8051 Interfacingand
Applications

e : Applied Logic Engineel‘ing

System Design and Development

Copyright 1991 Applied Logic Engineering,

All rights reserved.

Reproduction of this material, in part or in whole, is strictly prohibited. Changes or
additions may be made to the information in this manual and incorporated into sub-
sequent editions

Disclaimer

Every effort has been made to make this manual as accurate and complete as possible.
Applied Logic Engineering is not responsible for inaccuracies, omissions, etc. that may
have occurred during preparation of this manual or problems,damage, or loss that may
result from its use.

Intel and "8051" are registered trademarks of Intel Corporation.
IBM is a registered trademark of International Business Machines, Inc.

8051 Interfacing and Applications

Introduction

Main System Core

Microcontroller and Support Hardware.......cccooeveerivererennnas 3
Low order Address Latch.......c.ovvevenicinncnninsnnnesessscnrences 6
Memory Decoding.......coceeueecrrenerreeircerecaecesesenscareseeranssanes 6
IOETTUPES ottt sesseres et seae 7
Software for Microcontroller Core......cmmrernrnsieonsrrnnns 8
Internal RAM USE....cccoevirirevninrneeremmesmnssenessnsissessssssssssssans 8
External Memory Addressing......cceeerecenenescseeneceneenes 10
Reading from Code Space.......verreerrnnriresnernessescssesneeens 10
SOftWATE SEATTUP.....vevreeerricerreniceereresnsessesesessssssessssssisecsenns 11
Power Supply ReqUirements......ccc.ceeveeeereereserereercrcrereereneaenes 12
Simple Methods of User Input
SOFEWATE......cveuerrereieeeccerceteeenee et easeesesenseseaeesenes 18
HArdWare.........cocveevcrenerneeieeecrieiseetseetsee s sese s sonnes 19
SOLEWALE....conveeeereereecnnereee s eseeseseae et raeseassesessences 19
Centronics Parallel Input Port
HArdWare........ececceeerereieenieseeseneesesesenesessseesesssessesesscsensesesenns 27
SOFEWATE.....ecvcerecermennereecnneseneensescee e sseseeeessssensisensssonss 28

8051 Interfacing and Applications

Hardware.......oouveeeceeeevenerrmnrersnneeseesessesesesssssessenssassesesesasas 37
SOLEWATE.......vreeeceiemeemntresesssssssisssrsssssssssssssessssssassessssesssseseranes 38
HaArdware.........c.occreieeccceeeeeesevenesinessssessesssssessssssessssessssesans 43
SOFEWATC ... tevieteeceencesensesemseeenresssesiessssassressssessetsssessnsssessssarens 44
HArdWare.ccc.cverrrneernrerieseseiisiessssesessessssesesesssessesessasens 51
SOFEWATE...cecmreecereeerinrierisrettnresserssssess st ses s bes st ssenssse s s seranes 52
Different Display Configurations..........eeeveersvesreresreresresessenens 53
HArdWare.......cceveieeennnnessnssess s esssssssessessssesesessnas 59
SOFEWATE.......eceereeecereceenerineeretsssensssssssssssessssssassessssesassesssseses 59
RS232 Serial. .o ssessess e sessssnens 69
RS232 Connector Pinouts.........ceevvereceneereenene 69
Connection to an External Computer............. 70
Cabling.......cvereecereceecrareeeeeereees e 70
Other possible RS232 configurations............. 72
Centronics Interface Cabling...........cocueveenireersrerneesessrensiesiennnns 73

8051 Interfacing and Applications

1. 8051 Interfacing and Applications

1.1. Introduction

The purpose of this manualis to aid designers of 8051-family systems by providing simple,
straight-forward ways to interface various peripheral subsystems for single board-8051
designs. By adding these features, any system design can be enhanced to provide
additional capability and flexibility.

Whether you are designing your own single board computer from the "ground-up" or you
are using a commericially available board for the microcontroller core, a number of these
peripheral add-ons provide standard additions to your embedded system design. By
using these predesigned solutions, you will save many hours of unnecessary hardware
and software design and debugging.

This manual is organized into sections that discuss various peripherals that may be
interfaced to the 8051 and includes both sample hardware and software for direct
implementation. These designs have been implemented in various systems at Applied
Logic Engineering and have been proven to work. While they may be implemented
directly, you may choose to adapt these items as you see fit for your individual design.

The software provided in this manual has been also provided as source code files on disk.
Each listing is provided in a separate ".ASM" file for use in your design.

The software provided here is written to be easily understood by the novice. The goal
is to present workable solutions, but with a few hours work, the algorithms can be
optimized to execute more efficiently if required.

It is important to understand that this manual is written for users that have a basic
understanding of digital design concepts and some understanding of 8051 software
design. The assumption that the user will have had some experience with the com-
ponents described will be made in the cases of standard TTL logic components (i.e.
AND, NAND, OR, etc.). If these items are not familiar to you, a reference book
describing these components may be required.

Anappendix at the end of this manual will give the names of sources of the manufacturers
of the components covered in the designs discussed. Also, an appendix is provided that
discusses how "outside world" connections can be made between the single board
computer and a personal computer.

8051 Interfacing and Applications

1.2. Main System Core

1.2.1 Microcontroller and Support Hardware

The core of any microprocessor-based design is the microprocessor itself. This manual
will describe designs based around the Intel 8031 microcontroller, but they can easily be
adapted to other members of the 8051 family.

The Intel 8051 family of microcontrollers were designed for low cost embedded control
systems. These microcontrollers have the capability of direct manipulation of inputs and
outputs connected to the 8051.

In addition to direct I/O capability, the 8051 has internal hardware timers that can be
used as timers or counters. This provides for capability that normally requires external
support chips for normal microprocessor-based designs.

The 8051 family of microcontrollers also has two hardware interrupts included on the
chip, eliminating the need for an external interrupt controller in most designs.

Either 128 or 256 bytes of internal RAM are also included on the chip, depending on
the model of the chip used.

The 8051 family consists of many derivatives, with some of the most popular being listed
below.

8051 Microcontrollers

8051 Internal masked ROM - 128 bytes RAM, two timers

8031 No ROM - 128 bytes RAM, two timers

8751 Internal EPROM - 128 bytes RAM, two timers

8052 Internal masked ROM - 256 bytes RAM, 3 timers

8032 No ROM - 256 bytes RAM, 3 timers

8052BASIC Built-in BASIC language 8052

Incorporating an 8031 into a single board computer design is relatively straight forward.
The chip can be configured in many different ways, but for the purpose of this discussion,
various design decisions have been made and will be discussed in detail. For a detailed
discussion on the capabilities of various 8051-type chips, please refer to the Intel
literature concerning the individual chip.

First, the oscillator in our sample design is a simple crystal running at 11.0592 MHZ.

8051 Interfacing and Applications

Thisis a standard rate for the 8051 family microcontroller that allows the user to program
the internal timers used by the internal UART to standard bits-per-second rates (i.e.
9600, 1200, etc.). Programming the 8031 for this operation is discussed in the section of
this manual covering the use of the serial interface that is built into the 8031 itself.

Reset (pin 9) on the 8031 is connected to a 4.7 uF capacitor to provide a simple reset
when power is applied to the system.

The *EA (external address, pin 31) is connected to ground to notify the 8031 that the
chip does not contain any internal program ROM and that all program code must be
available on the external bus. If a chip such as the 8751 is used (which includes internal

D0-D7

AO-A7
74HC373
8031

ALE I
AB-A15
PR

Low Order Address Latch

EPROM), this pin must be tied HIGH to allow the 8751 to use the internal ROM for
program space.

Grounding the *EA pin requires that P0.0-P0.7 (pins 32-39) are used for the ADO-AD7
signals to form the low order address/data bus and that P2.0-P2.7 (pins 21-28) form the
high order address lines A8-A15,

P3.6 (pin 16) becomes the external *WR signal and P3.7 (pin 17) becomes the *RD signal
for interfacing to external memory devices. *PSEN provides a chip enable signal for the
external ROM that holds the microcontroller program.

The *RD and *WR signals are only active when accessing external data memory. They
are not active while doing instruction fetches from ROM, as the following table indicates:

*PSEN *RD *WR
Program Instruction Fetch 0 1 1
External Data Read 1 0 1
External Data Write 1 1 0

8051 Interfacing and Applications

ﬂ
A
I
A
)
I
I

A@-ALS
Ut 4 3 Y De-D7
8@31L 7
8 vz
<TALL zi; 7 ?4HC373
KTALZ pi5te- p eqpid Ae 4
plap=— oD 7okl8 A2 A
P13t GRS RN R
Plz-g— sD ol A7
puilE- 4D aqS—A85
Plof- 7]ap 20685
2D 2o 2
PZ?%/ 1D 1g2—hL /
o
ng"ﬁj EN_OE
25
RST P24} |1 _Tj
p23l24] 11
paaf 23/ N
pz1l22
21 +5U U3
P2o 74HC138
[~}
E.UDD Pe?—g’g—/ 18
Posr2E] 52
PQSL/ L
P04%————/ i 6000~ 7FFF
RXD o338 a1s 3 13 4600-SFFF
TXD Pez—ss——/ AL4 a2l 14 2000~3FFF
R - — EYERNE N 15 2000 LFFF
pool 22— A
INTI PSENIE2
TS pE(22 U4
TL WRHE 74HC138
To RDILZ 5 2 407@-407F
T 4] 5 4060-406F
52 12 4050-405F
i —
= c28 :f 4040-404F
. 2030-403F
- 13 4020—402F
R _ FIECED a5 2 14 2010-401F
FUR \ Ad_ 1 is 1000-200F
Applied Logic Engineering
8031 Micro Core
c|] | 100-0001-001 REY 1A
DATE: 3.25.81 [smEeT 1+ oF 1
7 | 6 | g | 4] 3 I 2 | 1

8051 Interfacing and Applications

Any other pins not designated above can be used for general purpose I/O or for specific,
pre-defined purposes, depending on the individual design. Please refer to the Intel
literature that describes the definition of these functions.

Low order Address Latch

As most users of Intel microcontrollers and microprocessors are aware, Intel provides
amultiplexing system that uses the P0.0-P0.7 lines for both the data bus and the low order
byte of the address bus. In order for the system to interpret these signals, an external
latch must be used to separate the address information from the data information. In
this design, a 74HC373 latch is used. The ALE (Address Latch Enable, pin30) signal
on the 8031 provides the enable for the 74HC373 to latch the address information onto
the bus.

Memory Decoding

In order for the 8031 to find and execute the software it was intended to run, some sort
of ROM is usually provided at address 0000h (for the RESET vector). Other interrupt
vectors have their address locations in the area of memory from 0003h-002Bh.

In the implementation described in this manual, EPROM will be mapped at 0000h-
1FFFh and also at 2000h-3FFFh. This provides for 16K bytes of program space for the
operating system software.

A simple method of memory decoding for memory devices is designed into the system
by including a 74HC138 3-0f-8 decoder. By using address lines A13, A14, and A15, the
74HC138 decodes output signals in 8K blocks. This will be adequate for this design, but
you may choose to use larger or smaller memory blocks, depending on your require-
ments.

In the design presented, the following table shows the method in which the memory
decoding is done using the A13, Al14, and A15 address linesto give the 8K block outputs

Assuming the inputs on the 74HC138 are configured:
Gl=1, *G2A =0, and *G2B=0

8051 Interfacing and Applications

the output table would then be:

A15 A14 A13

*YOQ *Y1 *Y2 *Y3 *Y4 *Y5 *Y6 *Y7

0

[= S = W e

0

_ R OO R RO

0

O RO RO

0

=R e el e

1

O

[

1

=

1

1

[S S = S SE G Y

1

1

1
1
1
0
1
1
1

1 1 1
1 1 1
i 1 1
1 11
1 1 1
0 1 1
1 0 1
1 1 0O

A second 74HC138 has been included to provide a smaller block decode within one of
the 8K blocks for interfacing to various I/O devices. The output of this decoder provides
blocks of 16 bytes each. Note that due to the fact that this decoder uses *RD and *WR
from the 8031 for enabling its outputs, it can only be used for enabling external memory
devices.

Interrupts

The 8031 internally provides for two hardware interrupts (INTOQ and INT1) that can be
used without additional support circuitry. In most single board computer designs,
interrupts are used for connecting the system to devices that require immediate response
service and that can occur without predictability. Some examples of these types of
devices include serial UARTS(where data is received in an unpredictable stream),

Main

Program

|

interrupt

Occurs

Resume Program

Execution

Vector Address

!

Vector

Subroutine

8051 Interfacing and Applications

parallel input data, direct switch contacts, etc.

Another advantage to the use of interrupts is the elimination of software input "polling”
by the main operating system. Polling is the process by where the software periodically
reads a particular input or group of inputs to determine if an event had occured or not.
This can lead to system overhead problems if the inputs need tobe polled very frequently
in order to not miss an event that could happen on the input itself. Quite a bit of CPU
time can be expended by simply completing the input polling. By going to an interrupt-
based input, the input event will cause the main software to stop and service the event.
All overhead in reading the input in a periodic form is eliminated and the system will
never "miss" an input event.

By programming the internal registers of the 8031, you can choose to use the *INT0/P3.2
pin as an interrupt input or as a general purpose I/O bit. The same is true for the
*INT1/P3.3 pin.

Also included in the 8031 are two internal hardware timers (Timer O and Timer 1) that
can be configured to interrupt when the respective timer overflows. Each timer can be

configured as a free running timer or as a counter to count transitions on its input pin
(T0/P3.4 for timer 0 and T1/P3.5 for timer 1).

In this manual, various examples will be shown using the hardware interrupts for different
purposes to give you an idea of the types of things that can be done with them.

1.2.2 Software for Microcontroller Core

Internal RAM Use

The 8031 has 128 bytes of RAM built-in to the chip itself. This RAM is used for several
purposes, which will be described below:

1) The 8031 has a defined group of general use registers named R0O-R7. These registers
are duplicated four times, once in each of Register Banks 0-3. When the 8031 powers
up, Bank 0 is selected as the default for use, so register R0 appears at internal address
00h, register R1 appears at address 01h, and so on up to register R7 at address 07h.

2) Also at power up, the stack pointer is initialized to 07h and incremented to 08h. This
default condition assumes register bank 0 will be used for the RO-R7 registers. Also,
banks 1-3 for these registers will not be available because this area will be used as the
stack grows during use. If all of this memory is assumed to be used by the stack, it will
extend from 08h to 1Fh. If your application will make use of any register bank other than
Bank 0, it will be necessary to reprogram the stack pointer to an area of memory that
will not be affected by any other program operation.

3) Beginning at 20h, the 8031 provides for sixteen bytes of bit-addressable memory. This
means that the memory in this area can be addressed as individual bits for program flag

8051 Interfacing and Applications

usage. This area extends from 20h-2Fh.

4) The 8031 provides for scratch pad RAM in the area from 30h-7Fh. This is RAM for
use in general purpose variable storage. It is byte addressable.

5) The area of RAM from 80h-FFh is allocated for use by the Special Function registers.
These registers include the internal working registers of the 8031, such as the ac-
cumulator, PSW, B, and DPTR registers as well as the registers such as SCON, SBUF,
TCON, TMOD, etc. which control the function of the chip itself.

00h
07h Reglster Bank 0
08h
Stack Space
iFh
20h Blit Addressabl
oFh o Space
30h
General Purpose
RAM
7Fh
80h
Speclal
Function
Registers
Frh

Internal RAM Allocation in an 8031

It is important to note that although not every byte in this block of memory is assigned a
register functionin the 8031, the unused byte locations cannot be used as general purpose
RAM because the design of the chip will not allow it. Intel has reserved these extra
memory locations for future use in other derivitives of the 8051-based family.

One item worth noting as far as internal memory goes is the fact that the 8052 derivitives
of the 8051 family (including the 8052, 8032, and 8052AHBASIC) have 256 bytes of
internal RAM available. The additional 128 bytes of memory exist in the range from
80h-FFh. To avoid conflict with the Special Function Register arca (which is memory
mapped to the same locations), the software can only access the extended memory by
using indirect addressing modes. Sample software instructions to read a byte of data

8051 Interfacing and Applications

10

into the accumulator from location 80h would be:

MOV RO,#80h
MOV A,@R0

Using these types of software instructions, confusion is avoided between this area of
memory and the Special Function register area.

External Memory Addressing

If there is any additional read/write memory or devices that are included in the system
(in addition to the internal memory of the 8031), it must be accessed using indirect
addressing schemes. A common way of doing this is through the use of the DPTR sixteen
bit register, which has the ability to hold an entire sixteen bit address. For example:

MOVX A,@DPTR

reads the byte of data into the accumulator from the address that the DPTR register is
pointing to. In a similar manner:

MOVX @DPTR,A
writes the contents of the accumulator to the address held in the DPTR register.

In these cases, the DPTR register must be loaded with the proper address before the
MOVX instruction can be executed. Intel has provided a quick way of loading this
register using the "MOV DPTR, #data" instruction, where "data” represents any 16 bit
immediate value.

Reading from Code Space

The last area of memory that can be accessed by the software is the program memory
area. The 8031 has an instruction that uses the DPTR or PC registers to provide a base
address that points to the code space. The "A" register can be used to hold an offset that
is added to the base address.

MOVC A,@A+DPTR and
MOVC A,@A+PC

are the two variations of this instruction, the first using the DPTR as the base address
and the second using the PC as the base address.

These instructions are useful for reading data from ROM tables. By reading the data

value and incrementing the value in the "A" register, a simple loop can be used to access
data from a table for processing,.

8051 Interfacing and Applications

Software Startup

When avalid reset is applied to the 8031, the chip automatically starts program execution
at program address 0000h. The system software should be designed to have a "jump"
instruction to the main startup code at this address. Thisis called the RESET VECTOR
and is the method that the 8031 uses to begin program execution. The resct vector usually
consists of a JMP (or LIMP) instruction, followed by a program address label where the
main startup code is located.

The other vector locations in this area from 0000h-002Bh have fixed postion in locations
based on the interrupt type. The table below shows the interrupt types and their
associated vector position.

Interrupt Address
External Interrupt 0 0003h
Timer 0 000Bh
External Interrupt 1 0013h
Timer 1 001Bh

Receive and Transmit 0023h
Timer 2 (not in 8031) 002Bh

JMP instructions should be placed in the source code at the vector addresses that have
interrupts that will be used in your system. For interrupts that will not be used, it is not
important to have JMPs to any particular program address label.

The main program (located at the program address label defined in the Reset Vector)
usually consists of setup instructions for programming the 8031 for correct operation.
This may include interrupt use, timer use, serial port use, or any direct output pin
manipulation that is required by the design itself to set initial conditions on the board.

In the case of the 8031, the P2 outputs (pins 21-28) must be cleared to zero before any
external memory reads or writes occur. The reason for this is that this port forms the
high order address byte (A8-A15) of the address bus during external memory access, so
this sets the state of these lines to a known condition.

The code listing following provides a generic "skeleton" for a basic 8031 program written
in assembler. It sets up the basic structures for the data defintion area, the code vector
table, and the vector service routines that are called from the vector table.

It also provides code in the startup area for programming the internal registers of the
8031 to configure it for the operation that will be required. The instructions are included
to program the required registers, but it will be up to you to set the correct data in these
instructions to get the proper results.

8051 Interfacing and Applications

11

12

1.2.3 Power Supply Requirements

Asingle +5V power supply is all that is required to power this microcontroller core and
any of the designs that will be described in this manual.

Some of the designs presented require voltages other than +5V, but they will be derived
with additional components in the design that are powered by the single + 5V supply.

This concludes the discussion of the microcontroller and basic system construction.

8051 Interfacing and Applications

R X T R R R R R R R R TR R SRR SR g g
;i 8031 startup skeleton shell

; Copyright 1991 Applied Logic Engineering

H

H

may be used without royalty if proper credit ID is
indicated

khkkkkkkkhkkhhhkhkkhkhkhkhhkhkhkhhkhkkhhkkhkkhkhhkkkhhkkk

)
14
°
7

;Addressable bit declarations

Bito: REG 20H.O ;sample - bit 0
;[add other bit declarations here]

ORG 30H
sInternal RAM scratchpad area from 30h-7fh

SAMPLE: REG 30h rsample byte at 30h
;[add other RAM variables here]

VECTOR TABLE
note : "LJMP INIT" is the only required vector-all others
optional and may be commented out or removed.

~e ™o wo “we

ORG O0OOOH

LIMP INIT ;=Jjumps to INIT on powerup
ORG O0OO0O03H

LIMP EXINTO ;External INTO vector
ORG 000BH

LIJMP TIMERO ;:Timer 0 vector

ORG O0013H

LIJMP EXINT1 ;External INT1 vector
ORG O001BH
LJMP TIMER1 :Timer 1 vector
ORG O0023H
LIJMP SERIAL ;Internal UART vector

; ___
ORG 40H

;START OF PROGRAM SERVICE ROUTINES

INIT:

;CLEAR A8-A15 ADDRESS LINES

CIR A

MOV P2,A
;INITIALIZE TIMERS TO ZERO

MOV TLO, #00H

MOV THO, #00H

MOV TL1, #00H

MOV TH1, #00H
; CONFIGURE TIMER OPERATION

MOV TMOD, #00H
;SET INTERRUPT PRIORITY

MOV IP,#00000000B
;SET TIMERS RUNNING

MOV TCON, #00000000B
;ENABLE INTERRUPTS

MOV IE, #00H

H [other startup and main code goes here]

JMP S : End of Main line software

EXINTO:
PUSH PSW
PUSH ACC

; [external int 0 service routine goes here]

POP ACC
POP PSW
RETI

TIMERO:
PUSH PSW
PUSH ACC

; [Timer 0 service routine goes here]

POP ACC
POP PSW
RETI

EXINT1:
PUSH PSW

PUSH ACC

; [external int 1 service routine goes here]

POP ACC
POP PSW
RETI

TIMER1:
PUSH PSW
PUSH ACC

; [Timer 1 service routine goes here]

POP ACC
POP PSW
RETI

* D ——— - ————— — ———— ———— ———— - t— ———— " t——————— ———————— ——_— T—————_- i G o "

SERIAL:
PUSH PSW
PUSH ACC

; [Serial port service routines go here]
POP ACC

POP PSW
RETT

1.3. Simple Methods of User Input

If a simple user interface is required in the design to allow the user to start or stop a
particular process in the operating system software, momentary contact switches can be
connected directly to any available input pin on the 8031.

One easy way to do this is to provide a normally "open" switch connected to the input
pin on one side and a ground connection on the other side. On the input side, a pull-up
resistor is included to make the signal appear as a "high" to the 8031 while the switch is
not closed. When the switch is pressed, the input will transition from a "high" state to a
"low" state at the input pin.

The software can then poll this input periodically to read the state of the input and then
can take proper action.

A switch arrangement such as this can be connected on any available port pin (P0.0-P0.7,
P1.0-P1.7, P2.0-P2.7, or P3.0-P3.7).

This simple design can be expanded to include multiple switches, or changed to provide

FPOU——= —
13 23
.——II‘NT'I PEENFS=———PSENK
i {INTe AT
14 T1 WR I WRM
T8 RD RO%

a keyboard scan system for reading switch matrix keyboards or keypads. An example of
amore complicated interface will be described in the following section covering interface
to multi-digit keypads.

8051 Interfacing and Applications

17

18

1.3.1 Software

The software that is used to examine the state of the inputs if hardware is implemented
as described above is simple. The 8031 provides commands for examining the state of
any input pin in the P1, P2, or P3 groups. For example, the software instructions:

MOV CpP34
JNC dosomething

JMP doanother

moves the state of the P3.4 pin (either "0" or "1") into the carry flag. Once this is done,
the software can test the state of the carry flag with the "JNC" instruction and take the
appropriate action. In the above example, if the state of the carry flag is zero (indicating
that the switch connected to P3.4 is currently being pressed), the "JNC" instruction will
cause the 8031 to jump to the routine called "dosomething". If the state of the carry flag
is high, the switch connected to the P3.4 input is not currently being pressed and the 8031
will execute the routine called "doanother”.

Using simple methods such as this, the 8031 can respond to various user-defined input
devices.

8051 Interfacing and Applications

1.4. Interfacing a 16 digit keypad to the 8031

If a more complex user input is required, a switch matrix arrangement can be designed
to interface with the 8031. Basically, the interface is designed to still look for switch
closures that indicate that the user has pressed a key, but instead of using individual
inputs for each and every switch, multiple switches are connected to the same input bit
and decoded using various outputs from the 8031.

The output bits are arranged in "columns" and the input bits in "rows". When a particular
column output is turned to a low (0) state, reading the state of the inputs will allow the
software to determine if the switch at the intersection of each row connected to that
column is closed.

Each column is activated in sequence, with the row inputs being read.

1.4.1 Hardware

The example presented shows the interface to a standard 16 key keypad, which provides
for numbers 0-9 plus additional keys that may be used for function keys, an "enter" key,
etc.

The keypad selected for this sample design organizes the keys into a 4x4 matrix with 4
columns and with 4 rows. The switches are located at the intersections of these rows and
columns.

Port 1 on the 8031 is used for the interface to the keypad. Pins P10 ,P11, P12, and P13
are used as the column outputs and P14, P15, P16, and P17 are used for the row inputs.
When a column is to be scanned, its corresponding output bit would be brought to a
"low" state with the other column output bits being at a "high" state. A very simple
hardware interface was designed that "pulls up" the inputs on the 8031 (P14-P17) so that
the inputs appear "high" unless the corresponding switch is pressed.

1.4.2 Software

The software designed to be used with this design scans each column/row combination
until a valid input is found. At that point, the scan routine will lookup the key value in
the ROM table. The software will then execute a jump to a processing routine to handle
the action caused by the key closure.

The software also includes a routine for debouncing the key to avoid false "on-off-on"

8057 Interfacing and Applications

20

Ul
8031

i8

18

L
et

b i
—

bt |1 e fos
EN a0V (]

XTAL1

XTALZ

RST

EA-UDD

P17
P1§|
P18
P14
P13
P12

[_* P14 Plg t_ﬂ P16 Lﬁd PL7
L4

P11

P19

P13

P27
P26
P25
P24
P23
P22|
P21
Pzo|

Pe?
Peg
Peg
PG4
Pe3
Pe2
Pal
PoO|

PSEN
AE|
UR)
RD)|

Im!m[mlmlmlm'm ~vJuls]afn e
w2 oo [oo

gy
[y

ekl lelllskllsl 1
~ Dol (RER RN (v [{g) NN [AN] [N)

Y=

PL1

Pla

Keypad Matrix (4X4)

Applied l.ogic Engineering

8031 - Keypad interface

C | | 100-0091-001 REUV LA

DATE: 3.12.891 [sHEET L oF 1

= 1 =2 1 1

8051 Interfacing and Applications

readings by waiting a brief period of time after sensing an "on" state of one of the bits in
the row, then rereading the row and making sure that the input is still in a "true” state.

This software implements a "polling" technique as implemented from the main process-
ing software. Depending on the design, a better implementation may be made by going
to an "interrupt driven” scheme, where the keyboard scan of all column/row combinations
is done based on a periodic interrupt that is triggered from an external source. Usually,
a good source for this type of system is an internal timer within the 8031 that can be
configured to interrupt the 8031 at a standard programmable rate. The debounce
routine can be changed to take advantage of the time between interrupts instead of an
artificial delay loop executed by the 8031.

This type of matrix design can be expanded to larger numbers of keys and can be used
to do full alphanumeric keyboards for complete user input.

8051 Interfacing and Applications

21

khkkkkkkkhkhkkhkhkhkhkhkkkhhhhhhhhhkhkhhkkkkkkkkkkkkkkx

;7 SOFTWARE TO SCAN A 4X4 MATRIX KEYPAD
gk kkkkkkkhkkkdkdhhhkkhkhhhhhkhhhkhkhkdhdrdhdk

. CODE

; BEGINNING OF CODE

shkkkkkkhkkhkkkkhkhkhkhhkkkkkhkkhkkkhkhkhhkhhkhkkkkhkkkkk

;THIS ROUTINE SCANS EACH OF THE 4 OUTPUT COLUMNS
AND READS KEY CLOSURES FOR THAT COLUMN
P1.0-P1.3 are used for the output columns
P1.4-P1.7 are used for the input rows

USES - R1-TO HOLD PREV BIT DATA

R3-LOOP COUNTER

R6~TEMP
kkhkkhkhkhkhkkhkhkhkhkdkdhhhhhhhhhrhhhkhkhkk

H
; R5-KEY COUNT INDEX
7
H

KEYPAD EQU
MOV
MOV
MOV

SETB
SETB
SETB
CLR

SCAN: MOV
MOV
MOV
MOV
MOV
CPL
ANL
JZz

CALL
MOV
CPL
ANL
JZz

MOV
RRC
JdcC

SETB
RLC
MOV

MOV
MOV

$

R1, #20H
R5, #00H
R3, #00H

P1.0
Pl1.1
Pl.2
P1.3

A,@R1
R6,A
R4, #FFH
A,P1
R2,A

A

A, #80H
KEYS1

WAIT
A,P1

A

A, #80H
KEYS1

A,R6
A
KEYS2

C
A
@RrR1,A

DPTR, #KEYB
A,R5

;PREV BIT REG
;KEY COUNT INDEX
; LOOP COUNTER

;SETUP FOR 1ST COLUMN

;GET CURR "PREV DATA"

;KEY VALUE DEFAULT
;READ INPUTS

;SAVE FOR LATER

1 1ST ROW CHECK

; DEBOUNCE

sREAD DATA AGAIN

;PREV BIT ON7?
;NO -SET IT

; LOOKUP KEY VALUE

KEYS1:

KEYS2:

KEYS3:

KEYS4:

MOvVC
MOV
LIMP

MOV
ANL
MOV
MOV

INC
MOV
CPL
ANL
JZ

CALL
MOV
CPL
ANL
JZz

MOV
RRC
RRC
JC

SETB
RLC
RLC
MOV

MOV
MOV
MOVC
MOV
LIMP

MOV
ANL
MOV
MOV

INC
MOV
CPL
ANL
JZ

CALL
MOV
CPL
ANL
Jz

A, @A+DPTR
R4,A
PROCESS

A,R6
A, #FEH
R6,A
@RrR1,A

R5
A,R2

A

A, #40H
KEYS3

WATIT
A,P1

A

A, #40H
KEYS3

A,R6
A
A
KEYS4

c
A
A
@R1,A

DPTR, 4KEYB
A,R5

A, @A+DPTR
R4,A
PROCESS

A,R6
A, #FDH
R6,A

@R1,A

R5
A,R2

A

A, #20H
KEYS5

WAIT
A,P1

A

A, #20H
KEYS5

;SAVE IT

;CLEAR "PRE

;BUMP KEY COUNTE
;CHECK NEXT ROW

; DEBOUNCE

V" BIT

R

;GET INPUT AGAIN

;PREV BIT ON?

;NO- SET IT.

; LOOKUP CHA

;CLEAR PREV BIT

;CHECK NEXT ROW

;s DEBOUNCE
;GET INPUT AGAIN

R VALUE

MOV A,R6
RRC A
RRC A
RRC A
Jc KEYS6
SETB C ;SET PREV BIT
RLC A
RIC A
RILC A
MOV @R1,A
MOV DPTR, #KEYB ; LOOKUP CHAR VALUE
MOV A,RS
MOVC A, @A+DPTR
MOV R4,A
LIJMP PROCESS
KEYS5: MOV A,R6 ;CLR PREV BIT
ANL A, #FBH
MOV R6,A
MOV @R1,A
KEYS6: INC RS ; CHECK NEXT ROW
MOV A,R2
CPL A
ANL, A, #10H
JZ KEYS7
CALL WAIT ;: DEBOUNCE
MOV A,P1
CPL A
ANL A, #10H
JZ KEYS7
MOV A,R6 ;PREV BIT SET?
RRC A
RRC A
RRC A
RRC A
Jc KEYSS8
SETB C ;NO - SET IT.
RILC A
RILC A
RIC A
RILC A
MOV @R1,A
MOV DPTR, #KEYB ; LOOKUP KEY VALUE
MOV A,RS
MOVC A, @A+DPTR
MOV R4,A

LIJMP PROCESS

KEYS7: MOV
ANL
MOV

KEYS8: INC
MOV
~INC
MOV
CINE
SETB
SET
CLR
SET
MOV
LIMP

KEYS9: CINE
SETB
CLR
SETB
SETB
MOV
LIMP

KEYS10: CJINE
CLR
SETB
SETB
SETB
MOV
LIMP

A,R6
A, #F7H
@R1,A

R5

A,R3

A

R3,A
A,#01,KEYS9
P1.0
Pl.1
P1.2
P1.3
R1, #21H
SCAN

A, #02,KEYS10
P1.0

Pl.1

P1.2

P1.3

R1, #22H
SCAN

A,#03,KEYS11
P1.0

Pl.1

P1.2

P1.3

R1, #23H
SCAN

;CLR PREV BIT

;DONE WITH SCAN
; INC COLUMN COUNT

;CHECK COL2 NEXT?

;YES

;CHECK COL3 NEXT?
;YES

;CHECK COL4 NEXT?
;YES

shkkhkkkkhkkhkkhkhkkhkhkhkhkhhkkkkhkhkhkhkk

PROCESS

H KEY PROCESSING GOES HERE

RET

EQU 3

;***

;s SUBROUTINE AREA
phkkkkhhhhkkkkkkkkhhhhhhhhkkkhhhhhhhhekkhhhhhhkhk*k

WAIT EQU
PUSH
MOV
WAIT1: NOP
NOP
NOP
DINZ

$
B

B, #20H

;ADJUST TO GET PROPER DELAY

B,WAIT1

POP B

RET

KEYB EQU $
DB 30H ;"0" CHAR ON KEYPAD
DB 34H ;nan
DB 38H ;ngn
DB 04H i F1
DB 31H AL
DB 35H ;g
DB 39H ;hom
DB 03H ;F2
DB 32H pnan
DB 36H i"en
DB 2EH PALL
DB 02H ;F3
DB 33H ;U3
DB 37H AL
DB O0OH ; ENTER

DB 01H iF4

1.5. Centronics Parallel Input Port

This parallel port corresponding to the "Centronics" standard provides for an interface
to other computer equipment, such as personal computers.

The interface is an eight bit data input that is timed by an input strobe into the 8031. The
mput strobe is provided by the computer that is sending the data. By loading the eight

bits of data and pulsing the strobe signal, data can be transferred between systems at a
very high rate of speed, one byte at a time.

1.5.1 Hardware

The only hardware required for this interface (in addition to a "Centronics"-style 36 pin

3
74HC244
2 17 3_pe
T 2vatl 22
15 3 1nd 23S 5
~15— 5 eee evell—2=
261 21
,_&_91,“ Ty4L2
136 14 0:
[22— 21183 173
1L 4lin2 1yali8 D
1o (18"
10 Zliar 1y
16 26
A
B;‘PIN PINK
% ;g To P3.0 on 8031
@ 81 +5 —————— To P3.1 on 8031
3 {s| = a1 To *INTO on 8031
4
3;& > 3.3K
lqe 12} PE
123 4li8sye <+
1 &3 ACKZX
[z 117]
o5 s
185 (115 4
(24 € 114
ff 5 3_A 45
2 4 A
SR g R4
2! : / 1K
1 STR2X

connector) is a 74HC244 input buffer. The eight bits of data coming from the 36 pin
connector are fed into the input side of the 74HC244, with the outputs being connected
to the data bus of the 8031. The enable signal for the 74HC244 is connected to one of
the output pins from the second 74HC138 address decoder in the microcontroller core,
which provided address decoding in 16 byte blocks.

8051 Interfacing and Applications L

27

28

The *STR signal coming from the transmitting computer over the 36 pin connector can
be tied to an interrupt input on the 8031. This line should be pulled up using a 10K ohm
resistor connected to +5V to provide the proper state while the *STR signal is in the
"OFF" state. The interrupt signal going low then indicates to the 8031 that a byte of data
is available to be read on the input port.

The PE (paper end) output from the Centronics connector must be tied to ground to
avoid a false "TRUE" to the sending device. If the sending device does see a "TRUE"
on this signal, it will believe that the receiving device is "out of paper” (a condition that
can occur if the receiving device is a printer), and will not send any additional bytes of
data.

1.5.2 Software

The software designed to work with this hardware configuration consists of the vector
interrupt service routine for the interrupt input used to connect the *STR input from
the connector.

When the *STR input goes low, the interrupt occurs for the 8031. This signals the 8031
that a byte of data is available to be read at the parallel input port. The software in the
interrupt service routine must first turn on the BSY (busy) output signal that goes to pin
11 on the Centronics connector. This prevents the computer sending the data from
sending any more until the current byte has been processed.

Once this has been done, the system can load the proper external address in the DPTR
register and execute a"MOVX a,@DPTR" instruction to read the data byte. Once read,
the data byte can then be processed by the 8031. Normally, to avoid excessive delays
caused by a long interrupt service routine, the 8031 will just store the byte in memory
and set some sort of "processing required” flag. The true processing work required for
this byte of data would then be handled by the main program.

When the byte has been read and stored, the 8031 can then turn the BSY signal to the
Centronics connector "OFF" and return from the interrupt processing routine. At this
point, the 8031 resumes execution of the main program where it left off,

This process is repeated each time the *STR signal from the Centronics interface is
asserted.

This design is the minimum configuration for connection to any Centronics-compatible
device. To achieve more efficient results, the *ACK (data acknowledge) signal may be
used to signal the sending device that the current byte of data has been received and the
receiving system is ready for another byte of data.

8051 Interfacing and Applications

DATA |
*STR U

BUSY

*ACK

Centronics Timing Diagram

Notes:

1) At least .5 microseconds are required between the leading edge of the data being valid and the
leading edge of the *STR going low.

2) A *STR pulse of at least .5 microseconds is required.

3) Data must be valid for more than .5 microseconds after the trailing edge of the *STR pulse.

8051 Interfacing and Applications

hhhhkkhkkhhhhdhhhhhhhhhrhhhhkkhhhhkhhdrhkrhhkhhkkdhhhhhx
PARALLEL INPUT CHARACTER SOFTWARE
ASSUMES ADDRESS MAPPED TO 4010H
INTERRUPT DRIVEN ON INTO
P3.1 USED FOR *ACKI SIGNAL
P3.0 USED FOR BUSY SIGNAL

khhkkdkkhhkhhhhhkkhkhkhhhkhkhhhkhkhhkhhhkhhkhkhkhhkhkhkdhhkhkdhkrhkdkkhx
.DATA

Ne “e we w5 “e wo we wo

ORG O030H

;SCRATCH PAD AREA (30H-7FH)

INPTR: REG 30H ; INPUT POINTER
INPTR1: REG 31H

OUTPTR: REG 32H ;OUTPUT POINTER
OUTPTR1: REG 33H

;7 BEGINNING OF CODE SPACE
. CODE

phkkhkkhkkhhkkhkhhkhhhkhhkkhkhhkhhkhhkkhkhhkkrkhrkkrx
;VECTOR ROUTINE TABLE
phkkkkkhkkhkkhhhhkkhkkhhkhhkhkkhkhhkkhkhrhkhrkhrkhkhk
ORG 0003H
LIJMP EXINTO ;EXT INT O VECTOR
; PARALLEL PORT IN

T T P e
; INITIALIZATION

ORG 0040H
; SET OUTPUT STATE
SETB C
Mov P3.1,C 7ACKI/

;SET STARTUP ADR FOR IN AND OUT BUFFERS
MOV DPH, #80H ; (ASSUMES ram AT 8000H)
MOV DPL, #00H
MOV INPTR, DPL
MOV INPTR1l,DPH
;SET INTERRUPT PRIORITY’
MOV IP,#00000001B ;PAR IN HI PRIORITY
;SET TIMER O RUNNING and INTO to edge triggered
MOV TCON, #00010001B
;ENABLE INTS
MOV IE, #87H ; TMRO, INTO, INT1

RET

phkdkkhkdkkkhkhhkhhkhhkhhkdhhkdhhhkdhhkhhhhhhkhhhhkhhrhkrhrdkkhxhhkkk
;VECTOR INTERRUPT ROUTINES
phhkkhkkkkkkkkhkhkhhhhhhkhkhhdhdkhkhhdkhhhhhkhhkhhdkhkhkhkhkrkk
EXINTO EQU $
;SET BSYI OUTPUT ON

SETB P3.0

PUSH PSW ; PARALLEL CHAR IN
PUSH ACC
PUSH DPL
PUSH DPH
MOV A,RO
PUSH ACC
PUSH B

;READ CHAR FROM PAR IN
MOV DPTR, #4010H
MOVX A, @DPTR
MOV RO,A

; LOAD BLOCK INDEX TO DPTR
MOV DPL,INPTR
MOV DPH, INPTR1

;WRITE DATA TO PROPER ADR
MOV A,RO
MOVX @DPTR,A

; INCREMENT INDEX
INC DPTR

; STORE INDEX
MOV INPTR, DPL
MOV INPTR1,DPH

POP B
POP ACC
MOV RO,A
POP DPH
POP DPL
POP ACC
POP PSW

;SET BUSY OUTPUT OFF
CLR P3.0

RETI

1.6. Centronics Parallel Output Port

A Centronics-compatible output port is useful in any design that will require direct
connection to parallel printers for output. This ability adds a lot of value to the system

J3
36 PIN 4
3 18
3547 vz
34 18 | 74HC273
33 i5| ¥ \.D!L 18 19 X1
32 14 \.D3 17 33 gg—xs—'x_a\
31 43 ND4 141 oot 15 X4
3¢ |2 NDE 13]n collz XY
83 AL{BSYO ND? 8l o8 X7
28 10| ACKx NDS_ 7|3y 3olB X5
a7 X7 hD2__4 5 X2\
25 x6\ Koe 32 2% xoV
25 Tl xs) 10 1orE——=
24 5: X4 o o) o
23 X3
2g 41 xz2 N i TI—J
21 X1) [
REERETR POUTX
13 3 N

\ y
\
L STROX i]

by providing a standard connection to hundreds of commercially available printers.

1.6.1 Hardware

The Centronics output port is the exact opposite process for the way that data is input
on the input port previously discussed. The process now becomes latching the eight bits
of data to be available on the output port, then to pulse the STR output signal to indicate
that the byte of data is available to be read. The design has been made using a 74HC273
8-bit latch as the interface between the 8031 and the connector. The clock signal for the
latch is controlled by the output of the 74HC138 3 of 8 decoder which determines the
address that the data byte is written to.

8051 Interfacing and Applications

33

34

The *STRO (strobe out) signal at the Centronics connector is connected to an output
bit on the 8031 and is controlled by the software directly from the 8031.

The BSYO signal is also connected directly to the 8031 as an input. This signal is
controlled by the receiving device.

1.6.2 Software

At a particular point in the program, the 8031 may determine that a byte (or bytes) of
data need to be sent to the output port. If this is part of a print driver routine, it will
occur when the system begins to send data to the printer port.

The first thing that needs to be done is to check the BUSY input from the Centronics
connector. If this is simply connected to an input bit on the 8031, the bit can be read and
evaluated. Ifit is asserted by the receiving device, the system cannot send a byte of data
at this point. A software polling loop could be used to continuously check the state of
this bit until it goes to a "not-busy" state.

If the port is not busy, the software can then load the proper address for the Centronics
output port into DPTR. The data byte can then be loaded in the "A" register and the
MOVX @DPTR,A command executed. This causes the byte of data to be latched by
the 74HC273 on the output port.

Once the data has been latched, the STR output signal must now be transitioned from
a HIGH state to a LOW, then back to a HIGH to indicate to the receiving computer to
read the byte of data.

To maintain the timing requirements of the Centronics interface standard, a 5
microsecond delay must be inserted after latching the data before asserting the *STRO
(strobe out) signal. This can be done by a simple software loop.

Next the *STRO output can be transitioned from a HIGH state to a LOW (true) state
at the Centronics connector. Again, if this is connected directly to an output bit on the
8031, it is a very straight-forward matter.

A 1 microsecond delay is inserted while the *STRO signal is TRUE. The software can
simply be designed to include a NOP instruction to cause a brief delay of this length.

The *STRO signal then can be transitioned from a LOW state to a HIGH state. An
additional 5 microsecond delay is needed at this point to complete the strobe timing.

This completes the cycle for sending one byte on the Centronics output port. The

process is repeated for each additional byte of data that is to be sent to the parallel output
port.

8051 Interfacing and Applications

kkkdhhkkdkkkkkkdkkkkhhhhkhhhhhhhhhkhkhkhhhkhkhkhkhkhkrrrkhkx
CENTRONICS PARALLEL OUTPUT SOFTWARE

ASSUMES RAM BEGINNING AT ADDRESS 8000H
e Ty
.DATA
ORG 030H

~e we wo wo ~e

;SCRATCH PAD AREA (30H-7FH)

OUTPTR: REG 32H ;OUTPUT POINTER
OUTPTR1: REG 33H

shhkkkkhhhkhkkkhkhhkhkhhhhhkhhhhhhhkkhhhkhhhhkkhdkkkhhhkxkrhktxkdhx

;BEGINNING OF CODE

shkkkkkkkhhhkhkhhkhhhkdhdhdhhhkhhkhhhkdhhhhhhhhkhhhhkhkkhkkhkdk
. CODE

;INITITALIZATION

;SET OUTPUTS
SETB C
MOV P1.7,C ; STRO/

;SET STARTUP ADR FOR IN AND OUT BUFFERS
MOV DPH, #80H
MOV DPL, #00H
MOV OUTPTR,DPL
MOV OUTPTR1,DPH
RET

khkkkkkkkkkkhkkhkkhhkkkhkhkkkkkkkkkhkkkkk

; OUPUT PARALLEL CHAR
; ASSUMES OUTPTR+OUTPTR1 IS POINTING TO BYTE TO OUTPUT

ASSUMES PARALLEL OUT IS MEMORY MAPPED TO 4020H

shkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkkkhkk

PAROUT1 EQU s

; ;IF NOT BUSY...
MOV C,Pl.5 ;EVALUATE BIT
JC PAROUT1
;SET ADR FOR READ
MOV DPL,OUTPTR
MOV DPH,OUTPTR1
; tREAD DATA
MOVX A, @DPTR
; tWRITE TO OUTPUT PORT
PUSH DPL
PUSH DPH
MOV DPTR, #4020H
MOVX @DPTR,A
;3WAIT 5 uS
CALL FIVEUS

-
~e

~e

~e
-

~e

~e

CLR
; sWAIT 1 uS
NOP
:7SET STR OUT
SETB
; iWAIT 5 us
CALL
; +INC INDEX
POP
POP
INC
7 1STORE INDEX
MOV
Mov

~e

~e

~e

~e

;ENDIF
RET

~e w~e wo

FIVEUS EQU
RET

; SET STROBE OUT LOW

P1.7
HT
P1.7
FIVEUS
DPH
DPL
DPTR

OUTPTR, DPL
OUTPTR1, DPH

khkkkkkkhkkkkkhhkhkhhhkkhkkkhkkkhkkkkkkkkkkkkkhkkhkhksk

SUBROUTINE AREA
khkkhkkhkhhkhkhkhhkhkhhhrhrhhhhhhhhhhhkhhhhhrk

$
;5 MICROSECOND DELAY

; AT 11.0592 XTAL

1.7. Interfacing to the built-in Serial Port

One of the built-in capabilities of microcontrollers in the 8051 family is the internal serial
channel that can be configured for communication with other serial devices. This may
be used for connection to an external terminal for providing the user interface between
the outside world and the single board computer, or for any other application where
serial communication may be required.

1.7.1 Hardware

The only hardware required for a RS232-compatible serial channel is a voltage conver-

9 or 25
Pin
XMT
RECV
MAX —1 External
8031 232
RTS Computer
CTs

sion chip and a"D" type connector to provide the proper interface to the "outside world".
We have chosen to use the Maxim MAX232 chip to do the voltage conversion for this
design. This chip takes the standard logic voltage levels (0V and 5V) and converts them
to the voltage levels required for successful RS232 operation (in this case +10V and
-10V). This chip also provides one additional input and one additional output that can
be used for voltage level conversion of hardware handshaking lines. The hardware
handshaking implemented in this design includes a RTS (request to send) output signal
to the sending device (indicating that the 8031 is ready to receive data) and a CTS (clear
to send) signal input from the external device (which the 8031 polls before sending data).

The "D" connector indicated in the sample design is the 25 pin standard. However, some
systems may make use of the newer 9 pin standard that was made popular by the IBM
AT computer. A sample chart showing the correct connection for the 9 pin standard is
shown in Appendix B.

8051 Interfacing and Applications

37

38

1.7.2 Software

The software required for operation consists of the initialization process, which con-
figures the 8031 internally for serial communication operation. This consists of setting
the Timer 1 register values to the proper settings to give the desired bit-per-second rate
and configuring the interrupts to provide transmit and receive interrupt operation.

To program Timer 1 for correct operation in this design, follow the steps below:

1) Set the C/*T flag in the TMOD register to "0".

2) Program the Timer/Counter mode in TMOD to 8-bit autoreload mode.

3) Program the SCON register to Mode 1 and serial communication enabled.

4) The following table can then be used to determine the correct reload value for the
timer itself.

Baud Rate Reload Value
9600 FDh
4800 FAh
2400 F4h
1200 E8h

For the software presented in this sample design, 1200 baud is chosen for use, with the
TH1 register programmed to a vatue of E8h and the TL1 register is programmed to 00h.

Using this mode, ten bit words are used for transmission (one start bit, 8 data bits, and
one stop bit).

Once initialized, the 8031 will vector to the interrupt routine when a character has been
received on the serial port or when the SBUF register is empty after transmitting a byte.
One thing to watch out for when using the serial port interrupt in the 8031 is the fact that
either the RI (receive interrupt) or TI (transmit interrupt) can cause the interrupt to
occur. Therefore, the software must poll the RI flag to check to see if the interrupt was
caused by a character being received. If not, the interrupt was caused by the transmit
process signalling the 8031 that the SBUF is empty.

If receiving a character, the vector routine will then read the character from the SBUF
register and process it before exiting the interrupt routine.

To transmit a character, the software must first look at the CTS input from the receiving

8051 Interfacing and Applications

device to make sure that the receiving device is asserting this handshaking line. If this
line is asserted, the 8031 can transfer the byte of data to transmit to the SBUF register.
The internal UART will then take care of sending the bits out in serial format in the ten
bit format described above.

CTS N

True?

Transfer Byte

of data to SBUF

Sequence Using CTS Handshaking

8051 Interfacing and Applications

39

W

UL
8031

XTALL PL?
P18
XTALZ P15
P14
P13
F12]
P11
Pio

-
B s

P27
P2g
P25
—rsT P24
pe3
P22)
P2l|
+10U uz Pee|
MAXE32 a1 |

2deAuon Pe7|
Pog|
xI1 Pos

ikl TRl ol
|

o
N

[

n
[~

X12 12 Po4d|

xo1 o1 i‘f D Po3|
xoz 11l TXD Foz|

[N

oz Po1
Cc1 Iz e Poo

c3
cz

cs T1 WR)
e Te RO)|

c3
c4 cs
Cc4

klskls lalskklkkk
I~ (S0 0 1% I~ [(ot i3 [0 [N

N
= i e [
> Jon [ro fes
b3
m

Bl I
w > |w 2T NS

ct c2
Izzur Izzm-‘ |

Applied Logic Engineering |A

Internal RS232 Operation
c]] 100-0001-001 REV LA
DATE: 4/16/91 [sHEET 1 oF 1

7 | 6 [5 I 4 | 3 | 2 | 1

8051 Interfacing and Applications

.CODE
Fkkhkhhkhhkdxhhhhhhhkhhhhhkhkdhhkhrkhhkkhhkhrkrhrkhrs
SOFTWARE FOR INTERNAL RS232 OPERATION
ASSUMES P3.5 IS USED FOR RTS

P3.4 IS USED FOR CTS
khkhkhkkkkkhkhkhkhkhkhhkhhhhhhkhrhhkhrxhxhhrhrhrk

~o wo “o wo wa

hhkkkkkhkhhkhhhhhdhkhhhhkhkhkhhkhkhhhkhkhkkdkhkkkkkkkkkxk

;7 VECTOR FOR RECEIVE INTERRUPT
shkkhkkhkkdhkhkhkhhkdhhkhhkkhhkhhkkkhkhhrhhrhhkhrhhkk
ORG 0023H
LIJMP SERIAL
kkkhkhhkhhkhhhhhhhkhhkkdhhkhhkhrhkdrhhhkrhrkkhrhhx

;
; INITIALIZATION

shEk kI kkkhkhkhkhkhkhkhhkhhhhhhkhkhkhkhxkhkkrhhhhhhk
;

H

LOAD TIMER 1 VALUE FOR 1200 BAUD
MOV TL1, #0
MOV TH1, #ESH
;SET TIMER 1 TO AUTO RELOAD
MOV TMOD, #00100000B
;SET TIMER 1 TO MODE 1
MOV SCON, #50H
;SET TIMER 1 RUNNING
MOV TCON,#01000000B
;ASSERT REQUEST TO SEND (RTS)
SETB P3.5
; TURN ON INTERRUPTS
MOV IE,#10010000B
RET

HEE R R R R R R R R EEEEEEEEEEEEEEEEEEEE

7 TRANSMIT A CHARACTER
shkkkkhkkkhhhkhhkhhkhhkhhkhhkhhhhhkhhhkhhhkhhkhhkhrkhkkk

; IF CTS IS ASSERTED...

XMIT2: MOV C.P3.4
JNC XMIT2

iMOVE CHAR TO SBUF REGISTER TO TRANSMIT
MOV SBUF,A

;WAIT FOR XMIT PROCESS TO BE COMPLETED

XMIT1: MOV C,TI
JNC XMIT1
CLR TI
RET

dhkkhkkkhkhkkhhkkkkhhhkhkhhhkhkkhhhhhkrohhhkixdhhhhoddhoxkdhdidx

H
; SERVICE ROUTINE FOR INTERRUPT VECTOR-RECEIVE ONLY
shdkkkhkhhhkhhhhhhhhkhhhhhhkhhhhhhhhhhhkkkhrrkkdrrkdhrk®

SERIAL:
;IF THIS IS A RECEIVE PROCESS...
MOV C,RI
JNC SERIALl ;NO-INT CAUSED BY XMIT

; 7CLEAR RTS OUTPUT
CLR P3.5

; ' READ CHAR
MOV A,SBUF

1 7CLEAR RECEIVE BIT
CLR RI
; tREASSERT RTS
SETB P3.5
; ' RETURN FROM SERVICE ROUTINE
SERIAL1: RETI
;ENDIF

1.8. Interfaci@ to a Dual Channel UART

If more than one serial port is required in a design, a slightly different approach can be
implemented using an external DUART (Dual UART) chip, the Signetics 2681. This
chip provides for two independent serial channels that can be programmed for totally
independent operation.

The 2681 provides for internal baud rate generation for each channel so that no

' ' Terminal

8031 | =P 2631

Printer

additional chip is required to provide the oscillation rate. Also, each channel can be
programmed for independent operation, meaning for example that channel A could be
run at 9600 baud while channel B is simultancously running at 1200 baud.

The advantage to this type of design is that it is relatively simple to implement and that
it allows the single board computer to be interfaced to two separate serial devices, such
as a terminal, modem, or serial printer.

1.8.1 Hardware

The 2681 implementation in this design is treated as an external memory device as far
as the 8031 is concerned. Itis connected directly to the data bus and the low four address
lines (AQ-A3) for internal register access. This is necessary to program the device and
to send and read data from it.

The *CE (chip enable) signal for the 2681 is provided by the second 74HC138 decoder,
which provides for a 16 byte block decode.

8057 Interfacing and Applications

43

44

In this implementation, Serial Channel "A" is receive interrupt driven, that is to say that
when characters are received on the incoming receive data line from the external device,
the DUART will assert the signal on OP4 (pin 27), which is connected to an external
interrupt input on the 8031. This provides for a high speed capability for receiving and
transmitting from the software.

The second channel is primarily an output channel in this design for connection to a
serial output device such as a printer. If data input capability is needed, status registers
can be polled within the 2681 to determine character availability.

Hardware handshaking capability is provided on both channels through the use of Clear
to Send/Request to Send. Unlike the single channel operation described in the previous
section, the handshake lines in this example are controlled automatically by the 2681.
The RTS output is asserted as long as there is buffer space available in the 2681 receive
buffer. The CTS line is checked before sending a character to make sure that this signal
is asserted by the receiving device. If it is not, the character will not be transmitted by
the 2681.

RS232C voltage level conversions on each channel are handled by a pair of Maxim
MAX?232 chips that convert input voltage levels from +0V to -10V and +5V to +10V.

The circuit design around the DUART is completed by adding a simple reset circuit to
the RESET input, and a 3.6864 MHZ. crystal on the X1/X2 pins to provide the necessary
oscillator for bit rate generation.

1.8.2 Software

The software for DUART control is basically done in two parts - the initialization portion
and the operational portion.

The initialization part of the software sets up each individual channel of the DUART
for baud rate, bits per word, parity, and number of stop bits. Interrupt operation and
hardware handshaking control are also programmed in this area. For a detailed explana-
tion of how to program this device, please refer to the Signetics data sheet on the 2681
and to the software listing that is included with this manual. The software presented in
this manual programs both channels for 1200 baud, no parity, eight data bits, and one
stop bit. Also, RTS and CTS hardware handshaking operation is programmed to be
enabled.

The operational characteristics (i.e. baud rate, parity, etc.) for each of the serial channels
can be changed "on-the-fly", but it is important to make sure that data is not coming in
on the receive input while a change is being made to the device configuration.

Operational use of the DUART once it has been programmed is easy. If the channel

has been configured for receive interrupt use, the 8031 will respond to the 2681 signal
that a character has been received by jumping to a vector routine that would normally

8051 Interfacing and Applications

45

8051 Interfacing and Applications

<
2681 J1
J2e MAx232 r10
e 25 PIN
g 2
sl ol el oz | [T
A2 38 Ay xriphd 15
1p2|36 1 3 .
a3 B l%2 e L2l xozf8 RXD i6
09 A3 P35S lel12 x1z2|L [RIS| ,4 %47
D% 25ipe P42 1 c1s| .5 *\g
N TV 1ps 38 cslsl Lca DSR| .6 *g
D02 24lp pepL 4 T22uF 7 .
N._D3 ird et 3 + LT s 20
h_D4 23 8lce c2 b'd. & % %2
04 2 c4 9 e
h_D5 18 28 cs ¢ o9 ‘22
os oPo 22UF 100
DS 22ipg opy H2 + c11e3
B2 19lpe opz (28 +5 t1zed
OP3 == .
opa |22 R8, -
u23 14 19K
L B4urN oPS
F3HCo4 3 26 SERTN#
1IN R 34 RN oreNe Je
1> So} RESET OP7p==- MAX232 +10 25 PIN
DUART k——3 CE v2z
12 1
ot xoib|»l|_ ol4a
21 a0 Ly x4 TX0} 2 *g
INTRN - TXDARS) 90z xoztd L {RxDL |3 < ¢
RXDA 1elts w12l 1 RIS[4 <7
T8 |14 1 c1s5l .5 *j¢
l_llllllum. X1,CLK Rp@ [+ calsl Les DSrRl .6 * g
X2 22UF 7.
3.6864 == capdTe2 =7 tze
MHZ l_l[llm.xm +10 8ics i = |8 a
.
_ 2les rr.rurnnmwn «3ae22
. 2 «10°23
1
*ip.24
o12%5¢
decs der EL
22UF 22UF
- -

—

46

read the character out of the device. Once read, the byte is stored in RAM for processing
by the main OS software after returning from the interrupt.

Transmitting a byte on the same channel is done by polling the 2681 to make sure that
is able to transmit a byte, then loading the DPTR with the correct address with the data
to send in the "A" register. A MOVX @DPTR,A instruction will then send the byte of
data to the device.

8051 Interfacing and Applications

khkkkkhkkkkhhkkhhhkhkkkhkkkhhkhkhhkhkkkhkhkkhhhkhkkhkkhkhkkkkhkhkkk

Dual Channel RS232 via Signetics 2681 DUART

ASSUMES DUART MAPPED TO ADDRESS 4030H
L Y R L X]

~e we wo W

.DATA
OUTPTR: REG 30H
OUTPTR1: REG 31H
INPTR: REG 32H
INPTR1: REG 33H

.CODE

;Interrupt 1 vector

ORG 0013H
LIJMP EXINT1 ;EXT INT 1 VECTOR
tRS232 "A" RECV

;***
; Initialization

; PROGRAM DUART
MOV A, #10H ;
MOV DPTR, #4032H :
MOVX @DPTR,A

ISSUE SET POINTER CMD

MOV DPTR, #4030H
MOV A, #93H ;MR1A
;RTS-ON, NO PARITY
;8 DATA BITS
MOVX @DPTR,A
MOV A, #17H ;MR2A
;CTS-ON, 1 STOP BIT
MOVX @DPTR,A

MOV A, #66H 71200 BAUD
MOV DPTR, #4031H
MOVX @DPTR,A

MOV A, #05 sRELOAD AND OUTPUT CRA
MOV DPTR, #4032H
MOVX @DPTR,A

MOV A, #10H ; ISSUE SET POINTER CMD
MOV DPTR, #403AH
MOVX @DPTR,A

MOV DPTR, #4038H

MOV A, #93H ;MR1B
sRTS-ON, NO PARITY
;8 DATA BITS

MOVX @DPTR,A

MOV
MOVX

MOV
MOV
MOVX

MOV
MOV
MOVX

MOV
MOV
MOVX
MOV
MOV
MOVX
MOV
MOV
MOVX
INC
MOVX
MOV
MOV
MOVX
MOV
MOV
MOVX

;ENABLE INTS
MOV
RET

A,#17H
@DPTR, A

A, #66H
DPTR, #4039H
@DPTR, A

A,#05
DPTR, #403AH
@DPTR, A

A, #FOH
DPTR, #4034H
@DPTR, A

A, #03

DPTR, #4035H
@DPTR, A

A, #00H
DPTR, #4036H
@DPTR, A
DPTR
@DPTR, A

A, #FOH
DPTR, #403DH
@DPTR, A

A, #0OFH
DPTR, #403EH
@DPTR, A

1E, #87H

;MR2B

;CTS-ON, 1 STOP BIT

71200 BAUD

;RELOAD AND OUTPUT CRB

;EXT CLK/16
;ACR

; INTERRUPT ON - CHAN "A"
; IMR

;SET INT TIMER VALUES
7 CTUR

;CTLR

;USE OUTPUT BITS FOR INTS
;OPCR

;SET H/W HANDSHAKING ON
;OUTPUT PORT

; TMRO, INTO, INT1

shhkkkhkhdkhkkkhhhhkhkhhhkhhhkkdhhhhkkhhkhkhhkkhhhhkhkhhkkkkdk

;OUTPUT SERIAL

A CHAR

shkhkkkhkkdkhdkhhkhkhhkhhhhhhkhhhhhhdhhhkhhrhhkhhkkhkkk
; outptr POINTS TO RAM BUFFER WHERE CHARACTER TO TRANSMIT IS

;777 IF OK TO XMIT...

MOV
SAQUTS5: MOVX

ANL

JZ

~-e
-~

MOV
MOV
;READ DATA

~e
~e

; iSET ADR FOR

DPTR, #4035H
A, @DPTR

A, #01H
SAOUT5

READ

DPL, OUTPTR
DPH, OUTPTR1

MOVX A, @DPTR

~e
~e

;WRITE TO OUTPUT PORT

PUSH DPH
PUSH DPL

MOV DPTR, #4033H
MOVX @DPTR,A

77 :INC INDEX
POP DPL
POP DPH
INC DPTR

; 7SAVE ADDRESS
MOV OUTPTR, DPL
MOV OUTPTR1, DPH
RET

~e

e X T T Y)
;OUTPUT SERIAL B CHAR
jhhkkhhkkhkkhhkkkkkhkdhhhhkhkhkhhkhhkhhhkhhrhhrhkrrhrhdx

; outptr POINTS TO RAM BUFFER WHERE CHARACTER TO TRANSMIT IS

;1:IF OK TO XMIT...
MOV DPTR, #4035H
SBOUT5: MOVX A,@DPTR
ANL A, #10H
JZ SBOUTS5
;SET ADR FOR READ
MOV DPL,OUTPTR
MOV DPH,OUTPTR1
;READ DATA
MOVX A, @DPTR
; tWRITE TO OUTPUT PORT
PUSH DPH
PUSH DPL
MOV DPTR, #403BH
MOVX @DPTR,A

LX}
~e

~e
~e

~e
-~

;7 7INC INDEX
POP DPL
POP DPH
INC DPTR

; 7SAVE ADDRESS

MOV OUTPTR, DPL
MOV OUTPTR1, DPH
RET

~e
-

shhkkhkdkhkkhhhhkhkhhhhkhkhhhkkkhhdhhhkhkhhkkkhkhhhkkhdkkkkhkkkhkhkhkhdhdk

; VECTOR INTERRUPT ROUTINES
shkdkkkdkkdkhkdhhhkdhhkhhhhhkhdhhhhkhhhhhhhhkhhkhhkhhkhkkhkhhkdrkhrkk

; INPTR POINTS TO RAM BUFFER TO STORE CHAR

EXINT1: PUSH PSW ;RS232 "A" RECV
PUSH ACC
PUSH DPL

PUSH DPH
MOV A,RO
PUSH ACC
PUSH B

;READ CHAR
MOV DPTR, #4033H
MOVX A, @DPTR
MOV RO,A

; LOAD BLOCK INDEX TO DPTR
MOV DPL, INPTR
MOV DPH, INPTR1

;WRITE DATA TO PROPER ADR
MOV A,RO
MOVX @DPTR,A

; INCREMENT INDEX
INC DPTR

; STORE INDEX
MOV INPTR,DPL
MOV INPTR1,DPH

POP B
POP ACC
MOV RO,A
POP DPH
POP DPL
POP ACC
POP PSW

RETI

1.9. Interfacing toan LCD

A common need in a single board computer design is the ability to display information
that can be viewed by the system operator. Usually this type of information indicates
system operation status, configuration, or any other data that would concern the system
operation.

A good solution for this type of application usually is a small single or double line display
that consumes very little power. A Liquid Crystal Display (LCD) can offer these and
several other advantages to your design.

This manual will focus on LCDs that use the Hitachi HD44780A00 LCD controller chip
(or equivalent). LCDs that use this on-board controller provide for a very simple
interface to most single board computer designs. This controller contains all necessary
drivers and memory capabilities to provide simple parallel data transfer in an ASCII
format.

The Hitachi HD44780A00 controller is used on many different types of LCDs from
various manufacturers. It controls LCDs in many different configurations, including 1
line X 8 characters, 1X16, 1X20, 1X40, 2 lines X 16 characters, 2X20, and 2X40. All
configurations are software compatible, so the software drivers provided can be used in
any of the above configurations.

1.9.1 Hardware

The hardware interface to the LCD consists of connecting the 8031 data bus (D0-D7)
to the device, connecting address line AQ to the RS (register select) input, connecting
the R/W (read/write) input to the appropriate line, and the chip enable to the proper
output signal.

A single five volt supply is required for operation. Also, a potentiometer is connected
to the LCD to provide variable contrast control.

This design uses a slightly different approach from other interface designs used to
connect an LCD to a 8031. This design does not require any additional I/O pins on the
8031. Itis designed to "look like" a standard memory device to the 8031 for both reading
and writing operations.

Since the oscillator for the 8031 in the design being presented here is set at 11.059 MHZ,
some conditioning on the chip enable signal coming from the 74HC138 must be made.
This is due to the fact that the time between the R/*W input on the LCD and the
ENABLE input when accessing the LCD must be no less than 140 ns. In order to
accomplish this, the chip enable signal is "delayed" by introducing a resistor/capacitor
network between the output of the 74HC138 decoder and the input of the LCD. This
effectively delays the transition of the chip enable into the LCD by the required time

8051 Interfacing and Applications

51

52

period.

If an oscillator less than 10 MHZ is used for the 8031, no delay is required and the chip
enable can be connected directly from the memory decoding scheme to the LCD. Also,
if an oscillator faster than 10 MHZ is used (other than 11.059 MHZ), you will need to
determine the proper values for the resistor and capacitor in order to get the proper
amount of delay time.

The *RD and *WR signals from the 8031 are combined in a single R/*W line to connect
to the LCD.

1.9.2 Software

The software for interfacing to the LCD consists of routines to send command informa-
tion to the device, send data to the device, read data from the device, and provide a
DEVICE BUSY pause for waiting for the L.CD to become ready to accept a new byte.

Because of the hardware that has been included in the design, the software can treat the
LCD basically as an external memory device. A byte of data can be written to the LCD
by loading the proper address in DPTR and the proper data byte in the "A" register. The
"MOVX @DPTR,A" command then sends the byte to the LCD.

Once a byte has been written to the LCD, the LCD memory cannot be accessed again
until it has completed the processing. The software can poll for this condition by reading
the status register and testing the BUSY flag. If this flag is asserted, the LCD memory
cannot be accessed.

The first operation required to use the device is to program the LCD for correct
operation. This consists of sending commands to the LCD to set the number of lines,
number of bits per word, cursor movement direction, and turning the display on. The
software provided demonstrates how this can be done.

After this has been done, characters can simply be loaded in the "A" register in the 8031
and sent to the LCD using the " MOVX @DPTR,A" command. Positioning the cursor
on the LCD can be done be issuing the correct command for cursor reposition.

Software is also provided for moving strings of characters defined in a ROM table to the
LCD. Also, routines to blank the LCD and position the cursor to the beginning of line

two are provided.

One final set of routines provides binary to ASCII conversion and ASCII to binary
conversion.

8051 Interfacing and Applications

1.9.3 Different Display Configurations

Displayable

-

\ / Non—Displayable\

1 2 3 1 2
1 2 3 1 2
= b P g

2x20 LCD - Printable Positions

The Hitachi controller for the LCD is designed to handle up to a 2 line by 40 character
display unit. If you are using an LCD smaller than the 2x40, make sure that you account
for the RAM positions in the LCD controller that do not correspond to character
positions on the LCD.

For example, a 2x20 LCD does not have the capability to display any characters in the
last 20 positions of the first or second line. The controlling software must know that
these positions cannot be written to if the data is to be shown on the LCD and must either
reposition the cursor to the beginning of line two or scroll the characters on line one one
position to the left to create an open space for the new character at the end of the first
line.

One trick that can be used if a few more bytes of RAM are required in your application
program is the use of undisplayable LCD positions as general purpose RAM. Because
the hardware interface in this design treats the LCD as a standard memory read/write
device, any memory location in the LCD can be used for this purpose.

8051 Interfacing and Applications

53

uie
P4HCO4

DENSITRON
LM2eze
LCD

D?7-0¢

8051 Interfacing and Applications

54

Ik khkkkhkkhhhhhhkkhkkkkhhhkkkkkkk

Software for LCD Control

L P P Y P

Note : Address mapped for LCD Instruction Register @ 4000h
LCD Data Register @ 4001h

we we o we

. CODE
hhkkhkkhkkhhkhkhkhkhkhkhkhkhhhhkkrhhkx

7
; Initialization
;*********************************

MOV DPTR, #4000H s INSTR REG - LCD
;SET 8 BIT WORD-2 LINE DISPLAY-5x7 DOT FORMAT

MOV A, #38H

MOVX @DPTR, A

sWAIT FOR LCD
CALL WAITLCD
;SET 8 BIT WORD-2 LINE DISPLAY-5X7 DOT FORMAT
MOV A, #38H
MOVX @DPTR, A
sWAIT
CALL WAITLCD
s SET CURSOR MOVE DIRECTION
MOV A, #06
MOVX @DPTR,A
sWAIT
CALL WAITLCD
;SET DISPLAY ON
MOV A, #0CH
MOVX @DPTR, A
sWAIT
CALL WAITLCD
; CLEAR DISPLAY
MOV A,#01
MOVX @DPTR,A
sWAIT
CALL WAITLCD
RET
;*%k*x%x%% End of Initialization

khkkkkkkkkkhkkkhkhhhkkkkhkhhkhkhkhkhkhkhhkhhkhkkkhhkhkkkk

H

; Start of Utility routines
;**
h

Wait for LCD to become available

WAITLCD: PUSH PSW
PUSH ACC
PUSH DPL
PUSH DPH

MOV DPTR, #4000H

WAITLCD1: MOVX A, @DPTR
RLC A
JcC WAITLCD1

POP DPH
POP DPL
POP ACC
POP PSW
RET

hkhkhkhhkhkhkkhkkhkkkhkhhkkhkkkkkhkkkkhkkkkk

move data from a ROM table to the LCD

DPTR must be set to starting ROM address

"B" register holds number of chars to transfer
destroys contents of R4 register

.
14
.
14
.
I
.
14
-
14
.
I
.
’

ABTOLCD: MOV R4,A
MOVC A, @A+DPTR ;GET CHAR
PUSH DPH
PUSH DPL
MOV DPTR, #4001H
MOVX @DPTR,A ;WRITE CHAR TO LCD
CALL WAITLCD ;WAIT FOR LCD
POP DPL
POP DPH
MOV A,B
DEC A
MOV B,A
CINE A, #00,TTL2
RET ;ALL DONE
TTL2: MOV A,R4
INC A

SIJMP TABTOLCD

khkkkkkkkkhkhkkhkikhkhhkdhkhkhhhkhkdxdkkkkkkkkkkkkk*x
Blank the LCD

BLANK: MOV DPTR, #4000H
MOV A, #01H
MOVX @DPTR,A
CALL WAITLCD
RET

khkkkhkhkhkhkhhhkhkhhkhkkhhhhhkhkhdhkhkkhhhhkdkrhxx

Set cursor position to Line two of the LCD
or to the last eight chars of a 1X16 display

~e we “we we

LINE2 EQU S

PUSH DPL
PUSH DPH
PUSH ACC

MOV DPTR, #4000H
MOV A, #COH
MOVX @DPTR,A
CALL WAITLCD
POP ACC

POP DPH

POP DPL

RET

khkkdkhkhkkhkkhkkhkhkhkhhkhkkhkkhkhkhkhkkhkhkhkkhkkkhkkhkkhkkhkkkik

ASCII to Binary Conversion

Rl points to 1st ASCII char - (R1)+1 is the second char
Destroys contents of "B" and "R4" registers

~e ws we “we wo

ATOB: MOV A, @R1 ;GET 1ST CHAR
CALL ADJ ; CREATE BINARY NUM
MOV B,A
MOV A, #16
MUL AB iMULT *16
MOV B,A ; SAVE
INC R1
MOV A, @R1 ;GET 2ND CHAR
CALL ADJ
ADD A,B ; COMBINE
RET
ADJ: MOV RO,A

ANL A, #FOH
CINE A, #40H,ADJ1

MOV A,RO
CLR C
SUBB A, #37H
RET

ADJ1: MOV A,RO
CLR C
SUBB A, #30H
RET

;***

; Binary to ASCII conversion

; The "A" register holds the binary number to convert.
; "B" register is destroyed

; Uses address offset in RO as pointer to store 2 chars

BTOA:

BTOAl:

BTOAZ2:

BTOA3:

BTOA4:

BTOAS5:
BTOAG6:

MOV
ANL

RR
CJINE
JcC
ADD
SJMP
ADD
MOV
INC
MOV
ANL
CJINE
JcC
ADD
SJIMP
ADD
MOV
RET

;1 SAVE

-~ -
-

g b

A, #10,BTOAl
BTOA2 ;A<10?
A, #37H
BTOA3

A, #30H
@RO,A

RO

A,B

A, #0FH

A, #10,BTOA4
BTOAS

A, #37H
BTOA6

A, #30H
@RO, A

1.10. Bank Selection of Memory

The 8031 has the capability for directly accessing 64K bytes of program space (0000h-
FFFFh with *PSEN) and an additional 64K bytes of external memory (0000h-FFFFh
without *PSEN). In most single board applications, this is an adequate amount of
memory.

However, in some applications, more memory space is required. A method that can be
used to effectively add additional data memory to the system is called "bank selection”.
This scheme uses the same 64K byte external memory space addressing, but adds
additional logic to expand the number of memory devices that can be selected.

1.10.1 Hardware

In the application described in this manual, the external memory space from 8000h-
FFFFh will be designed to employ bank selection to expand this area from 32K bytes to
160K bytes.

Five 32K Static RAMs are used in this design to provide for 160K bytes of read/write
memory.

To accomplish bank selection to these five devices, five output bits (P10-P14) on the 8031
are used to select individual 32K blocks. Address line A15 is combined with the
individual block selectors with separate "NAND" gates. By setting one of the block
selectors HIGH and the others LOW, one of the memory devices will be active when
cxternal data reads are made from the 8031 in the address range from 8000h-FFFFh.

1.10.2 Software

The software provided has a check for the number of SRAMS that are populated in the
board in the given example. This would normally be done as part of a power up
initialization so that the system would be able to know how much memory is available.
A byte of data is written to the first location of each RAM and read back to verify if the
RAM exists. A running count of RAMs available is kept and stored after all sites have
been checked.

The software to control the bank selection process consists of one routine that is called
to set the proper output select bit based on the number (0-4) that is passed to the routine

8051 Interfacing and Applications

59

60

in the "A" register.

Once this routine has set the proper bank selector bit, the user is free to access external
memory from 8000h-FFFFh and can expect that the proper memory device will be
selected.

Additional software may be required if the bank selected memory is to be treated as
"consecutive” memory, that is to say that the user wants to one device to be automatically
selected after writing to the last byte (FFFFh) in the previous device.

An cxample of this is if the software has BANK 1 selected (32K). If all 32K bytes are
written to in consecutive order and additional memory is required, software could be
written that would automatically switch the bank selector output that is active from
BANK 1 to BANK 2 when the last byte of BANK1 (FFFFh) is written.

This can provide a "virtual" 160K byte memory block that can be accessed by the main
program.

8051 Interfacing and Applications

8] ? I 3 | 5 4 |] 2 | 1
00-07
\r ~ A" Y A
A0-A1S
'l e > d N
L vz u3 U4 us
g2258 82256 62256 52256 sz258
[NALE L4 1089 B2 a4 11514 108li8 02 o4 1la1s posph® B2 | M ifais 1osps— 4 Pt iloy pospae D7
Al3 26|43 10718 a13 26|13 Jao7|l8 06 26|lpa13 107(l8 DB 261013 107L8 AL3 26|a13 10718 06
%i—mz TS WA hal2 2la12 10542 D5/ a1z 1-06piZ DS 2la1z 1/08pAL a12 21a1z roephl DS
ALL_23ia11 10518 il 23lny) 1.05 6D 23n11 1/05HE Aa11 1.05HE 31y 1ospn D4
2 Maie 1,04HE ALl Z1ln1a 1.04[E D3 [M—2Ua1e 10445 D Uaie 1,048 linte 1.04HE
& iag 10322 89 _24lag 103042 D2 24 a9 103 2 24lng 1033 Hag 103{4d
25(ag 102l 08 _251ng 1022 OLA N 2Si4s 102(h2 D Slas -] T-—— i NS Y 102 12
f 3la7 101 phl 87 3la7 101 i D2/ 3 lav o1kl B/ 3la7 101 [/ 21a7 Tooy L B
A 4| ag DG 3 Py S 4 1ag N4 a5 4 lag
h&5 5 | ae TR A — Slas N S]as S ias
a4 & lay NI h—6las 5]a4 h— 6as
NE2 7 a3 A2 7 lag I 7 la3 L P N P
A2 8 laz A28 l.o I 8 la2 8 Lo 8 a2
Al 9 1Ay hAl 915y N N Y N 1 PN - B P
NETEEETI NN a8 16|00 10 g \ 10] 5 10| 0o
2ol ol T —20|r T
*RD 22198 #RD 22158 #RD 22158 *RD 22158 *RD 2210F
R 7T HUF ETHE HUR il of i 2IE U 21E
I |
us u?
TO PL.L 47"“6? T0 P1.4 L FHCe0
T0 PL.2] =
Applied Logic Engineering
SRAM Bank Selection
D [| 100-0082-001 REV 1R
DATE: 4,25/91 [sHEET 1 oF 1
8 | K | 6 I 5 4 | I 2 | 1

8051 Interfacing and Applications

61

kkhkkkkkkkhkhkhhhhhhkhhkhhhhhhkhhdhdhhhhhkhkrkhkrhkhhkrhkhkkkdkkk
SOFTWARE FOR BANK SELECTION OF 5 32K SRAM CHIPS.
USES 8031 PINS P1.0-P1.4 FOR CONTROL OF SRAM TO USE IN

EXTERNAL MEMORY FROM 8000H-FFFFH.
Fhkkkkkhkkkhkkkkkhhhhhhhhhkhkhhhhkhhkhkhkhhkhkhkhhhdrhhhkhhkhkk

~e we we “wo wo

.DATA
; INTERNAL REGISTER DECLARATIONS (any available reg can be
used)

RAMMAX: REG 36H ;NUMBER OF SRAMS IN BOARD
;**
. CODE
; INITIALIZATION
;CLR ALL OUTPUTS TO START
CIR C
MOV P1.0,C ;SRAM SEL
MOV P1.1,C
MOV P1.2,C
MOV P1.3,C
MOV Pl1.4,C

;CHECK FOR NUMBER OF SRAMS (1-5) POPULATED ON BOARD
MOV A, #00H

CHKRAM: CALL BLKSEL
MOV DPTR, #8000H
MOV B,A ; SAVE COUNT
MOV A, #A7H ;CHK BYTE VALUE
MOVX @DPTR, A
NOP
MOVX A, @DPTR ;READ BACK
CINE A, #A7H, CHKRAM1
MOV A,B
INC A ;INC TO NEXT SRAM SITE
CINE A, #05,CHKRAM ;JUMP BACK IF NOT DONE
MOV B, #05 ~ ;ALL BLKS OK

CHKRAM1: MOV A,B
MOV RAMMAX,A ;SAVE MAX BLK COUNT (1-5)

s SETUP STARTUP BLOCK SELECTOR TO FIRST RAM SITE
MOV A, #00H
CALL BLKSEL
RET

dkhkkkhkhkkkkhhhkhkkhkkhhhkhkhhhhkhhhkkhhhkhkkhhkhkhhkkkhhkhhkhhkkkdhhhkkkdkx

;
; SUBROUTINE AREA
skkkhhhhhhhhhhhhkhhhhhhhhhhkhhhhhhhhhkxkhrhhhhddhhhhhkhkhdk

T T R T T T
;BLKSEL - BLOCK SELECTER
SELECTS A RAM SITE FOR USE

ENTER WITH SITE NUMBER (0-4) IN A REGISTER
Rk kkkkkhkkkkkkkhkkkkkkkhkhkhkhkhkhkhkhkhkhkhhhrhhhdkhkd

BLKSEL EQU $

~e

~e

CLR P1.0
CLR P1l.1
CLR P1l.2
CLR P1l.3
CILR Pl.4

CINE A, #00H,BSEL1
SETB P1.0
SJMP BSELS

BSEL1: CINE A, #01H,BSEL2
SETB P1.1
SIJMP BSELS

BSEL2: CINE A, #02H,BSEL3
SETB P1.2
SJMP BSELS

BSEL3: CINE A, #03H,BSEL4
SETB P1.3
SIJMP BSELS5

BSEL4 : CINE A, #04H,BSELS5
SETB P1.4

BSELS5: RET

1.11. Appendix A - List of Vendors

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

8 bit Microcontroller Handbook P/N 270645-002

- covers the 8051 family of microcontrollers

Densitron
2540 West 237th Street
Torrance, CA 90505

(213) 530-3530

- manufacturer of LCDs.

Signetics

811 E. Arques Avenue
Sunnyvale, CA 94088
(408) 991-2000

data sheet on SCN2681 DUART

Maxim Corporation
120 San Gabriel Drive
Sunnyvale, CA 94086
(408) 737-7600

data sheet on MAX232 RS232 driver/receiver chip.

8051 Interfacing and Applications

65

0.1. Appendix B: Connection to an External Computer

When deciding on whether to use a parallel or serial connection between the single board
computer and an external computer, several items must be considered. The parallel
connection usually provides for only a one way transfer of data from the external
computer to the single board computer. If communication back to the external computer
is needed, a bidirectional parallel port would be required to provide a communication
path back to the computer.

An alternative to a bidirectional parallel port is a serial communication port. A standard
RS232 portis generally available on most PCs, while a bidirectional serial port is standard
on most newer PCs, but not necessarily included on older PCs.

A serial port can provide for a better communication scheme, but its disadvantage can

be the speed at which data can be transferred. Normally, on most PCs, the transfer rate
may be limited to 9600 bits per second.

8051 Interfacing and Applications

67

0.1.

RS-232 Serial Connection

After successfully completing the necessary logic and voltage conversions on the single
board computer for the serial port, the next step is connecting the serial port on this
board to an external source. Normally, this is some sort of external computer (PC, Mac,
or other) that could be used for a number of purposes.

An external computer connected to the single board computer may be required for
providing a user of the system access to the single board computer. This may be
necessary to program various parameters, to retrieve accumulated data from the single
board computer, or to get current status information from the process that the single
board computer is controlling.

0.1.1 RS232-C Connector Pinouts

Connectors used for serial RS232 purposes on computers generally conform to a
standard pinout. The twenty-five pin sub "D" connector was chosen several years ago as
the normal connector used for this purpose. However, in the past couple of years, the
nine pin sub "D" connector that became popular with the release of the IBM AT personal
computer has gained popularity. Both connectors will be described in this section.

The signals present on these connectors are defined as follows:

o
7
=
5]

Signal Description 9 pin
Chassis Ground
Transmitted Data
Received Data
Request To Send
Clear to Send
Data Set Ready
Signal Ground
Carrier Detect
Data Terminal Ready

0O~ NN R WN =
o= N0 W

o
o

Transmitted Data, Received Data, and Signal Ground are the only necessary signals for
connection between devices. The remaining signals defined above are used for hardware
handshaking or for modem control signals. For the purposes of this manual, a single
hardware handshaking system using RTS and CTS will be described. There are other
combinations and uses of the handshaking lines, but this method has been provento work
on most hardware.

The signals defined above have equivelent meaning whether they are used on the 25 pin

connector or the 9 pin connector. The signals required for connection from a single
board computer to an external PC will be described in the following section.

8051 Interfacing and Applications

69

70

0.1.2 Connection to an External Computer

The pinouts above are used in equipment that are defined under the EIA RS-232C
standard as "Data Terminal Equipment” (or DTE). Data Terminal equipment is
normally defined as computers or terminals that are the primary source of data
transmission. To make the connection from the 25 or 9 pin connector on the
single board computer to an external PC, an understanding of what the various
signals on the RS232 standard mean will be required.

The most important pins on the connector are the ones that allow the data to be
transferred between the devices. The pin labeled TRANSMITTED DATA is the
output pin while transmitting data, and the pin labeled RECEIVED DATA is the
input pin while receiving data. Because of this, a connection is made from the
TRANSMITTED DATA pin on the single board computer to the RECEIVED DATA
pin on the external computer. Conversely, the TRANSMITTED DATA pin on the
external computer is connected to the RECEIVED DATA pin on the single board
computer. This provides for data transmission paths in both directions

SIGNAL GROUND is the only other required signal that must be connected
between single board computer and the external computer. This provides the
electrical reference for the TRANSMITTED and RECEIVED data signals.

If hardware handshaking is to be implemented between the two devices, the lines
REQUEST TO SEND and CLEAR TO SEND on each device must be connected in
a similar manner to the TRANSMITTED DATA and RECEIVED DATA signals. The
REQUEST TO SEND (RTS) signal from the single board computer must be
connected to the CLEAR TO SEND (CTS) signal on the external computer.
Similarly, the RTS on the external computer must be connected tc the CTS signal
on the single board computer.

Software operation is discussed in the manual sections that cover the 8051
operation as it pertains to serial communication. Basically, it consists of polling
the CTS input signal before data is transmitted, and controlling the RTS output
signal to signal the transmitting device to stop sending data to the receiving
device.

0.1.3 Cabling

The above connection scheme comprises a standard configuration known as a
“null modem" cable that can be used to directly connect two DTE devices
together. Because both of the devices are configured as DTE, they cannot be
cabled together using a "one-for-one" cable. This type of cable, if used, would
cause outputs to be connected to outputs and inputs connected to inputs. To
avoid this, the signals must be crossed in the cable to conform to the proper
wiring configuration.

In addition to making sure that the proper signals are connected, you must also be aware
of the defintion in pinouts between the 25 pin connector and the 9 pin connector. The
same signals are used in both connector pinouts, but the signals appear on different pins.
If your design uses a 25 pin connector, for example, and the external computer uses a 9
pin connector, a cable will need to be constructed that makes the proper connection for
this connector combination.

8051 Interfacing and Applications

In schematic form, the possible cable connections would look the the following:

25 Pin
25 PIn
: w :
RXD RXD
3 3
4] RTS RTS
4
CTs
& CTS
5
GND GND
7 7
9 Pin 25 Pin
5 GND YXMT Y
3 %\ RXD
3
2 RTS
4
CTS
8
CT
RTS 6
7
GND| 7
9 Pin 9 PIn
—. GND GND _ _
5 5
3 LXMT XMI | 3
Pyt
2 2
8 | crs c1s | 8
7 RTS RTS| 7

8051 Interfacing and Applications

72

Other possible RS232 connection options

The above explanation of a standard null modem cable has been proven to work in most
systems. However, the external computer that you are connecting the single board
computer to may require a slightly different configuration. The next section discusses
possible problems that may occur and some remedies to provide for proper operation.

Problem : External Computer does not transmit when connected.

Possible solutions ;

Some computer serial boards require that the DSR (Data Set Ready) input on its
connector be at a TRUE state before sending data. This can be accomplished by tying
the DSR input to the CTS input so that the single board computer will drive both inputs
TRUE when it is ready to receive data. Alternatively, the DSR input can be tied to a
voltage source of between +10V and +15V to hold the signal at a TRUE state at all
times.

If this is attempted and the external computer will still not send data, another possible
problem may be the CD (Carrier Detect) input on the computer’s serial port. Some
system boards and/or software may require that this input also be at a TRUE state before
it will allow data to be transmitted. The CD input can be tied to a voltage source of
between +10V and +15V to hold the signal at a TRUE state at all times.

Problem: Data is lost during transmission.

Possible solutions :

If data is sent from one source (either the external computer or the single board
computer) and is received incomplete or garbled, make sure that the transmitter is not
sending data at a rate that is too fast for the receiving device.

If a high baud rate is being used, handshaking between devices may be required in order
for the receiving devive to control the data flow so that characters coming in from the
transmitter will not be lost before the receiver gets a chance to read and process them.
Use the RTS/CTS connection described above to implement hardware handshaking
control.

Another alternative is the use of software handshaking via the XON/XOFF protocal. In
this scenario, handshaking between devices is done by sending one byte codes from the
receiving device to the transmitting device to control the flow of data.

When the receiving device cannot accept any data from the transmitting device, it sends
an XOFF (ASCII 13h) to the transmitting device. Upon receiving this code, the
transmitting device goes into a software loop without sending data. Once the receiving
device has finished processing the data it has received and is ready for additional data
to be sent, it sends an XON (ASCII 11h) to the transmitting device. When the transmit-
ting device receives this byte, it resumes sending information on the serial channel.

This type of data flow control is very useful when communicating between devices that
cannot use hardware handshaking, as in communication between modems over a phone
line. Since data bytes are used, the need for hardware connection between RTS/CTS is
eliminated.

8051 Interfacing and Applications

0.2. Centronics Interface Cabling

If a higher speed, one-way transmission is preferred in your system design, the
parallel data communication scheme defined by the Centronics standard
provides a good method for data transfer.

The interface cabling for connection of the parallel Centronics interface uses thirty
six pin conductors that carry the signals for the data transfer and the control
signals .

In an external computer that provides for a standard Centronics connector, a “one
for one" cable can be used to connect to the single board computer that is
described in this manual.

More commonly, the design may require that you connect a PC-type computer to
the single board design. The IBM PC standard for paraliel connection uses a 25
pin sub "D" connector rather than the standard 36 pin connector. All signals are
present on the 25 pin connector that are required for the parallel interface.

8051 Interfacing and Applications

73

74

25 PIn D

14

15

16

17

18

19

2]

23

10 | *Ack

11 | _Busy

12 | _Emor

13 | Sal

10

11

12

13

14

15

16

17

18

IBM PC 25 pin to Centronics 36 Pin Cable

8051 Interfacing and Applications

