
8051 Interfacingand
Applications

Applied Logic Engineering

System Design and Development

Copyright 1991 Applied Logic Engineering

All rights reserved.

Reproduction of this material, in part or in whole, is strictly prohibited. Changes or

additions may be made to the information in this manual and incorporated into sub-

sequent editions

Disclaimer

Every effort has been made to make this manual as accurate and complete as possible.

Applied Logic Engineering is not responsible for inaccuracies, omissions, etc. that may
have occurred during preparation of this manual or problems,damage, or loss that may
result from its use.

Intel and "8051" are registered trademarks of Intel Corporation.

IBM is a registered trademark of International Business Machines, Inc.

8051 Interfacing and Applications

Table of Contents

Introduction

Main System Core

Microcontroller and Support Hardware 3

Low order Address Latch 6

Memory Decoding 6

Interrupts 7

Software for Microcontroller Core 8

Internal RAM Use 8

External Memory Addressing 10

Reading from Code Space 10

Software Startup 11

Power Supply Requirements 12

Simple Methods ofUser Input

Software 18

Interfacing a 1 6 digit keypad to the 8031

Hardware 19

Software 19

Centronics Parallel Input Port

Hardware 27

Software 28

Centronics Parallel Output Port

Hardware 33

Software 34

8051 Interfacing and Applications

Interfacing to the huilt-in Serial Port

Hardware 37

Software 38

Interfacing to a Dual Channel TJART

Hardware 43

Software 44

Interfacing to an LCD

Hardware 51

Software 52

Different Display Configurations 53

Bank Selection ofMemory

Hardware 59

Software 59

Appendix A - List ofVendors

Appendix B-Connection to an External Computer

RS232 Serial 69

RS232 Connector Pinouts 69

Connection to an External Computer 70

Cabling 70

Other possible RS232 configurations 72

Centronics Interface Cabling 73

8051 Interfacing and Applications

1- 8051 Interfacing and Applications

1.1. Introduction

The purpose of this manual is to aid designers of8051-family systems by providing simple,

straight-forward ways to interface various peripheral subsystems for single board-8051

designs. By adding these features, any system design can be enhanced to provide

additional capability and flexibility.

Whether you are designing your own single board computer from the "ground-up" or you

are using a commericially available board for the microcontroller core, a number ofthese

peripheral add-ons provide standard additions to your embedded system design. By
using these predesigned solutions, you will save many hours of unnecessary hardware

and software design and debugging.

This manual is organized into sections that discuss various peripherals that may be
interfaced to the 8051 and includes both sample hardware and software for direct

implementation. These designs have been implemented in various systems at Applied

Logic Engineering and have been proven to work. While they may be implemented

directly, you may choose to adapt these items as you see fit for your individual design.

The software provided in this manual has been also provided as source code files on disk.

Each listing is provided in a separate ".ASM" file for use in your design.

The software provided here is written to be easily understood by the novice. The goal

is to present workable solutions, but with a few hours work, the algorithms can be

optimized to execute more efficiently if required.

It is important to understand that this manual is written for users that have a basic

understanding of digital design concepts and some understanding of 8051 software

design. The assumption that the user will have had some experience with the com-

ponents described will be made in the cases of standard TTL logic components (i.e.

AND, NAND, OR, etc.). If these items are not familiar to you, a reference book

describing these components may be required.

An appendix at the end of this manual will give the names of sources of the manufacturers

of the components covered in the designs discussed. Also, an appendix is provided that

discusses how "outside world" connections can be made between the single board

computer and a personal computer.

8051 Interfacing and Applications

1-2, Main System Core

1.2.1 Microcontroller and Support Hardware

The core of any microprocessor-based design is the microprocessor itself. This manual
will describe designs based around the Intel 8031 microcontroller, but they can easily be
adapted to other members of the 8051 family.

The Intel 8051 family of microcontrollers were designed for low cost embedded control
systems. These microcontrollers have the capability of direct manipulation of inputs and
outputs connected to the 8051.

In addition to direct I/O capability, the 8051 has internal hardware timers that can be
used as timers or counters. This provides for capability that normally requires external

support chips for normal microprocessor-based designs.

The 8051 family of microcontrollers also has two hardware interrupts included on the
chip, eliminating the need for an external interrupt controller in most designs.

Either 128 or 256 bytes of internal RAM are also included on the chip, depending on
the model of the chip used.

The 8051 family consists ofmany derivatives, with some of the most popular being listed

below.

8051 Microcontrollers

8051 Internal masked ROM - 128 bytes RAM, two timers

8031 No ROM - 128 bytes RAM, two timers

8751 Internal EPROM - 128 bytes RAM, two timers

8052 Internal masked ROM - 256 bytes RAM, 3 timers

8032 No ROM - 256 bytes RAM, 3 timers

8052BASIC Built-in BASIC language 8052

Incorporating an 8031 into a single board computer design is relatively straight forward.

The chip canbe configured in many different ways, but for the purpose of this discussion,

various design decisions have been made and will be discussed in detail. For a detailed

discussion on the capabilities of various 8051-type chips, please refer to the Intel

literature concerning the individual chip.

First, the oscillator in our sample design is a simple crystal running at 11.0592 MHZ.

8057 Interfacing and Applications

This is a standard rate for the 8051 family microcontroller that allows the user to program
the internal timers used by the internal UART to standard bits-per-second rates (i.e.

9600, 1200, etc.). Programming the 8031 for this operation is discussed in the section of

this manual covering the use of the serial interface that is built into the 8031 itself.

Reset (pin 9) on the 8031 is connected to a 4.7 uF capacitor to provide a simple reset

when power is applied to the system.

The *EA (external address, pin 31) is connected to ground to notify the 8031 that the

chip does not contain any internal program ROM and that all program code must be

available on the external bus. If a chip such as the 8751 is used (which includes internal

D0-D7

8031

74HC373

ALE

A0-A7

A8-A15 ^

Low Order Address Latch

EPROM), this pin must be tied HIGH to allow the 8751 to use the internal ROM for

program space.

Grounding the *EA pin requires that P0.0-P0.7 (pins 32-39) are used for the AD0-AD7
signals to form the low order address/data bus and that P2.0-P2.7 (pins 21-28) form the

high order address lines A8-A15.

P3.6 (pin 16) becomes the external *WR signal and P3.7 (pin 17) becomes the *RD signal

for interfacing to external memory devices. *PSEN provides a chip enable signal for the

externalROM that holds the microcontroller program.

The *RD and *WR signals are only active when accessing external data memory. They

are not active while doing instruction fetches fromROM, as the following table indicates:

*PSEN RD CWR
Program Instruction Fetch

External Data Read
External Data Write

1

1

1

1

1

1

8057 Interfacing and Applications

8

ui
8031

D

19
XI

+5v

_Lci

r 31

B

10
11

13
12
15
14

XTAL1

XTAL2

RST

E3/UDD

RXO
TXD

INT1
rrrra

Tl
T0

P17
P16
P15
P14
P13
PIE
Pll
P10

P27
P26
P25
P24
P23
P22
P21
P20

P07
P06
P05
P04
P03
P02
P01
P00

PSEN
AE
WR
RD

6_

2_

-i_

32
33
34
3S
3B
37
38
39

29
30
1G
17

A0-A15

*RD

*WR

U5
74HC00

,3

v.

U2
74HC373

AD0 IS
AD3 17

v. AD4 14
v_AD713
v AD6 8

ADS 7
v AD2 4

AD1 3

+5U

r

r
AG
A5
A4

SD
7D
GD
SD
4D
3D
2D
ID

SO
70
BQ
50
40
30
20
1Q

EN OE

FT

13 A0
IB A3
15 A4
1? A7
3 AB
B A5
5 A2
2 Al /

D6-D7

U3
74HC13S

G

AiS 3
A14 2
A13 1

Gl Y7>
CG2A Y6?
MG2B Y5 >

Y4>
Y3>
Y2>
Yl>
Y0?

.7

.10

,11

.12

.13

.14

.15

U4
74HC138

4.
3*=CG2A Y5

tG2B Y5b

Gi Y7

Y4
Y3k>

c Y2
B Yi
A Y0

.10

.11

.12

.13

,14

.15

_6000-7FFF
4000-5FFF
2000-3FFF
0000-iFFF

4070-4O7F
40G0-40BF
4050-405F
4040-4O4F
4030-403F
4020-4G2F
4O10-4O 1F
4000-400F

D

B

A Applied Logic Engineering A

8031 Micro Core
100-0001-001 REU 1A

DATE: 3/25/91 SHEET 1 OF 1

s 1

8051 Interfacing and Applications

Any other pins not designated above can be used for general purpose I/O or for specific,

pre-defined purposes, depending on the individual design. Please refer to the Intel

literature that describes the definition of these functions.

Low order Address Latch

As most users of Intel microcontrollers and microprocessors are aware, Intel provides

a multiplexing system that uses the P0.0-P0.7 lines for both the data bus and the low order

byte of the address bus. In order for the system to interpret these signals, an external

latch must be used to separate the address information from the data information. In

this design, a 74HC373 latch is used. The ALE (Address Latch Enable, pin30) signal

on the 8031 provides the enable for the 74HC373 to latch the address information onto

the bus.

Memory Decoding

In order for the 8031 to find and execute the software it was intended to run, some sort

ofROM is usually provided at address OOOOh (for the RESET vector). Other interrupt

vectors have their address locations in the area of memory from 0003h-002Bh.

In the implementation described in this manual, EPROM will be mapped at OOOOh-

lFFFh and also at 2000h-3FFFh. This provides for 16K bytes of program space for the

operating system software.

A simple method of memory decoding for memory devices is designed into the system

by including a 74HC138 3-of-8 decoder. By using address lines A13, A14, and A15, the

74HC138 decodes output signals in 8K blocks. This will be adequate for this design, but

you may choose to use larger or smaller memory blocks, depending on your require-

ments.

In the design presented, the following table shows the method in which the memory

decoding is done using the A13, A14, and A15 address linesto give the 8K block outputs

Assuming the inputs on the 74HC138 are configured:

Gl - 1, *G2A - 0, and *G2B =

8051 Interfacing and Applications

the output table would then be:

A15 A14 A13 *Y0 *Y1 *Y2 *Y3 *Y4 *Y5 *Y6 *Y7

1

1

1 1

1

1 1

1 1

1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1

A second 74HC138 has been included to provide a smaller block decode within one of

the 8Kblocks for interfacing to various I/O devices. The output of this decoder provides

blocks of 16 bytes each. Note that due to the fact that this decoder uses *RD and *WR
from the 8031 for enabling its outputs, it can only be used for enabling external memory
devices.

Interrupts

The 8031 internally provides for two hardware interrupts (INTO and INT1) that can be

used without additional support circuitry. In most single board computer designs,

interrupts are used for connecting the system to devices that require immediate response

service and that can occur without predictability. Some examples of these types of

devices include serial UARTS(where data is received in an unpredictable stream),

Main

Program

Vector Addressi

Interrupt

Occurs

Vector

Subroutine
(^j

Resume Progran

Execution

i

8057 Interfacing and Applications

parallel input data, direct switch contacts, etc.

Another advantage to the use of interrupts is the elimination of software input "polling"

by the main operating system. Polling is the process by where the software periodically

reads a particular input or group of inputs to determine if an event had occured or not.

This can lead to system overhead problems if the inputs need to be polled very frequently

in order to not miss an event that could happen on the input itself. Quite a bit of CPU
time can be expended by simply completing the input polling. By going to an interrupt-

based input, the input event will cause the main software to stop and service the event.

All overhead in reading the input in a periodic form is eliminated and the system will

never "miss" an input event.

By programming the internal registers of the 8031, you can choose to use the *INT0/P3.2

pin as an interrupt input or as a general purpose I/O bit. The same is true for the

*INT1/P3.3 pin.

Also included in the 8031 are two internal hardware timers (Timer and Timer 1) that

can be configured to interrupt when the respective timer overflows. Each timer can be

configured as a free running timer or as a counter to count transitions on its input pin

(T0/P3.4 for timer and T1/P3.5 for timer 1).

In this manual, various examples willbe shown using the hardware interrupts for different

purposes to give you an idea of the types of things that can be done with them.

1.2.2 Software for Microcontroller Core

InternalRAM Use

The 8031 has 128 bytes ofRAM built-in to the chip itself. This RAM is used for several

purposes, which will be described below:

1) The 8031 has a defined group of general use registers named R0-R7. These registers

are duplicated four times, once in each of Register Banks 0-3. When the 8031 powers

up, Bank is selected as the default for use, so register R0 appears at internal address

OOh, register Rl appears at address Olh, and so on up to register R7 at address 07h.

2) Also at power up, the stack pointer is initialized to 07h and incremented to 08h. This

default condition assumes register bank will be used for the R0-R7 registers. Also,

banks 1-3 for these registers will not be available because this area will be used as the

stack grows during use. If all of this memory is assumed to be used by the stack, it will

extend from 08h to lFh. Ifyour application will make use of any register bank other than

Bank 0, it will be necessary to reprogram the stack pointer to an area of memory that

will not be affected by any other program operation.

3) Beginning at 20h, the 8031 provides for sixteen bytes of bit-addressable memory. This

means that the memory in this area can be addressed as individual bits for program flag

8 805 1 1nterfacing and Applications

usage. This area extends from 20h-2Fh.

4) The 8031 provides for scratch padRAM in the area from 30h-7Fh. This is RAM for

use in general purpose variable storage. It is byte addressable.

5) The area ofRAM from 80h-FFh is allocated for use by the Special Function registers.

These registers include the internal working registers of the 8031, such as the ac-

cumulator, PSW, B, and DPTR registers as well as the registers such as SCON, SBUF,
TCON, TMOD, etc. which control the function of the chip itself.

07h

1Fh
20h

2Fh

7Fh

Register Bank

Stack Space

Bit Addressable Space

Function

FFh
InternalRAMAllocation in an 8031

It is important to note that although not every byte in this block of memory is assigned a

register function in the 8031, the unused byte locations cannot be used as general purpose

RAM because the design of the chip will not allow it. Intel has reserved these extra

memory locations for future use in other derivitives of the 8051-based family.

One item worth noting as far as internal memory goes is the fact that the 8052 derivitives

of the 8051 family (including the 8052, 8032, and 8052AHBASIC) have 256 bytes of

internal RAM available. The additional 128 bytes of memory exist in the range from

80h-FFh. To avoid conflict with the Special Function Register area (which is memory
mapped to the same locations), the software can only access the extended memory by

using indirect addressing modes. Sample software instructions to read a byte of data

8051 Interfacing and Applications

into the accumulator from location 80h would be:

MOV R0,#80h

MOV A,@R0

Using these types of software instructions, confusion is avoided between this area of

memory and the Special Function register area.

External Memory Addressing

If there is any additional read/write memory or devices that are included in the system

(in addition to the internal memory of the 8031), it must be accessed using indirect

addressing schemes. A common way of doing this is through the use of theDPTR sixteen

bit register, which has the ability to hold an entire sixteen bit address. For example:

MOVX A,@DPTR

reads the byte of data into the accumulator from the address that the DPTR register is

pointing to. In a similar manner:

MOVX @DPTR,A

writes the contents of the accumulator to the address held in the DPTR register.

In these cases, the DPTR register must be loaded with the proper address before the

MOVX instruction can be executed. Intel has provided a quick way of loading this

register using the "MOV DPTR,#data" instruction, where "data" represents any 16 bit

immediate value.

Reading from Code Space

The last area of memory that can be accessed by the software is the program memory

area. The 8031 has an instruction that uses the DPTR or PC registers to provide a base

address that points to the code space. The "A" register can be used to hold an offset that

is added to the base address.

MOVC A,@A + DPTR and

MOVC A,@A + PC

are the two variations of this instruction, the first using the DPTR as the base address

and the second using the PC as the base address.

These instructions are useful for reading data from ROM tables. By reading the data

value and incrementing the value in the "A" register, a simple loop can be used to access

data from a table for processing.

1 805 1 1nterfacing and Applications

Software Startup

When a valid reset is applied to the 8031, the chip automatically starts program execution

at program address OOOOh. The system software should be designed to have a "jump"

instruction to the main startup code at this address. This is called theRESET VECTOR
and is the method that the 8031 uses to begin program execution. The reset vector usually

consists of aJMP (or LJMP) instruction, followed by a program address label where the

main startup code is located.

The other vector locations in this area from 0000h-002Bh have fixed postion in locations

based on the interrupt type. The table below shows the interrupt types and their

associated vector position.

Interrupt Address

External Interrupt 0003h

Timer OOOBh
External Interrupt 1 001 3h

Timer 1 001 Bh
Receive and Transmit 0023h

Timer 2 (not in 8031

)

002Bh

JMP instructions should be placed in the source code at the vector addresses that have

interrupts that will be used in your system. For interrupts that will not be used, it is not

important to have JMPs to any particular program address label.

The main program (located at the program address label defined in the Reset Vector)

usually consists of setup instructions for programming the 8031 for correct operation.

This may include interrupt use, timer use, serial port use, or any direct output pin

manipulation that is required by the design itself to set initial conditions on the board.

In the case of the 8031, the P2 outputs (pins 21-28) must be cleared to zero before any

external memory reads or writes occur. The reason for this is that this port forms the

high order address byte (A8-A15) of the address bus during external memory access, so

this sets the state of these lines to a known condition.

The code listing following provides a generic "skeleton" for a basic 8031 program written

in assembler. It sets up the basic structures for the data deflation area, the code vector

table, and the vector service routines that are called from the vector table.

It also provides code in the startup area for programming the internal registers of the

8031 to configure it for the operation that will be required. The instructions are included

to program the required registers, but it will be up to you to set the correct data in these

instructions to get the proper results.

805 1 1nterfacing and Applications 1

1

1 .2.3 Power Supply Requirements

A single + 5V power supply is all that is required to power this microcontroller core and

any of the designs that will be described in this manual.

Some of the designs presented require voltages other than + 5V, but they will be derived

with additional components in the design that are powered by the single + 5V supply.

This concludes the discussion of the microcontroller and basic system construction.

12 8051 Interfacing and Applications

**
8031 startup skeleton shell
Copyright 1991 Applied Logic Engineering

may be used without royalty if proper credit ID is
indicated

**

.DATA
• ^m ^_ ^^ ^_ ^_ ^_ ^_ ^_ __ mm m— ^^ ^m ^m ^_ ^_ ^_ ^_ ^_ ^^ ^^ ^^ ^^ ^^ ^^ ^^

/•Addressable bit declarations

BitO: REG 2 0H.0 ; sample - bit
[add other bit declarations here]

ORG 3 OH
Internal RAM scratchpad area from 3 0h-7fh

SAMPLE: REG 3 Oh ; sample byte at 3 Oh
; [add other RAM variables here]

.CODE

VECTOR TABLE
note : "LJMP INIT" is the only required vector-all others

optional and may be commented out or removed.

ORG 0000H
LJMP INIT

ORG 0003H
LJMP EXINTO

ORG 000BH
LJMP TIMERO

; -jumps to INIT on powerup

;External INTO vector

; Timer vector

ORG 0013H
LJMP EXINT1

ORG 001BH
LJMP TIMER1

ORG 0023H
LJMP SERIAL

;External INT1 vector

; Timer 1 vector

,-Internal UART vector

ORG 4 OH
;START OF PROGRAM SERVICE ROUTINES

INIT:

; CLEAR A8-A15 ADDRESS LINES
CLR A
MOV P2,A

; INITIALIZE TIMERS TO ZERO
MOV TLO, #00H
MOV THO,#OOH
MOV TL1,#00H
MOV TH1,#00H

/CONFIGURE TIMER OPERATION
MOV TMOD,#00H

;SET INTERRUPT PRIORITY
MOV IP,#OOOOOOOOB

;SET TIMERS RUNNING
MOV TCON, #00000000B

; ENABLE INTERRUPTS
MOV IE,#OOH

[other startup and main code goes here]

JMP $; End of Main line software

EXINTO

:

PUSH PSW
PUSH ACC

; [external int service routine goes here]

POP ACC
POP PSW
RETI

TIMERO

:

PUSH PSW
PUSH ACC

; [Timer service routine goes here]

POP ACC
POP PSW
RETI

EXINT1:
PUSH PSW

PUSH ACC

[external int 1 service routine goes here]

POP ACC
POP PSW
RETI

TIMER1

:

PUSH PSW
PUSH ACC

[Timer 1 service routine goes here]

POP ACC
POP PSW
RETI

SERIAL:
PUSH PSW
PUSH ACC

[Serial port service routines go here]

POP ACC
POP PSW
RETI

END

1 .3. Simple Methods of User Input

If a simple user interface is required in the design to allow the user to start or stop a

particular process in the operating system software, momentary contact switches can be

connected directly to any available input pin on the 8031.

One easy way to do this is to provide a normally "open" switch connected to the input

pin on one side and a ground connection on the other side. On the input side, a pull-up

resistor is included to make the signal appear as a "high" to the 8031 while the switch is

not closed. When the switch is pressed, the input will transition from a "high" state to a

"low" state at the input pin.

The software can then poll this input periodically to read the state of the input and then

can take proper action.

A switch arrangement such as this can be connected on any available port pin (P0.0-P0.7,

P1.0-P1.7, P2.0-P2.7, or P3.0-P3.7).

This simple design can be expanded to include multiple switches, or changed to provide

13
12
IS
14

+5

IRTI

Tl
TO

+5

FIk

F00

F5ER
AE
UR
RD

29
30
16
17

f&

1— SI

-. I S2

PSEN*

•WR#

RO*

I I"?

a keyboard scan system for reading switch matrix keyboards or keypads. An example of

a more complicated interface willbe described in the following section covering interface

to multi-digit keypads.

8057 Interfacing and Applications 17

1.3.1 Software

The software that is used to examine the state of the inputs if hardware is implemented
as described above is simple. The 8031 provides commands for examining the state of
any input pin in the PI, P2, or P3 groups. For example, the software instructions:

MOV C,P3.4

JNC dosomething

JMP doanother

moves the state of the P3.4 pin (either "0" or "1") into the carry flag. Once this is done,

the software can test the state of the carry flag with the "JNC" instruction and take the

appropriate action. In the above example, if the state of the carry flag is zero (indicating

that the switch connected to P3.4 is currently being pressed), the "JNC" instruction will

cause the 8031 to jump to the routine called "dosomething". If the state of the carry flag

is high, the switch connected to the P3.4 input is not currently being pressed and the 8031

will execute the routine called "doanother".

Using simple methods such as this, the 8031 can respond to various user-defined input

devices.

18 8051 Interfacing and Applications

1.4. Interfacing a 16 digit keypad to the 8031

If a more complex user input is required, a switch matrix arrangement can be designed

to interface with the 8031. Basically, the interface is designed to still look for switch

closures that indicate that the user has pressed a key, but instead of using individual

inputs for each and every switch, multiple switches are connected to the same input bit

and decoded using various outputs from the 8031.

The output bits are arranged in "columns" and the input bits in "rows". When a particular

column output is turned to a low (0) state, reading the state of the inputs will allow the

software to determine if the switch at the intersection of each row connected to that

column is closed.

Each column is activated in sequence, with the row inputs being read.

1.4.1 Hardware

The example presented shows the interface to a standard 16 key keypad, which provides

for numbers 0-9 plus additional keys that may be used for function keys, an "enter" key,

etc.

The keypad selected for this sample design organizes the keys into a 4x4 matrix with 4

columns and with 4 rows. The switches are located at the intersections of these rows and

columns.

Port 1 on the 8031 is used for the interface to the keypad. Pins P10 ,P11, P12, and P13

are used as the column outputs and P14, P15, P16, and P17 are used for the row inputs.

When a column is to be scanned, its corresponding output bit would be brought to a

"low" state with the other column output bits being at a "high" state. A very simple

hardware interface was designed that "pulls up" the inputs on the 8031 (P14-P17) so that

the inputs appear "high" unless the corresponding switch is pressed.

1.4.2 Software

The software designed to be used with this design scans each column/row combination

until a valid input is found. At that point, the scan routine will lookup the key value in

theROM table. The software will then execute a jump to a processing routine to handle

the action caused by the key closure.

The software also includes a routine for debouncing the key to avoid false "on-off-on"

8051 Interfacing and Applications 19

8

+5U

D

B

ui
8031

19

18

31

10
11

13
12
15
14

XTAL1

XTAL2

RST

ElVUDD

RXD
TXD

1NT1
INT0
Ti
TO

P17
PIS
PIS
P14
P13
P12
Pll
pie

P27
P26
P25
P24
P23
P22
P21
P2S

P07
P9G
P9B
P04
P03
P02
P0i
P00

PSEN

UR
RD

2S

26
25
24
23
22
21

32
33
34
35
3G
37
38
39

29
30
16
17

:r4 R3 <R2 <R1

P13

P12

Pll

P10

yA

yA

yA

P14

y A

yA

yA

P15

yA

yA

yA

P1B

y y y
yL.

yA
y
yA
y
yA
y

P17

Keypad Matrix (4X4 J

D

B

A Applied Logic Engineering A

8031 - Keypad interface
100-0001-091 REU lft

DATE: 3X12^91 SHEET 1 OF 1

8 1

20 8051 Interfacing and Applications

readings by waiting a brief period of time after sensing an "on" state of one of the bits in

the row, then rereading the row and making sure that the input is still in a "true" state.

This software implements a "polling" technique as implemented from the main process-

ing software. Depending on the design, a better implementation may be made by going

to an "interrupt driven" scheme, where the keyboard scan of all column/row combinations

is done based on a periodic interrupt that is triggered from an external source. Usually,

a good source for this type of system is an internal timer within the 8031 that can be

configured to interrupt the 8031 at a standard programmable rate. The debounce

routine can be changed to take advantage of the time between interrupts instead of an

artificial delay loop executed by the 8031.

This type of matrix design can be expanded to larger numbers of keys and can be used

to do full alphanumeric keyboards for complete user input.

805 1 1nterfacing and Applications 21

; SOFTWARE TO SCAN A 4X4 MATRIX KEYPAD

• CODE
; BEGINNING OF CODE

**
THIS ROUTINE SCANS EACH OF THE 4 OUTPUT COLUMNS
AND READS KEY CLOSURES FOR THAT COLUMN
P1.0-P1.3 are used for the output columns
PI. 4 -PI. 7 are used for the input rows
USES - Rl-TO HOLD PREV BIT DATA

R5-KEY COUNT INDEX
R3-LOOP COUNTER
R6-TEMP

**

KEYPAD

SCAN:

EQU $
MOV R1,#20H
MOV R5,#00H
MOV R3, #00H

SETB P1.0
SETB Pl.l
SETB PI. 2

CLR PI. 3

MOV A,@R1
MOV R6,A
MOV R4,#FFH
MOV A, PI
MOV R2,A
CPL A
ANL A,#80H
JZ KEYS1

CALL WAIT
MOV A,P1
CPL A
ANL A,#80H
JZ KEYS1

MOV A,R6
RRC A
JC KEYS 2

SETB C
RLC A
MOV @R1,A

MOV DPTR,#KEYB
MOV A,R5

;PREV BIT REG
;KEY COUNT INDEX
;LOOP COUNTER

; SETUP FOR 1ST COLUMN

;GET CURR "PREV DATA"

;KEY VALUE DEFAULT
;READ INPUTS
;SAVE FOR LATER

;1ST ROW CHECK

;DEBOUNCE
;READ DATA AGAIN

;PREV BIT ON?

;NO -SET IT

; LOOKUP KEY VALUE

KEYS1

KEYS2

MOVC A,@A+DPTR
MOV R4,A
LJMP PROCESS

MOV A,R6
ANL A,#FEH
MOV R6,A
MOV @R1,A

INC R5
MOV A,R2
CPL A
ANL A,#40H
JZ KEYS 3

CALL WAIT
MOV A,P1
CPL A
ANL A,#40H
JZ KEYS 3

MOV A,R6
RRC A
RRC A
JC KEYS 4

SETB C
RLC A
RLC A
MOV §R1,A

;SAVE IT

; CLEAR "PREV" BIT

;BUMP KEY COUNTER
; CHECK NEXT ROW

; DEBOUNCE
;GET INPUT AGAIN

;PREV BIT ON?

;NO- SET IT,

MOV DPTR,#KEYB
MOV A,R5
MOVC A,@A+DPTR
MOV R4 , A
LJMP PROCESS

; LOOKUP CHAR VALUE

KEYS 3

:

MOV A,R6 ; CLEAR PREV BIT
ANL A,#FDH
MOV R6,A
MOV §R1,A

KEYS 4: INC R5 ; CHECK NEXT ROW
MOV A,R2
CPL A
ANL A,#20H
JZ KEYS 5

CALL WAIT ; DEBOUNCE
MOV A,P1 ;GET INPUT AGAIN
CPL A
ANL A,#20H
JZ KEYS5

MOV
RRC
RRC
RRC
JC

A,R6
A
A
A
KEYS 6

SETB C
RLC A
RLC A
RLC A
MOV @R1 , A

MOV DPTR, #KEYB
MOV A , R5
MOVC A,@A+DPTR
MOV R4,A
LJMP PROCESS

;SET PREV BIT

; LOOKUP CHAR VALUE

KEYS 5: MOV A,R6
ANL A,#FBH
MOV R6,A
MOV @R1,A

KEYS 6: INC R5
MOV A,R2
CPL A
ANL A,#10H
JZ KEYS 7

CALL WAIT
MOV A,P1
CPL A
ANL A,#10H
JZ KEYS7

MOV A,R6
RRC A
RRC A
RRC A
RRC A
JC KEYS 8

SETB C
RLC A
RLC A
RLC A
RLC A
MOV §R1,A

MOV DPTR,#KEYB
MOV A,R5
MOVC A,@A+DPTR
MOV R4,A
LJMP PROCESS

;CLR PREV BIT

; CHECK NEXT ROW

;DEBOUNCE

;PREV BIT SET?

;NO - SET IT,

; LOOKUP KEY VALUE

KEYS 7: MOV A,R6
ANL A,#F7H
MOV §R1 ,

A

;CLR PREV BIT

KEYS8: INC R5
MOV A,R3
INC A
MOV R3 , A
CJNE A,#01,KEYS9
SETB P1.0
SET Pl.l
CLR PI.

2

SET PI.

3

MOV R1,#21H
LJMP SCAN

;DONE WITH SCAN
;INC COLUMN COUNT

;YES
; CHECK COL2 NEXT?

KEYS 9: CJNE A,#02,KEYS10
SETB P1.0
CLR PI .

1

SETB PI.

2

SETB PI.

3

MOV R1,#22H
LJMP SCAN

;YES
; CHECK COL3 NEXT?

KEYS 10: CJNE A, #03, KEYS 11 ; CHECK COL4 NEXT?
CLR P1.0 ;YES
SETB Pl.l
SETB PI.

2

SETB PI.

3

MOV R1,#2 3H
LJMP SCAN

**
PROCESS EQU $

KEY PROCESSING GOES HERE

RET

;***
; SUBROUTINE AREA
**

WAIT

WAIT1

EQU $

PUSH B
MOV B,#20H
NOP
NOP
NOP
DJNZ B,WAIT1

; ADJUST TO GET PROPER DELAY

POP
RET

B

KEYB EQU $
DB 3 OH
DB 34H
DB 38H
DB 04H
DB 31H
DB 35H
DB 39H
DB 03H
DB 32H
DB 36H
DB 2EH
DB 02H
DB 33H
DB 37H
DB OOH
DB 01H

IQI
4

8

Fl
1

5
9

F2
2'
'6'

i i

IQI

CHAR ON KEYPAD

F3
3

7

ENTER
F4

1.5. Centronics Parallel Input Port

This parallel port corresponding to the "Centronics" standard provides for an interface

to other computer equipment, such as personal computers.

The interface is an eight bit data input that is timed by an input strobe into the 8031. The
input strobe is provided by the computer that is sending the data. By loading the eight

bits of data and pulsing the strobe signal, data can be transferred between systems at a

very high rate of speed, one byte at a time.

1.5-1 Hardware

The only hardware required for this interface (in addition to a "Centronics"-style 36 pin

J4
36 PIN

5P
3*
Z?

12

1

PE
8SY2

17
16
IS
14
13
12
II

ie

14
is
17

IB.
13

1L
10

U3
74HCZ44

11
15.
13.
JUL

2A4 2Y4
2A3 2Y3
2A2 2Y2
2AI 2Y1
1A4 1Y4
1A3 1Y3
1A2 1YZ;

IA1 m
1G 2G

9

D2y
04
05

12
07M

14 03
IS 01
18DM

-PIN*

-fiSKSt

"^L

STR2*

To P3.0 on 8031

To P3.1 on 8031
To *INT0 on 8031

+5

;r4

10K

connector) is a 74HC244 input buffer. The eight bits of data coming from the 36 pin

connector are fed into the input side of the 74HC244, with the outputs being connected

to the data bus of the 8031. The enable signal for the 74HC244 is connected to one of

the output pins from the second 74HC138 address decoder in the microcontroller core,

which provided address decoding in 16 byte blocks.

8051 Interfacing and Applications 27

The *STR signal coming from the transmitting computer over the 36 pin connector can

be tied to an interrupt input on the 8031. This line should be pulled up using a 10K ohm
resistor connected to + 5V to provide the proper state while the *STR signal is in the

"OFF" state. The interrupt signal going low then indicates to the 8031 that a byte of data

is available to be read on the input port.

The PE (paper end) output from the Centronics connector must be tied to ground to

avoid a false "TRUE" to the sending device. If the sending device does see a "TRUE"
on this signal, it will believe that the receiving device is "out of paper" (a condition that

can occur if the receiving device is a printer), and will not send any additional bytes of

data.

1.5.2 Software

The software designed to work with this hardware configuration consists of the vector

interrupt service routine for the interrupt input used to connect the *STR input from

the connector.

When the *STR input goes low, the interrupt occurs for the 8031. This signals the 8031

that a byte of data is available to be read at the parallel input port. The software in the

interrupt service routine must first turn on the BSY (busy) output signal that goes to pin

11 on the Centronics connector. This prevents the computer sending the data from

sending any more until the current byte has been processed.

Once this has been done, the system can load the proper external address in the DPTR
register and execute a "MOVX a,@DPTR" instruction to read the data byte. Once read,

the data byte can then be processed by the 8031. Normally, to avoid excessive delays

caused by a long interrupt service routine, the 8031 will just store the byte in memory
and set some sort of "processing required" flag. The true processing work required for

this byte of data would then be handled by the main program.

When the byte has been read and stored, the 8031 can then turn the BSY signal to the

Centronics connector "OFF" and return from the interrupt processing routine. At this

point, the 8031 resumes execution of the main program where it left off.

This process is repeated each time the *STR signal from the Centronics interface is

asserted.

This design is the minimum configuration for connection to any Centronics-compatible

device. To achieve more efficient results, the *ACK (data acknowledge) signal may be

used to signal the sending device that the current byte of data has been received and the

receiving system is ready for another byte of data.

28 8051 Interfacing and Applications

DATA

STR

BUSY

;ACK

Centronics Timing Diagram

Notes:

1) At least .5 microseconds are required between the leading edge of the data being valid and the

leading edge of the *STR going low.

2) A *STR pulse of at least .5 microseconds is required.

3) Data must be valid for more than .5 microseconds after the trailing edge of the *STR pulse.

8051 interfacing and Applications 29

PARALLEL INPUT CHARACTER SOFTWARE
ASSUMES ADDRESS MAPPED TO 4010H
INTERRUPT DRIVEN ON INTO

P3.1 USED FOR *ACKI SIGNAL
P3.0 USED FOR BUSY SIGNAL

.DATA

ORG 03 OH

; SCRATCH PAD AREA (3 0H-7FH)

INPTR: REG 3 OH ; INPUT POINTER
INPTR1: REG 31H
OUTPTR: REG 3 2H ; OUTPUT POINTER
OUTPTR1: REG 33H

; BEGINNING OF CODE SPACE
.CODE

;VECTOR ROUTINE TABLE

ORG 0003H
LJMP EXINTO ;EXT INT VECTOR

; PARALLEL PORT IN

; INITIALIZATION

ORG 004 OH
; SET OUTPUT STATE

SETB C
MOV P3.1,C ;ACKI/

;SET STARTUP ADR FOR IN AND OUT BUFFERS
MOV DPH,#80H ; (ASSUMES ram AT 8000H)
MOV DPL,#00H
MOV INPTR, DPL
MOV INPTR1 , DPH

;SET INTERRUPT PRIORITY 7

MOV IP,#00000001B ;PAR IN HI PRIORITY
;SET TIMER RUNNING and INTO to edge triggered

MOV TCON, #00010001B
; ENABLE INTS

MOV IE , #87H ;TMR0 , INTO , INT1

RET

;VECTOR INTERRUPT ROUTINES

EXINTO EQU $
;SET BSYI OUTPUT ON

SETB P3.0

PUSH PSW /PARALLEL CHAR IN
PUSH ACC
PUSH DPL
PUSH DPH
MOV A,RO
PUSH ACC
PUSH B

;READ CHAR FROM PAR IN
MOV DPTR,#4010H
MOVX A, @DPTR
MOV RO ,

A

;LOAD BLOCK INDEX TO DPTR
MOV DPL,INPTR
MOV DPH,INPTR1

;WRITE DATA TO PROPER ADR
MOV A , RO
MOVX §DPTR,

A

; INCREMENT INDEX
INC DPTR

; STORE INDEX
MOV INPTR,DPL
MOV INPTR1 , DPH

POP B
POP ACC
MOV RO ,

A

POP DPH
POP DPL
POP ACC
POP PSW

;SET BUSY OUTPUT OFF
CLR P3 .

RETI

1.6. Centronics Parallel Output Port

A Centronics-compatible output port is useful in any design that will require direct

connection to parallel printers for output. This ability adds a lot of value to the system

by providing a standard connection to hundreds of commercially available printers.

1.6.1 Hardware

The Centronics output port is the exact opposite process for the way that data is input

on the input port previously discussed. The process now becomes latching the eight bits

of data to be available on the output port, then to pulse the STR output signal to indicate

that the byte of data is available to be read. The design has been made using a 74HC273

8-bit latch as the interface between the 8031 and the connector. The clock signal for the

latch is controlled by the output of the 74HC138 3 of 8 decoder which determines the

address that the data byte is written to.

8057 Interfacing and Applications
33

The *STRO (strobe out) signal at the Centronics connector is connected to an output

bit on the 8031 and is controlled by the software directly from the 8031.

The BSYO signal is also connected directly to the 8031 as an input. This signal is

controlled by the receiving device.

1.6.2 Software

At a particular point in the program, the 8031 may determine that a byte (or bytes) of

data need to be sent to the output port. If this is part of a print driver routine, it will

occur when the system begins to send data to the printer port.

The first thing that needs to be done is to check the BUSY input from the Centronics

connector. If this is simply connected to an input bit on the 8031, the bit can be read and

evaluated. If it is asserted by the receiving device, the system cannot send a byte of data

at this point. A software polling loop could be used to continuously check the state of

this bit until it goes to a "not-busy" state.

If the port is not busy, the software can then load the proper address for the Centronics

output port into DPTR. The data byte can then be loaded in the "A" register and the

MOVX @DPTR,A command executed. This causes the byte of data to be latched by

the 74HC273 on the output port.

Once the data has been latched, the STR output signal must now be transitioned from

a HIGH state to a LOW, then back to a HIGH to indicate to the receiving computer to

read the byte of data.

To maintain the timing requirements of the Centronics interface standard, a 5

microsecond delay must be inserted after latching the data before asserting the *STRO
(strobe out) signal. This can be done by a simple software loop.

Next the *STRO output can be transitioned from a HIGH state to a LOW (true) state

at the Centronics connector. Again, if this is connected directly to an output bit on the

8031, it is a very straight-forward matter.

A 1 microsecond delay is inserted while the *STRO signal is TRUE. The software can

simply be designed to include a NOP instruction to cause a brief delay of this length.

The *STRO signal then can be transitioned from a LOW state to a HIGH state. An
additional 5 microsecond delay is needed at this point to complete the strobe timing.

This completes the cycle for sending one byte on the Centronics output port. The

process is repeated for each additional byte of data that is to be sent to the parallel output

port.

34 805 1 1nterfacing and Applications

CENTRONICS PARALLEL OUTPUT SOFTWARE

ASSUMES RAM BEGINNING AT ADDRESS 8 000H

.DATA
ORG 03 OH

/SCRATCH PAD AREA (3 0H-7FH)

OUTPTR: REG 32H ; OUTPUT POINTER
OUTPTR1: REG 33H

;***
; BEGINNING OF CODE
;***

.CODE
; INITIALIZATION

;SET OUTPUTS
SETB C
MOV P1.7,C ;STR0/

;SET STARTUP ADR FOR IN AND OUT BUFFERS
MOV DPH,#8 0H
MOV DPL,#00H
MOV OUTPTR, DPL
MOV 0UTPTR1,DPH
RET

OUPUT PARALLEL CHAR
ASSUMES OUTPTR+OUTPTR1 IS POINTING TO BYTE TO OUTPUT
ASSUMES PARALLEL OUT IS MEMORY MAPPED TO 4 02 OH

PAROUT1 EQU $

; ;IF NOT BUSY. .

.

MOV C,P1.5 ; EVALUATE BIT
JC PAROUT1

;;;SET ADR FOR READ
MOV DPL,OUTPTR
MOV DPH,0UTPTR1

; ; ;READ DATA
MOVX A,@DPTR

;;;WRITE TO OUTPUT PORT
PUSH DPL
PUSH DPH
MOV DPTR,#4020H
MOVX @DPTR,A

; ; ;WAIT 5 uS
CALL FIVEUS

; ; ; SET STROBE OUT LOW
CLR PI .

7

; ; ;WAIT 1 uS
NOP

; ; ; SET STR OUT HI
SETB PI.

7

; ; ;WAIT 5 uS
CALL FIVEUS

; ; ; INC INDEX
POP DPH
POP DPL
INC DPTR

; ; STORE INDEX
MOV OUTPTR,DPL
MOV OUTPTR1 , DPH

;ENDIF
RET

**
SUBROUTINE AREA
**

FIVEUS EQU $
RET ;5 MICROSECOND DELAY

; AT 11.0592 XTAL

1 .7. Interfacing to the built-in Serial Port

One ofthe built-in capabilities of microcontrollers in the 8051 family is the internal serial

channel that can be configured for communication with other serial devices. This may
be used for connection to an external terminal for providing the user interface between

the outside world and the single board computer, or for any other application where

serial communication may be required.

1.7.1 Hardware

The only hardware required for a RS232-compatible serial channel is a voltage conver-

XMT

9 or 25

Pin

8031
MAX
232

i

RECV
i

External !

4

Computer
j

RTS

CTS
j

1

3

sion chip and a "D" type connector to provide the proper interface to the "outside world".

We have chosen to use the Maxim MAX232 chip to do the voltage conversion for this

design. This chip takes the standard logic voltage levels (0V and 5V) and converts them

to the voltage levels required for successful RS232 operation (in this case + 10V and

-10V). This chip also provides one additional input and one additional output that can

be used for voltage level conversion of hardware handshaking lines. The hardware

handshaking implemented in this design includes a RTS (request to send) output signal

to the sending device (indicating that the 8031 is ready to receive data) and a CTS (clear

to send) signal input from the external device (which the 8031 polls before sending data)

.

The "D" connector indicated in the sample design is the 25 pin standard. However, some

systems may make use of the newer 9 pin standard that was made popular by the IBM
AT computer. A sample chart showing the correct connection for the 9 pin standard is

shown in Appendix B.

8057 Interfacing and Applications 37

1.7.2 Software

The software required for operation consists of the initialization process, which con-

figures the 8031 internally for serial communication operation. This consists of setting

the Timer 1 register values to the proper settings to give the desired bit-per-second rate

and configuring the interrupts to provide transmit and receive interrupt operation.

To program Timer 1 for correct operation in this design, follow the steps below:

1) Set the C/*T flag in the TMOD register to "0".

2) Program the Timer/Counter mode in TMOD to 8-bit autoreload mode.

3) Program the SCON register to Mode 1 and serial communication enabled.

4) The following table can then be used to determine the correct reload value for the

timer itself.

Baud Rate Reload Value

9600 FDh

4800 FAh

2400 F4h

1200 E8h

For the software presented in this sample design, 1200 baud is chosen for use, with the

TH1 register programmed to a value ofE8h and the TL1 register is programmed to OOh.

Using this mode, ten bit words are used for transmission (one start bit, 8 data bits, and

one stop bit).

Once initialized, the 8031 will vector to the interrupt routine when a character has been

received on the serial port or when the SBUF register is empty after transmitting a byte.

One thing to watch out for when using the serial port interrupt in the 8031 is the fact that

either the RI (receive interrupt) or TI (transmit interrupt) can cause the interrupt to

occur. Therefore, the software must poll the RI flag to check to see if the interrupt was

caused by a character being received. If not, the interrupt was caused by the transmit

process signalling the 8031 that the SBUF is empty.

If receiving a character, the vector routine will then read the character from the SBUF
register and process it before exiting the interrupt routine.

To transmit a character, the software must first look at the CTS input from the receiving

33 8051 Interfacing and Applications

device to make sure that the receiving device is asserting this handshaking line. If this

line is asserted, the 8031 can transfer the byte of data to transmit to the SBUF register.

The internal UART will then take care of sending the bits out in serial format in the ten

bit format described above.

N

Transfer Byte

of data to SBUF

Sequence Using CTS Handshaking

8057 Interfacing and Applications 39

8 7
1

6
1

5 4
1

3 1 2 1 i

+10U U2

Ul
8031

D

C

ji

25 Pin "D"

19

IS

9

31

ie

XTAL1 P17
P16

XTAL2 P15
P14
P13
P12
Pll
P10

P27
P2B
P25

RST P24
P23
P22
P21
P20

Eft/UDD P07
P6B
P05
P04

RXD P03
TXD P62

P01
P00

ran pser
nrre ae
Tl WR
T© RD

8

7

6

5

4

3

2

1

28
27
2E
25
24
23
22
21

32
33
34
35
36
37
38
39

23
30
IS
17

2

3

A

5

G

7

XMT MAX532

REC 14
XII
XI2
XOl 01
X02 11

02
CI 12

C2

C3
C5

C6

C4

12
7

RTq"
1^1

n
CTS"

n

13
12
15

1

DSR
_C3

3
GHD

I 4
2

14B ._C4 6

*

_Ci

^22uF

_C2
~22uF

H Applied Logic Engineering

Internal RS232 Operation
C 190-0001-001 REU 1A

DATE: 4/LS/aL SHEET 1 OF 1

40 8057 Interfacing and Applications

.CODE
**
SOFTWARE FOR INTERNAL RS2 32 OPERATION

ASSUMES P3.5 IS USED FOR RTS
P3.4 IS USED FOR CTS

**

; VECTOR FOR RECEIVE INTERRUPT
j**

ORG 002 3H
KJMP SERIAL

; INITIALIZATION
;**
«

;LOAD TIMER 1 VALUE FOR 12 00 BAUD
MOV TL1,#0
MOV TH1,#E8H

;SET TIMER 1 TO AUTO RELOAD
MOV TMOD, #00100000B

;SET TIMER 1 TO MODE 1
MOV SCON, #50H

;SET TIMER 1 RUNNING
MOV TCON, #01000000B

;ASSERT REQUEST TO SEND (RTS)
SETB P3.5

;TURN ON INTERRUPTS
MOV IE,#10010000B
RET

**
; TRANSMIT A CHARACTER

; IF CTS IS ASSERTED...
XMIT2: MOV C.P3.4

JNC XMIT2
;MOVE CHAR TO SBUF REGISTER TO TRANSMIT

MOV SBUF,

A

;WAIT FOR XMIT PROCESS TO BE COMPLETED
XMIT1: MOV C,TI

JNC XMIT1
CLR TI
RET

**
; SERVICE ROUTINE FOR INTERRUPT VECTOR-RECEIVE ONLY
**

SERIAL:
;IF THIS IS A RECEIVE PROCESS...

MOV C , RI
JNC SERIAL1 ; NO-INT CAUSED BY XMIT

; CLEAR RTS OUTPUT
CLR P3 .

5

;READ CHAR
MOV A,SBUF

; CLEAR RECEIVE BIT
CLR RI

; REASSERT RTS
SETB P3.5

; RETURN FROM SERVICE ROUTINE
SERIAL1: RETI
ENDIF

1 .8. Interfacing to a Dual Channel UART

If more than one serial port is required in a design, a slightly different approach can be
implemented using an external DUART (Dual UART) chip, the Signetics 2681. This

chip provides for two independent serial channels that can be programmed for totally

independent operation.

The 2681 provides for internal baud rate generation for each channel so that no

Terminal

additional chip is required to provide the oscillation rate. Also, each channel can be

programmed for independent operation, meaning for example that channel A could be

run at 9600 baud while channel B is simultaneously running at 1200 baud.

The advantage to this type of design is that it is relatively simple to implement and that

it allows the single board computer to be interfaced to two separate serial devices, such

as a terminal, modem, or serial printer.

1-8-1 Hardware

The 2681 implementation in this design is treated as an external memory device as far

as the 8031 is concerned. It is connected directly to the data bus and the low four address

lines (A0-A3) for internal register access. This is necessary to program the device and

to send and read data from it.

The *CE (chip enable) signal for the 2681 is provided by the second 74HC138 decoder,

which provides for a 16 byte block decode.

8051 Interfacing and Applications 43

In this implementation, Serial Channel "A" is receive interrupt driven, that is to say that

when characters are received on the incoming receive data line from the external device,

the DUART will assert the signal on OP4 (pin 27), which is connected to an external

interrupt input on the 8031. This provides for a high speed capability for receiving and

transmitting from the software.

The second channel is primarily an output channel in this design for connection to a

serial output device such as a printer. If data input capability is needed, status registers

can be polled within the 2681 to determine character availability.

Hardware handshaking capability is provided on both channels through the use of Clear

to Send/Request to Send. Unlike the single channel operation described in the previous

section, the handshake lines in this example are controlled automatically by the 2681.

The RTS output is asserted as long as there is buffer space available in the 2681 receive

buffer. The CTS line is checked before sending a character to make sure that this signal

is asserted by the receiving device. If it is not, the character will not be transmitted by

the 2681.

RS232C voltage level conversions on each channel are handled by a pair of Maxim
MAX232 chips that convert input voltage levels from + 0V to -10V and + 5V to + 10V.

The circuit design around the DUART is completed by adding a simple reset circuit to

theRESET input, and a 3.6864MHZ crystal on the X1/X2 pins to provide the necessary

oscillator for bit rate generation.

1.8.2 Software

The software forDUART control is basicallydone in two parts - the initialization portion

and the operational portion.

The initialization part of the software sets up each individual channel of the DUART
for baud rate, bits per word, parity, and number of stop bits. Interrupt operation and

hardware handshaking control are also programmed in this area. For a detailed explana-

tion of how to program this device, please refer to the Signetics data sheet on the 2681

and to the software listing that is included with this manual. The software presented in

this manual programs both channels for 1200 baud, no parity, eight data bits, and one

stop bit. Also, RTS and CTS hardware handshaking operation is programmed to be

enabled.

The operational characteristics (i.e. baud rate, parity, etc.) for each of the serial channels

can be changed "on-the-fly", but it is important to make sure that data is not coming in

on the receive input while a change is being made to the device configuration.

Operational use of the DUART once it has been programmed is easy. If the channel

has been configured for receive interrupt use, the 8031 will respond to the 2681 signal

that a character has been received by jumping to a vector routine that would normally

44 8051 Interfacing and Applications

rv
t-^j in

Y

2 01

N 0)

Hh
x

•**-- -„

-k.roiyn

id »

rrTTTTT7
^

Ifl

w - rg
ro co uj

o

t— f\) H* |>1 _,

2 x
S
n 73

X

n n o ;a
w z z
R

70 H 7J HX X X x
o o 3 p
id ro » *

oooooooo
-DT]1I"D"D"DT32

t-t H M M M ~ t*
TJ TJ T) -O T) TJ ^
Of) 01 -h- d) w- ®

S> i— i— s

"«—r*

ry J)

in|o)ffc.

S & t~ N

tn o)

nnnn

HOMOw ro »- -
C 2

roX XX X
*-i O H On rv> ^- »-

J o » £

4i

w

ujco \) felslsH

+
-VA— <n

tn
m
33

f\) ff) s> CO

c ro
ro en

ry

n n
tn oi

HOMO

« ^ ^ X X X X
- f\I U -k f\) N(_ ,-

C 2
l\) 3>
i- X
N
M

i-MMMun-jgiui-fcum
U (M m fi>

®

"0 w

• *
t-»-»-»-cD<o-sjcnui*-cjro
(J W t- 9

z

8057 Interfacing and Applications 45

read the character out ofthe device. Once read, the byte is stored inRAM for processing

by the main OS software after returning from the interrupt.

Transmitting a byte on the same channel is done by polling the 2681 to make sure that

is able to transmit a byte, then loading the DPTR with the correct address with the data

to send in the "A" register. A MOVX @DPTR,A instruction will then send the byte of

data to the device.

46 805 1 1nterfacing and Applications

; Dual Channel RS232 via Signetics 2681 DUART
; ASSUMES DUART MAPPED TO ADDRESS 4 03 OH

.DATA
OUTPTR: REG 3 OH
OUTPTR1: REG 31H
INPTR: REG 32H
INPTR1

:

REG 3 3H

.CODE

; Interrupt 1 vector

ORG 0013H
LJMP EXINT1 ;EXT INT 1 VECTOR

;RS2 3 2 "A" RECV

; Initialization

; PROGRAM DUART
MOV A,#10H
MOV DPTR,#4032H
MOVX @DPTR,A

; ISSUE SET POINTER CMD

MOV DPTR,#4 03 0H
MOV A,#93H

MOVX @DPTR,A
MOV A,#17H

MOVX @DPTR,A

;MR1A
;RTS-ON, NO PARITY
;8 DATA BITS

;MR2A
;CTS-ON, 1 STOP BIT

MOV A,#66H
MOV DPTR,#4031H
MOVX @DPTR,A

;12 00 BAUD

MOV A, #05
MOV DPTR,#4 032H
MOVX §DPTR,A

; RELOAD AND OUTPUT CRA

MOV A,#10H
MOV DPTR,#4 03AH
MOVX @DPTR,A

; ISSUE SET POINTER CMD

MOV DPTR,#4 03 8H
MOV A,#93H

MOVX @DPTR,A

;MR1B
;RTS-ON, NO PARITY
;8 DATA BITS

MOV A,#17H

MOVX @DPTR,

A

MOV A,#66H
MOV DPTR,#4039H
MOVX @DPTR,

A

MOV A, #05
MOV DPTR,#4 03AH
MOVX @DPTR,A

;MR2B
;CTS-ON, 1 STOP BIT

;12 00 BAUD

; RELOAD AND OUTPUT CRB

MOV A,#F0H ;EXT CLK/16
MOV DPTR

/ #4034H ;ACR
MOVX @DPTR,

A

MOV A, #03 ; INTERRUPT ON - CHAN "A"
MOV DPTR,#4035H ;IMR
MOVX @DPTR,

A

MOV A,#00H ;SET INT TIMER VALUES
MOV DPTR,#4036H ; CTUR
MOVX @DPTR,

A

INC DPTR ; CTLR
MOVX @DPTR,

A

MOV A,#F0H ;USE OUTPUT BITS FOR INTS
MOV DPTR,#403DH ; OPCR
MOVX 6DPTR,

A

MOV A,#0FH ;SET H/W HANDSHAKING ON
MOV DPTR,#403EH ; OUTPUT PORT
MOVX @DPTR,

A

; ENABLE INTS
MOV IE,#87H ;TMR0, INTO, INT

1

RET

;**
; OUTPUT SERIAL A CHAR
• *********************
; outptr POINTS TO RAM BUFFER WHERE CHARACTER TO TRANSMIT IS
;**

; ; ;IF OK TO XMIT. .

.

MOV DPTR,#4035H
SAOUT5: MOVX A, @DPTR

ANL A,#01H
JZ SAOUT5

; ; ; SET ADR FOR READ
MOV DPL, OUTPTR
MOV DPH,0UTPTR1

; ; ;READ DATA
MOVX A, @DPTR

; ; ;WRITE TO OUTPUT PORT
PUSH DPH
PUSH DPL

MOV DPTR,#4033H
MOVX @DPTR,A

; ; ; INC INDEX
POP DPL
POP DPH
INC DPTR

; ; ;SAVE ADDRESS
MOV OUTPTR, DPL
MOV OUTPTR1 , DPH
RET

; OUTPUT SERIAL B CHAR

; outptr POINTS TO RAM BUFFER WHERE CHARACTER TO TRANSMIT IS

; ; ;IF OK TO XMIT. .

.

MOV DPTR,#4035H
SBOUT5: MOVX A, §DPTR

ANL A,#10H
JZ SBOUT5

;;;SET ADR FOR READ
MOV DPL, OUTPTR
MOV DPH , OUTPTR1

; ; ;READ DATA
MOVX A, @DPTR

; ; ; WRITE TO OUTPUT PORT
PUSH DPH
PUSH DPL
MOV DPTR,#403BH
MOVX §DPTR,

A

; ; ; INC INDEX
POP DPL
POP DPH
INC DPTR

; ; ;SAVE ADDRESS
MOV OUTPTR , DPL
MOV OUTPTR1 , DPH
RET

;***
;VECTOR INTERRUPT ROUTINES
• *************************
; INPTR POINTS TO RAM BUFFER TO STORE CHAR
;***

EXINT1: PUSH PSW ;RS232 "A" RECV
PUSH ACC
PUSH DPL

PUSH DPH
MOV A,RO
PUSH ACC
PUSH B

; READ CHAR
MOV DPTR,#4033H
MOVX A, @DPTR
MOV R0,A

; LOAD BLOCK INDEX TO DPTR
MOV DPL,INPTR
MOV DPH,INPTR1

;WRITE DATA TO PROPER ADR
MOV A,RO
MOVX §DPTR,

A

; INCREMENT INDEX
INC DPTR

; STORE INDEX
MOV INPTR,DPL
MOV INPTR1 , DPH

POP B
POP ACC
MOV RO,A
POP DPH
POP DPL
POP ACC
POP PSW
RETI

1 .9. Interfacing to an LCD

A common need in a single board computer design is the ability to display information

that can be viewed by the system operator. Usually this type of information indicates

system operation status, configuration, or any other data that would concern the system

operation.

A good solution for this type of application usually is a small single or double line display

that consumes very little power. A Liquid Crystal Display (LCD) can offer these and

several other advantages to your design.

This manual will focus on LCDs that use the Hitachi HD44780A00 LCD controller chip

(or equivalent). LCDs that use this on-board controller provide for a very simple

interface to most single board computer designs. This controller contains all necessary

drivers and memory capabilities to provide simple parallel data transfer in an ASCII
format.

The Hitachi HD44780A00 controller is used on many different types of LCDs from

various manufacturers. It controls LCDs in many different configurations, including 1

line X 8 characters, 1X16, 1X20, 1X40, 2 lines X 16 characters, 2X20, and 2X40. All

configurations are software compatible, so the software drivers provided can be used in

any of the above configurations.

1.9.1 Hardware

The hardware interface to the LCD consists of connecting the 8031 data bus (D0-D7)

to the device, connecting address line A0 to the RS (register select) input, connecting

the R/W (read/write) input to the appropriate line, and the chip enable to the proper

output signal

A single five volt supply is required for operation. Also, a potentiometer is connected

to the LCD to provide variable contrast control.

This design uses a slightly different approach from other interface designs used to

connect an LCD to a 8031. This design does not require any additional I/O pins on the

8031. It is designed to "look like" a standard memory device to the 8031 for both reading

and writing operations.

Since the oscillator for the 8031 in the design being presented here is set at 11.059 MHZ,
some conditioning on the chip enable signal coming from the 74HC138 must be made.

This is due to the fact that the time between the R/*W input on the LCD and the

ENABLE input when accessing the LCD must be no less than 140 ns. In order to

accomplish this, the chip enable signal is "delayed" by introducing a resistor/capacitor

network between the output of the 74HC138 decoder and the input of the LCD. This

effectively delays the transition of the chip enable into the LCD by the required time

8057 Interfacing and Applications 51

period.

If an oscillator less than 10 MHZ is used for the 8031, no delay is required and the chip

enable can be connected directly from the memory decoding scheme to the LCD. Also,

if an oscillator faster than 10 MHZ is used (other than 11.059 MHZ), you will need to

determine the proper values for the resistor and capacitor in order to get the proper

amount of delay time.

The *RD and *WR signals from the 8031 are combined in a single R/*W line to connect

to the LCD.

1.9.2 Software

The software for interfacing to the LCD consists of routines to send command informa-

tion to the device, send data to the device, read data from the device, and provide a

DEVICE BUSY pause for waiting for the LCD to become ready to accept a new byte.

Because of the hardware that has been included in the design, the software can treat the

LCD basically as an external memory device. A byte of data can be written to the LCD
by loading the proper address inDPTR and the proper data byte in the "A" register. The

"MOVX @DPTR,A" command then sends the byte to the LCD.

Once a byte has been written to the LCD, the LCD memory cannot be accessed again

until it has completed the processing. The software can poll for this condition by reading

the status register and testing the BUSY flag. If this flag is asserted, the LCD memory
cannot be accessed.

The first operation required to use the device is to program the LCD for correct

operation. This consists of sending commands to the LCD to set the number of lines,

number of bits per word, cursor movement direction, and turning the display on. The

software provided demonstrates how this can be done.

After this has been done, characters can simply be loaded in the "A" register in the 8031

and sent to the LCD using the "MOVX @DPTR,A" command. Positioning the cursor

on the LCD can be done be issuing the correct command for cursor reposition.

Software is also provided for moving strings of characters defined in aROM table to the

LCD. Also, routines to blank the LCD and position the cursor to the beginning of line

two are provided.

One final set of routines provides binary to ASCII conversion and ASCII to binary

conversion.

52 805 1 1nterfacing and Applications

1.9.3 Different Display Configurations

Displayable

12 3

12 3

1

9

1

9

2

2

kmm

2

1

Non-Displayable-

I
I

I
1

2x20 LCD - Printable Positions

The Hitachi controller for the LCD is designed to handle up to a 2 line by 40 character

display unit. If you are using an LCD smaller than the 2x40, make sure that you account

for the RAM positions in the LCD controller that do not correspond to character

positions on the LCD.

For example, a 2x20 LCD does not have the capability to display any characters in the

last 20 positions of the first or second line. The controlling software must know that

these positions cannot be written to if the data is to be shown on the LCD and must either

reposition the cursor to the beginning of line two or scroll the characters on line one one

position to the left to create an open space for the new character at the end of the first

line.

One trick that can be used if a few more bytes ofRAM are required in your application

program is the use of undisplayable LCD positions as general purpose RAM. Because

the hardware interface in this design treats the LCD as a standard memory read/write

device, any memory location in the LCD can be used for this purpose.

8051 Interfacing and Applications 53

o \

\
S5
\
\

HI »

P

Xr
4—^H-VA^

<y in

W
-JC

VIIIn

VP

54 8057 Interfacing and Applications

; Software for LCD Control

; Note : Address mapped for LCD Instruction Register @ 4 000h

LCD Data Register @ 4001h

.CODE

; Initialization

MOV DPTR,#4000H ;INSTR REG - LCD

;SET 8 BIT WORD-2 LINE DISPLAY-5X7 DOT FORMAT
MOV A,#38H
MOVX @DPTR,A

;WAIT FOR LCD
CALL WAITLCD

;SET 8 BIT WORD-2 LINE DISPLAY-5X7 DOT FORMAT
MOV A,#38H
MOVX @DPTR,A

;WAIT
CALL WAITLCD

;SET CURSOR MOVE DIRECTION
MOV A, #06
MOVX @DPTR,A

;WAIT
CALL WAITLCD

;SET DISPLAY ON
MOV A,#0CH
MOVX @DPTR,A

;WAIT
CALL WAITLCD

; CLEAR DISPLAY
MOV A, #01
MOVX @DPTR,A

;WAIT
CALL WAITLCD
RET

;****** End of Initialization

;**
; Start of Utility routines
;**
; Wait for LCD to become available

WAITLCD: PUSH PSW
PUSH ACC
PUSH DPL
PUSH DPH

MOV DPTR, #4000H

WAITLCD1

:

MOVX A,@DPTR
RLC A
JC WAITLCD1

POP DPH
POP DPL
POP ACC
POP PSW
RET

move data from a ROM table to the LCD
DPTR must be set to starting ROM address
"B" register holds number of chars to transfer
destroys contents of R4 register

TABTOLCD MOV R4 , A
MOVC A,@A+DPTR ;GET CHAR

TTL2:

PUSH DPH
PUSH DPL
MOV DPTR,#4001H
MOVX @DPTR,

A

CALL WAITLCD

POP DPL
POP DPH
MOV A,B
DEC A
MOV B,A
CJNE A,#00,TTL2
RET

MOV A,R4
INC A
SJMP TABTOLCD

;WRITE CHAR TO LCD
;WAIT FOR LCD

;ALL DONE

; Blank the LCD

BLANK: MOV DPTR,#4000H
MOV A,#01H
MOVX @DPTR,

A

CALL WAITLCD
RET

**
Set cursor position to Line two of the LCD
or to the last eight chars of a 1X16 display

LINE2 EQU $
PUSH DPL
PUSH DPH
PUSH ACC

MOV DPTR,#4000H
MOV A,#COH
MOVX @DPTR,A
CALL WAITLCD

POP ACC
POP DPH
POP DPL
RET

ASCII to Binary Conversion
Rl points to 1st ASCII char - (Rl)+l is the second char
Destroys contents of "B" and "R4" registers

ATOB: MOV A,§R1 ;GET 1ST CHAR

CALL ADJ
MOV
MOV
MUL
MOV
INC
MOV

B,A
A, #16
AB
B,A
Rl
A,@R1

; CREATE BINARY NUM

;MULT *16
; SAVE

;GET 2ND CHAR

CALL ADJ
ADD A,B
RET

; COMBINE

ADJ:

ADJ1

MOV RO ,

A

ANL A,#FOH
CJNE A,#40H,ADJ1
MOV A,RO
CLR C
SUBB A,#37H
RET
MOV A,RO
CLR C
SUBB A, #3 OH
RET

**
; Binary to ASCII conversion
; The "A" register holds the binary number to convert.
; "B" register is destroyed
; Uses address offset in RO as pointer to store 2 chars

BTOA: MOV B,A
ANL A,#FOH
RR A
RR A
RR A
RR A
CJNE A,#10,BTOA1

BTOA1

:

JC BTOA2
ADD A,#37H
SJMP BTOA3

BTOA2

:

ADD A,#30H
BTOA3

:

MOV @RO,A
INC RO
MOV A,B
ANL A,#OFH
CJNE A,#10,BTOA4

BTOA4

:

JC BTOA5
ADD A,#37H
SJMP BTOA6

BTOA5

:

ADD A,#30H
BTOA6

:

MOV
RET

@R0,A

; SAVE

;A<10?

1.10. Bank Selection of Memory

The 8031 has the capability for directly accessing 64K bytes of program space (OOOOh-

FFFFh with *PSEN) and an additional 64K bytes of external memory (OOOOh-FFFFh

without *PSEN). In most single board applications, this is an adequate amount of

memory.

However, in some applications, more memory space is required. A method that can be

used to effectively add additional data memory to the system is called "bank selection".

This scheme uses the same 64K byte external memory space addressing, but adds

additional logic to expand the number of memory devices that can be selected.

1.10.1 Hardware

In the application described in this manual, the external memory space from 8000h-

FFFFh will be designed to employ bank selection to expand this area from 32K bytes to

160K bytes.

Five 32K Static RAMs are used in this design to provide for 160K bytes of read/write

memory.

To accomplish bank selection to these five devices, five output bits (P10-P14) on the 8031

are used to select individual 32K blocks. Address line A15 is combined with the

individual block selectors with separate "NAND" gates. By setting one of the block

selectors HIGH and the others LOW, one of the memory devices will be active when
external data reads are made from the 8031 in the address range from 8000h-FFFFh.

1.10.2 Software

The software provided has a check for the number ofSRAMS that are populated in the

board in the given example. This would normally be done as part of a power up

initialization so that the system would be able to know how much memory is available.

A byte of data is written to the first location of each RAM and read back to verify if the

RAM exists. A running count of RAMs available is kept and stored after all sites have

been checked.

The software to control the bank selection process consists of one routine that is called

to set the proper output select bit based on the number (0-4) that is passed to the routine

805 1 1nterfacing and Applications 59

in the "A" register.

Once this routine has set the proper bank selector bit, the user is free to access external

memory from 8000h-FFFFh and can expect that the proper memory device will be

selected.

Additional software may be required if the bank selected memory is to be treated as

"consecutive" memory, that is to say that the user wants to one device to be automatically

selected after writing to the last byte (FFFFh) in the previous device.

An example of this is if the software has BANK 1 selected (32K). If all 32K bytes are

written to in consecutive order and additional memory is required, software could be

written that would automatically switch the bank selector output that is active from

BANK 1 to BANK 2 when the last byte ofBANK1 (FFFFh) is written.

This can provide a "virtual" 160K byte memory block that can be accessed by the main

program.

60 8051 Interfacing and Applications

D0-D7

TO PI.

Applied Logic Engineering

SRAM Bank Selection

SHEET 1 OF

8051 Interfacing and Applications
61

**
SOFTWARE FOR BANK SELECTION OF 5 32K SRAM CHIPS.
USES 8031 PINS P1.0-P1.4 FOR CONTROL OF SRAM TO USE IN
EXTERNAL MEMORY FROM 8000H-FFFFH.
**

.DATA
; INTERNAL REGISTER DECLARATIONS (any available reg can be
used)

RAMMAX: REG 3 6H ; NUMBER OF SRAMS IN BOARD

;**
.CODE

; INITIALIZATION

;CLR ALL OUTPUTS TO START
CLR C
MOV P1.0,C ;SRAM SEL
MOV PI . 1 ,

C

MOV PI . 2 ,

C

MOV P1.3,C
MOV PI . 4 ,

C

; CHECK FOR NUMBER OF SRAMS (1-5) POPULATED ON BOARD
MOV A,#00H

CHKRAM: CALL BLKSEL
MOV DPTR,#8 000H
MOV B,A ;SAVE COUNT
MOV A,#A7H ;CHK BYTE VALUE
MOVX @DPTR,A
NOP
MOVX A,@DPTR ;READ BACK
CJNE A,#A7H,CHKRAM1
MOV A,B
INC A ;INC TO NEXT SRAM SITE
CJNE A, #05, CHKRAM ;JUMP BACK IF NOT DONE
MOV B,#05 ;ALL BLKS OK

CHKRAM1: MOV A,B
MOV RAMMAX, A ;SAVE MAX BLK COUNT (1-5)

; SETUP STARTUP BLOCK SELECTOR TO FIRST RAM SITE
MOV A,#00H
CALL BLKSEL
RET

SUBROUTINE AREA

**
BLKSEL - BLOCK SELECTER

SELECTS A RAM SITE FOR USE
ENTER WITH SITE NUMBER (0-4) IN A REGISTER

BLKSEL EQU $

CLR P1.0
CLR Pl.l
CLR PI. 2

CLR PI. 3

CLR PI. 4

CJNE A,#00H,BSEL1
SETB P1.0
SJMP BSEL5

BSEL1: CJNE A,#01H,BSEL2
SETB Pl.l
SJMP BSEL5

BSEL2

:

CJNE A / #02H / BSEL3
SETB PI. 2

SJMP BSEL5
BSEL3

:

CJNE A,#03H,BSEL4
SETB PI. 3

SJMP BSEL5
BSEL4

:

CJNE A,#04H,BSEL5
SETB PI. 4

BSEL5: RET

1.11. Appendix A - List of Vendors

Intel Corporation
3065 Bowers Avenue

Santa Clara, CA 95051

8 bit Microcontroller Handbook P/N 270645-002

- covers the 8051 family of microcontrollers

Densitron
2540 West 237th Street

Torrance, CA 90505

(213) 530-3530

- manufacturer of LCDs.

Signetics

811 E. Arques Avenue

Sunnyvale, CA 94088

(408) 991-2000

data sheet on SCN2681 DUART

Maxim Corporation
120 San Gabriel Drive

Sunnyvale, CA 94086

(408) 737-7600

data sheet on MAX232 RS232 driver/receiver chip.

65
805 1 1nterfacing and Applications

0.1. Appendix B: Connection to an External Computer

When deciding on whether to use a parallel or serial connectionbetween the single board

computer and an external computer, several items must be considered. The parallel

connection usually provides for only a one way transfer of data from the external

computer to the single board computer. Ifcommunicationback to the external computer

is needed, a bidirectional parallel port would be required to provide a communication

path back to the computer.

An alternative to a bidirectional parallel port is a serial communication port. A standard

RS232 port is generally available on most PCs, while a bidirectional serial port is standard

on most newer PCs, but not necessarily included on older PCs.

A serial port can provide for a better communication scheme, but its disadvantage can

be the speed at which data can be transferred. Normally, on most PCs, the transfer rate

may be limited to 9600 bits per second.

805 1 1nterfacing and Applications

0. 1 . RS-232 Serial Connection

After successfully completing the necessary logic and voltage conversions on the single

board computer for the serial port, the next step is connecting the serial port on this

board to an external source. Normally, this is some sort of external computer (PC, Mac,

or other) that could be used for a number of purposes.

An external computer connected to the single board computer may be required for

providing a user of the system access to the single board computer. This may be

necessary to program various parameters, to retrieve accumulated data from the single

board computer, or to get current status information from the process that the single

board computer is controlling.

0.1.1 RS232-C Connector Pinouts

Connectors used for serial RS232 purposes on computers generally conform to a

standard pinout. The twenty-five pin sub "D" connector was chosen several years ago as

the normal connector used for this purpose. However, in the past couple of years, the

nine pin sub "D" connector that became popular with the release of the IBM AT personal

computer has gained popularity. Both connectors will be described in this section.

The signals present on these connectors are defined as follows:

25 Pin Signal Description 9 pin

1

2

3

4

5

6

7

8

20

Transmitted Data, Received Data, and Signal Ground are the only necessary signals for

connection between devices. The remaining signals defined above are used for hardware

handshaking or for modem control signals. For the purposes of this manual, a single

hardware handshaking system using RTS and CTS will be described. There are other

combinations and uses of the handshaking lines, but this method has been proven to work

on most hardware.

The signals defined above have equivelent meaning whether they are used on the 25 pin

connector or the 9 pin connector. The signals required for connection from a single

board computer to an external PC will be described in the following section.

Chassis Ground -

Transmitted Data 3

Received Data 2

Request To Send 7

Clear to Send 8

Data Set Ready 6

Signal Ground 5

Carrier Detect 1

Data Terminal Ready 4

8057 Interfacing and Applications
69

0.1.2 Connection to an External Computer

The pinouts above are used in equipment that are defined under the EIA RS-232C
standard as "Data Terminal Equipment" (or DTE). Data Terminal equipment is

normally defined as computers or terminals that are the primary source of data

transmission. To make the connection from the 25 or 9 pin connector on the

single board computer to an external PC, an understanding of what the various

signals on the RS232 standard mean will be required.

The most important pins on the connector are the ones that allow the data to be

transferred between the devices. The pin labeled TRANSMITTED DATA is the

output pin while transmitting data, and the pin labeled RECEIVED DATA is the

input pin while receiving data. Because of this, a connection is made from the

TRANSMITTED DATA pin on the single board computer to the RECEIVED DATA
pin on the external computer. Conversely, the TRANSMITTED DATA pin on the

external computer is connected to the RECEIVED DATA pin on the single board

computer. This provides for data transmission paths in both directions

SIGNAL GROUND is the only other required signal that must be connected

between single board computer and the external computer. This provides the

electrical reference for the TRANSMITTED and RECEIVED data signals.

If hardware handshaking is to be implemented between the two devices, the lines

REQUEST TO SEND and CLEAR TO SEND on each device must be connected in

a similar manner to the TRANSMITTED DATA and RECEIVED DATA signals. The

REQUEST TO SEND (RTS) signal from the single board computer must be

connected to the CLEAR TO SEND (CTS) signal on the external computer.

Similarly, the RTS on the external computer must be connected to the CTS signal

on the single board computer.

Software operation is discussed in the manual sections that cover the 8051

operation as it pertains to serial communication. Basically, it consists of polling

the CTS input signal before data is transmitted, and controlling the RTS output

signal to signal the transmitting device to stop sending data to the receiving

device.

0.1.3 Cabling

The above connection scheme comprises a standard configuration known as a

"null modem" cable that can be used to directly connect two DTE devices

together. Because both of the devices are configured as DTE, they cannot be

cabled together using a "one-for-one" cable. This type of cable, if used, would

cause outputs to be connected to outputs and inputs connected to inputs. To

avoid this, the signals must be crossed in the cable to conform to the proper

wiring configuration.

In addition to making sure that the proper signals are connected, you must also be aware

of the defintion in pinouts between the 25 pin connector and the 9 pin connector. The

same signals are used in both connector pinouts, but the signals appear on different pins.

If your design uses a 25 pin connector, for example, and the external computer uses a 9

pin connector, a cable will need to be constructed that makes the proper connection for

this connector combination.

70 8051 Interfacing and Applications

In schematic form, the possible cable connections would look the the following:

25 Pin
25 Pin

9 Pin 25 Pin

9 Pin 9 Pin
OND GND

5 5

3 -j^5L_ _J<ML 3

2

roCD^,^^-^^<C:^^J?*
2

8 ^CTS CTS_ 8

7 RTS_^-—
^^^^

^^^^"^--J?3 7

8057 Interfacing and Applications 71

Other possible RS232 connection options

The above explanation of a standard null modem cable has been proven to work in most

systems. However, the external computer that you are connecting the single board

computer to may require a slightly different configuration. The next section discusses

possible problems that may occur and some remedies to provide for proper operation.

Problem : External Computer does not transmit when connected.

Possible solutions :

Some computer serial boards require that the DSR (Data Set Ready) input on its

connector be at a TRUE state before sending data. This can be accomplished by tying

the DSR input to the CTS input so that the single board computer will drive both inputs

TRUE when it is ready to receive data. Alternatively, the DSR input can be tied to a

voltage source of between 4- 10V and + 15V to hold the signal at a TRUE state at all

times.

If this is attempted and the external computer will still not send data, another possible

problem may be the CD (Carrier Detect) input on the computer's serial port. Some
system boards and/or software may require that this input also be at aTRUE state before

it will allow data to be transmitted. The CD input can be tied to a voltage source of

between + 10V and + 15V to hold the signal at a TRUE state at all times.

Problem: Data is lost during transmission.

Possible solutions :

If data is sent from one source (either the external computer or the single board

computer) and is received incomplete or garbled, make sure that the transmitter is not

sending data at a rate that is too fast for the receiving device.

If a high baud rate is being used, handshaking between devices may be required in order

for the receiving devive to control the data flow so that characters coming in from the

transmitter will not be lost before the receiver gets a chance to read and process them.

Use the RTS/CTS connection described above to implement hardware handshaking

control.

Another alternative is the use of software handshaking via the XON/XOFF protocal. In

this scenario, handshaking between devices is done by sending one byte codes from the

receiving device to the transmitting device to control the flow of data.

When the receiving device cannot accept any data from the transmitting device, it sends

an XOFF (ASCII 13h) to the transmitting device. Upon receiving this code, the

transmitting device goes into a software loop without sending data. Once the receiving

device has finished processing the data it has received and is ready for additional data

to be sent, it sends anXON (ASCII llh) to the transmitting device. When the transmit-

ting device receives this byte, it resumes sending information on the serial channel.

This type of data flow control is very useful when communicating between devices that

cannot use hardware handshaking, as in communication between modems over a phone

line. Since data bytes are used, the need for hardware connection between RTS/CTS is

eliminated.

72 805 1 1nterfacing and Applications

0.2. Centronics Interface Cabling

If a higher speed, one-way transmission is preferred in your system design, the

parallel data communication scheme defined by the Centronics standard

provides a good method for data transfer.

The interface cabling for connection of the parallel Centronics interface uses thirty

six pin conductors that carry the signals for the data transfer and the control

signals

.

In an external computer that provides for a standard Centronics connector, a "one

for one" cable can be used to connect to the single board computer that is

described in this manual.

More commonly, the design may require that you connect a PC-type computer to

the single board design. The IBM PC standard for parallel connection uses a 25

pin sub "D" connector rather than the standard 36 pin connector. All signals are

present on the 25 pin connector that are required for the parallel interface.

805 1 1nterfacing and Applications 73

25 Pin D
36 Pin

"STR

14

15

16

17

18

19

20

21

22

23

24

25

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Feed

Dofrfi

*Fir

1

•Intt

*SaI

3

4

fi

A

7

•Aftk

Busy

Fmv

Sol

-wpr

r

•Infr

i PftATJ •Fmrft

N/r:

Innrl NJ/C
^

4^
t^gnri

^z7
4.7K

+5

IBM PC 25 pin to Centronics 36 Pin Cable

74 8051 Interfacing and Applications

