here
. end

;set stack above addressable bits
;enable INTO edge-triggered
; choose register bank one
;set for interrupt at all levels
; enable INTO
; return to bank zero
; simulate main program

COMMENT
The .dw assembler directive will store the high byte of the two-byte word at the lower address

in memory. For the RETI in "pushadd" to work properly, the low address byte must be placed

on the stack first.

If interrupt A has just gone low, and interrupt B, which is of a higher priority, occurs after the

system has vectored to the INTO address, interrupt B will be accessed if the B line goes low

before the polling software starts (JN8 ACC.x). If the polling has caused A to be chosen, then B

will be recognized after the RETI in "pushadd" causes the A address to be POPed from the

stack. One instruction of A will be executed, then the IE0 flag in TCON will cause an interrupt.

The 8051 interrupt system will generate an interrupt unless any of the following conditions

are true:

Another routine of equal or greater priority is running.

The current instruction is not finished.

The instruction is a RETI or any IE/IP access.

The edge-triggered interrupt sets the IE0 fiag, and the interrupt that generated the edge ser-

viced after any of the listed conditions are cleared.

Hardware Circuits for Multiple Interrupts

Solutions to the expanded interrupt problem proposed to this point have emphasized using

a minimal amount of external circuitry to handle multiple, overlapping interrupts. A hard-

ware strategy, which can be expanded to cover up to 256 interrupt sources, is shown in

Figure 8.13. This circuit is a version of the "daisy chain" approach, which has long been

popular.

The overall philosophy of the design is as follows:

1. The most important interrupt source is physically connected first in the chain,

with those of lesser importance next in line. Lower priority interrupt sources are

"behind" (connected further from INTO) those of a higher priority.

2. Each interrupting source can disable all signals from sources that are wired

behind it. All sources that lose the INACTOUT signal (a low level) from the

source(s) ahead of it will place their source address buffer in a tri-state mode
until INACTOUT is restored.

J3][oa)uoooJORu e Xq pdpiAOjd sq iq3iiu sb qons aDuaSiipiui sums uibiuoo 30Jnos sqj jEqj

jo xojdujoo oq AJjiiiDjp sojnos aqj jcqj ssjmbai aDusnbss idausiu; siqj 3uiqsqdiuo3Dy

duijnojqns)dn_uoiui sqj oj sssdde

pidEJ so|qRU3 | uod uo sssjppE sojnos oq] pUB 'Suiuutu a\ou 3tio oqi ueq) Xjuoud J3q3iq

jo sabmib si p3Ai3D3j)dou3iui Aiiy auiaqos siqj joj. ojdiuis a\i3a s; sjemijos sqx

01NI uo uoijis

-ubjj MO[-oj-q§iq jxsu 3qj sziuSodsj ueo sjnpruis jdrujsjui i£08 3l lBMJ os sp^3
suiqoeui suo)SE3| jb joj qSjq suq XQCXINI ^41 Suuq jsniu aoanos 3uijdaiJ3iui

sqj 'pa3p3|MOU5|DB si)dnjj3jui ub uoq,\\ ssajppe 3ainos uq-g sqi pUB xflOXNI
S3AOIU3J usqj SDjnos aqj .'auiwojqns aqj jo pus aqj je (£Qg 3ltf "^J aamos

aqi oj (3S[nd [3a3[-a\o| b) [BuSis NIMDV ue S3JBJ3U3S auijnojqns idraiajui sqx 'p

ajnjonjjs jdrujsiui sqi ujjb-3J pUB suiinoj jeqj oj o3 01 psjno

-3X3 IXH^I B PUE 3p«is sqj uo psDBfd si ssaJppB aqx jdnjj3]ui jeqj sajpuEq JEqj

suunojqns sqj jo ssajppB 3iJj spuy '3[qBj dn^ooj b Suisn 'pus jj spB3J uoijedoj

jopsA OJLNI 3M* >B sunnoj idauaiui sqx '

l uod oj pspsuuoa snq ajejs-ui 3qi

uo j3yi)U3p! iiq-g sii saocjd puB a\o[suq XflOJLNI SM sIind aainos Suqssnbsj v "t

L'U 8

9Id L

9Id 9

frld 9

ru P

Z'U £

rid Z

Old I

EEd ei

114 21

ZV
9V
SV

fV

ev
2V
IV

OV

ui>pv ino>pv

inojui ut)U|

uipeui jnopeut

inojui ui;ui

uipeui inopeui

inojui ui)ui

uipeui ;nopeu|

ui>pv jno^Dv

inojui ui)u|

ujpeui inopcui01NI —

1
4m

10$

ou
njj

8!h

1

4

aminos idnjjajui

33JD0S 3AIPV aojnos 3A!peu|

Uj)(DV

inojui

uipeui

ino^Dtf

u;>ptf

U|}U|

jnopeui

;no;u

uipeuj

ino>pv

UI)U|

inopeuj

MjUjpjeH M JO^ pesn vp^O u.ieqD AsieQ £f8 aanDId

1HDI3 HdldVHD wt

APPLICATIONS 175

ADDRESS

hardint

:

The additional source hardware will entail considerable relative expense for each source.

As the number of interrupt sources increases, system costs rise rapidly. At some point the

designer should consider another microcontroller that has extensive interrupt capability.

Hardint

The program "Hardint" is used with daisy-chained interrupt sources to service 16 inter-

rupt sources. An interrupt is falling-edge triggered on INTO and the interrupt address read

on PI. A lookup table then finds the address of the interrupt routine that is pushed on the

stack and the RETI "returns" to the interrupt subroutine. The interrupt subroutine issues

an acknowledgment on port 3.3, which resets the interrupting source.

MNEMONIC
.org OOOOh
ljmp over

COMMENT

the interrupt program located at the INTO vector address will read
the source address on port 1, and push that address for a RETI to
the interrupt subroutine for that address

less:

goback

base

:

.org 0003h
setb psw.3
push ace

push dpi
push dph
mov a, pi

cjne a,#10h,less
jnc goback
rl a

diov r6,a
mov dptr, #base
inc a

move a, (aa+dptr
push ace
mov a,r6
move a , @a+dptr
push ace
reti
pop dph
pop dpi
pop ace
clr psw.3
reti
.dw progO
.dw progl
.dw prog2
.dw prog3
.dw prog4
.dw prog5

choose register bank one
save registers used

read port 1 for source address
valid addresses are OOh to OFh
invalid, return
valid address, adjust A for addresses
save A for low byte fetch
point to program address lookup table
point to low byte
get low byte

get high byte offset

execute subroutine; enable interrupt
return to program in progress

back to register bank zero

make lookup table for subroutines

Continued

176 CHAPTER EIGHT

ADDRESS
Continued

progO:

progl:

prog2:

prog3:

prog4:

prog5:

prog6:

prog7:

prog8:

prog9:

proga:

progb:

progc:

progd:

proge:

progf:

MNEMONIC

.dw prog6

.dw prog7

.dw prog8

.dw prog9

.dw proga

.dw progb

.dw progc

.dw progd

.dw proge

.dw progf
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback
nop
ljmp goback

COMMENT

; simulate

; simulate

; simulate

; simulate

; simulate

; simulate

; simulate

; simulate

;
simulate

simulate

simulate

simulate

simulate

simulate

simulate

simulate

interrupt

interrupt

interrupt

interrupt

interrupt

interrupt

interrupt

interrupt

interrupt

interrupt

interrupt

interrupt

interrupt

interrupt

interrupt

interrupt

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

place the main routine here

Continued

APPLICATIONS 177

ADDRESS MNEMONIC
over

:

mov sp,#2fh
setb tcon.O
mov ie,#81h

here

:

sjmp here
. end

COMMENT
;set stack above addressable bits
;set INTO fo r edge triggered
; enable INTO
; simulate main program

£>— COMMENT
If the fookup table goes beyond 128 addresses, or 256 bytes, then DPH is incremented by one

to point to a second complete table.

Each interrupt subroutine must contain an acknowledge byte that is placed on P3 to reset each

source.

Note the use of CJNE and the carry flag to determine relative sizes of two bytes at label "less."

Putting it all Together

All of the examples presented to this point have used the free ports (PI and parts of P3)

that the "cheap" design affords. It is clear that to do a real-world design requires the use

of additional port chips to enable several functions to be interfaced to the 8051 at one

time. Such a design is illustrated in this section, using an 8255 programmable port chip

memory mapped at external RAM location 8000h to 8003h. A review of memory map-

ping found in Chapter 7 shows that the required address decoding can be done using an

inverter to enable external RAM whenever A 15 is low, and the 8255 whenever A 15 is

high. Actually, any address that begins with A15 high can address the 8255; 8000h seems

convenient.

Ant

The example program uses the intelligent LCD display, a coded J 6-key keypad, and is

capable of serial data communications. This type of design is suitable for many applica-

tions where a small, inexpensive, alphanumeric terminal (dubbed the ANT) is needed for

the factory floor or the student lab.

The design is shown in Figure 8.14. Port A of the 8255 is connected to the keypad.

Port B supplies data bytes to the LCD and the lower half of port C controls the display.

The program is interrupt driven by the keypad and the serial port. INTO is used to detect a

keypress via the AND gate array while the serial interrupt is internal to the 8051. The
serial port has the highest priority. This type of program is often called "multi-tasking"

because the routines are called by the interrupt structure, and the computer appears to be

doing many things simultaneously.

A keypad program developed in this chapter combined with a serial communication

program from Chapter 9 completes the design.

The program "Ant" controls the actions of an 805 1 configured as a terminal with a

LCD display and hexadecimal keypad. The serial port is enabled, and has the highest

priority of any function. The coded keyboard is a two-of-eight type which can use a

lookup table to detect valid key presses. A shift key capability is possible because unique

patterns are possible if one key is held down while another is pressed.

178 CHAPTER EIGHT

FIGURE 8.14 A Multi-Tasking Circuit Using Memory-mapped I/O

8031

12

28

17

16

39

38
37

36
35
34

33

32

10

11

INTO

P3.2

To RAM CS Pin

A15

P2.7

'373 Latch

P3.0

P3.1
RXD

TXD

CS

Reset

AO
AlW

Serial Data

P3.7 m
P3.6

PO.O DO
PO.l 01

P0.2 D2
P0.3 D3

P0.4 04

P0.5 05

P0.6 06

P0.7 07

6

35
9

8

5

36

34

33

32
31

30

29
28
27

PAO

Port A

8255

PortB

PortC

4

3

2

1

40
39

38

37

PBO 18

19

20
21

22
23
24

25

PCO 14

15

16

17

13

12

11

10

00

Dl

D2

D3
D4
D5

D6
D7

R/W

RS
EN

- PC3
PC4

— PC5
- PC6
— PC7

Two -Of -Eight

Coded
Keyboard

7

8

9

10

11

12

13

14

5

4

6

Hi'

LCD
Display

8255 I/O Ports Mapped At 8000, 8001, And 8002

ADDRESS MNEMONIC
.equ con,8003h
.equ prta,8000h
.equ prtb,8001h
.equ prtc,8002h
. equ conant

,

98h
.equ bf,0f3h
.equ wrd,0f2h
.equ wrc.OfOh
.equ setlcd,3fh
.equ curs,06h
.equ lcdon.Oeh

COMMENT
address of 8255 mode control register
address of 8255 port A

address of 8255 port B

address of 8255 port C

A = input, B and lower C = output
C pattern to read LCD busy flag
C pattern to write data to LCD
C pattern to write control to -LCD
initialize LCD to 2 lines, 5 x 10 dots
LCD cursor blinks, moves left
LCD on

Continued

APPLICATIONS 179

ADDRESS

ant

:

MNEMONIC
.equ clr,01h
.org OOOOh
ljmp over

COMMENT
; clear LCD and home cursor

;
jump over the interrupt locations

when a key is pressed, or a serial data character is sent or
received, the program vectors to the interrupt address locations;
dummy routines will be written here; refer to the key routines in
this chapter and the serial data routines in Chapter 9 for examples
of these programs

origin the keypad program here
jump to keypad handling program
origin serial interrupt program here

keypad

serial

• org 0003h
sjmp keypad
• org 0023h
sjmp serial
push dph
push dpi
mov dptr , #prta
movx a, @dptr
pop ipl

pop iph

reti
nop
reti

dummy keypad program, get the key

read the key value
insert a key handling routine next

dummy serial program

the main program begins here; All the interrupts are initialized,
the main program sends a "hello" to the display and waits for an
interrupt

over:

here:
serset

setb tcon.O
setb ip.4
acall serset
mov dptr,#con
mov a,#conant
movx @dptr , a

mov a,#setlcd
lcall lcdcon
mov a,#curs
lcall lcdcon
mov a, #lcdon
lcall lcdcon
mov a,#clr
lcall lcdcon
mov dptr, #msg
lcall lcddta
mov ie,#91h
sjmp here
ret

set INTO for edge triggered operation
set serial interrupt high priority
call the serial port setup routine
initialize 8255 mode to basic I/O
set A = input, B and C = output
initialize 8255 mode register
initialize the LCD and say "hello"

LCD is now initialzed and blank
use DPTR to point to "hello"
send the message to the LCD
enable serial and INTO interrupts
simulate the rest of the program
dummy serial setup routine

Continued

180 CHAPTER EIGHT

APDRESS . MNEMONIC COMMENT
Continued

The subroutine lcddta sends data characters to the LCD until the

character ~ is found; the beginning of the message is passed to the
subroutine in the DPTR by the calling program

lcddta: movx a,@dptr
;
get first character of message

cjne a,#3eh,mod ;stop when - (3Eh) is found
ret ; message sent

mod : acall data ; send data character
sjmp lcddta ;loop until done

the subroutine that sends control characters passed in A to the LCD
display, via the 8255

lcdcon: push dph .save registers used
push dpi
mov dptr,#prtb ;get control data in A to port B
movx @dptr,a
mov dptr,#prtc ;point to port C for LCD control
mov a,#wrc ; strobe character to LCD using port C

movx @dptr,a
mov a,#0ffh ;end strobe
movx @dptr,a
acall dun ;wait for LCD to finish
pop dpi ; restore registers
pop dph
ret

the subroutine "data" sends data characters passed in A to the
LCD screen for display

data : push dph ; save registers used
push dpi

mov dptr,#prtb ;get character data in A to port B

movx @dptr ,a

mov dptr,#prtc
mov a,#wrd ;strobe character to LCD using port C

movx @dptr ,a

mov a,#0ffh ;end strobe
movx @dptr,a
acall dun ;wait for LCD to finish
pop dpi ; restore registers
pop dph
ret

;"dun" reads the busy flag on the LCD and returns the flag is low

Continued

APPLICATIONS 181

ADDRESS MNEMONIC COMMENT

dun: mov dptr,#con
mov a,#9ah
movx @dptr,a
mov dptr.#prtc
mov a,#bf
movx @dptr,a
mov dptr (#prtb
movx a,@dptr
jnb ace. 7, go
mov dptr.#prtc
mov a.#Offh
movx @dptr,a
sjmp dun

go: mov a.#Offh
mov dptr,#prtc
movx @dptr,a
mov dptr, #con
mov a,#98h
movx @dptr ,a

ret

the message "hello" is asse
messages, each with a unique

msg: .db "hello-"

configure port B as an input

set port C for a read command

send command to read flag
read port B

the busy flag is bit 7
done when BF =

if still busy then read again

finished, remove strobe

reset port B as an output

mbled here ; a great number of
label, can be sent in this way

£>— COMMENT
The LCD example shows the extensive use of the DPTR and MOVX command when dealing

with a memory mapped external port.

Forgetting to terminate every message with a - results in a very confused LCD as the remainder

of ROM is written to the LCD.

There will be no interference between any of these programs if the serial interrupts always have

priority. Serial data is received as it occurs, and the keypad program and any messages to the

LCD are suspended for the few microseconds it takes to read the senal port. The suspended

programs can resume until the next serial character, which is normally an interval of one or

more milliseconds.

Summary
Hardware designs and programs have been illustrated to solve several common application

problems that are especially suitable for solution using a microcontroller. These hardware

circuits are

Keyboards: Lead-per-key, X-Y matrix, coded

Displays: 7-segment LED, intelligent LCD

Pulse measurement: frequency, pulse width

182 CHAPTER EIGHT

Data converters: R/2R digital to analog, flash analog to digital

Interrupts: multi-source, daisy chain

Expanded 8051 system: memory-mapped I/O

The programs in this chapter interface the 8051 to these circuits. New programming

concepts introduced are

Interrupt handling

Register bank switching in "Svnseg"

Jump tables in "Lopri"

Stack RETI in "Hipri"

Using ONE for relative size in "Hardint"

Multitasking in "Ant"

These programs can be used as the kernels for more comprehensive applications.

Problems

1. List the most likely effects if a keyboard program docs not accomplish the following:

a. Debounce keys when pressed down

b. Check for a valid key code

c. Wait for all keys up before ending keyboard routine

d. Debounce keys when released

2. A keyboard has two keys: run and stop. Write a program that is interrupt driven by these

two keys using INTO for the run key, and INTI for the stop key. If run is selected, set

pin P3.0 high; if stop is selected, set the pin low. Bounce time is 10 milliseconds for

the keys.

3. Determine why it is important to employ some kind of debounce subroutine in a key-

board program, particularly for interrupt driven programs, even if keys with absolutely

no bounce are used.

4. The lookup table used in the program "Codekey" is very inefficient, using 256 bytes to

form a table for the valid keys and using an FFh in all other locations for invalid keys.

Write a subroutine using a series of CJNE instructions that will obtain the same result.

5. Repeat problem 4 by converting the keycode number in A from the codes B7h-EEh to

00-09h. One way to do this is to convert the first and second nibbles to the following

numbers and then adding the nibbles to get a unique number:

CHANGE

First Nibble Second Nibble Add Converted Nil

E toO EtoO EE to 00 DD to 05

D to 4 D to 1 ED to 01 DBto06
B to 8 Bto2 EB to 02 D7 to 07

7 to 3 E7 to 03 BE to 08

DE to 04 BD to 09

Note: Lookup tables can be used for each conversion, with invalid codes in both nibble

lookup tables set to return numbers that, when added, sum to greater than 09.

6. Write a lookup table subroutine for the program "Bigkey" that will convert the row and

column bytes for each key to a single byte number.

APPLICATIONS 183

7. Expand the lookup table "convert" in the program "Svnseg" to include these characters:

G, H, I, J, L, O. P, S, T, and U.

8. Write a program that will display the following message on the intelligent display:

"Hello!
Please Enter Command. "

Center each line of the display.

9. Write a subroutine that is past the starting address of an ASCII string in ROM and then

displays the string on the intelligent display. The string length is fixed.

10. Repeat Problem 9 for a string of any length.

11. Write a program for the LCD display that will display the contents of register Rl as

follows:

Rf = XX

XX is the Rl contents in hex. Center the display. (Hint: Remember the contents are in

hex, and the display speaks ASCII.)

12. Write a program using timer that will delay exactly . 100000 milliseconds ± I micro-

second from the time the timer starts until it is stopped. (The crystal frequency is

16 megahertz).

13. Make a table that shows the accuracy of pulse width measurements as a function of

multiples of count periods (.75 microseconds). The table should be arranged as follows:

PULSE WIDTH (x.75 fj,s) ACCURACY (%) 1

2

3

4

5

6

7

8

9

10

20

50

100

14. Write a program that can use the stack to "return" to any of 256 subroutines pointed to

by the number 00 to FFh in A.

15. Compose a 40-value lookup table that will generate a sawtooth wave using a D/A
converter.

16. Repeat Problem 15 without using a lookup table of any kind.

17. Repeat Problem 15 for a rectified sine wave.

18. Outline a method of measuring the frequency of a sine wave using a flash A/D
converter. Estimate the highest frequency that can be measured to an accuracy of 1

percent.

19. In the section on measuring frequency, an expression was found for n bit resolution of a

frequency measured over time, T:

184 CHAPTER EIGHT

T x (fmax - fmin)
LSB =

2"

Derive an equivalent expression for the resolution of a frequency to n bits by measuring

the period of M of the cycles.

20. Write a program that finds frequency by measuring the time for M cycles of the unknown

periodic wave. Estimate the highest frequency that can be measured to an accuracy of

1 percent if the crystal is 16 megahertz.

2T. Write a program that performs all of the functions of an intelligent daisy chain interrupt

source controller.

22. Write a lookup table program for the "Ant" program that will allow the F key of a

two-of-eight coded keypad to be used as a shift key. A shift key makes possible 31 valid

key combinations. The key codes are

KEY OUTPUT PIN

1 2 3 4 5 6 7 8 9

X X X

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

7 X X X

8 X X X

9 X X X

A X X X

B X X X

C X X X

D X X X

E X X X

F X X X

x means a connection is made; pin 9 is the common pin for all codes.

Serial Data Communication

Chapter Outline

Introduction

Network Configurations

8051 Data Communication Modes

Summary

Introduction

185

Chapter 2 contained an extensive review of serial data communication concepts and the

hardware and software that is built into the 805 1 for enabling serial data transfers. Chapter 7

contained some brief programming examples of how this capability may be used. Serial

data transmission has become so important to the overall computing strategy of industrial

and commercial applications that a separate chapter on this crucial subject is appropriate.

One hallmark of contemporary computer systems is interconnectivity; the joining of

computers via data networks that link the computers to each other and to shared resources,

such as disk drives, printers, and other I/O devices. The beginning of the "computer age"

saw isolated CPUs connected to their peripherals using manufacturer-specific data trans-

mission configurations. One of the peripherals, however, was the teletype that had been

borrowed from the telephone industry for use as a human interface to the computer, using

the built-in keyboard and printer.

The teletype was designed to communicate using standard voice grade telephone lines

via a modem (Modulator demodulator) that converts digital signals to analog frequencies

and analog frequencies to digital signals. The data, by the very nature of telephone voice

transmission, is sent and received serially. Various computer manufacturers adapted their

equipment to fit the teletype, and, perhaps, the first "standard" interface in the industry

was born.

This standard was enhanced in the early I960's with the establishment of an electrical/

mechanical specification for serial data transmission that was assigned the number RS 232

186 CHAPTER NINE

by the Electronics Industry Association. A standard data code was also defined for all the

characters in the alphabet, decimal numbers, punctuation marks, and control characters.

Based on earlier telephonic codes, the standard became known as the American Standard

Code for Information Interchange (ASCII).

The establishment of RS 232 and ASCII coincided with the development of multi-

user computer organizations wherein a number of users were linked to a host mainframe

via serial data links. By now, the CRT terminal had replaced the slower teletype, but the

RS 232 serial plug remained, and serial data was encoded in ASCII. Peripheral devices,

such as printers, adopted the same standards in order to access the growing market for

serial devices.

Serial data transmission using ASCII became so universal that specialized integrated

circuits, Universal Asynchronous Receiver Transmitters (UARTS) were developed to per-

form the tasks of converting an 8-bit parallel data byte to a 10-bit serial stream and con-

verting 10-bit serial data to an 8-bit parallel byte. When the second-gene ration 8051

microcontroller was designed, the UART became part of the circuit.

Chapter 7 introduced the basic programming concepts concerning transmitting and

receiving data using the serial port of the 8051. In this chapter, we study the serial data

modes available to the programmer and develop programs that use these modes. The four

modes are as follows:

Mode 0; Shift register mode

Mode 1 : Standard UART mode

Mode 2: Multiprocessor fixed mode

Mode 3: Multiprocessor variable mode

In this chapter, we also identify multiprocessor configurations that are appropriate for

each mode and write sample programs to enable data communication between 8051

microcontrollers.

Network Configurations

The first problem faced by the network system designer is how to physically hook the

computers together. The two possible basic configurations are the star and the loop, which

are shown in Figure 9. 1

.

The star features one line from a central computer to each remote computer, or from

"host" to "node." This configuration is often used in time-sharing applications when a

central mainframe computer is connected to remote terminals or personal computers using

a dedicated line for each node. Each node sees only the data on its line; all communication

is private from host to node.

The loop uses one communication line to connect all of the computers together. There

may be a single host that controls all actions on the loop, or any computer may be enabled

to be the host at any given time. The loop configuration is often used in data-gathering

applications where the host periodically interrogates each node to collect the latest infor-

mation about the monitored process. All nodes see all data; the communication is public

between host and nodes.

Choosing the configuration to use depends upon many external factors that are often

beyond the control of the system designer. Some genera! guidelines for selection are

shown in the following table:

SERIAL DATA COMMUNICATION 187

FIGURE 9.1 Communication Configurations

Star Configuration

Node Node Node

X
Node

X
Node

X
Node

X
Node Node

Host

Loop Configuration

Objective Network Comments

Reliability Star Single node loss per line loss

Fault isolation Star Fault traceable to node and line

Speed Star Each node has complete line use

Cost Loop Single line for all nodes

The star is a good choice when the number of nodes is small, or the physical distance

from host to node is short. But, as the number of nodes grows, the cost and physical space

represented by the cables from host to nodes begins to represent the major cost item in the

system budget. The loop configuration becomes attractive as cost constraints begin to out-

weigh other considerations.

Microcontrollers are usually applied in industrial systems in large numbers distributed

over long distances. Loop networks are advantageous in these situations, often with a host

controlling data transmission on the loop. Host software is used to expedite fault isolation

188 CHAPTER NINE

FIGURE 9.2 Hybrid Communication Configurations

Node -I

Node - >

Node

H Node

n:
Node Host Node Node Node

Node

Node

— Node

Star -Loop

Node Node Node
j

\ J
Node

Loop

Host
Node

Node Node Node

\ ?
Node

Loop

Host
Node

Node Node

Node

Node

\jy
Loop

Host
Node

Host

Loop -Star

and, thus, improve system reliability. High speed data transmission schemes can be em-

ployed to enhance system response time where necessary.

The old racing adage "Speed costs money: How fast do you want to go?" should be

kept in mind when designing a loop system. Successors to RS 232, most notably RS 485,

have given the system designer 1 00 kilobaud rates over 4000-foot distances using inexpen-

sive twisted-pair transmission lines. Faster data rates are possible at shorter distances, or

more expensive transmission lines, such as coaxial cable, can be employed. Remember
that wiring costs are often the major constraint in the design of large distributed systems.

Many hybrid network arrangements have evolved from the star and the loop. Fig-

ure 9.2 shows two of the more popular types that contain features found in both basic

configurations.

SERIAL DATA COMMUNICATION 189

8051 Data Communication Modes
The 8051 has one serial port—port pins 3.0 (RXD) and 3.1 (TXD)—that receives and

transmits data. All data is transmitted or received in two registers with one name: SBUF.

Writing to SBUF results in data transmission; reading SBUF accesses received data.

Transmission and reception can take place simultaneously, and the receiver can be in the

process of receiving a byte while a previous byte is still in SBUF. The first byte must be

read before the reception is complete, or the second byte will be lost.

Physically the data is a series of voltage levels that are sampled, in the center of the

bit period, at a frequency that is determined by the serial data mode and the program that

controls that mode. All devices that wish to communicate must use the same voltage

levels, mode, character code, and sampling frequency (baud rate). The wires that connect

the ports must also have the same polarity so that the idle state, logic high, is seen by

all ports.

The installation and checkout of a large distributed system are subject to violations of

all of the "same" constraints listed previously. Careful planning is essential if cost and

time overruns are to be avoided.

The four communication modes possible with the 8051 present the system designer

and programmer with opportunities to conduct very sophisticated data communication

networks.

Mode 0: Shift Register Mode

Mode is not suitable for the interchange of data between 8051 microcontrollers. Mode
uses SBUF as an 8-bit shift register that transmits and receives data on port pin 3.0, while

using pin 3. 1 to output the shift clock. The data and the shift clock are synchronized using

the six internal machine states, and even for microcontrollers using the same crystal fre-

quency, they can be slightly out of phase due to differences in reset and start-up times.

Figure 9.3 shows the timing for the transmission and reception of a data character.

Remember that the shift clock is generated internally and is always from the 8051 to the

externa] shift register. The clock runs at the machine cycle frequency of f/12. Note that

transmission is enabled any time SBUF is the destination of a write operation, regardless

of the state of the transmitter empty flag, SCON bit 1 (TI).

FIGURE 9.3 Mode Timing

Shift Data Out

S6P2

|

I

|
I 1 I I

|

I DO I 01 ' D2 ' 03 i D4 I D5 I D6 I 07 | External Data Bits Shifted Out
1—H—ri

—

,i. i . 1—nRXD Data Out

TXD Clock

1

1
I

2
|

3
|

4
,

5

]

6
1

7
1

8

S3P1
l

s6P1
I 1 i 1) 1 1

RXD Data In |
DO || 01 f| 02

|
03

f
P4

1
1 P5

j | P6
1

1 D7| External Data Bits Shifted In

S5P2
Shift Data In

190 CHAPTER NINE

Data is transmitted, LSB first, when the program writes to SBUF. Data is shifted

right during S6P2, or 24/f seconds after the rising edge of the shift clock at S6P1 . Data is

stable from just after S6P2 for one cycle. Good design practice dictates that the data be

shifted into the external shift register during the high-to-low transition of the shift clock,

at S3PI , to avoid problems with clock skew.

The receiver is enabled when SCON bit 5 (REN) is enabled by software and SCON
bit (RI) is set to 0. At the end of reception RI will set, inhibiting any form of character

reception until reset by the software. The condition of RI cleared to is unique for mode

0; all other modes are enabled to receive when REN is set without regard as to the state of

RI. The reason is clear: Mode is the only mode that controls when reception can take

place. Enabling reception also enables the clock pulses that shift the received data into the

receiver.

Reception begins, LSB first, with the data that is present during S5P2, or 24/f sec-

onds before the rising edge of the shift clock at S6P1 . The incoming data is shifted to the

right. Incoming data should be stable during the low state of the shift clock, and good

design practice indicates that the data be shifted from the external shift register during the

low-to-high transition of the shift clock, at S6P1 , so that the data is stable up to one clock

period before it is sampled.

A serial data transmission interrupt is generated at the end of the transmission or re-

ception of bit eight if enabled by the ES interrupt bit EI.4 of the enable interrupt register.

Software must reset the interrupting bit RI or TI. As the same physical pin is used for

transmission and reception, simultaneous interrupts are not possible.

Mode is well suited for rapid data collection and control of multi-point systems that

use a simple two-wire system for data interchange. Multiple external shift registers can

expand the external points to an almost infinite number, limited only by the response time

desired for the application. For instance, at f — 16 megahertz, each point of a 10,000

point system could be monitored every 60 milliseconds. Common industrial systems do

not require rates this high, and a reasonable rate of one point per second would leave

adequate time for processing by the program.

Modezero

A small system that features 16 points of monitored data and 16 points of control is shown

in Figure 9.4. Data from the process is converted from parallel to serial in the '166 type

registers. Data to the process is converted from serial to parallel in the type '164 registers

and latched into the *373 latches.

It is important that the data be "frozen" before the shifting begins. The bits shifted in

could be changed before reaching the microcontroller, or a control bit might be changed,

momentarily, as it shifts through the output shift registers. Port pin 3.2 is used to disable

the input registers from the process when high and to enable loading input values when low.

To read the inputs, P3.2 is brought high and the receiver is enabled (twice) to generate

16 input shift clocks. The high level on P3.2 prevents the shift clocks from reaching the

output registers. At the end of the read, P3.2 is brought low to enable loading input values

into the input registers. No clock pulses are generated, so the output control registers do

not change state.

Control bits to the output registers are transmitted when P3.2 is low and SBUF has

two data bytes written in succession. The two bytes generate 16 clock pulses that fill the

output registers with the SBUF data. Port pin 3.3 is used to latch the newly shifted control

data to the process by strobing the output data latches. A program that monitors and con-

trols the points follows.

SERIAL DATA COMMUNICATION 191

FIGURE 9.4 Shift Register Circuit Used with Modezero Program

Monitored Data

+ 5V

18 17 14 13 8 7 4 3
'

373
1 1 11

Latch J
1.11

19 16 15 12 9 6 5 2

I I I I I I I I

18 17 14 13 8 7 4 3

'^l X l.H
Latch T

19 16 15 12 9 6 5 2

I I I I 1 I 1 I

+ 5V

Latch

12 P3.2

11 P3.1

10 P3.0

8031

13 P3.3

Controlled Points

ADDRESS

modezero

The program "modezero" monitors 16 bits and controls the state of 16 bits. The

system can be expanded indefinitely by expanding the shift register configurations shown

in Figure 9.4. In this example program, whatever data is read on the monitored points is

written to the control points. The direction of data flow to/from the 8051 is controlled

by P3.2, (high = in). P3.3 latches new data to the process.

MNEMONIC
.org OOOOh
.equ monl,70h
.equ mon2,71h
clr p3.2

setb p3.2
acall monit
mov monl.a
acall monit
mov mon2,a
clr p3.2

COMMENT

;store first 8 monitored points
;store second 8 monitored points
;load data from process to input
; registers
;enable data shift in

;get first byte
; store first byte
;get second byte
; store second byte
;enable data to be shifted out

Continued

192 CHAPTER NINE

ADDRESS
Continued

MNEMONIC

acall conit
mov a.monl
acall conit
c 1 r p3 .

3

setb p3.3
sjmp modezero

COMMENT

; start sending data, second byte first

; get first byte
;send first byte
; latch data to output latches
; end latch strobe
;loop for any new input

the routine that reads the monitored points follows

monit

:

here

:

mov scon.#10h

jnb scon.O, here
mov scon, #00h
mov a.sbuf
ret

; set mode and enable reception
; reset RI
;wait for end of reception
; clear receive enable and interrupt bit
; read byte received
; return to calling program

the routine that sends the control data follows

conit

:

mov scon,#00h
mov sbuf.a

wait

:

jnb scon . 1 , wait
ret

r\

. end

mMMCMT

set mode and clear all interrupt bits
start transmission
wait until transmission complete
return to calling program

Note that in both the transmit and receive cases the interrupt bit must go high before the

subroutine can be ended.

The data transmit and reception time is so short that interrupt-driven schemes are not efficient.

Mode 1 : Standard 8-Bit UART Mode

In Chapter 7, several simple communication programs are studied that use the serial port

configured as mode 1, the standard UART mode normally used to communicate in 8-bit

ASCII code. Only seven bits are needed to encode the entire set of ASCII characters. The

eighth bit can be used for even or odd parity or ignored completely. Asynchronous data

transmission requires a start and stop bit to enable the receiving circuitry to detect the start

and finish of a complete character. A total of ten bits is needed to transmit the 7-bit ASCII

character, as shown in Figure 9.5.

Transmission begins whenever data is written to SBUF. It is the responsibility of the

programmer to ensure that any previous character has been transmitted by inspecting the

TI bit in SCON for a set condition. Data transmission begins with a high-to-low start bit

transition on TXD that signals receiving circuitry that a new character is about to arrive.

The 8-bit character follows, LSB first and MSB parity bit last, and then the stop bit, which

is high for one bit period. If another character follows immediately, a new start bit is

signaled by a high-to-low transition; otherwise, the line remains high. The width of each

transmitted data bit is controlled by the baud rate clock used. The receiver must use the

same baud rate as the transmitter, or it reads the data at the wrong time in the character

stream.

SERIAL DATA COMMUNICATION 193

FIGURE 9.5 Asynchronous 8-Bit Character Used in Mode 1

Idle State Idle State

I F 1 T 1 T T T TIll2l3l4l5l6l7l8l
L J. J_____L I L L L I

Start -* fc~ Data Bits
S*?P

Bit i
Bit

f

Reception begins if the REN bit is set in SCON and a high-to-low transition is sensed

on RXD. Data bits are sampled at the baud rate in the center of the bit duration period.

The received character is loaded into SBUF and the stop bit into SCON bit 2 (RB8) //the

RI bit in SCON is cleared, indicating that the program has read the previous character;

and either SM2 in SCON is cleared or SM2 is set and the received stop bit is high, which

is the normal state for stop bits.

If these conditions are met, then SBUF is loaded with the received character, and RI

is set. If the conditions are not met, the character is ignored, RI is not set, and the receive

circuitry awaits the next start bit.

The restriction that a new character is not accepted unless RI is cleared seems reason-

able. Data is lost if either the previous byte is overwritten or the new byte discarded,

which is the action taken by the 8051 . The restriction on SM2 and the stop bit are not as

obvious. Normally, SM2 will be set to 0, and the character will be accepted no matter

what the state of the stop bit. Software can check RB8 to ensure that the stop bit is correct

before accepting the character if that is thought to be important.

Possible reasons for setting SM2 to force reception only when the stop bit is a 1 could

be useful if the transmitter has the ability to change the stop bit from the normal high state.

If the transmitter has this capability, then the stop bit can serve as an address bit in a

multiprocessor environment where many loop microcontrollers are all receiving the same

transmission. Only the microcontroller that has SM2 cleared can receive characters end-

ing in either of the stop bit states. If all the microcontrollers but one have SM2 set, then all

data transmissions ending in a low stop bit interrupt the unit with SM2 = 0; the rest ignore

the data. Transmissions ending in a high stop bit can interrupt all microcontrollers.

Transmitters with the capability to alter the stop bit state are not standard. The 8051

communication modes 2 and 3 use the SM2 bit for multiprocessing. Mode 1 is not needed

for this use.

In summary, mode 1 should be used with SM2 cleared, as a standard 8-bit UART,
with software checks for proper stop bit magnitude if needed. As discussed in Chapter 7,

the baud rate for modes 1 and 3 are determined by the overflow rate of timer 1 , which is

usually configured as an auto-reload timer. PCON bit 7 (SMOD) can double the baud rate

when set.

Modeone

Mode I is most likely to be used in a dedicated system where the 805 1 serial port is con-

nected to a single similar port. A program that transmits and receives large blocks of data on

an interrupt-driven basis is developed to investigate some problems common to data inter-

change programs.

To the main program, interrupt-driven communication routines are transparent: Data

appears in RAM as it is received and disappears from RAM as it is transmitted. In both

cases, the link between the main program and the interrupt-driven communication sub-

194 CHAPTER NINE

routines are areas of RAM called buffers. These buffers serve to store messages that are to

be sent and messages that are received.

Each buffer area is defined by two memory pointers. One pointer contains the address

of the top of the buffer, or the location in RAM where the next character is to be stored,

and the second contains the address of the next character to be read. The buffers are

named "inbuf," for use in storing characters as they are received, and "outbuf," for stor-

ing characters that are to be sent. The pointers to the tops of the buffers are named "intop"

and "outop," respectively, while the pointers to the next character to be read are named

"inplace" and "outplace."

The two buffers work in exactly the same way. The receive subroutine fills inbuf as

characters are received and updates intop as it operates. The main program empties inbuf

as it can and keeps inplace pointing to the next character to be read. The main program

fills outbuf, while keeping outop updated to point to the next character to be stored. The

transmission subroutine empties outbuf as it can and keeps outplace pointing to the next

character to be read from outbuf.

These actions continue until the pointer to the top of the buffer equals the pointer to

the next character. The buffer is now empty, and the pointers can be reset to the bottom of

the buffer.

The buffer areas and pointers may be summarized as follows:

Outbuf: An area of RAM that holds characters to be transmitted

Outop: Pointer to outbuf that holds the address of the next character to be stored by

the main program for transmission

Outplace: Pointer to outbuf that holds the address of the next character to be trans-

mitted by the transmit subroutine

Inbuf: An area of RAM that holds received characters

Intop: Pointer to inbuf that holds the address of the next character received by the

receive subroutine

Inplace: Pointer to inbuf that holds the address of the next character to be read by the

main program

The main program and the transmit subroutine does not read data from a buffer when-

ever the place pointer equals the top pointer, which indicates that the buffer is empty.

The programmer has to make an estimate of how large the buffers need to be. Some-

times the general nature of the data is known when the system is in the design phase. The

programmer(s) for the two computers that are communicating can define message length

and frequency, arriving at a worst-case buffer size.

If the 8051 is part of a peripheral, such as a printer, that randomly receives large

quantities of data, then the buffer size is fixed at an economic and competitive number

using external RAM. For short and infrequent messages, internal RAM may suffice. In

both cases, the receiving subroutine should have a means of communicating to the source

of data when inbuf is becoming full so that the data flow can be suspended while inbuf is

emptied. Our example program falls somewhere between these extremes; some external

RAM will be needed, but not 32 kilobytes.

Registers R0 and Rl of register banks and 1 are used effectively as pointers to the

first 256d bytes of external RAM using MOVX instructions. For this example, the buffer

sizes are fixed at I28d bytes each, although there is no need for them to be of equal size.

Larger buffers can be constructed using the DPTR.

A program named "Modeone" handles communications between the 8051 and another

computer using serial data mode 1 . Two 1 28d byte buffers in external RAM store charac-

SERIAL DATA COMMUNICATION 195

ters to be transmitted or received. RO and R I of register bank keep track of data flow for

the receive buffer inbuf, located in external RAM addresses OOh to 7Fh. RO and RI of

register bank I serve the transmit buffer outbuf, external RAM addresses 80h to FFh. RO

is the place pointer, R l the top pointer to the buffers. The baud rate is set by timer I in the

auto-reload mode to 1200 bits per second. Port pin 3.2 is set high when inbuf is I byte

from a full condition.

ADDRESS

modeone

:

rcve

:

rok:

full

xmit

mor:

go:

MNEMONIC
.org OOOOh
sjmp over
.org 0023h

push psw
push ace
jbc scon.O , rcve
jbc scon . 1 ,xmit

sjmp go
clr psw.

3

mov a.sbuf
movx (Srl.a
inc rl

cjne rl ,#7eh, rok
setb p3 .

2

sjmp full

clr p3.2
jbc scon. 1 ,xmit

sjmp go
setb psw.

3

mov a.rO
cjne a,09h, mor

mov r0,#80h

mov rl.rO
sjmp go
movx a,(5r0
mov sbuf.a
inc rO

pop ace
pop psw
reti

COMMENT

jump over serial interrupt address
serial interrupt vectors to this
address
save register bank status
save A

serve the received data first
transmit data as a second priority
should never get to this jump
select register bank pointers to
inbuf
get received character
store character at top of inbuf
increment top address of inbuf
see if inbuf is almost full

signal data source of full condition

remove full signal to source
see if transmit interrupt also
occurred
if not then return
select bank 1 pointers to outbuf
compare RO and Rl for equality
internal RAM address 09h = Rl,

bank one
reset both pointers to bottom of

,
outbuf

buffer is empty; return
get next character to be transmitted
begin transmission
point to next transmit character
restore A and PSW, return

the main program begins here; for the purpose of this example, the

main program will send the character T repeatedly

over: mov sp,#10h
mov rO,#OOh

;set SP above register bank one
;set inbuf pointers to bottom of

Continued

196 CHAPTER NINE

ADDRESS
Continued

loop

rd:

send

sd:

MNEMONIC

mov rl,#00h
setb psw.3

mov r0,#80h
mov rl,#80h
clr p3.2
mov scon,#50h

mov thl,#0bbh
orl pcon,#80h
mov tmod,#20h
mov tcon, #40h
mov ie,#90h
clr psw.3

mov a,rO
cjne a.Olh.rd
mov rO,#OOh

mov rl,#00h
sjmp send
movx a,@rO
inc rO

setb psw.3
cjne rl,#O0h,sd
sjmp loop
mov a,#'T'
movx (a rl , a

inc rl

cjne rl , #81h, loop
setb scon.

1

sjmp loop
. end

COMMENT

buffer

set outbuf pointers to bottom of
buffer

; signal source that inbuf is not full
; set serial port mode 1 ; enable
;
receiver
;set TH1 for 187d (baud rate = 1208)
;set SMOD to double baud rate
set timer 1 to auto-reload mode
start Tl to generate baud clock

;
enable only serial interrupt
set pointers to inbuf and get
any data
inbuf is empty when intop = inplace
Rl of bank is direct address Olh
buffer empty, reset pointers to

bottom

send the character T
get character
point to next character
set pointers to outbuf and store data
see if outbuf is full and loop if so
Rl rolls over from FFh to OOh if full
put the character T in outbuf
store a T in outbuf
point to top of outbuf
initiate transmission if first T
start transmission process for first
T

continue

COMMENT
Note that the program has to initiate the first interrupt for the first character that is stored in a

previously empty outbuf. If the first interrupt action were not done, transmission would never

take place, as the Tl bit would remain a 0. The state of the Tl bit is ambiguous: It can mean
that the transmitter is busy sending a byte or that no activity is taking place at all. The 1 state of

Tl is specific: A byte has been transmitted, and SBUF can receive the next byte.

The example program fills outbuf quickly, until outop rolls over to OOh. Outbuf is emptied until

outplace rolls over also, and outbuf is re-initialized to 80h. Received data is always read before

inbuf can fill up, as there is very little for the program to do. Adding a time delay in the program

ensures that inbuf grows beyond one byte.

Continued

SERIAL DATA COMMUNICATION 197

COMMENT
The data source should cease sending data to the 8051 until port 3.2 goes low. In this example,

"full" is arbitrarily set at one byte below the maximum capacity of inbuf. The actual number

for a full condition should be set at maximum capacity less the response time of the source

expressed in characters.

No feedback from the source to the 8051 has been provided for halting transmission of data

from the 8051. Feedback can be accomplished by using one of the INT lines as an input from

the source to signal a full condition.

Modes 2 and 3: Multiprocessor

Modes 2 and 3 are identical except for the baud rate. Mode 2 uses a baud rate of f/32 if

SMOD (PCON.7) is cleared or f/64 if SMOD is set. For our 16 megahertz example, this

results in baud rates of 500000 and 250000 bits per second, respectively. Pulse rates of

these frequencies require care in the selection and installation of the transmission lines

used to carry the data.

Baud rates for mode 3 are programmable using the overflows of timer 1 exactly as for

data mode 1. Baud rates as high as 83333 bits per second are possible using a 16 mega-

hertz crystal. These rates are compatible with RS 485 twisted-pair transmission lines.

Data transmission using modes 2 and 3 features eleven bits per character, as shown in

Figure 9.6. A character begins with a start bit, which is a high-to-low transition that lasts

one bit period, followed by 8 data bits, LSB first. The tenth bit of this character is a pro-

grammable bit that is followed by a stop bit. The stop bit remains in a high state for a

minimum of one bit period.

Inspection of Figures 9.5 and 9.6 reveals that the only difference between mode 1 and

mode 2 and 3 data transmission is the addition of the programmable tenth bit in mode

2 and 3.

When the 8051 transmits a character in mode 2 and 3, the eight data bits are whatever

value is loaded in SBUF. The tenth bit is the value of bit SCON. 3, named TD8. This bit

can be cleared or set by the program. Interrupt bit TI (SCON. 1) is set after a character has

been transmitted and must be reset by program action.

Characters received using mode 2 and 3 have the eight data bits placed in SBUF and

the tenth bit is in SCON. 2, called RB8, if certain conditions are true. Two conditions

apply to receive a character. First, interrupt bit RI (SCON.O) must be cleared before the

last bit of the character is received, and second, bit SM2 (SCON. 5) must be a or the

tenth bit must be a I. If these conditions are met, then the eight data bits are loaded in

SBUF, the tenth bit is placed in RB8, and the receive interrupt bit RI is set. If these con-

ditions are not met, the character is ignored, and the receiving circuitry awaits the next

start bit.

The significant condition is the second. If RI is set, then the software has not read

the previous data (or forgot to reset RI), and it would serve no purpose to overwrite the

FIGURE 9.6 Asynchronous 9-Bit Character Used in Modes 2 and 3

Idle State Idle State

1 | T T T T T T 1 1 1Ill2l3l4l5l6l7l8l9 (TB8) I

I I X I I L J J I J I

Start t » Data Bits st°P
Bit 1 Bit

f t *~

198- CHAPTER NINE

data. Clearing SM2 to allows the reception of multiprocessor characters transmitted in

mode 2 and 3. Setting SM2 to I prevents the reception of those characters that have bit ten

equal to 0. Put another way, if bit ten is a 1 , then reception always takes place; SM2 is

ignored, //bit ten is a then only those receivers with SM2 set to are interrupted.

Mode 2 and 3 has been included in the 8051 specifically to enhance the use of mul-

tiple 8051s that are connected to a common loop in a multiprocessor configuration. The

term multiprocessing implies many processors acting in some unified manner and con-

nected so that data can be interchanged between them. When the processors are connected

in a loop configuration, then there is generally a controlling or "talker" processor that

directs the activities of the remainder of the loop units, or "listeners."

One particular characteristic of a talker-listener loop is the frequent transmission

of data between the talker and individual listeners. All data broadcast by the talker is

received by all the listeners, although often the data is intended only for one or a few

listeners. At times, data is broadcast that is meant to be used by alt the listeners.

There are many ways to handle the addressing problem. Systems that use standard

UART technology, such as mode 1 , can assign unique addresses to all the listeners. Each

message from the talker can begin with the address of the particular listener for which it is

intended. When a message is sent, all the listeners process the message and react only if

the address that begins the message matches their assigned addresses. If messages are sent

frequently, the listeners will waste a lot of processing time rejecting those messages not

addressed to them.

Mode 2 and 3 reduces processing time by enabling character reception based upon the

state of SM2 in a listener and the state of bit ten in the transmitted character. A single

strategy is used to enable a few listeners to receive data while the majority ignore the

transmissions.

All listeners initially have SM2 set to 0, the normal reset state, and receive all multi-

processor messages. Each listener has a unique address. The talker addresses each of the

listeners that are not of interest and commands them to set SM2 to 1 , leaving the listeners

to which communication is desired with SM2 cleared to 0. All characters from the talker

to the unique listeners are then sent with bit ten set to 0. The listener(s) with SM2 cleared

receive the data; those with SM2 set ignore the data due to the condition of bit ten. Com-
munication with all listeners is done by setting bit ten to I , which enables reception of

characters with no regard as to the state of SM2.

A variation of this strategy is to have all listeners set SM2 to 1 upon power-up. All

address messages have a I in bit position ten, so all listeners receive and process any address

message to see whether action is required. Listeners chosen are commanded in the address

message to set SM2 to 0, and data communication proceeds with bit ten cleared to 0.

The multiprocessing strategy works best when there is extensive data interchange

between the talker and each individual listener. Frequent changes of listeners with little

data flow results in heavy address usage and subsequent interruption of all listeners to

process the address messages.

Modethree

A multiprocessor configuration that demonstrates, the use of mode 3 is shown in Figure

9.7. An RS 485 twisted-pair transmission line is used to form a loop that has 15d 8051

microprocessors connected to the lines so that all data on the loop is common to all serial

ports. The 8051 has been programmed to be the talker, and the rest are listeners.

The purpose of the loop is to collect ten data bytes from each listener, in sequential

order. All listeners initialize SM2 to 1 after power-up, and the talker configures all address

SERIAL DATA COMMUNICATION 199

FIGURE 9.7 Communication Loop Used for Modethree Program

SM2 -

1

Listener

01
Listener

02
Listener

03
Listener

04
Listener

05
Listener

06
Listener

07

Talker

(8051)
RS485

SM2 =0

Listener

08
Listener

09
Listener

OA
Listener

OB
Listener

OC
Listener

00
Listener

OE

messages using a 1 in bit ten. Addressed listeners transmit ten data characters to the talker

with bit ten set to 0. The talker has SM2 set to so that all communications from listeners

are acknowledged. Data characters from a listener to the talker are ignored by the remain-

ing listeners. At the end of the ten data bytes, the addressed listener resets SM2 to 1 . The

data rate is set by timer 1 in the auto-reload mode to be 83333 baud. That portion of the

talker and listener program that has to do with setting up the multiprocessor environment

will be programmed.

The messages that are sent from the talker to the listeners are called "canned" because

the contents of each is known when the program is written; the messages can be placed in

ROM for later use. The subroutine "sendit" in the talker program can send canned mes-

sages of arbitrary length, as long as each message ends in the character $.

Message contents from the listeners to the talker are not known when the program is

written. A version of sendit, "sndat," can still be used if the message is constructed in the

same manner as the canned messages in the ROM of the talker program.

The program "Modethree" sends a canned address message to each of Fh listeners on

a party-line loop using serial data mode 3. All canned messages are transmitted with bit

ten set to 1; all received data from the addressed listener has bit ten set to 0. SM2 is set in

all listeners and reset in the talker.

ADDRESS

modethree

talker:

MNEMONIC
.org OOOOh
mov scon,#0dah

mov thl,#0ffh
orl pcon,#80h
mov tmod,#20h
mov tcon,#40h
mov dptr,#addl
acall sendit
acall getit

mov dptr,#add2
acall sendit

COMMENT

;set mode 3, REN, TB8 and TI

,

; clear SM2
;set TH1 for 83333d overflow rate
;set SMOD
;set timer 1 to auto-reload mode
; start Tl to generate baud clock
; send first listener message

"getit" is a data reception
routine
send second listener message

Continued

200 CHAPTER NINE

ADDRESS
Continued

get it

:

MNEMONIC

acall getit

sjmp over
ret

COMMENT

; continue until all data is gathered

; dummy routine for this example

the subroutine " sendit " will transmit characters starting at the
address passed in DPTR until a $ character is found

sendit

:

here

:

out

:

clr a

jnb scon. 1 , here
move a, (5)a + dptr
mov sbuf,a
cjne a,#'S' .out

ret
inc dptr
sjmp sendit

;zero offset for MOVC
; wait for transmitter not busy
;get character of message
; send character
;if a $ then return to calling
; program

;point to next character
;continue until done

the canned address messages are assembled in ROM next

addl: . db "01®" ;address message for listener 1

add2 : . db "02$" .-address message for listener 2

; ;continue for all listeners
addlS: .db "0f$"

. end
the program "listener" recognizes its address and responds with
10 data characters; the data message is built in RAM, and ends
with a $ character; for this example, the data is gotten by reading
port 1 ten times and storing the data; this is the program for

listener 01

listener

:

who

nxt

org OOOOh
mov scon, #0f2h

mov thl,#0ffh
orl peon, #80h
mov tmod, #20h
mov tcon, #40h
jnb scon.O.who

clr scon.O
mov a,sbuf
cjne a, #'0 ' , no
jnb scon.O, nxt
clr scon.O

set mode3, SM2, REN, TI ; clear TB8,
RI, RB8
set TH1 for 83333d overflow rate
set SM0D to double baud rate
set timer 1 to auto-reload mode
start Tl to generate baud clock
look for the first address
character
first character, clear receive flag
get character
compare against expected address
first character correct, get second
second character, clear receive
flag

Continued

SERIAL DATA COMMUNICATION 201

ADDRESS

ok:

no

:

sendata:

indat

:

sndat

:

MNEMONIC
mov a.sbuf
cjne a, #' 1'

, no
jnb scon.O, ok
clr scon.O
cjne a, #'$' , no
sjmp sendata
jnb scon.O, no
clr scon.O
mov a.sbuf
cjne a,#'$' , no
sjmp who
mov r0,#50h

mov rl,#0ah

mov @rO,pl
inc rO

djnz rl , indat
mov @r0,#'$'

mov r0,#50h

jnb scon. 1 , sndat
mov a,@rO
mov sbuf,a
inc rO

cjne a, #'$' , sndat
sjmp listener
.end

COMMENT
; check next character

;wait for $ and then send data

if not then reset

wait for $ and then loop

get character
loop until $ found
loop until proper address sent
build the message in RAM starting
at 50h
set Rl to count data bytes from
port 1

get data from port 1 to RAM
point to next RAM location
continue until lOd bytes are stored
finish data string with a

$ character
reset RO to point to start of
message
wait for transmitter empty
get character from message
load SBUF for transmission
point to next character
look for $ then stop transmission
loop for next cycle

{>— COMMENT
The inclusion of the $ character in each message is useful both as a check for the end of a

message and to reset a listener that somehow misses one of the three characters expected in

an address. If a listener misses a character, due to noise for example, it will get to the "no" label

within one or two characters. The next $ will reset the listener program back to the "who"
label.

Programs that interchange data must be written to eliminate any chance of a receiving unit

getting caught in a trap waiting for a predetermined number of characters. Common schemes

that accomplish this goal use special "end-of-message" characters, as in the case of Modethree,

or set timers to interrupt the receiving program if the data is not received within a certain period

of time.

Much more elaborate protocols than those used here in this example would be used by the

listeners when sending data to the talker. There is always the possibility that errors will occur

due to noise or the improper operation of another listener interfering. The talker may store

these errors. Error-checking bytes may be added to the data stream so that the talker can verify

that the string of characters is error free.

202 CHAPTER NINE

Summary
Four serial data communication modes for the 8051 are covered in this chapter:

Mode 0: High-speed, 8-bit shift register; one baud rate of f/12

Mode I: Standard 8-bit UART; variable baud rate using timer 1 overflows

Mode 2: Multiprocessor 9-bit UART; two baud rates of f/32 and f/64

Mode 3: Multiprocessor 9-bit UART; variable baud rate using timer 1 overflows

Programs in this chapter use these modes and feature several standard communication

techniques:

High-speed shift register data gathering

Interrupt-driven transmit and receive buffers

Sending preprogrammed, or canned, messages

Problems

1. Explain why mode is not suitable for 8051 communications.

2. How much clock skew, in terms of clock period, can transmitted data using mode have

before data is shifted in error?

3. Repeat Problem 2 for data reception.

4. Assume you are determined to use mode as a communication mode from one 8051

to another. Outline a system of hardware and software that would allow this. Hint:

A "buffer" is needed.

5. Sketch the mode 1 no parity ASCII serial characters U, 0, and w.

6. Many communication terminals can determine the baud rate of standard (mode 1) char-

acters by making measurements on the first few "fill" characters received. Outline a

program strategy that would set the 8051 baud rate automatically based upon the first

character received.

7. Character transmission can be done by using a time delay greater than the character time

before moving a new byte to SBUF. Explain why character reception must use an inter-

rupt flag if all characters are to be received.

8. ASCII characters can have even (number of ones), odd, or no parity using bit 7 as a

parity bit. Write a program that checks the incoming data for odd parity and sets a flag

if the parity is incorrect.

9. Write a program that converts odd parity bytes to even parity bytes (bit 7 is the parity bit).

10. An overrun is said to occur in data reception whenever a new byte of data is received

before the previously received byte has been read. Discuss two methods by which over-

runs might be detected by the 8051 program.

11. List two reasons why stop bits are used in asynchronous communications.

12. A framing error is said to have occurred if the stop bit is not a logic high. What mode(s)

can detect a framing error?

13. Why is it necessary for the main program (see "Modeone") to set the TI bit to begin the

transmission of a string of characters using interrupt-driven routines? Name another way

for the main program to initiate transmission.

14. Determine if an 8051 in mode 1 can communicate with an 8051 in mode 3.

15. Modify the "Modeone" program to use 4K byte buffers.

8051 Operational

Code Mnemonics

Appendix A lists two arrangements of mnemonics for the 8051: by function, and alpha-

betically. The mnemonic definitions differ from that of the original manufacturer (Intel

Corporation) by the names used for addresses or data; for example, "add" is used to repre-

sent an address in internal RAM, while Intel uses the name "direct." The author believes

that the names used are clearer than those used by Intel. Appendix A also includes an

alphabetical listing of the mnemonics using Intel names. There is no difference between

the mnemonics when real numbers replace the names. For example; MOV add,#n and

MOV direct,#data become MOV 10h,#40h when the number lOh replaces the internal

RAM address (add/direct), and 40h replaces the number (#n/# data).

Mnemonics, Arranged by Function

Arithmetic

MNEMONIC DESCRIPTION

ADD A,Rr A+Rr-> A
ADD A.add A+(add) -> A
ADD A,(aRp A+(Rp)^ A
ADD A,#n A + n-> A
ADDC A,Rr A+Rr+C — A
ADDC A,add A+(add) +C^ A
ADDC A,(5Rp A+(Rp)+C^ A
ADDC A,#n A+n + C ~» A
DA A Abin —» Adec

DEC A A-1 -> A
DEC Rr Rr-1 -n-Rr

DEC add (add)-l ->(add)

DEC <«.'Rp (Rp)-1->(Rp)

BYTES CYCLES FLAGS

1 C OV AC
2 C OVAC
1 C OVAC
2 C OVAC
1 C OVAC
2 C OVAC
1 C OVAC
2 COVAC
1 C
1

1

2

1

Continued

203

204 APPENDIX A

Arithmetic

MNEMONIC

DIV AB
INC A
INC Rr

INC add

INC (frRp

INC DPTR

MUL AB
SUBB A,Rr

SUBB A,add

SUBB A,(fiRp

SUBB A,#n

Logic

MNEMONIC
ANL A.Rr

ANL A,add

ANL A.ftt-Rp

ANL A,#n

ANL add.A

ANL add,#n

ORL A,Rr

ORL A,add

ORL A,(fi;Rp

ORL A,#n

ORL add,A

ORL add,#n

XRL A,Rr

XRL A,add

XRL A,(?/.
! Rp

XRL A,#n
XRL add,A

XRL add,#n

CLR A
CPL A
NOP
RL A
RLC A
RR A
RRC A
SWAP A

Data Moves

MNEMONIC
MOV A.Rr

MOV A,add

MOV A,(a>Rp

DESCRIPTION

A/B-* AB
A+l -» A
Rr+1 -» Rr

(add)+1 ~^(add)

(Rp)+1 -»(Rp)

DPTR+1 -* DPTR

AxB— AB
A-Rr-C-» A
A-(add)-C -> A
A-(Rp)-C -» A
A-n-C -* A

DESCRIPTION

A AND Rr-> A
A AND (add) -» A
A AND (Rp) -» A
A AND n -» A
(add) AND A -* (add)

(add) AND n -» (add)

A OR Rr -* A
A OR (add) -» A
A OR (Rp) -> A
A OR n -» A
(add) OR A — (add)

(add) OR n -» (add)

AXOR Rr— A
A XOR (add) -> A
A XOR (Rp) -> A
A XOR n -» A
(add) XOR A -> (add)

(add) XOR n -» (add)

00-^ A
A-> A
PC+1 -» PC

A0*-A7«-A6. .«-A1 ^-AO

C«_A7<-A6..^-A0<-C

A0->A ->A6..-+A1-»A0

C^A7->A6. .-*A0—

C

Alsn <-» Amsn

DESCRIPTION

Rr-* A
(add) -» A
(Rp) — A

BYTES CYCLES FLAGS

Continued

ov

ov
COVAC
COVAC
C OVAC
C OVAC

BYTES CYCLES FLAGS

1

2

1

2

2

3

1

2

1

2

2

3

1

2

1

2

2

3

1

1

1

1

1 1 C

1

1 1 c
1

BYTES CYCLES FLAGS

1 1

2 1

1 1

Continued

8051 OPERATIONAL CODE MNEMONICS 205

MNEMONIC
MOV A,#n

MOV Rr,A

MOV Rr.add

MOV Rr,#n

MOV add,A

MOV add.Rr

MOVadd1,add2
MOV add,@Rp
MOV add,#n

MOV @Rp,A
MOV @Rp,add
MOV @Rp,#n
MOV DPTR,#nn

MOVC A,@A+DPTR
MOVC A,@A+PC
MOVX A,@DPTR
MOVX A,(o)Rp

MOVX @Rp,A
MOVX @DPTR,A
POP add

PUSH add

XCH A,Rr

XCH A,add

XCH A,@Rp
XCHD A,(SRp

Calls and Jumps

MNEMONIC
ACALL sadd

ONE A,add,radd

CJNE A,#n,radd

CJNE Rr,#n,radd

CJNE @Rp,#n,radd

DJNZ Rr,radd

DJNZ add.radd

LCALL ladd

AJMP sadd

UMP ladd

SJMP radd

JMP@A + DPTR

JC radd

JNC radd

JB b.radd

JNB b,radd

JBC b,radd

JZ radd

JNZ radd

RET

RETI

DESCRIPTION

n-> A
A->Rr
(add) -» Rr

n~> Rr

A — (add)

Rr -» (add)

(add2)-»(add1)

(Rp)-(add)

n — (add)

A -» (Rp)

(add)— (Rp)

n - (Rp)

nn — DPTR

(A+DPTR)— A
(A+PC)-> A
(DPTR)A -> A
(Rp)A - A
A - (Rp)A

A -> (DPTR)A

(SP)-(add)

(add)-(SP)

A <-» Rr

A ++ (add)

A <-» (Rp)

Alsn <h. (Rp)lsn

DESCRIPTION

PC + 2-»(SP); sadd —PC
(Ao(add)): PC + 3 +radd— PC

[Aon|: PC + 3 + radd — PC

[Rron]: PC + 3+ radd -» PC

[(Rp)on]: PC+3 + radd — PC

[Rr-1<>001: PC + 2 + radd — PC

Kadd)-1<>00]: PC + 3+ radd — PC

PC + 3 — (SP); ladd — PC

sadd — PC

ladd -* PC

PC + 2 + radd — PC

DPTR+A — PC

|C = 1]: PC + 2 + radd — PC

IC = 0]: PC + 2 + radd — PC

lb=1]: PC + 3 + radd — PC

[b=0]; PC + 3 + radd — PC

[b=1|: PC+ 3 + radd— PC; —

b

[A=00]: PC + 2 + radd — PC

(A>001: PC + 2 + radd — PC

(SP) — PC

(SP) — PC; El

BYTES CYCLES FLAGS

2 1

1 1

2 2

2 1

2 1

2 2

3 2

2 2

3 2

1 1

2 2

2 1

3 2

1 2

1 2

1 2

1 2

1 2

1 2

2 2

2 2

1 1

2 1

1 1

1 1

BYTES CYCLES FLAGS

2 2

3 2 C
3 2 C

3 2 C

3 2 C

2 2

3 2

3 2

2 2

3 2

2 2

1 2

2 2

2 2

3 2

3 2

3 2

2 2

2 2

1 2

1 2

206 APPENDfX A

Boolean

MNEMONIC
ANL C£
ANL C.b

CLRC
CLRb
CPL C

CPL b

ORL C.b

ORLC.b
MOV C,b

MOV b,C

SETB C

SETB b

DESCRIPTION

C AND^~»
C AND b -»

0->C
0_-+b

b-*b
C OR b -> C

C OR b -» C

b —

C

C-b
1 ->C
1 -»b

BYTES CYCLES FLAGS

2 2 C

2 2 C

1 1

2 1

1 1 c

2 1

2 2 c

2 2 c

2 1 c
2 2

1 1 1

2 1

Mnemonics, Arranged Alphabetically

MNEMONIC
AC ALL sadd

ADD A,add

ADD A,@Rp
ADD A,#n

ADD A,Rr

ADDC A.add

ADDC A,@Rp
ADDC A,#n

ADDC A,Rr

AJMP sadd

ANL A.add

ANL A,@Rp
ANL A,#n

ANL A,Rr

ANL add,A

ANL add,#n

ANL C,_b

ANL C,b

ONE A,add,radd

ONE A,#n,radd

CJNE @Rp,#n,radd

CJNE Rr,#n,radd

CLR A
CLR b

CLRC
CPL A
CPL b

CPL C

DA A
DEC A
DEC add

DEC @Rp
DEC Rr

DESCRIPTION

PC + 2^(SP);sadd-^PC
A+(add) -* A
A + (Rp)-> A
A + n -* A
A + Rr-> A
A+(add) + C -*• A
A + {Rp) +C-^ A
A + n + C -> A
A + Rr+C -> A
sadd -» PC

A AND (add) -> A
A AND (Rp) -» A
A AND n -> A
A AND Rr -> A
(add) AND A -> (add)

(add) AND n -> (add)

C AND b_-» C

C AND b -» C

(Ao(add)I: PC+3 + radd — PC

[A<>n|: PC + 3 + radd-> PC

[(Rp)on]: PC + 3 + radd -* PC

fRrOnl: PC + 3 + radd-» PC

BYTES CYCLES FLAGS

0^

A
b

c

Abin —

»

A-1~»
(add)-1

(Rp)-1

Rr-1 -•

A
b

C
• A
b

C
Adec

A
-» (add)

-(Rp)
Rr

2 2

2 C OVAC
1 COVAC
2 COVAC
1 C OVAC
2 C OVAC
1 COVAC
2 COVAC
1 C OVAC
2 2

2

1

2

1

2

3 2

2 2 C

2 2 C

3 2 C

3 2 C

3 2 C

3 2 C

1

2

Continued

8051 OPERATIONAL CODE MNEMONICS 207

MNEMONIC
DIV A8
DJNZ add.radd

DJNZ Rr.radd

INC A
INC add

INC DPTR

INC @Rp
INC Rr

JB b.radd

JBC b.radd

JC radd

JMP@A + DPTR
JNB b,radd

JNC radd

JNZ radd

JZ radd

LCALL ladd

UMP ladd

MOV A,add

MOV A,@Rp
MOV A,#n
MOV A,Rr

MOV add.A

M0Vaddl,add2
MOV add,(&Rp

MOV add,#n

MOV add.Rr

MOV b,C

MOV C,b

MOV @Rp,A
MOV @Rp,add
MOV (a)Rp,#n

MOV DPTR,#nn

MOV Rr.A

MOV Rr,add

MOV Rr,#n

MOVC A,@A+DPTR
MOVC A,@A+PC
MOVX A,@DPTR
MOVX A,@Rp
MOVX @DPTR,A
MOVX <5>Rp,A

NOP
MULAB
ORL A,add

ORL A,@Rp
ORL A,#n

ORL A,Rr

ORL add,A

ORL add,#n

ORL C.b

ORLC.b

DESCRIPTION

A/B -> AB
Kadd)-1<>00]: PC+3+radd-» PC

[Rr-1<>00]: PC + 2 + radd-* PC

A+1 -* A
(add)+1 ->(add)

DPTR+1 -» DPTR

(Rp)+1-»(Rp)

Rr+1 -* Rr

[b=1]: PC + 3 + radd-> PC

[b=1]: PC + 3 + radd — PC; O^b
[C = l]: PC + 2 + radd-> PC

DPTR +A->PC
[b=0]: PC + 3 + radd — PC

[C=0J: PC + 2 + radd-> PC

[A>00]: PC + 2 + radd-»PC
[A=00]: PC + 2 +radd— PC*
PC+3 — (SP); ladd -^ PC

ladd -> PC

(add)— A
(Rp) -> A
n-» A
Rr-* A
A ->• (add)

(add2)->(add1)

(Rp)-*(add)

n -> (add)

Rr -+ (add)

C^b
b—

C

A -* (Rp)

(add)^(Rp)

n -> (Rp)

nn -» DPTR

A-» Rr

(add) -+ Rr

n-» Rr

(A+DPTR)-* A
(A+PC)-» A
(DPTR)a -» A
(Rp)A -» A
A - (DPTR)a

A - (Rp)A

PC+1 -> PC

AxB — AB
A OR (add) -> A
A OR (Rp) -+ A
AORn->A
A OR Rr -> A
(add) OR A -> (add)

(add) OR n -* (add)

C OR b-> C

CORb-^C

BYTES CYCLES FLAGS

oov

oov

c

c

Continued

208 APPENDIX A

MNEMONIC.

POP add

PUSH add

RET

RET!

RL A
RLC A
RR A
RRC A
SETB b

SETB C

SJMP radd

SUBB A.add

SUBB A,@Rp
SUBB A,#n

SUBB A.Rr

SWAP A
XCH A,add

XCH A,(|)Rp

XCH A,Rr

XCHD A,@Rp
XRL A,3dd

XRL A,@Rp
XRL A,#n

XRL A,Rr

XRL add.A

XRL add.#n

MNEMONIC ACRONYMS

DESCRIPTION

(SP)^(add)

(add)-(SP)

(SP) -* PC

(SP)-*PC; El

AO<-A7*-A6. <^-AT«-A0

C^-A7^-A6. .+-AO^C
AO->A7->A6. ^A1—AO
C^A7^A6. .-*AO->C
1 ->b
1 -» C

PC + 2 + radd- PC

A-(add)-C — A
A-(Rp)-C — A
A-n-C -» A
A-Rr-C — A
A/sn *+ Amsn
A « (add)

A ** (Rp)

A«Rr
Alsn <-> (Rp)lsn

A XOR (add) ^-A
A XOR (Rp) -» A
A XOR n -» A
A XOR Rr -» A
(add) XOR A -> (add)

(add) XOR n -» (add)

BYTES CYCLES FLAGS

Continued

2 2

2 2

1 2

1 2

1

1 C

1

1 C

2

1 1

2 2

2 COVAC
1 COVAC
2 C OV AC
1 C OVAC
1

2

1

1

1

2

1

2

1

2

3 2

add

iadd

radd

sadd

b

C
Isn

msn

n

Rr

Rp

A

{)

Address of the internal RAM from OOh to FFh.

Long address of 16 bits from OOOOh to FFFFh.

Relative address, a signed number from -128d to +127d.
Short address of 1 1 bits; complete address = PC 1 1 - PC 1 5 and sadd.

Addressable bit in internal RAM or a SFR.

The carry flag.

Least significant nibble.

Most significant nibble.

Any immediate 8 bit number from OOh to FFh.

Any of the eight registers, RO to R7 in the selected bank.

Either of the pointing registers RO or R1 in the selected bank.

IF the condition inside the brackets is true, THEN the action listed will occur; ELSE go to the next

instruction.

External memory location.

Contents of the location inside the parentheses.

Note that flags affected by each instruction are shown where appropriate; any operations that affect the PSW
address may also affect the flags.

8051 OPERATIONAL CODE MNEMONICS 209

Intel Corporation Mnemonics,
Arranged Alphabetically

MNEMONIC DESCRIPTION BYTES CYCLES FLAGS

ACALL addrl 1 PC + 2->(SP); addrl 1 -* PC 2 2

ADD A,direct A-t-(direct)-*- A 2 C OVAC
ADD A,@Ri A+(Ri)^ A 1 C OVAC
ADD A,#data A + #data -* A 2 C OVAC
ADD A,Rn A + Rn-* A 1 COVAC
ADDC A.direct A+(direct) +C-* A 2 COVAC
ADDC A,(&Ri A+(Ri)+C-> A 1 COVAC
ADDC A,#data A+#data +C^> A 2 C OVAC
ADDC A,Rn A+Rn +C~> A 1 C OVAC
AJMP addrl 1 addrl 1 -* PC 2 2

ANL A.direct A AND (direct) -> A 2

ANL A,@Ri A AND (Ri) -* A 1

ANL A,#data A AND #data -» A 2

ANL A.Rn A ANDRn-> A 1

ANL direct.A (direct) AND A -> (direct) 2

ANL direct,#data (direct) AND #data -» (direct) 3 2

ANL C.bit C AND bit -h> C 2 2 C
ANL C.bit C AND bit -> C 2 2 C
CJNE A.direct.rel (Ao(direct)]: PC + 3 + rel -> PC 3 2 C
CJNE A,#data,rel [AOnJ: PC + 3 + rel--PC 3 2 c
CJNE <£>Ri,#data,rel [(Ri)on]: PC + 3 + re -> PC 3 2 c
CJNE Rn,#data,rel (Rnon): PC + 3 + rel — PC 3 2 c

CLR A 0-* A 1

CLR bit 0-> bit 2

CLRC 0-* C 1

CPL A A-> A 1

CPL bit bit -> bit 2

CPL C C -* C 1 c
DA A Abin —» Adec 1 c
DEC A A~1 ~» A 1

DEC direct (direct)- 1 -> (direct) 2

DEC (wR\ (Ri)-l-MRi) 1

DEC Rn Rn-1 -> Rn 1

DtV AB A/B -» AB 1 4 oov
DJNZ direct.rel [(direct)- K>00]: PC + 3 + rel~> PC 3 2

DJNZ Rn.rel [Rn-1<>00]: PC + 2 + rel -> PC 2 2

INC A A+1 -> A 1 1

INC direct (direct)-*- 1 —> (direct) 2 1

INC DPTR DPTR+1 -> DPTR 1 2

INC cm (Ri)+1->(Ri) 1 1

INC Rn Rn + 1 -» Rn 1 1

JB bit, rel [b=1]: PC + 3 + rel-> PC 3 2

JBC bit.rel [b=1]: PC + 3 + rel-» PC; 0— bit 3 2

JC rel |C=1]: PC + 2 + rel~> PC 2 2

JMP(??A + DPTR DPTR+A-* PC 1 2

JNB bit.rel [b=0]: PC + 3 + rel-» PC 3 2

JNC rel [C=0]: PC + 2 + rel^- PC 2 2

JNZ rel [A>00]: PC + 2 + rel->PC 2 2

JZrel [A=00]: PC + 2 + rel~» PC 2 2

Continued

210 APPENDIX A

MNEMONIC
LCALL addr16

UMPaddr16
MOV A.direct

MOV A.fojRi

MOV A,#data

MOV A.Rn

MOV direct.A

MOV direct.direct

MOV direct.ffr'Ri

MOV direct,#data

MOV direct.Rn

MOV bit,C

MOV C,bit

MOV @Ri,A

MOV @Ri,direct

MOV @Ri,#data

MOVDPTR,#data16
MOV Rn,A

MOV Rn.direct

MOV Rn,#data

MOVC A,@A+DPTR
MOVC A,@A + PC
MOVX A,@DPTR
MOVX A,@Ri

MOVX @DPTR,A
MOVX @Ri,A

NOP
MUL AB
ORL A.direct

ORL A,@Ri

ORL A,#data

ORL A,Rn

ORL direct.A

ORL direct,#data

ORL C.bit

ORL C, bit

POP direct

PUSH direct

RET

RETI

RL A
RLC A
RR A
RRC A
SETB bit

SETS C

5JMP ret

SUBB A,direct

SUBB A,@Ri

SUBB A,#data

SUBB A.Rn

DESCRIPTION

PC + 3~*(SP); addr16-^PC
addr16^ PC

(direct) -» A
(Ri) -» A
#data -> A
Rn-> A
A -* (direct)

(direct) —> (direct)

(Ri) -+ (direct)

#data -» (direct)

Rn -* (direct)

C -* bit

bit->C
A -> (Ri)

(direct) -* (Ri)

#data -> (Ri)

#data16-> DPTR

A-» Rn

(direct) -> Rn

#data -» Rn

(A+ DPTR)-* A
(A + PC)-> A
(DPTR)a -> A
(Ri)A -* A
A -> (DPTR) ^

A -> (Ri)A

PC+1 -» PC

AxB-» AB
A OR (direct) -» A
A OR (Ri) -» A
A OR #data -* A
A OR Rn -* A
(direct) OR A -» (direct)

(direct) OR #data -> (direct)

CORbrt~>C
C OR bit -* C

(SP) -> (direct)

(direct) -* (SP)

(SP) -» PC

(SP)-* PC; El

A0<~A7<-A6. .«-A1 <-AO

C*~A7-^A6..*-A0«-C

A0-»A7-»A6. ,-+A1-*A0

C-»A7-*A6. .-*A0-*C

1 -> bit

1 -» C

PC + 2 + rel->PC

A-(direct)-C^ A
A~(Ri)~C -> A
A-#data-C-» A
A-Rn-C-* A

BYTES CYCLES FLAGS

3 2

3 2

2

1

2

1

2

3 2

2 2

3 2

2 2

2 2

2 1 C

1 1

2 2

2 1

3 2

1 1

2 2

2 1

1 2

1 2

1 2

1 2

1 2

1 2

1 1

1 4 oov
2

1

2

1

2

3 2

2 2 c

2 2 c

2 2

2 2

1 2

1 2

1

1 c

1

1 c

2

1 1

2 2

2 COVAC
1 COVAC
2 COVAC
1 COVAC

Continued

8051 OPERATIONAL CODE MNEMONICS 211

MNEMONIC
SWAP A
XCH A,direct

XCH A,@Ri

XCH A,Rn

XCHD A,@Ri

XRL A,direct

XRL A,@Ri

XRL A,#data

XRL A,Rn

XRL direct.A

XRL direct,#data

DESCRIPTION

A!sn <-> Amsn
A *-* (direct)

A +* (Ri)

A «• Rn

Alsn ++ (Ri)lsn

A XOR (direct)- A
A XOR (Ri) -> A
A XOR #data - A
A XOR Rn -+ A
(direct) XOR A -> (direct)

(direct) XOR #data -> (direct)

BYTES CYCLES FLAGS

1

2

1

1

1

2

1

2

1

2

3

ACRONYMS
addrl 1

addr16

bit

C

#data

#data16

direct

Isn

msn
rel

Rn

(ffiRi

()

Page address of 1 1 bits, which is in the same 2K page as the address of the following instruction.

Address for any location in the 64K memory space.

The address of a bit in the internal RAM bit address area or a bit in an 5FR.

The carry flag.

An 8-bit binary number from 00 to FFh.

A 16-bit binary number from 0000 to FFFFh.

An internal RAM address or an SFR byte address.

Least significant nibble.

Most significant nibble.

Number that is added to the address of the next instruction to form an address + 1 27d or - 1 28d

from the address of the next instruction.

Any of registers R0 to R7 of the current register bank.

Indirect address using the contents of R0 or RI.

IF the condition inside the brackets is true, THEN the action listed will occur; ELSE go to the next

instruction.

EXTERNAL memory location.

Contents of the location inside the parentheses.

Note that flags affected by each instruction are shown where appropriate; any operations which affect the PSW
address may also affect the flags.

How to Use the A51 Assembler

Introduction

In the early days of digital computing, (the 1940's), computers were programed in binary,

resulting in programs that appeared as

1001001010101111

1111010111010110

0001011011110010

1100010101000101

and are generally unintelligible to anyone. Early in this process, programmers became

tired of typing all those l's and 0's, so a shorthand notation for binary (hexadecimal) was

adopted to shorten the typing effort:

92AF

F5D6

16F2

C545

using 0-9 for binary 0000 to 1001, and A-F for binary 1010 to II II. The result is still

unintelligible, but more compact.

Each line of code is an instruction to the computer, and the programmers composed

descriptions for the instructions that could be written as

Load the accumulator with a number

Move the accumulator to register 1

Move memory location 3 to location 2

212

HOW TO USE THE A51 ASSEMBLER 213

The programmers translated these descriptions to the equivalent hex codes using pencil

and paper. Very soon these long descriptions were shortened to

LODE A,NUM
MOVE 1,A

MOVE 2,3

Mnemonics were born to speed up the programming process by retaining the essence of

the instruction. Finally, programs became so long, and computing so inexpensive, pro-

grams that translated the mnemonics into their equivalent hex codes were written to facili-

tate the programming process.

The translation programs go by many names:

Interpreter: Translate each line of the program independently to an abbreviated

ASCII (non-hex) equivalent

Assembler: Translate the entire program, as a whole, to hex

Compiler: Convert an Interpreter translation to hex

Then there are the "Cross" varieties, which assemble or compile code on computer A
for use on computer B. This type of assembler is included with this book: A Cross

—

Assembler for the 805 1 , which runs on PC type computers. The assembler was written by

David Akey of Pseudocode, Newport News, Virginia. The assembler is a file on the pro-

gramming disk named A5I.EXE.

Using the Assembler

The assembler included with this book is a student model that has been adapted from

Pseudocodes' professional version. The student assembler has most of the capabilities of

the professional version with these limitations:

No macro features

No options

The intent is to supply an assembler that is easy to use, enabling the student to get to the

business of writing programs with a minimum of delay.

The Big Picture

An assembler is a translator machine. Computer programs, written using a defined set of

rules (the syntax) are put into the assembler, and hex code pops out (if the syntax has been

followed).

First, prepare a disk with the assembler program, A51.EXE. Next, place any input

program you wish to have assembled on this disk.

The input program is in an ASCII text disk file that has been prepared by an editor

program and that must obey these rules:

1. The file name has the extension .ASM (example: myfile.asm).

2. The file must be "pure" ASCII.

214 APPENDIX B

Many editor programs save text files using strange and potentially troublesome control

characters. Save your text files in ASCII form. An editor ED.EXE is included with the

book disk and will save any programs created in pure ASCII.

The assembler produces two output files:

1. A file with the same name as the input ASCII text file, which has the extension

.LST, is the assembled file complete with line numbers, memory addresses, hex

codes, mnemonics, and comments. Any ERRORS found during assembly will

be noted in the .LST file, at the point in the program where they occur.

2. A file with the same name as the input ASCII text file, which has the extension

.OBJ, is the hex format file that can be loaded into the simulator and run.

Example:

A small program that blinks LEDs on an 8051 system is edited and saved as an ASCII file

named try.asm.

.org 4000h
loop: mov 90h,#0ffh ;LEDs off

acall time ; delay
mov 90h.#7fh ;turn on LED one
acall time
mov 90h.#0bfh ;turn on LED two
acall time
mov 90h,#3fh ;both LEDs on
acall time
sjmp loop

time: mov r0.#03h
inl: mov rl,#00h
in2: mov r2,#00h
wait : djnz r2,wait

djnz rl,in2
djnz rO , inl

ret
. end

The .LST file, which is produced by the assembler, has these features:

Line Address Hex Label Mnemonics Comments

000001 4000 .org 4000h

000002 4000 7590FF loop: mov90h,#0ffh ;LEDs off

000003 4003 1116 acall time ;delay

000004 4005 75907F mov 90h,#7fh ;turn on LED one Line

000005 4008 1116 acall time

000006 400A 7590BF mov 90h,#0bfh ;turn on LED two

000007 400D 1116 acall time

000008 400F 75903F mov 90h,#3fli ;both LEDs on

000009 4012 If 16 acall time

000010 4014 80EA sjmp loop

000011 4016 7803 time: mov r0,#03h

Continued

HOW TO USE THE A51 ASSEMBLER 215

Line Address Hex Label Mnemonics Comments

000012 4018 7900 inl: mov rl,#00h

000013 401A 7A00 in2: mov r2,#00h

000014 401C DAFE wait: djnz r2,wait

000015 401

E

D9FA djnz rl,in2

000016 4020 D8F6 djnz r0,inl

000017 4022 22 ret

000018 4023 .end

The .OBJ file contains the hex code from the .LST file, together with special leading

(:xxxxxxxx) and trailing characters (the last byte in each line which is a checksum) that

can be loaded into the simulator or an EPROM burner:

104000007590FF111675907F11167590BF1116757A
10401000903F111680EA780379007AOODAFED9FA27
03402000D8F622AD
00000001FF

How to Assemble

After you have written your program using the mnemonics from Appendix A and saved

the program in an ASCII text file, type:

A51 -s yourfile {Note: No .ASM)

Where yourfile is the name of your ASCII program file. The -s prevents the assembler

from including the symbol table at the end of your program. For the example program, we
type: a5I -s try. The result is TRY.LST and TRY.OBJ

The assembler will assemble your program and inform you of any errors that are

found. You can type the .LST file to the computer screen or print the listing to a printer.

All errors in syntax will be shown by the assembler in the .LST file. Keep in mind that a

program that has been successfully assembled is not guaranteed to work; it is only gram-

matically correct. (One can write sentences in English that are grammatically correct but

make no sense, such as "see any government form"). Re-edit your program until assem-

bly is successful.

Assembler Directives

An assembler is a program and has instructions just as any program. These are called

"directives" or "pseudo operations" because they inform the assembler what to do with

the mnemonics that it is to assemble. The pseudo ops are distinctly different from the

mnemonics of the computer code being assembled so that they stand out in the program

listing. For the Pseudocode assembler, they are

.org xxxx ORiGinate the following code starting at address xxxx

.

Example Program Address Hex

.org 0400h becomes: 0400 79

MOV r2,#00h 0401 00

216 APPENDIX B

The .org pseudo op lets you put code and data anywhere in program memory you wish.

Normally the program starts at OOOOh using a .org OOOOh.

equ label, xxxx EQUate the label name to the number xxxx.

Example Program Address Hex

.org OOOOh becomes: 0000 74

,equfred,12h 0001 12

mov a,#fred

.equ turns numbers into names; it makes the program much more readable because the

name chosen for the label can have some meaning in the program, whereas the number

will not.

db xx Define a Byte: place the 8-bit number xx next in memory.

Example Program Address Hex

.org 0100h becomes: 0100 34

.db 34h 0101 56

.db 56h

db "abc"

Example Program Address Hex

.org 0200h becomes: 0200 31

db "123 "
0201 32

0202 33

0203 20

.db xx takes the number xx (from to 255d) and converts it to hex in the next memory
location, .db "abc" will convert any character that can be typed into the space between

the quote marks into the equivalent ASCII (no parity) hex code for that character, and

place them sequentially in memory, .db permits the programmer to place any hex byte

anywhere in memory.

dw xxxx Define a Word. Place the 16-bit number xxxx in memory.

Example Program Address Hex

.org Oabcdh becomes: ABCD 12

dw 1234h ABCE 34

.dw is a 16 bit version of .db.

end The End. Tells the assembler to stop assembling.

Other directives exist that are rarely used by student programmers. Refer to the assem-

bler documentation contained in the disk file under the name LEVELI.DOC. The file

INTELl.ASM contains some .opdef directives which let .anything become anything

(no .) for those programs written with directives which do not use the period.

HOW TO USE THE A51 ASSEMBLER 217

Numbers

Labels

Numbers follow one simple rule: They must start with a number from to 9. For example,

1234

Oabcdh

Offh

5aceh

Numbers in the program can be written in decimal or hex form as

1234 = 1234 decimal

h'Odd = DD hexadecimal

Oddh = DD hexadecimal

The first form of the hexadecimal number (h'Odd) is a Unix standard, while the second

form (Oddh) is a common assembly language standard.

Labels are names invented by the programmer that stand for a number in the program,

such as a constant in the .equ directive above, or a number which represents a memory
location in the program. Labels used for memory locations follow two simple rules:

1. All labels must START with an alphabetic character and END with : (colon).

2. No more than 8 characters.

The following are examples:

fred:

ml:

p1234:

xyz:

The restriction that all numbers begin with a number is now apparent; hexadecimal num-

bers beginning with A to F would be mistaken by the assembler as a label and chaos would

result.

COMMENTS
Anything that follows a semicolon (;) in a line of a program is ignored by the assembler. Com-
ments must start with a ; . For example,

; this is a comment and will be ignored by the assembler

If you are assembling a program and get a LOT of syntax errors, you probably forgot to include

a semicolon in your comments.

Typing a Line

To make the program readable, it is recommended that you type all opcodes about 10

spaces or so to the right of the left margin of your text. Start all labels at the left margin of

text, and place any comments to the right of the opcode entry. The finished line should

appear as follows:

label: opcode ; comment

218 APPENDIX B

Symbols

Inspection of the programs included with the text will provide many clues as to what

syntax is acceptable to the assembler. Experiment with the assembler by writing short

programs to get a clear understanding of what each output file contains.

David Akey has very thoughtfully included a complete symbol table for the assembler that

lets the programmer use symbolic names for the 805 1 Special Function Registers and indi-

vidual register bits. These are called "reserved" symbols; so do not use any of these sym-

bols for a label, or you will get an error message in the .LST file. Forgetting to type -s

when you invoke A51.EXE will get you this table and all of your labels—at the end of

your .LST file.

SYMBOL ADDR. SYMBOL ADDR. SYMBOL ADDR.

AC =O0D6 P0.7 =0087 SM2 =009D
ACC =00E0 PI =0090 SP =0081
ACC. =0OE0 P1.0 =0090 T2C0N =00C8
ACC. 1 =0OEl Pl.l =0091 T2C0N.0 =00C8
ACC. 2 =00E2 PI. 2 =0092 T2C0N.1 =0OC9
ACC. 3 =00E3 PI.

3

=0093 T2C0N.2 =00CA
ACC. 4 =00E4 PI.

4

=0094 T2C0N.3 =00CB
ACC. 5 =00E5 PI.

5

=0095 T2C0N.4 =00CC
ACC. 6 =00E6 PI.

6

=0096 T2C0N.5 =00CD
ACC. 7 =00E7 PI.

7

=0097 T2C0N.6 =00CE
B =00F0 P2 =0OA0 T2C0N.7 =00CF
BO =00F0 P2.0 =00A0 TB8 =009B
B.l =00F1 P2.1 =00A1 TCLK =00CC
B.2 =00F2 P2.2 =00A2 TCON =0088
B.3 =00F3 P2.3 =00A3 TCON .

=0088
B.4 =00F4 P2.4 =00A4 TCON .

1

=0089
B.5 =00F5 P2.5 =00A5 TCON.

2

=008A
B.6 =00F6 P2.6 =00A6 TCON.

3

=008B
B.7 =00F7 P2.7 =00A7 TCON.

4

=008C
CPRL2 =00C8 P3 = 0OB0 TCON.

5

=008D
CT2 =00C9 P3.0 =00B0 TCON .

6

=008E
CY =00D7 P3.1 =00B1 TCON .

7

=008F
DPH =0083 P3.2 =0OB2 TFO =008D
DPL -0082 P3.3 =0OB3 TF1 =008F
EA =00AF P3.4 =00B4 TF2 =00CF
ES =00AC P3.5 =00B5 THO =008C
ETO =00A9 P3.6 =00B6 TH1 =008D
ET1 =00AB P3.7 =00B7 TH2 =0OCD
ET2 =00AD PCON =0087 TI =0099
EXO =00A8 PS =0OBC TLO =008A
EX1 =00AA PSW =00D0 TL1 =008B
EXEN2 =00CB PSW.O =00D0 TL2 =00CC
EXF2 =00CE PSW. 1 =00D1 TMOD =0089
F0 =00D5 PSW. 2 =00D2 TRO =008C

Continued

HOW TO USE THE A51 ASSEMBLER 219

SYMBOL ADDR. SYMBOL ADDR. SYMBOL ADDR.
IE =00A8 PSW.3 =00D3 TR1 =008E
IE.O =OOA8 PSW.4 =0004 TR2 =00CA
IE.l =00A9 PSW.5 =00D5 TXD =00B1
IE.

2

=OOAA PSW.6 =00D6
IE. 3 =OOAB PSW.7 =00D7
IE.

4

=OOAC PTO =00B9
IE. 5 =OOAD PT1 =00BB
IE.

7

=OOAF PT2 =OOBD
IEO -0089 PXO =00B8
IE1 =008B PX1 =00BA
INTO =00B2 RB8 =009A
INT1 =00B3 RCAP2H =0OCB
IP =00B8 RCAP2L =00CA
IP.O =0OB8 RCLK =00CD
IP.l =00B9 REN =009C
IP.

2

=00BA RI =0098
IP.

3

=OOBB RSO =00D3
IP.

4

=OOBC RSI =00D4
IP.

5

=OOBD RXD =0OB0
ITO -0088 SBUF =0099
IT1 =008A SCON =0098
OV =00D2 SCON.O =0098
P =00D0 SCON.l =0099
PO =0080 SCON .

2

=009A
PO.O =0080 SCON.

3

=009B
PO.l =0081 SCON.

4

=009C
P0.2 =0082 SCON.

5

=009D
P0.3 =0083 SCON.

6

=009E
PO.4 =0084 SCON.

7

=0O9F
P0.5 =0085 SMO =009F
P0.6 =0086 SMI =009E

How to Use the Simulator

Introduction

One learns to program by writing and testing programs. There are many ways to test a

program; the most traditional is to load the program into a hardware specific target system

that uses the computer under study and execute the program. Loading can range from

transferring the object file from the development system computer to the target system

RAM for execution via a serial data link, or programming an EPROM with the object file

and inserting the EPROM into a target system memory socket for testing.

Both of these approaches use some sort of monitor program that is found in ROM in

the target system. The monitors are usually adequate for simple program tests:

Instruction single step or run

Display register and memory contents

Stop at selected program addresses

This capability allows programs to be debugged in a methodical way but requires consid-

erable skill and time by the programmer.

With the advent of affordable personal computers, programs have appeared that use

personal computer resources to simulate the operation of the target computer; the program-

mer now has a unique view of the computer registers and memory as the program runs.

Simulators usually show the internal register and memory locations on the screen of

the personal computer and allow the programmer to perform all of the operations listed

above for a monitor with the added advantage of watching the data change as the program

operates. This saves considerable time because the register and memory contents do not

have to be displayed using separate monitor commands. The visual representation also

gives the programmer a better "feel" for what is taking place in the program.

The program under test can also be loaded quickly from the same file that contains the

simulator, assembler, and editor program. If the personal computer has sufficient RAM to

enable RAM disk structures to be created, the process of edit, assemble, and simulate can

be done in a very timely manner. Finally, the expense of buying special target systems is

avoided enabling the user to "try" many different computers at minimal cost.

220

HOW TO USE THE SIMULATOR 221

Simulators do not, however, generally have the ability to perform actual I/O or inter-

nal hardware operations such as timing or data transmission and reception. You must, at

last, try the program in a target system when doing an actual application.

The 8051 simulator used with this book is the PseudoMax 51 written by David Akey

of Pseudocode, Newport News, Virginia. David also supplied the PseudoSam 51 A51

assembler, which has been used to write all of the programs in the text and is included on

the book disk.

Computer Configuration Needed
to Run the Simulator

Features

The 8051 Simulator runs on IBM PC and compatible computers. Requirements for the

PC are

512K RAM
DOS version 2. 1 or newer

IBM Mono, CGA, EGA, or compatible monitor

Two disk drives (One must be 5 I /4")

The outstanding feature of the simulator is the ability of the user to construct screens that

show various parts of an 805 1 system . Each screen is made up of separate windows that dis-

play internal CPU registers and code and data memory areas. The screen set can be saved

as a disk file and used for one type of problem; another screen set can be configured for a

different type of problem and loaded when needed.

The user may construct up to ten screens, each made up of a mixture of the 42 avail-

able register and memory windows. Not all 42 windows can fit on one screen, so different

screens must be used to show the total set of windows needed for a particular program

simulation.

To run a simulation, the screen set file is loaded into the simulator first, followed by a

program in object code format. The program is then run using these simulator commands:

1. Reset the program counter to OOOOh

2. Single step the program

3. Free run the program

4. Free run until breakpoint is reached

5. Stop free run

The contents of any location in code ROM and internal RAM (including the special-

function registers) and external memory may be changed by the user while the program

runs. Port I/O may be simulated by changing the value of the port special function regis-

ters. Interrupts are simulated by striking function keys on the PC keyboard.

The simulator included with the text is a student version that is identical to the profes-

sional version with the exception that memory is limited to 3FFh bytes each of code and

data address space. A professional version, which has the full memory address capability,

can be obtained from Pseudocode or other authors of simulator programs.

222 APPENDIX C

The Simulator Programs

The disk contains two simulator program files: S5I.EXE and BOOK.BSS. S51 is the

PseudoMax 8051 simulator, and BOOK.BSS is a sample simulator file that contains four

screens. BOOK.BSS has been used to simulate all of the programs in the text using the

professional simulator version. BOOK.BSS may be used, as is, to simulate programs

written in response to problems in the text; the student is encouraged to create other .BSS

files once operation of the simulator has been mastered.

Starting the Simulator

Before using the simulator you should have an object file ready to simulate. Write a small

program (5 or 6 lines) assemble it, and you will have a .OBJ program for trial use in the

simulator. You may name it what you will; it will be identified as yourfile.obj in the in-

structions that follow.

After booting up your DOS system, place the disk containing the simulator in drive B,

and your disk with the .OBJ file in drive A. The simulator must be loaded with two files:

the screen file, Book.bss, and your object file, yourfile.obj, before it is run:

1. Go to the B> prompt and type: s5l <return>

The program will load, and display the menu screen shown in Figure C. 1 . The

status line will ask you to Select.

2. Type L for Load

The status line will ask you to Select an Object file or Previous machine.

3. Type P for Previous machine.

The status line will ask for the saved filename.

4. Type book.bss <return>

book.bss will be loaded into the simulator, and the status line will ask you to

Select.

5. Type L for Load

The status line will ask you to Select an Object file or Previous machine.

6. Type O for Object file

The status line will ask for the saved filename.

7. Type in a:yourfile.obj <return>

Yourfile.obj will be loaded into the simulator, and the status line ask you to

Select.

8. Type R for Run

The simulator will display the first Screen, shown in Figure C.2, and await your

commands.

Running the Simulation of YOURFILE.OBJ

Once the object file is loaded, you can

1. Reset the system by typing CTRL-Home.

2. Step the program by pressing the left arrow <— key. (The screen is updated after

each step.)

3. Free run the program by pressing the right arrow ~* key. (The screen updates

constantly.)

4. Speed up the free run execution time by stopping updating using function key

F10. F9 restores updating.

HOW TO USE THE SIMULATOR 223

5. Stop free run by pressing the END key or the left arrow (step) key.

6. Make changes in memory or register contents by typing commands on the screen

status line.

7. Exit the Run mode, and return to the menu screen by pressing the CTRL END
keys.

BOOK.BSS Simulator Screens

Four simulator screens, shown in Figures C.2 to C.5, are defined on BOOK.BSS. These

screens have been designed to offer a view of many different areas of an 8031 system.

A screen is chosen by pressing the alternate key and a function key simultaneously. Every

screen has a status line at the bottom for typing various memory and register configuration

commands.

Screen 1: (ALT-F1) The Main Screen.

The viewer can observe the operations of the PC, SP, IE, and A registers, and ports PI and

P3 in individual windows. Special-function registers DPL, DPH, PCON, TCON, TMOD,
TLO, TL1 , THO, and TH1 can be found in the internal RAM window 2, which displays a

portion of the SFR area. Internal RAM window 1 shows register banks and 1. An in-

struction execution window will display program mnemonics as the program is operated.

Screen 2: (ALT-F2) The Internal RAM Screen.

Internal RAM windows 3 to 5 display internal RAM from lOh to 3Fh. Window 6 shows

the SFR area, which includes SCON and SBUF. The SP, DPTR, A, and PC are also shown.

Screen 3: (ALT-F3) The ROM Screen.

Program code addresses from OOOOh to OOBFh are displayed in code memory windows

1 to 3. The PC, A, DPTR, and instruction execution windows are also part of this screen.

Screen 4: (ALT-F4) The External RAM Screen.

External RAM from addresses OOOOh to OOBFh are displayed in external data memory
windows I to 3. The PC, A, DPTR, and instruction execution windows are also part of

this screen.

Changing Register and Memory Contents

As the program runs you may wish to change the contents of a register or memory address:

1

.

Change any register contents by typing REGNAM = XX <return> on the status

line (where REGNAM is one of the register names given in Appendix B.3 and

XX is any hexadecimal data). For example, PI=AA will load the PI Window
with the data AAh.

2. Change External RAM contents by typing &ADDRESS = XX
3. Change Internal RAM contents by typing: *ADDRESS = XX
4. Change Code ROM contents by typing: @ADDRESS = XX

Here, ADDRESS is any legal address from 0000 to 03FF, and the following are examples:

&0040= BC loads external address 40 with data BCh.

*01 = 12 loads internal address 01 with data 12h.

224 APPENDfX C

(You could also type Rl — 1 2 IF Bank is selected)

@00C0= B6 changes code address CO contents to B6h.

To change entire blocks of memory, do not enter the =XX part of the line.

Setting Breakpoints

Breakpoints are memory addresses that cause the program to stop when in the free run

operating mode. The program will free run until a breakpoint address is accessed in any

way (read from it, write to it, or fetch it for program execution) and then stop.

The program can be started in free run again and will run until the next breakpoint

address is reached. Breakpoints are typed on the status line.

1. Set a breakpoint in code memory by typing: !Address = +b
2. Set a breakpoint in internal RAM by typing: #Address = +b
3. Set a breakpoint in external memory by typing: %Address = +b
4. Disable a breakpoint in memory by typing: (!,#,%)Address = —

b

Here, Address = 0000 to 03FF. For example, !0040 = +b will set a breakpoint at pro-

gram address 40, while 10040 — —b will clear it. Note that I/O ports are internal RAM
and can set with the breakpoint attribute. I/O operations automatically stop the Free Run.

Generating Interrupts

All of the 8051 interrupts can be simulated by using the function keys while pressing the

shift key:

IE0 = SHIFT F1

TF0 = SHIFT F2

IE1 - SHIFT F3

TF1 = SHIFT F4

RI.TI = SHIFT F5

Saving a Session

To save the present state of a session, exit the run mode by using the CTRL END keys

and return to the main menu. Press the S key and save your simulation state by following

the prompts and naming the program yourfile.bss. When re-starting the simulator, use the

name yourfile.bss instead of book.bss when loading the Previous machine file. The .obj

program has been saved also, so you may proceed directly to run after loading yourfile.bss.

Creating Your Own Screens

To create custom screens you should invoke s5l and load BOOK.BSS. Then, when

prompted by the status line, press P for "Profile." Profile is the process of creating your own

screens. While in the profile mode the status line for each screen will display your choices:

Add, Delete, Move, Copy, Quit.

The first Screen of BOOK.BSS will appear, and you can begin to configure your first

screen by (D)eleting windows and (A)dding windows, then (M)oving them around. Use

the ALT-FX keys to go to screens 1 to 10.

Windows are deleted by positioning the cursor box on an undesired window (using

the right and left arrow keys) and pressing the D key. Windows are added by pressing the

A key and typing in a window number at the prompt on the status line.

HOW TO USE THE SIMULATOR 225

The numbers for each Window are as follows:

Window

A register

B register

Data pointer

Port 1

Port 3

IE register

Stack

Code ROM 1

PSW register

TCON

Number

16

18

22

24

26

28

30

39-46

55

58

Window

Program counter

Stack pointer

Port

Port 2

IP register

PCON register

External RAM 1
-

Internal RAM I-!

SCON register

Execution

Number

17

21

23

25

27

29

31-38

47-54

57

59

For example, screen 1 of BOOK.BSS consists of windows 16, 17,59,28,55,24,26,30,

47, and 48.

The window can be moved anywhere on the screen by pressing the M key and using

the cursor keys (up, down, left, right) to position the window at the desired screen loca-

tion. A return key fixes the new location chosen.

When a screen is done, go to the next screen and repeat the same steps. Pressing the

Q key will return to the original s51 menu.

The copy command will copy the screen number typed in response to the status line

query to the current screen. Normally the current screen will be empty and a previously

done screen copied to it.

Setting RAM and ROM Window Starting Addresses

After making your screens you may also select the beginning address of each memory
window. An inspection of BOOK. BSS internal RAM window 2 of screen 1 shows that the

beginning address is 82h, which is the internal address of the DPL special-function register.

To set a memory beginning address you must be in the (R)un mode. Select a screen

with the memory window of interest and type on the status line:

.mw# = xxxx .irw# = xx . edw# = xxxx

Here, # = 1 to 8, ,mw is code memory window, ,irw is internal RAM window, and .edw

is external data window. For example, to set Internal Ram Window 2 to start at address

82h on screen 1 of BOOK. BSS, the command typed on the status line of screen I when in

the run mode is:

.irw2 = 82 <return>

Setting Memory Attributes

The last task to be performed is to determine the type of memory access for each byte of

memory. Memory can have these attributes:

r read

w write

e execute

io input/output

226 APPENDIX C

b breakpoint

n ignore the rest (memory-type dependent)

An attribute can be enabled by typing a + (plus) in front of it. The section on setting

breakpoints shows any memory address can cause the program to stop in free run by a +b.

Attributes are disabled by a - (minus) in front of the attribute letter; — b removes a break-

point from an address.

BOOK.BSS has the following attributes assigned:

Code memory + r -w +e -io -b —

n

(+n = +r +w +e — io -b)

Internal RAM +r +w +io -b -n
(+ n = +r +w -Ho — b)

External data +r +w -e -io -b —

n

(+ n = +r +w + e -io -b)

To view these attributes (you must be in the run mode), type ! for code, # for internal

RAM, or % for external data followed by a return. A window will pop up on the screen

showing the memory addresses and attributes. The page up and page down keys can scan

lengthy memory attribute windows.

To change an attribute of one address or a range of addresses, type:

! start address. . end address = +/— rweiobn for the Code addresses
#start address. .end address = +/— rwiobn for the Internal Ram
%Start address, .end address - +/- rweiobn for External Data

For example, BOOK.BSS memory attributes were set by typing:

10000. .03ff = + r -w +e -io -b -n for Code Memory
#00. . f f = +r +w -io -b -n for Internal Ram
#80. .80 = +io for Port of internal Ram
#90. .90 = + io for Port 1 of internal Ram
#A0. .A0 = +io for Port 2 of internal Ram
#B0. .B0 = +io for Port 3 of internal Ram
%0000. .03ff = +r +w -e -io -b -n for the External Data

Forgetting to set the attributes correctly (such as making the code memory — e) will cause

the simulator to stop while in free run and display a violation in the upper right hand

corner of the screen.

Remember:

After having configured your screens, set the memory starting addresses, and given

attributes to all memory, save your new .BSS file by leaving the run mode (CTRL END)
to get to the s5 1 Menu screen. Press the S key to save the new file and provide the new file

name on the status line when asked.

HOW TO USE THE SIMULATOR 227

FIGURE C1 Menu

PseudoMax™ 51 "the smart simulator"
Educational Version Bl.1.01
Copyright © 1990 PseudoCorp
All rights reserved!
Licensed for non-commercial Educational use only!

DIRECTORY
RUN
SAVE
LOAD
QUIT
PROFILE

Select

:

FIGURE C2 Main Screen

Screen: 1 Trace: OFF

Internal Ram Window 1

Addr Value Addr Value
RO = 00 0008 - 00
Rl = 00 0009 = 00
R2 = 00 OOOA - 00
R3 - 00 OOOB = 00
R4 = 00 000C = 00
R5 = 00 OOOD = 00
R6 = 00 OOOE - 00
R7 - 00 OOOF = 00

Update

PC
0000
0000
0000
0000
0000

A

00

00
00
00

00

Loc
0000
0000
0000
0000
0000

SP Stack
05 00

06 00

07 00

08 00

09 00

Inst Addr IE
00
00
00
00
00

STOP

Internal Ram Window 2

Addr Value Addr Value
DPL = 00 TLO = 00
DPH = 00 TL1 = 00

0084 = 00 THO = 00

0085 = 00 TH1 = 00
0086 = 00 008E = 00
PCON = 00 008F = 00
TCON = 00 PI = FF
TMOD - 00 0091 = 00

CY AC FO RSI RSO OV — p

1

PI

FF
FF
FF

FF

FF

P3

FF

FF
FF
FF
FF

M
00

g
x
n

FIGURE C3 Main Screen 1

Screen: 1 Trace: OFF

Internal Ram Window 1

Addr Value Addr Value
RO - 00 0008 = 00
Rl = 00 0009 - 00
R2 = 00 000A - 00

R3 - 00 000B = 00

R4 = 00 oooc = 00
R5 = 00 000D = 00
R6 = 00-OOOE = 00
R7 = 00 000F = 00

Update

PC
0000
0000
0000
0000
0000

A

00

00
00

00
00

Loc
0000
0000
0000
0000
0000

SP Stack
05 00

06 00
07 00
08 00

09 00

Inst Addr IE

00
00
00

00
00

STOP

Internal Ram Window 2

Addr Value Addr Value
DPL = 00 TLO = 00

DPH = 00 TL1 = 00

0084 = 00 THO = 00

0085 = 00 TH1 = 00

0086 = 00 008E = 00

PCON = 00 008F = 00

TCON = 00 PI = FF

TMOD = 00 0091 = 00

CY AC FO RSI RSO OV _~ P

1

PI

FF
FF
FF
FF
FF

P3
FF
FF
FF
FF
FF

x
Q

c
I—

70

FIGURE C4 Internal RAM Screen 2

Screen 2 Trace: OFF
Inter nal Ram Window 3

Addr Value Addr Value
0010 = 00 0018 = 00
0011 - 00 0019 - 00
0012 = 00 001A - 00

0013 - 00 001B = 00
0014 = 00 001C = 00
0015 = 00 001D = 00
0016 = 00 001E - 00
0017 = 00 001F = 00

Update

0020 = 00 0028 - 00
0021 = 00 0029 = 00
0022 = 00 002A = 00
0023 = 00 002B = 00
0024 = 00 002C - 00
0025 = 00 002D = 00
0026 = 00 002E - 00
0027 = 00 002F = 00

Internal Ram Window 5

Addr Value Addr Value
0030 - 00 0038 = 00

0031 - 00 0039 = 00
0032 = 00 003A = 00

0033 = 00 003B = 00
0034 - 00 003C = 00
0035 = 00 003D - 00
0036 = 00 003E - 00
0037 = 00 003F = 00

SCON - 00 F2 = FF
SBUF = 00 OOAl = 00
009A = 00 00A2 - 00

009B - 00 00A3 = 00

009C = 00 00A4 = 00
009D - 00 O0A5 = 00
009E = 00 00A6 = 00
009F = 00 00A7 = 00

A

00

00

00

00

00

STOP

SP DPTR
00 0000
00 0000
00 0000
00 0000
07 0000

PC

0000
0000
0000
0000
0000

IjU©

>
-a

g
x
n

FIGURE C5 Code Screen 3

Screen: 3 Trace: OFF
Code Memory Window 1

1 2 3 4 5 6 7

8 9 A B C D E F

0000 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
0010 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
0020 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

0030 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
1

PC

0000
0000
0000
0000
0000

A

00
00
00
00
00

Loc
0000
0000
0000
0000
0000

Inst Addr

Update

DPTR
0000
0000
0000
0000
0000

STOP
Code Memory Window 2

1 2 3 4 5 6 7

8 9 A B C D E F

0040 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

0050 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

0060 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

0070 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

0080 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

0090 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00A0 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
OOBO 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

X
o

c
p—

>

St

FIGURE C.6 External RAM Screen 4

Screen : 4 Trace: OFF
Extern Data Memory Window 1

1 2 3 4 5 6 7

8 9 A B C D E F

0000 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
0010 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

0020 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

PC

0000
0000
0000
0000
0000

A

00
00

00

00

00

Loc
0000
0000
0000
0000
0000

Inst Addr

Update

DPTR
0000
0000
0000
0000
0000

STOP
Extern Data Memory Window 2

12 3 4 5 6 7
8 9 A B C D E F

0040 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

0050 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
0060 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

ooso 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

0090 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00A0 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00B0 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

x
n

The 8255 Programmable I/O Port

introduction

Eight-bit microprocessor families included peripheral chips that are used with the CPU to

provide many of the I/O functions that are now found integrated inside a microcontroller.

As the 8-bit microprocessor fades into obsolescence, these peripheral chips are finding a

new life in augmenting microcontroller I/O capability.

These peripheral chips include serial and parallel I/O as well as interrupt controllers

and dynamic RAM controllers. The 8051 loses two parallel I/O ports when used with

external memory, and part of a third to serial data communication and interrupt functions.

To make up for this loss, a programmable parallel port chip, the 8255, is often added to

an 8051 system, as discussed in Chapter 7. This appendix describes how to use the 8255

as a basic parallel I/O port. The 8255 is capable of many sophisticated I/O functions,

including interrupts and handshaking. Refer to the manufacturers" literature for a com-

plete description of 8255 capabilities and programming.

Functional Description

The 8255 features three 8-bit programmable parallel I/O ports named A, B, and C. Port C
can be used as two separate ports of four bits each if properly programmed. The program-

ming model of the 8255 and a pinout of the 40 pin DIP is shown in Figure D. 1

.

Before any port can be used, the 8255 must be programmed by writing the proper

control bits to the control register. The three ports may then be accessed by the 8051 pro-

gram. The 8255 uses the address lines A0 and Al to access the Control register and the

three Ports. The RD, WR and CS lines are enabled by the particular decoding scheme

used by the 8051 system designer. The resulting control and address states yield the fol-

lowing actions:

233

234 APPENDIX D

Al AO RD WR CS

L H L
1 L H L

1 L H L

H L L

1 H L L

1 H L L

1 1 H L L
X X X X H

Action

Read the Contents of port A
Read the Contents of port B

Read the Contents of port C
Write to the port A Latch

Write to the port B Latch

Write to the port C Latch

Write to the Control register

Data bus to high impedance

The 8255 appears much like an internal port of the 8051 once it has been programmed.

Programming The 8255

Control bytes written to the control register use each bit of the byte to program some

feature of the 8255:

Result

Program ports for mode and input or output

Set/reset individual bits of port C

then the ports are programmed as:

Result

Set port A and C4-C7 in I/O mode

Set port A and C4-C7 in I/O mode 1

Set port A and C4-C7 in I/O mode 2

Set port A as an output port

Set port A as an input port

Set C4-C7 as an output port

Set C4-C7 as an input port

Set port B and C0-C3 in I/O mode

Set port B and C0-C3 in I/O mode I

Set port B as an output port

Set port B as an input port

Set C0-C3 as an output port

Set C0-C3 as an input port

8255 I/O Modes

Port A and the high part of port C may be programmed in one of three modes, port B and

the lower part of port C may be programmed in one of two modes. The modes are

Mode 0— Basic I/O: Data written to the port is latched; data read from the port is

read from the input pins. (This mode is identical to 8051 port operation.)

Mode I—Strobed I/O: This handshaking mode uses ports A and B as I/O and port C
to generate handshaking signals to the devices connected to ports A and B and an

interrupt signal to the host microcontroller.

Bit State

7 1

7

When bit 7 is a

Bit State

6,5 00

6,5 01

6.5 10

4

4 1

3

3 I

2

2 1

1

I 1

1

THE 8255 PROGRAMMABLE I/O PORT 235

Mode 2—Strobed bi-directional I/O: This mode is similar to Mode I with the abil-

ity to use port A as a bi-directional data bus.

Modes 1 and 2 require setting interrupt enable bits in the port C data register. These

modes are intended to be used with intelligent peripherals such as printers.

Reset Condition

Upon reset all the port data latches and the control register contents are cleared to 00. The

ports are all in the input mode.

Control Registers

Introduction

For the convenience of the programmer the control special-function register figures from

Chapter 2 are shown here for easy reference. An ASCII table is shown below.

ASCII Codes for Text and Control Characters—No Parity

HEX Character HEX Character HEX Character HEX Character

00 NUL 28 (50 P 78 X

01 SOH 29) 51 79 y

02 STX 2A * 52 R 7A z

03 ETX 2B + 53 S 7B {

04 EOT 2C ,
54 T 7C 1

1

05 ENQ 2D - 55 U 7D }

06 ACK 2E 56 V 7E ~

07 BEL 2F / 57 w 7F (del)

08 BS 30 58 X
09 HT 31 I 59 Y
0A LF 32 2 5A Z
0B VT 33 3 5B [

OC FF 34 4 5C \

0D CR 35 5 5D]

OE SO 36 6 5E A

OF SI 37 7 5F

10 DLE 38 8 60
'

11 DC1 39 9 61 a

12 DC2 3A 62 b

13 DC3 3B ;
63 c

14 DC4 3C < 64 d

15 NAK 3D = 65 e

Continued

236

HEX Character HEX Character HEX Character

16 SYN 3E > 66 f

17 ETB 3F 7 67 g
18 CAN 40 <3> 68 h

19 EM 41 A 69 i

1A SUB 42 B 6A J

IB ESC 43 C 6B k

1C FS 44 D 6C 1

ID GS 45 E 6D m
IE RS 46 F 6E n

IF US 47 G 6F o

20 (space) 48 H 70 P
21 i 49 I 71 q

22
" 4A J 72 r

23 # 4B K 73 s

24 $ 4C L 74 t

25 % 4D M 75 u

26 & 4E N 76 V

27 4F O 77 w

CONTROL REGISTERS 237

HEX Character

Index

Add Instructions, 74-77

Address Pins, 15, 23-25

A/D Conversion Circuit, 165

Addition, 74-77

Accumulator (A Register). 14,

17-18

Addressing Modes

direct, 47

immediate, 45

indirect, 49

register. 45

Address/Data Bus. 23-25, 26-28

Address Latch Enable (ALB)

Pulse, 26

Asynchronous Serial Data Baud

Rate, 35-37

Asynchronous Serial Data Modes.

35-37

Asynchronous Serial Data Format,

36

Asynchronous Serial I/O, 32-37

B Register, 14, 17-18

Baud Rate. Timer 1, 36

Binary Coded Decimal Arithmetic.

81-82

Binary Coded Decimal. 81

Bit Addressable RAM, 19, 62

Bit-Level Instructions, 62-65

Byte-Level Instructions, 60-61

Boolean Instructions, 59-66

Bus Timing, 26-28

Call Instructions. 92-93

Carry Flag, 18

Central Processing Unit. 11-14

Ceramic Resonator. 17

Clock Divider. 30

Compare Instructions. 90

Counter Mode, 32

Crystal Oscillator. 16-17

D/A Converter. 163

Data Exchange Instructions. 53

Debouncing Keys, 132

DPTR Register. 17

Data/Address Bus. 23-25. 26-28

Decrement Instructions, 73-74

Direct Addressing Mode, 47

Disable Interrupts, 40

Displays

LCD, 155

LED, 151

Division, 80-81

Edge Triggered Interrupts, 39

Enable Interrupts, 40

EPROM Memory. 26

Externa! Access Pin, 22,26

External Memory
circuits, 26-28

instructions, 50-52

Even Parity. 18, 73

Flags

auxiliary carry. 18, 72

carry. !8. 72

external interrupt 0. 28, 39

external interrupt I, 28, 39

overflow, 18

parity, 18, 73

timer 0. 28-29

timer 1. 28-29

serial data. 32-34. 39

user, 18. 33

Free Running Counter. 30

Frequency Measurement, 159

Gate Bit For Counter Control.

29-30

Gate Circuit for Counters, 30

General Purpose Internal RAM. 19

Generating a Waveform. 163

Hexadecimal Numbers. 217

Highest Priority Interrupt. 41

Increment Instructions. 73

Immediate Addressing Mode. 45

Indirect Addressing Mode. 49

Instruction Set. 203-2M
Integer Division. 80-81

Interrupts

external, 39

timers, 39

serial data, 39

software, 41

Interrupt Circuits. 166-177

240 INDEX

Interrupt Driven Program, 177

Interrupt Enable Register IE. 38

Interrupt Priority Register IP, 38

Interrupt Destination Vectors. 4l

Jump Instructions. 89-9!

Jump Table, 169

Keyboard

debounce, 132

coded, 134, 144

matrix. 133,147

uncoded, 133, 136

Latched Port Outputs. 23

LCD Display Circuit, 23

LED Display Circuit, 151

Level Sensitive Interrupts, 28, ,39

Logical Operation Instructions.

59-66

Long Range Addresses, 88

Look Up Tables, 117

Machine Cycle, 16-17

Maskable Interrupts. 40-41

Measuring External Frequencies,

158

Measuring Pulse Widths, 161

Memory Map
programming, 13

Memory
external RAM. 26-28

external ROM. 26-28

internal RAM, 19

internal ROM. 22

mapped I/O, 104-106

Modes

address, 45-49

timers. 30-32

serial I/O, 34-37

Moving Data Instructions

external, 50-51

internal, 45-49

Multiplexed Address/Data Bus,

26-28

Multiplication, 80

Multiprocessing, 197-201

Multiprocessor Receive Enable Bit.

37. 197

Multiprocessor Transmit Bit. 36.

197

Oscillator, 16-17

Overflow Flag. 18

Parity Flag, 18

PCON Register. 33

Period of a Signal, 161

Pin Assignments

DIP, 15

Port I/O Circuits

PortO, 23-25

Port I, 25

Port 2, 25

Port 3, 25

Pointers to Memory, 49

Polling Software Technique, 112.

124, 126

Program Counter, 17

Programming Model, 13

Program Store Enable (PSEN)

Pulse, 26

Programs

Adconv, 166

Ant. 177

Bigkey, 147

Codekey, 144

Davcon, 164

Dplook, 120

Freq. 159

Getkey, 136

Hardint, 175

Hardtime, 115

Hipri. 164

Inkey, 139

Intdat. 127

Lcdisp. 156

Loprj, 168

Modeone. 193

Modethree, 198

Modezero, 190

Pclook. 119

RAM Test, 108

ROM Test, 107

SBUFR, 125

Sendchar, 123

Softime, HI

Svnseg, 152

Timer, 113

Width, 161

Xmit. 125

PSW Register, 18

Pulse Width Measurement

Push and Pop Instructions. 52-53

RAM
external, 26-28

internal, 19

Read Pulse, 25-28

Read-Modify-Write Port Instruc-

tions, 61

Receive Interrupt Flag, 34,39

Register Address Mode, 45

Register Banks, 19

Register Bank Selection, 18-19

Register Pointers to Memory, 49

Relative Addresses, 87

Reset Circuit, 102-103, 106

Reset State of Special Function

Registers, 40

Return Instructions, 93-94

ROM
external, 26-28

infernal, 22

Rotate Instructions, 66-67

SBUF Serial Buffer Register, 32

SCON Serial Control Register. 33

Serial Data Baud Rates, 32-37

Serial Data Modes

shift register mode 0, 34

standard UART mode 1, 35

multiprocessor modes 2 and 3,

36-37

Serial Data Formats

UART, mode 1.36

multiprocessing, mode 2 and 3,

37

Serial I/O. 32-37

Serial Data Networks, 186-188

Serial Receive Interrupt Flag. 34,39

Serial Transmit Interrupt Flag, 34,

39

Shift Register Serial Data Mode 0,

34
'

Short Range Addresses, 88

Software Interrupt, 41

Special Function Registers, 21-22

Stack, 19, 52-53

Stack Pointer, 19,. 52-53

Start Bit, 35-36,

States of a Machine Cycle. 16-17

Stop Bit. 35-36,

Subtraction. 77-79

Table Look Up, 117

TCON Timer Control Register, 28

Timer 0, 28-29

Timer 1, 28-29

Timer Gating Circuit, 30

TMOD Timer Mode Control Regis-

ter, 29

Timer Modes

INDEX 241

single 8 bit counter mode 0, 30 UART Serial Data Transmission

16 bit counter mode I, 30 Mode, 35-36

auto reload mode 2, 31 UART Serial Data Byte, 36, 193

double 8 bit counter mode 3, 32

Transmit Interrupt Flag, 34, 39 Vector, Interrupt. 41

Write Pulse, 25-26

